diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/algebra/strap/BOOLEAN.lsp | 10 | ||||
-rw-r--r-- | src/algebra/strap/DFLOAT.lsp | 248 | ||||
-rw-r--r-- | src/algebra/strap/FFIELDC-.lsp | 235 | ||||
-rw-r--r-- | src/algebra/strap/INS.lsp | 1 | ||||
-rw-r--r-- | src/algebra/strap/INT.lsp | 305 | ||||
-rw-r--r-- | src/algebra/strap/SINT.lsp | 148 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2210 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 3178 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1333 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9531 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 30996 |
11 files changed, 24094 insertions, 24101 deletions
diff --git a/src/algebra/strap/BOOLEAN.lsp b/src/algebra/strap/BOOLEAN.lsp index f275dcd5..ebdb87c8 100644 --- a/src/algebra/strap/BOOLEAN.lsp +++ b/src/algebra/strap/BOOLEAN.lsp @@ -158,12 +158,12 @@ ((|false| ($)) T (CONST $ 8)) ((|true| ($)) T (CONST $ 7)) ((|convert| ((|InputForm|) $)) T (ELT $ 36)) - ((|equiv| ($ $ $)) T (ELT $ 21)) - ((|implies| ($ $ $)) T (ELT $ 20)) - ((|or| ($ $ $)) T (ELT $ 13)) + ((|not| ($ $)) T (ELT $ 9)) ((|and| ($ $ $)) T (ELT $ 11)) - ((|not| ($ $)) T (ELT $ 9)) ((~ ($ $)) T (ELT $ 10)) - ((|/\\| ($ $ $)) T (ELT $ 12)) + ((|or| ($ $ $)) T (ELT $ 13)) + ((|implies| ($ $ $)) T (ELT $ 20)) + ((|equiv| ($ $ $)) T (ELT $ 21)) + ((~ ($ $)) T (ELT $ 10)) ((|/\\| ($ $ $)) T (ELT $ 12)) ((|\\/| ($ $ $)) T (ELT $ 14)) ((|size| ((|NonNegativeInteger|))) T (ELT $ 24)) ((|index| ($ (|PositiveInteger|))) T (ELT $ 28)) diff --git a/src/algebra/strap/DFLOAT.lsp b/src/algebra/strap/DFLOAT.lsp index 88f168b4..ec08fcad 100644 --- a/src/algebra/strap/DFLOAT.lsp +++ b/src/algebra/strap/DFLOAT.lsp @@ -81,7 +81,7 @@ (FIX (SPADCALL (FLOAT-DIGITS 0.0) (SPADCALL (FLOAT (FLOAT-RADIX 0.0) - MOST-POSITIVE-LONG-FLOAT) + |$DoubleFloatMaximum|) (|getShellEntry| $ 30)) (|getShellEntry| $ 31))) |DFLOAT;bits;Pi;11|) @@ -293,9 +293,9 @@ (DEFUN |DFLOAT;zero?;$B;65| (|x| $) (ZEROP |x|)) -(PUT '|DFLOAT;hash;$I;66| '|SPADreplace| 'HASHEQ) +(PUT '|DFLOAT;hash;$Si;66| '|SPADreplace| 'HASHEQ) -(DEFUN |DFLOAT;hash;$I;66| (|x| $) (HASHEQ |x|)) +(DEFUN |DFLOAT;hash;$Si;66| (|x| $) (HASHEQ |x|)) (DEFUN |DFLOAT;recip;$U;67| (|x| $) (COND ((ZEROP |x|) (CONS 1 "failed")) ('T (CONS 0 (/ 1.0 |x|))))) @@ -305,10 +305,10 @@ (DEFUN |DFLOAT;differentiate;2$;68| (|x| $) 0.0) (DEFUN |DFLOAT;Gamma;2$;69| (|x| $) - (SPADCALL |x| (|getShellEntry| $ 95))) + (SPADCALL |x| (|getShellEntry| $ 96))) (DEFUN |DFLOAT;Beta;3$;70| (|x| |y| $) - (SPADCALL |x| |y| (|getShellEntry| $ 97))) + (SPADCALL |x| |y| (|getShellEntry| $ 98))) (PUT '|DFLOAT;wholePart;$I;71| '|SPADreplace| 'FIX) @@ -322,10 +322,10 @@ (DEFUN |DFLOAT;convert;2$;73| (|x| $) |x|) (DEFUN |DFLOAT;convert;$F;74| (|x| $) - (SPADCALL |x| (|getShellEntry| $ 103))) + (SPADCALL |x| (|getShellEntry| $ 104))) (DEFUN |DFLOAT;rationalApproximation;$NniF;75| (|x| |d| $) - (SPADCALL |x| |d| 10 (|getShellEntry| $ 107))) + (SPADCALL |x| |d| 10 (|getShellEntry| $ 108))) (DEFUN |DFLOAT;atan;3$;76| (|x| |y| $) (PROG (|theta|) @@ -354,7 +354,7 @@ (PROG1 (LETT #0# (- (FLOAT-DIGITS 0.0) 1) |DFLOAT;retract;$F;77|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) - (FLOAT-RADIX 0.0) (|getShellEntry| $ 107))))) + (FLOAT-RADIX 0.0) (|getShellEntry| $ 108))))) (DEFUN |DFLOAT;retractIfCan;$U;78| (|x| $) (PROG (#0=#:G1501) @@ -365,7 +365,7 @@ |DFLOAT;retractIfCan;$U;78|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) - (FLOAT-RADIX 0.0) (|getShellEntry| $ 107)))))) + (FLOAT-RADIX 0.0) (|getShellEntry| $ 108)))))) (DEFUN |DFLOAT;retract;$I;79| (|x| $) (PROG (|n|) @@ -385,7 +385,7 @@ ('T (CONS 1 "failed")))))))) (DEFUN |DFLOAT;sign;$I;81| (|x| $) - (SPADCALL (FLOAT-SIGN |x| 1.0) (|getShellEntry| $ 113))) + (SPADCALL (FLOAT-SIGN |x| 1.0) (|getShellEntry| $ 114))) (PUT '|DFLOAT;abs;2$;82| '|SPADreplace| '(XLAM (|x|) (FLOAT-SIGN 1.0 |x|))) @@ -399,7 +399,7 @@ ((ZEROP |x|) (CONS 0 0)) ('T (SEQ (LETT |s| - (SPADCALL |x| (|getShellEntry| $ 116)) + (SPADCALL |x| (|getShellEntry| $ 117)) |DFLOAT;manexp|) (LETT |x| (FLOAT-SIGN 1.0 |x|) |DFLOAT;manexp|) @@ -421,7 +421,7 @@ (LETT |two53| (SPADCALL (FLOAT-RADIX 0.0) (FLOAT-DIGITS 0.0) - (|getShellEntry| $ 118)) + (|getShellEntry| $ 119)) |DFLOAT;manexp|) (EXIT (CONS (* |s| (FIX (* |two53| (QCAR |me|)))) @@ -499,14 +499,14 @@ (- (* |nu| |q2|) (* |de| |p2|))) (|getShellEntry| $ - 121)) + 122)) (* |de| (ABS |p2|)))) (EXIT (PROGN (LETT #1# (SPADCALL |p2| |q2| (|getShellEntry| $ - 120)) + 121)) |DFLOAT;rationalApproximation;$2NniF;84|) (GO #1#))))) (PROGN @@ -548,7 +548,7 @@ |DFLOAT;rationalApproximation;$2NniF;84|) (|check-subtype| (>= #2# 0) '(|NonNegativeInteger|) #2#)))) - (|getShellEntry| $ 122))))))) + (|getShellEntry| $ 123))))))) #1# (EXIT #1#))))) (DEFUN |DFLOAT;**;$F$;85| (|x| |r| $) @@ -557,27 +557,27 @@ (SEQ (EXIT (COND ((ZEROP |x|) (COND - ((SPADCALL |r| (|getShellEntry| $ 123)) - (|error| "0**0 is undefined")) ((SPADCALL |r| (|getShellEntry| $ 124)) + (|error| "0**0 is undefined")) + ((SPADCALL |r| (|getShellEntry| $ 125)) (|error| "division by 0")) ('T 0.0))) - ((OR (SPADCALL |r| (|getShellEntry| $ 123)) + ((OR (SPADCALL |r| (|getShellEntry| $ 124)) (= |x| 1.0)) 1.0) ('T (COND - ((SPADCALL |r| (|spadConstant| $ 125) - (|getShellEntry| $ 126)) + ((SPADCALL |r| (|spadConstant| $ 126) + (|getShellEntry| $ 127)) |x|) ('T (SEQ (LETT |n| (SPADCALL |r| - (|getShellEntry| $ 127)) + (|getShellEntry| $ 128)) |DFLOAT;**;$F$;85|) (LETT |d| (SPADCALL |r| - (|getShellEntry| $ 128)) + (|getShellEntry| $ 129)) |DFLOAT;**;$F$;85|) (EXIT (COND ((MINUSP |x|) @@ -589,14 +589,14 @@ (LETT #0# (- (SPADCALL (- |x|) |r| - (|getShellEntry| $ 129))) + (|getShellEntry| $ 130))) |DFLOAT;**;$F$;85|) (GO #0#))) ('T (PROGN (LETT #0# (SPADCALL (- |x|) |r| - (|getShellEntry| $ 129)) + (|getShellEntry| $ 130)) |DFLOAT;**;$F$;85|) (GO #0#))))) ('T (|error| "negative root")))) @@ -687,8 +687,9 @@ |DFLOAT;acsch;2$;60| |DFLOAT;acoth;2$;61| |DFLOAT;asech;2$;62| |DFLOAT;/;3$;63| |DFLOAT;negative?;$B;64| |DFLOAT;zero?;$B;65| - |DFLOAT;hash;$I;66| (|Union| $ '"failed") - |DFLOAT;recip;$U;67| |DFLOAT;differentiate;2$;68| + (|SingleInteger|) |DFLOAT;hash;$Si;66| + (|Union| $ '"failed") |DFLOAT;recip;$U;67| + |DFLOAT;differentiate;2$;68| (|DoubleFloatSpecialFunctions|) (47 . |Gamma|) |DFLOAT;Gamma;2$;69| (52 . |Beta|) |DFLOAT;Beta;3$;70| |DFLOAT;wholePart;$I;71| |DFLOAT;float;2IPi$;72| @@ -698,24 +699,23 @@ |DFLOAT;rationalApproximation;$2NniF;84| |DFLOAT;rationalApproximation;$NniF;75| |DFLOAT;atan;3$;76| |DFLOAT;retract;$F;77| - (|Union| 105 '"failed") |DFLOAT;retractIfCan;$U;78| + (|Union| 106 '"failed") |DFLOAT;retractIfCan;$U;78| |DFLOAT;retract;$I;79| (|Union| 26 '"failed") |DFLOAT;retractIfCan;$U;80| |DFLOAT;sign;$I;81| |DFLOAT;abs;2$;82| (63 . **) (69 . |Zero|) (73 . /) (79 . *) (85 . |coerce|) (90 . |zero?|) (95 . |negative?|) (100 . |One|) (104 . =) (110 . |numer|) (115 . |denom|) - |DFLOAT;**;$F$;85| (|PatternMatchResult| 102 $) - (|Pattern| 102) (|Factored| $) + |DFLOAT;**;$F$;85| (|PatternMatchResult| 103 $) + (|Pattern| 103) (|Factored| $) (|Record| (|:| |coef1| $) (|:| |coef2| $)) - (|Union| 133 '"failed") (|List| $) (|Union| 135 '"failed") + (|Union| 134 '"failed") (|List| $) (|Union| 136 '"failed") (|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) (|Record| (|:| |quotient| $) (|:| |remainder| $)) (|SparseUnivariatePolynomial| $) - (|Record| (|:| |coef| 135) (|:| |generator| $)) + (|Record| (|:| |coef| 136) (|:| |generator| $)) (|Record| (|:| |unit| $) (|:| |canonical| $) - (|:| |associate| $)) - (|SingleInteger|)) + (|:| |associate| $))) '#(~= 120 |zero?| 126 |wholePart| 131 |unitNormal| 136 |unitCanonical| 141 |unit?| 146 |truncate| 151 |tanh| 156 |tan| 161 |subtractIfCan| 166 |squareFreePart| 172 @@ -728,20 +728,20 @@ |one?| 312 |nthRoot| 317 |norm| 323 |negative?| 328 |multiEuclidean| 333 |min| 339 |max| 349 |mantissa| 359 |log2| 364 |log10| 369 |log| 374 |lcm| 379 |latex| 390 - |inv| 395 |hash| 400 |gcdPolynomial| 410 |gcd| 416 - |fractionPart| 427 |floor| 432 |float| 437 |factor| 450 - |extendedEuclidean| 455 |exquo| 468 |expressIdealMember| - 474 |exponent| 480 |exp1| 485 |exp| 489 |euclideanSize| - 494 |doubleFloatFormat| 499 |divide| 504 |digits| 510 - |differentiate| 514 |csch| 525 |csc| 530 |coth| 535 |cot| - 540 |cosh| 545 |cos| 550 |convert| 555 |coerce| 575 - |characteristic| 605 |ceiling| 609 |bits| 614 |base| 618 - |atanh| 622 |atan| 627 |associates?| 638 |asinh| 644 - |asin| 649 |asech| 654 |asec| 659 |acsch| 664 |acsc| 669 - |acoth| 674 |acot| 679 |acosh| 684 |acos| 689 |abs| 694 - |Zero| 699 |One| 703 |OMwrite| 707 |Gamma| 731 D 736 - |Beta| 747 >= 753 > 759 = 765 <= 771 < 777 / 783 - 795 + - 806 ** 812 * 842) + |inv| 395 |hash| 400 |gcdPolynomial| 405 |gcd| 411 + |fractionPart| 422 |floor| 427 |float| 432 |factor| 445 + |extendedEuclidean| 450 |exquo| 463 |expressIdealMember| + 469 |exponent| 475 |exp1| 480 |exp| 484 |euclideanSize| + 489 |doubleFloatFormat| 494 |divide| 499 |digits| 505 + |differentiate| 509 |csch| 520 |csc| 525 |coth| 530 |cot| + 535 |cosh| 540 |cos| 545 |convert| 550 |coerce| 570 + |characteristic| 600 |ceiling| 604 |bits| 609 |base| 613 + |atanh| 617 |atan| 622 |associates?| 633 |asinh| 639 + |asin| 644 |asech| 649 |asec| 654 |acsch| 659 |acsc| 664 + |acoth| 669 |acot| 674 |acosh| 679 |acos| 684 |abs| 689 + |Zero| 694 |One| 698 |OMwrite| 702 |Gamma| 726 D 731 + |Beta| 742 >= 748 > 754 = 760 <= 766 < 772 / 778 - 790 + + 801 ** 807 * 837) '((|approximate| . 0) (|canonicalsClosed| . 0) (|canonicalUnitNormal| . 0) (|noZeroDivisors| . 0) ((|commutative| "*") . 0) (|rightUnitary| . 0) @@ -774,14 +774,14 @@ (|PrincipalIdealDomain|) (|UniqueFactorizationDomain|) (|GcdDomain|) (|DivisionRing|) - (|IntegralDomain|) (|Algebra| 105) + (|IntegralDomain|) (|Algebra| 106) (|Algebra| $$) (|DifferentialRing|) (|CharacteristicZero|) (|OrderedRing|) - (|Module| 105) (|EntireRing|) + (|Module| 106) (|EntireRing|) (|CommutativeRing|) (|Module| $$) - (|BiModule| 105 105) (|BiModule| $$ $$) + (|BiModule| 106 106) (|BiModule| $$ $$) (|Ring|) (|OrderedAbelianGroup|) - (|RightModule| 105) (|LeftModule| 105) + (|RightModule| 106) (|LeftModule| 106) (|LeftModule| $$) (|Rng|) (|RightModule| $$) (|OrderedCancellationAbelianMonoid|) @@ -790,7 +790,7 @@ (|CancellationAbelianMonoid|) (|OrderedAbelianSemiGroup|) (|AbelianMonoid|) (|Monoid|) - (|PatternMatchable| 102) (|OrderedSet|) + (|PatternMatchable| 103) (|OrderedSet|) (|AbelianSemiGroup|) (|SemiGroup|) (|TranscendentalFunctionCategory|) (|RealConstant|) (|SetCategory|) @@ -800,70 +800,70 @@ (|HyperbolicFunctionCategory|) (|ArcTrigonometricFunctionCategory|) (|TrigonometricFunctionCategory|) - (|OpenMath|) (|ConvertibleTo| 131) + (|OpenMath|) (|ConvertibleTo| 132) (|RadicalCategory|) - (|RetractableTo| 105) + (|RetractableTo| 106) (|RetractableTo| 26) - (|ConvertibleTo| 102) + (|ConvertibleTo| 103) (|ConvertibleTo| 15) (|BasicType|) (|CoercibleTo| 40)) (|makeByteWordVec2| 142 '(0 9 0 10 2 11 0 7 9 12 1 11 13 0 14 2 11 13 0 15 16 1 11 13 0 17 1 11 13 0 18 2 0 0 24 0 31 1 40 0 15 41 1 43 0 - 15 44 1 94 15 15 95 2 94 15 15 15 97 - 1 102 0 15 103 2 26 0 0 24 118 0 105 - 0 119 2 105 0 26 26 120 2 26 0 106 0 - 121 1 105 0 26 122 1 105 20 0 123 1 - 105 20 0 124 0 105 0 125 2 105 20 0 0 - 126 1 105 26 0 127 1 105 26 0 128 2 0 - 20 0 0 1 1 0 20 0 89 1 0 26 0 99 1 0 - 141 0 1 1 0 0 0 1 1 0 20 0 1 1 0 0 0 - 1 1 0 0 0 77 1 0 0 0 65 2 0 91 0 0 1 - 1 0 0 0 1 1 0 132 0 1 1 0 0 0 56 2 0 + 15 44 1 95 15 15 96 2 95 15 15 15 98 + 1 103 0 15 104 2 26 0 0 24 119 0 106 + 0 120 2 106 0 26 26 121 2 26 0 107 0 + 122 1 106 0 26 123 1 106 20 0 124 1 + 106 20 0 125 0 106 0 126 2 106 20 0 0 + 127 1 106 26 0 128 1 106 26 0 129 2 0 + 20 0 0 1 1 0 20 0 89 1 0 26 0 100 1 0 + 142 0 1 1 0 0 0 1 1 0 20 0 1 1 0 0 0 + 1 1 0 0 0 77 1 0 0 0 65 2 0 92 0 0 1 + 1 0 0 0 1 1 0 133 0 1 1 0 0 0 56 2 0 20 0 0 1 1 0 0 0 75 1 0 0 0 63 1 0 26 - 0 116 1 0 0 0 80 1 0 0 0 67 0 0 0 1 1 - 0 0 0 1 1 0 111 0 112 1 0 114 0 115 1 - 0 105 0 110 1 0 26 0 113 2 0 0 0 0 1 - 1 0 91 0 92 2 0 105 0 106 108 3 0 105 - 0 106 106 107 2 0 0 0 0 1 1 0 140 135 + 0 117 1 0 0 0 80 1 0 0 0 67 0 0 0 1 1 + 0 0 0 1 1 0 112 0 113 1 0 115 0 116 1 + 0 106 0 111 1 0 26 0 114 2 0 0 0 0 1 + 1 0 92 0 93 2 0 106 0 107 109 3 0 106 + 0 107 107 108 2 0 0 0 0 1 1 0 141 136 1 1 0 20 0 1 0 0 24 29 1 0 20 0 1 0 0 - 0 39 3 0 130 0 131 130 1 1 0 26 0 35 + 0 39 3 0 131 0 132 131 1 1 0 26 0 35 1 0 20 0 1 2 0 0 0 26 1 1 0 0 0 1 1 0 - 20 0 88 2 0 136 135 0 1 0 0 0 34 2 0 + 20 0 88 2 0 137 136 0 1 0 0 0 34 2 0 0 0 0 53 0 0 0 33 2 0 0 0 0 52 1 0 26 0 27 1 0 0 0 30 1 0 0 0 57 1 0 0 0 62 - 2 0 0 0 0 1 1 0 0 135 1 1 0 7 0 1 1 0 - 0 0 1 1 0 26 0 90 1 0 142 0 1 2 0 139 - 139 139 1 1 0 0 135 1 2 0 0 0 0 1 1 0 - 0 0 1 1 0 0 0 1 2 0 0 26 26 1 3 0 0 - 26 26 24 100 1 0 132 0 1 3 0 134 0 0 - 0 1 2 0 137 0 0 1 2 0 91 0 0 1 2 0 - 136 135 0 1 1 0 26 0 28 0 0 0 38 1 0 - 0 0 61 1 0 106 0 1 1 0 7 7 8 2 0 138 - 0 0 1 0 0 24 1 1 0 0 0 93 2 0 0 0 106 - 1 1 0 0 0 78 1 0 0 0 68 1 0 0 0 79 1 - 0 0 0 66 1 0 0 0 76 1 0 0 0 64 1 0 43 - 0 45 1 0 131 0 1 1 0 15 0 101 1 0 102 - 0 104 1 0 0 105 1 1 0 0 26 60 1 0 0 - 105 1 1 0 0 26 60 1 0 0 0 1 1 0 40 0 - 42 0 0 106 1 1 0 0 0 1 0 0 24 32 0 0 - 24 25 1 0 0 0 83 2 0 0 0 0 109 1 0 0 - 0 71 2 0 20 0 0 1 1 0 0 0 81 1 0 0 0 - 69 1 0 0 0 86 1 0 0 0 74 1 0 0 0 84 1 - 0 0 0 72 1 0 0 0 85 1 0 0 0 73 1 0 0 - 0 82 1 0 0 0 70 1 0 0 0 117 0 0 0 36 - 0 0 0 37 3 0 13 11 0 20 23 2 0 7 0 20 - 21 2 0 13 11 0 22 1 0 7 0 19 1 0 0 0 - 96 1 0 0 0 1 2 0 0 0 106 1 2 0 0 0 0 - 98 2 0 20 0 0 1 2 0 20 0 0 1 2 0 20 0 - 0 54 2 0 20 0 0 1 2 0 20 0 0 46 2 0 0 - 0 26 55 2 0 0 0 0 87 2 0 0 0 0 49 1 0 - 0 0 47 2 0 0 0 0 48 2 0 0 0 0 59 2 0 - 0 0 105 129 2 0 0 0 26 58 2 0 0 0 106 - 1 2 0 0 0 24 1 2 0 0 0 105 1 2 0 0 - 105 0 1 2 0 0 0 0 50 2 0 0 26 0 51 2 - 0 0 106 0 1 2 0 0 24 0 31))))) + 2 0 0 0 0 1 1 0 0 136 1 1 0 7 0 1 1 0 + 0 0 1 1 0 90 0 91 2 0 140 140 140 1 1 + 0 0 136 1 2 0 0 0 0 1 1 0 0 0 1 1 0 0 + 0 1 2 0 0 26 26 1 3 0 0 26 26 24 101 + 1 0 133 0 1 3 0 135 0 0 0 1 2 0 138 0 + 0 1 2 0 92 0 0 1 2 0 137 136 0 1 1 0 + 26 0 28 0 0 0 38 1 0 0 0 61 1 0 107 0 + 1 1 0 7 7 8 2 0 139 0 0 1 0 0 24 1 1 + 0 0 0 94 2 0 0 0 107 1 1 0 0 0 78 1 0 + 0 0 68 1 0 0 0 79 1 0 0 0 66 1 0 0 0 + 76 1 0 0 0 64 1 0 43 0 45 1 0 132 0 1 + 1 0 15 0 102 1 0 103 0 105 1 0 0 106 + 1 1 0 0 26 60 1 0 0 106 1 1 0 0 26 60 + 1 0 0 0 1 1 0 40 0 42 0 0 107 1 1 0 0 + 0 1 0 0 24 32 0 0 24 25 1 0 0 0 83 2 + 0 0 0 0 110 1 0 0 0 71 2 0 20 0 0 1 1 + 0 0 0 81 1 0 0 0 69 1 0 0 0 86 1 0 0 + 0 74 1 0 0 0 84 1 0 0 0 72 1 0 0 0 85 + 1 0 0 0 73 1 0 0 0 82 1 0 0 0 70 1 0 + 0 0 118 0 0 0 36 0 0 0 37 3 0 13 11 0 + 20 23 2 0 7 0 20 21 2 0 13 11 0 22 1 + 0 7 0 19 1 0 0 0 97 1 0 0 0 1 2 0 0 0 + 107 1 2 0 0 0 0 99 2 0 20 0 0 1 2 0 + 20 0 0 1 2 0 20 0 0 54 2 0 20 0 0 1 2 + 0 20 0 0 46 2 0 0 0 26 55 2 0 0 0 0 + 87 2 0 0 0 0 49 1 0 0 0 47 2 0 0 0 0 + 48 2 0 0 0 0 59 2 0 0 0 106 130 2 0 0 + 0 26 58 2 0 0 0 107 1 2 0 0 0 24 1 2 + 0 0 0 106 1 2 0 0 106 0 1 2 0 0 0 0 + 50 2 0 0 26 0 51 2 0 0 107 0 1 2 0 0 + 24 0 31))))) '|lookupComplete|)) (SETQ |$CategoryFrame| @@ -871,18 +871,17 @@ '(((|rationalApproximation| ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|))) - T (ELT $ 107)) + T (ELT $ 108)) ((|rationalApproximation| ((|Fraction| (|Integer|)) $ (|NonNegativeInteger|))) - T (ELT $ 108)) + T (ELT $ 109)) ((|doubleFloatFormat| ((|String|) (|String|))) T (ELT $ 8)) - ((|Beta| ($ $ $)) T (ELT $ 98)) - ((|Gamma| ($ $)) T (ELT $ 96)) - ((|atan| ($ $ $)) T (ELT $ 109)) + ((|Beta| ($ $ $)) T (ELT $ 99)) + ((|Gamma| ($ $)) T (ELT $ 97)) + ((|atan| ($ $ $)) T (ELT $ 110)) ((|log10| ($ $)) T (ELT $ 57)) ((|log2| ($ $)) T (ELT $ 30)) - ((|hash| ((|Integer|) $)) T (ELT $ 90)) ((|exp1| ($)) T (ELT $ 38)) ((/ ($ $ (|Integer|))) T (ELT $ 55)) ((|convert| ((|InputForm|) $)) T (ELT $ 45)) @@ -919,7 +918,7 @@ (ELT $ 22)) ((|OMwrite| ((|String|) $ (|Boolean|))) T (ELT $ 21)) ((|OMwrite| ((|String|) $)) T (ELT $ 19)) - ((|differentiate| ($ $)) T (ELT $ 93)) + ((|differentiate| ($ $)) T (ELT $ 94)) ((D ($ $)) T (ELT $ NIL)) ((|differentiate| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) @@ -951,12 +950,12 @@ ((|order| ((|Integer|) $)) T (ELT $ 35)) ((|float| ($ (|Integer|) (|Integer|) (|PositiveInteger|))) - T (ELT $ 100)) + T (ELT $ 101)) ((|float| ($ (|Integer|) (|Integer|))) T (ELT $ NIL)) ((|round| ($ $)) T (ELT $ NIL)) ((|truncate| ($ $)) T (ELT $ NIL)) ((|fractionPart| ($ $)) T (ELT $ NIL)) - ((|wholePart| ((|Integer|) $)) T (ELT $ 99)) + ((|wholePart| ((|Integer|) $)) T (ELT $ 100)) ((|floor| ($ $)) T (ELT $ NIL)) ((|ceiling| ($ $)) T (ELT $ NIL)) ((|norm| ($ $)) T (ELT $ NIL)) @@ -966,20 +965,20 @@ (|PatternMatchResult| (|Float|) $))) T (ELT $ NIL)) ((|convert| ((|Pattern| (|Float|)) $)) T (ELT $ NIL)) - ((** ($ $ (|Fraction| (|Integer|)))) T (ELT $ 129)) + ((** ($ $ (|Fraction| (|Integer|)))) T (ELT $ 130)) ((|nthRoot| ($ $ (|Integer|))) T (ELT $ NIL)) ((|sqrt| ($ $)) T (ELT $ 56)) - ((|retract| ((|Fraction| (|Integer|)) $)) T (ELT $ 110)) + ((|retract| ((|Fraction| (|Integer|)) $)) T (ELT $ 111)) ((|retractIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $)) - T (ELT $ 112)) + T (ELT $ 113)) ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ NIL)) - ((|retract| ((|Integer|) $)) T (ELT $ 113)) + ((|retract| ((|Integer|) $)) T (ELT $ 114)) ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T - (ELT $ 115)) + (ELT $ 116)) ((|coerce| ($ (|Integer|))) T (ELT $ 60)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ 101)) - ((|convert| ((|Float|) $)) T (ELT $ 104)) + ((|convert| ((|DoubleFloat|) $)) T (ELT $ 102)) + ((|convert| ((|Float|) $)) T (ELT $ 105)) ((< ((|Boolean|) $ $)) T (ELT $ 46)) ((> ((|Boolean|) $ $)) T (ELT $ NIL)) ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) @@ -988,8 +987,8 @@ ((|min| ($ $ $)) T (ELT $ 53)) ((|positive?| ((|Boolean|) $)) T (ELT $ NIL)) ((|negative?| ((|Boolean|) $)) T (ELT $ 88)) - ((|sign| ((|Integer|) $)) T (ELT $ 116)) - ((|abs| ($ $)) T (ELT $ 117)) ((/ ($ $ $)) T (ELT $ 87)) + ((|sign| ((|Integer|) $)) T (ELT $ 117)) + ((|abs| ($ $)) T (ELT $ 118)) ((/ ($ $ $)) T (ELT $ 87)) ((|coerce| ($ (|Fraction| (|Integer|)))) T (ELT $ NIL)) ((* ($ (|Fraction| (|Integer|)) $)) T (ELT $ NIL)) ((* ($ $ (|Fraction| (|Integer|)))) T (ELT $ NIL)) @@ -1055,7 +1054,7 @@ ((|One| ($)) T (CONST $ 37)) ((|one?| ((|Boolean|) $)) T (ELT $ NIL)) ((** ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ 92)) + ((|recip| ((|Union| $ "failed") $)) T (ELT $ 93)) ((* ($ $ $)) T (ELT $ 50)) ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) ((* ($ (|Integer|) $)) T (ELT $ 51)) @@ -1069,7 +1068,7 @@ ((* ($ (|PositiveInteger|) $)) T (ELT $ 31)) ((+ ($ $ $)) T (ELT $ 48)) ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) + ((|hash| ((|SingleInteger|) $)) T (ELT $ 91)) ((|coerce| ((|OutputForm|) $)) T (ELT $ 42)) ((= ((|Boolean|) $ $)) T (ELT $ 54)) ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) @@ -1082,7 +1081,6 @@ (SIGNATURE / ($ $ (|Integer|))) (SIGNATURE ** ($ $ $)) (SIGNATURE |exp1| ($)) - (SIGNATURE |hash| ((|Integer|) $)) (SIGNATURE |log2| ($ $)) (SIGNATURE |log10| ($ $)) (SIGNATURE |atan| ($ $ $)) @@ -1108,8 +1106,6 @@ (SIGNATURE / ($ $ (|Integer|))) (SIGNATURE ** ($ $ $)) (SIGNATURE |exp1| ($)) - (SIGNATURE |hash| - ((|Integer|) $)) (SIGNATURE |log2| ($ $)) (SIGNATURE |log10| ($ $)) (SIGNATURE |atan| ($ $ $)) diff --git a/src/algebra/strap/FFIELDC-.lsp b/src/algebra/strap/FFIELDC-.lsp index 0e6a1eae..50b093bb 100644 --- a/src/algebra/strap/FFIELDC-.lsp +++ b/src/algebra/strap/FFIELDC-.lsp @@ -35,10 +35,7 @@ (|getShellEntry| $ 30)))))))) (DEFUN |FFIELDC-;charthRoot;2S;6| (|x| $) - (SPADCALL |x| - (QUOTIENT2 (SPADCALL (|getShellEntry| $ 36)) - (SPADCALL (|getShellEntry| $ 37))) - (|getShellEntry| $ 38))) + (SPADCALL |x| (QUOTIENT2 2 0) (|getShellEntry| $ 36))) (DEFUN |FFIELDC-;charthRoot;SU;7| (|x| $) (CONS 0 (SPADCALL |x| (|getShellEntry| $ 28)))) @@ -46,13 +43,13 @@ (DEFUN |FFIELDC-;createPrimitiveElement;S;8| ($) (PROG (|sm1| |start| |i| #0=#:G1443 |e| |found|) (RETURN - (SEQ (LETT |sm1| (- (SPADCALL (|getShellEntry| $ 36)) 1) + (SEQ (LETT |sm1| (- (SPADCALL (|getShellEntry| $ 39)) 1) |FFIELDC-;createPrimitiveElement;S;8|) (LETT |start| (COND - ((SPADCALL (SPADCALL (|getShellEntry| $ 43)) - (CONS 1 "polynomial") (|getShellEntry| $ 44)) - (SPADCALL (|getShellEntry| $ 37))) + ((SPADCALL (SPADCALL (|getShellEntry| $ 41)) + (CONS 1 "polynomial") (|getShellEntry| $ 42)) + 0) ('T 1)) |FFIELDC-;createPrimitiveElement;S;8|) (LETT |found| 'NIL |FFIELDC-;createPrimitiveElement;S;8|) @@ -60,7 +57,7 @@ |FFIELDC-;createPrimitiveElement;S;8|) G190 (COND - ((NULL (SPADCALL |found| (|getShellEntry| $ 45))) + ((NULL (SPADCALL |found| (|getShellEntry| $ 43))) (GO G191))) (SEQ (LETT |e| (SPADCALL @@ -86,10 +83,9 @@ (SEQ (COND ((SPADCALL |a| (|getShellEntry| $ 14)) 'NIL) ('T - (SEQ (LETT |explist| (SPADCALL (|getShellEntry| $ 49)) - |FFIELDC-;primitive?;SB;9|) - (LETT |q| (- (SPADCALL (|getShellEntry| $ 36)) 1) + (SEQ (LETT |explist| (SPADCALL (|getShellEntry| $ 47)) |FFIELDC-;primitive?;SB;9|) + (LETT |q| (- 2 1) |FFIELDC-;primitive?;SB;9|) (LETT |equalone| 'NIL |FFIELDC-;primitive?;SB;9|) (SEQ (LETT |exp| NIL |FFIELDC-;primitive?;SB;9|) (LETT #0# |explist| |FFIELDC-;primitive?;SB;9|) @@ -101,19 +97,19 @@ |FFIELDC-;primitive?;SB;9|) NIL) (NULL (SPADCALL |equalone| - (|getShellEntry| $ 45)))) + (|getShellEntry| $ 43)))) (GO G191))) (SEQ (EXIT (LETT |equalone| (SPADCALL (SPADCALL |a| (QUOTIENT2 |q| (QCAR |exp|)) - (|getShellEntry| $ 50)) - (|spadConstant| $ 41) - (|getShellEntry| $ 51)) + (|getShellEntry| $ 48)) + (|spadConstant| $ 49) + (|getShellEntry| $ 50)) |FFIELDC-;primitive?;SB;9|))) (LETT #0# (CDR #0#) |FFIELDC-;primitive?;SB;9|) (GO G190) G191 (EXIT NIL)) - (EXIT (SPADCALL |equalone| (|getShellEntry| $ 45)))))))))) + (EXIT (SPADCALL |equalone| (|getShellEntry| $ 43)))))))))) (DEFUN |FFIELDC-;order;SPi;10| (|e| $) (PROG (|lof| |rec| #0=#:G1463 |primeDivisor| |j| #1=#:G1464 |a| @@ -121,13 +117,12 @@ (RETURN (SEQ (COND ((SPADCALL |e| (|spadConstant| $ 7) - (|getShellEntry| $ 51)) + (|getShellEntry| $ 50)) (|error| "order(0) is not defined ")) ('T - (SEQ (LETT |ord| (- (SPADCALL (|getShellEntry| $ 36)) 1) - |FFIELDC-;order;SPi;10|) + (SEQ (LETT |ord| (- 2 1) |FFIELDC-;order;SPi;10|) (LETT |a| 0 |FFIELDC-;order;SPi;10|) - (LETT |lof| (SPADCALL (|getShellEntry| $ 49)) + (LETT |lof| (SPADCALL (|getShellEntry| $ 47)) |FFIELDC-;order;SPi;10|) (SEQ (LETT |rec| NIL |FFIELDC-;order;SPi;10|) (LETT #0# |lof| |FFIELDC-;order;SPi;10|) G190 @@ -146,9 +141,9 @@ (LETT |goon| (SPADCALL (SPADCALL |e| |a| - (|getShellEntry| $ 50)) - (|spadConstant| $ 41) - (|getShellEntry| $ 51)) + (|getShellEntry| $ 48)) + (|spadConstant| $ 49) + (|getShellEntry| $ 50)) |FFIELDC-;order;SPi;10|) (SEQ (LETT |j| 0 |FFIELDC-;order;SPi;10|) (LETT #1# (- (QCDR |rec|) 2) @@ -168,9 +163,9 @@ (LETT |goon| (SPADCALL (SPADCALL |e| |a| - (|getShellEntry| $ 50)) - (|spadConstant| $ 41) - (|getShellEntry| $ 51)) + (|getShellEntry| $ 48)) + (|spadConstant| $ 49) + (|getShellEntry| $ 50)) |FFIELDC-;order;SPi;10|))) (LETT |j| (QSADD1 |j|) |FFIELDC-;order;SPi;10|) @@ -192,24 +187,20 @@ ((SPADCALL |b| (|getShellEntry| $ 14)) (|error| "discreteLog: logarithm of zero")) ('T - (SEQ (LETT |faclist| (SPADCALL (|getShellEntry| $ 49)) + (SEQ (LETT |faclist| (SPADCALL (|getShellEntry| $ 47)) |FFIELDC-;discreteLog;SNni;11|) (LETT |a| |b| |FFIELDC-;discreteLog;SNni;11|) - (LETT |gen| (SPADCALL (|getShellEntry| $ 54)) + (LETT |gen| (SPADCALL (|getShellEntry| $ 53)) |FFIELDC-;discreteLog;SNni;11|) (EXIT (COND - ((SPADCALL |b| |gen| (|getShellEntry| $ 51)) + ((SPADCALL |b| |gen| (|getShellEntry| $ 50)) 1) ('T (SEQ (LETT |disclog| 0 |FFIELDC-;discreteLog;SNni;11|) (LETT |mult| 1 |FFIELDC-;discreteLog;SNni;11|) - (LETT |groupord| - (- - (SPADCALL - (|getShellEntry| $ 36)) - 1) + (LETT |groupord| (- 2 1) |FFIELDC-;discreteLog;SNni;11|) (LETT |exp| |groupord| |FFIELDC-;discreteLog;SNni;11|) @@ -244,15 +235,15 @@ |FFIELDC-;discreteLog;SNni;11|) (LETT |exptable| (SPADCALL |fac| - (|getShellEntry| $ 56)) + (|getShellEntry| $ 55)) |FFIELDC-;discreteLog;SNni;11|) (LETT |n| (SPADCALL |exptable| - (|getShellEntry| $ 57)) + (|getShellEntry| $ 56)) |FFIELDC-;discreteLog;SNni;11|) (LETT |c| (SPADCALL |a| |exp| - (|getShellEntry| $ 50)) + (|getShellEntry| $ 48)) |FFIELDC-;discreteLog;SNni;11|) (LETT |end| (QUOTIENT2 (- |fac| 1) |n|) @@ -270,7 +261,7 @@ (QSGREATERP |i| |end|) (NULL (SPADCALL |found| - (|getShellEntry| $ 45)))) + (|getShellEntry| $ 43)))) (GO G191))) (SEQ (LETT |rho| @@ -278,7 +269,7 @@ (SPADCALL |c| (|getShellEntry| $ 11)) |exptable| - (|getShellEntry| $ 59)) + (|getShellEntry| $ 58)) |FFIELDC-;discreteLog;SNni;11|) (EXIT (COND @@ -302,9 +293,9 @@ |groupord| |fac|) (- |n|)) (|getShellEntry| $ - 50)) + 48)) (|getShellEntry| $ - 60)) + 59)) |FFIELDC-;discreteLog;SNni;11|))))) (LETT |i| (QSADD1 |i|) |FFIELDC-;discreteLog;SNni;11|) @@ -325,9 +316,9 @@ (SPADCALL |gen| (- |disc1|) (|getShellEntry| $ - 50)) + 48)) (|getShellEntry| $ - 60)) + 59)) |FFIELDC-;discreteLog;SNni;11|)))) ('T (|error| @@ -348,14 +339,14 @@ (SEQ (EXIT (COND ((SPADCALL |b| (|getShellEntry| $ 14)) (SEQ (SPADCALL "discreteLog: logarithm of zero" - (|getShellEntry| $ 65)) + (|getShellEntry| $ 64)) (EXIT (CONS 1 "failed")))) ((SPADCALL |logbase| (|getShellEntry| $ 14)) (SEQ (SPADCALL "discreteLog: logarithm to base zero" - (|getShellEntry| $ 65)) + (|getShellEntry| $ 64)) (EXIT (CONS 1 "failed")))) - ((SPADCALL |b| |logbase| (|getShellEntry| $ 51)) + ((SPADCALL |b| |logbase| (|getShellEntry| $ 50)) (CONS 0 1)) ('T (COND @@ -368,14 +359,14 @@ (|getShellEntry| $ 17))))) (SEQ (SPADCALL "discreteLog: second argument not in cyclic group generated by first argument" - (|getShellEntry| $ 65)) + (|getShellEntry| $ 64)) (EXIT (CONS 1 "failed")))) ('T (SEQ (LETT |faclist| (SPADCALL (SPADCALL |groupord| - (|getShellEntry| $ 67)) - (|getShellEntry| $ 69)) + (|getShellEntry| $ 66)) + (|getShellEntry| $ 68)) |FFIELDC-;discreteLog;2SU;12|) (LETT |a| |b| |FFIELDC-;discreteLog;2SU;12|) @@ -402,7 +393,7 @@ (LETT |primroot| (SPADCALL |logbase| (QUOTIENT2 |groupord| |fac|) - (|getShellEntry| $ 50)) + (|getShellEntry| $ 48)) |FFIELDC-;discreteLog;2SU;12|) (EXIT (SEQ @@ -421,9 +412,9 @@ (LETT |rhoHelp| (SPADCALL |primroot| (SPADCALL |a| |exp| - (|getShellEntry| $ 50)) + (|getShellEntry| $ 48)) |fac| - (|getShellEntry| $ 71)) + (|getShellEntry| $ 70)) |FFIELDC-;discreteLog;2SU;12|) (EXIT (COND @@ -436,9 +427,8 @@ ('T (SEQ (LETT |rho| - (SPADCALL - (QCDR |rhoHelp|) |mult| - (|getShellEntry| $ 72)) + (* (QCDR |rhoHelp|) + |mult|) |FFIELDC-;discreteLog;2SU;12|) (LETT |disclog| (+ |disclog| |rho|) @@ -452,8 +442,8 @@ (SPADCALL |logbase| (- |rho|) (|getShellEntry| $ - 50)) - (|getShellEntry| $ 60)) + 48)) + (|getShellEntry| $ 59)) |FFIELDC-;discreteLog;2SU;12|))))))) (LETT |t| (QSADD1 |t|) |FFIELDC-;discreteLog;2SU;12|) @@ -465,25 +455,25 @@ #2# (EXIT #2#))))) (DEFUN |FFIELDC-;squareFreePolynomial| (|f| $) - (SPADCALL |f| (|getShellEntry| $ 77))) + (SPADCALL |f| (|getShellEntry| $ 75))) (DEFUN |FFIELDC-;factorPolynomial| (|f| $) - (SPADCALL |f| (|getShellEntry| $ 79))) + (SPADCALL |f| (|getShellEntry| $ 77))) (DEFUN |FFIELDC-;factorSquareFreePolynomial| (|f| $) (PROG (|flist| |u| #0=#:G1517 #1=#:G1514 #2=#:G1512 #3=#:G1513) (RETURN (SEQ (COND - ((SPADCALL |f| (|spadConstant| $ 80) - (|getShellEntry| $ 81)) - (|spadConstant| $ 82)) + ((SPADCALL |f| (|spadConstant| $ 78) + (|getShellEntry| $ 79)) + (|spadConstant| $ 80)) ('T (SEQ (LETT |flist| - (SPADCALL |f| 'T (|getShellEntry| $ 86)) + (SPADCALL |f| 'T (|getShellEntry| $ 84)) |FFIELDC-;factorSquareFreePolynomial|) (EXIT (SPADCALL (SPADCALL (QCAR |flist|) - (|getShellEntry| $ 87)) + (|getShellEntry| $ 85)) (PROGN (LETT #3# NIL |FFIELDC-;factorSquareFreePolynomial|) @@ -505,13 +495,13 @@ (LETT #1# (SPADCALL (QCAR |u|) (QCDR |u|) - (|getShellEntry| $ 88)) + (|getShellEntry| $ 86)) |FFIELDC-;factorSquareFreePolynomial|) (COND (#3# (LETT #2# (SPADCALL #2# #1# - (|getShellEntry| $ 89)) + (|getShellEntry| $ 87)) |FFIELDC-;factorSquareFreePolynomial|)) ('T (PROGN @@ -524,11 +514,11 @@ (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) - ('T (|spadConstant| $ 90)))) - (|getShellEntry| $ 91)))))))))) + ('T (|spadConstant| $ 88)))) + (|getShellEntry| $ 89)))))))))) (DEFUN |FFIELDC-;gcdPolynomial;3Sup;16| (|f| |g| $) - (SPADCALL |f| |g| (|getShellEntry| $ 93))) + (SPADCALL |f| |g| (|getShellEntry| $ 91))) (DEFUN |FiniteFieldCategory&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) @@ -536,7 +526,7 @@ (PROGN (LETT |dv$1| (|devaluate| |#1|) . #0=(|FiniteFieldCategory&|)) (LETT |dv$| (LIST '|FiniteFieldCategory&| |dv$1|) . #0#) - (LETT $ (|newShell| 96) . #0#) + (LETT $ (|newShell| 94) . #0#) (|setShellEntry| $ 0 |dv$|) (|setShellEntry| $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) @@ -556,76 +546,75 @@ (34 . |every?|) (40 . |charthRoot|) (|Mapping| 6 6) (45 . |map|) (|Vector| $) (|Union| 31 '"failed") (|Matrix| $) |FFIELDC-;conditionP;MU;5| - (|NonNegativeInteger|) (51 . |size|) - (55 . |characteristic|) (59 . **) + (|NonNegativeInteger|) (51 . **) |FFIELDC-;charthRoot;2S;6| |FFIELDC-;charthRoot;SU;7| - (65 . |One|) + (57 . |size|) (|Union| '"prime" '"polynomial" '"normal" '"cyclic") - (69 . |representationType|) (73 . =) (79 . |not|) + (61 . |representationType|) (65 . =) (71 . |not|) |FFIELDC-;createPrimitiveElement;S;8| (|Record| (|:| |factor| 18) (|:| |exponent| 18)) - (|List| 47) (84 . |factorsOfCyclicGroupSize|) (88 . **) - (94 . =) |FFIELDC-;primitive?;SB;9| - |FFIELDC-;order;SPi;10| (100 . |primitiveElement|) - (|Table| 10 35) (104 . |tableForDiscreteLogarithm|) - (109 . |#|) (|Union| 35 '"failed") (114 . |search|) - (120 . *) |FFIELDC-;discreteLog;SNni;11| (|Void|) - (|String|) (|OutputForm|) (126 . |messagePrint|) - (|Factored| $) (131 . |factor|) (|Factored| 18) - (136 . |factors|) (|DiscreteLogarithmPackage| 6) - (141 . |shanksDiscLogAlgorithm|) (148 . *) + (|List| 45) (76 . |factorsOfCyclicGroupSize|) (80 . **) + (86 . |One|) (90 . =) |FFIELDC-;primitive?;SB;9| + |FFIELDC-;order;SPi;10| (96 . |primitiveElement|) + (|Table| 10 35) (100 . |tableForDiscreteLogarithm|) + (105 . |#|) (|Union| 35 '"failed") (110 . |search|) + (116 . *) |FFIELDC-;discreteLog;SNni;11| (|Void|) + (|String|) (|OutputForm|) (122 . |messagePrint|) + (|Factored| $) (127 . |factor|) (|Factored| 18) + (132 . |factors|) (|DiscreteLogarithmPackage| 6) + (137 . |shanksDiscLogAlgorithm|) |FFIELDC-;discreteLog;2SU;12| - (|SparseUnivariatePolynomial| 6) (|Factored| 74) - (|UnivariatePolynomialSquareFree| 6 74) - (154 . |squareFree|) (|DistinctDegreeFactorize| 6 74) - (159 . |factor|) (164 . |Zero|) (168 . =) (174 . |Zero|) - (|Record| (|:| |irr| 74) (|:| |pow| 18)) (|List| 83) - (|Record| (|:| |cont| 6) (|:| |factors| 84)) - (178 . |distdfact|) (184 . |coerce|) (189 . |primeFactor|) - (195 . *) (201 . |One|) (205 . *) (|EuclideanDomain&| 74) - (211 . |gcd|) (|SparseUnivariatePolynomial| $) + (|SparseUnivariatePolynomial| 6) (|Factored| 72) + (|UnivariatePolynomialSquareFree| 6 72) + (144 . |squareFree|) (|DistinctDegreeFactorize| 6 72) + (149 . |factor|) (154 . |Zero|) (158 . =) (164 . |Zero|) + (|Record| (|:| |irr| 72) (|:| |pow| 18)) (|List| 81) + (|Record| (|:| |cont| 6) (|:| |factors| 82)) + (168 . |distdfact|) (174 . |coerce|) (179 . |primeFactor|) + (185 . *) (191 . |One|) (195 . *) (|EuclideanDomain&| 72) + (201 . |gcd|) (|SparseUnivariatePolynomial| $) |FFIELDC-;gcdPolynomial;3Sup;16|) - '#(|primitive?| 217 |order| 222 |nextItem| 232 |init| 237 - |gcdPolynomial| 241 |discreteLog| 247 |differentiate| 258 - |createPrimitiveElement| 263 |conditionP| 267 |charthRoot| - 272) + '#(|primitive?| 207 |order| 212 |nextItem| 222 |init| 227 + |gcdPolynomial| 231 |discreteLog| 237 |differentiate| 248 + |createPrimitiveElement| 253 |conditionP| 257 |charthRoot| + 262) 'NIL (CONS (|makeByteWordVec2| 1 'NIL) (CONS '#() (CONS '#() - (|makeByteWordVec2| 95 + (|makeByteWordVec2| 93 '(0 6 0 7 1 6 10 0 11 1 6 0 10 12 1 6 13 0 14 1 6 10 0 17 1 19 0 18 20 1 24 23 0 25 2 22 13 26 0 27 1 6 0 0 28 2 - 22 0 29 0 30 0 6 35 36 0 6 35 37 2 6 - 0 0 35 38 0 6 0 41 0 6 42 43 2 42 13 - 0 0 44 1 13 0 0 45 0 6 48 49 2 6 0 0 - 18 50 2 6 13 0 0 51 0 6 0 54 1 6 55 - 18 56 1 55 35 0 57 2 55 58 10 0 59 2 - 6 0 0 0 60 1 64 62 63 65 1 18 66 0 67 - 1 68 48 0 69 3 70 58 6 6 35 71 2 18 0 - 35 0 72 1 76 75 74 77 1 78 75 74 79 0 - 74 0 80 2 74 13 0 0 81 0 75 0 82 2 78 - 85 74 13 86 1 74 0 6 87 2 75 0 74 18 - 88 2 75 0 0 0 89 0 75 0 90 2 75 0 74 - 0 91 2 92 0 0 0 93 1 0 13 0 52 1 0 10 - 0 53 1 0 19 0 21 1 0 15 0 16 0 0 0 9 - 2 0 94 94 94 95 1 0 35 0 61 2 0 58 0 - 0 73 1 0 0 0 8 0 0 0 46 1 0 32 33 34 - 1 0 0 0 39 1 0 15 0 40))))) + 22 0 29 0 30 2 6 0 0 35 36 0 6 35 39 + 0 6 40 41 2 40 13 0 0 42 1 13 0 0 43 + 0 6 46 47 2 6 0 0 18 48 0 6 0 49 2 6 + 13 0 0 50 0 6 0 53 1 6 54 18 55 1 54 + 35 0 56 2 54 57 10 0 58 2 6 0 0 0 59 + 1 63 61 62 64 1 18 65 0 66 1 67 46 0 + 68 3 69 57 6 6 35 70 1 74 73 72 75 1 + 76 73 72 77 0 72 0 78 2 72 13 0 0 79 + 0 73 0 80 2 76 83 72 13 84 1 72 0 6 + 85 2 73 0 72 18 86 2 73 0 0 0 87 0 73 + 0 88 2 73 0 72 0 89 2 90 0 0 0 91 1 0 + 13 0 51 1 0 10 0 52 1 0 19 0 21 1 0 + 15 0 16 0 0 0 9 2 0 92 92 92 93 1 0 + 35 0 60 2 0 57 0 0 71 1 0 0 0 8 0 0 0 + 44 1 0 32 33 34 1 0 0 0 37 1 0 15 0 + 38))))) '|lookupComplete|)) (SETQ |$CategoryFrame| (|put| '|FiniteFieldCategory&| '|isFunctor| - '(((|order| ((|PositiveInteger|) $)) T (ELT $ 53)) + '(((|order| ((|PositiveInteger|) $)) T (ELT $ 52)) ((|discreteLog| ((|NonNegativeInteger|) $)) T - (ELT $ 61)) - ((|primitive?| ((|Boolean|) $)) T (ELT $ 52)) - ((|createPrimitiveElement| ($)) T (ELT $ 46)) + (ELT $ 60)) + ((|primitive?| ((|Boolean|) $)) T (ELT $ 51)) + ((|createPrimitiveElement| ($)) T (ELT $ 44)) ((|conditionP| ((|Union| (|Vector| $) "failed") (|Matrix| $))) T (ELT $ 34)) - ((|charthRoot| ($ $)) T (ELT $ 39)) + ((|charthRoot| ($ $)) T (ELT $ 37)) ((|differentiate| ($ $)) T (ELT $ 8)) ((|differentiate| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) @@ -633,15 +622,15 @@ ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ 16)) ((|discreteLog| ((|Union| (|NonNegativeInteger|) "failed") $ $)) - T (ELT $ 73)) + T (ELT $ 71)) ((|order| ((|OnePointCompletion| (|PositiveInteger|)) $)) T (ELT $ 21)) - ((|charthRoot| ((|Union| $ "failed") $)) T (ELT $ 40)) + ((|charthRoot| ((|Union| $ "failed") $)) T (ELT $ 38)) ((|gcdPolynomial| ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $))) - T (ELT $ 95))) + T (ELT $ 93))) (|addModemap| '|FiniteFieldCategory&| '(|FiniteFieldCategory&| |#1|) '((CATEGORY |domain| diff --git a/src/algebra/strap/INS.lsp b/src/algebra/strap/INS.lsp index 3d827807..5759f408 100644 --- a/src/algebra/strap/INS.lsp +++ b/src/algebra/strap/INS.lsp @@ -54,7 +54,6 @@ T) ((|random| ($)) T) ((|random| ($ $)) T) - ((|hash| ($ $)) T) ((|copy| ($ $)) T) ((|inc| ($ $)) T) ((|dec| ($ $)) T) diff --git a/src/algebra/strap/INT.lsp b/src/algebra/strap/INT.lsp index bee38736..afb2e425 100644 --- a/src/algebra/strap/INT.lsp +++ b/src/algebra/strap/INT.lsp @@ -86,16 +86,16 @@ (DEFUN |INT;dec;2$;13| (|x| $) (- |x| 1)) -(PUT '|INT;hash;2$;14| '|SPADreplace| 'SXHASH) +(PUT '|INT;hash;$Si;14| '|SPADreplace| 'SXHASH) -(DEFUN |INT;hash;2$;14| (|x| $) (SXHASH |x|)) +(DEFUN |INT;hash;$Si;14| (|x| $) (SXHASH |x|)) (PUT '|INT;negative?;$B;15| '|SPADreplace| 'MINUSP) (DEFUN |INT;negative?;$B;15| (|x| $) (MINUSP |x|)) (DEFUN |INT;coerce;$Of;16| (|x| $) - (SPADCALL |x| (|getShellEntry| $ 36))) + (SPADCALL |x| (|getShellEntry| $ 37))) (PUT '|INT;coerce;2$;17| '|SPADreplace| '(XLAM (|m|) |m|)) @@ -132,7 +132,7 @@ (REMAINDER2 (* |a| |b|) |p|)) (DEFUN |INT;convert;$F;23| (|x| $) - (SPADCALL |x| (|getShellEntry| $ 45))) + (SPADCALL |x| (|getShellEntry| $ 46))) (PUT '|INT;convert;$Df;24| '|SPADreplace| '(XLAM (|x|) (FLOAT |x| |$DoubleFloatMaximum|))) @@ -140,7 +140,7 @@ (DEFUN |INT;convert;$Df;24| (|x| $) (FLOAT |x| |$DoubleFloatMaximum|)) (DEFUN |INT;convert;$If;25| (|x| $) - (SPADCALL |x| (|getShellEntry| $ 50))) + (SPADCALL |x| (|getShellEntry| $ 51))) (PUT '|INT;convert;$S;26| '|SPADreplace| 'STRINGIMAGE) @@ -263,51 +263,51 @@ (DEFUN |INT;unitCanonical;2$;53| (|x| $) (ABS |x|)) (DEFUN |INT;solveLinearPolynomialEquation| (|lp| |p| $) - (SPADCALL |lp| |p| (|getShellEntry| $ 93))) + (SPADCALL |lp| |p| (|getShellEntry| $ 94))) (DEFUN |INT;squareFreePolynomial| (|p| $) - (SPADCALL |p| (|getShellEntry| $ 97))) + (SPADCALL |p| (|getShellEntry| $ 98))) (DEFUN |INT;factorPolynomial| (|p| $) (PROG (|pp| #0=#:G1500) (RETURN - (SEQ (LETT |pp| (SPADCALL |p| (|getShellEntry| $ 98)) + (SEQ (LETT |pp| (SPADCALL |p| (|getShellEntry| $ 99)) |INT;factorPolynomial|) (EXIT (COND - ((EQL (SPADCALL |pp| (|getShellEntry| $ 99)) - (SPADCALL |p| (|getShellEntry| $ 99))) - (SPADCALL |p| (|getShellEntry| $ 101))) + ((EQL (SPADCALL |pp| (|getShellEntry| $ 100)) + (SPADCALL |p| (|getShellEntry| $ 100))) + (SPADCALL |p| (|getShellEntry| $ 102))) ('T - (SPADCALL (SPADCALL |pp| (|getShellEntry| $ 101)) + (SPADCALL (SPADCALL |pp| (|getShellEntry| $ 102)) (SPADCALL (CONS #'|INT;factorPolynomial!0| $) (SPADCALL (PROG2 (LETT #0# (SPADCALL (SPADCALL |p| - (|getShellEntry| $ 99)) + (|getShellEntry| $ 100)) (SPADCALL |pp| - (|getShellEntry| $ 99)) - (|getShellEntry| $ 83)) + (|getShellEntry| $ 100)) + (|getShellEntry| $ 84)) |INT;factorPolynomial|) (QCDR #0#) (|check-union| (QEQCAR #0# 0) $ #0#)) - (|getShellEntry| $ 104)) - (|getShellEntry| $ 108)) - (|getShellEntry| $ 110))))))))) + (|getShellEntry| $ 105)) + (|getShellEntry| $ 109)) + (|getShellEntry| $ 111))))))))) (DEFUN |INT;factorPolynomial!0| (|#1| $) - (SPADCALL |#1| (|getShellEntry| $ 102))) + (SPADCALL |#1| (|getShellEntry| $ 103))) (DEFUN |INT;factorSquareFreePolynomial| (|p| $) - (SPADCALL |p| (|getShellEntry| $ 111))) + (SPADCALL |p| (|getShellEntry| $ 112))) (DEFUN |INT;gcdPolynomial;3Sup;58| (|p| |q| $) (COND - ((SPADCALL |p| (|getShellEntry| $ 112)) - (SPADCALL |q| (|getShellEntry| $ 113))) - ((SPADCALL |q| (|getShellEntry| $ 112)) - (SPADCALL |p| (|getShellEntry| $ 113))) - ('T (SPADCALL (LIST |p| |q|) (|getShellEntry| $ 116))))) + ((SPADCALL |p| (|getShellEntry| $ 113)) + (SPADCALL |q| (|getShellEntry| $ 114))) + ((SPADCALL |q| (|getShellEntry| $ 113)) + (SPADCALL |p| (|getShellEntry| $ 114))) + ('T (SPADCALL (LIST |p| |q|) (|getShellEntry| $ 117))))) (DEFUN |Integer| () (PROG () @@ -337,8 +337,8 @@ (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) (|haddProp| |$ConstructorCache| '|Integer| NIL (CONS 1 $)) (|stuffDomainSlots| $) - (|setShellEntry| $ 71 - (|setShellEntry| $ 70 + (|setShellEntry| $ 72 + (|setShellEntry| $ 71 (CONS (|dispatchFunction| |INT;*;3$;40|) $))) $)))) @@ -357,17 +357,18 @@ (CONS IDENTITY (FUNCALL (|dispatchFunction| |INT;One;$;9|) $)) |INT;base;$;10| |INT;copy;2$;11| |INT;inc;2$;12| - |INT;dec;2$;13| |INT;hash;2$;14| |INT;negative?;$B;15| - (|OutputForm|) (48 . |outputForm|) |INT;coerce;$Of;16| - |INT;coerce;2$;17| |INT;convert;2$;18| |INT;length;2$;19| - |INT;addmod;4$;20| |INT;submod;4$;21| |INT;mulmod;4$;22| - (|Float|) (53 . |coerce|) |INT;convert;$F;23| - (|DoubleFloat|) |INT;convert;$Df;24| (|InputForm|) - (58 . |convert|) |INT;convert;$If;25| |INT;convert;$S;26| - |INT;latex;$S;27| |INT;positiveRemainder;3$;28| - (|Matrix| 11) (|Matrix| $) |INT;reducedSystem;2M;29| - (|Vector| 11) (|Record| (|:| |mat| 55) (|:| |vec| 58)) - (|Vector| $) |INT;reducedSystem;MVR;30| |INT;abs;2$;31| + |INT;dec;2$;13| (|SingleInteger|) |INT;hash;$Si;14| + |INT;negative?;$B;15| (|OutputForm|) (48 . |outputForm|) + |INT;coerce;$Of;16| |INT;coerce;2$;17| |INT;convert;2$;18| + |INT;length;2$;19| |INT;addmod;4$;20| |INT;submod;4$;21| + |INT;mulmod;4$;22| (|Float|) (53 . |coerce|) + |INT;convert;$F;23| (|DoubleFloat|) |INT;convert;$Df;24| + (|InputForm|) (58 . |convert|) |INT;convert;$If;25| + |INT;convert;$S;26| |INT;latex;$S;27| + |INT;positiveRemainder;3$;28| (|Matrix| 11) (|Matrix| $) + |INT;reducedSystem;2M;29| (|Vector| 11) + (|Record| (|:| |mat| 56) (|:| |vec| 59)) (|Vector| $) + |INT;reducedSystem;MVR;30| |INT;abs;2$;31| |INT;random;$;32| |INT;random;2$;33| |INT;=;2$B;34| |INT;<;2$B;35| |INT;-;2$;36| |INT;+;3$;37| |INT;-;3$;38| NIL NIL (|NonNegativeInteger|) |INT;**;$Nni$;41| @@ -379,31 +380,30 @@ (|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) |INT;unitNormal;$R;52| |INT;unitCanonical;2$;53| - (|SparseUnivariatePolynomial| 11) (|List| 89) - (|Union| 90 '"failed") + (|SparseUnivariatePolynomial| 11) (|List| 90) + (|Union| 91 '"failed") (|IntegerSolveLinearPolynomialEquation|) (63 . |solveLinearPolynomialEquation|) - (|SparseUnivariatePolynomial| $$) (|Factored| 94) - (|UnivariatePolynomialSquareFree| $$ 94) + (|SparseUnivariatePolynomial| $$) (|Factored| 95) + (|UnivariatePolynomialSquareFree| $$ 95) (69 . |squareFree|) (74 . |primitivePart|) - (79 . |leadingCoefficient|) (|GaloisGroupFactorizer| 94) + (79 . |leadingCoefficient|) (|GaloisGroupFactorizer| 95) (84 . |factor|) (89 . |coerce|) (|Factored| $) - (94 . |factor|) (|Mapping| 94 $$) (|Factored| $$) - (|FactoredFunctions2| $$ 94) (99 . |map|) - (|FactoredFunctionUtilities| 94) (105 . |mergeFactors|) + (94 . |factor|) (|Mapping| 95 $$) (|Factored| $$) + (|FactoredFunctions2| $$ 95) (99 . |map|) + (|FactoredFunctionUtilities| 95) (105 . |mergeFactors|) (111 . |factorSquareFree|) (116 . |zero?|) - (121 . |unitCanonical|) (|List| 94) (|HeuGcd| 94) + (121 . |unitCanonical|) (|List| 95) (|HeuGcd| 95) (126 . |gcd|) (|SparseUnivariatePolynomial| $) |INT;gcdPolynomial;3Sup;58| (|Fraction| 11) - (|Union| 119 '"failed") (|Pattern| 11) - (|PatternMatchResult| 11 $) (|Union| 11 '"failed") - (|List| $) (|Record| (|:| |coef| 124) (|:| |generator| $)) - (|Union| 124 '"failed") + (|Union| 120 '"failed") (|PatternMatchResult| 11 $) + (|Pattern| 11) (|Union| 11 '"failed") (|List| $) + (|Record| (|:| |coef| 125) (|:| |generator| $)) + (|Union| 125 '"failed") (|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) (|Record| (|:| |coef1| $) (|:| |coef2| $)) - (|Union| 128 '"failed") (|PositiveInteger|) - (|SingleInteger|)) + (|Union| 129 '"failed") (|PositiveInteger|)) '#(~= 131 |zero?| 137 |unitNormal| 142 |unitCanonical| 147 |unit?| 152 |symmetricRemainder| 157 |subtractIfCan| 163 |submod| 169 |squareFreePart| 176 |squareFree| 181 @@ -416,15 +416,15 @@ |one?| 310 |odd?| 315 |nextItem| 320 |negative?| 325 |multiEuclidean| 330 |mulmod| 336 |min| 343 |max| 349 |mask| 355 |length| 360 |lcm| 365 |latex| 376 |invmod| 381 - |init| 387 |inc| 391 |hash| 396 |gcdPolynomial| 406 |gcd| - 412 |factorial| 423 |factor| 428 |extendedEuclidean| 433 - |exquo| 446 |expressIdealMember| 452 |even?| 458 - |euclideanSize| 463 |divide| 468 |differentiate| 474 |dec| - 485 |copy| 490 |convert| 495 |coerce| 525 |characteristic| - 545 |bit?| 549 |binomial| 555 |base| 561 |associates?| 565 - |addmod| 571 |abs| 578 |Zero| 583 |One| 587 |OMwrite| 591 - D 615 >= 626 > 632 = 638 <= 644 < 650 - 656 + 667 ** 673 * - 685) + |init| 387 |inc| 391 |hash| 396 |gcdPolynomial| 401 |gcd| + 407 |factorial| 418 |factor| 423 |extendedEuclidean| 428 + |exquo| 441 |expressIdealMember| 447 |even?| 453 + |euclideanSize| 458 |divide| 463 |differentiate| 469 |dec| + 480 |copy| 485 |convert| 490 |coerce| 520 |characteristic| + 540 |bit?| 544 |binomial| 550 |base| 556 |associates?| 560 + |addmod| 566 |abs| 573 |Zero| 578 |One| 582 |OMwrite| 586 + D 610 >= 621 > 627 = 633 <= 639 < 645 - 651 + 662 ** 668 * + 680) '((|infinite| . 0) (|noetherian| . 0) (|canonicalsClosed| . 0) (|canonical| . 0) (|canonicalUnitNormal| . 0) (|multiplicativeValuation| . 0) @@ -468,60 +468,60 @@ (|OrderedSet|) (|AbelianSemiGroup|) (|SemiGroup|) (|RealConstant|) (|SetCategory|) (|OpenMath|) - (|ConvertibleTo| 9) (|ConvertibleTo| 44) - (|ConvertibleTo| 47) + (|ConvertibleTo| 9) (|ConvertibleTo| 45) + (|ConvertibleTo| 48) (|CombinatorialFunctionCategory|) - (|ConvertibleTo| 121) - (|ConvertibleTo| 49) + (|ConvertibleTo| 123) + (|ConvertibleTo| 50) (|RetractableTo| 11) (|ConvertibleTo| 11) (|BasicType|) - (|CoercibleTo| 35)) + (|CoercibleTo| 36)) (|makeByteWordVec2| 131 '(1 7 6 0 8 3 7 6 0 9 9 10 2 7 6 0 11 12 1 7 6 0 13 0 14 0 15 2 7 0 9 14 16 - 1 7 6 0 17 1 7 6 0 18 1 7 6 0 19 1 35 - 0 11 36 1 44 0 11 45 1 49 0 11 50 2 - 92 91 90 89 93 1 96 95 94 97 1 94 0 0 - 98 1 94 2 0 99 1 100 95 94 101 1 94 0 - 2 102 1 0 103 0 104 2 107 95 105 106 - 108 2 109 95 95 95 110 1 100 95 94 - 111 1 94 21 0 112 1 94 0 0 113 1 115 - 94 114 116 2 0 21 0 0 1 1 0 21 0 25 1 - 0 86 0 87 1 0 0 0 88 1 0 21 0 1 2 0 0 - 0 0 1 2 0 82 0 0 1 3 0 0 0 0 0 42 1 0 - 0 0 1 1 0 103 0 1 2 0 21 0 0 1 1 0 11 - 0 1 2 0 0 0 0 81 0 0 0 1 1 0 123 0 1 - 1 0 11 0 1 2 0 0 0 0 80 1 0 55 56 57 - 2 0 59 56 60 61 1 0 82 0 84 1 0 120 0 - 1 1 0 21 0 1 1 0 119 0 1 1 0 0 0 64 0 - 0 0 63 2 0 0 0 0 79 1 0 125 124 1 1 0 - 21 0 1 3 0 0 0 0 0 1 2 0 0 0 0 54 1 0 - 21 0 1 2 0 0 0 0 1 3 0 122 0 121 122 - 1 1 0 21 0 26 1 0 21 0 74 1 0 82 0 1 - 1 0 21 0 34 2 0 126 124 0 1 3 0 0 0 0 - 0 43 2 0 0 0 0 76 2 0 0 0 0 75 1 0 0 - 0 1 1 0 0 0 40 2 0 0 0 0 1 1 0 0 124 - 1 1 0 9 0 53 2 0 0 0 0 1 0 0 0 1 1 0 - 0 0 31 1 0 0 0 33 1 0 131 0 1 2 0 117 - 117 117 118 2 0 0 0 0 85 1 0 0 124 1 - 1 0 0 0 1 1 0 103 0 104 2 0 127 0 0 1 - 3 0 129 0 0 0 1 2 0 82 0 0 83 2 0 126 - 124 0 1 1 0 21 0 1 1 0 72 0 1 2 0 77 - 0 0 78 1 0 0 0 1 2 0 0 0 72 1 1 0 0 0 - 32 1 0 0 0 30 1 0 9 0 52 1 0 44 0 46 - 1 0 47 0 48 1 0 121 0 1 1 0 49 0 51 1 - 0 11 0 39 1 0 0 11 38 1 0 0 0 1 1 0 0 - 11 38 1 0 35 0 37 0 0 72 1 2 0 21 0 0 - 1 2 0 0 0 0 1 0 0 0 29 2 0 21 0 0 1 3 - 0 0 0 0 0 41 1 0 0 0 62 0 0 0 27 0 0 - 0 28 3 0 6 7 0 21 24 2 0 9 0 21 22 2 - 0 6 7 0 23 1 0 9 0 20 1 0 0 0 1 2 0 0 - 0 72 1 2 0 21 0 0 1 2 0 21 0 0 1 2 0 - 21 0 0 65 2 0 21 0 0 1 2 0 21 0 0 66 - 2 0 0 0 0 69 1 0 0 0 67 2 0 0 0 0 68 - 2 0 0 0 72 73 2 0 0 0 130 1 2 0 0 0 0 - 70 2 0 0 11 0 71 2 0 0 72 0 1 2 0 0 - 130 0 1))))) + 1 7 6 0 17 1 7 6 0 18 1 7 6 0 19 1 36 + 0 11 37 1 45 0 11 46 1 50 0 11 51 2 + 93 92 91 90 94 1 97 96 95 98 1 95 0 0 + 99 1 95 2 0 100 1 101 96 95 102 1 95 + 0 2 103 1 0 104 0 105 2 108 96 106 + 107 109 2 110 96 96 96 111 1 101 96 + 95 112 1 95 21 0 113 1 95 0 0 114 1 + 116 95 115 117 2 0 21 0 0 1 1 0 21 0 + 25 1 0 87 0 88 1 0 0 0 89 1 0 21 0 1 + 2 0 0 0 0 1 2 0 83 0 0 1 3 0 0 0 0 0 + 43 1 0 0 0 1 1 0 104 0 1 2 0 21 0 0 1 + 1 0 11 0 1 2 0 0 0 0 82 0 0 0 1 1 0 + 124 0 1 1 0 11 0 1 2 0 0 0 0 81 2 0 + 60 57 61 62 1 0 56 57 58 1 0 83 0 85 + 1 0 121 0 1 1 0 21 0 1 1 0 120 0 1 0 + 0 0 64 1 0 0 0 65 2 0 0 0 0 80 1 0 + 126 125 1 1 0 21 0 1 3 0 0 0 0 0 1 2 + 0 0 0 0 55 1 0 21 0 1 2 0 0 0 0 1 3 0 + 122 0 123 122 1 1 0 21 0 26 1 0 21 0 + 75 1 0 83 0 1 1 0 21 0 35 2 0 127 125 + 0 1 3 0 0 0 0 0 44 2 0 0 0 0 77 2 0 0 + 0 0 76 1 0 0 0 1 1 0 0 0 41 2 0 0 0 0 + 1 1 0 0 125 1 1 0 9 0 54 2 0 0 0 0 1 + 0 0 0 1 1 0 0 0 31 1 0 33 0 34 2 0 + 118 118 118 119 2 0 0 0 0 86 1 0 0 + 125 1 1 0 0 0 1 1 0 104 0 105 2 0 128 + 0 0 1 3 0 130 0 0 0 1 2 0 83 0 0 84 2 + 0 127 125 0 1 1 0 21 0 1 1 0 73 0 1 2 + 0 78 0 0 79 1 0 0 0 1 2 0 0 0 73 1 1 + 0 0 0 32 1 0 0 0 30 1 0 9 0 53 1 0 48 + 0 49 1 0 45 0 47 1 0 50 0 52 1 0 123 + 0 1 1 0 11 0 40 1 0 0 11 39 1 0 0 0 1 + 1 0 0 11 39 1 0 36 0 38 0 0 73 1 2 0 + 21 0 0 1 2 0 0 0 0 1 0 0 0 29 2 0 21 + 0 0 1 3 0 0 0 0 0 42 1 0 0 0 63 0 0 0 + 27 0 0 0 28 3 0 6 7 0 21 24 2 0 9 0 + 21 22 2 0 6 7 0 23 1 0 9 0 20 1 0 0 0 + 1 2 0 0 0 73 1 2 0 21 0 0 1 2 0 21 0 + 0 1 2 0 21 0 0 66 2 0 21 0 0 1 2 0 21 + 0 0 67 2 0 0 0 0 70 1 0 0 0 68 2 0 0 + 0 0 69 2 0 0 0 73 74 2 0 0 0 131 1 2 + 0 0 0 0 71 2 0 0 11 0 72 2 0 0 73 0 1 + 2 0 0 131 0 1))))) '|lookupComplete|)) (SETQ |$CategoryFrame| @@ -532,19 +532,18 @@ (ELT $ 23)) ((|OMwrite| ((|String|) $ (|Boolean|))) T (ELT $ 22)) ((|OMwrite| ((|String|) $)) T (ELT $ 20)) - ((|convert| ((|String|) $)) T (ELT $ 52)) + ((|convert| ((|String|) $)) T (ELT $ 53)) ((|invmod| ($ $ $)) T (ELT $ NIL)) ((|powmod| ($ $ $ $)) T (ELT $ NIL)) - ((|mulmod| ($ $ $ $)) T (ELT $ 43)) - ((|submod| ($ $ $ $)) T (ELT $ 42)) - ((|addmod| ($ $ $ $)) T (ELT $ 41)) + ((|mulmod| ($ $ $ $)) T (ELT $ 44)) + ((|submod| ($ $ $ $)) T (ELT $ 43)) + ((|addmod| ($ $ $ $)) T (ELT $ 42)) ((|mask| ($ $)) T (ELT $ NIL)) ((|dec| ($ $)) T (ELT $ 32)) ((|inc| ($ $)) T (ELT $ 31)) ((|copy| ($ $)) T (ELT $ 30)) - ((|hash| ($ $)) T (ELT $ 33)) - ((|random| ($ $)) T (ELT $ 64)) - ((|random| ($)) T (ELT $ 63)) + ((|random| ($ $)) T (ELT $ 65)) + ((|random| ($)) T (ELT $ 64)) ((|rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $)) T (ELT $ NIL)) @@ -552,17 +551,17 @@ (ELT $ NIL)) ((|rational?| ((|Boolean|) $)) T (ELT $ NIL)) ((|symmetricRemainder| ($ $ $)) T (ELT $ NIL)) - ((|positiveRemainder| ($ $ $)) T (ELT $ 54)) + ((|positiveRemainder| ($ $ $)) T (ELT $ 55)) ((|bit?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|shift| ($ $ $)) T (ELT $ 81)) - ((|length| ($ $)) T (ELT $ 40)) + ((|shift| ($ $ $)) T (ELT $ 82)) + ((|length| ($ $)) T (ELT $ 41)) ((|base| ($)) T (ELT $ 29)) ((|even?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|odd?| ((|Boolean|) $)) T (ELT $ 74)) + ((|odd?| ((|Boolean|) $)) T (ELT $ 75)) ((|init| ($)) T (CONST $ NIL)) ((|nextItem| ((|Union| $ "failed") $)) T (ELT $ NIL)) - ((|convert| ((|DoubleFloat|) $)) T (ELT $ 48)) - ((|convert| ((|Float|) $)) T (ELT $ 46)) + ((|convert| ((|DoubleFloat|) $)) T (ELT $ 49)) + ((|convert| ((|Float|) $)) T (ELT $ 47)) ((|permutation| ($ $ $)) T (ELT $ NIL)) ((|factorial| ($ $)) T (ELT $ NIL)) ((|binomial| ($ $ $)) T (ELT $ NIL)) @@ -572,34 +571,34 @@ (|PatternMatchResult| (|Integer|) $))) T (ELT $ NIL)) ((|convert| ((|Pattern| (|Integer|)) $)) T (ELT $ NIL)) - ((|convert| ((|InputForm|) $)) T (ELT $ 51)) + ((|convert| ((|InputForm|) $)) T (ELT $ 52)) ((|reducedSystem| ((|Matrix| (|Integer|)) (|Matrix| $))) - T (ELT $ 57)) + T (ELT $ 58)) ((|reducedSystem| ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $))) - T (ELT $ 61)) + T (ELT $ 62)) ((|retract| ((|Integer|) $)) T (ELT $ NIL)) ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 38)) - ((|convert| ((|Integer|) $)) T (ELT $ 39)) + ((|coerce| ($ (|Integer|))) T (ELT $ 39)) + ((|convert| ((|Integer|) $)) T (ELT $ 40)) ((|differentiate| ($ $)) T (ELT $ NIL)) ((D ($ $)) T (ELT $ NIL)) ((|differentiate| ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) ((D ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) - ((|abs| ($ $)) T (ELT $ 62)) + ((|abs| ($ $)) T (ELT $ 63)) ((|sign| ((|Integer|) $)) T (ELT $ NIL)) - ((|negative?| ((|Boolean|) $)) T (ELT $ 34)) + ((|negative?| ((|Boolean|) $)) T (ELT $ 35)) ((|positive?| ((|Boolean|) $)) T (ELT $ NIL)) - ((|min| ($ $ $)) T (ELT $ 76)) - ((|max| ($ $ $)) T (ELT $ 75)) + ((|min| ($ $ $)) T (ELT $ 77)) + ((|max| ($ $ $)) T (ELT $ 76)) ((<= ((|Boolean|) $ $)) T (ELT $ NIL)) ((>= ((|Boolean|) $ $)) T (ELT $ NIL)) ((> ((|Boolean|) $ $)) T (ELT $ NIL)) - ((< ((|Boolean|) $ $)) T (ELT $ 66)) + ((< ((|Boolean|) $ $)) T (ELT $ 67)) ((|principalIdeal| ((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) @@ -614,9 +613,9 @@ ((|divide| ((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $)) - T (ELT $ 78)) - ((|quo| ($ $ $)) T (ELT $ 79)) - ((|rem| ($ $ $)) T (ELT $ 80)) + T (ELT $ 79)) + ((|quo| ($ $ $)) T (ELT $ 80)) + ((|rem| ($ $ $)) T (ELT $ 81)) ((|extendedEuclidean| ((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) @@ -631,7 +630,7 @@ ((|multiEuclidean| ((|Union| (|List| $) "failed") (|List| $) $)) T (ELT $ NIL)) - ((|factor| ((|Factored| $) $)) T (ELT $ 104)) + ((|factor| ((|Factored| $) $)) T (ELT $ 105)) ((|squareFreePart| ($ $)) T (ELT $ NIL)) ((|squareFree| ((|Factored| $) $)) T (ELT $ NIL)) ((|prime?| ((|Boolean|) $)) T (ELT $ NIL)) @@ -639,32 +638,32 @@ ((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $))) - T (ELT $ 118)) + T (ELT $ 119)) ((|lcm| ($ (|List| $))) T (ELT $ NIL)) ((|lcm| ($ $ $)) T (ELT $ NIL)) ((|gcd| ($ (|List| $))) T (ELT $ NIL)) - ((|gcd| ($ $ $)) T (ELT $ 85)) + ((|gcd| ($ $ $)) T (ELT $ 86)) ((|unit?| ((|Boolean|) $)) T (ELT $ NIL)) ((|associates?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|unitCanonical| ($ $)) T (ELT $ 88)) + ((|unitCanonical| ($ $)) T (ELT $ 89)) ((|unitNormal| ((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $)) - T (ELT $ 87)) - ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ 83)) + T (ELT $ 88)) + ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ 84)) ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 38)) + ((|coerce| ($ (|Integer|))) T (ELT $ 39)) ((|characteristic| ((|NonNegativeInteger|))) T (ELT $ NIL)) ((|One| ($)) T (CONST $ 28)) ((|one?| ((|Boolean|) $)) T (ELT $ 26)) - ((** ($ $ (|NonNegativeInteger|))) T (ELT $ 73)) - ((|recip| ((|Union| $ "failed") $)) T (ELT $ 84)) - ((* ($ $ $)) T (ELT $ 70)) + ((** ($ $ (|NonNegativeInteger|))) T (ELT $ 74)) + ((|recip| ((|Union| $ "failed") $)) T (ELT $ 85)) + ((* ($ $ $)) T (ELT $ 71)) ((** ($ $ (|PositiveInteger|))) T (ELT $ NIL)) - ((* ($ (|Integer|) $)) T (ELT $ 71)) - ((- ($ $ $)) T (ELT $ 69)) ((- ($ $)) T (ELT $ 67)) + ((* ($ (|Integer|) $)) T (ELT $ 72)) + ((- ($ $ $)) T (ELT $ 70)) ((- ($ $)) T (ELT $ 68)) ((|subtractIfCan| ((|Union| $ "failed") $ $)) T (ELT $ NIL)) ((* ($ (|NonNegativeInteger|) $)) T (ELT $ NIL)) @@ -672,11 +671,11 @@ ((|sample| ($)) T (CONST $ NIL)) ((|Zero| ($)) T (CONST $ 27)) ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL)) - ((+ ($ $ $)) T (ELT $ 68)) - ((|latex| ((|String|) $)) T (ELT $ 53)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) - ((|coerce| ((|OutputForm|) $)) T (ELT $ 37)) - ((= ((|Boolean|) $ $)) T (ELT $ 65)) + ((+ ($ $ $)) T (ELT $ 69)) + ((|latex| ((|String|) $)) T (ELT $ 54)) + ((|hash| ((|SingleInteger|) $)) T (ELT $ 34)) + ((|coerce| ((|OutputForm|) $)) T (ELT $ 38)) + ((= ((|Boolean|) $ $)) T (ELT $ 66)) ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) (|addModemap| '|Integer| '(|Integer|) '((|Join| (|IntegerNumberSystem|) diff --git a/src/algebra/strap/SINT.lsp b/src/algebra/strap/SINT.lsp index c89f6600..eb926f3d 100644 --- a/src/algebra/strap/SINT.lsp +++ b/src/algebra/strap/SINT.lsp @@ -322,27 +322,26 @@ (|Record| (|:| |quotient| $) (|:| |remainder| $)) |SINT;divide;2$R;34| |SINT;gcd;3$;35| |SINT;abs;2$;36| |SINT;odd?;$B;37| |SINT;zero?;$B;38| |SINT;one?;$B;39| - |SINT;max;3$;40| |SINT;min;3$;41| |SINT;hash;2$;42| - |SINT;length;2$;43| |SINT;shift;3$;44| |SINT;mulmod;4$;45| - |SINT;addmod;4$;46| |SINT;submod;4$;47| - |SINT;negative?;$B;48| (|Vector| 12) - (|Record| (|:| |mat| 26) (|:| |vec| 76)) (|Vector| $) + |SINT;max;3$;40| |SINT;min;3$;41| (|SingleInteger|) + |SINT;hash;2$;42| |SINT;length;2$;43| |SINT;shift;3$;44| + |SINT;mulmod;4$;45| |SINT;addmod;4$;46| + |SINT;submod;4$;47| |SINT;negative?;$B;48| (|Vector| 12) + (|Record| (|:| |mat| 26) (|:| |vec| 77)) (|Vector| $) |SINT;reducedSystem;MVR;49| |SINT;positiveRemainder;3$;50| |SINT;coerce;I$;51| |SINT;random;$;52| |SINT;random;2$;53| (|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) |SINT;unitNormal;$R;54| (|Fraction| 12) - (|Union| 86 '"failed") (|DoubleFloat|) - (|Union| $ '"failed") (|Float|) - (|PatternMatchResult| 12 $) (|Pattern| 12) (|InputForm|) - (|Union| 12 '"failed") (|List| $) (|Union| 95 '"failed") - (|Record| (|:| |coef| 95) (|:| |generator| $)) - (|Record| (|:| |coef1| $) (|:| |coef2| $)) - (|Union| 98 '"failed") + (|Union| 87 '"failed") (|Union| $ '"failed") (|Float|) + (|DoubleFloat|) (|Pattern| 12) (|PatternMatchResult| 12 $) + (|InputForm|) (|Union| 12 '"failed") (|List| $) + (|Record| (|:| |coef| 96) (|:| |generator| $)) + (|Union| 96 '"failed") (|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) - (|Factored| $) (|SparseUnivariatePolynomial| $) - (|PositiveInteger|) (|SingleInteger|)) + (|Record| (|:| |coef1| $) (|:| |coef2| $)) + (|Union| 100 '"failed") (|Factored| $) + (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) '#(~= 58 ~ 64 |zero?| 69 |xor| 74 |unitNormal| 80 |unitCanonical| 85 |unit?| 90 |symmetricRemainder| 95 |subtractIfCan| 101 |submod| 107 |squareFreePart| 114 @@ -356,15 +355,15 @@ |nextItem| 263 |negative?| 268 |multiEuclidean| 273 |mulmod| 279 |min| 286 |max| 296 |mask| 306 |length| 311 |lcm| 316 |latex| 327 |invmod| 332 |init| 338 |inc| 342 - |hash| 347 |gcdPolynomial| 357 |gcd| 363 |factorial| 374 - |factor| 379 |extendedEuclidean| 384 |exquo| 397 - |expressIdealMember| 403 |even?| 409 |euclideanSize| 414 - |divide| 419 |differentiate| 425 |dec| 436 |copy| 441 - |convert| 446 |coerce| 471 |characteristic| 491 |bit?| 495 - |binomial| 501 |base| 507 |associates?| 511 |addmod| 517 - |abs| 524 |\\/| 529 |Zero| 535 |Or| 539 |One| 545 - |OMwrite| 549 |Not| 573 D 578 |And| 589 >= 595 > 601 = 607 - <= 613 < 619 |/\\| 625 - 631 + 642 ** 648 * 660) + |hash| 347 |gcdPolynomial| 352 |gcd| 358 |factorial| 369 + |factor| 374 |extendedEuclidean| 379 |exquo| 392 + |expressIdealMember| 398 |even?| 404 |euclideanSize| 409 + |divide| 414 |differentiate| 420 |dec| 431 |copy| 436 + |convert| 441 |coerce| 466 |characteristic| 486 |bit?| 490 + |binomial| 496 |base| 502 |associates?| 506 |addmod| 512 + |abs| 519 |\\/| 524 |Zero| 530 |Or| 534 |One| 540 + |OMwrite| 544 |Not| 568 D 573 |And| 584 >= 590 > 596 = 602 + <= 608 < 614 |/\\| 620 - 626 + 637 ** 643 * 655) '((|noetherian| . 0) (|canonicalsClosed| . 0) (|canonical| . 0) (|canonicalUnitNormal| . 0) (|multiplicativeValuation| . 0) (|noZeroDivisors| . 0) @@ -408,10 +407,10 @@ (|SemiGroup|) (|Logic|) (|RealConstant|) (|SetCategory|) (|OpenMath|) (|ConvertibleTo| 90) - (|ConvertibleTo| 88) + (|ConvertibleTo| 91) (|CombinatorialFunctionCategory|) (|ConvertibleTo| 92) - (|ConvertibleTo| 93) + (|ConvertibleTo| 94) (|RetractableTo| 12) (|ConvertibleTo| 12) (|BasicType|) (|CoercibleTo| 29)) @@ -421,42 +420,42 @@ 17 1 8 7 0 18 1 8 7 0 19 1 8 7 0 20 1 12 29 0 30 1 0 0 12 33 2 0 22 0 0 1 1 0 0 0 41 1 0 22 0 65 2 0 0 0 0 48 1 0 - 84 0 85 1 0 0 0 1 1 0 22 0 1 2 0 0 0 - 0 1 2 0 89 0 0 1 3 0 0 0 0 0 74 1 0 0 - 0 1 1 0 101 0 1 2 0 22 0 0 1 1 0 12 0 - 1 2 0 0 0 0 71 0 0 0 1 1 0 94 0 1 1 0 - 12 0 1 2 0 0 0 0 59 2 0 77 27 78 79 1 - 0 26 27 28 1 0 89 0 1 1 0 87 0 1 1 0 - 22 0 1 1 0 86 0 1 0 0 0 82 1 0 0 0 83 - 2 0 0 0 0 58 1 0 97 95 1 1 0 22 0 1 3 - 0 0 0 0 0 1 2 0 0 0 0 80 1 0 22 0 1 2 - 0 0 0 0 1 3 0 91 0 92 91 1 1 0 22 0 + 85 0 86 1 0 0 0 1 1 0 22 0 1 2 0 0 0 + 0 1 2 0 89 0 0 1 3 0 0 0 0 0 75 1 0 0 + 0 1 1 0 102 0 1 2 0 22 0 0 1 1 0 12 0 + 1 2 0 0 0 0 72 0 0 0 1 1 0 95 0 1 1 0 + 12 0 1 2 0 0 0 0 59 1 0 26 27 28 2 0 + 78 27 79 80 1 0 89 0 1 1 0 88 0 1 1 0 + 22 0 1 1 0 87 0 1 1 0 0 0 84 0 0 0 83 + 2 0 0 0 0 58 1 0 97 96 1 1 0 22 0 1 3 + 0 0 0 0 0 1 2 0 0 0 0 81 1 0 22 0 1 2 + 0 0 0 0 1 3 0 93 0 92 93 1 1 0 22 0 66 1 0 22 0 64 1 0 0 0 42 1 0 89 0 1 - 1 0 22 0 75 2 0 96 95 0 1 3 0 0 0 0 0 - 72 0 0 0 39 2 0 0 0 0 68 0 0 0 38 2 0 - 0 0 0 67 1 0 0 0 1 1 0 0 0 70 2 0 0 0 - 0 1 1 0 0 95 1 1 0 10 0 1 2 0 0 0 0 1 - 0 0 0 1 1 0 0 0 50 1 0 0 0 69 1 0 104 - 0 1 2 0 102 102 102 1 2 0 0 0 0 62 1 - 0 0 95 1 1 0 0 0 1 1 0 101 0 1 3 0 99 - 0 0 0 1 2 0 100 0 0 1 2 0 89 0 0 1 2 - 0 96 95 0 1 1 0 22 0 1 1 0 56 0 1 2 0 - 60 0 0 61 1 0 0 0 1 2 0 0 0 56 1 1 0 - 0 0 51 1 0 0 0 1 1 0 88 0 1 1 0 90 0 - 1 1 0 93 0 1 1 0 92 0 1 1 0 12 0 32 1 - 0 0 12 81 1 0 0 12 81 1 0 0 0 1 1 0 - 29 0 31 0 0 56 1 2 0 22 0 0 1 2 0 0 0 - 0 1 0 0 0 37 2 0 22 0 0 1 3 0 0 0 0 0 - 73 1 0 0 0 63 2 0 0 0 0 44 0 0 0 35 2 - 0 0 0 0 47 0 0 0 36 3 0 7 8 0 22 25 2 - 0 10 0 22 23 2 0 7 8 0 24 1 0 10 0 21 - 1 0 0 0 45 1 0 0 0 1 2 0 0 0 56 1 2 0 - 0 0 0 46 2 0 22 0 0 1 2 0 22 0 0 1 2 - 0 22 0 0 40 2 0 22 0 0 1 2 0 22 0 0 - 49 2 0 0 0 0 43 1 0 0 0 52 2 0 0 0 0 - 54 2 0 0 0 0 53 2 0 0 0 56 57 2 0 0 0 - 103 1 2 0 0 0 0 55 2 0 0 12 0 34 2 0 - 0 56 0 1 2 0 0 103 0 1))))) + 1 0 22 0 76 2 0 98 96 0 1 3 0 0 0 0 0 + 73 0 0 0 39 2 0 0 0 0 68 0 0 0 38 2 0 + 0 0 0 67 1 0 0 0 1 1 0 0 0 71 2 0 0 0 + 0 1 1 0 0 96 1 1 0 10 0 1 2 0 0 0 0 1 + 0 0 0 1 1 0 0 0 50 1 0 69 0 70 2 0 + 103 103 103 1 2 0 0 0 0 62 1 0 0 96 1 + 1 0 0 0 1 1 0 102 0 1 2 0 99 0 0 1 3 + 0 101 0 0 0 1 2 0 89 0 0 1 2 0 98 96 + 0 1 1 0 22 0 1 1 0 56 0 1 2 0 60 0 0 + 61 1 0 0 0 1 2 0 0 0 56 1 1 0 0 0 51 + 1 0 0 0 1 1 0 90 0 1 1 0 91 0 1 1 0 + 92 0 1 1 0 94 0 1 1 0 12 0 32 1 0 0 + 12 82 1 0 0 12 82 1 0 0 0 1 1 0 29 0 + 31 0 0 56 1 2 0 22 0 0 1 2 0 0 0 0 1 + 0 0 0 37 2 0 22 0 0 1 3 0 0 0 0 0 74 + 1 0 0 0 63 2 0 0 0 0 44 0 0 0 35 2 0 + 0 0 0 47 0 0 0 36 3 0 7 8 0 22 25 2 0 + 10 0 22 23 2 0 7 8 0 24 1 0 10 0 21 1 + 0 0 0 45 1 0 0 0 1 2 0 0 0 56 1 2 0 0 + 0 0 46 2 0 22 0 0 1 2 0 22 0 0 1 2 0 + 22 0 0 40 2 0 22 0 0 1 2 0 22 0 0 49 + 2 0 0 0 0 43 1 0 0 0 52 2 0 0 0 0 54 + 2 0 0 0 0 53 2 0 0 0 56 57 2 0 0 0 + 104 1 2 0 0 0 0 55 2 0 0 12 0 34 2 0 + 0 56 0 1 2 0 0 104 0 1))))) '|lookupComplete|)) (SETQ |$CategoryFrame| @@ -477,16 +476,15 @@ ((|\\/| ($ $ $)) T (ELT $ 44)) ((|invmod| ($ $ $)) T (ELT $ NIL)) ((|powmod| ($ $ $ $)) T (ELT $ NIL)) - ((|mulmod| ($ $ $ $)) T (ELT $ 72)) - ((|submod| ($ $ $ $)) T (ELT $ 74)) - ((|addmod| ($ $ $ $)) T (ELT $ 73)) + ((|mulmod| ($ $ $ $)) T (ELT $ 73)) + ((|submod| ($ $ $ $)) T (ELT $ 75)) + ((|addmod| ($ $ $ $)) T (ELT $ 74)) ((|mask| ($ $)) T (ELT $ NIL)) ((|dec| ($ $)) T (ELT $ 51)) ((|inc| ($ $)) T (ELT $ 50)) ((|copy| ($ $)) T (ELT $ NIL)) - ((|hash| ($ $)) T (ELT $ 69)) - ((|random| ($ $)) T (ELT $ 83)) - ((|random| ($)) T (ELT $ 82)) + ((|random| ($ $)) T (ELT $ 84)) + ((|random| ($)) T (ELT $ 83)) ((|rationalIfCan| ((|Union| (|Fraction| (|Integer|)) "failed") $)) T (ELT $ NIL)) @@ -494,10 +492,10 @@ (ELT $ NIL)) ((|rational?| ((|Boolean|) $)) T (ELT $ NIL)) ((|symmetricRemainder| ($ $ $)) T (ELT $ NIL)) - ((|positiveRemainder| ($ $ $)) T (ELT $ 80)) + ((|positiveRemainder| ($ $ $)) T (ELT $ 81)) ((|bit?| ((|Boolean|) $ $)) T (ELT $ NIL)) - ((|shift| ($ $ $)) T (ELT $ 71)) - ((|length| ($ $)) T (ELT $ 70)) + ((|shift| ($ $ $)) T (ELT $ 72)) + ((|length| ($ $)) T (ELT $ 71)) ((|base| ($)) T (ELT $ 37)) ((|even?| ((|Boolean|) $)) T (ELT $ NIL)) ((|odd?| ((|Boolean|) $)) T (ELT $ 64)) @@ -521,11 +519,11 @@ ((|Record| (|:| |mat| (|Matrix| (|Integer|))) (|:| |vec| (|Vector| (|Integer|)))) (|Matrix| $) (|Vector| $))) - T (ELT $ 79)) + T (ELT $ 80)) ((|retract| ((|Integer|) $)) T (ELT $ NIL)) ((|retractIfCan| ((|Union| (|Integer|) "failed") $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 81)) + ((|coerce| ($ (|Integer|))) T (ELT $ 82)) ((|convert| ((|Integer|) $)) T (ELT $ 32)) ((|differentiate| ($ $)) T (ELT $ NIL)) ((D ($ $)) T (ELT $ NIL)) @@ -534,7 +532,7 @@ ((D ($ $ (|NonNegativeInteger|))) T (ELT $ NIL)) ((|abs| ($ $)) T (ELT $ 63)) ((|sign| ((|Integer|) $)) T (ELT $ NIL)) - ((|negative?| ((|Boolean|) $)) T (ELT $ 75)) + ((|negative?| ((|Boolean|) $)) T (ELT $ 76)) ((|positive?| ((|Boolean|) $)) T (ELT $ NIL)) ((|min| ($ $ $)) T (ELT $ 68)) ((|max| ($ $ $)) T (ELT $ 67)) @@ -593,10 +591,10 @@ ((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $)) - T (ELT $ 85)) + T (ELT $ 86)) ((|exquo| ((|Union| $ "failed") $ $)) T (ELT $ NIL)) ((|coerce| ($ $)) T (ELT $ NIL)) - ((|coerce| ($ (|Integer|))) T (ELT $ 81)) + ((|coerce| ($ (|Integer|))) T (ELT $ 82)) ((|characteristic| ((|NonNegativeInteger|))) T (ELT $ NIL)) ((|One| ($)) T (CONST $ 36)) @@ -616,7 +614,7 @@ ((* ($ (|PositiveInteger|) $)) T (ELT $ NIL)) ((+ ($ $ $)) T (ELT $ 53)) ((|latex| ((|String|) $)) T (ELT $ NIL)) - ((|hash| ((|SingleInteger|) $)) T (ELT $ NIL)) + ((|hash| ((|SingleInteger|) $)) T (ELT $ 70)) ((|coerce| ((|OutputForm|) $)) T (ELT $ 31)) ((= ((|Boolean|) $ $)) T (ELT $ 40)) ((~= ((|Boolean|) $ $)) T (ELT $ NIL))) diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index bacff8b9..ceff1afe 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2255888 . 3430739784) +(2255670 . 3430960042) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4324 . T) (-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4320 . T) (-4325 . T) (-4319 . T) (-2409 . T)) +((-4325 . T) (-4323 . T) (-4322 . T) ((-4330 "*") . T) (-4321 . T) (-4326 . T) (-4320 . T) (-2608 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,17 +56,17 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|Syntax|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|Syntax|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1426) +(-32 R -1409) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) +((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4327))) +((|HasAttribute| |#1| (QUOTE -4328))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2409 . T)) +((-2608 . T)) NIL (-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1426 UP UPUP -1328) +(-40 -1409 UP UPUP -3148) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4320 |has| (-399 |#2|) (-355)) (-4325 |has| (-399 |#2|) (-355)) (-4319 |has| (-399 |#2|) (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-399 |#2|) (QUOTE (-143))) (|HasCategory| (-399 |#2|) (QUOTE (-145))) (|HasCategory| (-399 |#2|) (QUOTE (-341))) (-1524 (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-360))) (-1524 (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (-1524 (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-341))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355))))) -(-41 R -1426) +((-4321 |has| (-398 |#2|) (-354)) (-4326 |has| (-398 |#2|) (-354)) (-4320 |has| (-398 |#2|) (-354)) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-398 |#2|) (QUOTE (-143))) (|HasCategory| (-398 |#2|) (QUOTE (-145))) (|HasCategory| (-398 |#2|) (QUOTE (-340))) (-1524 (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-359))) (-1524 (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (-1524 (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-398 |#2|) (QUOTE (-340))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1524 (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354))))) +(-41 R -1409) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-299)))) +((|HasCategory| |#1| (QUOTE (-298)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4324 |has| |#1| (-540)) (-4322 . T) (-4321 . T)) -((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) +((-4325 |has| |#1| (-539)) (-4323 . T) (-4322 . T)) +((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4327 . T) (-4328 . T)) -((-1524 (-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|))))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-1524 (-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|))))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4324 . T)) +((-4325 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1426) +(-54 |Base| R -1409) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -154,7 +154,7 @@ NIL NIL (-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-57 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -162,65 +162,65 @@ NIL NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-60 -2275) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-60 -2464) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -2275) +(-61 -2464) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -2275) +(-62 -2464) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -2275) +(-63 -2464) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-64 -2275) +(-64 -2464) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -2275) +(-65 -2464) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -2275) +(-66 -2464) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -2275) +(-67 -2464) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2275) +(-68 -2464) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -2275) +(-69 -2464) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -2275) +(-70 -2464) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -2275) +(-71 -2464) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -2275) +(-72 -2464) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -2275) +(-73 -2464) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -232,66 +232,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -2275) +(-76 -2464) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -2275) +(-77 -2464) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2275) +(-78 -2464) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -2275) +(-79 -2464) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2275) +(-80 -2464) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2275) +(-81 -2464) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -2275) +(-82 -2464) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2275) +(-83 -2464) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2275) +(-84 -2464) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2275) +(-85 -2464) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2275) +(-86 -2464) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2275) +(-87 -2464) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -2275) +(-88 -2464) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-89 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-355)))) +((|HasCategory| |#1| (QUOTE (-354)))) (-90 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-91 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -314,15 +314,15 @@ NIL NIL (-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4327 . T)) +((-4328 . T)) NIL (-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4327 . T) ((-4329 "*") . T) (-4328 . T) (-4324 . T) (-4322 . T) (-4321 . T) (-4320 . T) (-4325 . T) (-4319 . T) (-4318 . T) (-4317 . T) (-4316 . T) (-4315 . T) (-4323 . T) (-4326 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4314 . T)) +((-4328 . T) ((-4330 "*") . T) (-4329 . T) (-4325 . T) (-4323 . T) (-4322 . T) (-4321 . T) (-4326 . T) (-4320 . T) (-4319 . T) (-4318 . T) (-4317 . T) (-4316 . T) (-4324 . T) (-4327 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4315 . T)) NIL (-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4324 . T)) +((-4325 . T)) NIL (-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -338,15 +338,15 @@ NIL NIL (-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4329 "*")))) +((|HasAttribute| |#1| (QUOTE (-4330 "*")))) (-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4327 . T)) +((-4328 . T)) NIL (-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -354,12 +354,12 @@ NIL NIL (-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL (-107) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1524 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1111))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1135)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143))))) (-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -370,11 +370,11 @@ NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -301) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -300) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -591) (QUOTE (-832))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -388,25 +388,25 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-115 -1426 UP) +(-115 -1409 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-878))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-116 |#1|) (QUOTE (-991))) (|HasCategory| (-116 |#1|) (QUOTE (-794))) (-1524 (|HasCategory| (-116 |#1|) (QUOTE (-794))) (|HasCategory| (-116 |#1|) (QUOTE (-821)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-116 |#1|) (QUOTE (-1111))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-116 |#1|) (QUOTE (-226))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -301) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-299))) (|HasCategory| (-116 |#1|) (QUOTE (-533))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-878))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-116 |#1|) (QUOTE (-991))) (|HasCategory| (-116 |#1|) (QUOTE (-794))) (-1524 (|HasCategory| (-116 |#1|) (QUOTE (-794))) (|HasCategory| (-116 |#1|) (QUOTE (-821)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-116 |#1|) (QUOTE (-1111))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-116 |#1|) (QUOTE (-225))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -300) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -277) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-298))) (|HasCategory| (-116 |#1|) (QUOTE (-532))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-878)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4328))) +((|HasAttribute| |#1| (QUOTE -4329))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2409 . T)) +((-2608 . T)) NIL (-120 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,20 +430,20 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-128) ((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129)))))) (-1524 (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-129) (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063)))) (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -301) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129)))))) (-1524 (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-129) (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063)))) (|HasCategory| (-129) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-129) (QUOTE (-1063))) (-12 (|HasCategory| (-129) (QUOTE (-1063))) (|HasCategory| (-129) (LIST (QUOTE -300) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -591) (QUOTE (-832))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -462,13 +462,13 @@ NIL NIL (-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4329 "*") . T)) +(((-4330 "*") . T)) NIL -(-134 |minix| -3670 S T$) +(-134 |minix| -2712 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-135 |minix| -3670 R) +(-135 |minix| -2712 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -486,8 +486,8 @@ NIL NIL (-139) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4327 . T) (-4317 . T) (-4328 . T)) -((-1524 (-12 (|HasCategory| (-142) (QUOTE (-360))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-360))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4318 . T) (-4329 . T)) +((-1524 (-12 (|HasCategory| (-142) (QUOTE (-359))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-142) (QUOTE (-359))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832))))) (-140 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -502,7 +502,7 @@ NIL NIL (-143) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4324 . T)) +((-4325 . T)) NIL (-144 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -510,9 +510,9 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4324 . T)) +((-4325 . T)) NIL -(-146 -1426 UP UPUP) +(-146 -1409 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -523,14 +523,14 @@ NIL (-148 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasAttribute| |#1| (QUOTE -4327))) +((|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasAttribute| |#1| (QUOTE -4328))) (-149 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2409 . T)) +((-2608 . T)) NIL (-150 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4322 . T) (-4321 . T) (-4324 . T)) +((-4323 . T) (-4322 . T) (-4325 . T)) NIL (-151) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -548,7 +548,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-155 R -1426) +(-155 R -1409) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -579,10 +579,10 @@ NIL (-162 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-355))) (|HasAttribute| |#2| (QUOTE -4323)) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-821)))) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-354))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasAttribute| |#2| (QUOTE -4327)) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-821)))) (-163 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4320 -1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4323 |has| |#1| (-6 -4323)) (-4326 |has| |#1| (-6 -4326)) (-3247 . T) (-2409 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 -1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4324 |has| |#1| (-6 -4324)) (-4327 |has| |#1| (-6 -4327)) (-3397 . T) (-2608 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-164 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -594,8 +594,8 @@ NIL NIL (-166 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4320 -1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4323 |has| |#1| (-6 -4323)) (-4326 |has| |#1| (-6 -4326)) (-3247 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-341))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-226))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-802)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-878))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-878))))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1157)))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1157)))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-226))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasAttribute| |#1| (QUOTE -4323)) (|HasAttribute| |#1| (QUOTE -4326)) (-12 (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-341))))) +((-4321 -1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4324 |has| |#1| (-6 -4324)) (-4327 |has| |#1| (-6 -4327)) (-3397 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-340))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-225))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-802)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-878))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-878))))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1157)))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1157)))) (|HasCategory| |#1| (QUOTE (-532))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-225))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasAttribute| |#1| (QUOTE -4324)) (|HasAttribute| |#1| (QUOTE -4327)) (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-340))))) (-167 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -606,7 +606,7 @@ NIL NIL (-169) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-170) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -614,7 +614,7 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4329 "*") . T) (-4320 . T) (-4325 . T) (-4319 . T) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") . T) (-4321 . T) (-4326 . T) (-4320 . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-172) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -636,1698 +636,1698 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-177) -((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) -NIL -NIL -(-178 R UP) +(-177 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-179 S ST) +(-178 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-180) +(-179) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-181 R -1426) +(-180 R -1409) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-182 R) +(-181 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-183) +(-182) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-184) +(-183) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-185) +(-184) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-186) +(-185) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-187) +(-186) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-188) +(-187) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-189) +(-188) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-190) +(-189) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-191) +(-190) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-192) +(-191) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-193) +(-192) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-194) +(-193) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-195) +(-194) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-195) NIL NIL NIL -(-197) +(-196) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-198) +(-197) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-199) +(-198) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-200) +(-199) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-201) +(-200) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-202) +(-201) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-203) +(-202) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-204) +(-203) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-205) +(-204) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-206 N T$) +(-205 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-207 S) +(-206 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-208 -1426 UP UPUP R) +(-207 -1409 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-209 -1426 FP) +(-208 -1409 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-210) +(-209) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) -(-211) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1524 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1111))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1135)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143))))) +(-210) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|Syntax|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|List| (|Identifier|)) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-212 R -1426) +(-211 R -1409) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-213 R) +(-212 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-214 R1 R2) +(-213 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-215 S) +(-214 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-216 |CoefRing| |listIndVar|) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-215 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4324 . T)) +((-4325 . T)) NIL -(-217 R -1426) +(-216 R -1409) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-218) +(-217) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2645 . T) (-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-219) +(-218) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-220 R) +(-219 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540))) (|HasAttribute| |#1| (QUOTE (-4329 "*"))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-221 A S) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))) (|HasAttribute| |#1| (QUOTE (-4330 "*"))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-220 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-222 S) +(-221 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL -(-223 S R) +(-222 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226)))) -(-224 R) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-225)))) +(-223 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4324 . T)) +((-4325 . T)) NIL -(-225 S) +(-224 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-226) +(-225) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4324 . T)) +((-4325 . T)) NIL -(-227 A S) +(-226 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4327))) -(-228 S) +((|HasAttribute| |#1| (QUOTE -4328))) +(-227 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL -(-229) +(-228) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-230 S -3670 R) +(-229 S -2712 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasAttribute| |#3| (QUOTE -4324)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) -(-231 -3670 R) +((|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasAttribute| |#3| (QUOTE -4325)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) +(-230 -2712 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T) (-2409 . T)) +((-4322 |has| |#2| (-1016)) (-4323 |has| |#2| (-1016)) (-4325 |has| |#2| (-6 -4325)) ((-4330 "*") |has| |#2| (-169)) (-4328 . T) (-2608 . T)) NIL -(-232 -3670 A B) +(-231 -2712 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-233 -3670 R) +(-232 -2712 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-360)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) -(-234) +((-4322 |has| |#2| (-1016)) (-4323 |has| |#2| (-1016)) (-4325 |has| |#2| (-6 -4325)) ((-4330 "*") |has| |#2| (-169)) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) +(-233) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-235 S) +(-234 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-236) +(-235) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4320 . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-237 S) +(-236 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2409 . T)) +((-2608 . T)) NIL -(-238 S) +(-237 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-239 M) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-238 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-240 |vl| R) +(-239 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-241) +(((-4330 "*") |has| |#2| (-169)) (-4321 |has| |#2| (-539)) (-4326 |has| |#2| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-240) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-242 |n| R M S) +(-241 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4324 -1524 (-1723 (|has| |#4| (-1016)) (|has| |#4| (-226))) (-1723 (|has| |#4| (-1016)) (|has| |#4| (-869 (-1135)))) (|has| |#4| (-6 -4324)) (-1723 (|has| |#4| (-1016)) (|has| |#4| (-615 (-548))))) (-4321 |has| |#4| (-1016)) (-4322 |has| |#4| (-1016)) ((-4329 "*") |has| |#4| (-169)) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#4| (QUOTE (-355))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-355)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (QUOTE (-767))) (-1524 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (QUOTE (-819)))) (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (QUOTE (-169))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-226)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-355)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-360)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-701)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-767)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-819)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-701))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (|HasCategory| |#4| (QUOTE (-1016))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (QUOTE (-1063)))) (-1524 (|HasAttribute| |#4| (QUOTE -4324)) (-12 (|HasCategory| |#4| (QUOTE (-226))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) -(-243 |n| R S) +((-4325 -1524 (-1806 (|has| |#4| (-1016)) (|has| |#4| (-225))) (-1806 (|has| |#4| (-1016)) (|has| |#4| (-869 (-1135)))) (|has| |#4| (-6 -4325)) (-1806 (|has| |#4| (-1016)) (|has| |#4| (-615 (-547))))) (-4322 |has| |#4| (-1016)) (-4323 |has| |#4| (-1016)) ((-4330 "*") |has| |#4| (-169)) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#4| (QUOTE (-354))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-354)))) (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (QUOTE (-767))) (-1524 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (QUOTE (-819)))) (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (QUOTE (-169))) (-1524 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-225)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-354)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-359)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-701)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-767)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-819)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-701))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-767))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-819))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (|HasCategory| |#4| (QUOTE (-701))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (|HasCategory| |#4| (QUOTE (-1016))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (QUOTE (-1063)))) (-1524 (|HasAttribute| |#4| (QUOTE -4325)) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1016)))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#4| (QUOTE (-1016))) (|HasCategory| |#4| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832))))) +(-242 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4324 -1524 (-1723 (|has| |#3| (-1016)) (|has| |#3| (-226))) (-1723 (|has| |#3| (-1016)) (|has| |#3| (-869 (-1135)))) (|has| |#3| (-6 -4324)) (-1723 (|has| |#3| (-1016)) (|has| |#3| (-615 (-548))))) (-4321 |has| |#3| (-1016)) (-4322 |has| |#3| (-1016)) ((-4329 "*") |has| |#3| (-169)) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#3| (QUOTE (-355))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1524 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-226)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-355)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-360)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-701))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1524 (|HasAttribute| |#3| (QUOTE -4324)) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832))))) -(-244 A R S V E) +((-4325 -1524 (-1806 (|has| |#3| (-1016)) (|has| |#3| (-225))) (-1806 (|has| |#3| (-1016)) (|has| |#3| (-869 (-1135)))) (|has| |#3| (-6 -4325)) (-1806 (|has| |#3| (-1016)) (|has| |#3| (-615 (-547))))) (-4322 |has| |#3| (-1016)) (-4323 |has| |#3| (-1016)) ((-4330 "*") |has| |#3| (-169)) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#3| (QUOTE (-354))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1524 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-354)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-701))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1524 (|HasAttribute| |#3| (QUOTE -4325)) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832))))) +(-243 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-226)))) -(-245 R S V E) +((|HasCategory| |#2| (QUOTE (-225)))) +(-244 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL -(-246 S) +(-245 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL -(-247) +(-246) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-248 R |Ex|) +(-247 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-249) +(-248) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-250 R) +(-249 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-251 |Ex|) +(-250 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-252) +(-251) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-253) +(-252) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-254 S) +(-253 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-255) +(-254) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-256 R S V) +(-255 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#3| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-257 A S) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#3| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-256 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-258 S) +(-257 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-259) +(-258) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-260) +(-259) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-261) +(-260) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-262) +(-261) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-263) +(-262) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-264) +(-263) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-265) +(-264) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-266) +(-265) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-267) +(-266) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-268 R -1426) +(-267 R -1409) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-269 R -1426) +(-268 R -1409) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-270 |Coef| UTS ULS) +(-269 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-355)))) -(-271 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-354)))) +(-270 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-355)))) -(-272) +((|HasCategory| |#1| (QUOTE (-354)))) +(-271) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-273 A S) +(-272 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL ((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063)))) -(-274 S) +(-273 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL -(-275 S) +(-274 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-276) +(-275) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-277 |Coef| UTS) +(-276 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-278 S |Index|) +(-277 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-279 S |Dom| |Im|) +(-278 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4328))) -(-280 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4329))) +(-279 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-281 S R |Mod| -3037 -2913 |exactQuo|) +(-280 S R |Mod| -2112 -1294 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-282) +(-281) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4320 . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-283) +(-282) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-284 R) +(-283 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-285 S R) +(-284 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-286 S) +(-285 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4324 -1524 (|has| |#1| (-1016)) (|has| |#1| (-464))) (-4321 |has| |#1| (-1016)) (-4322 |has| |#1| (-1016))) -((|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-701)))) (|HasCategory| |#1| (QUOTE (-464))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-294))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-464)))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-287 |Key| |Entry|) +((-4325 -1524 (|has| |#1| (-1016)) (|has| |#1| (-463))) (-4322 |has| |#1| (-1016)) (-4323 |has| |#1| (-1016))) +((|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-701)))) (|HasCategory| |#1| (QUOTE (-463))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1524 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-293))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-463)))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701)))) (-1524 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-286 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) -(-288) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) +(-287) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-289 -1426 S) +(-288 -1409 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-290 E -1426) +(-289 E -1409) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-291 A B) +(-290 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-292) +(-291) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-293 S) +(-292 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1016)))) -(-294) +((|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1016)))) +(-293) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-295 R1) +(-294 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-296 R1 R2) +(-295 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-297) +(-296) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-298 S) +(-297 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-299) +(-298) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-300 S R) +(-299 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-301 R) +(-300 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-302 -1426) +(-301 -1409) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-303) +(-302) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-304) +(-303) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-305 R FE |var| |cen|) +(-304 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-991))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (-1524 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-1111))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-226))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -301) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -278) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-299))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-533))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))) (-1524 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))))) -(-306 R S) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-991))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (-1524 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-794))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-1111))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-225))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -300) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (LIST (QUOTE -277) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-298))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-532))) (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))) (-1524 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3| |#4|) (QUOTE (-878))) (|HasCategory| $ (QUOTE (-143)))))) +(-305 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-307 R FE) +(-306 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-308 R) +(-307 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4324 -1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (-12 (|has| |#1| (-540)) (-1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (|has| |#1| (-1016)) (|has| |#1| (-464)))) (|has| |#1| (-1016)) (|has| |#1| (-464))) (-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) ((-4329 "*") |has| |#1| (-540)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-540)) (-4319 |has| |#1| (-540))) -((-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))))) (-1524 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1524 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))))) (-1524 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) -(-309 R -1426) +((-4325 -1524 (-1806 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (-12 (|has| |#1| (-539)) (-1524 (-1806 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (|has| |#1| (-1016)) (|has| |#1| (-463)))) (|has| |#1| (-1016)) (|has| |#1| (-463))) (-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) ((-4330 "*") |has| |#1| (-539)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-539)) (-4320 |has| |#1| (-539))) +((-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-539))) (-1524 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (-1524 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1075)))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (-1524 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))))) (-1524 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1075)))) (-1524 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))))) (-1524 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1016)))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547))))) +(-308 R -1409) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-310) +(-309) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-311 FE |var| |cen|) +(-310 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) -(-312 M) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-311 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-313 E OV R P) +(-312 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-314 S) +(-313 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4322 . T) (-4321 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-766)))) -(-315 S E) +((-4323 . T) (-4322 . T)) +((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-766)))) +(-314 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-316 S) +(-315 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL ((|HasCategory| (-745) (QUOTE (-766)))) -(-317 S R E) +(-316 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169)))) -(-318 R E) +((|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169)))) +(-317 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-319 S) +(-318 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-320 S -1426) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-319 S -1409) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-360)))) -(-321 -1426) +((|HasCategory| |#2| (QUOTE (-359)))) +(-320 -1409) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-322) +(-321) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-323 E) +(-322 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-324) +(-323) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-325 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-324 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-326 S -1426 UP UPUP R) +(-325 S -1409 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-327 -1426 UP UPUP R) +(-326 -1409 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-328 -1426 UP UPUP R) +(-327 -1409 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-329 S R) +(-328 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-330 R) +((|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-329 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-331 |basicSymbols| |subscriptedSymbols| R) +(-330 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-371)))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) -(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-370)))) (|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547))))) +(-331 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-333 S -1426 UP UPUP) +(-332 S -1409 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-355)))) -(-334 -1426 UP UPUP) +((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-354)))) +(-333 -1409 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4320 |has| (-399 |#2|) (-355)) (-4325 |has| (-399 |#2|) (-355)) (-4319 |has| (-399 |#2|) (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 |has| (-398 |#2|) (-354)) (-4326 |has| (-398 |#2|) (-354)) (-4320 |has| (-398 |#2|) (-354)) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-335 |p| |extdeg|) +(-334 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-360)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-360))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) -(-336 GF |defpol|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-359)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-359))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) +(-335 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) -(-337 GF |extdeg|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143)))) +(-336 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) -(-338 GF) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143)))) +(-337 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-339 F1 GF F2) +(-338 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-340 S) +(-339 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-341) +(-340) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-342 R UP -1426) +(-341 R UP -1409) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-343 |p| |extdeg|) +(-342 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-360)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-360))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) -(-344 GF |uni|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-359)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-359))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) +(-343 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) -(-345 GF |extdeg|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143)))) +(-344 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) -(-346 |p| |n|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143)))) +(-345 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-360)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-360))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) -(-347 GF |defpol|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| (-879 |#1|) (QUOTE (-143))) (|HasCategory| (-879 |#1|) (QUOTE (-359)))) (|HasCategory| (-879 |#1|) (QUOTE (-145))) (|HasCategory| (-879 |#1|) (QUOTE (-359))) (|HasCategory| (-879 |#1|) (QUOTE (-143)))) +(-346 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) -(-348 -1426 GF) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143)))) +(-347 -1409 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-349 GF) +(-348 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-350 -1426 FP FPP) +(-349 -1409 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-351 GF |n|) +(-350 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-143)))) -(-352 R |ls|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-143)))) +(-351 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-353 S) +(-352 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4324 . T)) +((-4325 . T)) NIL -(-354 S) +(-353 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-355) +(-354) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-356 |Name| S) +(-355 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-357 S) +(-356 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-358 S R) +(-357 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-540)))) -(-359 R) +((|HasCategory| |#2| (QUOTE (-539)))) +(-358 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4324 |has| |#1| (-540)) (-4322 . T) (-4321 . T)) +((-4325 |has| |#1| (-539)) (-4323 . T) (-4322 . T)) NIL -(-360) +(-359) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-361 S R UP) +(-360 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-355)))) -(-362 R UP) +((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-354)))) +(-361 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-363 S A R B) +(-362 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-364 A S) +(-363 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063)))) -(-365 S) +((|HasAttribute| |#1| (QUOTE -4329)) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063)))) +(-364 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4327 . T) (-2409 . T)) +((-4328 . T) (-2608 . T)) NIL -(-366 |VarSet| R) +(-365 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4322 . T) (-4321 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4323 . T) (-4322 . T)) NIL -(-367 S V) +(-366 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-368 S R) +(-367 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) -(-369 R) +((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) +(-368 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4324 . T)) +((-4325 . T)) NIL -(-370 |Par|) +(-369 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-371) +(-370) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4310 . T) (-4318 . T) (-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4311 . T) (-4319 . T) (-2645 . T) (-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-372 |Par|) +(-371 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-373 R S) +(-372 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) ((|HasCategory| |#1| (QUOTE (-169)))) -(-374 R |Basis|) +(-373 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL -(-375) +(-374) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2409 . T)) +((-2608 . T)) NIL -(-376) +(-375) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2409 . T)) +((-2608 . T)) NIL -(-377 R S) +(-376 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) ((|HasCategory| |#1| (QUOTE (-169)))) -(-378 S) +(-377 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL ((|HasCategory| |#1| (QUOTE (-821)))) -(-379) +(-378) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-380) +(-379) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-381) +(-380) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-382 |n| |class| R) +(-381 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL -(-383) +(-382) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-384 -1426 UP UPUP R) +(-383 -1409 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-385 S) +(-384 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-386) +(-385) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-387) +(-386) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2409 . T)) +((-2608 . T)) NIL -(-388) +(-387) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2409 . T)) +((-2608 . T)) NIL -(-389) +(-388) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-390 -2275 |returnType| -3277 |symbols|) +(-389 -2464 |returnType| -2856 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-391 -1426 UP) +(-390 -1409 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-392 R) +(-391 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2409 . T)) +((-2608 . T)) NIL -(-393 S) +(-392 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-394) +(-393) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-395 S) +(-394 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4310)) (|HasAttribute| |#1| (QUOTE -4318))) -(-396) +((|HasAttribute| |#1| (QUOTE -4311)) (|HasAttribute| |#1| (QUOTE -4319))) +(-395) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2645 . T) (-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-397 R S) +(-396 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-398 A B) +(-397 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-399 S) +(-398 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4314 -12 (|has| |#1| (-6 -4325)) (|has| |#1| (-443)) (|has| |#1| (-6 -4314))) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-794))) (-1524 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-821)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1111))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-533))) (-12 (|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4314)) (|HasCategory| |#1| (QUOTE (-443)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-400 S R UP) +((-4315 -12 (|has| |#1| (-6 -4326)) (|has| |#1| (-442)) (|has| |#1| (-6 -4315))) (-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-794))) (-1524 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-821)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1111))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-802)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-532))) (-12 (|HasAttribute| |#1| (QUOTE -4326)) (|HasAttribute| |#1| (QUOTE -4315)) (|HasCategory| |#1| (QUOTE (-442)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-399 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-401 R UP) +(-400 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-402 A S) +(-401 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) -(-403 S) +((|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) +(-402 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-404 R1 F1 U1 A1 R2 F2 U2 A2) +(-403 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-405 R -1426 UP A) +(-404 R -1409 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4324 . T)) +((-4325 . T)) NIL -(-406 R -1426 UP A |ibasis|) +(-405 R -1409 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1007) (|devaluate| |#2|)))) -(-407 AR R AS S) +(-406 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-408 S R) +(-407 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-355)))) -(-409 R) +((|HasCategory| |#2| (QUOTE (-354)))) +(-408 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4324 |has| |#1| (-540)) (-4322 . T) (-4321 . T)) +((-4325 |has| |#1| (-539)) (-4323 . T) (-4322 . T)) NIL -(-410 R) +(-409 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -301) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -278) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1176))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-443)))) -(-411 R) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -300) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -277) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-1176))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-991))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-442)))) +(-410 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-412 R FE |x| |cen|) +(-411 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-413 R A S B) +(-412 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-414 R FE |Expon| UPS TRAN |x|) +(-413 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-415 S A R B) +(-414 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-416 A S) +(-415 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-360)))) -(-417 S) +((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-359)))) +(-416 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4327 . T) (-4317 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4318 . T) (-4329 . T) (-2608 . T)) NIL -(-418 R -1426) +(-417 R -1409) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-419 R E) +(-418 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4314 -12 (|has| |#1| (-6 -4314)) (|has| |#2| (-6 -4314))) (-4321 . T) (-4322 . T) (-4324 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4314)) (|HasAttribute| |#2| (QUOTE -4314)))) -(-420 R -1426) +((-4315 -12 (|has| |#1| (-6 -4315)) (|has| |#2| (-6 -4315))) (-4322 . T) (-4323 . T) (-4325 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4315)) (|HasAttribute| |#2| (QUOTE -4315)))) +(-419 R -1409) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-421 S R) +(-420 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) -(-422 R) +((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) +(-421 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4324 -1524 (|has| |#1| (-1016)) (|has| |#1| (-464))) (-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) ((-4329 "*") |has| |#1| (-540)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-540)) (-4319 |has| |#1| (-540)) (-2409 . T)) +((-4325 -1524 (|has| |#1| (-1016)) (|has| |#1| (-463))) (-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) ((-4330 "*") |has| |#1| (-539)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-539)) (-4320 |has| |#1| (-539)) (-2608 . T)) NIL -(-423 R -1426) +(-422 R -1409) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-424 R -1426) +(-423 R -1409) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-425 R -1426) +(-424 R -1409) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-426) +(-425) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-427 R -1426 UP) +(-426 R -1409 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-48))))) -(-428) +(-427) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-429) +(-428) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-430 |f|) +(-429 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-431) +(-430) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2409 . T)) +((-2608 . T)) NIL -(-432) +(-431) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2409 . T)) +((-2608 . T)) NIL -(-433 UP) +(-432 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-434 R UP -1426) +(-433 R UP -1409) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-435 R UP) +(-434 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-436 R) +(-435 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-396)))) -(-437) +((|HasCategory| |#1| (QUOTE (-395)))) +(-436) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-438 |Dom| |Expon| |VarSet| |Dpol|) +(-437 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-439 |Dom| |Expon| |VarSet| |Dpol|) +(-438 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-440 |Dom| |Expon| |VarSet| |Dpol|) +(-439 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-441 |Dom| |Expon| |VarSet| |Dpol|) +(-440 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-355)))) -(-442 S) +((|HasCategory| |#1| (QUOTE (-354)))) +(-441 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-443) +(-442) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-444 R |n| |ls| |gamma|) +(-443 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4324 |has| (-399 (-921 |#1|)) (-540)) (-4322 . T) (-4321 . T)) -((|HasCategory| (-399 (-921 |#1|)) (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| (-399 (-921 |#1|)) (QUOTE (-540)))) -(-445 |vl| R E) +((-4325 |has| (-398 (-921 |#1|)) (-539)) (-4323 . T) (-4322 . T)) +((|HasCategory| (-398 (-921 |#1|)) (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| (-398 (-921 |#1|)) (QUOTE (-539)))) +(-444 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-446 R BP) +(((-4330 "*") |has| |#2| (-169)) (-4321 |has| |#2| (-539)) (-4326 |has| |#2| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-445 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-447 OV E S R P) +(-446 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-448 E OV R P) +(-447 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-449 R) +(-448 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-450 R FE) +(-449 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-451 RP TP) +(-450 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-452 |vl| R IS E |ff| P) +(-451 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL -(-453 E V R P Q) +(-452 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-454 R E |VarSet| P) +(-453 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) -(-455 S R E) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832))))) +(-454 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-456 R E) +(-455 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-457) +(-456) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-458) +(-457) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-459) +(-458) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-460 S R E) +(-459 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-461 R E) +(-460 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-462 |lv| -1426 R) +(-461 |lv| -1409 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-463 S) +(-462 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-464) +(-463) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4324 . T)) +((-4325 . T)) NIL -(-465 |Coef| |var| |cen|) +(-464 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) -(-466 |Key| |Entry| |Tbl| |dent|) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(-465 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) -(-467 R E V P) +((-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) +(-466 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) -(-468) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832))))) +(-467) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-469) +(-468) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-470 |Key| |Entry| |hashfn|) +(-469 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) -(-471) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) +(-470) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-472 |vl| R) +(-471 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-473 -3670 S) +(((-4330 "*") |has| |#2| (-169)) (-4321 |has| |#2| (-539)) (-4326 |has| |#2| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-472 -2712 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-360)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) -(-474) +((-4322 |has| |#2| (-1016)) (-4323 |has| |#2| (-1016)) (-4325 |has| |#2| (-6 -4325)) ((-4330 "*") |has| |#2| (-169)) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) +(-473) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-475 S) +(-474 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-476 -1426 UP UPUP R) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-475 -1409 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-477 BP) +(-476 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-478) +(-477) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) -(-479 A S) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1524 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1111))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1135)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143))))) +(-478 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4327)) (|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) -(-480 S) +((|HasAttribute| |#1| (QUOTE -4328)) (|HasAttribute| |#1| (QUOTE -4329)) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) +(-479 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2409 . T)) +((-2608 . T)) NIL -(-481) +(-480) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-482 S) +(-481 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-483) +(-482) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-484 -1426 UP |AlExt| |AlPol|) +(-483 -1409 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-485) +(-484) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-548))))) -(-486 S |mn|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| $ (QUOTE (-1016))) (|HasCategory| $ (LIST (QUOTE -1007) (QUOTE (-547))))) +(-485 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-487 R |mnRow| |mnCol|) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-486 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-488 K R UP) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-487 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-489 R UP -1426) +(-488 R UP -1409) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-490 |mn|) +(-489 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -301) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-832))))) -(-491 K R UP L) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -300) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-112) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-112) (QUOTE (-1063))) (|HasCategory| (-112) (LIST (QUOTE -591) (QUOTE (-832))))) +(-490 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-492) +(-491) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-493 R Q A B) +(-492 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-494 -1426 |Expon| |VarSet| |DPoly|) +(-493 -1409 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-1135))))) -(-495 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-1135))))) +(-494 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-496) +(-495) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-497 A S) +(-496 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-498 A S) +(-497 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-499 A S) +(-498 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-500 A S) +(-499 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-501 A S) +(-500 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-502 A S) +(-501 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-503 S A B) +(-502 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-504 A B) +(-503 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-505 S E |un|) +(-504 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL ((|HasCategory| |#2| (QUOTE (-766)))) -(-506 S |mn|) +(-505 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-507) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-506) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|Syntax|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|Syntax|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|Syntax|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-508 |p| |n|) +(-507 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| (-562 |#1|) (QUOTE (-143))) (|HasCategory| (-562 |#1|) (QUOTE (-360)))) (|HasCategory| (-562 |#1|) (QUOTE (-145))) (|HasCategory| (-562 |#1|) (QUOTE (-360))) (|HasCategory| (-562 |#1|) (QUOTE (-143)))) -(-509 R |mnRow| |mnCol| |Row| |Col|) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| (-561 |#1|) (QUOTE (-143))) (|HasCategory| (-561 |#1|) (QUOTE (-359)))) (|HasCategory| (-561 |#1|) (QUOTE (-145))) (|HasCategory| (-561 |#1|) (QUOTE (-359))) (|HasCategory| (-561 |#1|) (QUOTE (-143)))) +(-508 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-510 S |mn|) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-509 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-511 R |Row| |Col| M) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-510 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4328))) -(-512 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4329))) +(-511 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4328))) -(-513 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4329))) +(-512 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540))) (|HasAttribute| |#1| (QUOTE (-4329 "*"))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-514) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))) (|HasAttribute| |#1| (QUOTE (-4330 "*"))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-513) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-515) +(-514) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|Syntax|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-516 S) +(-515 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-517) +(-516) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-518 GF) +(-517 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-519 R) +(-518 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-520 |Varset|) +(-519 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-521 K -1426 |Par|) +(-520 K -1409 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-522) +(-521) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-523 R) +(-522 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-524) +(-523) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-525 |Coef| UTS) +(-524 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-526 K -1426 |Par|) +(-525 K -1409 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-527 R BP |pMod| |nextMod|) +(-526 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-528 OV E R P) +(-527 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-529 K UP |Coef| UTS) +(-528 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-530 |Coef| UTS) +(-529 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-531 R UP) +(-530 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-532 S) +(-531 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-533) +(-532) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4326 . T) (-4327 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-534 |Key| |Entry| |addDom|) +(-533 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) -(-535 R -1426) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) +(-534 R -1409) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-536 R0 -1426 UP UPUP R) +(-535 R0 -1409 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-537) +(-536) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-538 R) +(-537 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2439 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2645 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-539 S) +(-538 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-540) +(-539) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-541 R -1426) +(-540 R -1409) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-542 I) +(-541 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-543) +(-542) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-544 R -1426 L) +(-543 R -1409 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -630) (|devaluate| |#2|)))) -(-545) +(-544) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-546 -1426 UP UPUP R) +(-545 -1409 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-547 -1426 UP) +(-546 -1409 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-548) +(-547) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4309 . T) (-4315 . T) (-4319 . T) (-4314 . T) (-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4310 . T) (-4316 . T) (-4320 . T) (-4315 . T) (-4326 . T) (-4327 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-549) +(-548) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-550 R -1426 L) +(-549 R -1409 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -630) (|devaluate| |#2|)))) -(-551 R -1426) +(-550 R -1409) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-605))))) -(-552 -1426 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-605))))) +(-551 -1409 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-553 S) +(-552 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-554 -1426) +(-553 -1409) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-555 R) +(-554 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2439 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2645 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-556) +(-555) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-557 R -1426) +(-556 R -1409) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-605))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-276)))) (|HasCategory| |#1| (QUOTE (-540)))) -(-558 -1426 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-275))) (|HasCategory| |#2| (QUOTE (-605))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-275)))) (|HasCategory| |#1| (QUOTE (-539)))) +(-557 -1409 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-559 R -1426) +(-558 R -1409) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-560) +(-559) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-561 |p| |unBalanced?|) +(-560 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-562 |p|) +(-561 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-360)))) -(-563) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-359)))) +(-562) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-564 R -1426) +(-563 R -1409) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-565 E -1426) +(-564 E -1409) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-566 -1426) +(-565 -1409) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) ((|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-1135))))) -(-567 I) +(-566 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-568 GF) +(-567 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-569 R) +(-568 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-570) +(-569) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-571 R E V P TS) +(-570 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-572) +(-571) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-573 |mn|) +(-572 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (-1524 (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832))))) -(-574 E V R P) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (-1524 (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832))))) +(-573 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-575 |Coef|) +(-574 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|)))) (|HasCategory| (-548) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548)))))) -(-576 |Coef|) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|)))) (|HasCategory| (-547) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547)))))) +(-575 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4322 |has| |#1| (-540)) (-4321 |has| |#1| (-540)) ((-4329 "*") |has| |#1| (-540)) (-4320 |has| |#1| (-540)) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-540)))) -(-577 A B) +((-4323 |has| |#1| (-539)) (-4322 |has| |#1| (-539)) ((-4330 "*") |has| |#1| (-539)) (-4321 |has| |#1| (-539)) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-539)))) +(-576 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-578 A B C) +(-577 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-579 R -1426 FG) +(-578 R -1409 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-580 S) +(-579 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-581 R |mn|) +(-580 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-582 S |Index| |Entry|) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-581 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#1| (QUOTE -4327)) (|HasCategory| |#3| (QUOTE (-1063)))) -(-583 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4329)) (|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#3| (QUOTE (-1063)))) +(-582 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2409 . T)) +((-2608 . T)) NIL -(-584) +(-583) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-585) +(-584) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-586 R A) +(-585 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4324 -1524 (-1723 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))) (-4322 . T) (-4321 . T)) -((-1524 (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) -(-587 |Entry|) +((-4325 -1524 (-1806 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))) (-4323 . T) (-4322 . T)) +((-1524 (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|)))) +(-586 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| (-1118) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832))))) -(-588 S |Key| |Entry|) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| (-1118) (QUOTE (-821))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -591) (QUOTE (-832))))) +(-587 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-589 |Key| |Entry|) +(-588 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL -(-590 R S) +(-589 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-591 S) +(-590 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) -(-592 S) +((|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) +(-591 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-593 S) +(-592 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-594 -1426 UP) +(-593 -1409 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL +(-594) +((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic."))) +NIL +NIL (-595 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL (-596 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4324 . T)) +((-4325 . T)) NIL (-597 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) ((|HasCategory| |#1| (QUOTE (-819)))) -(-598 R -1426) +(-598 R -1409) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL (-599 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4320 . T) (-4324 . T)) -((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) +((-4323 . T) (-4322 . T) ((-4330 "*") . T) (-4321 . T) (-4325 . T)) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-600 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2342,7 +2342,7 @@ NIL NIL (-603 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4324 . T)) +((-4325 . T)) NIL (-604 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2352,30 +2352,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-606 R -1426) +(-606 R -1409) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-607 |lv| -1426) +(-607 |lv| -1409) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-608) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1657) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -301) (QUOTE (-52))))) (|HasCategory| (-1118) (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1777) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -300) (QUOTE (-52))))) (|HasCategory| (-1118) (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832))))) (-609 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-355)))) +((|HasCategory| |#2| (QUOTE (-354)))) (-610 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4322 . T) (-4321 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4323 . T) (-4322 . T)) NIL (-611 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4324 -1524 (-1723 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))) (-4322 . T) (-4321 . T)) -((-1524 (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -409) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -359) (|devaluate| |#1|)))) +((-4325 -1524 (-1806 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))) (-4323 . T) (-4322 . T)) +((-1524 (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -358) (|devaluate| |#1|)))) (-612 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL @@ -2387,10 +2387,10 @@ NIL (-614 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3958 (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-355)))) +((-3998 (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-354)))) (-615 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4324 . T)) +((-4325 . T)) NIL (-616 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) @@ -2406,16 +2406,16 @@ NIL NIL (-619 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-620 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL (-621 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-622 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL @@ -2427,39 +2427,39 @@ NIL (-624 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4328))) +((|HasAttribute| |#1| (QUOTE -4329))) (-625 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2409 . T)) +((-2608 . T)) NIL -(-626 R -1426 L) +(-626 R -1409 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-627 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354)))) (-628 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354)))) (-629 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-355)))) +((|HasCategory| |#2| (QUOTE (-354)))) (-630 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL -(-631 -1426 UP) +(-631 -1409 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-632 A -2997) +(-632 A -2926) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354)))) (-633 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL @@ -2474,7 +2474,7 @@ NIL NIL (-636 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) ((|HasCategory| |#1| (QUOTE (-765)))) (-637 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2482,21 +2482,21 @@ NIL NIL (-638 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4322 . T) (-4321 . T)) -((|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-169)))) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4323 . T) (-4322 . T)) +((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-169)))) (-639 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL (-640 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL -(-641 -1426) +(-641 -1409) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-642 -1426 |Row| |Col| M) +(-642 -1409 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2506,8 +2506,8 @@ NIL NIL (-644 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4324 . T) (-4327 . T) (-4321 . T) (-4322 . T)) -((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (-1524 (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-540))) (-1524 (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169)))) +((-4325 . T) (-4328 . T) (-4322 . T) (-4323 . T)) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE (-4330 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (-1524 (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-539))) (-1524 (|HasAttribute| |#2| (QUOTE (-4330 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169)))) (-645) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|Syntax|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2522,12 +2522,12 @@ NIL NIL (-648 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2409 . T)) +((-2608 . T)) NIL (-649 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-650) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|Syntax|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|List| (|Identifier|)) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2571,19 +2571,19 @@ NIL (-660 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-540)))) +((|HasAttribute| |#2| (QUOTE (-4330 "*"))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-539)))) (-661 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-662 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540)))) +((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539)))) (-663 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4327 . T) (-4328 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-540))) (|HasAttribute| |#1| (QUOTE (-4329 "*"))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-539))) (|HasAttribute| |#1| (QUOTE (-4330 "*"))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-664 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2592,7 +2592,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-666 S -1426 FLAF FLAS) +(-666 S -1409 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2602,11 +2602,11 @@ NIL NIL (-668) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4320 . T) (-4325 |has| (-673) (-355)) (-4319 |has| (-673) (-355)) (-3247 . T) (-4326 |has| (-673) (-6 -4326)) (-4323 |has| (-673) (-6 -4323)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-673) (QUOTE (-145))) (|HasCategory| (-673) (QUOTE (-143))) (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-673) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-673) (QUOTE (-360))) (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-673) (QUOTE (-226))) (-1524 (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (QUOTE (-341)))) (|HasCategory| (-673) (QUOTE (-341))) (|HasCategory| (-673) (LIST (QUOTE -278) (QUOTE (-673)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -301) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-673) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-673) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (-1524 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (QUOTE (-341)))) (|HasCategory| (-673) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-673) (QUOTE (-991))) (|HasCategory| (-673) (QUOTE (-1157))) (-12 (|HasCategory| (-673) (QUOTE (-971))) (|HasCategory| (-673) (QUOTE (-1157)))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-355))) (-12 (|HasCategory| (-673) (QUOTE (-341))) (|HasCategory| (-673) (QUOTE (-878))))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-355))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-341))) (|HasCategory| (-673) (QUOTE (-878))))) (|HasCategory| (-673) (QUOTE (-533))) (-12 (|HasCategory| (-673) (QUOTE (-1025))) (|HasCategory| (-673) (QUOTE (-1157)))) (|HasCategory| (-673) (QUOTE (-1025))) (-1524 (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-673) (QUOTE (-355)))) (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-355)))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-540)))) (-12 (|HasCategory| (-673) (QUOTE (-226))) (|HasCategory| (-673) (QUOTE (-355)))) (-12 (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-673) (QUOTE (-355)))) (|HasCategory| (-673) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-673) (QUOTE (-821))) (|HasCategory| (-673) (QUOTE (-540))) (|HasAttribute| (-673) (QUOTE -4326)) (|HasAttribute| (-673) (QUOTE -4323)) (-12 (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-143)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-299))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-341))))) +((-4321 . T) (-4326 |has| (-673) (-354)) (-4320 |has| (-673) (-354)) (-3397 . T) (-4327 |has| (-673) (-6 -4327)) (-4324 |has| (-673) (-6 -4324)) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-673) (QUOTE (-145))) (|HasCategory| (-673) (QUOTE (-143))) (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-673) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-673) (QUOTE (-359))) (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-673) (QUOTE (-225))) (-1524 (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (QUOTE (-340)))) (|HasCategory| (-673) (QUOTE (-340))) (|HasCategory| (-673) (LIST (QUOTE -277) (QUOTE (-673)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -300) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -503) (QUOTE (-1135)) (QUOTE (-673)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-673) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-673) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-673) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (-1524 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (QUOTE (-340)))) (|HasCategory| (-673) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-673) (QUOTE (-991))) (|HasCategory| (-673) (QUOTE (-1157))) (-12 (|HasCategory| (-673) (QUOTE (-971))) (|HasCategory| (-673) (QUOTE (-1157)))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-354))) (-12 (|HasCategory| (-673) (QUOTE (-340))) (|HasCategory| (-673) (QUOTE (-878))))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-354))) (|HasCategory| (-673) (QUOTE (-878)))) (-12 (|HasCategory| (-673) (QUOTE (-340))) (|HasCategory| (-673) (QUOTE (-878))))) (|HasCategory| (-673) (QUOTE (-532))) (-12 (|HasCategory| (-673) (QUOTE (-1025))) (|HasCategory| (-673) (QUOTE (-1157)))) (|HasCategory| (-673) (QUOTE (-1025))) (-1524 (|HasCategory| (-673) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-673) (QUOTE (-354)))) (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-354)))) (-1524 (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-539)))) (-12 (|HasCategory| (-673) (QUOTE (-225))) (|HasCategory| (-673) (QUOTE (-354)))) (-12 (|HasCategory| (-673) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-673) (QUOTE (-354)))) (|HasCategory| (-673) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-673) (QUOTE (-821))) (|HasCategory| (-673) (QUOTE (-539))) (|HasAttribute| (-673) (QUOTE -4327)) (|HasAttribute| (-673) (QUOTE -4324)) (-12 (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-143)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-673) (QUOTE (-298))) (|HasCategory| (-673) (QUOTE (-878)))) (|HasCategory| (-673) (QUOTE (-340))))) (-669 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL (-670 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2616,13 +2616,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-672 OV E -1426 PG) +(-672 OV E -1409 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-673) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2439 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2645 . T) (-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-674 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2630,7 +2630,7 @@ NIL NIL (-675) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4326 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4327 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-676 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2652,7 +2652,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-681 S -3296 I) +(-681 S -1686 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2662,7 +2662,7 @@ NIL NIL (-683 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL (-684 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2672,25 +2672,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-686 R |Mod| -3037 -2913 |exactQuo|) +(-686 R |Mod| -2112 -1294 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-687 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-341))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4324 |has| |#1| (-354)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-340))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-688 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-689 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) (-4325 . T)) ((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-690 R |Mod| -3037 -2913 |exactQuo|) +(-690 R |Mod| -2112 -1294 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4324 . T)) +((-4325 . T)) NIL (-691 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2698,11 +2698,11 @@ NIL NIL (-692 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL -(-693 -1426) +(-693 -1409) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4324 . T)) +((-4325 . T)) NIL (-694 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2723,10 +2723,10 @@ NIL (-698 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360)))) +((|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359)))) (-699 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4320 |has| |#1| (-355)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 |has| |#1| (-354)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-700 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2736,7 +2736,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-702 -1426 UP) +(-702 -1409 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2754,8 +2754,8 @@ NIL NIL (-706 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4330 "*") |has| |#2| (-169)) (-4321 |has| |#2| (-539)) (-4326 |has| |#2| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-834 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) (-707 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2770,16 +2770,16 @@ NIL NIL (-710 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-821)))) +((-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) (-4325 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-821)))) (-711 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4317 . T) (-4328 . T) (-2409 . T)) +((-4318 . T) (-4329 . T) (-2608 . T)) NIL (-712 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4327 . T) (-4317 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4318 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-713) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL @@ -2790,7 +2790,7 @@ NIL NIL (-715 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4322 . T) (-4321 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL (-716 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2806,7 +2806,7 @@ NIL NIL (-719 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL (-720) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -2888,15 +2888,15 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-740 -1426) +(-740 -1409) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-741 P -1426) +(-741 P -1409) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-742 UP -1426) +(-742 UP -1409) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -2910,9 +2910,9 @@ NIL NIL (-745) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4329 "*") . T)) +(((-4330 "*") . T)) NIL -(-746 R -1426) +(-746 R -1409) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -2932,7 +2932,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-751 -1426 |ExtF| |SUEx| |ExtP| |n|) +(-751 -1409 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -2946,28 +2946,28 @@ NIL NIL (-754 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (QUOTE (-533)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-548))))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-1135)))) (-3958 (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-548))))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135)))) (-3998 (|HasCategory| |#1| (QUOTE (-532)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-547))))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-1135)))) (-3998 (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-547))))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-755 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-756 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4324 |has| |#1| (-354)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-757 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-758 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-759 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-169)))) +((-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-169)))) (-760) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL @@ -3011,10 +3011,10 @@ NIL (-770 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-360)))) +((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-359)))) (-771 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL (-772 -1524 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) @@ -3022,17 +3022,17 @@ NIL NIL (-773 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (-1524 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (-1524 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-968 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (-774) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-775 R -1426 L) +(-775 R -1409 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-776 R -1426) +(-776 R -1409) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3040,7 +3040,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-778 R -1426) +(-778 R -1409) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3048,11 +3048,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-780 -1426 UP UPUP R) +(-780 -1409 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-781 -1426 UP L LQ) +(-781 -1409 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3060,42 +3060,42 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-783 -1426 UP L LQ) +(-783 -1409 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-784 -1426 UP) +(-784 -1409 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-785 -1426 L UP A LO) +(-785 -1409 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-786 -1426 UP) +(-786 -1409 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-787 -1426 LO) +(-787 -1409 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-788 -1426 LODO) +(-788 -1409 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-789 -3670 S |f|) +(-789 -2712 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4321 |has| |#2| (-1016)) (-4322 |has| |#2| (-1016)) (-4324 |has| |#2| (-6 -4324)) ((-4329 "*") |has| |#2| (-169)) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-360)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4324)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4322 |has| |#2| (-1016)) (-4323 |has| |#2| (-1016)) (-4325 |has| |#2| (-6 -4325)) ((-4330 "*") |has| |#2| (-169)) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354)))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-767))) (-1524 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819)))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1016)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-819)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-767))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-819))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1016)))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1524 (|HasCategory| |#2| (QUOTE (-1016))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-1063)))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (-790 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-792 (-1135)) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-791 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4329 "*") |has| |#2| (-355)) (-4320 |has| |#2| (-355)) (-4325 |has| |#2| (-355)) (-4319 |has| |#2| (-355)) (-4324 . T) (-4322 . T) (-4321 . T)) -((|HasCategory| |#2| (QUOTE (-355)))) +(((-4330 "*") |has| |#2| (-354)) (-4321 |has| |#2| (-354)) (-4326 |has| |#2| (-354)) (-4320 |has| |#2| (-354)) (-4325 . T) (-4323 . T) (-4322 . T)) +((|HasCategory| |#2| (QUOTE (-354)))) (-792 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL @@ -3106,7 +3106,7 @@ NIL NIL (-794) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-795) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3134,8 +3134,8 @@ NIL NIL (-801 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-226)))) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-225)))) (-802) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL @@ -3146,7 +3146,7 @@ NIL NIL (-804 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4327 . T) (-4317 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4318 . T) (-4329 . T) (-2608 . T)) NIL (-805) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3158,11 +3158,11 @@ NIL NIL (-807 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4324 |has| |#1| (-819))) -((|HasCategory| |#1| (QUOTE (-819))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-21)))) +((-4325 |has| |#1| (-819))) +((|HasCategory| |#1| (QUOTE (-819))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-532))) (-1524 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-21)))) (-808 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) +((-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) (-4325 . T)) ((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) (-809) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3186,13 +3186,13 @@ NIL NIL (-814 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4324 |has| |#1| (-819))) -((|HasCategory| |#1| (QUOTE (-819))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-21)))) +((-4325 |has| |#1| (-819))) +((|HasCategory| |#1| (QUOTE (-819))) (-1524 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-532))) (-1524 (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-21)))) (-815) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-816 -3670 S) +(-816 -2712 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3206,7 +3206,7 @@ NIL NIL (-819) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4324 . T)) +((-4325 . T)) NIL (-820 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3219,27 +3219,27 @@ NIL (-822 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169)))) +((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169)))) (-823 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL (-824 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) -(-825 R |sigma| -1605) +((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) +(-825 R |sigma| -2642) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-355)))) -(-826 |x| R |sigma| -1605) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-354)))) +(-826 |x| R |sigma| -2642) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-355)))) +((-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-354)))) (-827 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-828) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL @@ -3270,8 +3270,8 @@ NIL NIL (-835 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355)))) +((-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354)))) (-836 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL @@ -3282,24 +3282,24 @@ NIL NIL (-838 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-839 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-840 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-839 |#1|) (QUOTE (-878))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-145))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-839 |#1|) (QUOTE (-991))) (|HasCategory| (-839 |#1|) (QUOTE (-794))) (-1524 (|HasCategory| (-839 |#1|) (QUOTE (-794))) (|HasCategory| (-839 |#1|) (QUOTE (-821)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-839 |#1|) (QUOTE (-1111))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-839 |#1|) (QUOTE (-226))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -301) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -839) (|devaluate| |#1|)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (QUOTE (-299))) (|HasCategory| (-839 |#1|) (QUOTE (-533))) (|HasCategory| (-839 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))))) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-839 |#1|) (QUOTE (-878))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-145))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-839 |#1|) (QUOTE (-991))) (|HasCategory| (-839 |#1|) (QUOTE (-794))) (-1524 (|HasCategory| (-839 |#1|) (QUOTE (-794))) (|HasCategory| (-839 |#1|) (QUOTE (-821)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-839 |#1|) (QUOTE (-1111))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-839 |#1|) (QUOTE (-225))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -300) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -277) (LIST (QUOTE -839) (|devaluate| |#1|)) (LIST (QUOTE -839) (|devaluate| |#1|)))) (|HasCategory| (-839 |#1|) (QUOTE (-298))) (|HasCategory| (-839 |#1|) (QUOTE (-532))) (|HasCategory| (-839 |#1|) (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-839 |#1|) (QUOTE (-878)))) (|HasCategory| (-839 |#1|) (QUOTE (-143))))) (-841 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (-1524 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (-1524 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) (-842 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))))) (-843) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3355,7 +3355,7 @@ NIL (-856 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3958 (|HasCategory| |#2| (QUOTE (-1016)))) (-3958 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (-3958 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) +((-12 (-3998 (|HasCategory| |#2| (QUOTE (-1016)))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (-12 (|HasCategory| |#2| (QUOTE (-1016))) (-3998 (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-857 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3364,7 +3364,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-859 R -3296) +(-859 R -1686) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3388,7 +3388,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-865 UP -1426) +(-865 UP -1409) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3406,19 +3406,19 @@ NIL NIL (-869 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4324 . T)) +((-4325 . T)) NIL (-870 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-871 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL (-872 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4324 . T)) +((-4325 . T)) NIL (-873 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) @@ -3426,8 +3426,8 @@ NIL NIL (-874 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4324 . T)) -((-1524 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-821)))) +((-4325 . T)) +((-1524 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-821)))) (-875 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3442,13 +3442,13 @@ NIL ((|HasCategory| |#1| (QUOTE (-143)))) (-878) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-879 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-360)))) -(-880 R0 -1426 UP UPUP R) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-359)))) +(-880 R0 -1409 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3462,7 +3462,7 @@ NIL NIL (-883 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-884 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) @@ -3476,7 +3476,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-887 -1426) +(-887 -1409) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3486,17 +3486,17 @@ NIL NIL (-889) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-890) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4329 "*") . T)) +(((-4330 "*") . T)) NIL -(-891 -1426 P) +(-891 -1409 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-892 |xx| -1426) +(-892 |xx| -1409) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL @@ -3520,7 +3520,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-898 R -1426) +(-898 R -1409) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3532,7 +3532,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-901 S R -1426) +(-901 S R -1409) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3552,11 +3552,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -855) (|devaluate| |#1|)))) -(-906 R -1426 -3296) +(-906 R -1409 -1686) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-907 -3296) +(-907 -1686) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3578,8 +3578,8 @@ NIL NIL (-912 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-913 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3599,12 +3599,12 @@ NIL (-917 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-878))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#4| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#4| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-821)))) +((|HasCategory| |#2| (QUOTE (-878))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#4| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#4| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#4| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-821)))) (-918 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL -(-919 E V R P -1426) +(-919 E V R P -1409) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3614,12 +3614,12 @@ NIL NIL (-921 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-922 E V R P -1426) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1135) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-922 E V R P -1409) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-443)))) +((|HasCategory| |#3| (QUOTE (-442)))) (-923) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL @@ -3638,13 +3638,13 @@ NIL NIL (-927 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-928) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-929 -1426) +(-929 -1409) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3658,12 +3658,12 @@ NIL NIL (-932 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-130)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-130)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326))) (-933 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4324 -12 (|has| |#2| (-464)) (|has| |#1| (-464)))) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-464)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-360)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) +((-4325 -12 (|has| |#2| (-463)) (|has| |#1| (-463)))) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-463)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-463)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-359)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-463)))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-767))) (|HasCategory| |#2| (QUOTE (-767))))) (-12 (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-701)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-821))))) (-934) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3671,19 +3671,19 @@ NIL (-935 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +NIL (-936) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL (-937 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-938 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-443)))) +((|HasCategory| |#1| (QUOTE (-442)))) (-939) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL @@ -3698,7 +3698,7 @@ NIL NIL (-942 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-943) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) @@ -3707,15 +3707,15 @@ NIL (-944 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-540)))) +((|HasCategory| |#2| (QUOTE (-539)))) (-945 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4327 . T) (-2409 . T)) +((-4328 . T) (-2608 . T)) NIL (-946 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-443)))) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-442)))) (-947 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL @@ -3726,7 +3726,7 @@ NIL NIL (-949 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-950 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) @@ -3744,7 +3744,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-954 K R UP -1426) +(-954 K R UP -1409) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -3755,7 +3755,7 @@ NIL (-956 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-299))))) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-298))))) (-957 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL @@ -3771,10 +3771,10 @@ NIL (-960 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1111)))) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-991))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1111)))) (-961 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2409 . T) (-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2608 . T) (-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-962 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3786,15 +3786,15 @@ NIL NIL (-964 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-965 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-282)))) +((|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-281)))) (-966 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4320 |has| |#1| (-282)) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 |has| |#1| (-281)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-967 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) @@ -3802,12 +3802,12 @@ NIL NIL (-968 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4320 |has| |#1| (-282)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-533))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355))))) +((-4321 |has| |#1| (-281)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -277) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-532))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354))))) (-969 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-970 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -3816,14 +3816,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-972 -1426 UP UPUP |radicnd| |n|) +(-972 -1409 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4320 |has| (-399 |#2|) (-355)) (-4325 |has| (-399 |#2|) (-355)) (-4319 |has| (-399 |#2|) (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-399 |#2|) (QUOTE (-143))) (|HasCategory| (-399 |#2|) (QUOTE (-145))) (|HasCategory| (-399 |#2|) (QUOTE (-341))) (-1524 (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (|HasCategory| (-399 |#2|) (QUOTE (-355))) (|HasCategory| (-399 |#2|) (QUOTE (-360))) (-1524 (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (|HasCategory| (-399 |#2|) (QUOTE (-341)))) (-1524 (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-341))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (|HasCategory| (-399 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-399 |#2|) (QUOTE (-355)))) (-12 (|HasCategory| (-399 |#2|) (QUOTE (-226))) (|HasCategory| (-399 |#2|) (QUOTE (-355))))) +((-4321 |has| (-398 |#2|) (-354)) (-4326 |has| (-398 |#2|) (-354)) (-4320 |has| (-398 |#2|) (-354)) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-398 |#2|) (QUOTE (-143))) (|HasCategory| (-398 |#2|) (QUOTE (-145))) (|HasCategory| (-398 |#2|) (QUOTE (-340))) (-1524 (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (|HasCategory| (-398 |#2|) (QUOTE (-354))) (|HasCategory| (-398 |#2|) (QUOTE (-359))) (-1524 (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (|HasCategory| (-398 |#2|) (QUOTE (-340)))) (-1524 (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-398 |#2|) (QUOTE (-340))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1524 (|HasCategory| (-398 |#2|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-398 |#2|) (QUOTE (-354)))) (-12 (|HasCategory| (-398 |#2|) (QUOTE (-225))) (|HasCategory| (-398 |#2|) (QUOTE (-354))))) (-973 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-548) (QUOTE (-878))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-548) (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-145))) (|HasCategory| (-548) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-991))) (|HasCategory| (-548) (QUOTE (-794))) (-1524 (|HasCategory| (-548) (QUOTE (-794))) (|HasCategory| (-548) (QUOTE (-821)))) (|HasCategory| (-548) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-1111))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| (-548) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| (-548) (QUOTE (-226))) (|HasCategory| (-548) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-548) (LIST (QUOTE -504) (QUOTE (-1135)) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -301) (QUOTE (-548)))) (|HasCategory| (-548) (LIST (QUOTE -278) (QUOTE (-548)) (QUOTE (-548)))) (|HasCategory| (-548) (QUOTE (-299))) (|HasCategory| (-548) (QUOTE (-533))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-548) (LIST (QUOTE -615) (QUOTE (-548)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-548) (QUOTE (-878)))) (|HasCategory| (-548) (QUOTE (-143))))) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-547) (QUOTE (-878))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| (-547) (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-145))) (|HasCategory| (-547) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-991))) (|HasCategory| (-547) (QUOTE (-794))) (-1524 (|HasCategory| (-547) (QUOTE (-794))) (|HasCategory| (-547) (QUOTE (-821)))) (|HasCategory| (-547) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-1111))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| (-547) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| (-547) (QUOTE (-225))) (|HasCategory| (-547) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| (-547) (LIST (QUOTE -503) (QUOTE (-1135)) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -300) (QUOTE (-547)))) (|HasCategory| (-547) (LIST (QUOTE -277) (QUOTE (-547)) (QUOTE (-547)))) (|HasCategory| (-547) (QUOTE (-298))) (|HasCategory| (-547) (QUOTE (-532))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-547) (LIST (QUOTE -615) (QUOTE (-547)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-547) (QUOTE (-878)))) (|HasCategory| (-547) (QUOTE (-143))))) (-974) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -3843,10 +3843,10 @@ NIL (-978 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4328)) (|HasCategory| |#2| (QUOTE (-1063)))) +((|HasAttribute| |#1| (QUOTE -4329)) (|HasCategory| |#2| (QUOTE (-1063)))) (-979 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2409 . T)) +((-2608 . T)) NIL (-980 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) @@ -3854,21 +3854,21 @@ NIL NIL (-981) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4320 . T) (-4325 . T) (-4319 . T) (-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4324 . T)) +((-4321 . T) (-4326 . T) (-4320 . T) (-4323 . T) (-4322 . T) ((-4330 "*") . T) (-4325 . T)) NIL -(-982 R -1426) +(-982 R -1409) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-983 R -1426) +(-983 R -1409) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-984 -1426 UP) +(-984 -1409 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-985 -1426 UP) +(-985 -1409 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -3902,9 +3902,9 @@ NIL NIL (-993 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4320 . T) (-4325 . T) (-4319 . T) (-4322 . T) (-4321 . T) ((-4329 "*") . T) (-4324 . T)) -((-1524 (|HasCategory| (-399 (-548)) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-399 (-548)) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-399 (-548)) (LIST (QUOTE -1007) (QUOTE (-548))))) -(-994 -1426 L) +((-4321 . T) (-4326 . T) (-4320 . T) (-4323 . T) (-4322 . T) ((-4330 "*") . T) (-4325 . T)) +((-1524 (|HasCategory| (-398 (-547)) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-398 (-547)) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-398 (-547)) (LIST (QUOTE -1007) (QUOTE (-547))))) +(-994 -1409 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -3914,16 +3914,16 @@ NIL ((|HasCategory| |#1| (QUOTE (-1063)))) (-996 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832))))) (-997 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4329 "*")))) +((|HasAttribute| |#1| (QUOTE (-4330 "*")))) (-998 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-299)))) +((-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-298)))) (-999 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL @@ -3940,14 +3940,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1003 -1426 |Expon| |VarSet| |FPol| |LFPol|) +(-1003 -1409 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1004) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -1657) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -301) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-1135) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -1777) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -300) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-1135) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832))))) (-1005) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -3982,8 +3982,8 @@ NIL NIL (-1013 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -754) (|devaluate| |#1|) (LIST (QUOTE -834) (|devaluate| |#2|)))))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| (-834 |#2|) (QUOTE (-360))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -754) (|devaluate| |#1|) (LIST (QUOTE -834) (|devaluate| |#2|)))))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-754 |#1| (-834 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| (-834 |#2|) (QUOTE (-359))) (|HasCategory| (-754 |#1| (-834 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) (-1014) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL @@ -3994,24 +3994,24 @@ NIL NIL (-1016) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4324 . T)) +((-4325 . T)) NIL -(-1017 |xx| -1426) +(-1017 |xx| -1409) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL (-1018 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-299))) (|HasCategory| |#4| (QUOTE (-355))) (|HasCategory| |#4| (QUOTE (-540))) (|HasCategory| |#4| (QUOTE (-169)))) +((|HasCategory| |#4| (QUOTE (-298))) (|HasCategory| |#4| (QUOTE (-354))) (|HasCategory| |#4| (QUOTE (-539))) (|HasCategory| |#4| (QUOTE (-169)))) (-1019 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4327 . T) (-2409 . T) (-4322 . T) (-4321 . T)) +((-4328 . T) (-2608 . T) (-4323 . T) (-4322 . T)) NIL (-1020 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4327 . T) (-4322 . T) (-4321 . T)) -((-1524 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355)))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (QUOTE (-299))) (|HasCategory| |#3| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))))) +((-4328 . T) (-4323 . T) (-4322 . T)) +((-1524 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354)))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (QUOTE (-298))) (|HasCategory| |#3| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))))) (-1021 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4030,7 +4030,7 @@ NIL NIL (-1025) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1026 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) @@ -4038,19 +4038,19 @@ NIL NIL (-1027) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4315 . T) (-4319 . T) (-4314 . T) (-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4316 . T) (-4320 . T) (-4315 . T) (-4326 . T) (-4327 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1028) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -1657) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -301) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (QUOTE (-1063))) (|HasCategory| (-1135) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -1777) (QUOTE (-52))))))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-52) (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| (-52) (QUOTE (-1063))) (|HasCategory| (-52) (LIST (QUOTE -300) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (QUOTE (-1063))) (|HasCategory| (-1135) (QUOTE (-821))) (|HasCategory| (-52) (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-52) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (LIST (QUOTE -591) (QUOTE (-832))))) (-1029 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-533))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-1135))))) +((|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-532))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-1135))))) (-1030 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL (-1031) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|Syntax|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) @@ -4074,7 +4074,7 @@ NIL NIL (-1036 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-1037 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -4084,11 +4084,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1039 |Base| R -1426) +(-1039 |Base| R -1409) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1040 |Base| R -1426) +(-1040 |Base| R -1409) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL @@ -4102,8 +4102,8 @@ NIL NIL (-1043 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4320 |has| |#1| (-355)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-341))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-360))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-341)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355))))) +((-4321 |has| |#1| (-354)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-340))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-359))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-340)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135))))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354))))) (-1044 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4134,8 +4134,8 @@ NIL NIL (-1051 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1052 (-1135)) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-1052 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4158,7 +4158,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-1063)))) (-1057 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2409 . T)) +((-2608 . T)) NIL (-1058 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) @@ -4166,7 +4166,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1059 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2409 . T)) +((-2608 . T)) NIL (-1060 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) @@ -4174,7 +4174,7 @@ NIL NIL (-1061 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4317 . T) (-2409 . T)) +((-4318 . T) (-2608 . T)) NIL (-1062 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) @@ -4190,8 +4190,8 @@ NIL NIL (-1065 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4327 . T) (-4317 . T) (-4328 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4318 . T) (-4329 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-1066 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL @@ -4218,7 +4218,7 @@ NIL NIL (-1072 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-1073) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4234,13 +4234,13 @@ NIL NIL (-1076 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4321 |has| |#3| (-1016)) (-4322 |has| |#3| (-1016)) (-4324 |has| |#3| (-6 -4324)) ((-4329 "*") |has| |#3| (-169)) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#3| (QUOTE (-355))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-355)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1524 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-226)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-355)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-360)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-355))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (|HasCategory| (-548) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#3| (QUOTE (-226))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548))))) (-1524 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-548)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#3| (QUOTE (-1063)))) (|HasAttribute| |#3| (QUOTE -4324)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -301) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4322 |has| |#3| (-1016)) (-4323 |has| |#3| (-1016)) (-4325 |has| |#3| (-6 -4325)) ((-4330 "*") |has| |#3| (-169)) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#3| (QUOTE (-354))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-354)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-767))) (-1524 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819)))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-169))) (-1524 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (QUOTE (-1063)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (QUOTE (-1016)))) (-1524 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-354)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-701)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-767)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-819)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063))))) (-1524 (-12 (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-354))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-701))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-767))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-819))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (|HasCategory| (-547) (QUOTE (-821))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1016)))) (-12 (|HasCategory| |#3| (QUOTE (-1016))) (|HasCategory| |#3| (LIST (QUOTE -869) (QUOTE (-1135))))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547))))) (-1524 (|HasCategory| |#3| (QUOTE (-1016))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -1007) (QUOTE (-547)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#3| (QUOTE (-1063)))) (|HasAttribute| |#3| (QUOTE -4325)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1063))) (|HasCategory| |#3| (LIST (QUOTE -300) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -591) (QUOTE (-832))))) (-1077 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-443)))) -(-1078 R -1426) +((|HasCategory| |#1| (QUOTE (-442)))) +(-1078 R -1409) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4258,19 +4258,19 @@ NIL NIL (-1082) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4315 . T) (-4319 . T) (-4314 . T) (-4325 . T) (-4326 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4316 . T) (-4320 . T) (-4315 . T) (-4326 . T) (-4327 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1083 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4327 . T) (-4328 . T) (-2409 . T)) +((-4328 . T) (-4329 . T) (-2608 . T)) NIL (-1084 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-355))) (|HasAttribute| |#3| (QUOTE (-4329 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) +((|HasCategory| |#3| (QUOTE (-354))) (|HasAttribute| |#3| (QUOTE (-4330 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) (-1085 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2409 . T) (-4327 . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-2608 . T) (-4328 . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1086 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4278,17 +4278,17 @@ NIL NIL (-1087 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-1088 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-355)))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-354)))) (-1089 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL -(-1090 UP -1426) +(-1090 UP -1409) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4334,19 +4334,19 @@ NIL NIL (-1101 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -301) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063))) (-1524 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -592) (QUOTE (-832)))) (-12 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -301) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063))))) (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -300) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063))) (-1524 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -591) (QUOTE (-832)))) (-12 (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -300) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1100 |#1| |#2|) (QUOTE (-1063))))) (|HasCategory| (-1100 |#1| |#2|) (LIST (QUOTE -591) (QUOTE (-832))))) (-1102 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4324 . T) (-4316 |has| |#2| (-6 (-4329 "*"))) (-4327 . T) (-4321 . T) (-4322 . T)) -((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226))) (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (-1524 (-12 (|HasCategory| |#2| (QUOTE (-226))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-355))) (-1524 (|HasAttribute| |#2| (QUOTE (-4329 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-226)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169)))) +((-4325 . T) (-4317 |has| |#2| (-6 (-4330 "*"))) (-4328 . T) (-4322 . T) (-4323 . T)) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE (-4330 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (-1524 (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-354))) (-1524 (|HasAttribute| |#2| (QUOTE (-4330 "*"))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-169)))) (-1103 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1104) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-1105 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4354,24 +4354,24 @@ NIL NIL (-1106 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832))))) (-1107 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-1108 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL (-1109 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2409 . T)) +((-2608 . T)) NIL (-1110 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-821))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) (-1111) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4394,24 +4394,24 @@ NIL NIL (-1116 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4328 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-1117) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-1118) NIL -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -301) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| (-142) (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| (-142) (QUOTE (-1063))) (-12 (|HasCategory| (-142) (QUOTE (-1063))) (|HasCategory| (-142) (LIST (QUOTE -300) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -591) (QUOTE (-832))))) (-1119 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#1|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (QUOTE (-1063))) (|HasCategory| (-1118) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (QUOTE (-1118))) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#1|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (QUOTE (-1063))) (|HasCategory| (-1118) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (LIST (QUOTE -591) (QUOTE (-832))))) (-1120 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +((|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1121 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL @@ -4423,7 +4423,7 @@ NIL (-1123 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-299)))) +((|HasCategory| |#1| (QUOTE (-298)))) (-1124 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL @@ -4434,9 +4434,9 @@ NIL NIL (-1126 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4329 "*") -1524 (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-878)))) (-4320 -1524 (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-794))) (|has| |#1| (-540)) (-1723 (|has| |#1| (-355)) (|has| (-1133 |#1| |#2| |#3|) (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|)))))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasCategory| (-548) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355))))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1127 R -1426) +(((-4330 "*") -1524 (-1806 (|has| |#1| (-354)) (|has| (-1133 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1806 (|has| |#1| (-354)) (|has| (-1133 |#1| |#2| |#3|) (-878)))) (-4321 -1524 (-1806 (|has| |#1| (-354)) (|has| (-1133 |#1| |#2| |#3|) (-794))) (|has| |#1| (-539)) (-1806 (|has| |#1| (-354)) (|has| (-1133 |#1| |#2| |#3|) (-878)))) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|)))))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasCategory| (-547) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354))))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1133 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1127 R -1409) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4454,16 +4454,16 @@ NIL NIL (-1131 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-226))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4324 |has| |#1| (-354)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4326)) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))))) (-1132 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) (-1133 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) (-1134) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4478,8 +4478,8 @@ NIL NIL (-1137 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-6 -4325)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-443))) (-12 (|HasCategory| (-940) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasAttribute| |#1| (QUOTE -4325))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-6 -4326)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-442))) (-12 (|HasCategory| (-940) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasAttribute| |#1| (QUOTE -4326))) (-1138) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4510,8 +4510,8 @@ NIL NIL (-1145 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4327 . T) (-4328 . T)) -((-12 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -301) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3156) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1657) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -593) (QUOTE (-524)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (LIST (QUOTE -592) (QUOTE (-832))))) +((-4328 . T) (-4329 . T)) +((-12 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -300) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3326) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1777) (|devaluate| |#2|)))))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1063)))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -592) (QUOTE (-523)))) (-12 (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-1063))) (-1524 (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#2| (LIST (QUOTE -591) (QUOTE (-832)))) (|HasCategory| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (LIST (QUOTE -591) (QUOTE (-832))))) (-1146 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL @@ -4522,7 +4522,7 @@ NIL NIL (-1148 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4328 . T) (-2409 . T)) +((-4329 . T) (-2608 . T)) NIL (-1149 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) @@ -4562,8 +4562,8 @@ NIL NIL (-1158 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1063))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-1159 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4572,7 +4572,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1161 R -1426) +(-1161 R -1409) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4580,22 +4580,22 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1163 R -1426) +(-1163 R -1409) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -593) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -855) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -855) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (LIST (QUOTE -592) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -855) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -855) (|devaluate| |#1|))))) (-1164 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-360)))) +((|HasCategory| |#4| (QUOTE (-359)))) (-1165 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-1166 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-355)))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-354)))) (-1167 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL @@ -4607,8 +4607,8 @@ NIL (-1169 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) -(-1170 -1426) +((|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) +(-1170 -1409) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL @@ -4618,7 +4618,7 @@ NIL NIL (-1172) ((|constructor| (NIL "The fundamental Type."))) -((-2409 . T)) +((-2608 . T)) NIL (-1173 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) @@ -4634,7 +4634,7 @@ NIL NIL (-1176) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1177 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) @@ -4642,24 +4642,24 @@ NIL NIL (-1178 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1179 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-355)))) +((|HasCategory| |#2| (QUOTE (-354)))) (-1180 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-2409 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-2608 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1181 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-143))))) (-1524 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-145))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-226)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasCategory| (-548) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-991)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-794)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -301) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -504) (QUOTE (-1135)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-878))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-143)))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-991)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135)))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-143))))) (-1524 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-145))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-225)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasCategory| (-547) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-1135))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-991)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-794)))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -277) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -300) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -503) (QUOTE (-1135)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-878))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-532)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-143)))))) (-1182 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4329 "*") -1524 (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-878)))) (-4320 -1524 (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-794))) (|has| |#1| (-540)) (-1723 (|has| |#1| (-355)) (|has| (-1210 |#1| |#2| |#3|) (-878)))) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|)))))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-226))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-548)) (|devaluate| |#1|))))) (|HasCategory| (-548) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-355))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355))))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -301) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -504) (QUOTE (-1135)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-548))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-533))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-355)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-355)))) (|HasCategory| |#1| (QUOTE (-143))))) +(((-4330 "*") -1524 (-1806 (|has| |#1| (-354)) (|has| (-1210 |#1| |#2| |#3|) (-794))) (|has| |#1| (-169)) (-1806 (|has| |#1| (-354)) (|has| (-1210 |#1| |#2| |#3|) (-878)))) (-4321 -1524 (-1806 (|has| |#1| (-354)) (|has| (-1210 |#1| |#2| |#3|) (-794))) (|has| |#1| (-539)) (-1806 (|has| |#1| (-354)) (|has| (-1210 |#1| |#2| |#3|) (-878)))) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|)))))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-547)) (|devaluate| |#1|))))) (|HasCategory| (-547) (QUOTE (-1075))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-354))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-991))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354))))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -277) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -300) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -503) (QUOTE (-1135)) (LIST (QUOTE -1210) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-547))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-532))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-794))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-878))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| (-1210 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-143))))) (-1183 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4694,8 +4694,8 @@ NIL NIL (-1191 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4329 "*") |has| |#2| (-169)) (-4320 |has| |#2| (-540)) (-4323 |has| |#2| (-355)) (-4325 |has| |#2| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-540)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-371))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-548))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-371)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -593) (LIST (QUOTE -861) (QUOTE (-548)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-524))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| |#2| (QUOTE (-226))) (|HasAttribute| |#2| (QUOTE -4325)) (|HasCategory| |#2| (QUOTE (-443))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) +(((-4330 "*") |has| |#2| (-169)) (-4321 |has| |#2| (-539)) (-4324 |has| |#2| (-354)) (-4326 |has| |#2| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-878))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-539)))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-370)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-370))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -855) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -855) (QUOTE (-547))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-370)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -592) (LIST (QUOTE -861) (QUOTE (-547)))))) (-12 (|HasCategory| (-1045) (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#2| (LIST (QUOTE -592) (QUOTE (-523))))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (-1524 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (-1524 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE -4326)) (|HasCategory| |#2| (QUOTE (-442))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (-1524 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-878)))) (|HasCategory| |#2| (QUOTE (-143))))) (-1192 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4703,18 +4703,18 @@ NIL (-1193 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355))) (|HasCategory| |#2| (QUOTE (-443))) (|HasCategory| |#2| (QUOTE (-540))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1111)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-539))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1111)))) (-1194 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4323 |has| |#1| (-355)) (-4325 |has| |#1| (-6 -4325)) (-4322 . T) (-4321 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4324 |has| |#1| (-354)) (-4326 |has| |#1| (-6 -4326)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL (-1195 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1075))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3743) (LIST (|devaluate| |#2|) (QUOTE (-1135)))))) +((|HasCategory| |#2| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1075))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3834) (LIST (|devaluate| |#2|) (QUOTE (-1135)))))) (-1196 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1197 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) @@ -4726,7 +4726,7 @@ NIL NIL (-1199 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1200 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) @@ -4734,27 +4734,27 @@ NIL NIL (-1201 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1202 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1203 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4325 |has| |#1| (-355)) (-4319 |has| |#1| (-355)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548))) (|devaluate| |#1|)))) (|HasCategory| (-399 (-548)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-1524 (|HasCategory| |#1| (QUOTE (-355))) (|HasCategory| |#1| (QUOTE (-540)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -399) (QUOTE (-548)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4326 |has| |#1| (-354)) (-4320 |has| |#1| (-354)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#1| (QUOTE (-169))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547))) (|devaluate| |#1|)))) (|HasCategory| (-398 (-547)) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-1524 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-539)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -398) (QUOTE (-547)))))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) (-1204 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4329 "*") |has| (-1203 |#2| |#3| |#4|) (-169)) (-4320 |has| (-1203 |#2| |#3| |#4|) (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-548)))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-355))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-443))) (-1524 (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -399) (QUOTE (-548)))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-540)))) +(((-4330 "*") |has| (-1203 |#2| |#3| |#4|) (-169)) (-4321 |has| (-1203 |#2| |#3| |#4|) (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (QUOTE (-547)))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-354))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-442))) (-1524 (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (LIST (QUOTE -1007) (LIST (QUOTE -398) (QUOTE (-547)))))) (|HasCategory| (-1203 |#2| |#3| |#4|) (QUOTE (-539)))) (-1205 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4328))) +((|HasAttribute| |#1| (QUOTE -4329))) (-1206 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2409 . T)) +((-2608 . T)) NIL (-1207 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) @@ -4763,26 +4763,26 @@ NIL (-1208 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasSignature| |#2| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3810) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1135))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#2| (QUOTE (-355)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-1157))) (|HasSignature| |#2| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2069) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1135))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#2| (QUOTE (-354)))) (-1209 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1210 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4329 "*") |has| |#1| (-169)) (-4320 |has| |#1| (-540)) (-4321 . T) (-4322 . T) (-4324 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-540))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-540)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3743) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-355))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasSignature| |#1| (LIST (QUOTE -3810) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2049) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) +(((-4330 "*") |has| |#1| (-169)) (-4321 |has| |#1| (-539)) (-4322 . T) (-4323 . T) (-4325 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-539))) (-1524 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -869) (QUOTE (-1135)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-745)) (|devaluate| |#1|)))) (|HasCategory| (-745) (QUOTE (-1075))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasSignature| |#1| (LIST (QUOTE -3834) (LIST (|devaluate| |#1|) (QUOTE (-1135)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-745))))) (|HasCategory| |#1| (QUOTE (-354))) (-1524 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1157))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasSignature| |#1| (LIST (QUOTE -2069) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1135))))) (|HasSignature| |#1| (LIST (QUOTE -2259) (LIST (LIST (QUOTE -619) (QUOTE (-1135))) (|devaluate| |#1|))))))) (-1211 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1212 -1426 UP L UTS) +(-1212 -1409 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-540)))) +((|HasCategory| |#1| (QUOTE (-539)))) (-1213) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2409 . T)) +((-2608 . T)) NIL (-1214 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) @@ -4794,7 +4794,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-701))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1216 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4328 . T) (-4327 . T) (-2409 . T)) +((-4329 . T) (-4328 . T) (-2608 . T)) NIL (-1217 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) @@ -4802,8 +4802,8 @@ NIL NIL (-1218 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4328 . T) (-4327 . T)) -((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-524)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-548) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -301) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-1524 (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|))))) (-1524 (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (|HasCategory| |#1| (LIST (QUOTE -592) (QUOTE (-523)))) (-1524 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063)))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| (-547) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-701))) (|HasCategory| |#1| (QUOTE (-1016))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1016)))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (LIST (QUOTE -300) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -591) (QUOTE (-832))))) (-1219) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -4830,13 +4830,13 @@ NIL NIL (-1225 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4322 . T) (-4321 . T)) +((-4323 . T) (-4322 . T)) NIL (-1226 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1227 K R UP -1426) +(-1227 K R UP -1409) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -4850,56 +4850,56 @@ NIL NIL (-1230 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4322 |has| |#1| (-169)) (-4321 |has| |#1| (-169)) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355)))) +((-4323 |has| |#1| (-169)) (-4322 |has| |#1| (-169)) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354)))) (-1231 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4328 . T) (-4327 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -301) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-524)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-540))) (|HasCategory| |#3| (QUOTE (-360))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-832))))) +((-4329 . T) (-4328 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#4| (LIST (QUOTE -300) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -592) (QUOTE (-523)))) (|HasCategory| |#4| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-539))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#4| (LIST (QUOTE -591) (QUOTE (-832))))) (-1232 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4321 . T) (-4322 . T) (-4324 . T)) +((-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1233 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4324 . T) (-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4320))) +((-4325 . T) (-4321 |has| |#2| (-6 -4321)) (-4323 . T) (-4322 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4321))) (-1234 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL (-1235 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) +((-4321 |has| |#2| (-6 -4321)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL -(-1236 S -1426) +(-1236 S -1409) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) -(-1237 -1426) +((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) +(-1237 -1409) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4319 . T) (-4325 . T) (-4320 . T) ((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +((-4320 . T) (-4326 . T) (-4321 . T) ((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL (-1238 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -692) (LIST (QUOTE -399) (QUOTE (-548))))) (|HasAttribute| |#2| (QUOTE -4320))) +((-4321 |has| |#2| (-6 -4321)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -692) (LIST (QUOTE -398) (QUOTE (-547))))) (|HasAttribute| |#2| (QUOTE -4321))) (-1239 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) +((-4321 |has| |#2| (-6 -4321)) (-4323 . T) (-4322 . T) (-4325 . T)) NIL (-1240 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4320 |has| |#1| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4320))) +((-4321 |has| |#1| (-6 -4321)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4321))) (-1241 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4324 . T) (-4325 |has| |#1| (-6 -4325)) (-4320 |has| |#1| (-6 -4320)) (-4322 . T) (-4321 . T)) -((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-355))) (|HasAttribute| |#1| (QUOTE -4324)) (|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4320))) +((-4325 . T) (-4326 |has| |#1| (-6 -4326)) (-4321 |has| |#1| (-6 -4321)) (-4323 . T) (-4322 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-354))) (|HasAttribute| |#1| (QUOTE -4325)) (|HasAttribute| |#1| (QUOTE -4326)) (|HasAttribute| |#1| (QUOTE -4321))) (-1242 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4320 |has| |#2| (-6 -4320)) (-4322 . T) (-4321 . T) (-4324 . T)) -((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4320))) +((-4321 |has| |#2| (-6 -4321)) (-4323 . T) (-4322 . T) (-4325 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4321))) (-1243 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL @@ -4914,7 +4914,7 @@ NIL NIL (-1246 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4329 "*") . T) (-4321 . T) (-4322 . T) (-4324 . T)) +(((-4330 "*") . T) (-4322 . T) (-4323 . T) (-4325 . T)) NIL NIL NIL @@ -4932,4 +4932,4 @@ NIL NIL NIL NIL -((-3 NIL 2255868 2255873 2255878 2255883) (-2 NIL 2255848 2255853 2255858 2255863) (-1 NIL 2255828 2255833 2255838 2255843) (0 NIL 2255808 2255813 2255818 2255823) (-1246 "ZMOD.spad" 2255617 2255630 2255746 2255803) (-1245 "ZLINDEP.spad" 2254661 2254672 2255607 2255612) (-1244 "ZDSOLVE.spad" 2244510 2244532 2254651 2254656) (-1243 "YSTREAM.spad" 2244003 2244014 2244500 2244505) (-1242 "XRPOLY.spad" 2243223 2243243 2243859 2243928) (-1241 "XPR.spad" 2240952 2240965 2242941 2243040) (-1240 "XPOLY.spad" 2240507 2240518 2240808 2240877) (-1239 "XPOLYC.spad" 2239824 2239840 2240433 2240502) (-1238 "XPBWPOLY.spad" 2238261 2238281 2239604 2239673) (-1237 "XF.spad" 2236722 2236737 2238163 2238256) (-1236 "XF.spad" 2235163 2235180 2236606 2236611) (-1235 "XFALG.spad" 2232187 2232203 2235089 2235158) (-1234 "XEXPPKG.spad" 2231438 2231464 2232177 2232182) (-1233 "XDPOLY.spad" 2231052 2231068 2231294 2231363) (-1232 "XALG.spad" 2230650 2230661 2231008 2231047) (-1231 "WUTSET.spad" 2226489 2226506 2230296 2230323) (-1230 "WP.spad" 2225503 2225547 2226347 2226414) (-1229 "WHILEAST.spad" 2225302 2225311 2225493 2225498) (-1228 "WHEREAST.spad" 2224975 2224984 2225292 2225297) (-1227 "WFFINTBS.spad" 2222538 2222560 2224965 2224970) (-1226 "WEIER.spad" 2220752 2220763 2222528 2222533) (-1225 "VSPACE.spad" 2220425 2220436 2220720 2220747) (-1224 "VSPACE.spad" 2220118 2220131 2220415 2220420) (-1223 "VOID.spad" 2219708 2219717 2220108 2220113) (-1222 "VIEW.spad" 2217330 2217339 2219698 2219703) (-1221 "VIEWDEF.spad" 2212527 2212536 2217320 2217325) (-1220 "VIEW3D.spad" 2196362 2196371 2212517 2212522) (-1219 "VIEW2D.spad" 2184099 2184108 2196352 2196357) (-1218 "VECTOR.spad" 2182774 2182785 2183025 2183052) (-1217 "VECTOR2.spad" 2181401 2181414 2182764 2182769) (-1216 "VECTCAT.spad" 2179289 2179300 2181357 2181396) (-1215 "VECTCAT.spad" 2176997 2177010 2179067 2179072) (-1214 "VARIABLE.spad" 2176777 2176792 2176987 2176992) (-1213 "UTYPE.spad" 2176411 2176420 2176757 2176772) (-1212 "UTSODETL.spad" 2175704 2175728 2176367 2176372) (-1211 "UTSODE.spad" 2173892 2173912 2175694 2175699) (-1210 "UTS.spad" 2168681 2168709 2172359 2172456) (-1209 "UTSCAT.spad" 2166132 2166148 2168579 2168676) (-1208 "UTSCAT.spad" 2163227 2163245 2165676 2165681) (-1207 "UTS2.spad" 2162820 2162855 2163217 2163222) (-1206 "URAGG.spad" 2157442 2157453 2162800 2162815) (-1205 "URAGG.spad" 2152038 2152051 2157398 2157403) (-1204 "UPXSSING.spad" 2149681 2149707 2151119 2151252) (-1203 "UPXS.spad" 2146708 2146736 2147813 2147962) (-1202 "UPXSCONS.spad" 2144465 2144485 2144840 2144989) (-1201 "UPXSCCA.spad" 2142923 2142943 2144311 2144460) (-1200 "UPXSCCA.spad" 2141523 2141545 2142913 2142918) (-1199 "UPXSCAT.spad" 2140104 2140120 2141369 2141518) (-1198 "UPXS2.spad" 2139645 2139698 2140094 2140099) (-1197 "UPSQFREE.spad" 2138057 2138071 2139635 2139640) (-1196 "UPSCAT.spad" 2135650 2135674 2137955 2138052) (-1195 "UPSCAT.spad" 2132949 2132975 2135256 2135261) (-1194 "UPOLYC.spad" 2127927 2127938 2132791 2132944) (-1193 "UPOLYC.spad" 2122797 2122810 2127663 2127668) (-1192 "UPOLYC2.spad" 2122266 2122285 2122787 2122792) (-1191 "UP.spad" 2119308 2119323 2119816 2119969) (-1190 "UPMP.spad" 2118198 2118211 2119298 2119303) (-1189 "UPDIVP.spad" 2117761 2117775 2118188 2118193) (-1188 "UPDECOMP.spad" 2115998 2116012 2117751 2117756) (-1187 "UPCDEN.spad" 2115205 2115221 2115988 2115993) (-1186 "UP2.spad" 2114567 2114588 2115195 2115200) (-1185 "UNISEG.spad" 2113920 2113931 2114486 2114491) (-1184 "UNISEG2.spad" 2113413 2113426 2113876 2113881) (-1183 "UNIFACT.spad" 2112514 2112526 2113403 2113408) (-1182 "ULS.spad" 2103068 2103096 2104161 2104590) (-1181 "ULSCONS.spad" 2097107 2097127 2097479 2097628) (-1180 "ULSCCAT.spad" 2094704 2094724 2096927 2097102) (-1179 "ULSCCAT.spad" 2092435 2092457 2094660 2094665) (-1178 "ULSCAT.spad" 2090651 2090667 2092281 2092430) (-1177 "ULS2.spad" 2090163 2090216 2090641 2090646) (-1176 "UFD.spad" 2089228 2089237 2090089 2090158) (-1175 "UFD.spad" 2088355 2088366 2089218 2089223) (-1174 "UDVO.spad" 2087202 2087211 2088345 2088350) (-1173 "UDPO.spad" 2084629 2084640 2087158 2087163) (-1172 "TYPE.spad" 2084551 2084560 2084609 2084624) (-1171 "TYPEAST.spad" 2084384 2084393 2084541 2084546) (-1170 "TWOFACT.spad" 2083034 2083049 2084374 2084379) (-1169 "TUPLE.spad" 2082420 2082431 2082933 2082938) (-1168 "TUBETOOL.spad" 2079257 2079266 2082410 2082415) (-1167 "TUBE.spad" 2077898 2077915 2079247 2079252) (-1166 "TS.spad" 2076487 2076503 2077463 2077560) (-1165 "TSETCAT.spad" 2063602 2063619 2076443 2076482) (-1164 "TSETCAT.spad" 2050715 2050734 2063558 2063563) (-1163 "TRMANIP.spad" 2045081 2045098 2050421 2050426) (-1162 "TRIMAT.spad" 2044040 2044065 2045071 2045076) (-1161 "TRIGMNIP.spad" 2042557 2042574 2044030 2044035) (-1160 "TRIGCAT.spad" 2042069 2042078 2042547 2042552) (-1159 "TRIGCAT.spad" 2041579 2041590 2042059 2042064) (-1158 "TREE.spad" 2040150 2040161 2041186 2041213) (-1157 "TRANFUN.spad" 2039981 2039990 2040140 2040145) (-1156 "TRANFUN.spad" 2039810 2039821 2039971 2039976) (-1155 "TOPSP.spad" 2039484 2039493 2039800 2039805) (-1154 "TOOLSIGN.spad" 2039147 2039158 2039474 2039479) (-1153 "TEXTFILE.spad" 2037704 2037713 2039137 2039142) (-1152 "TEX.spad" 2034721 2034730 2037694 2037699) (-1151 "TEX1.spad" 2034277 2034288 2034711 2034716) (-1150 "TEMUTL.spad" 2033832 2033841 2034267 2034272) (-1149 "TBCMPPK.spad" 2031925 2031948 2033822 2033827) (-1148 "TBAGG.spad" 2030949 2030972 2031893 2031920) (-1147 "TBAGG.spad" 2029993 2030018 2030939 2030944) (-1146 "TANEXP.spad" 2029369 2029380 2029983 2029988) (-1145 "TABLE.spad" 2027780 2027803 2028050 2028077) (-1144 "TABLEAU.spad" 2027261 2027272 2027770 2027775) (-1143 "TABLBUMP.spad" 2024044 2024055 2027251 2027256) (-1142 "SYSTEM.spad" 2023318 2023327 2024034 2024039) (-1141 "SYSSOLP.spad" 2020791 2020802 2023308 2023313) (-1140 "SYNTAX.spad" 2016983 2016992 2020781 2020786) (-1139 "SYMTAB.spad" 2015039 2015048 2016973 2016978) (-1138 "SYMS.spad" 2011024 2011033 2015029 2015034) (-1137 "SYMPOLY.spad" 2010031 2010042 2010113 2010240) (-1136 "SYMFUNC.spad" 2009506 2009517 2010021 2010026) (-1135 "SYMBOL.spad" 2006842 2006851 2009496 2009501) (-1134 "SWITCH.spad" 2003599 2003608 2006832 2006837) (-1133 "SUTS.spad" 2000498 2000526 2002066 2002163) (-1132 "SUPXS.spad" 1997512 1997540 1998630 1998779) (-1131 "SUP.spad" 1994281 1994292 1995062 1995215) (-1130 "SUPFRACF.spad" 1993386 1993404 1994271 1994276) (-1129 "SUP2.spad" 1992776 1992789 1993376 1993381) (-1128 "SUMRF.spad" 1991742 1991753 1992766 1992771) (-1127 "SUMFS.spad" 1991375 1991392 1991732 1991737) (-1126 "SULS.spad" 1981916 1981944 1983022 1983451) (-1125 "SUCH.spad" 1981596 1981611 1981906 1981911) (-1124 "SUBSPACE.spad" 1973603 1973618 1981586 1981591) (-1123 "SUBRESP.spad" 1972763 1972777 1973559 1973564) (-1122 "STTF.spad" 1968862 1968878 1972753 1972758) (-1121 "STTFNC.spad" 1965330 1965346 1968852 1968857) (-1120 "STTAYLOR.spad" 1957728 1957739 1965211 1965216) (-1119 "STRTBL.spad" 1956233 1956250 1956382 1956409) (-1118 "STRING.spad" 1955642 1955651 1955656 1955683) (-1117 "STRICAT.spad" 1955418 1955427 1955598 1955637) (-1116 "STREAM.spad" 1952186 1952197 1954943 1954958) (-1115 "STREAM3.spad" 1951731 1951746 1952176 1952181) (-1114 "STREAM2.spad" 1950799 1950812 1951721 1951726) (-1113 "STREAM1.spad" 1950503 1950514 1950789 1950794) (-1112 "STINPROD.spad" 1949409 1949425 1950493 1950498) (-1111 "STEP.spad" 1948610 1948619 1949399 1949404) (-1110 "STBL.spad" 1947136 1947164 1947303 1947318) (-1109 "STAGG.spad" 1946201 1946212 1947116 1947131) (-1108 "STAGG.spad" 1945274 1945287 1946191 1946196) (-1107 "STACK.spad" 1944625 1944636 1944881 1944908) (-1106 "SREGSET.spad" 1942329 1942346 1944271 1944298) (-1105 "SRDCMPK.spad" 1940874 1940894 1942319 1942324) (-1104 "SRAGG.spad" 1935959 1935968 1940830 1940869) (-1103 "SRAGG.spad" 1931076 1931087 1935949 1935954) (-1102 "SQMATRIX.spad" 1928700 1928718 1929608 1929695) (-1101 "SPLTREE.spad" 1923252 1923265 1928136 1928163) (-1100 "SPLNODE.spad" 1919840 1919853 1923242 1923247) (-1099 "SPFCAT.spad" 1918617 1918626 1919830 1919835) (-1098 "SPECOUT.spad" 1917167 1917176 1918607 1918612) (-1097 "spad-parser.spad" 1916632 1916641 1917157 1917162) (-1096 "SPACEC.spad" 1900645 1900656 1916622 1916627) (-1095 "SPACE3.spad" 1900421 1900432 1900635 1900640) (-1094 "SORTPAK.spad" 1899966 1899979 1900377 1900382) (-1093 "SOLVETRA.spad" 1897723 1897734 1899956 1899961) (-1092 "SOLVESER.spad" 1896243 1896254 1897713 1897718) (-1091 "SOLVERAD.spad" 1892253 1892264 1896233 1896238) (-1090 "SOLVEFOR.spad" 1890673 1890691 1892243 1892248) (-1089 "SNTSCAT.spad" 1890261 1890278 1890629 1890668) (-1088 "SMTS.spad" 1888521 1888547 1889826 1889923) (-1087 "SMP.spad" 1885960 1885980 1886350 1886477) (-1086 "SMITH.spad" 1884803 1884828 1885950 1885955) (-1085 "SMATCAT.spad" 1882901 1882931 1884735 1884798) (-1084 "SMATCAT.spad" 1880943 1880975 1882779 1882784) (-1083 "SKAGG.spad" 1879892 1879903 1880899 1880938) (-1082 "SINT.spad" 1878200 1878209 1879758 1879887) (-1081 "SIMPAN.spad" 1877928 1877937 1878190 1878195) (-1080 "SIG.spad" 1877256 1877265 1877918 1877923) (-1079 "SIGNRF.spad" 1876364 1876375 1877246 1877251) (-1078 "SIGNEF.spad" 1875633 1875650 1876354 1876359) (-1077 "SHP.spad" 1873551 1873566 1875589 1875594) (-1076 "SHDP.spad" 1864536 1864563 1865045 1865176) (-1075 "SGROUP.spad" 1864144 1864153 1864526 1864531) (-1074 "SGROUP.spad" 1863750 1863761 1864134 1864139) (-1073 "SGCF.spad" 1856631 1856640 1863740 1863745) (-1072 "SFRTCAT.spad" 1855547 1855564 1856587 1856626) (-1071 "SFRGCD.spad" 1854610 1854630 1855537 1855542) (-1070 "SFQCMPK.spad" 1849247 1849267 1854600 1854605) (-1069 "SFORT.spad" 1848682 1848696 1849237 1849242) (-1068 "SEXOF.spad" 1848525 1848565 1848672 1848677) (-1067 "SEX.spad" 1848417 1848426 1848515 1848520) (-1066 "SEXCAT.spad" 1845521 1845561 1848407 1848412) (-1065 "SET.spad" 1843821 1843832 1844942 1844981) (-1064 "SETMN.spad" 1842255 1842272 1843811 1843816) (-1063 "SETCAT.spad" 1841740 1841749 1842245 1842250) (-1062 "SETCAT.spad" 1841223 1841234 1841730 1841735) (-1061 "SETAGG.spad" 1837732 1837743 1841191 1841218) (-1060 "SETAGG.spad" 1834261 1834274 1837722 1837727) (-1059 "SEGXCAT.spad" 1833373 1833386 1834241 1834256) (-1058 "SEG.spad" 1833186 1833197 1833292 1833297) (-1057 "SEGCAT.spad" 1832005 1832016 1833166 1833181) (-1056 "SEGBIND.spad" 1831077 1831088 1831960 1831965) (-1055 "SEGBIND2.spad" 1830773 1830786 1831067 1831072) (-1054 "SEGAST.spad" 1830488 1830497 1830763 1830768) (-1053 "SEG2.spad" 1829913 1829926 1830444 1830449) (-1052 "SDVAR.spad" 1829189 1829200 1829903 1829908) (-1051 "SDPOL.spad" 1826579 1826590 1826870 1826997) (-1050 "SCPKG.spad" 1824658 1824669 1826569 1826574) (-1049 "SCOPE.spad" 1823803 1823812 1824648 1824653) (-1048 "SCACHE.spad" 1822485 1822496 1823793 1823798) (-1047 "SASTCAT.spad" 1822394 1822403 1822475 1822480) (-1046 "SASTCAT.spad" 1822301 1822312 1822384 1822389) (-1045 "SAOS.spad" 1822173 1822182 1822291 1822296) (-1044 "SAERFFC.spad" 1821886 1821906 1822163 1822168) (-1043 "SAE.spad" 1820061 1820077 1820672 1820807) (-1042 "SAEFACT.spad" 1819762 1819782 1820051 1820056) (-1041 "RURPK.spad" 1817403 1817419 1819752 1819757) (-1040 "RULESET.spad" 1816844 1816868 1817393 1817398) (-1039 "RULE.spad" 1815048 1815072 1816834 1816839) (-1038 "RULECOLD.spad" 1814900 1814913 1815038 1815043) (-1037 "RSETGCD.spad" 1811278 1811298 1814890 1814895) (-1036 "RSETCAT.spad" 1801050 1801067 1811234 1811273) (-1035 "RSETCAT.spad" 1790854 1790873 1801040 1801045) (-1034 "RSDCMPK.spad" 1789306 1789326 1790844 1790849) (-1033 "RRCC.spad" 1787690 1787720 1789296 1789301) (-1032 "RRCC.spad" 1786072 1786104 1787680 1787685) (-1031 "RPTAST.spad" 1785776 1785785 1786062 1786067) (-1030 "RPOLCAT.spad" 1765136 1765151 1785644 1785771) (-1029 "RPOLCAT.spad" 1744210 1744227 1764720 1764725) (-1028 "ROUTINE.spad" 1740073 1740082 1742857 1742884) (-1027 "ROMAN.spad" 1739305 1739314 1739939 1740068) (-1026 "ROIRC.spad" 1738385 1738417 1739295 1739300) (-1025 "RNS.spad" 1737288 1737297 1738287 1738380) (-1024 "RNS.spad" 1736277 1736288 1737278 1737283) (-1023 "RNG.spad" 1736012 1736021 1736267 1736272) (-1022 "RMODULE.spad" 1735650 1735661 1736002 1736007) (-1021 "RMCAT2.spad" 1735058 1735115 1735640 1735645) (-1020 "RMATRIX.spad" 1733737 1733756 1734225 1734264) (-1019 "RMATCAT.spad" 1729258 1729289 1733681 1733732) (-1018 "RMATCAT.spad" 1724681 1724714 1729106 1729111) (-1017 "RINTERP.spad" 1724569 1724589 1724671 1724676) (-1016 "RING.spad" 1723926 1723935 1724549 1724564) (-1015 "RING.spad" 1723291 1723302 1723916 1723921) (-1014 "RIDIST.spad" 1722675 1722684 1723281 1723286) (-1013 "RGCHAIN.spad" 1721254 1721270 1722160 1722187) (-1012 "RF.spad" 1718868 1718879 1721244 1721249) (-1011 "RFFACTOR.spad" 1718330 1718341 1718858 1718863) (-1010 "RFFACT.spad" 1718065 1718077 1718320 1718325) (-1009 "RFDIST.spad" 1717053 1717062 1718055 1718060) (-1008 "RETSOL.spad" 1716470 1716483 1717043 1717048) (-1007 "RETRACT.spad" 1715819 1715830 1716460 1716465) (-1006 "RETRACT.spad" 1715166 1715179 1715809 1715814) (-1005 "RETAST.spad" 1714979 1714988 1715156 1715161) (-1004 "RESULT.spad" 1713039 1713048 1713626 1713653) (-1003 "RESRING.spad" 1712386 1712433 1712977 1713034) (-1002 "RESLATC.spad" 1711710 1711721 1712376 1712381) (-1001 "REPSQ.spad" 1711439 1711450 1711700 1711705) (-1000 "REP.spad" 1708991 1709000 1711429 1711434) (-999 "REPDB.spad" 1708697 1708707 1708981 1708986) (-998 "REP2.spad" 1698270 1698280 1708539 1708544) (-997 "REP1.spad" 1692261 1692271 1698220 1698225) (-996 "REGSET.spad" 1690059 1690075 1691907 1691934) (-995 "REF.spad" 1689389 1689399 1690014 1690019) (-994 "REDORDER.spad" 1688566 1688582 1689379 1689384) (-993 "RECLOS.spad" 1687350 1687369 1688053 1688146) (-992 "REALSOLV.spad" 1686483 1686491 1687340 1687345) (-991 "REAL.spad" 1686356 1686364 1686473 1686478) (-990 "REAL0Q.spad" 1683639 1683653 1686346 1686351) (-989 "REAL0.spad" 1680468 1680482 1683629 1683634) (-988 "RDUCEAST.spad" 1680192 1680200 1680458 1680463) (-987 "RDIV.spad" 1679844 1679868 1680182 1680187) (-986 "RDIST.spad" 1679408 1679418 1679834 1679839) (-985 "RDETRS.spad" 1678205 1678222 1679398 1679403) (-984 "RDETR.spad" 1676313 1676330 1678195 1678200) (-983 "RDEEFS.spad" 1675387 1675403 1676303 1676308) (-982 "RDEEF.spad" 1674384 1674400 1675377 1675382) (-981 "RCFIELD.spad" 1671571 1671579 1674286 1674379) (-980 "RCFIELD.spad" 1668844 1668854 1671561 1671566) (-979 "RCAGG.spad" 1666747 1666757 1668824 1668839) (-978 "RCAGG.spad" 1664587 1664599 1666666 1666671) (-977 "RATRET.spad" 1663948 1663958 1664577 1664582) (-976 "RATFACT.spad" 1663641 1663652 1663938 1663943) (-975 "RANDSRC.spad" 1662961 1662969 1663631 1663636) (-974 "RADUTIL.spad" 1662716 1662724 1662951 1662956) (-973 "RADIX.spad" 1659507 1659520 1661184 1661277) (-972 "RADFF.spad" 1657921 1657957 1658039 1658195) (-971 "RADCAT.spad" 1657515 1657523 1657911 1657916) (-970 "RADCAT.spad" 1657107 1657117 1657505 1657510) (-969 "QUEUE.spad" 1656450 1656460 1656714 1656741) (-968 "QUAT.spad" 1655032 1655042 1655374 1655439) (-967 "QUATCT2.spad" 1654651 1654669 1655022 1655027) (-966 "QUATCAT.spad" 1652816 1652826 1654581 1654646) (-965 "QUATCAT.spad" 1650732 1650744 1652499 1652504) (-964 "QUAGG.spad" 1649546 1649556 1650688 1650727) (-963 "QQUTAST.spad" 1649316 1649324 1649536 1649541) (-962 "QFORM.spad" 1648779 1648793 1649306 1649311) (-961 "QFCAT.spad" 1647470 1647480 1648669 1648774) (-960 "QFCAT.spad" 1645765 1645777 1646966 1646971) (-959 "QFCAT2.spad" 1645456 1645472 1645755 1645760) (-958 "QEQUAT.spad" 1645013 1645021 1645446 1645451) (-957 "QCMPACK.spad" 1639760 1639779 1645003 1645008) (-956 "QALGSET.spad" 1635835 1635867 1639674 1639679) (-955 "QALGSET2.spad" 1633831 1633849 1635825 1635830) (-954 "PWFFINTB.spad" 1631141 1631162 1633821 1633826) (-953 "PUSHVAR.spad" 1630470 1630489 1631131 1631136) (-952 "PTRANFN.spad" 1626596 1626606 1630460 1630465) (-951 "PTPACK.spad" 1623684 1623694 1626586 1626591) (-950 "PTFUNC2.spad" 1623505 1623519 1623674 1623679) (-949 "PTCAT.spad" 1622587 1622597 1623461 1623500) (-948 "PSQFR.spad" 1621894 1621918 1622577 1622582) (-947 "PSEUDLIN.spad" 1620752 1620762 1621884 1621889) (-946 "PSETPK.spad" 1606185 1606201 1620630 1620635) (-945 "PSETCAT.spad" 1600093 1600116 1606153 1606180) (-944 "PSETCAT.spad" 1593987 1594012 1600049 1600054) (-943 "PSCURVE.spad" 1592970 1592978 1593977 1593982) (-942 "PSCAT.spad" 1591737 1591766 1592868 1592965) (-941 "PSCAT.spad" 1590594 1590625 1591727 1591732) (-940 "PRTITION.spad" 1589437 1589445 1590584 1590589) (-939 "PRTDAST.spad" 1589157 1589165 1589427 1589432) (-938 "PRS.spad" 1578719 1578736 1589113 1589118) (-937 "PRQAGG.spad" 1578138 1578148 1578675 1578714) (-936 "PROPLOG.spad" 1577541 1577549 1578128 1578133) (-935 "PROPFRML.spad" 1575405 1575416 1577477 1577482) (-934 "PROPERTY.spad" 1574899 1574907 1575395 1575400) (-933 "PRODUCT.spad" 1572579 1572591 1572865 1572920) (-932 "PR.spad" 1570965 1570977 1571670 1571797) (-931 "PRINT.spad" 1570717 1570725 1570955 1570960) (-930 "PRIMES.spad" 1568968 1568978 1570707 1570712) (-929 "PRIMELT.spad" 1566949 1566963 1568958 1568963) (-928 "PRIMCAT.spad" 1566572 1566580 1566939 1566944) (-927 "PRIMARR.spad" 1565577 1565587 1565755 1565782) (-926 "PRIMARR2.spad" 1564300 1564312 1565567 1565572) (-925 "PREASSOC.spad" 1563672 1563684 1564290 1564295) (-924 "PPCURVE.spad" 1562809 1562817 1563662 1563667) (-923 "PORTNUM.spad" 1562584 1562592 1562799 1562804) (-922 "POLYROOT.spad" 1561356 1561378 1562540 1562545) (-921 "POLY.spad" 1558653 1558663 1559170 1559297) (-920 "POLYLIFT.spad" 1557914 1557937 1558643 1558648) (-919 "POLYCATQ.spad" 1556016 1556038 1557904 1557909) (-918 "POLYCAT.spad" 1549422 1549443 1555884 1556011) (-917 "POLYCAT.spad" 1542130 1542153 1548594 1548599) (-916 "POLY2UP.spad" 1541578 1541592 1542120 1542125) (-915 "POLY2.spad" 1541173 1541185 1541568 1541573) (-914 "POLUTIL.spad" 1540114 1540143 1541129 1541134) (-913 "POLTOPOL.spad" 1538862 1538877 1540104 1540109) (-912 "POINT.spad" 1537701 1537711 1537788 1537815) (-911 "PNTHEORY.spad" 1534367 1534375 1537691 1537696) (-910 "PMTOOLS.spad" 1533124 1533138 1534357 1534362) (-909 "PMSYM.spad" 1532669 1532679 1533114 1533119) (-908 "PMQFCAT.spad" 1532256 1532270 1532659 1532664) (-907 "PMPRED.spad" 1531725 1531739 1532246 1532251) (-906 "PMPREDFS.spad" 1531169 1531191 1531715 1531720) (-905 "PMPLCAT.spad" 1530239 1530257 1531101 1531106) (-904 "PMLSAGG.spad" 1529820 1529834 1530229 1530234) (-903 "PMKERNEL.spad" 1529387 1529399 1529810 1529815) (-902 "PMINS.spad" 1528963 1528973 1529377 1529382) (-901 "PMFS.spad" 1528536 1528554 1528953 1528958) (-900 "PMDOWN.spad" 1527822 1527836 1528526 1528531) (-899 "PMASS.spad" 1526834 1526842 1527812 1527817) (-898 "PMASSFS.spad" 1525803 1525819 1526824 1526829) (-897 "PLOTTOOL.spad" 1525583 1525591 1525793 1525798) (-896 "PLOT.spad" 1520414 1520422 1525573 1525578) (-895 "PLOT3D.spad" 1516834 1516842 1520404 1520409) (-894 "PLOT1.spad" 1515975 1515985 1516824 1516829) (-893 "PLEQN.spad" 1503191 1503218 1515965 1515970) (-892 "PINTERP.spad" 1502807 1502826 1503181 1503186) (-891 "PINTERPA.spad" 1502589 1502605 1502797 1502802) (-890 "PI.spad" 1502196 1502204 1502563 1502584) (-889 "PID.spad" 1501152 1501160 1502122 1502191) (-888 "PICOERCE.spad" 1500809 1500819 1501142 1501147) (-887 "PGROEB.spad" 1499406 1499420 1500799 1500804) (-886 "PGE.spad" 1490659 1490667 1499396 1499401) (-885 "PGCD.spad" 1489541 1489558 1490649 1490654) (-884 "PFRPAC.spad" 1488684 1488694 1489531 1489536) (-883 "PFR.spad" 1485341 1485351 1488586 1488679) (-882 "PFOTOOLS.spad" 1484599 1484615 1485331 1485336) (-881 "PFOQ.spad" 1483969 1483987 1484589 1484594) (-880 "PFO.spad" 1483388 1483415 1483959 1483964) (-879 "PF.spad" 1482962 1482974 1483193 1483286) (-878 "PFECAT.spad" 1480628 1480636 1482888 1482957) (-877 "PFECAT.spad" 1478322 1478332 1480584 1480589) (-876 "PFBRU.spad" 1476192 1476204 1478312 1478317) (-875 "PFBR.spad" 1473730 1473753 1476182 1476187) (-874 "PERM.spad" 1469411 1469421 1473560 1473575) (-873 "PERMGRP.spad" 1464147 1464157 1469401 1469406) (-872 "PERMCAT.spad" 1462699 1462709 1464127 1464142) (-871 "PERMAN.spad" 1461231 1461245 1462689 1462694) (-870 "PENDTREE.spad" 1460504 1460514 1460860 1460865) (-869 "PDRING.spad" 1458995 1459005 1460484 1460499) (-868 "PDRING.spad" 1457494 1457506 1458985 1458990) (-867 "PDEPROB.spad" 1456451 1456459 1457484 1457489) (-866 "PDEPACK.spad" 1450453 1450461 1456441 1456446) (-865 "PDECOMP.spad" 1449915 1449932 1450443 1450448) (-864 "PDECAT.spad" 1448269 1448277 1449905 1449910) (-863 "PCOMP.spad" 1448120 1448133 1448259 1448264) (-862 "PBWLB.spad" 1446702 1446719 1448110 1448115) (-861 "PATTERN.spad" 1441133 1441143 1446692 1446697) (-860 "PATTERN2.spad" 1440869 1440881 1441123 1441128) (-859 "PATTERN1.spad" 1439171 1439187 1440859 1440864) (-858 "PATRES.spad" 1436718 1436730 1439161 1439166) (-857 "PATRES2.spad" 1436380 1436394 1436708 1436713) (-856 "PATMATCH.spad" 1434537 1434568 1436088 1436093) (-855 "PATMAB.spad" 1433962 1433972 1434527 1434532) (-854 "PATLRES.spad" 1433046 1433060 1433952 1433957) (-853 "PATAB.spad" 1432810 1432820 1433036 1433041) (-852 "PARTPERM.spad" 1430172 1430180 1432800 1432805) (-851 "PARSURF.spad" 1429600 1429628 1430162 1430167) (-850 "PARSU2.spad" 1429395 1429411 1429590 1429595) (-849 "script-parser.spad" 1428915 1428923 1429385 1429390) (-848 "PARSCURV.spad" 1428343 1428371 1428905 1428910) (-847 "PARSC2.spad" 1428132 1428148 1428333 1428338) (-846 "PARPCURV.spad" 1427590 1427618 1428122 1428127) (-845 "PARPC2.spad" 1427379 1427395 1427580 1427585) (-844 "PAN2EXPR.spad" 1426791 1426799 1427369 1427374) (-843 "PALETTE.spad" 1425761 1425769 1426781 1426786) (-842 "PAIR.spad" 1424744 1424757 1425349 1425354) (-841 "PADICRC.spad" 1422075 1422093 1423250 1423343) (-840 "PADICRAT.spad" 1420091 1420103 1420312 1420405) (-839 "PADIC.spad" 1419786 1419798 1420017 1420086) (-838 "PADICCT.spad" 1418327 1418339 1419712 1419781) (-837 "PADEPAC.spad" 1417006 1417025 1418317 1418322) (-836 "PADE.spad" 1415746 1415762 1416996 1417001) (-835 "OWP.spad" 1414730 1414760 1415604 1415671) (-834 "OVAR.spad" 1414511 1414534 1414720 1414725) (-833 "OUT.spad" 1413595 1413603 1414501 1414506) (-832 "OUTFORM.spad" 1403009 1403017 1413585 1413590) (-831 "OUTBCON.spad" 1402288 1402296 1402999 1403004) (-830 "OUTBCON.spad" 1401565 1401575 1402278 1402283) (-829 "OSI.spad" 1401040 1401048 1401555 1401560) (-828 "OSGROUP.spad" 1400958 1400966 1401030 1401035) (-827 "ORTHPOL.spad" 1399419 1399429 1400875 1400880) (-826 "OREUP.spad" 1398777 1398805 1399099 1399138) (-825 "ORESUP.spad" 1398076 1398100 1398457 1398496) (-824 "OREPCTO.spad" 1395895 1395907 1397996 1398001) (-823 "OREPCAT.spad" 1389952 1389962 1395851 1395890) (-822 "OREPCAT.spad" 1383899 1383911 1389800 1389805) (-821 "ORDSET.spad" 1383065 1383073 1383889 1383894) (-820 "ORDSET.spad" 1382229 1382239 1383055 1383060) (-819 "ORDRING.spad" 1381619 1381627 1382209 1382224) (-818 "ORDRING.spad" 1381017 1381027 1381609 1381614) (-817 "ORDMON.spad" 1380872 1380880 1381007 1381012) (-816 "ORDFUNS.spad" 1379998 1380014 1380862 1380867) (-815 "ORDFIN.spad" 1379932 1379940 1379988 1379993) (-814 "ORDCOMP.spad" 1378397 1378407 1379479 1379508) (-813 "ORDCOMP2.spad" 1377682 1377694 1378387 1378392) (-812 "OPTPROB.spad" 1376262 1376270 1377672 1377677) (-811 "OPTPACK.spad" 1368647 1368655 1376252 1376257) (-810 "OPTCAT.spad" 1366322 1366330 1368637 1368642) (-809 "OPQUERY.spad" 1365871 1365879 1366312 1366317) (-808 "OP.spad" 1365613 1365623 1365693 1365760) (-807 "ONECOMP.spad" 1364358 1364368 1365160 1365189) (-806 "ONECOMP2.spad" 1363776 1363788 1364348 1364353) (-805 "OMSERVER.spad" 1362778 1362786 1363766 1363771) (-804 "OMSAGG.spad" 1362554 1362564 1362722 1362773) (-803 "OMPKG.spad" 1361166 1361174 1362544 1362549) (-802 "OM.spad" 1360131 1360139 1361156 1361161) (-801 "OMLO.spad" 1359556 1359568 1360017 1360056) (-800 "OMEXPR.spad" 1359390 1359400 1359546 1359551) (-799 "OMERR.spad" 1358933 1358941 1359380 1359385) (-798 "OMERRK.spad" 1357967 1357975 1358923 1358928) (-797 "OMENC.spad" 1357311 1357319 1357957 1357962) (-796 "OMDEV.spad" 1351600 1351608 1357301 1357306) (-795 "OMCONN.spad" 1351009 1351017 1351590 1351595) (-794 "OINTDOM.spad" 1350772 1350780 1350935 1351004) (-793 "OFMONOID.spad" 1346959 1346969 1350762 1350767) (-792 "ODVAR.spad" 1346220 1346230 1346949 1346954) (-791 "ODR.spad" 1345668 1345694 1346032 1346181) (-790 "ODPOL.spad" 1343014 1343024 1343354 1343481) (-789 "ODP.spad" 1334135 1334155 1334508 1334639) (-788 "ODETOOLS.spad" 1332718 1332737 1334125 1334130) (-787 "ODESYS.spad" 1330368 1330385 1332708 1332713) (-786 "ODERTRIC.spad" 1326309 1326326 1330325 1330330) (-785 "ODERED.spad" 1325696 1325720 1326299 1326304) (-784 "ODERAT.spad" 1323247 1323264 1325686 1325691) (-783 "ODEPRRIC.spad" 1320138 1320160 1323237 1323242) (-782 "ODEPROB.spad" 1319337 1319345 1320128 1320133) (-781 "ODEPRIM.spad" 1316611 1316633 1319327 1319332) (-780 "ODEPAL.spad" 1315987 1316011 1316601 1316606) (-779 "ODEPACK.spad" 1302589 1302597 1315977 1315982) (-778 "ODEINT.spad" 1302020 1302036 1302579 1302584) (-777 "ODEIFTBL.spad" 1299415 1299423 1302010 1302015) (-776 "ODEEF.spad" 1294782 1294798 1299405 1299410) (-775 "ODECONST.spad" 1294301 1294319 1294772 1294777) (-774 "ODECAT.spad" 1292897 1292905 1294291 1294296) (-773 "OCT.spad" 1291035 1291045 1291751 1291790) (-772 "OCTCT2.spad" 1290679 1290700 1291025 1291030) (-771 "OC.spad" 1288453 1288463 1290635 1290674) (-770 "OC.spad" 1285952 1285964 1288136 1288141) (-769 "OCAMON.spad" 1285800 1285808 1285942 1285947) (-768 "OASGP.spad" 1285615 1285623 1285790 1285795) (-767 "OAMONS.spad" 1285135 1285143 1285605 1285610) (-766 "OAMON.spad" 1284996 1285004 1285125 1285130) (-765 "OAGROUP.spad" 1284858 1284866 1284986 1284991) (-764 "NUMTUBE.spad" 1284445 1284461 1284848 1284853) (-763 "NUMQUAD.spad" 1272307 1272315 1284435 1284440) (-762 "NUMODE.spad" 1263443 1263451 1272297 1272302) (-761 "NUMINT.spad" 1261001 1261009 1263433 1263438) (-760 "NUMFMT.spad" 1259841 1259849 1260991 1260996) (-759 "NUMERIC.spad" 1251913 1251923 1259646 1259651) (-758 "NTSCAT.spad" 1250403 1250419 1251869 1251908) (-757 "NTPOLFN.spad" 1249948 1249958 1250320 1250325) (-756 "NSUP.spad" 1242958 1242968 1247498 1247651) (-755 "NSUP2.spad" 1242350 1242362 1242948 1242953) (-754 "NSMP.spad" 1238545 1238564 1238853 1238980) (-753 "NREP.spad" 1236917 1236931 1238535 1238540) (-752 "NPCOEF.spad" 1236163 1236183 1236907 1236912) (-751 "NORMRETR.spad" 1235761 1235800 1236153 1236158) (-750 "NORMPK.spad" 1233663 1233682 1235751 1235756) (-749 "NORMMA.spad" 1233351 1233377 1233653 1233658) (-748 "NONE.spad" 1233092 1233100 1233341 1233346) (-747 "NONE1.spad" 1232768 1232778 1233082 1233087) (-746 "NODE1.spad" 1232237 1232253 1232758 1232763) (-745 "NNI.spad" 1231124 1231132 1232211 1232232) (-744 "NLINSOL.spad" 1229746 1229756 1231114 1231119) (-743 "NIPROB.spad" 1228229 1228237 1229736 1229741) (-742 "NFINTBAS.spad" 1225689 1225706 1228219 1228224) (-741 "NCODIV.spad" 1223887 1223903 1225679 1225684) (-740 "NCNTFRAC.spad" 1223529 1223543 1223877 1223882) (-739 "NCEP.spad" 1221689 1221703 1223519 1223524) (-738 "NASRING.spad" 1221285 1221293 1221679 1221684) (-737 "NASRING.spad" 1220879 1220889 1221275 1221280) (-736 "NARNG.spad" 1220223 1220231 1220869 1220874) (-735 "NARNG.spad" 1219565 1219575 1220213 1220218) (-734 "NAGSP.spad" 1218638 1218646 1219555 1219560) (-733 "NAGS.spad" 1208163 1208171 1218628 1218633) (-732 "NAGF07.spad" 1206556 1206564 1208153 1208158) (-731 "NAGF04.spad" 1200788 1200796 1206546 1206551) (-730 "NAGF02.spad" 1194597 1194605 1200778 1200783) (-729 "NAGF01.spad" 1190200 1190208 1194587 1194592) (-728 "NAGE04.spad" 1183660 1183668 1190190 1190195) (-727 "NAGE02.spad" 1174002 1174010 1183650 1183655) (-726 "NAGE01.spad" 1169886 1169894 1173992 1173997) (-725 "NAGD03.spad" 1167806 1167814 1169876 1169881) (-724 "NAGD02.spad" 1160337 1160345 1167796 1167801) (-723 "NAGD01.spad" 1154450 1154458 1160327 1160332) (-722 "NAGC06.spad" 1150237 1150245 1154440 1154445) (-721 "NAGC05.spad" 1148706 1148714 1150227 1150232) (-720 "NAGC02.spad" 1147961 1147969 1148696 1148701) (-719 "NAALG.spad" 1147496 1147506 1147929 1147956) (-718 "NAALG.spad" 1147051 1147063 1147486 1147491) (-717 "MULTSQFR.spad" 1144009 1144026 1147041 1147046) (-716 "MULTFACT.spad" 1143392 1143409 1143999 1144004) (-715 "MTSCAT.spad" 1141426 1141447 1143290 1143387) (-714 "MTHING.spad" 1141083 1141093 1141416 1141421) (-713 "MSYSCMD.spad" 1140517 1140525 1141073 1141078) (-712 "MSET.spad" 1138459 1138469 1140223 1140262) (-711 "MSETAGG.spad" 1138292 1138302 1138415 1138454) (-710 "MRING.spad" 1135263 1135275 1138000 1138067) (-709 "MRF2.spad" 1134831 1134845 1135253 1135258) (-708 "MRATFAC.spad" 1134377 1134394 1134821 1134826) (-707 "MPRFF.spad" 1132407 1132426 1134367 1134372) (-706 "MPOLY.spad" 1129842 1129857 1130201 1130328) (-705 "MPCPF.spad" 1129106 1129125 1129832 1129837) (-704 "MPC3.spad" 1128921 1128961 1129096 1129101) (-703 "MPC2.spad" 1128563 1128596 1128911 1128916) (-702 "MONOTOOL.spad" 1126898 1126915 1128553 1128558) (-701 "MONOID.spad" 1126217 1126225 1126888 1126893) (-700 "MONOID.spad" 1125534 1125544 1126207 1126212) (-699 "MONOGEN.spad" 1124280 1124293 1125394 1125529) (-698 "MONOGEN.spad" 1123048 1123063 1124164 1124169) (-697 "MONADWU.spad" 1121062 1121070 1123038 1123043) (-696 "MONADWU.spad" 1119074 1119084 1121052 1121057) (-695 "MONAD.spad" 1118218 1118226 1119064 1119069) (-694 "MONAD.spad" 1117360 1117370 1118208 1118213) (-693 "MOEBIUS.spad" 1116046 1116060 1117340 1117355) (-692 "MODULE.spad" 1115916 1115926 1116014 1116041) (-691 "MODULE.spad" 1115806 1115818 1115906 1115911) (-690 "MODRING.spad" 1115137 1115176 1115786 1115801) (-689 "MODOP.spad" 1113796 1113808 1114959 1115026) (-688 "MODMONOM.spad" 1113328 1113346 1113786 1113791) (-687 "MODMON.spad" 1110030 1110046 1110806 1110959) (-686 "MODFIELD.spad" 1109388 1109427 1109932 1110025) (-685 "MMLFORM.spad" 1108248 1108256 1109378 1109383) (-684 "MMAP.spad" 1107988 1108022 1108238 1108243) (-683 "MLO.spad" 1106415 1106425 1107944 1107983) (-682 "MLIFT.spad" 1104987 1105004 1106405 1106410) (-681 "MKUCFUNC.spad" 1104520 1104538 1104977 1104982) (-680 "MKRECORD.spad" 1104122 1104135 1104510 1104515) (-679 "MKFUNC.spad" 1103503 1103513 1104112 1104117) (-678 "MKFLCFN.spad" 1102459 1102469 1103493 1103498) (-677 "MKCHSET.spad" 1102235 1102245 1102449 1102454) (-676 "MKBCFUNC.spad" 1101720 1101738 1102225 1102230) (-675 "MINT.spad" 1101159 1101167 1101622 1101715) (-674 "MHROWRED.spad" 1099660 1099670 1101149 1101154) (-673 "MFLOAT.spad" 1098105 1098113 1099550 1099655) (-672 "MFINFACT.spad" 1097505 1097527 1098095 1098100) (-671 "MESH.spad" 1095237 1095245 1097495 1097500) (-670 "MDDFACT.spad" 1093430 1093440 1095227 1095232) (-669 "MDAGG.spad" 1092705 1092715 1093398 1093425) (-668 "MCMPLX.spad" 1088680 1088688 1089294 1089495) (-667 "MCDEN.spad" 1087888 1087900 1088670 1088675) (-666 "MCALCFN.spad" 1084990 1085016 1087878 1087883) (-665 "MAYBE.spad" 1084239 1084250 1084980 1084985) (-664 "MATSTOR.spad" 1081515 1081525 1084229 1084234) (-663 "MATRIX.spad" 1080219 1080229 1080703 1080730) (-662 "MATLIN.spad" 1077545 1077569 1080103 1080108) (-661 "MATCAT.spad" 1069118 1069140 1077501 1077540) (-660 "MATCAT.spad" 1060575 1060599 1068960 1068965) (-659 "MATCAT2.spad" 1059843 1059891 1060565 1060570) (-658 "MAPPKG3.spad" 1058742 1058756 1059833 1059838) (-657 "MAPPKG2.spad" 1058076 1058088 1058732 1058737) (-656 "MAPPKG1.spad" 1056894 1056904 1058066 1058071) (-655 "MAPPAST.spad" 1056207 1056215 1056884 1056889) (-654 "MAPHACK3.spad" 1056015 1056029 1056197 1056202) (-653 "MAPHACK2.spad" 1055780 1055792 1056005 1056010) (-652 "MAPHACK1.spad" 1055410 1055420 1055770 1055775) (-651 "MAGMA.spad" 1053200 1053217 1055400 1055405) (-650 "MACROAST.spad" 1052768 1052776 1053190 1053195) (-649 "M3D.spad" 1050464 1050474 1052146 1052151) (-648 "LZSTAGG.spad" 1047682 1047692 1050444 1050459) (-647 "LZSTAGG.spad" 1044908 1044920 1047672 1047677) (-646 "LWORD.spad" 1041613 1041630 1044898 1044903) (-645 "LSTAST.spad" 1041398 1041406 1041603 1041608) (-644 "LSQM.spad" 1039624 1039638 1040022 1040073) (-643 "LSPP.spad" 1039157 1039174 1039614 1039619) (-642 "LSMP.spad" 1037997 1038025 1039147 1039152) (-641 "LSMP1.spad" 1035801 1035815 1037987 1037992) (-640 "LSAGG.spad" 1035458 1035468 1035757 1035796) (-639 "LSAGG.spad" 1035147 1035159 1035448 1035453) (-638 "LPOLY.spad" 1034101 1034120 1035003 1035072) (-637 "LPEFRAC.spad" 1033358 1033368 1034091 1034096) (-636 "LO.spad" 1032759 1032773 1033292 1033319) (-635 "LOGIC.spad" 1032361 1032369 1032749 1032754) (-634 "LOGIC.spad" 1031961 1031971 1032351 1032356) (-633 "LODOOPS.spad" 1030879 1030891 1031951 1031956) (-632 "LODO.spad" 1030263 1030279 1030559 1030598) (-631 "LODOF.spad" 1029307 1029324 1030220 1030225) (-630 "LODOCAT.spad" 1027965 1027975 1029263 1029302) (-629 "LODOCAT.spad" 1026621 1026633 1027921 1027926) (-628 "LODO2.spad" 1025894 1025906 1026301 1026340) (-627 "LODO1.spad" 1025294 1025304 1025574 1025613) (-626 "LODEEF.spad" 1024066 1024084 1025284 1025289) (-625 "LNAGG.spad" 1019858 1019868 1024046 1024061) (-624 "LNAGG.spad" 1015624 1015636 1019814 1019819) (-623 "LMOPS.spad" 1012360 1012377 1015614 1015619) (-622 "LMODULE.spad" 1012002 1012012 1012350 1012355) (-621 "LMDICT.spad" 1011285 1011295 1011553 1011580) (-620 "LITERAL.spad" 1011191 1011202 1011275 1011280) (-619 "LIST.spad" 1008909 1008919 1010338 1010365) (-618 "LIST3.spad" 1008200 1008214 1008899 1008904) (-617 "LIST2.spad" 1006840 1006852 1008190 1008195) (-616 "LIST2MAP.spad" 1003717 1003729 1006830 1006835) (-615 "LINEXP.spad" 1003149 1003159 1003697 1003712) (-614 "LINDEP.spad" 1001926 1001938 1003061 1003066) (-613 "LIMITRF.spad" 999840 999850 1001916 1001921) (-612 "LIMITPS.spad" 998723 998736 999830 999835) (-611 "LIE.spad" 996737 996749 998013 998158) (-610 "LIECAT.spad" 996213 996223 996663 996732) (-609 "LIECAT.spad" 995717 995729 996169 996174) (-608 "LIB.spad" 993765 993773 994376 994391) (-607 "LGROBP.spad" 991118 991137 993755 993760) (-606 "LF.spad" 990037 990053 991108 991113) (-605 "LFCAT.spad" 989056 989064 990027 990032) (-604 "LEXTRIPK.spad" 984559 984574 989046 989051) (-603 "LEXP.spad" 982562 982589 984539 984554) (-602 "LETAST.spad" 982263 982271 982552 982557) (-601 "LEADCDET.spad" 980647 980664 982253 982258) (-600 "LAZM3PK.spad" 979351 979373 980637 980642) (-599 "LAUPOL.spad" 978040 978053 978944 979013) (-598 "LAPLACE.spad" 977613 977629 978030 978035) (-597 "LA.spad" 977053 977067 977535 977574) (-596 "LALG.spad" 976829 976839 977033 977048) (-595 "LALG.spad" 976613 976625 976819 976824) (-594 "KOVACIC.spad" 975326 975343 976603 976608) (-593 "KONVERT.spad" 975048 975058 975316 975321) (-592 "KOERCE.spad" 974785 974795 975038 975043) (-591 "KERNEL.spad" 973320 973330 974569 974574) (-590 "KERNEL2.spad" 973023 973035 973310 973315) (-589 "KDAGG.spad" 972114 972136 972991 973018) (-588 "KDAGG.spad" 971225 971249 972104 972109) (-587 "KAFILE.spad" 970188 970204 970423 970450) (-586 "JORDAN.spad" 968015 968027 969478 969623) (-585 "JOINAST.spad" 967709 967717 968005 968010) (-584 "JAVACODE.spad" 967475 967483 967699 967704) (-583 "IXAGG.spad" 965588 965612 967455 967470) (-582 "IXAGG.spad" 963566 963592 965435 965440) (-581 "IVECTOR.spad" 962337 962352 962492 962519) (-580 "ITUPLE.spad" 961482 961492 962327 962332) (-579 "ITRIGMNP.spad" 960293 960312 961472 961477) (-578 "ITFUN3.spad" 959787 959801 960283 960288) (-577 "ITFUN2.spad" 959517 959529 959777 959782) (-576 "ITAYLOR.spad" 957309 957324 959353 959478) (-575 "ISUPS.spad" 949720 949735 956283 956380) (-574 "ISUMP.spad" 949217 949233 949710 949715) (-573 "ISTRING.spad" 948220 948233 948386 948413) (-572 "ISAST.spad" 947941 947949 948210 948215) (-571 "IRURPK.spad" 946654 946673 947931 947936) (-570 "IRSN.spad" 944614 944622 946644 946649) (-569 "IRRF2F.spad" 943089 943099 944570 944575) (-568 "IRREDFFX.spad" 942690 942701 943079 943084) (-567 "IROOT.spad" 941021 941031 942680 942685) (-566 "IR.spad" 938810 938824 940876 940903) (-565 "IR2.spad" 937830 937846 938800 938805) (-564 "IR2F.spad" 937030 937046 937820 937825) (-563 "IPRNTPK.spad" 936790 936798 937020 937025) (-562 "IPF.spad" 936355 936367 936595 936688) (-561 "IPADIC.spad" 936116 936142 936281 936350) (-560 "IOBCON.spad" 935981 935989 936106 936111) (-559 "INVLAPLA.spad" 935626 935642 935971 935976) (-558 "INTTR.spad" 928872 928889 935616 935621) (-557 "INTTOOLS.spad" 926583 926599 928446 928451) (-556 "INTSLPE.spad" 925889 925897 926573 926578) (-555 "INTRVL.spad" 925455 925465 925803 925884) (-554 "INTRF.spad" 923819 923833 925445 925450) (-553 "INTRET.spad" 923251 923261 923809 923814) (-552 "INTRAT.spad" 921926 921943 923241 923246) (-551 "INTPM.spad" 920289 920305 921569 921574) (-550 "INTPAF.spad" 918057 918075 920221 920226) (-549 "INTPACK.spad" 908367 908375 918047 918052) (-548 "INT.spad" 907728 907736 908221 908362) (-547 "INTHERTR.spad" 906994 907011 907718 907723) (-546 "INTHERAL.spad" 906660 906684 906984 906989) (-545 "INTHEORY.spad" 903073 903081 906650 906655) (-544 "INTG0.spad" 896536 896554 903005 903010) (-543 "INTFTBL.spad" 890565 890573 896526 896531) (-542 "INTFACT.spad" 889624 889634 890555 890560) (-541 "INTEF.spad" 887939 887955 889614 889619) (-540 "INTDOM.spad" 886554 886562 887865 887934) (-539 "INTDOM.spad" 885231 885241 886544 886549) (-538 "INTCAT.spad" 883484 883494 885145 885226) (-537 "INTBIT.spad" 882987 882995 883474 883479) (-536 "INTALG.spad" 882169 882196 882977 882982) (-535 "INTAF.spad" 881661 881677 882159 882164) (-534 "INTABL.spad" 880179 880210 880342 880369) (-533 "INS.spad" 877646 877654 880081 880174) (-532 "INS.spad" 875199 875209 877636 877641) (-531 "INPSIGN.spad" 874633 874646 875189 875194) (-530 "INPRODPF.spad" 873699 873718 874623 874628) (-529 "INPRODFF.spad" 872757 872781 873689 873694) (-528 "INNMFACT.spad" 871728 871745 872747 872752) (-527 "INMODGCD.spad" 871212 871242 871718 871723) (-526 "INFSP.spad" 869497 869519 871202 871207) (-525 "INFPROD0.spad" 868547 868566 869487 869492) (-524 "INFORM.spad" 865708 865716 868537 868542) (-523 "INFORM1.spad" 865333 865343 865698 865703) (-522 "INFINITY.spad" 864885 864893 865323 865328) (-521 "INEP.spad" 863417 863439 864875 864880) (-520 "INDE.spad" 863146 863163 863407 863412) (-519 "INCRMAPS.spad" 862567 862577 863136 863141) (-518 "INBFF.spad" 858337 858348 862557 862562) (-517 "INBCON.spad" 857637 857645 858327 858332) (-516 "INBCON.spad" 856935 856945 857627 857632) (-515 "INAST.spad" 856601 856609 856925 856930) (-514 "IMPTAST.spad" 856309 856317 856591 856596) (-513 "IMATRIX.spad" 855254 855280 855766 855793) (-512 "IMATQF.spad" 854348 854392 855210 855215) (-511 "IMATLIN.spad" 852953 852977 854304 854309) (-510 "ILIST.spad" 851609 851624 852136 852163) (-509 "IIARRAY2.spad" 850997 851035 851216 851243) (-508 "IFF.spad" 850407 850423 850678 850771) (-507 "IFAST.spad" 850024 850032 850397 850402) (-506 "IFARRAY.spad" 847511 847526 849207 849234) (-505 "IFAMON.spad" 847373 847390 847467 847472) (-504 "IEVALAB.spad" 846762 846774 847363 847368) (-503 "IEVALAB.spad" 846149 846163 846752 846757) (-502 "IDPO.spad" 845947 845959 846139 846144) (-501 "IDPOAMS.spad" 845703 845715 845937 845942) (-500 "IDPOAM.spad" 845423 845435 845693 845698) (-499 "IDPC.spad" 844357 844369 845413 845418) (-498 "IDPAM.spad" 844102 844114 844347 844352) (-497 "IDPAG.spad" 843849 843861 844092 844097) (-496 "IDENT.spad" 843766 843774 843839 843844) (-495 "IDECOMP.spad" 841003 841021 843756 843761) (-494 "IDEAL.spad" 835926 835965 840938 840943) (-493 "ICDEN.spad" 835077 835093 835916 835921) (-492 "ICARD.spad" 834266 834274 835067 835072) (-491 "IBPTOOLS.spad" 832859 832876 834256 834261) (-490 "IBITS.spad" 832058 832071 832495 832522) (-489 "IBATOOL.spad" 828933 828952 832048 832053) (-488 "IBACHIN.spad" 827420 827435 828923 828928) (-487 "IARRAY2.spad" 826408 826434 827027 827054) (-486 "IARRAY1.spad" 825453 825468 825591 825618) (-485 "IAN.spad" 823666 823674 825269 825362) (-484 "IALGFACT.spad" 823267 823300 823656 823661) (-483 "HYPCAT.spad" 822691 822699 823257 823262) (-482 "HYPCAT.spad" 822113 822123 822681 822686) (-481 "HOSTNAME.spad" 821921 821929 822103 822108) (-480 "HOAGG.spad" 819179 819189 821901 821916) (-479 "HOAGG.spad" 816222 816234 818946 818951) (-478 "HEXADEC.spad" 814092 814100 814690 814783) (-477 "HEUGCD.spad" 813107 813118 814082 814087) (-476 "HELLFDIV.spad" 812697 812721 813097 813102) (-475 "HEAP.spad" 812089 812099 812304 812331) (-474 "HEADAST.spad" 811620 811628 812079 812084) (-473 "HDP.spad" 802737 802753 803114 803245) (-472 "HDMP.spad" 799913 799928 800531 800658) (-471 "HB.spad" 798150 798158 799903 799908) (-470 "HASHTBL.spad" 796620 796651 796831 796858) (-469 "HASAST.spad" 796338 796346 796610 796615) (-468 "HACKPI.spad" 795821 795829 796240 796333) (-467 "GTSET.spad" 794760 794776 795467 795494) (-466 "GSTBL.spad" 793279 793314 793453 793468) (-465 "GSERIES.spad" 790446 790473 791411 791560) (-464 "GROUP.spad" 789715 789723 790426 790441) (-463 "GROUP.spad" 788992 789002 789705 789710) (-462 "GROEBSOL.spad" 787480 787501 788982 788987) (-461 "GRMOD.spad" 786051 786063 787470 787475) (-460 "GRMOD.spad" 784620 784634 786041 786046) (-459 "GRIMAGE.spad" 777225 777233 784610 784615) (-458 "GRDEF.spad" 775604 775612 777215 777220) (-457 "GRAY.spad" 774063 774071 775594 775599) (-456 "GRALG.spad" 773110 773122 774053 774058) (-455 "GRALG.spad" 772155 772169 773100 773105) (-454 "GPOLSET.spad" 771609 771632 771837 771864) (-453 "GOSPER.spad" 770874 770892 771599 771604) (-452 "GMODPOL.spad" 770012 770039 770842 770869) (-451 "GHENSEL.spad" 769081 769095 770002 770007) (-450 "GENUPS.spad" 765182 765195 769071 769076) (-449 "GENUFACT.spad" 764759 764769 765172 765177) (-448 "GENPGCD.spad" 764343 764360 764749 764754) (-447 "GENMFACT.spad" 763795 763814 764333 764338) (-446 "GENEEZ.spad" 761734 761747 763785 763790) (-445 "GDMP.spad" 758752 758769 759528 759655) (-444 "GCNAALG.spad" 752647 752674 758546 758613) (-443 "GCDDOM.spad" 751819 751827 752573 752642) (-442 "GCDDOM.spad" 751053 751063 751809 751814) (-441 "GB.spad" 748571 748609 751009 751014) (-440 "GBINTERN.spad" 744591 744629 748561 748566) (-439 "GBF.spad" 740348 740386 744581 744586) (-438 "GBEUCLID.spad" 738222 738260 740338 740343) (-437 "GAUSSFAC.spad" 737519 737527 738212 738217) (-436 "GALUTIL.spad" 735841 735851 737475 737480) (-435 "GALPOLYU.spad" 734287 734300 735831 735836) (-434 "GALFACTU.spad" 732452 732471 734277 734282) (-433 "GALFACT.spad" 722585 722596 732442 732447) (-432 "FVFUN.spad" 719598 719606 722565 722580) (-431 "FVC.spad" 718640 718648 719578 719593) (-430 "FUNCTION.spad" 718489 718501 718630 718635) (-429 "FT.spad" 716701 716709 718479 718484) (-428 "FTEM.spad" 715864 715872 716691 716696) (-427 "FSUPFACT.spad" 714764 714783 715800 715805) (-426 "FST.spad" 712850 712858 714754 714759) (-425 "FSRED.spad" 712328 712344 712840 712845) (-424 "FSPRMELT.spad" 711152 711168 712285 712290) (-423 "FSPECF.spad" 709229 709245 711142 711147) (-422 "FS.spad" 703279 703289 708992 709224) (-421 "FS.spad" 697119 697131 702834 702839) (-420 "FSINT.spad" 696777 696793 697109 697114) (-419 "FSERIES.spad" 695964 695976 696597 696696) (-418 "FSCINT.spad" 695277 695293 695954 695959) (-417 "FSAGG.spad" 694382 694392 695221 695272) (-416 "FSAGG.spad" 693461 693473 694302 694307) (-415 "FSAGG2.spad" 692160 692176 693451 693456) (-414 "FS2UPS.spad" 686549 686583 692150 692155) (-413 "FS2.spad" 686194 686210 686539 686544) (-412 "FS2EXPXP.spad" 685317 685340 686184 686189) (-411 "FRUTIL.spad" 684259 684269 685307 685312) (-410 "FR.spad" 677954 677964 683284 683353) (-409 "FRNAALG.spad" 673041 673051 677896 677949) (-408 "FRNAALG.spad" 668140 668152 672997 673002) (-407 "FRNAAF2.spad" 667594 667612 668130 668135) (-406 "FRMOD.spad" 666988 667018 667525 667530) (-405 "FRIDEAL.spad" 666183 666204 666968 666983) (-404 "FRIDEAL2.spad" 665785 665817 666173 666178) (-403 "FRETRCT.spad" 665296 665306 665775 665780) (-402 "FRETRCT.spad" 664673 664685 665154 665159) (-401 "FRAMALG.spad" 663001 663014 664629 664668) (-400 "FRAMALG.spad" 661361 661376 662991 662996) (-399 "FRAC.spad" 658461 658471 658864 659037) (-398 "FRAC2.spad" 658064 658076 658451 658456) (-397 "FR2.spad" 657398 657410 658054 658059) (-396 "FPS.spad" 654207 654215 657288 657393) (-395 "FPS.spad" 651044 651054 654127 654132) (-394 "FPC.spad" 650086 650094 650946 651039) (-393 "FPC.spad" 649214 649224 650076 650081) (-392 "FPATMAB.spad" 648966 648976 649194 649209) (-391 "FPARFRAC.spad" 647439 647456 648956 648961) (-390 "FORTRAN.spad" 645945 645988 647429 647434) (-389 "FORT.spad" 644874 644882 645935 645940) (-388 "FORTFN.spad" 642034 642042 644854 644869) (-387 "FORTCAT.spad" 641708 641716 642014 642029) (-386 "FORMULA.spad" 639046 639054 641698 641703) (-385 "FORMULA1.spad" 638525 638535 639036 639041) (-384 "FORDER.spad" 638216 638240 638515 638520) (-383 "FOP.spad" 637417 637425 638206 638211) (-382 "FNLA.spad" 636841 636863 637385 637412) (-381 "FNCAT.spad" 635169 635177 636831 636836) (-380 "FNAME.spad" 635061 635069 635159 635164) (-379 "FMTC.spad" 634859 634867 634987 635056) (-378 "FMONOID.spad" 631914 631924 634815 634820) (-377 "FM.spad" 631609 631621 631848 631875) (-376 "FMFUN.spad" 628629 628637 631589 631604) (-375 "FMC.spad" 627671 627679 628609 628624) (-374 "FMCAT.spad" 625325 625343 627639 627666) (-373 "FM1.spad" 624682 624694 625259 625286) (-372 "FLOATRP.spad" 622403 622417 624672 624677) (-371 "FLOAT.spad" 615567 615575 622269 622398) (-370 "FLOATCP.spad" 612984 612998 615557 615562) (-369 "FLINEXP.spad" 612696 612706 612964 612979) (-368 "FLINEXP.spad" 612362 612374 612632 612637) (-367 "FLASORT.spad" 611682 611694 612352 612357) (-366 "FLALG.spad" 609328 609347 611608 611677) (-365 "FLAGG.spad" 606334 606344 609296 609323) (-364 "FLAGG.spad" 603253 603265 606217 606222) (-363 "FLAGG2.spad" 601934 601950 603243 603248) (-362 "FINRALG.spad" 599963 599976 601890 601929) (-361 "FINRALG.spad" 597918 597933 599847 599852) (-360 "FINITE.spad" 597070 597078 597908 597913) (-359 "FINAALG.spad" 586051 586061 597012 597065) (-358 "FINAALG.spad" 575044 575056 586007 586012) (-357 "FILE.spad" 574627 574637 575034 575039) (-356 "FILECAT.spad" 573145 573162 574617 574622) (-355 "FIELD.spad" 572551 572559 573047 573140) (-354 "FIELD.spad" 572043 572053 572541 572546) (-353 "FGROUP.spad" 570652 570662 572023 572038) (-352 "FGLMICPK.spad" 569439 569454 570642 570647) (-351 "FFX.spad" 568814 568829 569155 569248) (-350 "FFSLPE.spad" 568303 568324 568804 568809) (-349 "FFPOLY.spad" 559555 559566 568293 568298) (-348 "FFPOLY2.spad" 558615 558632 559545 559550) (-347 "FFP.spad" 558012 558032 558331 558424) (-346 "FF.spad" 557460 557476 557693 557786) (-345 "FFNBX.spad" 555972 555992 557176 557269) (-344 "FFNBP.spad" 554485 554502 555688 555781) (-343 "FFNB.spad" 552950 552971 554166 554259) (-342 "FFINTBAS.spad" 550364 550383 552940 552945) (-341 "FFIELDC.spad" 547939 547947 550266 550359) (-340 "FFIELDC.spad" 545600 545610 547929 547934) (-339 "FFHOM.spad" 544348 544365 545590 545595) (-338 "FFF.spad" 541783 541794 544338 544343) (-337 "FFCGX.spad" 540630 540650 541499 541592) (-336 "FFCGP.spad" 539519 539539 540346 540439) (-335 "FFCG.spad" 538311 538332 539200 539293) (-334 "FFCAT.spad" 531338 531360 538150 538306) (-333 "FFCAT.spad" 524444 524468 531258 531263) (-332 "FFCAT2.spad" 524189 524229 524434 524439) (-331 "FEXPR.spad" 515898 515944 523945 523984) (-330 "FEVALAB.spad" 515604 515614 515888 515893) (-329 "FEVALAB.spad" 515095 515107 515381 515386) (-328 "FDIV.spad" 514537 514561 515085 515090) (-327 "FDIVCAT.spad" 512579 512603 514527 514532) (-326 "FDIVCAT.spad" 510619 510645 512569 512574) (-325 "FDIV2.spad" 510273 510313 510609 510614) (-324 "FCPAK1.spad" 508826 508834 510263 510268) (-323 "FCOMP.spad" 508205 508215 508816 508821) (-322 "FC.spad" 498030 498038 508195 508200) (-321 "FAXF.spad" 490965 490979 497932 498025) (-320 "FAXF.spad" 483952 483968 490921 490926) (-319 "FARRAY.spad" 482098 482108 483135 483162) (-318 "FAMR.spad" 480218 480230 481996 482093) (-317 "FAMR.spad" 478322 478336 480102 480107) (-316 "FAMONOID.spad" 477972 477982 478276 478281) (-315 "FAMONC.spad" 476194 476206 477962 477967) (-314 "FAGROUP.spad" 475800 475810 476090 476117) (-313 "FACUTIL.spad" 473996 474013 475790 475795) (-312 "FACTFUNC.spad" 473172 473182 473986 473991) (-311 "EXPUPXS.spad" 470005 470028 471304 471453) (-310 "EXPRTUBE.spad" 467233 467241 469995 470000) (-309 "EXPRODE.spad" 464105 464121 467223 467228) (-308 "EXPR.spad" 459380 459390 460094 460501) (-307 "EXPR2UPS.spad" 455472 455485 459370 459375) (-306 "EXPR2.spad" 455175 455187 455462 455467) (-305 "EXPEXPAN.spad" 452114 452139 452748 452841) (-304 "EXIT.spad" 451785 451793 452104 452109) (-303 "EXITAST.spad" 451522 451530 451775 451780) (-302 "EVALCYC.spad" 450980 450994 451512 451517) (-301 "EVALAB.spad" 450544 450554 450970 450975) (-300 "EVALAB.spad" 450106 450118 450534 450539) (-299 "EUCDOM.spad" 447648 447656 450032 450101) (-298 "EUCDOM.spad" 445252 445262 447638 447643) (-297 "ESTOOLS.spad" 437092 437100 445242 445247) (-296 "ESTOOLS2.spad" 436693 436707 437082 437087) (-295 "ESTOOLS1.spad" 436378 436389 436683 436688) (-294 "ES.spad" 428925 428933 436368 436373) (-293 "ES.spad" 421378 421388 428823 428828) (-292 "ESCONT.spad" 418151 418159 421368 421373) (-291 "ESCONT1.spad" 417900 417912 418141 418146) (-290 "ES2.spad" 417395 417411 417890 417895) (-289 "ES1.spad" 416961 416977 417385 417390) (-288 "ERROR.spad" 414282 414290 416951 416956) (-287 "EQTBL.spad" 412754 412776 412963 412990) (-286 "EQ.spad" 407628 407638 410427 410539) (-285 "EQ2.spad" 407344 407356 407618 407623) (-284 "EP.spad" 403658 403668 407334 407339) (-283 "ENV.spad" 402360 402368 403648 403653) (-282 "ENTIRER.spad" 402028 402036 402304 402355) (-281 "EMR.spad" 401229 401270 401954 402023) (-280 "ELTAGG.spad" 399469 399488 401219 401224) (-279 "ELTAGG.spad" 397673 397694 399425 399430) (-278 "ELTAB.spad" 397120 397138 397663 397668) (-277 "ELFUTS.spad" 396499 396518 397110 397115) (-276 "ELEMFUN.spad" 396188 396196 396489 396494) (-275 "ELEMFUN.spad" 395875 395885 396178 396183) (-274 "ELAGG.spad" 393806 393816 395843 395870) (-273 "ELAGG.spad" 391686 391698 393725 393730) (-272 "ELABEXPR.spad" 390617 390625 391676 391681) (-271 "EFUPXS.spad" 387393 387423 390573 390578) (-270 "EFULS.spad" 384229 384252 387349 387354) (-269 "EFSTRUC.spad" 382184 382200 384219 384224) (-268 "EF.spad" 376950 376966 382174 382179) (-267 "EAB.spad" 375226 375234 376940 376945) (-266 "E04UCFA.spad" 374762 374770 375216 375221) (-265 "E04NAFA.spad" 374339 374347 374752 374757) (-264 "E04MBFA.spad" 373919 373927 374329 374334) (-263 "E04JAFA.spad" 373455 373463 373909 373914) (-262 "E04GCFA.spad" 372991 372999 373445 373450) (-261 "E04FDFA.spad" 372527 372535 372981 372986) (-260 "E04DGFA.spad" 372063 372071 372517 372522) (-259 "E04AGNT.spad" 367905 367913 372053 372058) (-258 "DVARCAT.spad" 364590 364600 367895 367900) (-257 "DVARCAT.spad" 361273 361285 364580 364585) (-256 "DSMP.spad" 358704 358718 359009 359136) (-255 "DROPT.spad" 352649 352657 358694 358699) (-254 "DROPT1.spad" 352312 352322 352639 352644) (-253 "DROPT0.spad" 347139 347147 352302 352307) (-252 "DRAWPT.spad" 345294 345302 347129 347134) (-251 "DRAW.spad" 337894 337907 345284 345289) (-250 "DRAWHACK.spad" 337202 337212 337884 337889) (-249 "DRAWCX.spad" 334644 334652 337192 337197) (-248 "DRAWCURV.spad" 334181 334196 334634 334639) (-247 "DRAWCFUN.spad" 323353 323361 334171 334176) (-246 "DQAGG.spad" 321509 321519 323309 323348) (-245 "DPOLCAT.spad" 316850 316866 321377 321504) (-244 "DPOLCAT.spad" 312277 312295 316806 316811) (-243 "DPMO.spad" 305580 305596 305718 306019) (-242 "DPMM.spad" 298896 298914 299021 299322) (-241 "DOMAIN.spad" 298167 298175 298886 298891) (-240 "DMP.spad" 295389 295404 295961 296088) (-239 "DLP.spad" 294737 294747 295379 295384) (-238 "DLIST.spad" 293149 293159 293920 293947) (-237 "DLAGG.spad" 291550 291560 293129 293144) (-236 "DIVRING.spad" 291092 291100 291494 291545) (-235 "DIVRING.spad" 290678 290688 291082 291087) (-234 "DISPLAY.spad" 288858 288866 290668 290673) (-233 "DIRPROD.spad" 279712 279728 280352 280483) (-232 "DIRPROD2.spad" 278520 278538 279702 279707) (-231 "DIRPCAT.spad" 277450 277466 278372 278515) (-230 "DIRPCAT.spad" 276121 276139 277045 277050) (-229 "DIOSP.spad" 274946 274954 276111 276116) (-228 "DIOPS.spad" 273918 273928 274914 274941) (-227 "DIOPS.spad" 272876 272888 273874 273879) (-226 "DIFRING.spad" 272168 272176 272856 272871) (-225 "DIFRING.spad" 271468 271478 272158 272163) (-224 "DIFEXT.spad" 270627 270637 271448 271463) (-223 "DIFEXT.spad" 269703 269715 270526 270531) (-222 "DIAGG.spad" 269321 269331 269671 269698) (-221 "DIAGG.spad" 268959 268971 269311 269316) (-220 "DHMATRIX.spad" 267263 267273 268416 268443) (-219 "DFSFUN.spad" 260671 260679 267253 267258) (-218 "DFLOAT.spad" 257274 257282 260561 260666) (-217 "DFINTTLS.spad" 255483 255499 257264 257269) (-216 "DERHAM.spad" 253393 253425 255463 255478) (-215 "DEQUEUE.spad" 252711 252721 253000 253027) (-214 "DEGRED.spad" 252326 252340 252701 252706) (-213 "DEFINTRF.spad" 249851 249861 252316 252321) (-212 "DEFINTEF.spad" 248347 248363 249841 249846) (-211 "DEFAST.spad" 247704 247712 248337 248342) (-210 "DECIMAL.spad" 245586 245594 246172 246265) (-209 "DDFACT.spad" 243385 243402 245576 245581) (-208 "DBLRESP.spad" 242983 243007 243375 243380) (-207 "DBASE.spad" 241555 241565 242973 242978) (-206 "DATABUF.spad" 241043 241056 241545 241550) (-205 "D03FAFA.spad" 240871 240879 241033 241038) (-204 "D03EEFA.spad" 240691 240699 240861 240866) (-203 "D03AGNT.spad" 239771 239779 240681 240686) (-202 "D02EJFA.spad" 239233 239241 239761 239766) (-201 "D02CJFA.spad" 238711 238719 239223 239228) (-200 "D02BHFA.spad" 238201 238209 238701 238706) (-199 "D02BBFA.spad" 237691 237699 238191 238196) (-198 "D02AGNT.spad" 232495 232503 237681 237686) (-197 "D01WGTS.spad" 230814 230822 232485 232490) (-196 "D01TRNS.spad" 230791 230799 230804 230809) (-195 "D01GBFA.spad" 230313 230321 230781 230786) (-194 "D01FCFA.spad" 229835 229843 230303 230308) (-193 "D01ASFA.spad" 229303 229311 229825 229830) (-192 "D01AQFA.spad" 228749 228757 229293 229298) (-191 "D01APFA.spad" 228173 228181 228739 228744) (-190 "D01ANFA.spad" 227667 227675 228163 228168) (-189 "D01AMFA.spad" 227177 227185 227657 227662) (-188 "D01ALFA.spad" 226717 226725 227167 227172) (-187 "D01AKFA.spad" 226243 226251 226707 226712) (-186 "D01AJFA.spad" 225766 225774 226233 226238) (-185 "D01AGNT.spad" 221825 221833 225756 225761) (-184 "CYCLOTOM.spad" 221331 221339 221815 221820) (-183 "CYCLES.spad" 218163 218171 221321 221326) (-182 "CVMP.spad" 217580 217590 218153 218158) (-181 "CTRIGMNP.spad" 216070 216086 217570 217575) (-180 "CTORCALL.spad" 215658 215666 216060 216065) (-179 "CSTTOOLS.spad" 214901 214914 215648 215653) (-178 "CRFP.spad" 208605 208618 214891 214896) (-177 "CRCAST.spad" 208326 208334 208595 208600) (-176 "CRAPACK.spad" 207369 207379 208316 208321) (-175 "CPMATCH.spad" 206869 206884 207294 207299) (-174 "CPIMA.spad" 206574 206593 206859 206864) (-173 "COORDSYS.spad" 201467 201477 206564 206569) (-172 "CONTOUR.spad" 200869 200877 201457 201462) (-171 "CONTFRAC.spad" 196481 196491 200771 200864) (-170 "CONDUIT.spad" 196239 196247 196471 196476) (-169 "COMRING.spad" 195913 195921 196177 196234) (-168 "COMPPROP.spad" 195427 195435 195903 195908) (-167 "COMPLPAT.spad" 195194 195209 195417 195422) (-166 "COMPLEX.spad" 189220 189230 189464 189725) (-165 "COMPLEX2.spad" 188933 188945 189210 189215) (-164 "COMPFACT.spad" 188535 188549 188923 188928) (-163 "COMPCAT.spad" 186591 186601 188257 188530) (-162 "COMPCAT.spad" 184353 184365 186021 186026) (-161 "COMMUPC.spad" 184099 184117 184343 184348) (-160 "COMMONOP.spad" 183632 183640 184089 184094) (-159 "COMM.spad" 183441 183449 183622 183627) (-158 "COMMAAST.spad" 183205 183213 183431 183436) (-157 "COMBOPC.spad" 182110 182118 183195 183200) (-156 "COMBINAT.spad" 180855 180865 182100 182105) (-155 "COMBF.spad" 178223 178239 180845 180850) (-154 "COLOR.spad" 177060 177068 178213 178218) (-153 "COLONAST.spad" 176727 176735 177050 177055) (-152 "CMPLXRT.spad" 176436 176453 176717 176722) (-151 "CLIP.spad" 172528 172536 176426 176431) (-150 "CLIF.spad" 171167 171183 172484 172523) (-149 "CLAGG.spad" 167642 167652 171147 171162) (-148 "CLAGG.spad" 163998 164010 167505 167510) (-147 "CINTSLPE.spad" 163323 163336 163988 163993) (-146 "CHVAR.spad" 161401 161423 163313 163318) (-145 "CHARZ.spad" 161316 161324 161381 161396) (-144 "CHARPOL.spad" 160824 160834 161306 161311) (-143 "CHARNZ.spad" 160577 160585 160804 160819) (-142 "CHAR.spad" 158445 158453 160567 160572) (-141 "CFCAT.spad" 157761 157769 158435 158440) (-140 "CDEN.spad" 156919 156933 157751 157756) (-139 "CCLASS.spad" 155068 155076 156330 156369) (-138 "CATEGORY.spad" 154847 154855 155058 155063) (-137 "CATAST.spad" 154475 154483 154837 154842) (-136 "CASEAST.spad" 154191 154199 154465 154470) (-135 "CARTEN.spad" 149294 149318 154181 154186) (-134 "CARTEN2.spad" 148680 148707 149284 149289) (-133 "CARD.spad" 145969 145977 148654 148675) (-132 "CAPSLAST.spad" 145744 145752 145959 145964) (-131 "CACHSET.spad" 145366 145374 145734 145739) (-130 "CABMON.spad" 144919 144927 145356 145361) (-129 "BYTE.spad" 144313 144321 144909 144914) (-128 "BYTEARY.spad" 143388 143396 143482 143509) (-127 "BTREE.spad" 142457 142467 142995 143022) (-126 "BTOURN.spad" 141460 141470 142064 142091) (-125 "BTCAT.spad" 140836 140846 141416 141455) (-124 "BTCAT.spad" 140244 140256 140826 140831) (-123 "BTAGG.spad" 139354 139362 140200 140239) (-122 "BTAGG.spad" 138496 138506 139344 139349) (-121 "BSTREE.spad" 137231 137241 138103 138130) (-120 "BRILL.spad" 135426 135437 137221 137226) (-119 "BRAGG.spad" 134340 134350 135406 135421) (-118 "BRAGG.spad" 133228 133240 134296 134301) (-117 "BPADICRT.spad" 131210 131222 131465 131558) (-116 "BPADIC.spad" 130874 130886 131136 131205) (-115 "BOUNDZRO.spad" 130530 130547 130864 130869) (-114 "BOP.spad" 125994 126002 130520 130525) (-113 "BOP1.spad" 123380 123390 125950 125955) (-112 "BOOLEAN.spad" 122704 122712 123370 123375) (-111 "BMODULE.spad" 122416 122428 122672 122699) (-110 "BITS.spad" 121835 121843 122052 122079) (-109 "BINFILE.spad" 121178 121186 121825 121830) (-108 "BINDING.spad" 120597 120605 121168 121173) (-107 "BINARY.spad" 118488 118496 119065 119158) (-106 "BGAGG.spad" 117673 117683 118456 118483) (-105 "BGAGG.spad" 116878 116890 117663 117668) (-104 "BFUNCT.spad" 116442 116450 116858 116873) (-103 "BEZOUT.spad" 115576 115603 116392 116397) (-102 "BBTREE.spad" 112395 112405 115183 115210) (-101 "BASTYPE.spad" 112067 112075 112385 112390) (-100 "BASTYPE.spad" 111737 111747 112057 112062) (-99 "BALFACT.spad" 111177 111189 111727 111732) (-98 "AUTOMOR.spad" 110624 110633 111157 111172) (-97 "ATTREG.spad" 107343 107350 110376 110619) (-96 "ATTRBUT.spad" 103366 103373 107323 107338) (-95 "ATTRAST.spad" 103084 103091 103356 103361) (-94 "ATRIG.spad" 102554 102561 103074 103079) (-93 "ATRIG.spad" 102022 102031 102544 102549) (-92 "ASTCAT.spad" 101926 101933 102012 102017) (-91 "ASTCAT.spad" 101828 101837 101916 101921) (-90 "ASTACK.spad" 101161 101170 101435 101462) (-89 "ASSOCEQ.spad" 99961 99972 101117 101122) (-88 "ASP9.spad" 99042 99055 99951 99956) (-87 "ASP8.spad" 98085 98098 99032 99037) (-86 "ASP80.spad" 97407 97420 98075 98080) (-85 "ASP7.spad" 96567 96580 97397 97402) (-84 "ASP78.spad" 96018 96031 96557 96562) (-83 "ASP77.spad" 95387 95400 96008 96013) (-82 "ASP74.spad" 94479 94492 95377 95382) (-81 "ASP73.spad" 93750 93763 94469 94474) (-80 "ASP6.spad" 92382 92395 93740 93745) (-79 "ASP55.spad" 90891 90904 92372 92377) (-78 "ASP50.spad" 88708 88721 90881 90886) (-77 "ASP4.spad" 88003 88016 88698 88703) (-76 "ASP49.spad" 87002 87015 87993 87998) (-75 "ASP42.spad" 85409 85448 86992 86997) (-74 "ASP41.spad" 83988 84027 85399 85404) (-73 "ASP35.spad" 82976 82989 83978 83983) (-72 "ASP34.spad" 82277 82290 82966 82971) (-71 "ASP33.spad" 81837 81850 82267 82272) (-70 "ASP31.spad" 80977 80990 81827 81832) (-69 "ASP30.spad" 79869 79882 80967 80972) (-68 "ASP29.spad" 79335 79348 79859 79864) (-67 "ASP28.spad" 70608 70621 79325 79330) (-66 "ASP27.spad" 69505 69518 70598 70603) (-65 "ASP24.spad" 68592 68605 69495 69500) (-64 "ASP20.spad" 67808 67821 68582 68587) (-63 "ASP1.spad" 67189 67202 67798 67803) (-62 "ASP19.spad" 61875 61888 67179 67184) (-61 "ASP12.spad" 61289 61302 61865 61870) (-60 "ASP10.spad" 60560 60573 61279 61284) (-59 "ARRAY2.spad" 59920 59929 60167 60194) (-58 "ARRAY1.spad" 58755 58764 59103 59130) (-57 "ARRAY12.spad" 57424 57435 58745 58750) (-56 "ARR2CAT.spad" 53074 53095 57380 57419) (-55 "ARR2CAT.spad" 48756 48779 53064 53069) (-54 "APPRULE.spad" 48000 48022 48746 48751) (-53 "APPLYORE.spad" 47615 47628 47990 47995) (-52 "ANY.spad" 45957 45964 47605 47610) (-51 "ANY1.spad" 45028 45037 45947 45952) (-50 "ANTISYM.spad" 43467 43483 45008 45023) (-49 "ANON.spad" 43164 43171 43457 43462) (-48 "AN.spad" 41465 41472 42980 43073) (-47 "AMR.spad" 39644 39655 41363 41460) (-46 "AMR.spad" 37660 37673 39381 39386) (-45 "ALIST.spad" 35072 35093 35422 35449) (-44 "ALGSC.spad" 34195 34221 34944 34997) (-43 "ALGPKG.spad" 29904 29915 34151 34156) (-42 "ALGMFACT.spad" 29093 29107 29894 29899) (-41 "ALGMANIP.spad" 26513 26528 28890 28895) (-40 "ALGFF.spad" 24828 24855 25045 25201) (-39 "ALGFACT.spad" 23949 23959 24818 24823) (-38 "ALGEBRA.spad" 23680 23689 23905 23944) (-37 "ALGEBRA.spad" 23443 23454 23670 23675) (-36 "ALAGG.spad" 22941 22962 23399 23438) (-35 "AHYP.spad" 22322 22329 22931 22936) (-34 "AGG.spad" 20621 20628 22302 22317) (-33 "AGG.spad" 18894 18903 20577 20582) (-32 "AF.spad" 17319 17334 18829 18834) (-31 "ADDAST.spad" 16999 17006 17309 17314) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2255650 2255655 2255660 2255665) (-2 NIL 2255630 2255635 2255640 2255645) (-1 NIL 2255610 2255615 2255620 2255625) (0 NIL 2255590 2255595 2255600 2255605) (-1246 "ZMOD.spad" 2255399 2255412 2255528 2255585) (-1245 "ZLINDEP.spad" 2254443 2254454 2255389 2255394) (-1244 "ZDSOLVE.spad" 2244292 2244314 2254433 2254438) (-1243 "YSTREAM.spad" 2243785 2243796 2244282 2244287) (-1242 "XRPOLY.spad" 2243005 2243025 2243641 2243710) (-1241 "XPR.spad" 2240734 2240747 2242723 2242822) (-1240 "XPOLY.spad" 2240289 2240300 2240590 2240659) (-1239 "XPOLYC.spad" 2239606 2239622 2240215 2240284) (-1238 "XPBWPOLY.spad" 2238043 2238063 2239386 2239455) (-1237 "XF.spad" 2236504 2236519 2237945 2238038) (-1236 "XF.spad" 2234945 2234962 2236388 2236393) (-1235 "XFALG.spad" 2231969 2231985 2234871 2234940) (-1234 "XEXPPKG.spad" 2231220 2231246 2231959 2231964) (-1233 "XDPOLY.spad" 2230834 2230850 2231076 2231145) (-1232 "XALG.spad" 2230432 2230443 2230790 2230829) (-1231 "WUTSET.spad" 2226271 2226288 2230078 2230105) (-1230 "WP.spad" 2225285 2225329 2226129 2226196) (-1229 "WHILEAST.spad" 2225084 2225093 2225275 2225280) (-1228 "WHEREAST.spad" 2224757 2224766 2225074 2225079) (-1227 "WFFINTBS.spad" 2222320 2222342 2224747 2224752) (-1226 "WEIER.spad" 2220534 2220545 2222310 2222315) (-1225 "VSPACE.spad" 2220207 2220218 2220502 2220529) (-1224 "VSPACE.spad" 2219900 2219913 2220197 2220202) (-1223 "VOID.spad" 2219490 2219499 2219890 2219895) (-1222 "VIEW.spad" 2217112 2217121 2219480 2219485) (-1221 "VIEWDEF.spad" 2212309 2212318 2217102 2217107) (-1220 "VIEW3D.spad" 2196144 2196153 2212299 2212304) (-1219 "VIEW2D.spad" 2183881 2183890 2196134 2196139) (-1218 "VECTOR.spad" 2182556 2182567 2182807 2182834) (-1217 "VECTOR2.spad" 2181183 2181196 2182546 2182551) (-1216 "VECTCAT.spad" 2179071 2179082 2181139 2181178) (-1215 "VECTCAT.spad" 2176779 2176792 2178849 2178854) (-1214 "VARIABLE.spad" 2176559 2176574 2176769 2176774) (-1213 "UTYPE.spad" 2176193 2176202 2176539 2176554) (-1212 "UTSODETL.spad" 2175486 2175510 2176149 2176154) (-1211 "UTSODE.spad" 2173674 2173694 2175476 2175481) (-1210 "UTS.spad" 2168463 2168491 2172141 2172238) (-1209 "UTSCAT.spad" 2165914 2165930 2168361 2168458) (-1208 "UTSCAT.spad" 2163009 2163027 2165458 2165463) (-1207 "UTS2.spad" 2162602 2162637 2162999 2163004) (-1206 "URAGG.spad" 2157224 2157235 2162582 2162597) (-1205 "URAGG.spad" 2151820 2151833 2157180 2157185) (-1204 "UPXSSING.spad" 2149463 2149489 2150901 2151034) (-1203 "UPXS.spad" 2146490 2146518 2147595 2147744) (-1202 "UPXSCONS.spad" 2144247 2144267 2144622 2144771) (-1201 "UPXSCCA.spad" 2142705 2142725 2144093 2144242) (-1200 "UPXSCCA.spad" 2141305 2141327 2142695 2142700) (-1199 "UPXSCAT.spad" 2139886 2139902 2141151 2141300) (-1198 "UPXS2.spad" 2139427 2139480 2139876 2139881) (-1197 "UPSQFREE.spad" 2137839 2137853 2139417 2139422) (-1196 "UPSCAT.spad" 2135432 2135456 2137737 2137834) (-1195 "UPSCAT.spad" 2132731 2132757 2135038 2135043) (-1194 "UPOLYC.spad" 2127709 2127720 2132573 2132726) (-1193 "UPOLYC.spad" 2122579 2122592 2127445 2127450) (-1192 "UPOLYC2.spad" 2122048 2122067 2122569 2122574) (-1191 "UP.spad" 2119090 2119105 2119598 2119751) (-1190 "UPMP.spad" 2117980 2117993 2119080 2119085) (-1189 "UPDIVP.spad" 2117543 2117557 2117970 2117975) (-1188 "UPDECOMP.spad" 2115780 2115794 2117533 2117538) (-1187 "UPCDEN.spad" 2114987 2115003 2115770 2115775) (-1186 "UP2.spad" 2114349 2114370 2114977 2114982) (-1185 "UNISEG.spad" 2113702 2113713 2114268 2114273) (-1184 "UNISEG2.spad" 2113195 2113208 2113658 2113663) (-1183 "UNIFACT.spad" 2112296 2112308 2113185 2113190) (-1182 "ULS.spad" 2102850 2102878 2103943 2104372) (-1181 "ULSCONS.spad" 2096889 2096909 2097261 2097410) (-1180 "ULSCCAT.spad" 2094486 2094506 2096709 2096884) (-1179 "ULSCCAT.spad" 2092217 2092239 2094442 2094447) (-1178 "ULSCAT.spad" 2090433 2090449 2092063 2092212) (-1177 "ULS2.spad" 2089945 2089998 2090423 2090428) (-1176 "UFD.spad" 2089010 2089019 2089871 2089940) (-1175 "UFD.spad" 2088137 2088148 2089000 2089005) (-1174 "UDVO.spad" 2086984 2086993 2088127 2088132) (-1173 "UDPO.spad" 2084411 2084422 2086940 2086945) (-1172 "TYPE.spad" 2084333 2084342 2084391 2084406) (-1171 "TYPEAST.spad" 2084166 2084175 2084323 2084328) (-1170 "TWOFACT.spad" 2082816 2082831 2084156 2084161) (-1169 "TUPLE.spad" 2082202 2082213 2082715 2082720) (-1168 "TUBETOOL.spad" 2079039 2079048 2082192 2082197) (-1167 "TUBE.spad" 2077680 2077697 2079029 2079034) (-1166 "TS.spad" 2076269 2076285 2077245 2077342) (-1165 "TSETCAT.spad" 2063384 2063401 2076225 2076264) (-1164 "TSETCAT.spad" 2050497 2050516 2063340 2063345) (-1163 "TRMANIP.spad" 2044863 2044880 2050203 2050208) (-1162 "TRIMAT.spad" 2043822 2043847 2044853 2044858) (-1161 "TRIGMNIP.spad" 2042339 2042356 2043812 2043817) (-1160 "TRIGCAT.spad" 2041851 2041860 2042329 2042334) (-1159 "TRIGCAT.spad" 2041361 2041372 2041841 2041846) (-1158 "TREE.spad" 2039932 2039943 2040968 2040995) (-1157 "TRANFUN.spad" 2039763 2039772 2039922 2039927) (-1156 "TRANFUN.spad" 2039592 2039603 2039753 2039758) (-1155 "TOPSP.spad" 2039266 2039275 2039582 2039587) (-1154 "TOOLSIGN.spad" 2038929 2038940 2039256 2039261) (-1153 "TEXTFILE.spad" 2037486 2037495 2038919 2038924) (-1152 "TEX.spad" 2034503 2034512 2037476 2037481) (-1151 "TEX1.spad" 2034059 2034070 2034493 2034498) (-1150 "TEMUTL.spad" 2033614 2033623 2034049 2034054) (-1149 "TBCMPPK.spad" 2031707 2031730 2033604 2033609) (-1148 "TBAGG.spad" 2030731 2030754 2031675 2031702) (-1147 "TBAGG.spad" 2029775 2029800 2030721 2030726) (-1146 "TANEXP.spad" 2029151 2029162 2029765 2029770) (-1145 "TABLE.spad" 2027562 2027585 2027832 2027859) (-1144 "TABLEAU.spad" 2027043 2027054 2027552 2027557) (-1143 "TABLBUMP.spad" 2023826 2023837 2027033 2027038) (-1142 "SYSTEM.spad" 2023100 2023109 2023816 2023821) (-1141 "SYSSOLP.spad" 2020573 2020584 2023090 2023095) (-1140 "SYNTAX.spad" 2016765 2016774 2020563 2020568) (-1139 "SYMTAB.spad" 2014821 2014830 2016755 2016760) (-1138 "SYMS.spad" 2010806 2010815 2014811 2014816) (-1137 "SYMPOLY.spad" 2009813 2009824 2009895 2010022) (-1136 "SYMFUNC.spad" 2009288 2009299 2009803 2009808) (-1135 "SYMBOL.spad" 2006624 2006633 2009278 2009283) (-1134 "SWITCH.spad" 2003381 2003390 2006614 2006619) (-1133 "SUTS.spad" 2000280 2000308 2001848 2001945) (-1132 "SUPXS.spad" 1997294 1997322 1998412 1998561) (-1131 "SUP.spad" 1994063 1994074 1994844 1994997) (-1130 "SUPFRACF.spad" 1993168 1993186 1994053 1994058) (-1129 "SUP2.spad" 1992558 1992571 1993158 1993163) (-1128 "SUMRF.spad" 1991524 1991535 1992548 1992553) (-1127 "SUMFS.spad" 1991157 1991174 1991514 1991519) (-1126 "SULS.spad" 1981698 1981726 1982804 1983233) (-1125 "SUCH.spad" 1981378 1981393 1981688 1981693) (-1124 "SUBSPACE.spad" 1973385 1973400 1981368 1981373) (-1123 "SUBRESP.spad" 1972545 1972559 1973341 1973346) (-1122 "STTF.spad" 1968644 1968660 1972535 1972540) (-1121 "STTFNC.spad" 1965112 1965128 1968634 1968639) (-1120 "STTAYLOR.spad" 1957510 1957521 1964993 1964998) (-1119 "STRTBL.spad" 1956015 1956032 1956164 1956191) (-1118 "STRING.spad" 1955424 1955433 1955438 1955465) (-1117 "STRICAT.spad" 1955200 1955209 1955380 1955419) (-1116 "STREAM.spad" 1951968 1951979 1954725 1954740) (-1115 "STREAM3.spad" 1951513 1951528 1951958 1951963) (-1114 "STREAM2.spad" 1950581 1950594 1951503 1951508) (-1113 "STREAM1.spad" 1950285 1950296 1950571 1950576) (-1112 "STINPROD.spad" 1949191 1949207 1950275 1950280) (-1111 "STEP.spad" 1948392 1948401 1949181 1949186) (-1110 "STBL.spad" 1946918 1946946 1947085 1947100) (-1109 "STAGG.spad" 1945983 1945994 1946898 1946913) (-1108 "STAGG.spad" 1945056 1945069 1945973 1945978) (-1107 "STACK.spad" 1944407 1944418 1944663 1944690) (-1106 "SREGSET.spad" 1942111 1942128 1944053 1944080) (-1105 "SRDCMPK.spad" 1940656 1940676 1942101 1942106) (-1104 "SRAGG.spad" 1935741 1935750 1940612 1940651) (-1103 "SRAGG.spad" 1930858 1930869 1935731 1935736) (-1102 "SQMATRIX.spad" 1928482 1928500 1929390 1929477) (-1101 "SPLTREE.spad" 1923034 1923047 1927918 1927945) (-1100 "SPLNODE.spad" 1919622 1919635 1923024 1923029) (-1099 "SPFCAT.spad" 1918399 1918408 1919612 1919617) (-1098 "SPECOUT.spad" 1916949 1916958 1918389 1918394) (-1097 "spad-parser.spad" 1916414 1916423 1916939 1916944) (-1096 "SPACEC.spad" 1900427 1900438 1916404 1916409) (-1095 "SPACE3.spad" 1900203 1900214 1900417 1900422) (-1094 "SORTPAK.spad" 1899748 1899761 1900159 1900164) (-1093 "SOLVETRA.spad" 1897505 1897516 1899738 1899743) (-1092 "SOLVESER.spad" 1896025 1896036 1897495 1897500) (-1091 "SOLVERAD.spad" 1892035 1892046 1896015 1896020) (-1090 "SOLVEFOR.spad" 1890455 1890473 1892025 1892030) (-1089 "SNTSCAT.spad" 1890043 1890060 1890411 1890450) (-1088 "SMTS.spad" 1888303 1888329 1889608 1889705) (-1087 "SMP.spad" 1885742 1885762 1886132 1886259) (-1086 "SMITH.spad" 1884585 1884610 1885732 1885737) (-1085 "SMATCAT.spad" 1882683 1882713 1884517 1884580) (-1084 "SMATCAT.spad" 1880725 1880757 1882561 1882566) (-1083 "SKAGG.spad" 1879674 1879685 1880681 1880720) (-1082 "SINT.spad" 1877982 1877991 1879540 1879669) (-1081 "SIMPAN.spad" 1877710 1877719 1877972 1877977) (-1080 "SIG.spad" 1877038 1877047 1877700 1877705) (-1079 "SIGNRF.spad" 1876146 1876157 1877028 1877033) (-1078 "SIGNEF.spad" 1875415 1875432 1876136 1876141) (-1077 "SHP.spad" 1873333 1873348 1875371 1875376) (-1076 "SHDP.spad" 1864318 1864345 1864827 1864958) (-1075 "SGROUP.spad" 1863926 1863935 1864308 1864313) (-1074 "SGROUP.spad" 1863532 1863543 1863916 1863921) (-1073 "SGCF.spad" 1856413 1856422 1863522 1863527) (-1072 "SFRTCAT.spad" 1855329 1855346 1856369 1856408) (-1071 "SFRGCD.spad" 1854392 1854412 1855319 1855324) (-1070 "SFQCMPK.spad" 1849029 1849049 1854382 1854387) (-1069 "SFORT.spad" 1848464 1848478 1849019 1849024) (-1068 "SEXOF.spad" 1848307 1848347 1848454 1848459) (-1067 "SEX.spad" 1848199 1848208 1848297 1848302) (-1066 "SEXCAT.spad" 1845303 1845343 1848189 1848194) (-1065 "SET.spad" 1843603 1843614 1844724 1844763) (-1064 "SETMN.spad" 1842037 1842054 1843593 1843598) (-1063 "SETCAT.spad" 1841522 1841531 1842027 1842032) (-1062 "SETCAT.spad" 1841005 1841016 1841512 1841517) (-1061 "SETAGG.spad" 1837514 1837525 1840973 1841000) (-1060 "SETAGG.spad" 1834043 1834056 1837504 1837509) (-1059 "SEGXCAT.spad" 1833155 1833168 1834023 1834038) (-1058 "SEG.spad" 1832968 1832979 1833074 1833079) (-1057 "SEGCAT.spad" 1831787 1831798 1832948 1832963) (-1056 "SEGBIND.spad" 1830859 1830870 1831742 1831747) (-1055 "SEGBIND2.spad" 1830555 1830568 1830849 1830854) (-1054 "SEGAST.spad" 1830270 1830279 1830545 1830550) (-1053 "SEG2.spad" 1829695 1829708 1830226 1830231) (-1052 "SDVAR.spad" 1828971 1828982 1829685 1829690) (-1051 "SDPOL.spad" 1826361 1826372 1826652 1826779) (-1050 "SCPKG.spad" 1824440 1824451 1826351 1826356) (-1049 "SCOPE.spad" 1823585 1823594 1824430 1824435) (-1048 "SCACHE.spad" 1822267 1822278 1823575 1823580) (-1047 "SASTCAT.spad" 1822176 1822185 1822257 1822262) (-1046 "SASTCAT.spad" 1822083 1822094 1822166 1822171) (-1045 "SAOS.spad" 1821955 1821964 1822073 1822078) (-1044 "SAERFFC.spad" 1821668 1821688 1821945 1821950) (-1043 "SAE.spad" 1819843 1819859 1820454 1820589) (-1042 "SAEFACT.spad" 1819544 1819564 1819833 1819838) (-1041 "RURPK.spad" 1817185 1817201 1819534 1819539) (-1040 "RULESET.spad" 1816626 1816650 1817175 1817180) (-1039 "RULE.spad" 1814830 1814854 1816616 1816621) (-1038 "RULECOLD.spad" 1814682 1814695 1814820 1814825) (-1037 "RSETGCD.spad" 1811060 1811080 1814672 1814677) (-1036 "RSETCAT.spad" 1800832 1800849 1811016 1811055) (-1035 "RSETCAT.spad" 1790636 1790655 1800822 1800827) (-1034 "RSDCMPK.spad" 1789088 1789108 1790626 1790631) (-1033 "RRCC.spad" 1787472 1787502 1789078 1789083) (-1032 "RRCC.spad" 1785854 1785886 1787462 1787467) (-1031 "RPTAST.spad" 1785558 1785567 1785844 1785849) (-1030 "RPOLCAT.spad" 1764918 1764933 1785426 1785553) (-1029 "RPOLCAT.spad" 1743992 1744009 1764502 1764507) (-1028 "ROUTINE.spad" 1739855 1739864 1742639 1742666) (-1027 "ROMAN.spad" 1739087 1739096 1739721 1739850) (-1026 "ROIRC.spad" 1738167 1738199 1739077 1739082) (-1025 "RNS.spad" 1737070 1737079 1738069 1738162) (-1024 "RNS.spad" 1736059 1736070 1737060 1737065) (-1023 "RNG.spad" 1735794 1735803 1736049 1736054) (-1022 "RMODULE.spad" 1735432 1735443 1735784 1735789) (-1021 "RMCAT2.spad" 1734840 1734897 1735422 1735427) (-1020 "RMATRIX.spad" 1733519 1733538 1734007 1734046) (-1019 "RMATCAT.spad" 1729040 1729071 1733463 1733514) (-1018 "RMATCAT.spad" 1724463 1724496 1728888 1728893) (-1017 "RINTERP.spad" 1724351 1724371 1724453 1724458) (-1016 "RING.spad" 1723708 1723717 1724331 1724346) (-1015 "RING.spad" 1723073 1723084 1723698 1723703) (-1014 "RIDIST.spad" 1722457 1722466 1723063 1723068) (-1013 "RGCHAIN.spad" 1721036 1721052 1721942 1721969) (-1012 "RF.spad" 1718650 1718661 1721026 1721031) (-1011 "RFFACTOR.spad" 1718112 1718123 1718640 1718645) (-1010 "RFFACT.spad" 1717847 1717859 1718102 1718107) (-1009 "RFDIST.spad" 1716835 1716844 1717837 1717842) (-1008 "RETSOL.spad" 1716252 1716265 1716825 1716830) (-1007 "RETRACT.spad" 1715601 1715612 1716242 1716247) (-1006 "RETRACT.spad" 1714948 1714961 1715591 1715596) (-1005 "RETAST.spad" 1714761 1714770 1714938 1714943) (-1004 "RESULT.spad" 1712821 1712830 1713408 1713435) (-1003 "RESRING.spad" 1712168 1712215 1712759 1712816) (-1002 "RESLATC.spad" 1711492 1711503 1712158 1712163) (-1001 "REPSQ.spad" 1711221 1711232 1711482 1711487) (-1000 "REP.spad" 1708773 1708782 1711211 1711216) (-999 "REPDB.spad" 1708479 1708489 1708763 1708768) (-998 "REP2.spad" 1698052 1698062 1708321 1708326) (-997 "REP1.spad" 1692043 1692053 1698002 1698007) (-996 "REGSET.spad" 1689841 1689857 1691689 1691716) (-995 "REF.spad" 1689171 1689181 1689796 1689801) (-994 "REDORDER.spad" 1688348 1688364 1689161 1689166) (-993 "RECLOS.spad" 1687132 1687151 1687835 1687928) (-992 "REALSOLV.spad" 1686265 1686273 1687122 1687127) (-991 "REAL.spad" 1686138 1686146 1686255 1686260) (-990 "REAL0Q.spad" 1683421 1683435 1686128 1686133) (-989 "REAL0.spad" 1680250 1680264 1683411 1683416) (-988 "RDUCEAST.spad" 1679974 1679982 1680240 1680245) (-987 "RDIV.spad" 1679626 1679650 1679964 1679969) (-986 "RDIST.spad" 1679190 1679200 1679616 1679621) (-985 "RDETRS.spad" 1677987 1678004 1679180 1679185) (-984 "RDETR.spad" 1676095 1676112 1677977 1677982) (-983 "RDEEFS.spad" 1675169 1675185 1676085 1676090) (-982 "RDEEF.spad" 1674166 1674182 1675159 1675164) (-981 "RCFIELD.spad" 1671353 1671361 1674068 1674161) (-980 "RCFIELD.spad" 1668626 1668636 1671343 1671348) (-979 "RCAGG.spad" 1666529 1666539 1668606 1668621) (-978 "RCAGG.spad" 1664369 1664381 1666448 1666453) (-977 "RATRET.spad" 1663730 1663740 1664359 1664364) (-976 "RATFACT.spad" 1663423 1663434 1663720 1663725) (-975 "RANDSRC.spad" 1662743 1662751 1663413 1663418) (-974 "RADUTIL.spad" 1662498 1662506 1662733 1662738) (-973 "RADIX.spad" 1659289 1659302 1660966 1661059) (-972 "RADFF.spad" 1657703 1657739 1657821 1657977) (-971 "RADCAT.spad" 1657297 1657305 1657693 1657698) (-970 "RADCAT.spad" 1656889 1656899 1657287 1657292) (-969 "QUEUE.spad" 1656232 1656242 1656496 1656523) (-968 "QUAT.spad" 1654814 1654824 1655156 1655221) (-967 "QUATCT2.spad" 1654433 1654451 1654804 1654809) (-966 "QUATCAT.spad" 1652598 1652608 1654363 1654428) (-965 "QUATCAT.spad" 1650514 1650526 1652281 1652286) (-964 "QUAGG.spad" 1649328 1649338 1650470 1650509) (-963 "QQUTAST.spad" 1649098 1649106 1649318 1649323) (-962 "QFORM.spad" 1648561 1648575 1649088 1649093) (-961 "QFCAT.spad" 1647252 1647262 1648451 1648556) (-960 "QFCAT.spad" 1645547 1645559 1646748 1646753) (-959 "QFCAT2.spad" 1645238 1645254 1645537 1645542) (-958 "QEQUAT.spad" 1644795 1644803 1645228 1645233) (-957 "QCMPACK.spad" 1639542 1639561 1644785 1644790) (-956 "QALGSET.spad" 1635617 1635649 1639456 1639461) (-955 "QALGSET2.spad" 1633613 1633631 1635607 1635612) (-954 "PWFFINTB.spad" 1630923 1630944 1633603 1633608) (-953 "PUSHVAR.spad" 1630252 1630271 1630913 1630918) (-952 "PTRANFN.spad" 1626378 1626388 1630242 1630247) (-951 "PTPACK.spad" 1623466 1623476 1626368 1626373) (-950 "PTFUNC2.spad" 1623287 1623301 1623456 1623461) (-949 "PTCAT.spad" 1622369 1622379 1623243 1623282) (-948 "PSQFR.spad" 1621676 1621700 1622359 1622364) (-947 "PSEUDLIN.spad" 1620534 1620544 1621666 1621671) (-946 "PSETPK.spad" 1605967 1605983 1620412 1620417) (-945 "PSETCAT.spad" 1599875 1599898 1605935 1605962) (-944 "PSETCAT.spad" 1593769 1593794 1599831 1599836) (-943 "PSCURVE.spad" 1592752 1592760 1593759 1593764) (-942 "PSCAT.spad" 1591519 1591548 1592650 1592747) (-941 "PSCAT.spad" 1590376 1590407 1591509 1591514) (-940 "PRTITION.spad" 1589219 1589227 1590366 1590371) (-939 "PRTDAST.spad" 1588939 1588947 1589209 1589214) (-938 "PRS.spad" 1578501 1578518 1588895 1588900) (-937 "PRQAGG.spad" 1577920 1577930 1578457 1578496) (-936 "PROPLOG.spad" 1577323 1577331 1577910 1577915) (-935 "PROPFRML.spad" 1575241 1575252 1577313 1577318) (-934 "PROPERTY.spad" 1574735 1574743 1575231 1575236) (-933 "PRODUCT.spad" 1572415 1572427 1572701 1572756) (-932 "PR.spad" 1570801 1570813 1571506 1571633) (-931 "PRINT.spad" 1570553 1570561 1570791 1570796) (-930 "PRIMES.spad" 1568804 1568814 1570543 1570548) (-929 "PRIMELT.spad" 1566785 1566799 1568794 1568799) (-928 "PRIMCAT.spad" 1566408 1566416 1566775 1566780) (-927 "PRIMARR.spad" 1565413 1565423 1565591 1565618) (-926 "PRIMARR2.spad" 1564136 1564148 1565403 1565408) (-925 "PREASSOC.spad" 1563508 1563520 1564126 1564131) (-924 "PPCURVE.spad" 1562645 1562653 1563498 1563503) (-923 "PORTNUM.spad" 1562420 1562428 1562635 1562640) (-922 "POLYROOT.spad" 1561192 1561214 1562376 1562381) (-921 "POLY.spad" 1558489 1558499 1559006 1559133) (-920 "POLYLIFT.spad" 1557750 1557773 1558479 1558484) (-919 "POLYCATQ.spad" 1555852 1555874 1557740 1557745) (-918 "POLYCAT.spad" 1549258 1549279 1555720 1555847) (-917 "POLYCAT.spad" 1541966 1541989 1548430 1548435) (-916 "POLY2UP.spad" 1541414 1541428 1541956 1541961) (-915 "POLY2.spad" 1541009 1541021 1541404 1541409) (-914 "POLUTIL.spad" 1539950 1539979 1540965 1540970) (-913 "POLTOPOL.spad" 1538698 1538713 1539940 1539945) (-912 "POINT.spad" 1537537 1537547 1537624 1537651) (-911 "PNTHEORY.spad" 1534203 1534211 1537527 1537532) (-910 "PMTOOLS.spad" 1532960 1532974 1534193 1534198) (-909 "PMSYM.spad" 1532505 1532515 1532950 1532955) (-908 "PMQFCAT.spad" 1532092 1532106 1532495 1532500) (-907 "PMPRED.spad" 1531561 1531575 1532082 1532087) (-906 "PMPREDFS.spad" 1531005 1531027 1531551 1531556) (-905 "PMPLCAT.spad" 1530075 1530093 1530937 1530942) (-904 "PMLSAGG.spad" 1529656 1529670 1530065 1530070) (-903 "PMKERNEL.spad" 1529223 1529235 1529646 1529651) (-902 "PMINS.spad" 1528799 1528809 1529213 1529218) (-901 "PMFS.spad" 1528372 1528390 1528789 1528794) (-900 "PMDOWN.spad" 1527658 1527672 1528362 1528367) (-899 "PMASS.spad" 1526670 1526678 1527648 1527653) (-898 "PMASSFS.spad" 1525639 1525655 1526660 1526665) (-897 "PLOTTOOL.spad" 1525419 1525427 1525629 1525634) (-896 "PLOT.spad" 1520250 1520258 1525409 1525414) (-895 "PLOT3D.spad" 1516670 1516678 1520240 1520245) (-894 "PLOT1.spad" 1515811 1515821 1516660 1516665) (-893 "PLEQN.spad" 1503027 1503054 1515801 1515806) (-892 "PINTERP.spad" 1502643 1502662 1503017 1503022) (-891 "PINTERPA.spad" 1502425 1502441 1502633 1502638) (-890 "PI.spad" 1502032 1502040 1502399 1502420) (-889 "PID.spad" 1500988 1500996 1501958 1502027) (-888 "PICOERCE.spad" 1500645 1500655 1500978 1500983) (-887 "PGROEB.spad" 1499242 1499256 1500635 1500640) (-886 "PGE.spad" 1490495 1490503 1499232 1499237) (-885 "PGCD.spad" 1489377 1489394 1490485 1490490) (-884 "PFRPAC.spad" 1488520 1488530 1489367 1489372) (-883 "PFR.spad" 1485177 1485187 1488422 1488515) (-882 "PFOTOOLS.spad" 1484435 1484451 1485167 1485172) (-881 "PFOQ.spad" 1483805 1483823 1484425 1484430) (-880 "PFO.spad" 1483224 1483251 1483795 1483800) (-879 "PF.spad" 1482798 1482810 1483029 1483122) (-878 "PFECAT.spad" 1480464 1480472 1482724 1482793) (-877 "PFECAT.spad" 1478158 1478168 1480420 1480425) (-876 "PFBRU.spad" 1476028 1476040 1478148 1478153) (-875 "PFBR.spad" 1473566 1473589 1476018 1476023) (-874 "PERM.spad" 1469247 1469257 1473396 1473411) (-873 "PERMGRP.spad" 1463983 1463993 1469237 1469242) (-872 "PERMCAT.spad" 1462535 1462545 1463963 1463978) (-871 "PERMAN.spad" 1461067 1461081 1462525 1462530) (-870 "PENDTREE.spad" 1460340 1460350 1460696 1460701) (-869 "PDRING.spad" 1458831 1458841 1460320 1460335) (-868 "PDRING.spad" 1457330 1457342 1458821 1458826) (-867 "PDEPROB.spad" 1456287 1456295 1457320 1457325) (-866 "PDEPACK.spad" 1450289 1450297 1456277 1456282) (-865 "PDECOMP.spad" 1449751 1449768 1450279 1450284) (-864 "PDECAT.spad" 1448105 1448113 1449741 1449746) (-863 "PCOMP.spad" 1447956 1447969 1448095 1448100) (-862 "PBWLB.spad" 1446538 1446555 1447946 1447951) (-861 "PATTERN.spad" 1440969 1440979 1446528 1446533) (-860 "PATTERN2.spad" 1440705 1440717 1440959 1440964) (-859 "PATTERN1.spad" 1439007 1439023 1440695 1440700) (-858 "PATRES.spad" 1436554 1436566 1438997 1439002) (-857 "PATRES2.spad" 1436216 1436230 1436544 1436549) (-856 "PATMATCH.spad" 1434373 1434404 1435924 1435929) (-855 "PATMAB.spad" 1433798 1433808 1434363 1434368) (-854 "PATLRES.spad" 1432882 1432896 1433788 1433793) (-853 "PATAB.spad" 1432646 1432656 1432872 1432877) (-852 "PARTPERM.spad" 1430008 1430016 1432636 1432641) (-851 "PARSURF.spad" 1429436 1429464 1429998 1430003) (-850 "PARSU2.spad" 1429231 1429247 1429426 1429431) (-849 "script-parser.spad" 1428751 1428759 1429221 1429226) (-848 "PARSCURV.spad" 1428179 1428207 1428741 1428746) (-847 "PARSC2.spad" 1427968 1427984 1428169 1428174) (-846 "PARPCURV.spad" 1427426 1427454 1427958 1427963) (-845 "PARPC2.spad" 1427215 1427231 1427416 1427421) (-844 "PAN2EXPR.spad" 1426627 1426635 1427205 1427210) (-843 "PALETTE.spad" 1425597 1425605 1426617 1426622) (-842 "PAIR.spad" 1424580 1424593 1425185 1425190) (-841 "PADICRC.spad" 1421911 1421929 1423086 1423179) (-840 "PADICRAT.spad" 1419927 1419939 1420148 1420241) (-839 "PADIC.spad" 1419622 1419634 1419853 1419922) (-838 "PADICCT.spad" 1418163 1418175 1419548 1419617) (-837 "PADEPAC.spad" 1416842 1416861 1418153 1418158) (-836 "PADE.spad" 1415582 1415598 1416832 1416837) (-835 "OWP.spad" 1414566 1414596 1415440 1415507) (-834 "OVAR.spad" 1414347 1414370 1414556 1414561) (-833 "OUT.spad" 1413431 1413439 1414337 1414342) (-832 "OUTFORM.spad" 1402845 1402853 1413421 1413426) (-831 "OUTBCON.spad" 1402124 1402132 1402835 1402840) (-830 "OUTBCON.spad" 1401401 1401411 1402114 1402119) (-829 "OSI.spad" 1400876 1400884 1401391 1401396) (-828 "OSGROUP.spad" 1400794 1400802 1400866 1400871) (-827 "ORTHPOL.spad" 1399255 1399265 1400711 1400716) (-826 "OREUP.spad" 1398613 1398641 1398935 1398974) (-825 "ORESUP.spad" 1397912 1397936 1398293 1398332) (-824 "OREPCTO.spad" 1395731 1395743 1397832 1397837) (-823 "OREPCAT.spad" 1389788 1389798 1395687 1395726) (-822 "OREPCAT.spad" 1383735 1383747 1389636 1389641) (-821 "ORDSET.spad" 1382901 1382909 1383725 1383730) (-820 "ORDSET.spad" 1382065 1382075 1382891 1382896) (-819 "ORDRING.spad" 1381455 1381463 1382045 1382060) (-818 "ORDRING.spad" 1380853 1380863 1381445 1381450) (-817 "ORDMON.spad" 1380708 1380716 1380843 1380848) (-816 "ORDFUNS.spad" 1379834 1379850 1380698 1380703) (-815 "ORDFIN.spad" 1379768 1379776 1379824 1379829) (-814 "ORDCOMP.spad" 1378233 1378243 1379315 1379344) (-813 "ORDCOMP2.spad" 1377518 1377530 1378223 1378228) (-812 "OPTPROB.spad" 1376098 1376106 1377508 1377513) (-811 "OPTPACK.spad" 1368483 1368491 1376088 1376093) (-810 "OPTCAT.spad" 1366158 1366166 1368473 1368478) (-809 "OPQUERY.spad" 1365707 1365715 1366148 1366153) (-808 "OP.spad" 1365449 1365459 1365529 1365596) (-807 "ONECOMP.spad" 1364194 1364204 1364996 1365025) (-806 "ONECOMP2.spad" 1363612 1363624 1364184 1364189) (-805 "OMSERVER.spad" 1362614 1362622 1363602 1363607) (-804 "OMSAGG.spad" 1362390 1362400 1362558 1362609) (-803 "OMPKG.spad" 1361002 1361010 1362380 1362385) (-802 "OM.spad" 1359967 1359975 1360992 1360997) (-801 "OMLO.spad" 1359392 1359404 1359853 1359892) (-800 "OMEXPR.spad" 1359226 1359236 1359382 1359387) (-799 "OMERR.spad" 1358769 1358777 1359216 1359221) (-798 "OMERRK.spad" 1357803 1357811 1358759 1358764) (-797 "OMENC.spad" 1357147 1357155 1357793 1357798) (-796 "OMDEV.spad" 1351436 1351444 1357137 1357142) (-795 "OMCONN.spad" 1350845 1350853 1351426 1351431) (-794 "OINTDOM.spad" 1350608 1350616 1350771 1350840) (-793 "OFMONOID.spad" 1346795 1346805 1350598 1350603) (-792 "ODVAR.spad" 1346056 1346066 1346785 1346790) (-791 "ODR.spad" 1345504 1345530 1345868 1346017) (-790 "ODPOL.spad" 1342850 1342860 1343190 1343317) (-789 "ODP.spad" 1333971 1333991 1334344 1334475) (-788 "ODETOOLS.spad" 1332554 1332573 1333961 1333966) (-787 "ODESYS.spad" 1330204 1330221 1332544 1332549) (-786 "ODERTRIC.spad" 1326145 1326162 1330161 1330166) (-785 "ODERED.spad" 1325532 1325556 1326135 1326140) (-784 "ODERAT.spad" 1323083 1323100 1325522 1325527) (-783 "ODEPRRIC.spad" 1319974 1319996 1323073 1323078) (-782 "ODEPROB.spad" 1319173 1319181 1319964 1319969) (-781 "ODEPRIM.spad" 1316447 1316469 1319163 1319168) (-780 "ODEPAL.spad" 1315823 1315847 1316437 1316442) (-779 "ODEPACK.spad" 1302425 1302433 1315813 1315818) (-778 "ODEINT.spad" 1301856 1301872 1302415 1302420) (-777 "ODEIFTBL.spad" 1299251 1299259 1301846 1301851) (-776 "ODEEF.spad" 1294618 1294634 1299241 1299246) (-775 "ODECONST.spad" 1294137 1294155 1294608 1294613) (-774 "ODECAT.spad" 1292733 1292741 1294127 1294132) (-773 "OCT.spad" 1290871 1290881 1291587 1291626) (-772 "OCTCT2.spad" 1290515 1290536 1290861 1290866) (-771 "OC.spad" 1288289 1288299 1290471 1290510) (-770 "OC.spad" 1285788 1285800 1287972 1287977) (-769 "OCAMON.spad" 1285636 1285644 1285778 1285783) (-768 "OASGP.spad" 1285451 1285459 1285626 1285631) (-767 "OAMONS.spad" 1284971 1284979 1285441 1285446) (-766 "OAMON.spad" 1284832 1284840 1284961 1284966) (-765 "OAGROUP.spad" 1284694 1284702 1284822 1284827) (-764 "NUMTUBE.spad" 1284281 1284297 1284684 1284689) (-763 "NUMQUAD.spad" 1272143 1272151 1284271 1284276) (-762 "NUMODE.spad" 1263279 1263287 1272133 1272138) (-761 "NUMINT.spad" 1260837 1260845 1263269 1263274) (-760 "NUMFMT.spad" 1259677 1259685 1260827 1260832) (-759 "NUMERIC.spad" 1251749 1251759 1259482 1259487) (-758 "NTSCAT.spad" 1250239 1250255 1251705 1251744) (-757 "NTPOLFN.spad" 1249784 1249794 1250156 1250161) (-756 "NSUP.spad" 1242794 1242804 1247334 1247487) (-755 "NSUP2.spad" 1242186 1242198 1242784 1242789) (-754 "NSMP.spad" 1238381 1238400 1238689 1238816) (-753 "NREP.spad" 1236753 1236767 1238371 1238376) (-752 "NPCOEF.spad" 1235999 1236019 1236743 1236748) (-751 "NORMRETR.spad" 1235597 1235636 1235989 1235994) (-750 "NORMPK.spad" 1233499 1233518 1235587 1235592) (-749 "NORMMA.spad" 1233187 1233213 1233489 1233494) (-748 "NONE.spad" 1232928 1232936 1233177 1233182) (-747 "NONE1.spad" 1232604 1232614 1232918 1232923) (-746 "NODE1.spad" 1232073 1232089 1232594 1232599) (-745 "NNI.spad" 1230960 1230968 1232047 1232068) (-744 "NLINSOL.spad" 1229582 1229592 1230950 1230955) (-743 "NIPROB.spad" 1228065 1228073 1229572 1229577) (-742 "NFINTBAS.spad" 1225525 1225542 1228055 1228060) (-741 "NCODIV.spad" 1223723 1223739 1225515 1225520) (-740 "NCNTFRAC.spad" 1223365 1223379 1223713 1223718) (-739 "NCEP.spad" 1221525 1221539 1223355 1223360) (-738 "NASRING.spad" 1221121 1221129 1221515 1221520) (-737 "NASRING.spad" 1220715 1220725 1221111 1221116) (-736 "NARNG.spad" 1220059 1220067 1220705 1220710) (-735 "NARNG.spad" 1219401 1219411 1220049 1220054) (-734 "NAGSP.spad" 1218474 1218482 1219391 1219396) (-733 "NAGS.spad" 1207999 1208007 1218464 1218469) (-732 "NAGF07.spad" 1206392 1206400 1207989 1207994) (-731 "NAGF04.spad" 1200624 1200632 1206382 1206387) (-730 "NAGF02.spad" 1194433 1194441 1200614 1200619) (-729 "NAGF01.spad" 1190036 1190044 1194423 1194428) (-728 "NAGE04.spad" 1183496 1183504 1190026 1190031) (-727 "NAGE02.spad" 1173838 1173846 1183486 1183491) (-726 "NAGE01.spad" 1169722 1169730 1173828 1173833) (-725 "NAGD03.spad" 1167642 1167650 1169712 1169717) (-724 "NAGD02.spad" 1160173 1160181 1167632 1167637) (-723 "NAGD01.spad" 1154286 1154294 1160163 1160168) (-722 "NAGC06.spad" 1150073 1150081 1154276 1154281) (-721 "NAGC05.spad" 1148542 1148550 1150063 1150068) (-720 "NAGC02.spad" 1147797 1147805 1148532 1148537) (-719 "NAALG.spad" 1147332 1147342 1147765 1147792) (-718 "NAALG.spad" 1146887 1146899 1147322 1147327) (-717 "MULTSQFR.spad" 1143845 1143862 1146877 1146882) (-716 "MULTFACT.spad" 1143228 1143245 1143835 1143840) (-715 "MTSCAT.spad" 1141262 1141283 1143126 1143223) (-714 "MTHING.spad" 1140919 1140929 1141252 1141257) (-713 "MSYSCMD.spad" 1140353 1140361 1140909 1140914) (-712 "MSET.spad" 1138295 1138305 1140059 1140098) (-711 "MSETAGG.spad" 1138128 1138138 1138251 1138290) (-710 "MRING.spad" 1135099 1135111 1137836 1137903) (-709 "MRF2.spad" 1134667 1134681 1135089 1135094) (-708 "MRATFAC.spad" 1134213 1134230 1134657 1134662) (-707 "MPRFF.spad" 1132243 1132262 1134203 1134208) (-706 "MPOLY.spad" 1129678 1129693 1130037 1130164) (-705 "MPCPF.spad" 1128942 1128961 1129668 1129673) (-704 "MPC3.spad" 1128757 1128797 1128932 1128937) (-703 "MPC2.spad" 1128399 1128432 1128747 1128752) (-702 "MONOTOOL.spad" 1126734 1126751 1128389 1128394) (-701 "MONOID.spad" 1126053 1126061 1126724 1126729) (-700 "MONOID.spad" 1125370 1125380 1126043 1126048) (-699 "MONOGEN.spad" 1124116 1124129 1125230 1125365) (-698 "MONOGEN.spad" 1122884 1122899 1124000 1124005) (-697 "MONADWU.spad" 1120898 1120906 1122874 1122879) (-696 "MONADWU.spad" 1118910 1118920 1120888 1120893) (-695 "MONAD.spad" 1118054 1118062 1118900 1118905) (-694 "MONAD.spad" 1117196 1117206 1118044 1118049) (-693 "MOEBIUS.spad" 1115882 1115896 1117176 1117191) (-692 "MODULE.spad" 1115752 1115762 1115850 1115877) (-691 "MODULE.spad" 1115642 1115654 1115742 1115747) (-690 "MODRING.spad" 1114973 1115012 1115622 1115637) (-689 "MODOP.spad" 1113632 1113644 1114795 1114862) (-688 "MODMONOM.spad" 1113164 1113182 1113622 1113627) (-687 "MODMON.spad" 1109866 1109882 1110642 1110795) (-686 "MODFIELD.spad" 1109224 1109263 1109768 1109861) (-685 "MMLFORM.spad" 1108084 1108092 1109214 1109219) (-684 "MMAP.spad" 1107824 1107858 1108074 1108079) (-683 "MLO.spad" 1106251 1106261 1107780 1107819) (-682 "MLIFT.spad" 1104823 1104840 1106241 1106246) (-681 "MKUCFUNC.spad" 1104356 1104374 1104813 1104818) (-680 "MKRECORD.spad" 1103958 1103971 1104346 1104351) (-679 "MKFUNC.spad" 1103339 1103349 1103948 1103953) (-678 "MKFLCFN.spad" 1102295 1102305 1103329 1103334) (-677 "MKCHSET.spad" 1102071 1102081 1102285 1102290) (-676 "MKBCFUNC.spad" 1101556 1101574 1102061 1102066) (-675 "MINT.spad" 1100995 1101003 1101458 1101551) (-674 "MHROWRED.spad" 1099496 1099506 1100985 1100990) (-673 "MFLOAT.spad" 1097941 1097949 1099386 1099491) (-672 "MFINFACT.spad" 1097341 1097363 1097931 1097936) (-671 "MESH.spad" 1095073 1095081 1097331 1097336) (-670 "MDDFACT.spad" 1093266 1093276 1095063 1095068) (-669 "MDAGG.spad" 1092541 1092551 1093234 1093261) (-668 "MCMPLX.spad" 1088516 1088524 1089130 1089331) (-667 "MCDEN.spad" 1087724 1087736 1088506 1088511) (-666 "MCALCFN.spad" 1084826 1084852 1087714 1087719) (-665 "MAYBE.spad" 1084075 1084086 1084816 1084821) (-664 "MATSTOR.spad" 1081351 1081361 1084065 1084070) (-663 "MATRIX.spad" 1080055 1080065 1080539 1080566) (-662 "MATLIN.spad" 1077381 1077405 1079939 1079944) (-661 "MATCAT.spad" 1068954 1068976 1077337 1077376) (-660 "MATCAT.spad" 1060411 1060435 1068796 1068801) (-659 "MATCAT2.spad" 1059679 1059727 1060401 1060406) (-658 "MAPPKG3.spad" 1058578 1058592 1059669 1059674) (-657 "MAPPKG2.spad" 1057912 1057924 1058568 1058573) (-656 "MAPPKG1.spad" 1056730 1056740 1057902 1057907) (-655 "MAPPAST.spad" 1056043 1056051 1056720 1056725) (-654 "MAPHACK3.spad" 1055851 1055865 1056033 1056038) (-653 "MAPHACK2.spad" 1055616 1055628 1055841 1055846) (-652 "MAPHACK1.spad" 1055246 1055256 1055606 1055611) (-651 "MAGMA.spad" 1053036 1053053 1055236 1055241) (-650 "MACROAST.spad" 1052604 1052612 1053026 1053031) (-649 "M3D.spad" 1050300 1050310 1051982 1051987) (-648 "LZSTAGG.spad" 1047518 1047528 1050280 1050295) (-647 "LZSTAGG.spad" 1044744 1044756 1047508 1047513) (-646 "LWORD.spad" 1041449 1041466 1044734 1044739) (-645 "LSTAST.spad" 1041234 1041242 1041439 1041444) (-644 "LSQM.spad" 1039460 1039474 1039858 1039909) (-643 "LSPP.spad" 1038993 1039010 1039450 1039455) (-642 "LSMP.spad" 1037833 1037861 1038983 1038988) (-641 "LSMP1.spad" 1035637 1035651 1037823 1037828) (-640 "LSAGG.spad" 1035294 1035304 1035593 1035632) (-639 "LSAGG.spad" 1034983 1034995 1035284 1035289) (-638 "LPOLY.spad" 1033937 1033956 1034839 1034908) (-637 "LPEFRAC.spad" 1033194 1033204 1033927 1033932) (-636 "LO.spad" 1032595 1032609 1033128 1033155) (-635 "LOGIC.spad" 1032197 1032205 1032585 1032590) (-634 "LOGIC.spad" 1031797 1031807 1032187 1032192) (-633 "LODOOPS.spad" 1030715 1030727 1031787 1031792) (-632 "LODO.spad" 1030099 1030115 1030395 1030434) (-631 "LODOF.spad" 1029143 1029160 1030056 1030061) (-630 "LODOCAT.spad" 1027801 1027811 1029099 1029138) (-629 "LODOCAT.spad" 1026457 1026469 1027757 1027762) (-628 "LODO2.spad" 1025730 1025742 1026137 1026176) (-627 "LODO1.spad" 1025130 1025140 1025410 1025449) (-626 "LODEEF.spad" 1023902 1023920 1025120 1025125) (-625 "LNAGG.spad" 1019694 1019704 1023882 1023897) (-624 "LNAGG.spad" 1015460 1015472 1019650 1019655) (-623 "LMOPS.spad" 1012196 1012213 1015450 1015455) (-622 "LMODULE.spad" 1011838 1011848 1012186 1012191) (-621 "LMDICT.spad" 1011121 1011131 1011389 1011416) (-620 "LITERAL.spad" 1011027 1011038 1011111 1011116) (-619 "LIST.spad" 1008745 1008755 1010174 1010201) (-618 "LIST3.spad" 1008036 1008050 1008735 1008740) (-617 "LIST2.spad" 1006676 1006688 1008026 1008031) (-616 "LIST2MAP.spad" 1003553 1003565 1006666 1006671) (-615 "LINEXP.spad" 1002985 1002995 1003533 1003548) (-614 "LINDEP.spad" 1001762 1001774 1002897 1002902) (-613 "LIMITRF.spad" 999676 999686 1001752 1001757) (-612 "LIMITPS.spad" 998559 998572 999666 999671) (-611 "LIE.spad" 996573 996585 997849 997994) (-610 "LIECAT.spad" 996049 996059 996499 996568) (-609 "LIECAT.spad" 995553 995565 996005 996010) (-608 "LIB.spad" 993601 993609 994212 994227) (-607 "LGROBP.spad" 990954 990973 993591 993596) (-606 "LF.spad" 989873 989889 990944 990949) (-605 "LFCAT.spad" 988892 988900 989863 989868) (-604 "LEXTRIPK.spad" 984395 984410 988882 988887) (-603 "LEXP.spad" 982398 982425 984375 984390) (-602 "LETAST.spad" 982099 982107 982388 982393) (-601 "LEADCDET.spad" 980483 980500 982089 982094) (-600 "LAZM3PK.spad" 979187 979209 980473 980478) (-599 "LAUPOL.spad" 977876 977889 978780 978849) (-598 "LAPLACE.spad" 977449 977465 977866 977871) (-597 "LA.spad" 976889 976903 977371 977410) (-596 "LALG.spad" 976665 976675 976869 976884) (-595 "LALG.spad" 976449 976461 976655 976660) (-594 "KTVLOGIC.spad" 976334 976342 976439 976444) (-593 "KOVACIC.spad" 975047 975064 976324 976329) (-592 "KONVERT.spad" 974769 974779 975037 975042) (-591 "KOERCE.spad" 974506 974516 974759 974764) (-590 "KERNEL.spad" 973041 973051 974290 974295) (-589 "KERNEL2.spad" 972744 972756 973031 973036) (-588 "KDAGG.spad" 971835 971857 972712 972739) (-587 "KDAGG.spad" 970946 970970 971825 971830) (-586 "KAFILE.spad" 969909 969925 970144 970171) (-585 "JORDAN.spad" 967736 967748 969199 969344) (-584 "JOINAST.spad" 967430 967438 967726 967731) (-583 "JAVACODE.spad" 967196 967204 967420 967425) (-582 "IXAGG.spad" 965309 965333 967176 967191) (-581 "IXAGG.spad" 963287 963313 965156 965161) (-580 "IVECTOR.spad" 962058 962073 962213 962240) (-579 "ITUPLE.spad" 961203 961213 962048 962053) (-578 "ITRIGMNP.spad" 960014 960033 961193 961198) (-577 "ITFUN3.spad" 959508 959522 960004 960009) (-576 "ITFUN2.spad" 959238 959250 959498 959503) (-575 "ITAYLOR.spad" 957030 957045 959074 959199) (-574 "ISUPS.spad" 949441 949456 956004 956101) (-573 "ISUMP.spad" 948938 948954 949431 949436) (-572 "ISTRING.spad" 947941 947954 948107 948134) (-571 "ISAST.spad" 947662 947670 947931 947936) (-570 "IRURPK.spad" 946375 946394 947652 947657) (-569 "IRSN.spad" 944335 944343 946365 946370) (-568 "IRRF2F.spad" 942810 942820 944291 944296) (-567 "IRREDFFX.spad" 942411 942422 942800 942805) (-566 "IROOT.spad" 940742 940752 942401 942406) (-565 "IR.spad" 938531 938545 940597 940624) (-564 "IR2.spad" 937551 937567 938521 938526) (-563 "IR2F.spad" 936751 936767 937541 937546) (-562 "IPRNTPK.spad" 936511 936519 936741 936746) (-561 "IPF.spad" 936076 936088 936316 936409) (-560 "IPADIC.spad" 935837 935863 936002 936071) (-559 "IOBCON.spad" 935702 935710 935827 935832) (-558 "INVLAPLA.spad" 935347 935363 935692 935697) (-557 "INTTR.spad" 928593 928610 935337 935342) (-556 "INTTOOLS.spad" 926304 926320 928167 928172) (-555 "INTSLPE.spad" 925610 925618 926294 926299) (-554 "INTRVL.spad" 925176 925186 925524 925605) (-553 "INTRF.spad" 923540 923554 925166 925171) (-552 "INTRET.spad" 922972 922982 923530 923535) (-551 "INTRAT.spad" 921647 921664 922962 922967) (-550 "INTPM.spad" 920010 920026 921290 921295) (-549 "INTPAF.spad" 917778 917796 919942 919947) (-548 "INTPACK.spad" 908088 908096 917768 917773) (-547 "INT.spad" 907449 907457 907942 908083) (-546 "INTHERTR.spad" 906715 906732 907439 907444) (-545 "INTHERAL.spad" 906381 906405 906705 906710) (-544 "INTHEORY.spad" 902794 902802 906371 906376) (-543 "INTG0.spad" 896257 896275 902726 902731) (-542 "INTFTBL.spad" 890286 890294 896247 896252) (-541 "INTFACT.spad" 889345 889355 890276 890281) (-540 "INTEF.spad" 887660 887676 889335 889340) (-539 "INTDOM.spad" 886275 886283 887586 887655) (-538 "INTDOM.spad" 884952 884962 886265 886270) (-537 "INTCAT.spad" 883205 883215 884866 884947) (-536 "INTBIT.spad" 882708 882716 883195 883200) (-535 "INTALG.spad" 881890 881917 882698 882703) (-534 "INTAF.spad" 881382 881398 881880 881885) (-533 "INTABL.spad" 879900 879931 880063 880090) (-532 "INS.spad" 877367 877375 879802 879895) (-531 "INS.spad" 874920 874930 877357 877362) (-530 "INPSIGN.spad" 874354 874367 874910 874915) (-529 "INPRODPF.spad" 873420 873439 874344 874349) (-528 "INPRODFF.spad" 872478 872502 873410 873415) (-527 "INNMFACT.spad" 871449 871466 872468 872473) (-526 "INMODGCD.spad" 870933 870963 871439 871444) (-525 "INFSP.spad" 869218 869240 870923 870928) (-524 "INFPROD0.spad" 868268 868287 869208 869213) (-523 "INFORM.spad" 865429 865437 868258 868263) (-522 "INFORM1.spad" 865054 865064 865419 865424) (-521 "INFINITY.spad" 864606 864614 865044 865049) (-520 "INEP.spad" 863138 863160 864596 864601) (-519 "INDE.spad" 862867 862884 863128 863133) (-518 "INCRMAPS.spad" 862288 862298 862857 862862) (-517 "INBFF.spad" 858058 858069 862278 862283) (-516 "INBCON.spad" 857358 857366 858048 858053) (-515 "INBCON.spad" 856656 856666 857348 857353) (-514 "INAST.spad" 856322 856330 856646 856651) (-513 "IMPTAST.spad" 856030 856038 856312 856317) (-512 "IMATRIX.spad" 854975 855001 855487 855514) (-511 "IMATQF.spad" 854069 854113 854931 854936) (-510 "IMATLIN.spad" 852674 852698 854025 854030) (-509 "ILIST.spad" 851330 851345 851857 851884) (-508 "IIARRAY2.spad" 850718 850756 850937 850964) (-507 "IFF.spad" 850128 850144 850399 850492) (-506 "IFAST.spad" 849745 849753 850118 850123) (-505 "IFARRAY.spad" 847232 847247 848928 848955) (-504 "IFAMON.spad" 847094 847111 847188 847193) (-503 "IEVALAB.spad" 846483 846495 847084 847089) (-502 "IEVALAB.spad" 845870 845884 846473 846478) (-501 "IDPO.spad" 845668 845680 845860 845865) (-500 "IDPOAMS.spad" 845424 845436 845658 845663) (-499 "IDPOAM.spad" 845144 845156 845414 845419) (-498 "IDPC.spad" 844078 844090 845134 845139) (-497 "IDPAM.spad" 843823 843835 844068 844073) (-496 "IDPAG.spad" 843570 843582 843813 843818) (-495 "IDENT.spad" 843487 843495 843560 843565) (-494 "IDECOMP.spad" 840724 840742 843477 843482) (-493 "IDEAL.spad" 835647 835686 840659 840664) (-492 "ICDEN.spad" 834798 834814 835637 835642) (-491 "ICARD.spad" 833987 833995 834788 834793) (-490 "IBPTOOLS.spad" 832580 832597 833977 833982) (-489 "IBITS.spad" 831779 831792 832216 832243) (-488 "IBATOOL.spad" 828654 828673 831769 831774) (-487 "IBACHIN.spad" 827141 827156 828644 828649) (-486 "IARRAY2.spad" 826129 826155 826748 826775) (-485 "IARRAY1.spad" 825174 825189 825312 825339) (-484 "IAN.spad" 823387 823395 824990 825083) (-483 "IALGFACT.spad" 822988 823021 823377 823382) (-482 "HYPCAT.spad" 822412 822420 822978 822983) (-481 "HYPCAT.spad" 821834 821844 822402 822407) (-480 "HOSTNAME.spad" 821642 821650 821824 821829) (-479 "HOAGG.spad" 818900 818910 821622 821637) (-478 "HOAGG.spad" 815943 815955 818667 818672) (-477 "HEXADEC.spad" 813813 813821 814411 814504) (-476 "HEUGCD.spad" 812828 812839 813803 813808) (-475 "HELLFDIV.spad" 812418 812442 812818 812823) (-474 "HEAP.spad" 811810 811820 812025 812052) (-473 "HEADAST.spad" 811341 811349 811800 811805) (-472 "HDP.spad" 802458 802474 802835 802966) (-471 "HDMP.spad" 799634 799649 800252 800379) (-470 "HB.spad" 797871 797879 799624 799629) (-469 "HASHTBL.spad" 796341 796372 796552 796579) (-468 "HASAST.spad" 796059 796067 796331 796336) (-467 "HACKPI.spad" 795542 795550 795961 796054) (-466 "GTSET.spad" 794481 794497 795188 795215) (-465 "GSTBL.spad" 793000 793035 793174 793189) (-464 "GSERIES.spad" 790167 790194 791132 791281) (-463 "GROUP.spad" 789436 789444 790147 790162) (-462 "GROUP.spad" 788713 788723 789426 789431) (-461 "GROEBSOL.spad" 787201 787222 788703 788708) (-460 "GRMOD.spad" 785772 785784 787191 787196) (-459 "GRMOD.spad" 784341 784355 785762 785767) (-458 "GRIMAGE.spad" 776946 776954 784331 784336) (-457 "GRDEF.spad" 775325 775333 776936 776941) (-456 "GRAY.spad" 773784 773792 775315 775320) (-455 "GRALG.spad" 772831 772843 773774 773779) (-454 "GRALG.spad" 771876 771890 772821 772826) (-453 "GPOLSET.spad" 771330 771353 771558 771585) (-452 "GOSPER.spad" 770595 770613 771320 771325) (-451 "GMODPOL.spad" 769733 769760 770563 770590) (-450 "GHENSEL.spad" 768802 768816 769723 769728) (-449 "GENUPS.spad" 764903 764916 768792 768797) (-448 "GENUFACT.spad" 764480 764490 764893 764898) (-447 "GENPGCD.spad" 764064 764081 764470 764475) (-446 "GENMFACT.spad" 763516 763535 764054 764059) (-445 "GENEEZ.spad" 761455 761468 763506 763511) (-444 "GDMP.spad" 758473 758490 759249 759376) (-443 "GCNAALG.spad" 752368 752395 758267 758334) (-442 "GCDDOM.spad" 751540 751548 752294 752363) (-441 "GCDDOM.spad" 750774 750784 751530 751535) (-440 "GB.spad" 748292 748330 750730 750735) (-439 "GBINTERN.spad" 744312 744350 748282 748287) (-438 "GBF.spad" 740069 740107 744302 744307) (-437 "GBEUCLID.spad" 737943 737981 740059 740064) (-436 "GAUSSFAC.spad" 737240 737248 737933 737938) (-435 "GALUTIL.spad" 735562 735572 737196 737201) (-434 "GALPOLYU.spad" 734008 734021 735552 735557) (-433 "GALFACTU.spad" 732173 732192 733998 734003) (-432 "GALFACT.spad" 722306 722317 732163 732168) (-431 "FVFUN.spad" 719319 719327 722286 722301) (-430 "FVC.spad" 718361 718369 719299 719314) (-429 "FUNCTION.spad" 718210 718222 718351 718356) (-428 "FT.spad" 716422 716430 718200 718205) (-427 "FTEM.spad" 715585 715593 716412 716417) (-426 "FSUPFACT.spad" 714485 714504 715521 715526) (-425 "FST.spad" 712571 712579 714475 714480) (-424 "FSRED.spad" 712049 712065 712561 712566) (-423 "FSPRMELT.spad" 710873 710889 712006 712011) (-422 "FSPECF.spad" 708950 708966 710863 710868) (-421 "FS.spad" 703000 703010 708713 708945) (-420 "FS.spad" 696840 696852 702555 702560) (-419 "FSINT.spad" 696498 696514 696830 696835) (-418 "FSERIES.spad" 695685 695697 696318 696417) (-417 "FSCINT.spad" 694998 695014 695675 695680) (-416 "FSAGG.spad" 694103 694113 694942 694993) (-415 "FSAGG.spad" 693182 693194 694023 694028) (-414 "FSAGG2.spad" 691881 691897 693172 693177) (-413 "FS2UPS.spad" 686270 686304 691871 691876) (-412 "FS2.spad" 685915 685931 686260 686265) (-411 "FS2EXPXP.spad" 685038 685061 685905 685910) (-410 "FRUTIL.spad" 683980 683990 685028 685033) (-409 "FR.spad" 677675 677685 683005 683074) (-408 "FRNAALG.spad" 672762 672772 677617 677670) (-407 "FRNAALG.spad" 667861 667873 672718 672723) (-406 "FRNAAF2.spad" 667315 667333 667851 667856) (-405 "FRMOD.spad" 666709 666739 667246 667251) (-404 "FRIDEAL.spad" 665904 665925 666689 666704) (-403 "FRIDEAL2.spad" 665506 665538 665894 665899) (-402 "FRETRCT.spad" 665017 665027 665496 665501) (-401 "FRETRCT.spad" 664394 664406 664875 664880) (-400 "FRAMALG.spad" 662722 662735 664350 664389) (-399 "FRAMALG.spad" 661082 661097 662712 662717) (-398 "FRAC.spad" 658182 658192 658585 658758) (-397 "FRAC2.spad" 657785 657797 658172 658177) (-396 "FR2.spad" 657119 657131 657775 657780) (-395 "FPS.spad" 653928 653936 657009 657114) (-394 "FPS.spad" 650765 650775 653848 653853) (-393 "FPC.spad" 649807 649815 650667 650760) (-392 "FPC.spad" 648935 648945 649797 649802) (-391 "FPATMAB.spad" 648687 648697 648915 648930) (-390 "FPARFRAC.spad" 647160 647177 648677 648682) (-389 "FORTRAN.spad" 645666 645709 647150 647155) (-388 "FORT.spad" 644595 644603 645656 645661) (-387 "FORTFN.spad" 641755 641763 644575 644590) (-386 "FORTCAT.spad" 641429 641437 641735 641750) (-385 "FORMULA.spad" 638767 638775 641419 641424) (-384 "FORMULA1.spad" 638246 638256 638757 638762) (-383 "FORDER.spad" 637937 637961 638236 638241) (-382 "FOP.spad" 637138 637146 637927 637932) (-381 "FNLA.spad" 636562 636584 637106 637133) (-380 "FNCAT.spad" 634890 634898 636552 636557) (-379 "FNAME.spad" 634782 634790 634880 634885) (-378 "FMTC.spad" 634580 634588 634708 634777) (-377 "FMONOID.spad" 631635 631645 634536 634541) (-376 "FM.spad" 631330 631342 631569 631596) (-375 "FMFUN.spad" 628350 628358 631310 631325) (-374 "FMC.spad" 627392 627400 628330 628345) (-373 "FMCAT.spad" 625046 625064 627360 627387) (-372 "FM1.spad" 624403 624415 624980 625007) (-371 "FLOATRP.spad" 622124 622138 624393 624398) (-370 "FLOAT.spad" 615288 615296 621990 622119) (-369 "FLOATCP.spad" 612705 612719 615278 615283) (-368 "FLINEXP.spad" 612417 612427 612685 612700) (-367 "FLINEXP.spad" 612083 612095 612353 612358) (-366 "FLASORT.spad" 611403 611415 612073 612078) (-365 "FLALG.spad" 609049 609068 611329 611398) (-364 "FLAGG.spad" 606055 606065 609017 609044) (-363 "FLAGG.spad" 602974 602986 605938 605943) (-362 "FLAGG2.spad" 601655 601671 602964 602969) (-361 "FINRALG.spad" 599684 599697 601611 601650) (-360 "FINRALG.spad" 597639 597654 599568 599573) (-359 "FINITE.spad" 596791 596799 597629 597634) (-358 "FINAALG.spad" 585772 585782 596733 596786) (-357 "FINAALG.spad" 574765 574777 585728 585733) (-356 "FILE.spad" 574348 574358 574755 574760) (-355 "FILECAT.spad" 572866 572883 574338 574343) (-354 "FIELD.spad" 572272 572280 572768 572861) (-353 "FIELD.spad" 571764 571774 572262 572267) (-352 "FGROUP.spad" 570373 570383 571744 571759) (-351 "FGLMICPK.spad" 569160 569175 570363 570368) (-350 "FFX.spad" 568535 568550 568876 568969) (-349 "FFSLPE.spad" 568024 568045 568525 568530) (-348 "FFPOLY.spad" 559276 559287 568014 568019) (-347 "FFPOLY2.spad" 558336 558353 559266 559271) (-346 "FFP.spad" 557733 557753 558052 558145) (-345 "FF.spad" 557181 557197 557414 557507) (-344 "FFNBX.spad" 555693 555713 556897 556990) (-343 "FFNBP.spad" 554206 554223 555409 555502) (-342 "FFNB.spad" 552671 552692 553887 553980) (-341 "FFINTBAS.spad" 550085 550104 552661 552666) (-340 "FFIELDC.spad" 547660 547668 549987 550080) (-339 "FFIELDC.spad" 545321 545331 547650 547655) (-338 "FFHOM.spad" 544069 544086 545311 545316) (-337 "FFF.spad" 541504 541515 544059 544064) (-336 "FFCGX.spad" 540351 540371 541220 541313) (-335 "FFCGP.spad" 539240 539260 540067 540160) (-334 "FFCG.spad" 538032 538053 538921 539014) (-333 "FFCAT.spad" 531059 531081 537871 538027) (-332 "FFCAT.spad" 524165 524189 530979 530984) (-331 "FFCAT2.spad" 523910 523950 524155 524160) (-330 "FEXPR.spad" 515619 515665 523666 523705) (-329 "FEVALAB.spad" 515325 515335 515609 515614) (-328 "FEVALAB.spad" 514816 514828 515102 515107) (-327 "FDIV.spad" 514258 514282 514806 514811) (-326 "FDIVCAT.spad" 512300 512324 514248 514253) (-325 "FDIVCAT.spad" 510340 510366 512290 512295) (-324 "FDIV2.spad" 509994 510034 510330 510335) (-323 "FCPAK1.spad" 508547 508555 509984 509989) (-322 "FCOMP.spad" 507926 507936 508537 508542) (-321 "FC.spad" 497751 497759 507916 507921) (-320 "FAXF.spad" 490686 490700 497653 497746) (-319 "FAXF.spad" 483673 483689 490642 490647) (-318 "FARRAY.spad" 481819 481829 482856 482883) (-317 "FAMR.spad" 479939 479951 481717 481814) (-316 "FAMR.spad" 478043 478057 479823 479828) (-315 "FAMONOID.spad" 477693 477703 477997 478002) (-314 "FAMONC.spad" 475915 475927 477683 477688) (-313 "FAGROUP.spad" 475521 475531 475811 475838) (-312 "FACUTIL.spad" 473717 473734 475511 475516) (-311 "FACTFUNC.spad" 472893 472903 473707 473712) (-310 "EXPUPXS.spad" 469726 469749 471025 471174) (-309 "EXPRTUBE.spad" 466954 466962 469716 469721) (-308 "EXPRODE.spad" 463826 463842 466944 466949) (-307 "EXPR.spad" 459101 459111 459815 460222) (-306 "EXPR2UPS.spad" 455193 455206 459091 459096) (-305 "EXPR2.spad" 454896 454908 455183 455188) (-304 "EXPEXPAN.spad" 451835 451860 452469 452562) (-303 "EXIT.spad" 451506 451514 451825 451830) (-302 "EXITAST.spad" 451243 451251 451496 451501) (-301 "EVALCYC.spad" 450701 450715 451233 451238) (-300 "EVALAB.spad" 450265 450275 450691 450696) (-299 "EVALAB.spad" 449827 449839 450255 450260) (-298 "EUCDOM.spad" 447369 447377 449753 449822) (-297 "EUCDOM.spad" 444973 444983 447359 447364) (-296 "ESTOOLS.spad" 436813 436821 444963 444968) (-295 "ESTOOLS2.spad" 436414 436428 436803 436808) (-294 "ESTOOLS1.spad" 436099 436110 436404 436409) (-293 "ES.spad" 428646 428654 436089 436094) (-292 "ES.spad" 421099 421109 428544 428549) (-291 "ESCONT.spad" 417872 417880 421089 421094) (-290 "ESCONT1.spad" 417621 417633 417862 417867) (-289 "ES2.spad" 417116 417132 417611 417616) (-288 "ES1.spad" 416682 416698 417106 417111) (-287 "ERROR.spad" 414003 414011 416672 416677) (-286 "EQTBL.spad" 412475 412497 412684 412711) (-285 "EQ.spad" 407349 407359 410148 410260) (-284 "EQ2.spad" 407065 407077 407339 407344) (-283 "EP.spad" 403379 403389 407055 407060) (-282 "ENV.spad" 402081 402089 403369 403374) (-281 "ENTIRER.spad" 401749 401757 402025 402076) (-280 "EMR.spad" 400950 400991 401675 401744) (-279 "ELTAGG.spad" 399190 399209 400940 400945) (-278 "ELTAGG.spad" 397394 397415 399146 399151) (-277 "ELTAB.spad" 396841 396859 397384 397389) (-276 "ELFUTS.spad" 396220 396239 396831 396836) (-275 "ELEMFUN.spad" 395909 395917 396210 396215) (-274 "ELEMFUN.spad" 395596 395606 395899 395904) (-273 "ELAGG.spad" 393527 393537 395564 395591) (-272 "ELAGG.spad" 391407 391419 393446 393451) (-271 "ELABEXPR.spad" 390338 390346 391397 391402) (-270 "EFUPXS.spad" 387114 387144 390294 390299) (-269 "EFULS.spad" 383950 383973 387070 387075) (-268 "EFSTRUC.spad" 381905 381921 383940 383945) (-267 "EF.spad" 376671 376687 381895 381900) (-266 "EAB.spad" 374947 374955 376661 376666) (-265 "E04UCFA.spad" 374483 374491 374937 374942) (-264 "E04NAFA.spad" 374060 374068 374473 374478) (-263 "E04MBFA.spad" 373640 373648 374050 374055) (-262 "E04JAFA.spad" 373176 373184 373630 373635) (-261 "E04GCFA.spad" 372712 372720 373166 373171) (-260 "E04FDFA.spad" 372248 372256 372702 372707) (-259 "E04DGFA.spad" 371784 371792 372238 372243) (-258 "E04AGNT.spad" 367626 367634 371774 371779) (-257 "DVARCAT.spad" 364311 364321 367616 367621) (-256 "DVARCAT.spad" 360994 361006 364301 364306) (-255 "DSMP.spad" 358425 358439 358730 358857) (-254 "DROPT.spad" 352370 352378 358415 358420) (-253 "DROPT1.spad" 352033 352043 352360 352365) (-252 "DROPT0.spad" 346860 346868 352023 352028) (-251 "DRAWPT.spad" 345015 345023 346850 346855) (-250 "DRAW.spad" 337615 337628 345005 345010) (-249 "DRAWHACK.spad" 336923 336933 337605 337610) (-248 "DRAWCX.spad" 334365 334373 336913 336918) (-247 "DRAWCURV.spad" 333902 333917 334355 334360) (-246 "DRAWCFUN.spad" 323074 323082 333892 333897) (-245 "DQAGG.spad" 321230 321240 323030 323069) (-244 "DPOLCAT.spad" 316571 316587 321098 321225) (-243 "DPOLCAT.spad" 311998 312016 316527 316532) (-242 "DPMO.spad" 305301 305317 305439 305740) (-241 "DPMM.spad" 298617 298635 298742 299043) (-240 "DOMAIN.spad" 297888 297896 298607 298612) (-239 "DMP.spad" 295110 295125 295682 295809) (-238 "DLP.spad" 294458 294468 295100 295105) (-237 "DLIST.spad" 292870 292880 293641 293668) (-236 "DLAGG.spad" 291271 291281 292850 292865) (-235 "DIVRING.spad" 290813 290821 291215 291266) (-234 "DIVRING.spad" 290399 290409 290803 290808) (-233 "DISPLAY.spad" 288579 288587 290389 290394) (-232 "DIRPROD.spad" 279433 279449 280073 280204) (-231 "DIRPROD2.spad" 278241 278259 279423 279428) (-230 "DIRPCAT.spad" 277171 277187 278093 278236) (-229 "DIRPCAT.spad" 275842 275860 276766 276771) (-228 "DIOSP.spad" 274667 274675 275832 275837) (-227 "DIOPS.spad" 273639 273649 274635 274662) (-226 "DIOPS.spad" 272597 272609 273595 273600) (-225 "DIFRING.spad" 271889 271897 272577 272592) (-224 "DIFRING.spad" 271189 271199 271879 271884) (-223 "DIFEXT.spad" 270348 270358 271169 271184) (-222 "DIFEXT.spad" 269424 269436 270247 270252) (-221 "DIAGG.spad" 269042 269052 269392 269419) (-220 "DIAGG.spad" 268680 268692 269032 269037) (-219 "DHMATRIX.spad" 266984 266994 268137 268164) (-218 "DFSFUN.spad" 260392 260400 266974 266979) (-217 "DFLOAT.spad" 256995 257003 260282 260387) (-216 "DFINTTLS.spad" 255204 255220 256985 256990) (-215 "DERHAM.spad" 253114 253146 255184 255199) (-214 "DEQUEUE.spad" 252432 252442 252721 252748) (-213 "DEGRED.spad" 252047 252061 252422 252427) (-212 "DEFINTRF.spad" 249572 249582 252037 252042) (-211 "DEFINTEF.spad" 248068 248084 249562 249567) (-210 "DEFAST.spad" 247425 247433 248058 248063) (-209 "DECIMAL.spad" 245307 245315 245893 245986) (-208 "DDFACT.spad" 243106 243123 245297 245302) (-207 "DBLRESP.spad" 242704 242728 243096 243101) (-206 "DBASE.spad" 241276 241286 242694 242699) (-205 "DATABUF.spad" 240764 240777 241266 241271) (-204 "D03FAFA.spad" 240592 240600 240754 240759) (-203 "D03EEFA.spad" 240412 240420 240582 240587) (-202 "D03AGNT.spad" 239492 239500 240402 240407) (-201 "D02EJFA.spad" 238954 238962 239482 239487) (-200 "D02CJFA.spad" 238432 238440 238944 238949) (-199 "D02BHFA.spad" 237922 237930 238422 238427) (-198 "D02BBFA.spad" 237412 237420 237912 237917) (-197 "D02AGNT.spad" 232216 232224 237402 237407) (-196 "D01WGTS.spad" 230535 230543 232206 232211) (-195 "D01TRNS.spad" 230512 230520 230525 230530) (-194 "D01GBFA.spad" 230034 230042 230502 230507) (-193 "D01FCFA.spad" 229556 229564 230024 230029) (-192 "D01ASFA.spad" 229024 229032 229546 229551) (-191 "D01AQFA.spad" 228470 228478 229014 229019) (-190 "D01APFA.spad" 227894 227902 228460 228465) (-189 "D01ANFA.spad" 227388 227396 227884 227889) (-188 "D01AMFA.spad" 226898 226906 227378 227383) (-187 "D01ALFA.spad" 226438 226446 226888 226893) (-186 "D01AKFA.spad" 225964 225972 226428 226433) (-185 "D01AJFA.spad" 225487 225495 225954 225959) (-184 "D01AGNT.spad" 221546 221554 225477 225482) (-183 "CYCLOTOM.spad" 221052 221060 221536 221541) (-182 "CYCLES.spad" 217884 217892 221042 221047) (-181 "CVMP.spad" 217301 217311 217874 217879) (-180 "CTRIGMNP.spad" 215791 215807 217291 217296) (-179 "CTORCALL.spad" 215379 215387 215781 215786) (-178 "CSTTOOLS.spad" 214622 214635 215369 215374) (-177 "CRFP.spad" 208326 208339 214612 214617) (-176 "CRAPACK.spad" 207369 207379 208316 208321) (-175 "CPMATCH.spad" 206869 206884 207294 207299) (-174 "CPIMA.spad" 206574 206593 206859 206864) (-173 "COORDSYS.spad" 201467 201477 206564 206569) (-172 "CONTOUR.spad" 200869 200877 201457 201462) (-171 "CONTFRAC.spad" 196481 196491 200771 200864) (-170 "CONDUIT.spad" 196239 196247 196471 196476) (-169 "COMRING.spad" 195913 195921 196177 196234) (-168 "COMPPROP.spad" 195427 195435 195903 195908) (-167 "COMPLPAT.spad" 195194 195209 195417 195422) (-166 "COMPLEX.spad" 189220 189230 189464 189725) (-165 "COMPLEX2.spad" 188933 188945 189210 189215) (-164 "COMPFACT.spad" 188535 188549 188923 188928) (-163 "COMPCAT.spad" 186591 186601 188257 188530) (-162 "COMPCAT.spad" 184353 184365 186021 186026) (-161 "COMMUPC.spad" 184099 184117 184343 184348) (-160 "COMMONOP.spad" 183632 183640 184089 184094) (-159 "COMM.spad" 183441 183449 183622 183627) (-158 "COMMAAST.spad" 183205 183213 183431 183436) (-157 "COMBOPC.spad" 182110 182118 183195 183200) (-156 "COMBINAT.spad" 180855 180865 182100 182105) (-155 "COMBF.spad" 178223 178239 180845 180850) (-154 "COLOR.spad" 177060 177068 178213 178218) (-153 "COLONAST.spad" 176727 176735 177050 177055) (-152 "CMPLXRT.spad" 176436 176453 176717 176722) (-151 "CLIP.spad" 172528 172536 176426 176431) (-150 "CLIF.spad" 171167 171183 172484 172523) (-149 "CLAGG.spad" 167642 167652 171147 171162) (-148 "CLAGG.spad" 163998 164010 167505 167510) (-147 "CINTSLPE.spad" 163323 163336 163988 163993) (-146 "CHVAR.spad" 161401 161423 163313 163318) (-145 "CHARZ.spad" 161316 161324 161381 161396) (-144 "CHARPOL.spad" 160824 160834 161306 161311) (-143 "CHARNZ.spad" 160577 160585 160804 160819) (-142 "CHAR.spad" 158445 158453 160567 160572) (-141 "CFCAT.spad" 157761 157769 158435 158440) (-140 "CDEN.spad" 156919 156933 157751 157756) (-139 "CCLASS.spad" 155068 155076 156330 156369) (-138 "CATEGORY.spad" 154847 154855 155058 155063) (-137 "CATAST.spad" 154475 154483 154837 154842) (-136 "CASEAST.spad" 154191 154199 154465 154470) (-135 "CARTEN.spad" 149294 149318 154181 154186) (-134 "CARTEN2.spad" 148680 148707 149284 149289) (-133 "CARD.spad" 145969 145977 148654 148675) (-132 "CAPSLAST.spad" 145744 145752 145959 145964) (-131 "CACHSET.spad" 145366 145374 145734 145739) (-130 "CABMON.spad" 144919 144927 145356 145361) (-129 "BYTE.spad" 144313 144321 144909 144914) (-128 "BYTEARY.spad" 143388 143396 143482 143509) (-127 "BTREE.spad" 142457 142467 142995 143022) (-126 "BTOURN.spad" 141460 141470 142064 142091) (-125 "BTCAT.spad" 140836 140846 141416 141455) (-124 "BTCAT.spad" 140244 140256 140826 140831) (-123 "BTAGG.spad" 139354 139362 140200 140239) (-122 "BTAGG.spad" 138496 138506 139344 139349) (-121 "BSTREE.spad" 137231 137241 138103 138130) (-120 "BRILL.spad" 135426 135437 137221 137226) (-119 "BRAGG.spad" 134340 134350 135406 135421) (-118 "BRAGG.spad" 133228 133240 134296 134301) (-117 "BPADICRT.spad" 131210 131222 131465 131558) (-116 "BPADIC.spad" 130874 130886 131136 131205) (-115 "BOUNDZRO.spad" 130530 130547 130864 130869) (-114 "BOP.spad" 125994 126002 130520 130525) (-113 "BOP1.spad" 123380 123390 125950 125955) (-112 "BOOLEAN.spad" 122704 122712 123370 123375) (-111 "BMODULE.spad" 122416 122428 122672 122699) (-110 "BITS.spad" 121835 121843 122052 122079) (-109 "BINFILE.spad" 121178 121186 121825 121830) (-108 "BINDING.spad" 120597 120605 121168 121173) (-107 "BINARY.spad" 118488 118496 119065 119158) (-106 "BGAGG.spad" 117673 117683 118456 118483) (-105 "BGAGG.spad" 116878 116890 117663 117668) (-104 "BFUNCT.spad" 116442 116450 116858 116873) (-103 "BEZOUT.spad" 115576 115603 116392 116397) (-102 "BBTREE.spad" 112395 112405 115183 115210) (-101 "BASTYPE.spad" 112067 112075 112385 112390) (-100 "BASTYPE.spad" 111737 111747 112057 112062) (-99 "BALFACT.spad" 111177 111189 111727 111732) (-98 "AUTOMOR.spad" 110624 110633 111157 111172) (-97 "ATTREG.spad" 107343 107350 110376 110619) (-96 "ATTRBUT.spad" 103366 103373 107323 107338) (-95 "ATTRAST.spad" 103084 103091 103356 103361) (-94 "ATRIG.spad" 102554 102561 103074 103079) (-93 "ATRIG.spad" 102022 102031 102544 102549) (-92 "ASTCAT.spad" 101926 101933 102012 102017) (-91 "ASTCAT.spad" 101828 101837 101916 101921) (-90 "ASTACK.spad" 101161 101170 101435 101462) (-89 "ASSOCEQ.spad" 99961 99972 101117 101122) (-88 "ASP9.spad" 99042 99055 99951 99956) (-87 "ASP8.spad" 98085 98098 99032 99037) (-86 "ASP80.spad" 97407 97420 98075 98080) (-85 "ASP7.spad" 96567 96580 97397 97402) (-84 "ASP78.spad" 96018 96031 96557 96562) (-83 "ASP77.spad" 95387 95400 96008 96013) (-82 "ASP74.spad" 94479 94492 95377 95382) (-81 "ASP73.spad" 93750 93763 94469 94474) (-80 "ASP6.spad" 92382 92395 93740 93745) (-79 "ASP55.spad" 90891 90904 92372 92377) (-78 "ASP50.spad" 88708 88721 90881 90886) (-77 "ASP4.spad" 88003 88016 88698 88703) (-76 "ASP49.spad" 87002 87015 87993 87998) (-75 "ASP42.spad" 85409 85448 86992 86997) (-74 "ASP41.spad" 83988 84027 85399 85404) (-73 "ASP35.spad" 82976 82989 83978 83983) (-72 "ASP34.spad" 82277 82290 82966 82971) (-71 "ASP33.spad" 81837 81850 82267 82272) (-70 "ASP31.spad" 80977 80990 81827 81832) (-69 "ASP30.spad" 79869 79882 80967 80972) (-68 "ASP29.spad" 79335 79348 79859 79864) (-67 "ASP28.spad" 70608 70621 79325 79330) (-66 "ASP27.spad" 69505 69518 70598 70603) (-65 "ASP24.spad" 68592 68605 69495 69500) (-64 "ASP20.spad" 67808 67821 68582 68587) (-63 "ASP1.spad" 67189 67202 67798 67803) (-62 "ASP19.spad" 61875 61888 67179 67184) (-61 "ASP12.spad" 61289 61302 61865 61870) (-60 "ASP10.spad" 60560 60573 61279 61284) (-59 "ARRAY2.spad" 59920 59929 60167 60194) (-58 "ARRAY1.spad" 58755 58764 59103 59130) (-57 "ARRAY12.spad" 57424 57435 58745 58750) (-56 "ARR2CAT.spad" 53074 53095 57380 57419) (-55 "ARR2CAT.spad" 48756 48779 53064 53069) (-54 "APPRULE.spad" 48000 48022 48746 48751) (-53 "APPLYORE.spad" 47615 47628 47990 47995) (-52 "ANY.spad" 45957 45964 47605 47610) (-51 "ANY1.spad" 45028 45037 45947 45952) (-50 "ANTISYM.spad" 43467 43483 45008 45023) (-49 "ANON.spad" 43164 43171 43457 43462) (-48 "AN.spad" 41465 41472 42980 43073) (-47 "AMR.spad" 39644 39655 41363 41460) (-46 "AMR.spad" 37660 37673 39381 39386) (-45 "ALIST.spad" 35072 35093 35422 35449) (-44 "ALGSC.spad" 34195 34221 34944 34997) (-43 "ALGPKG.spad" 29904 29915 34151 34156) (-42 "ALGMFACT.spad" 29093 29107 29894 29899) (-41 "ALGMANIP.spad" 26513 26528 28890 28895) (-40 "ALGFF.spad" 24828 24855 25045 25201) (-39 "ALGFACT.spad" 23949 23959 24818 24823) (-38 "ALGEBRA.spad" 23680 23689 23905 23944) (-37 "ALGEBRA.spad" 23443 23454 23670 23675) (-36 "ALAGG.spad" 22941 22962 23399 23438) (-35 "AHYP.spad" 22322 22329 22931 22936) (-34 "AGG.spad" 20621 20628 22302 22317) (-33 "AGG.spad" 18894 18903 20577 20582) (-32 "AF.spad" 17319 17334 18829 18834) (-31 "ADDAST.spad" 16999 17006 17309 17314) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 2c160f17..016cb9e0 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,121 +1,121 @@ -(144785 . 3430739790) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(144748 . 3430960048) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) (((|#2| |#2|) . T)) -((((-548)) . T)) -((($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2| |#2|) . T) ((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548))))) +((((-547)) . T)) +((($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2| |#2|) . T) ((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#2|) . T)) -((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2|) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2|) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547))))) (|has| |#1| (-878)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -((($) . T) (((-399 (-548))) . T)) +((($) . T) (((-398 (-547))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-142)) . T)) -((((-524)) . T) (((-1118)) . T) (((-218)) . T) (((-371)) . T) (((-861 (-371))) . T)) +((((-523)) . T) (((-1118)) . T) (((-217)) . T) (((-370)) . T) (((-861 (-370))) . T)) (((|#1|) . T)) -((((-218)) . T) (((-832)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-217)) . T) (((-832)) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) -((($ $) . T) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1| |#1|) . T)) +((($ $) . T) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1| |#1|) . T)) (-1524 (|has| |#1| (-794)) (|has| |#1| (-821))) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (|has| |#1| (-819)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((($) . T) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) ((((-832)) . T)) ((((-832)) |has| |#1| (-1063))) ((((-832)) . T) (((-1140)) . T)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(((|#2| (-473 (-3643 |#1|) (-745))) . T)) -(((|#1| (-520 (-1135))) . T)) -(((#0=(-839 |#1|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(|has| |#4| (-360)) -(|has| |#3| (-360)) -(((|#1|) . T)) -((((-839 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(((|#2| (-472 (-3763 |#1|) (-745))) . T)) +(((|#1| (-519 (-1135))) . T)) +(((#0=(-839 |#1|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(|has| |#4| (-359)) +(|has| |#3| (-359)) +(((|#1|) . T)) +((((-839 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(|has| |#1| (-540)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(|has| |#1| (-539)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) ((($) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) ((((-832)) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) (($) . T) ((|#1|) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-354)) (($) . T) ((|#1|) . T)) ((((-832)) . T)) (((|#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -(((|#1|) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) . T)) +(((|#1|) . T) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) . T)) (((|#1| |#2|) . T)) ((((-832)) . T)) (((|#1|) . T)) -(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) (((|#1|) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) ((($ $) . T)) (((|#2|) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) ((($) . T)) -(|has| |#1| (-360)) +(|has| |#1| (-359)) (((|#1|) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) ((((-832)) . T)) (((|#1| |#2|) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) (((|#1| |#1|) . T)) -(|has| |#1| (-540)) -(((|#2| |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|))) (((-1135) |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-504 (-1135) |#2|)))) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-539)) +(((|#2| |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))) (((-1135) |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-503 (-1135) |#2|)))) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (|has| |#1| (-1063)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (|has| |#1| (-1063)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (|has| |#1| (-819)) -((($) . T) (((-399 (-548))) . T)) +((($) . T) (((-398 (-547))) . T)) (((|#1|) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) @@ -124,14 +124,14 @@ (((|#1| |#2|) . T)) (|has| |#1| (-1063)) (|has| |#1| (-1063)) -(((|#1| (-1135) (-1052 (-1135)) (-520 (-1052 (-1135)))) . T)) -((((-548) |#1|) . T)) -((((-548)) . T)) -((((-548)) . T)) +(((|#1| (-1135) (-1052 (-1135)) (-519 (-1052 (-1135)))) . T)) +((((-547) |#1|) . T)) +((((-547)) . T)) +((((-547)) . T)) ((((-879 |#1|)) . T)) -(((|#1| (-520 |#2|)) . T)) -((((-548)) . T)) -((((-548)) . T)) +(((|#1| (-519 |#2|)) . T)) +((((-547)) . T)) +((((-547)) . T)) (((|#1|) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (((|#1| (-745)) . T)) @@ -141,142 +141,142 @@ (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-1118) |#1|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (((|#1|) . T)) (((|#3| (-745)) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (|has| |#1| (-1063)) -((((-399 (-548))) . T) (((-548)) . T)) -((((-1135) |#2|) |has| |#2| (-504 (-1135) |#2|)) ((|#2| |#2|) |has| |#2| (-301 |#2|))) -((((-399 (-548))) . T) (((-548)) . T)) +((((-398 (-547))) . T) (((-547)) . T)) +((((-1135) |#2|) |has| |#2| (-503 (-1135) |#2|)) ((|#2| |#2|) |has| |#2| (-300 |#2|))) +((((-398 (-547))) . T) (((-547)) . T)) (((|#1|) . T) (($) . T)) -((((-548)) . T)) -((((-548)) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) -((((-548)) . T)) -((((-548)) . T)) +((((-547)) . T)) +((((-547)) . T)) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169))) +((((-547)) . T)) +((((-547)) . T)) (((#0=(-673) (-1131 #0#)) . T)) -((((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -((((-548) |#1|) . T)) -((($) . T) (((-548)) . T) (((-399 (-548))) . T)) +((((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +((((-547) |#1|) . T)) +((($) . T) (((-547)) . T) (((-398 (-547))) . T)) (((|#1|) . T)) -(|has| |#2| (-355)) +(|has| |#2| (-354)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-832)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-1118) |#1|) . T)) (((|#3| |#3|) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1| |#1|) . T)) -(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) (((|#1|) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016)))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016)))) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) ((((-832)) . T)) -((((-166 (-218))) |has| |#1| (-991)) (((-166 (-371))) |has| |#1| (-991)) (((-524)) |has| |#1| (-593 (-524))) (((-1131 |#1|)) . T) (((-861 (-548))) |has| |#1| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371))))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-166 (-217))) |has| |#1| (-991)) (((-166 (-370))) |has| |#1| (-991)) (((-523)) |has| |#1| (-592 (-523))) (((-1131 |#1|)) . T) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370))))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#2|) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) -(|has| |#1| (-355)) -(-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) -(-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#2|) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539)))) +(|has| |#1| (-354)) +(-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) +(-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) (-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T)) (((|#1|) . T)) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) -(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -(|has| |#1| (-540)) -(|has| |#1| (-540)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547)))) +(((|#2|) . T) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +(|has| |#1| (-539)) +(|has| |#1| (-539)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (((|#1|) . T)) -(|has| |#1| (-540)) -(|has| |#1| (-540)) -(|has| |#1| (-540)) +(|has| |#1| (-539)) +(|has| |#1| (-539)) +(|has| |#1| (-539)) ((((-673)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))) -(((|#2|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#2|) . T) (($) . T) (((-398 (-547))) . T)) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))) -((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) -(((|#4| |#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)) (|has| |#4| (-1016))) (($ $) |has| |#4| (-169))) -(((|#3| |#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169))) +((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T)) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-354)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) . T)) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T)) +(((|#4| |#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-354)) (|has| |#4| (-1016))) (($ $) |has| |#4| (-169))) +(((|#3| |#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169))) (((|#1|) . T)) (((|#2|) . T)) -((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547))))) ((((-832)) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548))))) -(((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)) (|has| |#4| (-1016))) (($) |has| |#4| (-169))) -(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($) |has| |#3| (-169))) +((((-523)) |has| |#1| (-592 (-523))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547))))) +(((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-354)) (|has| |#4| (-1016))) (($) |has| |#4| (-169))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($) |has| |#3| (-169))) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) -((((-399 $) (-399 $)) |has| |#2| (-540)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +((((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T)) +((((-398 $) (-398 $)) |has| |#2| (-539)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) . T)) (((|#1|) . T)) (|has| |#2| (-878)) ((((-1118) (-52)) . T)) -((((-548)) |has| #0=(-399 |#2|) (-615 (-548))) ((#0#) . T)) -((((-524)) . T) (((-218)) . T) (((-371)) . T) (((-861 (-371))) . T)) +((((-547)) |has| #0=(-398 |#2|) (-615 (-547))) ((#0#) . T)) +((((-523)) . T) (((-217)) . T) (((-370)) . T) (((-861 (-370))) . T)) ((((-832)) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) (((|#1|) |has| |#1| (-169))) -(((|#1| $) |has| |#1| (-278 |#1| |#1|))) +(((|#1| $) |has| |#1| (-277 |#1| |#1|))) ((((-832)) . T)) ((((-832)) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) ((((-832)) . T)) (|has| |#1| (-821)) (|has| |#1| (-1063)) (((|#1|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) ((((-129)) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) ((((-129)) . T)) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(|has| |#1| (-226)) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1| (-520 (-792 (-1135)))) . T)) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(|has| |#1| (-225)) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#1| (-519 (-792 (-1135)))) . T)) (((|#1| (-940)) . T)) -(((#0=(-839 |#1|) $) |has| #0# (-278 #0# #0#))) -((((-548) |#4|) . T)) -((((-548) |#3|) . T)) +(((#0=(-839 |#1|) $) |has| #0# (-277 #0# #0#))) +((((-547) |#4|) . T)) +((((-547) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (|has| |#1| (-1111)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-145)) (|has| |#1| (-143)) @@ -287,282 +287,282 @@ (|has| |#1| (-1063)) ((((-1118) |#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) -(|has| |#2| (-360)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) +(|has| |#2| (-359)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((($) . T) ((|#1|) . T)) (((|#2|) |has| |#2| (-1016))) ((((-832)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) #0#) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) -((((-548) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) #0#) |has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))))) +((((-547) |#1|) . T)) ((((-832)) . T)) -((((-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524)))) (((-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371))))) (((-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) +((((-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523)))) (((-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370))))) (((-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) ((((-832)) . T)) ((($) . T)) ((((-832)) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) ((((-832)) . T)) ((((-832)) . T)) (|has| (-1203 |#2| |#3| |#4|) (-145)) (|has| (-1203 |#2| |#3| |#4|) (-143)) -(((|#2|) |has| |#2| (-1063)) (((-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (((-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) +(((|#2|) |has| |#2| (-1063)) (((-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (((-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((|#1|) . T)) (|has| |#1| (-1063)) ((((-832)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) (((|#1|) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) ((((-832)) |has| |#1| (-1063))) -(-1524 (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((((-879 |#1|)) . T)) -((((-399 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-548) |#1|))) -((((-399 (-548))) . T) (($) . T)) +((((-398 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-547) |#1|))) +((((-398 (-547))) . T) (($) . T)) (|has| |#1| (-821)) (((|#1|) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) ((((-832)) . T)) (((|#1|) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) -(|has| |#1| (-355)) -(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))) -(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) -(|has| |#1| (-355)) -((((-548)) . T)) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539))) +(|has| |#1| (-354)) +(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))) +(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) +(|has| |#1| (-354)) +((((-547)) . T)) (|has| |#1| (-15 * (|#1| (-745) |#1|))) -((((-1102 |#2| (-399 (-921 |#1|)))) . T) (((-399 (-921 |#1|))) . T)) +((((-1102 |#2| (-398 (-921 |#1|)))) . T) (((-398 (-921 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T)) (((|#1|) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#2|) . T)) -(-1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (((|#1|) . T)) ((((-1135)) -12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) -(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) -(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) -((($ $) |has| |#1| (-540))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(-12 (|has| |#1| (-354)) (|has| |#2| (-794))) +(-1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539))) +(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539)))) +((($ $) |has| |#1| (-539))) (((#0=(-673) (-1131 #0#)) . T)) ((((-832)) . T)) ((((-832)) . T) (((-1218 |#4|)) . T)) ((((-832)) . T) (((-1218 |#3|)) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) -((($) |has| |#1| (-540))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539)))) +((($) |has| |#1| (-539))) ((((-832)) . T)) ((($) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((#1=(-1210 |#1| |#2| |#3|) #1#) |has| |#1| (-355)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) . T)) -(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((#1=(-1210 |#1| |#2| |#3|) #1#) |has| |#1| (-354)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) . T)) +(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354)))) (((|#3|) |has| |#3| (-1016))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-1063)) (((|#2| (-793 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-355)) -((((-399 $) (-399 $)) |has| |#1| (-540)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-354)) +((((-398 $) (-398 $)) |has| |#1| (-539)) (($ $) . T) ((|#1| |#1|) . T)) (((#0=(-1045) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-879 |#1|)) . T)) ((((-142)) . T)) ((((-142)) . T)) -(((|#3|) |has| |#3| (-1063)) (((-548)) -12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (((-399 (-548))) -12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) +(((|#3|) |has| |#3| (-1063)) (((-547)) -12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (((-398 (-547))) -12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#1|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) -(|has| |#1| (-355)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) +(|has| |#1| (-354)) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) -((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) +((((-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|))) (|has| |#2| (-794)) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-819)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-524)) |has| |#1| (-593 (-524)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-523)) |has| |#1| (-592 (-523)))) (((|#1| |#2|) . T)) -((((-1135)) -12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) +((((-1135)) -12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) ((((-1118) |#1|) . T)) -(((|#1| |#2| |#3| (-520 |#3|)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) +(((|#1| |#2| |#3| (-519 |#3|)) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) ((((-832)) . T)) (((|#1|) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(|has| |#1| (-360)) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -((((-548)) . T)) -((((-548)) . T)) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(|has| |#1| (-359)) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +((((-547)) . T)) +((((-547)) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((((-832)) . T)) ((((-832)) . T)) -(-12 (|has| |#2| (-226)) (|has| |#2| (-1016))) -((((-1135) #0=(-839 |#1|)) |has| #0# (-504 (-1135) #0#)) ((#0# #0#) |has| #0# (-301 #0#))) +(-12 (|has| |#2| (-225)) (|has| |#2| (-1016))) +((((-1135) #0=(-839 |#1|)) |has| #0# (-503 (-1135) #0#)) ((#0# #0#) |has| #0# (-300 #0#))) (((|#1|) . T)) -((((-548) |#4|) . T)) -((((-548) |#3|) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +((((-547) |#4|) . T)) +((((-547) |#3|) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547)))) (-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((((-1204 |#1| |#2| |#3| |#4|)) . T)) -((((-399 (-548))) . T) (((-548)) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-398 (-547))) . T) (((-547)) . T)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-548)) . T) (((-399 (-548))) . T)) -((((-548)) . T)) -((((-548)) . T)) -((($) . T) (((-548)) . T) (((-399 (-548))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +((($) . T) (((-547)) . T) (((-398 (-547))) . T)) +((((-547)) . T)) +((((-547)) . T)) +((($) . T) (((-547)) . T) (((-398 (-547))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1|) |has| |#1| (-540))) -((((-548) |#4|) . T)) -((((-548) |#3|) . T)) +(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1|) |has| |#1| (-539))) +((((-547) |#4|) . T)) +((((-547) |#3|) . T)) ((((-832)) . T)) -((((-548)) . T) (((-399 (-548))) . T) (($) . T)) +((((-547)) . T) (((-398 (-547))) . T) (($) . T)) ((((-832)) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#1|) . T)) ((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) ((($ $) . T) ((#0=(-1135) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-169))) -((($) -1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) -(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) +((($) -1524 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-398 (-547))) |has| |#2| (-38 (-398 (-547))))) +(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) ((((-142)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-360)) (|has| |#2| (-360))) +(-12 (|has| |#1| (-359)) (|has| |#2| (-359))) ((((-832)) . T)) -(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) (((|#1|) . T)) ((((-832)) . T)) (|has| |#1| (-1063)) (|has| $ (-145)) -((((-548) |#1|) . T)) -((($) -1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) -((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) -(|has| |#1| (-355)) -(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))) -(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) -(|has| |#1| (-355)) +((((-547) |#1|) . T)) +((($) -1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) +(|has| |#1| (-354)) +(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))) +(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) +(|has| |#1| (-354)) (|has| |#1| (-15 * (|#1| (-745) |#1|))) (((|#1|) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) ((((-832)) . T)) -((((-548) (-129)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(((|#2| (-520 (-834 |#1|))) . T)) +((((-547) (-129)) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(((|#2| (-519 (-834 |#1|))) . T)) ((((-832)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -((((-562 |#1|)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +((((-561 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-839 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-839 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) ((((-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (((|#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-548) |#2|) . T)) +((((-547) |#2|) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((#1=(-1133 |#1| |#2| |#3|) #1#) |has| |#1| (-355)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((#1=(-1133 |#1| |#2| |#3|) #1#) |has| |#1| (-354)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) (((|#2|) |has| |#2| (-1016))) (|has| |#1| (-1063)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) . T)) -(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) . T)) +(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#1|) |has| |#1| (-169)) (($) . T)) (((|#1|) . T)) -(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) ((((-832)) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) (((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) ((($) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-355))) -(((|#2|) |has| |#2| (-1063)) (((-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (((-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) -((((-548) |#1|) . T)) -((((-832)) . T)) -((((-399 |#2|) |#3|) . T)) -(((|#1| (-399 (-548))) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(((|#2|) |has| |#1| (-354))) +(((|#2|) |has| |#2| (-1063)) (((-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (((-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) +((((-547) |#1|) . T)) +((((-832)) . T)) +((((-398 |#2|) |#3|) . T)) +(((|#1| (-398 (-547))) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) ((((-832)) . T) (((-1140)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) (((|#2| |#3| (-834 |#1|)) . T)) ((((-1135)) |has| |#2| (-869 (-1135)))) (((|#1|) . T)) -(((|#1| (-520 |#2|) |#2|) . T)) +(((|#1| (-519 |#2|) |#2|) . T)) (((|#1| (-745) (-1045)) . T)) -((((-399 (-548))) |has| |#2| (-355)) (($) . T)) -(((|#1| (-520 (-1052 (-1135))) (-1052 (-1135))) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-398 (-547))) |has| |#2| (-354)) (($) . T)) +(((|#1| (-519 (-1052 (-1135))) (-1052 (-1135))) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (((|#1|) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (|has| |#2| (-767)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) (|has| |#2| (-819)) ((((-862 |#1|)) . T) (((-793 |#1|)) . T)) ((((-793 (-1135))) . T)) @@ -572,27 +572,27 @@ ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-619 (-548))) . T)) +((((-619 (-547))) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) -(|has| |#1| (-226)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) +(|has| |#1| (-225)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((((-1210 |#1| |#2| |#3|) $) -12 (|has| (-1210 |#1| |#2| |#3|) (-278 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((((-1210 |#1| |#2| |#3|) $) -12 (|has| (-1210 |#1| |#2| |#3|) (-277 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1100 |#1| |#2|)) |has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) -(((|#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +((((-1100 |#1| |#2|)) |has| (-1100 |#1| |#2|) (-300 (-1100 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547))))) +(((|#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) @@ -600,194 +600,193 @@ (((|#2|) . T)) (((|#3|) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) (((|#2|) . T)) -((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-592 (-832))) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) +((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-591 (-832))) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) (((|#1|) |has| |#1| (-169))) -((((-548)) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((((-548) (-142)) . T)) -((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016)))) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) -(((|#1|) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) -(((|#2|) |has| |#1| (-355))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-547)) . T)) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((((-547) (-142)) . T)) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016)))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) +(((|#1|) . T)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) +(((|#2|) |has| |#1| (-354))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| (-520 #0=(-1135)) #0#) . T)) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-519 #0=(-1135)) #0#) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-169)) (|has| |#3| (-169)) -(((#0=(-399 (-921 |#1|)) #0#) . T)) +(((#0=(-398 (-921 |#1|)) #0#) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (|has| |#1| (-1063)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (|has| |#1| (-1063)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) ((((-832)) . T) (((-1140)) . T)) (((|#1| |#1|) |has| |#1| (-169))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) -((((-399 (-921 |#1|))) . T)) -((((-548) (-129)) . T)) +((((-398 (-921 |#1|))) . T)) +((((-547) (-129)) . T)) (((|#1|) |has| |#1| (-169))) ((((-129)) . T)) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((((-832)) . T)) ((((-1204 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1016)) (((-548)) -12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) +(((|#1|) |has| |#1| (-1016)) (((-547)) -12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((|#1| |#2|) . T)) (-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) (|has| |#3| (-767)) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) (|has| |#3| (-819)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#2|) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#2|) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539)))) (((|#2|) . T)) -((((-548) (-129)) . T)) +((((-547) (-129)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-548) |#2|) . T)) +((((-547) |#2|) . T)) (((|#1| (-1116 |#1|)) |has| |#1| (-819))) (|has| |#1| (-1063)) (((|#1|) . T)) -(-12 (|has| |#1| (-355)) (|has| |#2| (-1111))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-12 (|has| |#1| (-354)) (|has| |#2| (-1111))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (|has| |#1| (-1063)) (((|#2|) . T)) -((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) -(((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)))) -(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)))) -((((-832)) . T)) -(((|#1|) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-878))) -((($ $) . T) ((#0=(-1135) $) |has| |#1| (-226)) ((#0# |#1|) |has| |#1| (-226)) ((#1=(-792 (-1135)) |#1|) . T) ((#1# $) . T)) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) -((((-548) |#2|) . T)) -((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((($) -1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016)))) -((((-548) |#1|) . T)) -(|has| (-399 |#2|) (-145)) -(|has| (-399 |#2|) (-143)) -(((|#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|)))) -(|has| |#1| (-38 (-399 (-548)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-399 (-548))) . T)) -((((-832)) . T)) -(|has| |#1| (-540)) -(|has| |#1| (-540)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-832)) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -(|has| |#1| (-38 (-399 (-548)))) -((((-380) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -(|has| |#1| (-38 (-399 (-548)))) +((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547))))) +(((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-354)))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)))) +((((-832)) . T)) +(((|#1|) . T)) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-878))) +((($ $) . T) ((#0=(-1135) $) |has| |#1| (-225)) ((#0# |#1|) |has| |#1| (-225)) ((#1=(-792 (-1135)) |#1|) . T) ((#1# $) . T)) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-878))) +((((-547) |#2|) . T)) +((((-832)) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((($) -1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016)))) +((((-547) |#1|) . T)) +(|has| (-398 |#2|) (-145)) +(|has| (-398 |#2|) (-143)) +(((|#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|)))) +(|has| |#1| (-38 (-398 (-547)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-398 (-547))) . T)) +((((-832)) . T)) +(|has| |#1| (-539)) +(|has| |#1| (-539)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-832)) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +(|has| |#1| (-38 (-398 (-547)))) +((((-379) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +(|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-1111)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-1171)) . T) (((-832)) . T) (((-1140)) . T)) -((((-832)) . T) (((-1140)) . T)) (((|#1|) . T)) -((((-380) (-1118)) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(|has| |#1| (-540)) +((((-379) (-1118)) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(|has| |#1| (-539)) ((((-116 |#1|)) . T)) ((((-129)) . T)) -((((-548) |#1|) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-547) |#1|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (((|#2|) . T)) ((((-832)) . T)) ((((-793 |#1|)) . T)) (((|#2|) |has| |#2| (-169))) ((((-1135) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-540)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-539)) (((|#1|) |has| |#1| (-169))) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524)))) +((((-523)) |has| |#1| (-592 (-523)))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) -(((|#2|) |has| |#2| (-301 |#2|))) -(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +(((|#2|) |has| |#2| (-300 |#2|))) +(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) (((|#1|) . T)) (((|#1| (-1131 |#1|)) . T)) (|has| $ (-145)) (((|#2|) . T)) -(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -((($) . T) (((-548)) . T) (((-399 (-548))) . T)) -(|has| |#2| (-360)) +(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +((($) . T) (((-547)) . T) (((-398 (-547))) . T)) +(|has| |#2| (-359)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -((((-548)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +((((-547)) . T) (((-398 (-547))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-548)) . T) (((-399 (-548))) . T) (($) . T)) -((((-1133 |#1| |#2| |#3|) $) -12 (|has| (-1133 |#1| |#2| |#3|) (-278 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))) (($ $) . T)) +((((-547)) . T) (((-398 (-547))) . T) (($) . T)) +((((-1133 |#1| |#2| |#3|) $) -12 (|has| (-1133 |#1| |#2| |#3|) (-277 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354))) (($ $) . T)) ((((-832)) . T)) ((((-832)) . T)) -((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((($) . T) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) ((($ $) . T)) ((($ $) . T)) ((((-832)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((#0=(-1210 |#1| |#2| |#3|) #0#) -12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))) (((-1135) #0#) -12 (|has| (-1210 |#1| |#2| |#3|) (-504 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((#0=(-1210 |#1| |#2| |#3|) #0#) -12 (|has| (-1210 |#1| |#2| |#3|) (-300 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354))) (((-1135) #0#) -12 (|has| (-1210 |#1| |#2| |#3|) (-503 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((((-399 (-548))) . T) (((-548)) . T)) -((((-548) (-142)) . T)) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((((-398 (-547))) . T) (((-547)) . T)) +((((-547) (-142)) . T)) ((((-142)) . T)) (((|#1|) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-112)) . T)) (((|#1|) . T)) -((((-524)) |has| |#1| (-593 (-524))) (((-218)) . #0=(|has| |#1| (-991))) (((-371)) . #0#)) +((((-523)) |has| |#1| (-592 (-523))) (((-217)) . #0=(|has| |#1| (-991))) (((-370)) . #0#)) ((((-832)) . T)) (|has| |#1| (-794)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (|has| |#1| (-821)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) -(|has| |#1| (-540)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) +(|has| |#1| (-539)) (|has| |#1| (-878)) (((|#1|) . T)) (|has| |#1| (-1063)) ((((-832)) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) -((((-548) (-142)) . T)) +((((-547) (-142)) . T)) ((($) . T)) (-1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) (-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) @@ -798,14 +797,14 @@ ((($) . T)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) -(-12 (|has| |#1| (-464)) (|has| |#2| (-464))) +(-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -(-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) +(-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) (((|#1|) . T)) (|has| |#2| (-767)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (|has| |#2| (-819)) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) @@ -813,60 +812,60 @@ (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) ((((-832)) . T)) -(|has| |#1| (-341)) +(|has| |#1| (-340)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-399 (-548))) . T) (($) . T)) -((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) . T)) +((((-398 (-547))) . T) (($) . T)) +((($) . T) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) . T)) (|has| |#1| (-802)) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) (|has| |#1| (-1063)) -(((|#1| $) |has| |#1| (-278 |#1| |#1|))) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) -((($) |has| |#1| (-540))) +(((|#1| $) |has| |#1| (-277 |#1| |#1|))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539))) +((($) |has| |#1| (-539))) (((|#4|) |has| |#4| (-1063))) (((|#3|) |has| |#3| (-1063))) -(|has| |#3| (-360)) +(|has| |#3| (-359)) (((|#1|) . T) (((-832)) . T)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169))) ((((-832)) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539)))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#1| |#1|) |has| |#1| (-169))) -(|has| |#2| (-355)) +(((|#1| |#2|) . T)) +(|has| |#2| (-354)) (((|#1|) . T)) (((|#1|) |has| |#1| (-169))) -((((-399 (-548))) . T) (((-548)) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-398 (-547))) . T) (((-547)) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) ((((-142)) . T)) (((|#1|) . T)) ((((-142)) . T)) -((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016)))) +((($) -1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016)))) ((((-142)) . T)) (((|#1| |#2| |#3|) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) (|has| $ (-145)) (|has| $ (-145)) (|has| |#1| (-1063)) ((((-832)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-464)) (|has| |#1| (-540)) (|has| |#1| (-1016)) (|has| |#1| (-1075))) -((($ $) |has| |#1| (-278 $ $)) ((|#1| $) |has| |#1| (-278 |#1| |#1|))) -(((|#1| (-399 (-548))) . T)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-463)) (|has| |#1| (-539)) (|has| |#1| (-1016)) (|has| |#1| (-1075))) +((($ $) |has| |#1| (-277 $ $)) ((|#1| $) |has| |#1| (-277 |#1| |#1|))) +(((|#1| (-398 (-547))) . T)) (((|#1|) . T)) ((((-1135)) . T)) -(|has| |#1| (-540)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(|has| |#1| (-540)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-539)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(|has| |#1| (-539)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) ((((-832)) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) @@ -874,27 +873,27 @@ (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#4| (-819)) -(((|#2| (-233 (-3643 |#1|) (-745)) (-834 |#1|)) . T)) +(((|#2| (-232 (-3763 |#1|) (-745)) (-834 |#1|)) . T)) (|has| |#3| (-819)) -(((|#1| (-520 |#3|) |#3|) . T)) +(((|#1| (-519 |#3|) |#3|) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -(((#0=(-399 (-548)) #0#) |has| |#2| (-355)) (($ $) . T)) +(((#0=(-398 (-547)) #0#) |has| |#2| (-354)) (($ $) . T)) ((((-839 |#1|)) . T)) (|has| |#1| (-145)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) (|has| |#1| (-143)) -((((-399 (-548))) |has| |#2| (-355)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-341)) (|has| |#1| (-360))) +((((-398 (-547))) |has| |#2| (-354)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-340)) (|has| |#1| (-359))) ((((-1102 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-169)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-226)) (|has| |#2| (-1016))) -(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(-12 (|has| |#2| (-225)) (|has| |#2| (-1016))) +(((|#2|) . T) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) ((((-832)) . T)) @@ -903,7 +902,7 @@ (((|#1|) . T) (($) . T)) ((((-673)) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -(|has| |#1| (-540)) +(|has| |#1| (-539)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -912,31 +911,31 @@ (((|#1|) . T)) ((((-1135) (-52)) . T)) ((((-832)) . T)) -((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) (((|#1|) . T)) ((((-832)) . T)) -((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) -(((|#1| (-548)) . T)) +((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) +(((|#1| (-547)) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-399 (-548))) . T)) -(((|#3|) . T) (((-591 $)) . T)) +(((|#1| (-398 (-547))) . T)) +(((|#3|) . T) (((-590 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((#0=(-1133 |#1| |#2| |#3|) #0#) -12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))) (((-1135) #0#) -12 (|has| (-1133 |#1| |#2| |#3|) (-504 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((#0=(-1133 |#1| |#2| |#3|) #0#) -12 (|has| (-1133 |#1| |#2| |#3|) (-300 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354))) (((-1135) #0#) -12 (|has| (-1133 |#1| |#2| |#3|) (-503 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) |has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))))) ((((-832)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -947,108 +946,108 @@ ((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-802)) (|has| |#1| (-1063)) -(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) -(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)))) -((((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) +(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)))) +((((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) ((((-745)) . T)) -((((-548)) . T)) -(|has| |#1| (-540)) +((((-547)) . T)) +(|has| |#1| (-539)) ((((-832)) . T)) -(((|#1| (-399 (-548)) (-1045)) . T)) +(((|#1| (-398 (-547)) (-1045)) . T)) (|has| |#1| (-143)) (((|#1|) . T)) -(|has| |#1| (-540)) -((((-548)) . T)) +(|has| |#1| (-539)) +((((-547)) . T)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-145)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) -((((-861 (-548))) . T) (((-861 (-371))) . T) (((-524)) . T) (((-1135)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) +((((-861 (-547))) . T) (((-861 (-370))) . T) (((-523)) . T) (((-1135)) . T)) ((((-832)) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) ((((-832)) . T) (((-1140)) . T)) ((($) . T)) ((((-832)) . T)) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) (((|#2|) |has| |#2| (-169))) -((($) -1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +((($) -1524 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((|#2|) |has| |#2| (-169)) (((-398 (-547))) |has| |#2| (-38 (-398 (-547))))) ((((-839 |#1|)) . T)) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) -(-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (|has| |#2| (-1111)) -(((#0=(-52)) . T) (((-2 (|:| -3156 (-1135)) (|:| -1657 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3326 (-1135)) (|:| -1777 #0#))) . T)) (((|#1| |#2|) . T)) (-1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) -(((|#1| (-548) (-1045)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| (-399 (-548)) (-1045)) . T)) -((($) -1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) -((((-548) |#2|) . T)) +(((|#1| (-547) (-1045)) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-398 (-547)) (-1045)) . T)) +((($) -1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) +((((-547) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-360)) -(-12 (|has| |#1| (-360)) (|has| |#2| (-360))) +(|has| |#2| (-359)) +(-12 (|has| |#1| (-359)) (|has| |#2| (-359))) ((((-832)) . T)) -((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +((((-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (((|#1|) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539)))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) ((((-832)) . T)) -(|has| |#1| (-341)) +(|has| |#1| (-340)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) -(|has| |#1| (-540)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) +(|has| |#1| (-539)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) (((|#1| |#2|) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-878))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) -((((-399 (-548))) . T) (((-548)) . T)) -((((-548)) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-878))) +((((-398 (-547))) . T) (((-547)) . T)) +((((-547)) . T)) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) ((($) . T)) ((((-832)) . T)) (((|#1|) . T)) -((((-839 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-839 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) ((((-832)) . T)) -(((|#3| |#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169))) +(((|#3| |#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($ $) |has| |#3| (-169))) (|has| |#1| (-991)) ((((-832)) . T)) -(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016))) (($) |has| |#3| (-169))) -((((-548) (-112)) . T)) -(((|#1|) |has| |#1| (-301 |#1|))) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -((((-1135) $) |has| |#1| (-504 (-1135) $)) (($ $) |has| |#1| (-301 $)) ((|#1| |#1|) |has| |#1| (-301 |#1|)) (((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016))) (($) |has| |#3| (-169))) +((((-547) (-112)) . T)) +(((|#1|) |has| |#1| (-300 |#1|))) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +((((-1135) $) |has| |#1| (-503 (-1135) $)) (($ $) |has| |#1| (-300 $)) ((|#1| |#1|) |has| |#1| (-300 |#1|)) (((-1135) |#1|) |has| |#1| (-503 (-1135) |#1|))) ((((-1135)) |has| |#1| (-869 (-1135)))) -(-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341))) -((((-380) (-1082)) . T)) +(-1524 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340))) +((((-379) (-1082)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-380) |#1|) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +((((-379) |#1|) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) (|has| |#1| (-1063)) ((((-832)) . T)) ((((-832)) . T)) ((((-879 |#1|)) . T)) ((((-832)) . T) (((-1140)) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-839 |#1|)) |has| #0# (-301 #0#))) +(((#0=(-839 |#1|)) |has| #0# (-300 #0#))) (((|#1| |#2|) . T)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) @@ -1057,60 +1056,60 @@ (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (|has| |#1| (-1157)) -(((#0=(-548) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -((((-399 (-548))) . T) (($) . T)) +(((#0=(-547) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +((((-398 (-547))) . T) (($) . T)) (((|#4|) |has| |#4| (-1016))) (((|#3|) |has| |#3| (-1016))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(|has| |#1| (-355)) -((((-548)) . T) (((-399 (-548))) . T) (($) . T)) -((($ $) . T) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1| |#1|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(|has| |#1| (-354)) +((((-547)) . T) (((-398 (-547))) . T) (($) . T)) +((($ $) . T) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1| |#1|) . T)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) ((((-832)) . T)) ((((-832)) . T)) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-548) |#3|) . T)) +((((-547) |#3|) . T)) ((((-832)) . T)) -((((-524)) |has| |#3| (-593 (-524)))) +((((-523)) |has| |#3| (-592 (-523)))) ((((-663 |#3|)) . T) (((-832)) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-819)) (|has| |#1| (-819)) -((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) -(((#0=(-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) #0#) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) +((($) . T) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) +(((#0=(-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) #0#) |has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))))) ((($) . T)) (|has| |#2| (-821)) ((($) . T)) (((|#2|) |has| |#2| (-1063))) -((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-592 (-832))) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) +((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-591 (-832))) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) (|has| |#1| (-821)) (|has| |#1| (-821)) ((((-1118) (-52)) . T)) (|has| |#1| (-821)) ((((-832)) . T)) -((((-548)) |has| #0=(-399 |#2|) (-615 (-548))) ((#0#) . T)) -((((-548) (-142)) . T)) -((((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#1| |#2|) . T)) -((((-399 (-548))) . T) (($) . T)) +((((-547)) |has| #0=(-398 |#2|) (-615 (-547))) ((#0#) . T)) +((((-547) (-142)) . T)) +((((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((|#1| |#2|) . T)) +((((-398 (-547))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((((-832)) . T)) ((((-879 |#1|)) . T)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-819)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) (|has| |#1| (-819)) (((|#1|) . T) (($) . T)) (|has| |#1| (-819)) @@ -1121,64 +1120,64 @@ (((|#1| |#2|) . T)) ((($ $) . T)) (|has| |#1| (-1063)) -(((|#1| (-1135) (-792 (-1135)) (-520 (-792 (-1135)))) . T)) -((((-399 (-921 |#1|))) . T)) -((((-524)) . T)) +(((|#1| (-1135) (-792 (-1135)) (-519 (-792 (-1135)))) . T)) +((((-398 (-921 |#1|))) . T)) +((((-523)) . T)) ((((-832)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#1| |#2|) . T)) +((((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-169))) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-169))) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878)))) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878)))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#1|) . T)) (((|#1|) . T)) -((((-524)) |has| |#1| (-593 (-524))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548))))) +((((-523)) |has| |#1| (-592 (-523))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547))))) ((((-832)) . T)) -(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (|has| |#2| (-819)) -(-12 (|has| |#2| (-226)) (|has| |#2| (-1016))) -(|has| |#1| (-540)) +(-12 (|has| |#2| (-225)) (|has| |#2| (-1016))) +(|has| |#1| (-539)) (|has| |#1| (-1111)) ((((-1118) |#1|) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -(((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1| |#1|) . T)) -((((-399 (-548))) |has| |#1| (-1007 (-548))) (((-548)) |has| |#1| (-1007 (-548))) (((-1135)) |has| |#1| (-1007 (-1135))) ((|#1|) . T)) -((((-548) |#2|) . T)) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) -((((-548)) |has| |#1| (-855 (-548))) (((-371)) |has| |#1| (-855 (-371)))) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1|) . T)) +(((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1| |#1|) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-547))) (((-547)) |has| |#1| (-1007 (-547))) (((-1135)) |has| |#1| (-1007 (-1135))) ((|#1|) . T)) +((((-547) |#2|) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) +((((-547)) |has| |#1| (-855 (-547))) (((-370)) |has| |#1| (-855 (-370)))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1|) . T)) (((|#1|) . T)) ((((-619 |#4|)) . T) (((-832)) . T)) -((((-524)) |has| |#4| (-593 (-524)))) -((((-524)) |has| |#4| (-593 (-524)))) +((((-523)) |has| |#4| (-592 (-523)))) +((((-523)) |has| |#4| (-592 (-523)))) ((((-832)) . T) (((-619 |#4|)) . T)) ((($) |has| |#1| (-819))) (((|#1|) . T)) ((((-619 |#4|)) . T) (((-832)) . T)) -((((-524)) |has| |#4| (-593 (-524)))) +((((-523)) |has| |#4| (-592 (-523)))) (((|#1|) . T)) (((|#2|) . T)) -((((-1135)) |has| (-399 |#2|) (-869 (-1135)))) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +((((-1135)) |has| (-398 |#2|) (-869 (-1135)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-832)) -1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-592 (-832))) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-360)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) (((-1218 |#3|)) . T)) -((((-548) |#2|) . T)) +((((-832)) -1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-591 (-832))) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-359)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) (((-1218 |#3|)) . T)) +((((-547) |#2|) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) -(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) +(((|#2| |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($ $) |has| |#2| (-169))) ((((-832)) . T)) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((|#2|) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-1118) (-1135) (-548) (-218) (-832)) . T)) +((((-1118) (-1135) (-547) (-217) (-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) @@ -1190,10 +1189,10 @@ ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) ((((-832)) . T)) -((((-548) (-112)) . T)) +((((-547) (-112)) . T)) (((|#1|) . T)) ((((-832)) . T)) ((((-112)) . T)) @@ -1206,15 +1205,15 @@ ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-1016))) (($) |has| |#2| (-169))) (|has| $ (-145)) -((((-399 |#2|)) . T)) -((((-399 (-548))) |has| #0=(-399 |#2|) (-1007 (-399 (-548)))) (((-548)) |has| #0# (-1007 (-548))) ((#0#) . T)) +((((-398 |#2|)) . T)) +((((-398 (-547))) |has| #0=(-398 |#2|) (-1007 (-398 (-547)))) (((-547)) |has| #0# (-1007 (-547))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-169))) (|has| |#2| (-143)) @@ -1222,76 +1221,76 @@ (((|#3|) |has| |#3| (-169))) (|has| |#1| (-145)) (|has| |#1| (-143)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (|has| |#1| (-145)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (|has| |#1| (-145)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (|has| |#1| (-145)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-226)) +(|has| |#2| (-225)) ((((-832)) . T) (((-1140)) . T)) ((((-1135) (-52)) . T)) ((((-832)) . T)) (((|#1| |#1|) . T)) ((((-1135)) |has| |#2| (-869 (-1135)))) -((((-548) (-112)) . T)) -(|has| |#1| (-540)) +((((-547) (-112)) . T)) +(|has| |#1| (-539)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#3|) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#1|) . T)) ((((-832)) . T)) -((((-524)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-523)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-968 |#1|)) . T) ((|#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-399 (-548))) . T) (((-399 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-398 (-547))) . T) (((-398 |#1|)) . T) ((|#1|) . T) (($) . T)) (((|#1| (-1131 |#1|)) . T)) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) (((|#3|) . T) (($) . T)) (|has| |#1| (-821)) (((|#2|) . T)) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -((((-548) |#2|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +((((-547) |#2|) . T)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (((|#2|) . T)) -((((-548) |#3|) . T)) +((((-547) |#3|) . T)) (((|#2|) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) +(|has| |#1| (-38 (-398 (-547)))) ((((-832)) . T)) (|has| |#1| (-1063)) -(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(((|#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) -(|has| |#1| (-38 (-399 (-548)))) +(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(((|#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#2| (-355)) -(((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) +(|has| |#2| (-354)) +(((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547))))) (((|#2|) . T)) ((((-1118) (-52)) . T)) (((|#2|) |has| |#2| (-169))) -((((-548) |#3|) . T)) -((((-548) (-142)) . T)) +((((-547) |#3|) . T)) +((((-547) (-142)) . T)) ((((-142)) . T)) ((((-832)) . T)) ((((-112)) . T)) @@ -1299,91 +1298,91 @@ (((|#1|) . T)) (|has| |#1| (-143)) ((($) . T)) -(|has| |#1| (-540)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(|has| |#1| (-539)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) ((((-832)) . T)) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) ((((-1118) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1| |#2|) . T)) -((((-548) (-142)) . T)) -(((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-547) (-142)) . T)) +(((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-821)) (((|#2| (-745) (-1045)) . T)) (((|#1| |#2|) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) (|has| |#1| (-765)) (((|#1|) |has| |#1| (-169))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-1524 (|has| |#1| (-145)) (-12 (|has| |#1| (-355)) (|has| |#2| (-145)))) -(-1524 (|has| |#1| (-143)) (-12 (|has| |#1| (-355)) (|has| |#2| (-143)))) +(-1524 (|has| |#1| (-145)) (-12 (|has| |#1| (-354)) (|has| |#2| (-145)))) +(-1524 (|has| |#1| (-143)) (-12 (|has| |#1| (-354)) (|has| |#2| (-143)))) (((|#4|) . T)) (|has| |#1| (-143)) ((((-1118) |#1|) . T)) (|has| |#1| (-145)) (((|#1|) . T)) -((((-548)) . T)) +((((-547)) . T)) ((((-832)) . T)) (((|#1| |#2|) . T)) ((((-832)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#3|) . T)) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (((|#1|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063))) (((-927 |#1|)) . T)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063))) (((-927 |#1|)) . T)) (|has| |#1| (-819)) (|has| |#1| (-819)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(|has| |#2| (-355)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(|has| |#2| (-354)) (((|#1|) |has| |#1| (-169))) (((|#2|) |has| |#2| (-1016))) ((((-1118) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +(((|#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (((|#2| (-862 |#1|)) . T)) ((($) . T)) -((((-380) (-1118)) . T)) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-592 (-832))) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3156 (-1118)) (|:| -1657 #0#))) . T)) +((((-379) (-1118)) . T)) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((((-832)) -1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-591 (-832))) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((-1218 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3326 (-1118)) (|:| -1777 #0#))) . T)) (((|#1|) . T)) ((((-832)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) ((((-142)) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(|has| |#1| (-464)) -(-1524 (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) -(|has| |#1| (-355)) +(|has| |#1| (-463)) +(-1524 (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) +(|has| |#1| (-354)) ((((-832)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) -((($) |has| |#1| (-540))) +(|has| |#1| (-38 (-398 (-547)))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539))) +((($) |has| |#1| (-539))) (|has| |#1| (-819)) (|has| |#1| (-819)) ((((-832)) . T)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1210 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539)))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#1| |#2|) . T)) ((((-1135)) |has| |#1| (-869 (-1135)))) -((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) ((((-832)) . T)) ((((-832)) . T)) (|has| |#1| (-1063)) -(((|#2| (-473 (-3643 |#1|) (-745)) (-834 |#1|)) . T)) -((((-399 (-548))) . #0=(|has| |#2| (-355))) (($) . #0#)) -(((|#1| (-520 (-1135)) (-1135)) . T)) +(((|#2| (-472 (-3763 |#1|) (-745)) (-834 |#1|)) . T)) +((((-398 (-547))) . #0=(|has| |#2| (-354))) (($) . #0#)) +(((|#1| (-519 (-1135)) (-1135)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-832)) . T)) @@ -1401,72 +1400,72 @@ (|has| |#1| (-145)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((((-1135) (-52)) . T)) ((($ $) . T)) -(((|#1| (-548)) . T)) +(((|#1| (-547)) . T)) ((((-879 |#1|)) . T)) -(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-1016))) (($) -1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)))) -(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-1016))) (($) -1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)))) +(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) (|has| |#1| (-821)) (|has| |#1| (-821)) -((((-548) |#2|) . T)) -((((-548)) . T)) -((((-1210 |#1| |#2| |#3|)) -12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +((((-547) |#2|) . T)) +((((-547)) . T)) +((((-1210 |#1| |#2| |#3|)) -12 (|has| (-1210 |#1| |#2| |#3|) (-300 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (|has| |#1| (-821)) ((((-663 |#2|)) . T) (((-832)) . T)) (((|#1| |#2|) . T)) -((((-399 (-921 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +((((-398 (-921 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (((|#1|) |has| |#1| (-169))) -(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)))) +(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)))) (|has| |#2| (-821)) (|has| |#1| (-821)) -(-1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-878))) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -((((-548) |#2|) . T)) -(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)))) -(|has| |#1| (-341)) -(((|#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) -((($) . T) (((-399 (-548))) . T)) -((((-548) (-112)) . T)) +(-1524 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-878))) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +((((-547) |#2|) . T)) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)))) +(|has| |#1| (-340)) +(((|#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) +((($) . T) (((-398 (-547))) . T)) +((((-547) (-112)) . T)) (|has| |#1| (-794)) (|has| |#1| (-794)) (((|#1|) . T)) -(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340))) (|has| |#1| (-819)) (|has| |#1| (-819)) (|has| |#1| (-819)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(|has| |#1| (-38 (-399 (-548)))) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) -(|has| |#1| (-38 (-399 (-548)))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(|has| |#1| (-38 (-398 (-547)))) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) +(|has| |#1| (-38 (-398 (-547)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((((-1135)) |has| |#1| (-869 (-1135))) (((-1045)) . T)) (((|#1|) . T)) (|has| |#1| (-819)) -(((#0=(-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) #0#) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((#0=(-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) #0#) |has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (|has| |#1| (-1063)) ((((-832)) . T) (((-1140)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-520 |#2|) |#2|) . T)) +(((|#1| (-519 |#2|) |#2|) . T)) ((((-832)) . T)) ((((-745)) . T) (((-832)) . T)) (((|#1| (-745) (-1045)) . T)) @@ -1474,164 +1473,164 @@ (((|#1|) . T)) ((((-142)) . T)) (((|#2|) |has| |#2| (-169))) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#3| (-169)) -(((|#4|) |has| |#4| (-355))) -(((|#3|) |has| |#3| (-355))) +(((|#4|) |has| |#4| (-354))) +(((|#3|) |has| |#3| (-354))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-355))) +(((|#2|) |has| |#1| (-354))) ((((-832)) . T)) (((|#2|) . T)) (((|#1| (-1131 |#1|)) . T)) -((((-1045)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -((($) . T) ((|#1|) . T) (((-399 (-548))) . T)) +((((-1045)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +((($) . T) ((|#1|) . T) (((-398 (-547))) . T)) (((|#2|) . T)) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) ((($) |has| |#1| (-819))) (|has| |#1| (-878)) ((((-832)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) #0#) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((#0=(-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) #0#) |has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-878))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)))) +(((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)))) (|has| |#1| (-821)) -(|has| |#1| (-540)) -((((-562 |#1|)) . T)) +(|has| |#1| (-539)) +((((-561 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-794))) (-12 (|has| |#1| (-355)) (|has| |#2| (-821)))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (-12 (|has| |#1| (-354)) (|has| |#2| (-794))) (-12 (|has| |#1| (-354)) (|has| |#2| (-821)))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) ((((-879 |#1|)) . T)) -(((|#1| (-486 |#1| |#3|) (-486 |#1| |#2|)) . T)) +(((|#1| (-485 |#1| |#3|) (-485 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-745)) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-355)) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540)))) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-1133 |#1| |#2| |#3|)) |has| |#1| (-354)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539)))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) ((((-646 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-832)) . T) (((-1140)) . T)) -((((-524)) . T)) +((((-523)) . T)) ((((-832)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#2|) . T)) -(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-360)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) +(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-359)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) (-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) (|has| |#1| (-1157)) (|has| |#1| (-1157)) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (|has| |#1| (-1157)) (|has| |#1| (-1157)) (((|#3| |#3|) . T)) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) -((($) . T) (((-399 (-548))) . T) (((-399 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T) ((#1=(-399 |#1|) #1#) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) +((($) . T) (((-398 (-547))) . T) (((-398 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T) ((#1=(-398 |#1|) #1#) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) ((((-1118) (-52)) . T)) (|has| |#1| (-1063)) (-1524 (|has| |#2| (-794)) (|has| |#2| (-821))) (((|#1|) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) ((($) . T)) -((((-1133 |#1| |#2| |#3|)) -12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) +((((-1133 |#1| |#2| |#3|)) -12 (|has| (-1133 |#1| |#2| |#3|) (-300 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) ((((-832)) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((((-832)) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (|has| |#2| (-878)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) (((|#2|) |has| |#2| (-1063))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-878))) ((($) . T) ((|#2|) . T)) -((((-524)) . T) (((-399 (-1131 (-548)))) . T) (((-218)) . T) (((-371)) . T)) -((((-371)) . T) (((-218)) . T) (((-832)) . T)) +((((-523)) . T) (((-398 (-1131 (-547)))) . T) (((-217)) . T) (((-370)) . T)) +((((-370)) . T) (((-217)) . T) (((-832)) . T)) (|has| |#1| (-878)) (|has| |#1| (-878)) (|has| |#1| (-878)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-878))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) ((($ $) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((($ $) . T)) -((((-548) (-112)) . T)) +((((-547) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-548)) . T)) +((((-547)) . T)) ((((-112)) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) -(|has| |#1| (-38 (-399 (-548)))) -(((|#1| (-548)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) +(|has| |#1| (-38 (-398 (-547)))) +(((|#1| (-547)) . T)) ((($) . T)) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) (((|#1|) . T)) -((((-548)) . T)) +((((-547)) . T)) (((|#1| |#2|) . T)) ((((-1135)) |has| |#1| (-1016))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#1|) . T)) ((((-832)) . T)) -(((|#1| (-548)) . T)) +(((|#1| (-547)) . T)) (((|#1| (-1210 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-399 (-548))) . T)) +(((|#1| (-398 (-547))) . T)) (((|#1| (-1182 |#1| |#2| |#3|)) . T)) (((|#1| (-745)) . T)) (((|#1|) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((((-832)) . T)) (|has| |#1| (-1063)) ((((-1118) |#1|) . T)) ((($) . T)) (|has| |#2| (-145)) (|has| |#2| (-143)) -(((|#1| (-520 (-792 (-1135))) (-792 (-1135))) . T)) +(((|#1| (-519 (-792 (-1135))) (-792 (-1135))) . T)) ((((-832)) . T)) ((((-1204 |#1| |#2| |#3| |#4|)) . T)) ((((-1204 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) |has| |#1| (-1016))) -((((-548) (-112)) . T)) +((((-547) (-112)) . T)) ((((-832)) |has| |#1| (-1063))) (|has| |#2| (-169)) -((((-548)) . T)) +((((-547)) . T)) (|has| |#2| (-819)) (((|#1|) . T)) -((((-548)) . T)) +((((-547)) . T)) ((((-832)) . T)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-340))) (|has| |#1| (-145)) ((((-832)) . T)) (((|#3|) . T)) @@ -1639,96 +1638,96 @@ ((((-832)) . T)) ((((-1203 |#2| |#3| |#4|)) . T) (((-1204 |#1| |#2| |#3| |#4|)) . T)) ((((-832)) . T)) -((((-48)) -12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (((-591 $)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) -1524 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (|has| |#1| (-1007 (-399 (-548))))) (((-399 (-921 |#1|))) |has| |#1| (-540)) (((-921 |#1|)) |has| |#1| (-1016)) (((-1135)) . T)) +((((-48)) -12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (((-590 $)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) -1524 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (|has| |#1| (-1007 (-398 (-547))))) (((-398 (-921 |#1|))) |has| |#1| (-539)) (((-921 |#1|)) |has| |#1| (-1016)) (((-1135)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-745)) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) -(((|#1|) |has| |#1| (-301 |#1|))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-300 |#1|))) ((((-1204 |#1| |#2| |#3| |#4|)) . T)) -((((-548)) |has| |#1| (-855 (-548))) (((-371)) |has| |#1| (-855 (-371)))) +((((-547)) |has| |#1| (-855 (-547))) (((-370)) |has| |#1| (-855 (-370)))) (((|#1|) . T)) -(|has| |#1| (-540)) +(|has| |#1| (-539)) (((|#1|) . T)) ((((-832)) . T)) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) (((|#1|) |has| |#1| (-169))) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (((|#1|) . T)) (((|#3|) |has| |#3| (-1063))) -(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-355)))) +(((|#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-354)))) ((((-1203 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-794)) (|has| |#1| (-794)) -(((|#1| (-548) (-1045)) . T)) -((($) |has| |#1| (-301 $)) ((|#1|) |has| |#1| (-301 |#1|))) +(((|#1| (-547) (-1045)) . T)) +((($) |has| |#1| (-300 $)) ((|#1|) |has| |#1| (-300 |#1|))) (|has| |#1| (-819)) (|has| |#1| (-819)) -(((|#1| (-548) (-1045)) . T)) +(((|#1| (-547) (-1045)) . T)) (-1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(((|#1| (-399 (-548)) (-1045)) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(((|#1| (-398 (-547)) (-1045)) . T)) (((|#1| (-745) (-1045)) . T)) (|has| |#1| (-821)) -(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) +(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) (((|#2|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-1063)) -((((-879 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-879 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) (|has| |#1| (-1063)) (((|#1|) . T)) (|has| |#1| (-1063)) -((((-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-615 (-548)))) ((|#2|) |has| |#1| (-355))) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +((((-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-615 (-547)))) ((|#2|) |has| |#1| (-354))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) ((((-832)) . T)) (|has| |#3| (-819)) ((((-832)) . T)) -((((-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) . T)) +((((-1203 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) . T)) ((((-832)) . T)) -(((|#1| |#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-1016)))) +(((|#1| |#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-1016)))) (((|#1|) . T)) -((((-548)) . T)) -((((-548)) . T)) -(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-1016)))) -(((|#2|) |has| |#2| (-355))) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-355))) +((((-547)) . T)) +((((-547)) . T)) +(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-1016)))) +(((|#2|) |has| |#2| (-354))) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-354))) (|has| |#1| (-821)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-878))) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) |has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-878))) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) ((((-832)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) -(|has| |#1| (-226)) +(|has| |#1| (-38 (-398 (-547)))) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) +(|has| |#1| (-225)) (((|#1|) . T)) -(((|#1| (-548)) . T)) +(((|#1| (-547)) . T)) (|has| |#1| (-819)) (((|#1| (-1133 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-399 (-548))) . T)) +(((|#1| (-398 (-547))) . T)) (((|#1| (-1126 |#1| |#2| |#3|)) . T)) (((|#1| (-745)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-143)) @@ -1738,22 +1737,22 @@ (((|#1| |#2|) . T)) ((((-129)) . T)) ((((-142)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#1|) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -(((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) . T) (($ $) . T)) -((((-832)) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| (-399 |#2|) (-226)) +(((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) . T) (($ $) . T)) +((((-832)) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| (-398 |#2|) (-225)) (|has| |#1| (-878)) (((|#2|) |has| |#2| (-1016))) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) -(|has| |#1| (-355)) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) +(|has| |#1| (-354)) (((|#1|) |has| |#1| (-169))) (((|#1| |#1|) . T)) ((((-839 |#1|)) . T)) @@ -1762,32 +1761,32 @@ (((|#2|) |has| |#2| (-1063))) (|has| |#2| (-821)) (((|#1|) . T)) -((((-399 (-548))) . T) (((-548)) . T) (((-591 $)) . T)) +((((-398 (-547))) . T) (((-547)) . T) (((-590 $)) . T)) (((|#1|) . T)) ((((-832)) . T)) ((($) . T)) (|has| |#1| (-821)) ((((-832)) . T)) -(((|#1| (-520 |#2|) |#2|) . T)) -(((|#1| (-548) (-1045)) . T)) +(((|#1| (-519 |#2|) |#2|) . T)) +(((|#1| (-547) (-1045)) . T)) ((((-879 |#1|)) . T)) ((((-832)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-399 (-548)) (-1045)) . T)) +(((|#1| (-398 (-547)) (-1045)) . T)) (((|#1| (-745) (-1045)) . T)) -(((#0=(-399 |#2|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-548)) -1524 (|has| (-399 (-548)) (-1007 (-548))) (|has| |#1| (-1007 (-548)))) (((-399 (-548))) . T)) -(((|#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) . T)) +(((#0=(-398 |#2|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-547)) -1524 (|has| (-398 (-547)) (-1007 (-547))) (|has| |#1| (-1007 (-547)))) (((-398 (-547))) . T)) +(((|#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) -(|has| |#2| (-226)) -(((|#2| (-520 (-834 |#1|)) (-834 |#1|)) . T)) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) +(|has| |#2| (-225)) +(((|#2| (-519 (-834 |#1|)) (-834 |#1|)) . T)) ((((-832)) . T)) -((($) |has| |#1| (-540)) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) |has| |#1| (-539)) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) ((((-832)) . T)) (((|#1| |#3|) . T)) ((((-832)) . T)) @@ -1796,294 +1795,295 @@ ((((-673)) . T)) (((|#2|) |has| |#2| (-169))) (|has| |#2| (-819)) -((((-112)) |has| |#1| (-1063)) (((-832)) -1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063)))) +((((-112)) |has| |#1| (-1063)) (((-832)) -1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) . T)) ((((-832)) . T)) -((((-548) |#1|) . T)) -((((-673)) . T) (((-399 (-548))) . T) (((-548)) . T)) +((((-547) |#1|) . T)) +((((-673)) . T) (((-398 (-547))) . T) (((-547)) . T)) (((|#1| |#1|) |has| |#1| (-169))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) -((((-371)) . T)) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) +((((-370)) . T)) ((((-673)) . T)) -((((-399 (-548))) . #0=(|has| |#2| (-355))) (($) . #0#)) +((((-398 (-547))) . #0=(|has| |#2| (-354))) (($) . #0#)) (((|#1|) |has| |#1| (-169))) -((((-399 (-921 |#1|))) . T)) +((((-398 (-921 |#1|))) . T)) (((|#2| |#2|) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (((|#2|) . T)) (|has| |#2| (-821)) (((|#3|) |has| |#3| (-1016))) (|has| |#2| (-878)) (|has| |#1| (-878)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) (|has| |#1| (-821)) ((((-1135)) |has| |#2| (-869 (-1135)))) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-399 (-548))) . T) (($) . T)) -(|has| |#1| (-464)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-355)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-464)) (|has| |#1| (-540)) (|has| |#1| (-1016)) (|has| |#1| (-1075))) -(|has| |#1| (-38 (-399 (-548)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-398 (-547))) . T) (($) . T)) +(|has| |#1| (-463)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-354)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-463)) (|has| |#1| (-539)) (|has| |#1| (-1016)) (|has| |#1| (-1075))) +(|has| |#1| (-38 (-398 (-547)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) -(|has| |#1| (-341)) +(|has| |#1| (-340)) ((((-142)) . T)) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) ((($) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#2|) . T) (((-832)) . T)) (((|#2|) . T) (((-832)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-821)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) ((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) ((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) -(|has| |#1| (-360)) +(|has| |#1| (-359)) (|has| |#1| (-821)) -(((|#2|) . T) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) +(((|#2|) . T) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) ((((-116 |#1|)) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) . T)) -((((-548)) . T)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) +((((-547)) . T)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371)))) (((-371)) . #0=(|has| |#1| (-991))) (((-218)) . #0#)) -(((|#1|) |has| |#1| (-355))) +((((-523)) |has| |#1| (-592 (-523))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370)))) (((-370)) . #0=(|has| |#1| (-991))) (((-217)) . #0#)) +(((|#1|) |has| |#1| (-354))) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((($ $) . T) (((-591 $) $) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -((($) . T) (((-1204 |#1| |#2| |#3| |#4|)) . T) (((-399 (-548))) . T)) -((($) -1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-540))) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -((((-371)) . T) (((-548)) . T) (((-399 (-548))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((($ $) . T) (((-590 $) $) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +((($) . T) (((-1204 |#1| |#2| |#3| |#4|)) . T) (((-398 (-547))) . T)) +((($) -1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-539))) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +((((-370)) . T) (((-547)) . T) (((-398 (-547))) . T)) ((((-619 (-754 |#1| (-834 |#2|)))) . T) (((-832)) . T)) -((((-524)) |has| (-754 |#1| (-834 |#2|)) (-593 (-524)))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((((-371)) . T)) -(((|#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) +((((-523)) |has| (-754 |#1| (-834 |#2|)) (-592 (-523)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((((-370)) . T)) +(((|#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) ((((-832)) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-878))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-878))) (((|#1|) . T)) (|has| |#1| (-821)) (|has| |#1| (-821)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (|has| |#1| (-1063)) ((((-832)) . T)) ((((-1135)) . T) (((-832)) . T) (((-1140)) . T)) -((((-399 (-548))) . T) (((-548)) . T) (((-591 $)) . T)) +((((-398 (-547))) . T) (((-547)) . T) (((-590 $)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -((((-548)) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(((#0=(-1203 |#2| |#3| |#4|)) . T) (((-399 (-548))) |has| #0# (-38 (-399 (-548)))) (($) . T)) -((((-548)) . T)) -(|has| |#1| (-355)) -(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-145)) (|has| |#1| (-355))) (|has| |#1| (-145))) -(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))) -(|has| |#1| (-355)) +((((-547)) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(((#0=(-1203 |#2| |#3| |#4|)) . T) (((-398 (-547))) |has| #0# (-38 (-398 (-547)))) (($) . T)) +((((-547)) . T)) +(|has| |#1| (-354)) +(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-145)) (|has| |#1| (-354))) (|has| |#1| (-145))) +(-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))) +(|has| |#1| (-354)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-145)) (|has| |#1| (-143)) -(|has| |#1| (-226)) -(|has| |#1| (-355)) +(|has| |#1| (-225)) +(|has| |#1| (-354)) (((|#3|) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-548)) |has| |#2| (-615 (-548))) ((|#2|) . T)) +((((-547)) |has| |#2| (-615 (-547))) ((|#2|) . T)) (((|#2|) . T)) (|has| |#1| (-1063)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) +(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547)))) (((|#3|) |has| |#3| (-169))) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) -((((-548)) . T)) -(((|#1| $) |has| |#1| (-278 |#1| |#1|))) -((((-399 (-548))) . T) (($) . T) (((-399 |#1|)) . T) ((|#1|) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +((((-832)) . T)) +((((-547)) . T)) +(((|#1| $) |has| |#1| (-277 |#1| |#1|))) +((((-398 (-547))) . T) (($) . T) (((-398 |#1|)) . T) ((|#1|) . T)) ((((-832)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-282)) (|has| |#1| (-355))) ((#0=(-399 (-548)) #0#) |has| |#1| (-355))) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-281)) (|has| |#1| (-354))) ((#0=(-398 (-547)) #0#) |has| |#1| (-354))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) ((($) . T)) -((((-548) |#1|) . T)) -((((-1135)) |has| (-399 |#2|) (-869 (-1135)))) -(((|#1|) . T) (($) -1524 (|has| |#1| (-282)) (|has| |#1| (-355))) (((-399 (-548))) |has| |#1| (-355))) -((((-524)) |has| |#2| (-593 (-524)))) +((((-547) |#1|) . T)) +((((-1135)) |has| (-398 |#2|) (-869 (-1135)))) +(((|#1|) . T) (($) -1524 (|has| |#1| (-281)) (|has| |#1| (-354))) (((-398 (-547))) |has| |#1| (-354))) +((((-523)) |has| |#2| (-592 (-523)))) ((((-663 |#2|)) . T) (((-832)) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) ((((-839 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) ((((-832)) . T)) ((((-832)) . T)) -(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (((|#2|) |has| |#2| (-1016))) (((|#1|) . T)) -((((-399 |#2|)) . T)) +((((-398 |#2|)) . T)) (((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) -((((-548) |#1|) . T)) +(((|#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) +((((-547) |#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-548)) . T) (($) . T) (((-399 (-548))) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 (-548))) . T) (($) . T)) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-1176))) +((((-547)) . T) (($) . T) (((-398 (-547))) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-1176))) ((($) . T)) -((((-399 (-548))) |has| #0=(-399 |#2|) (-1007 (-399 (-548)))) (((-548)) |has| #0# (-1007 (-548))) ((#0#) . T)) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +((((-398 (-547))) |has| #0=(-398 |#2|) (-1007 (-398 (-547)))) (((-547)) |has| #0# (-1007 (-547))) ((#0#) . T)) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) (((|#1| (-745)) . T)) (|has| |#1| (-821)) -(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) -((((-548)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547)))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) +((((-547)) . T)) +(|has| |#1| (-38 (-398 (-547)))) +((((-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) |has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (|has| |#1| (-819)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-341)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-340)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#1| |#2|) . T)) ((((-142)) . T)) ((((-754 |#1| (-834 |#2|))) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (|has| |#1| (-1157)) (((|#1|) . T)) -(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-360)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) -((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|))) +(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-359)) (|has| |#3| (-701)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016)) (|has| |#3| (-1063))) +((((-1135) |#1|) |has| |#1| (-503 (-1135) |#1|))) (((|#2|) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) ((((-879 |#1|)) . T)) ((($) . T)) -((((-399 (-921 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((((-524)) |has| |#4| (-593 (-524)))) +((((-398 (-921 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((((-523)) |has| |#4| (-592 (-523)))) ((((-832)) . T) (((-619 |#4|)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-819)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) |has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) |has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))))) (|has| |#1| (-1063)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) (|has| |#1| (-821)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-399 (-548))) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) |has| |#1| (-169))) +((($) . T) (((-398 (-547))) . T)) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) |has| |#1| (-169))) (|has| |#1| (-143)) (|has| |#1| (-145)) -(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-145)) (|has| |#1| (-355))) (|has| |#1| (-145))) -(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))) +(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-145)) (|has| |#1| (-354))) (|has| |#1| (-145))) +(-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) (|has| |#1| (-819)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) -((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547)))) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) +((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) (|has| |#1| (-1063)) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T) (((-548)) . T)) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T) (((-547)) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) (|has| |#1| (-1063)) (((|#2|) |has| |#2| (-169))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-355))) -((((-399 |#2|)) . T)) +(((|#3|) |has| |#3| (-354))) +((((-398 |#2|)) . T)) ((((-832)) . T)) (((|#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524)))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) -(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)))) -((((-308 |#1|)) . T)) -(((|#2|) |has| |#2| (-355))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|))) +(((|#1|) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)))) +((((-307 |#1|)) . T)) +(((|#2|) |has| |#2| (-354))) (((|#2|) . T)) -((((-399 (-548))) . T) (((-673)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((#0=(-754 |#1| (-834 |#2|)) #0#) |has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|))))) +((((-398 (-547))) . T) (((-673)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((#0=(-754 |#1| (-834 |#2|)) #0#) |has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|))))) ((((-834 |#1|)) . T)) (((|#2|) |has| |#2| (-169))) (((|#1|) |has| |#1| (-169))) (((|#2|) . T)) ((((-1135)) |has| |#1| (-869 (-1135))) (((-1045)) . T)) ((((-1135)) |has| |#1| (-869 (-1135))) (((-1052 (-1135))) . T)) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(|has| |#1| (-38 (-399 (-548)))) -(((|#4|) |has| |#4| (-1016)) (((-548)) -12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016)))) -(((|#3|) |has| |#3| (-1016)) (((-548)) -12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(|has| |#1| (-38 (-398 (-547)))) +(((|#4|) |has| |#4| (-1016)) (((-547)) -12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016)))) +(((|#3|) |has| |#3| (-1016)) (((-547)) -12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (|has| |#1| (-143)) (|has| |#1| (-145)) ((($ $) . T)) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))) -(|has| |#1| (-540)) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))) +(|has| |#1| (-539)) (((|#2|) . T)) -((((-548)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-547)) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#1|) . T)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) -((((-562 |#1|)) . T)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) +((((-561 |#1|)) . T)) ((($) . T)) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) @@ -2091,81 +2091,81 @@ ((($) . T)) (((|#1|) . T)) ((((-832)) . T)) -(((|#2|) |has| |#2| (-6 (-4329 "*")))) +(((|#2|) |has| |#2| (-6 (-4330 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-399 (-548))) . T)) -((((-1087 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -((((-1131 |#1|)) . T) (((-1045)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -((((-1087 |#1| (-1135))) . T) (((-1052 (-1135))) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-1135)) . T)) +((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-398 (-547))) . T)) +((((-1087 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +((((-1131 |#1|)) . T) (((-1045)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +((((-1087 |#1| (-1135))) . T) (((-1052 (-1135))) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-1135)) . T)) (|has| |#1| (-1063)) ((($) . T)) (|has| |#1| (-1063)) -((((-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548)))) (((-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371))))) +((((-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))) (((-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370))))) (((|#1| |#2|) . T)) ((((-1135) |#1|) . T)) (((|#4|) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((((-1135) (-52)) . T)) -((((-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) . T)) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T)) -((((-832)) . T)) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-360)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) -(((#0=(-1204 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-169)) ((#0=(-399 (-548)) #0#) |has| |#1| (-540)) (($ $) |has| |#1| (-540))) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1| $) |has| |#1| (-278 |#1| |#1|))) -((((-1204 |#1| |#2| |#3| |#4|)) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-540)) (($) |has| |#1| (-540))) -(|has| |#1| (-355)) +((((-1203 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T)) +((((-832)) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-359)) (|has| |#2| (-701)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016)) (|has| |#2| (-1063))) +(((#0=(-1204 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-169)) ((#0=(-398 (-547)) #0#) |has| |#1| (-539)) (($ $) |has| |#1| (-539))) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1| $) |has| |#1| (-277 |#1| |#1|))) +((((-1204 |#1| |#2| |#3| |#4|)) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-539)) (($) |has| |#1| (-539))) +(|has| |#1| (-354)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((((-399 (-548))) . T) (($) . T)) -(((|#3|) |has| |#3| (-355))) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +((((-398 (-547))) . T) (($) . T)) +(((|#3|) |has| |#3| (-354))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) ((((-1135)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (((|#2| |#3|) . T)) -(-1524 (|has| |#2| (-355)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(((|#1| (-520 |#2|)) . T)) +(-1524 (|has| |#2| (-354)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(((|#1| (-519 |#2|)) . T)) (((|#1| (-745)) . T)) -(((|#1| (-520 (-1052 (-1135)))) . T)) +(((|#1| (-519 (-1052 (-1135)))) . T)) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) (|has| |#2| (-878)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) ((((-832)) . T)) -((($ $) . T) ((#0=(-1203 |#2| |#3| |#4|) #0#) . T) ((#1=(-399 (-548)) #1#) |has| #0# (-38 (-399 (-548))))) +((($ $) . T) ((#0=(-1203 |#2| |#3| |#4|) #0#) . T) ((#1=(-398 (-547)) #1#) |has| #0# (-38 (-398 (-547))))) ((((-879 |#1|)) . T)) -(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) -((($) . T) (((-399 (-548))) . T)) +(-12 (|has| |#1| (-354)) (|has| |#2| (-794))) +((($) . T) (((-398 (-547))) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-355)) -(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341)) (|has| |#1| (-540))) -(|has| |#1| (-355)) -((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) . T) (((-399 (-548))) |has| #0# (-38 (-399 (-548))))) +(|has| |#1| (-354)) +(-1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340)) (|has| |#1| (-539))) +(|has| |#1| (-354)) +((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) . T) (((-398 (-547))) |has| #0# (-38 (-398 (-547))))) (((|#1| |#2|) . T)) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) -(-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355)) (|has| |#1| (-341))) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) +(-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354)) (|has| |#1| (-340))) (-1524 (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016))) -((((-548)) |has| |#1| (-615 (-548))) ((|#1|) . T)) +((((-547)) |has| |#1| (-615 (-547))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) -(|has| |#2| (-355)) +(((|#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) +(|has| |#2| (-354)) (|has| |#1| (-821)) (((|#1|) . T)) (((|#1|) . T)) @@ -2174,181 +2174,181 @@ (|has| |#1| (-1063)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((((-399 $) (-399 $)) |has| |#1| (-540)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((((-398 $) (-398 $)) |has| |#1| (-539)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#2| (-794)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((((-832)) . T)) -(((|#1| (-520 (-1135))) . T)) +(((|#1| (-519 (-1135))) . T)) (((|#1|) |has| |#1| (-169))) ((((-832)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(((|#2|) -1524 (|has| |#2| (-6 (-4329 "*"))) (|has| |#2| (-169)))) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(((|#2|) -1524 (|has| |#2| (-6 (-4330 "*"))) (|has| |#2| (-169)))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (|has| |#2| (-821)) (|has| |#2| (-878)) (|has| |#1| (-878)) (((|#2|) |has| |#2| (-169))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) . T)) (((|#1|) . T)) ((((-832)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-399 (-548))) . T)) +(((|#1| (-398 (-547))) . T)) (((|#1|) . T)) -(-1524 (|has| |#1| (-282)) (|has| |#1| (-355))) +(-1524 (|has| |#1| (-281)) (|has| |#1| (-354))) ((((-142)) . T)) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) (|has| |#1| (-819)) ((((-832)) . T)) ((((-832)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524))) (((-861 (-548))) |has| |#1| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#1| (-593 (-861 (-371))))) +((((-523)) |has| |#1| (-592 (-523))) (((-861 (-547))) |has| |#1| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#1| (-592 (-861 (-370))))) ((((-1135) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-832)) . T)) ((((-619 (-142))) . T) (((-1118)) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -((((-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-301 |#1|))) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +((((-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((|#1| |#1|) |has| |#1| (-300 |#1|))) (|has| |#1| (-821)) ((((-832)) . T)) -((((-524)) |has| |#1| (-593 (-524)))) +((((-523)) |has| |#1| (-592 (-523)))) ((((-832)) . T)) -(((|#2|) |has| |#2| (-355))) +(((|#2|) |has| |#2| (-354))) ((((-832)) . T)) -((((-524)) |has| |#4| (-593 (-524)))) +((((-523)) |has| |#4| (-592 (-523)))) ((((-832)) . T) (((-619 |#4|)) . T)) (((|#2|) . T)) -((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) (-1524 (|has| |#4| (-169)) (|has| |#4| (-701)) (|has| |#4| (-819)) (|has| |#4| (-1016))) (-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((((-1135) (-52)) . T)) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (|has| |#1| (-878)) (|has| |#1| (-878)) (((|#2|) . T)) (((|#1|) . T)) ((((-832)) . T)) -((((-548)) . T)) -(((#0=(-399 (-548)) #0#) . T) (($ $) . T)) -((((-399 (-548))) . T) (($) . T)) -(((|#1| (-399 (-548)) (-1045)) . T)) +((((-547)) . T)) +(((#0=(-398 (-547)) #0#) . T) (($ $) . T)) +((((-398 (-547))) . T) (($) . T)) +(((|#1| (-398 (-547)) (-1045)) . T)) (|has| |#1| (-1063)) -(|has| |#1| (-540)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(|has| |#1| (-539)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (|has| |#1| (-794)) -(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) -((((-399 |#2|)) . T)) +(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T)) +((((-398 |#2|)) . T)) (|has| |#1| (-819)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -(((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) . T) ((#1=(-548) #1#) . T) (($ $) . T)) -((((-879 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) -(((|#2|) |has| |#2| (-1016)) (((-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) -(((|#1|) . T) (((-399 (-548))) . T) (((-548)) . T) (($) . T)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +(((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) . T) ((#1=(-547) #1#) . T) (($ $) . T)) +((((-879 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) +(((|#2|) |has| |#2| (-1016)) (((-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) +(((|#1|) . T) (((-398 (-547))) . T) (((-547)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) (((|#2|) . T)) ((((-832)) . T)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3156 (-1135)) (|:| -1657 #0#))) . T)) -(|has| |#1| (-341)) -((((-548)) . T)) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3326 (-1135)) (|:| -1777 #0#))) . T)) +(|has| |#1| (-340)) +((((-547)) . T)) ((((-832)) . T)) -(((#0=(-1204 |#1| |#2| |#3| |#4|) $) |has| #0# (-278 #0# #0#))) -(|has| |#1| (-355)) +(((#0=(-1204 |#1| |#2| |#3| |#4|) $) |has| #0# (-277 #0# #0#))) +(|has| |#1| (-354)) (((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) -(((#0=(-399 (-548)) #0#) . T) ((#1=(-673) #1#) . T) (($ $) . T)) -((((-308 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-355))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) +(((#0=(-398 (-547)) #0#) . T) ((#1=(-673) #1#) . T) (($ $) . T)) +((((-307 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-354))) (|has| |#1| (-1063)) (((|#1|) . T)) -(((|#1|) -1524 (|has| |#2| (-359 |#1|)) (|has| |#2| (-409 |#1|)))) -(((|#1|) -1524 (|has| |#2| (-359 |#1|)) (|has| |#2| (-409 |#1|)))) +(((|#1|) -1524 (|has| |#2| (-358 |#1|)) (|has| |#2| (-408 |#1|)))) +(((|#1|) -1524 (|has| |#2| (-358 |#1|)) (|has| |#2| (-408 |#1|)))) (((|#2|) . T)) -((((-399 (-548))) . T) (((-673)) . T) (($) . T)) +((((-398 (-547))) . T) (((-673)) . T) (($) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-226)) +(|has| |#2| (-225)) ((((-834 |#1|)) . T)) ((((-1135)) |has| |#1| (-869 (-1135))) ((|#3|) . T)) -(-12 (|has| |#1| (-355)) (|has| |#2| (-991))) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +(-12 (|has| |#1| (-354)) (|has| |#2| (-991))) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) ((((-832)) . T)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -((((-399 (-548))) . T) (($) . T) (((-399 |#1|)) . T) ((|#1|) . T)) -((((-548)) . T)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +((((-398 (-547))) . T) (($) . T) (((-398 |#1|)) . T) ((|#1|) . T)) +((((-547)) . T)) (|has| |#1| (-1063)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-548)) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) +((((-547)) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-562 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) -((($) . T) (((-399 (-548))) . T)) +((((-561 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) +((($) . T) (((-398 (-547))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) ((((-832)) . T)) ((((-832)) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) -((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) -((((-1087 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((|#2|) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) +((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T)) +((((-1087 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) ((((-646 |#1|)) . T)) -((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) -((((-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) (((-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371))))) +((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) +((((-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) (((-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) (($) . T)) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) (($) . T)) ((((-142)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#1|) . T)) (|has| |#2| (-878)) (|has| |#1| (-878)) @@ -2357,219 +2357,219 @@ (|has| |#2| (-991)) ((($) . T)) (|has| |#1| (-878)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) ((((-879 |#1|)) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(-1524 (|has| |#1| (-360)) (|has| |#1| (-821))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(-1524 (|has| |#1| (-359)) (|has| |#1| (-821))) (((|#1|) . T)) ((((-832)) . T)) -((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) -((((-399 |#2|) |#3|) . T)) -((($) . T) (((-399 (-548))) . T)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-398 |#2|) |#3|) . T)) +((($) . T) (((-398 (-547))) . T)) ((((-745) |#1|) . T)) -(((|#2| (-233 (-3643 |#1|) (-745))) . T)) -(((|#1| (-520 |#3|)) . T)) -((((-399 (-548))) . T)) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#2| (-232 (-3763 |#1|) (-745))) . T)) +(((|#1| (-519 |#3|)) . T)) +((((-398 (-547))) . T)) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((((-832)) . T)) -(((#0=(-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) #0#) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) +(((#0=(-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) #0#) |has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))))) (|has| |#1| (-878)) -(|has| |#2| (-355)) -(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -((((-166 (-371))) . T) (((-218)) . T) (((-371)) . T)) +(|has| |#2| (-354)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-166 (-370))) . T) (((-217)) . T) (((-370)) . T)) ((((-832)) . T)) (((|#1|) . T)) -((((-371)) . T) (((-548)) . T)) -(((#0=(-399 (-548)) #0#) . T) (($ $) . T)) +((((-370)) . T) (((-547)) . T)) +(((#0=(-398 (-547)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) ((((-832)) . T)) -(|has| |#1| (-540)) -((((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-539)) +((((-398 (-547))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341))) -(|has| |#1| (-38 (-399 (-548)))) -(-12 (|has| |#1| (-533)) (|has| |#1| (-802))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(-1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340))) +(|has| |#1| (-38 (-398 (-547)))) +(-12 (|has| |#1| (-532)) (|has| |#1| (-802))) ((((-832)) . T)) -((((-1135)) -1524 (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))) (-12 (|has| |#1| (-355)) (|has| |#2| (-869 (-1135)))))) -(|has| |#1| (-355)) -((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) -(|has| |#1| (-355)) -((((-399 (-548))) . T) (($) . T)) -((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) -((((-548) |#1|) . T)) +((((-1135)) -1524 (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))) (-12 (|has| |#1| (-354)) (|has| |#2| (-869 (-1135)))))) +(|has| |#1| (-354)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) +(|has| |#1| (-354)) +((((-398 (-547))) . T) (($) . T)) +((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T)) +((((-547) |#1|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-355))) -(((|#2|) |has| |#1| (-355))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#2|) |has| |#1| (-354))) +(((|#2|) |has| |#1| (-354))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -(((|#2|) . T) (((-1135)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-1135)))) (((-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548)))) (((-399 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548))))) +(((|#2|) . T) (((-1135)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-1135)))) (((-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))) (((-398 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547))))) (((|#2|) . T)) -((((-1135) #0=(-1204 |#1| |#2| |#3| |#4|)) |has| #0# (-504 (-1135) #0#)) ((#0# #0#) |has| #0# (-301 #0#))) -((((-591 $) $) . T) (($ $) . T)) -((((-166 (-218))) . T) (((-166 (-371))) . T) (((-1131 (-673))) . T) (((-861 (-371))) . T)) +((((-1135) #0=(-1204 |#1| |#2| |#3| |#4|)) |has| #0# (-503 (-1135) #0#)) ((#0# #0#) |has| #0# (-300 #0#))) +((((-590 $) $) . T) (($ $) . T)) +((((-166 (-217))) . T) (((-166 (-370))) . T) (((-1131 (-673))) . T) (((-861 (-370))) . T)) ((((-832)) . T)) -(|has| |#1| (-540)) -(|has| |#1| (-540)) -(|has| (-399 |#2|) (-226)) -(((|#1| (-399 (-548))) . T)) +(|has| |#1| (-539)) +(|has| |#1| (-539)) +(|has| (-398 |#2|) (-225)) +(((|#1| (-398 (-547))) . T)) ((($ $) . T)) ((((-1135)) |has| |#2| (-869 (-1135)))) ((($) . T)) ((((-832)) . T)) -((((-399 (-548))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-398 (-547))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) -(((|#2|) |has| |#1| (-355))) -((((-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-371)))) (((-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-548))))) -(|has| |#1| (-355)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(|has| |#1| (-355)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(|has| |#1| (-355)) -(|has| |#1| (-540)) -(((|#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) +(((|#2|) |has| |#1| (-354))) +((((-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-370)))) (((-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-547))))) +(|has| |#1| (-354)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(|has| |#1| (-354)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(|has| |#1| (-354)) +(|has| |#1| (-539)) +(((|#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (((|#3|) . T)) (((|#1|) . T)) -(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (((|#2|) . T)) (((|#2|) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(|has| |#1| (-38 (-399 (-548)))) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(|has| |#1| (-38 (-398 (-547)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(|has| |#1| (-38 (-398 (-547)))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (|has| |#1| (-145)) ((((-1118) |#1|) . T)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (|has| |#1| (-145)) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-359))) (|has| |#1| (-145)) -((((-562 |#1|)) . T)) +((((-561 |#1|)) . T)) ((($) . T)) -((((-399 |#2|)) . T)) -(|has| |#1| (-540)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-341))) +((((-398 |#2|)) . T)) +(|has| |#1| (-539)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-340))) (|has| |#1| (-145)) ((((-832)) . T)) ((($) . T)) -((((-399 (-548))) |has| |#2| (-1007 (-548))) (((-548)) |has| |#2| (-1007 (-548))) (((-1135)) |has| |#2| (-1007 (-1135))) ((|#2|) . T)) -(((#0=(-399 |#2|) #0#) . T) ((#1=(-399 (-548)) #1#) . T) (($ $) . T)) +((((-398 (-547))) |has| |#2| (-1007 (-547))) (((-547)) |has| |#2| (-1007 (-547))) (((-1135)) |has| |#2| (-1007 (-1135))) ((|#2|) . T)) +(((#0=(-398 |#2|) #0#) . T) ((#1=(-398 (-547)) #1#) . T) (($ $) . T)) ((((-1100 |#1| |#2|)) . T)) -(((|#1| (-548)) . T)) -(((|#1| (-399 (-548))) . T)) -((((-548)) |has| |#2| (-855 (-548))) (((-371)) |has| |#2| (-855 (-371)))) +(((|#1| (-547)) . T)) +(((|#1| (-398 (-547))) . T)) +((((-547)) |has| |#2| (-855 (-547))) (((-370)) |has| |#2| (-855 (-370)))) (((|#2|) . T)) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) (((|#2|) . T)) ((((-832)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-1135) (-52)) . T)) -((((-399 |#2|)) . T)) +((((-398 |#2|)) . T)) ((((-832)) . T)) (((|#1|) . T)) (|has| |#1| (-1063)) (|has| |#1| (-765)) (|has| |#1| (-765)) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-218)) . T) (((-371)) . T) (((-861 (-371))) . T)) +((((-217)) . T) (((-370)) . T) (((-861 (-370))) . T)) ((((-832)) . T)) -((((-1204 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540)) (((-399 (-548))) |has| |#1| (-540))) +((((-1204 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)) (((-398 (-547))) |has| |#1| (-539))) ((((-832)) . T)) ((((-832)) . T)) (((|#2|) . T)) ((((-832)) . T)) -(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) +(((#0=(-879 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-879 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) -(|has| |#1| (-355)) +((((-879 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) +(|has| |#1| (-354)) (((|#2|) . T)) -((((-548)) . T)) +((((-547)) . T)) ((((-832)) . T)) -((((-548)) . T)) +((((-547)) . T)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) -((((-166 (-371))) . T) (((-218)) . T) (((-371)) . T)) +((((-166 (-370))) . T) (((-217)) . T) (((-370)) . T)) ((((-832)) . T)) ((((-832)) . T)) -((((-1118)) . T) (((-524)) . T) (((-548)) . T) (((-861 (-548))) . T) (((-371)) . T) (((-218)) . T)) +((((-1118)) . T) (((-523)) . T) (((-547)) . T) (((-861 (-547))) . T) (((-370)) . T) (((-217)) . T)) ((((-832)) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) |has| #0# (-169)) (((-399 (-548))) |has| #0# (-38 (-399 (-548))))) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-464)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))) +((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) |has| #0# (-169)) (((-398 (-547))) |has| #0# (-38 (-398 (-547))))) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +(-1524 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-463)) (|has| |#1| (-701)) (|has| |#1| (-869 (-1135))) (|has| |#1| (-1016)) (|has| |#1| (-1075)) (|has| |#1| (-1063))) (|has| |#1| (-1111)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-278 #0# #0#))) +(((#0=(-116 |#1|) $) |has| #0# (-277 #0# #0#))) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) ((((-114)) . T) ((|#1|) . T)) ((((-832)) . T)) (((|#1| |#2|) . T)) ((((-1135) |#1|) . T)) -(((|#1|) |has| |#1| (-301 |#1|))) -((((-548) |#1|) . T)) +(((|#1|) |has| |#1| (-300 |#1|))) +((((-547) |#1|) . T)) (((|#1|) . T)) -((((-548)) . T) (((-399 (-548))) . T)) +((((-547)) . T) (((-398 (-547))) . T)) (((|#1|) . T)) -(|has| |#1| (-540)) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) -((((-371)) . T)) +(|has| |#1| (-539)) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) +((((-370)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-540)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-539)) (|has| |#1| (-1063)) -((((-754 |#1| (-834 |#2|))) |has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|))))) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +((((-754 |#1| (-834 |#2|))) |has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|))))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) (|has| |#2| (-878)) -(((|#1| (-520 |#2|)) . T)) +(((|#1| (-519 |#2|)) . T)) (((|#1| (-745)) . T)) -(|has| |#1| (-226)) -(((|#1| (-520 (-1052 (-1135)))) . T)) -(|has| |#2| (-355)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) . T)) +(|has| |#1| (-225)) +(((|#1| (-519 (-1052 (-1135)))) . T)) +(|has| |#2| (-354)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) ((((-832)) . T)) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) @@ -2577,47 +2577,47 @@ ((((-1082)) . T) (((-832)) . T)) ((((-832)) . T)) (((|#1|) . T)) -((($ $) . T) (((-591 $) $) . T)) +((($ $) . T) (((-590 $) $) . T)) (((|#1|) . T)) -((((-548)) . T)) +((((-547)) . T)) (((|#3|) . T)) ((((-832)) . T)) -(-1524 (|has| |#1| (-299)) (|has| |#1| (-355)) (|has| |#1| (-341))) -(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-540)) (|has| |#1| (-1016))) -(((#0=(-562 |#1|) #0#) . T) (($ $) . T) ((#1=(-399 (-548)) #1#) . T)) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(-1524 (|has| |#1| (-298)) (|has| |#1| (-354)) (|has| |#1| (-340))) +(-1524 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-169)) (|has| |#1| (-539)) (|has| |#1| (-1016))) +(((#0=(-561 |#1|) #0#) . T) (($ $) . T) ((#1=(-398 (-547)) #1#) . T)) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) (((|#1|) |has| |#1| (-169))) (((|#1| (-1218 |#1|) (-1218 |#1|)) . T)) -((((-562 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) -((($) . T) (((-399 (-548))) . T)) -((($) . T) (((-399 (-548))) . T)) -(((|#2|) |has| |#2| (-6 (-4329 "*")))) +((((-561 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) +((($) . T) (((-398 (-547))) . T)) +((($) . T) (((-398 (-547))) . T)) +(((|#2|) |has| |#2| (-6 (-4330 "*")))) (((|#1|) . T)) (((|#1|) . T)) -((((-832)) |has| |#1| (-592 (-832)))) -((((-286 |#3|)) . T)) -(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-832)) . T)) +((((-285 |#3|)) . T)) +(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (($) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (($) . T)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) (((|#2|) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) ((((-832)) . T)) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (|has| |#2| (-878)) (|has| |#1| (-878)) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (((|#1|) . T)) -((((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) . T)) +((((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) @@ -2628,67 +2628,67 @@ ((((-1135)) . T) ((|#1|) . T)) ((((-832)) . T)) ((((-832)) . T)) -(((|#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) -(((#0=(-399 (-548)) #0#) . T)) -((((-399 (-548))) . T)) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) +(((#0=(-398 (-547)) #0#) . T)) +((((-398 (-547))) . T)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (((|#1|) . T)) (((|#1|) . T)) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -((((-524)) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-523)) . T)) ((((-832)) . T)) ((((-1135)) |has| |#2| (-869 (-1135))) (((-1045)) . T)) ((((-1203 |#2| |#3| |#4|)) . T)) ((((-879 |#1|)) . T)) -((($) . T) (((-399 (-548))) . T)) -(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) -(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) +((($) . T) (((-398 (-547))) . T)) +(-12 (|has| |#1| (-354)) (|has| |#2| (-794))) +(-12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((((-832)) . T)) (|has| |#1| (-1176)) (((|#2|) . T)) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) ((((-1135)) |has| |#1| (-869 (-1135)))) -((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) -((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#1|) . T)) -(((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) -((($) . T) (((-399 (-548))) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (((-548)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1016)) (((-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-540)))) -(|has| |#1| (-540)) -(((|#1|) |has| |#1| (-355))) -((((-548)) . T)) +((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) +((($) . T) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#1|) . T)) +(((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547)))) ((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-539)))) +((($) . T) (((-398 (-547))) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (((-547)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1016)) (((-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-539)))) +(|has| |#1| (-539)) +(((|#1|) |has| |#1| (-354))) +((((-547)) . T)) (|has| |#1| (-765)) (|has| |#1| (-765)) -((((-1135) #0=(-116 |#1|)) |has| #0# (-504 (-1135) #0#)) ((#0# #0#) |has| #0# (-301 #0#))) -(((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) -((((-1045)) . T) ((|#2|) . T) (((-548)) |has| |#2| (-1007 (-548))) (((-399 (-548))) |has| |#2| (-1007 (-399 (-548))))) +((((-1135) #0=(-116 |#1|)) |has| #0# (-503 (-1135) #0#)) ((#0# #0#) |has| #0# (-300 #0#))) +(((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547))))) +((((-1045)) . T) ((|#2|) . T) (((-547)) |has| |#2| (-1007 (-547))) (((-398 (-547))) |has| |#2| (-1007 (-398 (-547))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-548) (-745)) . T) ((|#3| (-745)) . T)) +((((-547) (-745)) . T) ((|#3| (-745)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-832)) . T)) (|has| |#2| (-794)) (|has| |#2| (-794)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#2|) |has| |#1| (-355)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -((((-548)) |has| |#1| (-855 (-548))) (((-371)) |has| |#1| (-855 (-371)))) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#2|) |has| |#1| (-354)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +((((-547)) |has| |#1| (-855 (-547))) (((-370)) |has| |#1| (-855 (-370)))) (((|#1|) . T)) ((((-839 |#1|)) . T)) ((((-839 |#1|)) . T)) -(-12 (|has| |#1| (-355)) (|has| |#2| (-878))) -((((-399 (-548))) . T) (((-673)) . T) (($) . T)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) +(-12 (|has| |#1| (-354)) (|has| |#2| (-878))) +((((-398 (-547))) . T) (((-673)) . T) (($) . T)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -(|has| |#1| (-355)) +(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +(|has| |#1| (-354)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2700,106 +2700,106 @@ (((|#2| (-745)) . T)) ((((-1135)) . T)) ((((-839 |#1|)) . T)) -(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) -(-1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(-1524 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(-1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((((-832)) . T)) (((|#1|) . T)) (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))) (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))) ((((-839 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) -((($ $) . T) (((-591 $) $) . T)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) +((($ $) . T) (((-590 $) $) . T)) ((($) . T)) ((((-832)) . T)) -((((-548)) . T)) +((((-547)) . T)) (((|#2|) . T)) ((((-832)) . T)) -(((|#1|) . T) (((-399 (-548))) |has| |#1| (-355))) +(((|#1|) . T) (((-398 (-547))) |has| |#1| (-354))) ((((-832)) . T)) (((|#1|) . T)) ((((-832)) . T)) -((($) . T) ((|#2|) . T) (((-399 (-548))) . T)) +((($) . T) ((|#2|) . T) (((-398 (-547))) . T)) (|has| |#1| (-1063)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-832)) . T)) (|has| |#2| (-878)) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) -((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) +((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547))))) ((((-832)) . T)) ((((-832)) . T)) -(((|#3|) |has| |#3| (-1016)) (((-548)) -12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) -((((-1087 |#1| |#2|)) . T) (((-921 |#1|)) |has| |#2| (-593 (-1135))) (((-832)) . T)) -((((-921 |#1|)) |has| |#2| (-593 (-1135))) (((-1118)) -12 (|has| |#1| (-1007 (-548))) (|has| |#2| (-593 (-1135)))) (((-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548))))) (((-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524))))) +(((|#3|) |has| |#3| (-1016)) (((-547)) -12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) +((((-1087 |#1| |#2|)) . T) (((-921 |#1|)) |has| |#2| (-592 (-1135))) (((-832)) . T)) +((((-921 |#1|)) |has| |#2| (-592 (-1135))) (((-1118)) -12 (|has| |#1| (-1007 (-547))) (|has| |#2| (-592 (-1135)))) (((-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547))))) (((-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370))))) (((-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523))))) ((((-1131 |#1|)) . T) (((-832)) . T)) ((((-832)) . T)) -((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T) (((-1135)) . T)) +((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T) (((-1135)) . T)) ((((-832)) . T)) -((((-548)) . T)) +((((-547)) . T)) ((($) . T)) -((((-371)) |has| |#1| (-855 (-371))) (((-548)) |has| |#1| (-855 (-548)))) -((((-548)) . T)) +((((-370)) |has| |#1| (-855 (-370))) (((-547)) |has| |#1| (-855 (-547)))) +((((-547)) . T)) (((|#1|) . T)) ((((-832)) . T)) (((|#1|) . T)) ((((-832)) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) -((((-548)) . T) (((-399 (-548))) . T)) -(((|#1|) |has| |#1| (-301 |#1|))) +((((-547)) . T) (((-398 (-547))) . T)) +(((|#1|) |has| |#1| (-300 |#1|))) ((((-832)) . T)) -((((-371)) . T)) +((((-370)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-832)) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-399 |#2|) |#3|) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-398 |#2|) |#3|) . T)) (((|#1|) . T)) (|has| |#1| (-1063)) -(((|#2| (-473 (-3643 |#1|) (-745))) . T)) -((((-548) |#1|) . T)) +(((|#2| (-472 (-3763 |#1|) (-745))) . T)) +((((-547) |#1|) . T)) ((((-1118)) . T) (((-832)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-520 (-1135))) . T)) -(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -((((-548)) . T)) +(((|#1| (-519 (-1135))) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +((((-547)) . T)) (((|#2|) . T)) (((|#2|) . T)) ((((-1135)) |has| |#1| (-869 (-1135))) (((-1045)) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-615 (-548)))) -(|has| |#1| (-540)) -((($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-615 (-547)))) +(|has| |#1| (-539)) +((($) . T) (((-398 (-547))) . T)) ((($) . T)) ((($) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) (((|#1|) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) ((((-832)) . T)) ((((-142)) . T)) -(((|#1|) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (((-398 (-547))) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-832)) . T)) (((|#1|) . T)) (|has| |#1| (-1111)) -(((|#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) +(((|#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) (((|#1|) . T)) -((((-399 $) (-399 $)) |has| |#1| (-540)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) +((((-398 $) (-398 $)) |has| |#1| (-539)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) ((((-832)) . T)) -((((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-548)) |has| |#1| (-1007 (-548))) ((|#1|) . T) ((|#2|) . T)) -((((-1045)) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548))))) -((((-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371)))) (((-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548))))) +((((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-547)) |has| |#1| (-1007 (-547))) ((|#1|) . T) ((|#2|) . T)) +((((-1045)) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547))))) +((((-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370)))) (((-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547))))) ((((-1204 |#1| |#2| |#3| |#4|)) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-169)) (($) . T)) @@ -2807,64 +2807,64 @@ ((((-673)) . T)) ((((-754 |#1| (-834 |#2|))) . T)) ((($) . T)) -((((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) (|has| |#1| (-1063)) (|has| |#1| (-1063)) -(|has| |#2| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-38 (-399 (-548)))) -((((-548)) . T)) +(|has| |#2| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-38 (-398 (-547)))) +((((-547)) . T)) ((((-1135)) -12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) ((((-1135)) -12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (((|#1|) . T)) -(|has| |#1| (-226)) -(((|#1| (-520 |#3|)) . T)) -(|has| |#1| (-360)) -(((|#2| (-233 (-3643 |#1|) (-745))) . T)) -(|has| |#1| (-360)) -(|has| |#1| (-360)) +(|has| |#1| (-225)) +(((|#1| (-519 |#3|)) . T)) +(|has| |#1| (-359)) +(((|#2| (-232 (-3763 |#1|) (-745))) . T)) +(|has| |#1| (-359)) +(|has| |#1| (-359)) (((|#1|) . T) (($) . T)) -(((|#1| (-520 |#2|)) . T)) -(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(((|#1| (-519 |#2|)) . T)) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (((|#1| (-745)) . T)) -(|has| |#1| (-540)) -(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(|has| |#1| (-539)) +(-1524 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-832)) . T)) (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) -(-1524 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(-1524 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) (-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (((|#1|) |has| |#1| (-169))) (((|#4|) |has| |#4| (-1016))) (((|#3|) |has| |#3| (-1016))) -(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) -(-12 (|has| |#1| (-355)) (|has| |#2| (-794))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((((-399 |#2|)) . T) (((-399 (-548))) . T) (($) . T)) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -((((-832)) . T)) -((($) . T) (((-399 (-548))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1063)) (((-548)) -12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063))) (((-399 (-548))) -12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063)))) -(((|#3|) |has| |#3| (-1063)) (((-548)) -12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (((-399 (-548))) -12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) -(|has| |#2| (-355)) -(((|#2|) |has| |#2| (-1016)) (((-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) -(((|#1|) . T)) -(|has| |#2| (-355)) -(((#0=(-399 (-548)) #0#) |has| |#2| (-38 (-399 (-548)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-399 (-548)) #0#) |has| |#1| (-38 (-399 (-548))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-399 (-548)) #0#) . T)) +(-12 (|has| |#1| (-354)) (|has| |#2| (-794))) +(-12 (|has| |#1| (-354)) (|has| |#2| (-794))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-398 |#2|)) . T) (((-398 (-547))) . T) (($) . T)) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +((((-832)) . T)) +((($) . T) (((-398 (-547))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1063)) (((-547)) -12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063))) (((-398 (-547))) -12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063)))) +(((|#3|) |has| |#3| (-1063)) (((-547)) -12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (((-398 (-547))) -12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) +(|has| |#2| (-354)) +(((|#2|) |has| |#2| (-1016)) (((-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) +(((|#1|) . T)) +(|has| |#2| (-354)) +(((#0=(-398 (-547)) #0#) |has| |#2| (-38 (-398 (-547)))) ((|#2| |#2|) . T) (($ $) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1| |#1|) . T) ((#0=(-398 (-547)) #0#) |has| |#1| (-38 (-398 (-547))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-398 (-547)) #0#) . T)) (((|#2| |#2|) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1|) . T) (($) . T) (((-399 (-548))) . T)) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T) (($) -1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1|) . T) (($) . T) (((-398 (-547))) . T)) (((|#2|) . T)) ((((-832)) |has| |#1| (-1063))) ((($) . T)) @@ -2873,259 +2873,259 @@ (((|#1|) . T)) (|has| |#2| (-794)) (|has| |#2| (-794)) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) -(|has| |#1| (-355)) -(((|#1|) |has| |#2| (-409 |#1|))) -(((|#1|) |has| |#2| (-409 |#1|))) -((((-879 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) +(|has| |#1| (-354)) +(((|#1|) |has| |#2| (-408 |#1|))) +(((|#1|) |has| |#2| (-408 |#1|))) +((((-879 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-1171)) . T) (((-832)) . T) (((-1140)) . T)) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) |has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -((((-548) |#1|) . T)) -((((-548) |#1|) . T)) -((((-548) |#1|) . T)) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -((((-548) |#1|) . T)) -(((|#1|) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) |has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +((((-547) |#1|) . T)) +((((-547) |#1|) . T)) +((((-547) |#1|) . T)) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +((((-547) |#1|) . T)) +(((|#1|) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((((-1135)) |has| |#1| (-869 (-1135))) (((-792 (-1135))) . T)) -(-1524 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) +(-1524 (|has| |#3| (-130)) (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-767)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((((-793 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-832)) . T)) (-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-399 (-548)))) -((((-832)) . T)) -((((-1204 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-399 (-548))) . T)) -(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540)) (((-399 (-548))) |has| |#1| (-540))) -(((|#2|) . T) (((-548)) |has| |#2| (-615 (-548)))) -(|has| |#1| (-355)) -(-1524 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (-12 (|has| |#1| (-355)) (|has| |#2| (-226)))) -(|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) -(|has| |#1| (-355)) -(((|#1|) . T)) -(((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1| |#1|) . T)) -((((-548) |#1|) . T)) -((((-308 |#1|)) . T)) +(|has| |#1| (-38 (-398 (-547)))) +((((-832)) . T)) +((((-1204 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-398 (-547))) . T)) +(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539)) (((-398 (-547))) |has| |#1| (-539))) +(((|#2|) . T) (((-547)) |has| |#2| (-615 (-547)))) +(|has| |#1| (-354)) +(-1524 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (-12 (|has| |#1| (-354)) (|has| |#2| (-225)))) +(|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) +(|has| |#1| (-354)) +(((|#1|) . T)) +(((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1| |#1|) . T)) +((((-547) |#1|) . T)) +((((-307 |#1|)) . T)) (((#0=(-673) (-1131 #0#)) . T)) -((((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((|#1|) . T)) +((((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-819)) ((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1087 |#1| (-1135))) . T) (((-792 (-1135))) . T) ((|#1|) . T) (((-548)) |has| |#1| (-1007 (-548))) (((-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) (((-1135)) . T)) +((((-1087 |#1| (-1135))) . T) (((-792 (-1135))) . T) ((|#1|) . T) (((-547)) |has| |#1| (-1007 (-547))) (((-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) (((-1135)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) (((#0=(-1045) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1135) $) |has| |#1| (-226)) ((#0# |#1|) |has| |#1| (-226)) ((#1=(-1052 (-1135)) |#1|) . T) ((#1# $) . T)) +((($ $) . T) ((#0=(-1135) $) |has| |#1| (-225)) ((#0# |#1|) |has| |#1| (-225)) ((#1=(-1052 (-1135)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548))))) +((($) . T) ((|#2|) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547))))) (|has| |#2| (-878)) -((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) |has| #0# (-169)) (((-399 (-548))) |has| #0# (-38 (-399 (-548))))) -((((-548) |#1|) . T)) -(((#0=(-1204 |#1| |#2| |#3| |#4|)) |has| #0# (-301 #0#))) +((($) . T) ((#0=(-1203 |#2| |#3| |#4|)) |has| #0# (-169)) (((-398 (-547))) |has| #0# (-38 (-398 (-547))))) +((((-547) |#1|) . T)) +(((#0=(-1204 |#1| |#2| |#3| |#4|)) |has| #0# (-300 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#2| |#2|) |has| |#1| (-355)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) ((#0=(-399 (-548)) #0#) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) -(|has| |#2| (-226)) +((($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#2| |#2|) |has| |#1| (-354)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) ((#0=(-398 (-547)) #0#) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354)))) +(|has| |#2| (-225)) (|has| $ (-145)) ((((-832)) . T)) -((($) . T) (((-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-341))) ((|#1|) . T)) +((($) . T) (((-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-340))) ((|#1|) . T)) ((((-832)) . T)) (|has| |#1| (-819)) -((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) -((((-399 |#2|) |#3|) . T)) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-398 |#2|) |#3|) . T)) (((|#1|) . T)) ((((-832)) . T)) (((|#2| (-646 |#1|)) . T)) -(-12 (|has| |#1| (-299)) (|has| |#1| (-878))) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(-12 (|has| |#1| (-298)) (|has| |#1| (-878))) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#4|) . T)) -(|has| |#1| (-540)) -((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355))) ((|#2|) |has| |#1| (-355)) ((|#1|) . T)) -((((-1135)) -1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) -(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-540))) (((-399 (-548))) -1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-355)))) -((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +(|has| |#1| (-539)) +((($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354))) ((|#2|) |has| |#1| (-354)) ((|#1|) . T)) +((((-1135)) -1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) +(((|#1|) . T) (($) -1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-539))) (((-398 (-547))) -1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-354)))) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) ((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) -(((|#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) -((((-548) |#1|) . T)) -(-1524 (|has| |#2| (-169)) (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) +(((|#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) +((((-547) |#1|) . T)) +(-1524 (|has| |#2| (-169)) (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) (((|#1|) . T)) -(((|#1| (-520 (-792 (-1135)))) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(((|#1| (-519 (-792 (-1135)))) . T)) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (((|#1|) . T)) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) (((|#1|) . T)) -(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) -((($) . T) (((-839 |#1|)) . T) (((-399 (-548))) . T)) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) -(|has| |#1| (-540)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) +((($) . T) (((-839 |#1|)) . T) (((-398 (-547))) . T)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) +(|has| |#1| (-539)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-399 |#2|)) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-398 |#2|)) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-399 (-548)) #0#) . T) (($ $) . T)) -((((-548)) . T)) +(((|#2| |#2|) . T) ((#0=(-398 (-547)) #0#) . T) (($ $) . T)) +((((-547)) . T)) ((((-832)) . T)) -(((|#2|) . T) (((-399 (-548))) . T) (($) . T)) -((((-562 |#1|)) . T) (((-399 (-548))) . T) (($) . T)) +(((|#2|) . T) (((-398 (-547))) . T) (($) . T)) +((((-561 |#1|)) . T) (((-398 (-547))) . T) (($) . T)) ((((-832)) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-548) |#1|) . T)) +((((-398 (-547))) . T) (($) . T)) +((((-547) |#1|) . T)) ((((-832)) . T)) ((($ $) . T) (((-1135) $) . T)) ((((-1210 |#1| |#2| |#3|)) . T)) -((((-524)) |has| |#2| (-593 (-524))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548))))) +((((-523)) |has| |#2| (-592 (-523))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547))))) ((((-832)) . T)) ((((-832)) . T)) -((((-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) (((-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) (((-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524))))) +((((-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) (((-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) (((-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523))))) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1|) . T) (((-832)) . T) (((-1140)) . T)) ((((-832)) . T)) -(((|#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) -(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) . T)) +(((|#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) ((((-832)) . T)) -((((-1210 |#1| |#2| |#3|)) |has| |#1| (-355))) -(|has| |#1| (-355)) +((((-1210 |#1| |#2| |#3|)) |has| |#1| (-354))) +(|has| |#1| (-354)) ((((-1210 |#1| |#2| |#3|)) . T) (((-1182 |#1| |#2| |#3|)) . T)) ((((-1135)) . T) (((-832)) . T)) -((((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878)))) +((((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) |has| |#2| (-169)) (($) -1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-399 (-548))) |has| |#2| (-38 (-399 (-548)))) ((|#2|) . T)) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) . T) (((-398 (-547))) |has| |#2| (-38 (-398 (-547)))) ((|#2|) . T)) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) ((((-1067)) . T)) ((((-832)) . T)) -((($) -1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) +((($) -1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T)) ((($) . T)) -((($) -1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) +((($) -1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((|#1|) |has| |#1| (-169)) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) (|has| |#2| (-878)) (|has| |#1| (-878)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-169))) ((((-673)) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (((|#1|) |has| |#1| (-169))) (((|#1|) |has| |#1| (-169))) -((((-399 (-548))) . T) (($) . T)) -(((|#1| (-548)) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) -(|has| |#1| (-355)) -(|has| |#1| (-355)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) -(-1524 (|has| |#1| (-169)) (|has| |#1| (-540))) -(((|#1| (-548)) . T)) -(((|#1| (-399 (-548))) . T)) +((((-398 (-547))) . T) (($) . T)) +(((|#1| (-547)) . T)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) +(|has| |#1| (-354)) +(|has| |#1| (-354)) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) +(-1524 (|has| |#1| (-169)) (|has| |#1| (-539))) +(((|#1| (-547)) . T)) +(((|#1| (-398 (-547))) . T)) (((|#1| (-745)) . T)) -((((-399 (-548))) . T)) -(((|#1| (-520 |#2|) |#2|) . T)) -((((-548) |#1|) . T)) -((((-548) |#1|) . T)) +((((-398 (-547))) . T)) +(((|#1| (-519 |#2|) |#2|) . T)) +((((-547) |#1|) . T)) +((((-547) |#1|) . T)) (|has| |#1| (-1063)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-861 (-371))) . T) (((-861 (-548))) . T) (((-1135)) . T) (((-524)) . T)) +((((-861 (-370))) . T) (((-861 (-547))) . T) (((-1135)) . T) (((-523)) . T)) (((|#1|) . T)) ((((-832)) . T)) -(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-355)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) +(-1524 (|has| |#2| (-130)) (|has| |#2| (-169)) (|has| |#2| (-354)) (|has| |#2| (-767)) (|has| |#2| (-819)) (|has| |#2| (-1016))) (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) -((((-548)) . T)) -((((-548)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +((((-547)) . T)) +((((-547)) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (-1524 (|has| |#2| (-169)) (|has| |#2| (-701)) (|has| |#2| (-819)) (|has| |#2| (-1016))) ((((-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) -(-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) +(-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) (|has| |#1| (-143)) (|has| |#1| (-145)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-226)) +(|has| |#1| (-225)) ((((-832)) . T)) (((|#1| (-745) (-1045)) . T)) -((((-548) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -((((-548) |#1|) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +((((-547) |#1|) . T)) +((((-547) |#1|) . T)) ((((-116 |#1|)) . T)) -((((-399 (-548))) . T) (((-548)) . T)) +((((-398 (-547))) . T) (((-547)) . T)) (((|#2|) |has| |#2| (-1016))) -((((-399 (-548))) . T) (($) . T)) +((((-398 (-547))) . T) (($) . T)) (((|#2|) . T)) -((((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-540))) -((((-548)) . T)) -((((-548)) . T)) -((((-1118) (-1135) (-548) (-218) (-832)) . T)) +((((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-539))) +((((-547)) . T)) +((((-547)) . T)) +((((-1118) (-1135) (-547) (-217) (-832)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1524 (|has| |#1| (-341)) (|has| |#1| (-360))) +(-1524 (|has| |#1| (-340)) (|has| |#1| (-359))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) ((((-832)) . T)) -((($) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-399 (-548))) |has| |#1| (-38 (-399 (-548))))) -(((|#2|) |has| |#2| (-1063)) (((-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (((-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) -((((-524)) |has| |#1| (-593 (-524)))) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) -((($) . T) (((-399 (-548))) . T)) +((($) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-398 (-547))) |has| |#1| (-38 (-398 (-547))))) +(((|#2|) |has| |#2| (-1063)) (((-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (((-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) +((((-523)) |has| |#1| (-592 (-523)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-821)) (|has| |#1| (-1063)))) +((($) . T) (((-398 (-547))) . T)) (|has| |#1| (-878)) (|has| |#1| (-878)) -((((-218)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) (((-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) (((-861 (-371))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-371))))) (((-861 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-548))))) (((-524)) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-524))))) +((((-217)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) (((-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) (((-861 (-370))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-370))))) (((-861 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-547))))) (((-523)) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-523))))) ((((-832)) . T)) ((((-832)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-169))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-540))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-539))) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) (((|#2|) . T)) (-1524 (|has| |#1| (-21)) (|has| |#1| (-819))) (((|#1|) |has| |#1| (-169))) (((|#1|) . T)) (((|#1|) . T)) -((((-832)) -1524 (-12 (|has| |#1| (-592 (-832))) (|has| |#2| (-592 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) -((((-399 |#2|) |#3|) . T)) -((((-399 (-548))) . T) (($) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-355)) -((($ $) . T) ((#0=(-399 (-548)) #0#) . T)) -(|has| (-399 |#2|) (-145)) -(|has| (-399 |#2|) (-143)) +((((-832)) -1524 (-12 (|has| |#1| (-591 (-832))) (|has| |#2| (-591 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) +((((-398 |#2|) |#3|) . T)) +((((-398 (-547))) . T) (($) . T)) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-354)) +((($ $) . T) ((#0=(-398 (-547)) #0#) . T)) +(|has| (-398 |#2|) (-145)) +(|has| (-398 |#2|) (-143)) ((((-673)) . T)) -(((|#1|) . T) (((-399 (-548))) . T) (((-548)) . T) (($) . T)) -(((#0=(-548) #0#) . T)) -((($) . T) (((-399 (-548))) . T)) +(((|#1|) . T) (((-398 (-547))) . T) (((-547)) . T) (($) . T)) +(((#0=(-547) #0#) . T)) +((($) . T) (((-398 (-547))) . T)) (-1524 (|has| |#4| (-169)) (|has| |#4| (-701)) (|has| |#4| (-819)) (|has| |#4| (-1016))) (-1524 (|has| |#3| (-169)) (|has| |#3| (-701)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((((-832)) . T) (((-1140)) . T)) @@ -3135,13 +3135,13 @@ (|has| |#3| (-767)) (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))) (|has| |#3| (-819)) -((((-548)) . T)) +((((-547)) . T)) (((|#2|) . T)) -((((-1135)) -1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) -((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) +((((-1135)) -1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) +((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) ((((-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3149,111 +3149,111 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T)) ((((-834 |#1|)) . T)) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) ((((-1100 |#1| |#2|)) . T)) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) -(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) +(((|#2|) . T) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) ((($) . T)) (|has| |#1| (-991)) -(((|#2|) . T) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) ((((-832)) . T)) -((((-524)) |has| |#2| (-593 (-524))) (((-861 (-548))) |has| |#2| (-593 (-861 (-548)))) (((-861 (-371))) |has| |#2| (-593 (-861 (-371)))) (((-371)) . #0=(|has| |#2| (-991))) (((-218)) . #0#)) +((((-523)) |has| |#2| (-592 (-523))) (((-861 (-547))) |has| |#2| (-592 (-861 (-547)))) (((-861 (-370))) |has| |#2| (-592 (-861 (-370)))) (((-370)) . #0=(|has| |#2| (-991))) (((-217)) . #0#)) ((((-1135) (-52)) . T)) -(|has| |#1| (-38 (-399 (-548)))) -(|has| |#1| (-38 (-399 (-548)))) +(|has| |#1| (-38 (-398 (-547)))) +(|has| |#1| (-38 (-398 (-547)))) (((|#2|) . T)) ((($ $) . T)) -((((-399 (-548))) . T) (((-673)) . T) (($) . T)) +((((-398 (-547))) . T) (((-673)) . T) (($) . T)) ((((-1133 |#1| |#2| |#3|)) . T)) ((((-1133 |#1| |#2| |#3|)) . T) (((-1126 |#1| |#2| |#3|)) . T)) ((((-832)) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) -((((-548) |#1|) . T)) -((((-1133 |#1| |#2| |#3|)) |has| |#1| (-355))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) +((((-547) |#1|) . T)) +((((-1133 |#1| |#2| |#3|)) |has| |#1| (-354))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-355)) -(((|#3|) . T) ((|#2|) . T) (($) -1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) ((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-355)) (|has| |#4| (-1016)))) -(((|#2|) . T) (($) -1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-355)) (|has| |#3| (-1016)))) +(|has| |#2| (-354)) +(((|#3|) . T) ((|#2|) . T) (($) -1524 (|has| |#4| (-169)) (|has| |#4| (-819)) (|has| |#4| (-1016))) ((|#4|) -1524 (|has| |#4| (-169)) (|has| |#4| (-354)) (|has| |#4| (-1016)))) +(((|#2|) . T) (($) -1524 (|has| |#3| (-169)) (|has| |#3| (-819)) (|has| |#3| (-1016))) ((|#3|) -1524 (|has| |#3| (-169)) (|has| |#3| (-354)) (|has| |#3| (-1016)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-355)) +(|has| |#1| (-354)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) (((-548)) |has| |#2| (-1007 (-548))) ((|#2|) . T) (((-834 |#1|)) . T)) +((((-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) (((-547)) |has| |#2| (-1007 (-547))) ((|#2|) . T) (((-834 |#1|)) . T)) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) (((|#1|) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) ((((-129)) . T) (((-832)) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-355)) (|has| |#2| (-278 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-354)) (|has| |#2| (-277 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-443)) (|has| |#1| (-878))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-442)) (|has| |#1| (-878))) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) ((((-832)) . T)) ((((-832)) . T)) ((((-832)) . T)) -(((|#1| (-520 |#2|)) . T)) -((((-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) . T)) -(((|#1| (-548)) . T)) -(((|#1| (-399 (-548))) . T)) +(((|#1| (-519 |#2|)) . T)) +((((-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) . T)) +(((|#1| (-547)) . T)) +(((|#1| (-398 (-547))) . T)) (((|#1| (-745)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-399 (-548))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-398 (-547))) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) ((((-832)) . T) (((-1140)) . T)) -(-1524 (|has| |#2| (-443)) (|has| |#2| (-540)) (|has| |#2| (-878))) -(-1524 (|has| |#1| (-443)) (|has| |#1| (-540)) (|has| |#1| (-878))) +(-1524 (|has| |#2| (-442)) (|has| |#2| (-539)) (|has| |#2| (-878))) +(-1524 (|has| |#1| (-442)) (|has| |#1| (-539)) (|has| |#1| (-878))) ((($) . T)) -(((|#2| (-520 (-834 |#1|))) . T)) +(((|#2| (-519 (-834 |#1|))) . T)) ((((-832)) . T) (((-1140)) . T)) -((((-548) |#1|) . T)) +((((-547) |#1|) . T)) (((|#2|) . T)) (((|#2| (-745)) . T)) -((((-832)) -1524 (|has| |#1| (-592 (-832))) (|has| |#1| (-1063)))) +((((-832)) -1524 (|has| |#1| (-591 (-832))) (|has| |#1| (-1063)))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-1118) |#1|) . T)) -((((-399 |#2|)) . T)) -((((-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T)) -(|has| |#1| (-540)) -(|has| |#1| (-540)) +((((-398 |#2|)) . T)) +((((-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T)) +(|has| |#1| (-539)) +(|has| |#1| (-539)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-278 |#2| |#2|))) +(((|#2| $) |has| |#2| (-277 |#2| |#2|))) (((|#1| (-619 |#1|)) |has| |#1| (-819))) -(-1524 (|has| |#1| (-226)) (|has| |#1| (-341))) -(-1524 (|has| |#1| (-355)) (|has| |#1| (-341))) +(-1524 (|has| |#1| (-225)) (|has| |#1| (-340))) +(-1524 (|has| |#1| (-354)) (|has| |#1| (-340))) (|has| |#1| (-1063)) (((|#1|) . T)) -((((-399 (-548))) . T) (($) . T)) -((((-968 |#1|)) . T) ((|#1|) . T) (((-548)) -1524 (|has| (-968 |#1|) (-1007 (-548))) (|has| |#1| (-1007 (-548)))) (((-399 (-548))) -1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) +((((-398 (-547))) . T) (($) . T)) +((((-968 |#1|)) . T) ((|#1|) . T) (((-547)) -1524 (|has| (-968 |#1|) (-1007 (-547))) (|has| |#1| (-1007 (-547)))) (((-398 (-547))) -1524 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) ((((-1135)) |has| |#1| (-869 (-1135)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) -(((|#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) +(((|#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1100 |#1| |#2|) #0#) |has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) #0#) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-301 #0#))) +(((#0=(-1100 |#1| |#2|) #0#) |has| (-1100 |#1| |#2|) (-300 (-1100 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((#0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) #0#) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) +(((#0=(-116 |#1|)) |has| #0# (-300 #0#))) ((($ $) . T)) (-1524 (|has| |#1| (-821)) (|has| |#1| (-1063))) ((($ $) . T) ((#0=(-834 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-226)) ((|#2| |#1|) |has| |#1| (-226)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-469 . -1063) T) ((-256 . -504) 144676) ((-240 . -504) 144619) ((-238 . -1063) 144569) ((-555 . -111) 144554) ((-520 . -23) T) ((-137 . -1063) T) ((-136 . -1063) T) ((-117 . -301) 144511) ((-132 . -1063) T) ((-470 . -504) 144303) ((-668 . -101) T) ((-1101 . -504) 144222) ((-382 . -130) T) ((-1231 . -945) 144191) ((-31 . -92) T) ((-581 . -480) 144175) ((-597 . -130) T) ((-793 . -817) T) ((-513 . -56) 144125) ((-58 . -504) 144058) ((-509 . -504) 143991) ((-410 . -869) 143950) ((-166 . -1016) T) ((-506 . -504) 143883) ((-487 . -504) 143816) ((-486 . -504) 143749) ((-773 . -1007) 143532) ((-673 . -38) 143497) ((-335 . -341) T) ((-1058 . -1057) 143481) ((-1058 . -1063) 143459) ((-166 . -236) 143410) ((-166 . -226) 143361) ((-1058 . -1059) 143319) ((-841 . -278) 143277) ((-218 . -769) T) ((-218 . -766) T) ((-668 . -276) NIL) ((-1110 . -1148) 143256) ((-399 . -961) 143240) ((-675 . -21) T) ((-675 . -25) T) ((-1233 . -622) 143214) ((-308 . -157) 143193) ((-308 . -141) 143172) ((-1110 . -106) 143122) ((-133 . -25) T) ((-40 . -224) 143099) ((-116 . -21) T) ((-116 . -25) T) ((-587 . -280) 143075) ((-466 . -280) 143054) ((-1191 . -1016) T) ((-826 . -1016) T) ((-773 . -330) 143038) ((-117 . -1111) NIL) ((-90 . -592) 142970) ((-468 . -130) T) ((-573 . -1172) T) ((-1191 . -318) 142947) ((-555 . -1016) T) ((-1191 . -226) T) ((-636 . -692) 142931) ((-927 . -280) 142908) ((-59 . -34) T) ((-1054 . -592) 142874) ((-1027 . -769) T) ((-1027 . -766) T) ((-790 . -701) T) ((-706 . -47) 142839) ((-599 . -38) 142826) ((-347 . -282) T) ((-344 . -282) T) ((-336 . -282) T) ((-256 . -282) 142757) ((-240 . -282) 142688) ((-1031 . -592) 142654) ((-1005 . -592) 142620) ((-993 . -101) T) ((-988 . -592) 142586) ((-405 . -701) T) ((-117 . -38) 142531) ((-602 . -592) 142497) ((-405 . -464) T) ((-474 . -592) 142463) ((-346 . -101) T) ((-211 . -592) 142429) ((-1166 . -1023) T) ((-686 . -1023) T) ((-1133 . -47) 142406) ((-1132 . -47) 142376) ((-1126 . -47) 142353) ((-1004 . -149) 142299) ((-879 . -282) T) ((-1088 . -47) 142271) ((-668 . -301) NIL) ((-505 . -592) 142253) ((-500 . -592) 142235) ((-498 . -592) 142217) ((-319 . -1063) 142167) ((-687 . -443) 142098) ((-48 . -101) T) ((-1202 . -278) 142083) ((-1181 . -278) 142003) ((-619 . -640) 141987) ((-619 . -625) 141971) ((-331 . -21) T) ((-331 . -25) T) ((-40 . -341) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-619 . -365) 141955) ((-581 . -278) 141932) ((-584 . -592) 141899) ((-380 . -101) T) ((-1082 . -141) T) ((-126 . -592) 141831) ((-843 . -1063) T) ((-632 . -403) 141815) ((-689 . -592) 141797) ((-159 . -592) 141779) ((-154 . -592) 141761) ((-1233 . -701) T) ((-1065 . -34) T) ((-840 . -769) NIL) ((-840 . -766) NIL) ((-829 . -821) T) ((-706 . -855) NIL) ((-1242 . -130) T) ((-373 . -130) T) ((-873 . -101) T) ((-706 . -1007) 141637) ((-520 . -130) T) ((-1051 . -403) 141621) ((-969 . -480) 141605) ((-117 . -392) 141582) ((-1126 . -1172) 141561) ((-756 . -403) 141545) ((-754 . -403) 141529) ((-912 . -34) T) ((-668 . -1111) NIL) ((-243 . -622) 141364) ((-242 . -622) 141186) ((-791 . -889) 141165) ((-445 . -403) 141149) ((-581 . -19) 141133) ((-1106 . -1165) 141102) ((-1126 . -855) NIL) ((-1126 . -853) 141054) ((-581 . -583) 141031) ((-1158 . -592) 140963) ((-1134 . -592) 140945) ((-61 . -387) T) ((-1132 . -1007) 140880) ((-1126 . -1007) 140846) ((-668 . -38) 140796) ((-465 . -278) 140781) ((-706 . -369) 140765) ((-632 . -1023) T) ((-1202 . -971) 140731) ((-1181 . -971) 140697) ((-1028 . -1148) 140672) ((-841 . -593) 140480) ((-841 . -592) 140462) ((-1145 . -480) 140399) ((-410 . -991) 140378) ((-48 . -301) 140365) ((-1028 . -106) 140311) ((-470 . -480) 140248) ((-510 . -1172) T) ((-1126 . -330) 140200) ((-1101 . -480) 140171) ((-1126 . -369) 140123) ((-1051 . -1023) T) ((-429 . -101) T) ((-180 . -1063) T) ((-243 . -34) T) ((-242 . -34) T) ((-756 . -1023) T) ((-754 . -1023) T) ((-706 . -869) 140100) ((-445 . -1023) T) ((-58 . -480) 140084) ((-1003 . -1022) 140058) ((-509 . -480) 140042) ((-506 . -480) 140026) ((-487 . -480) 140010) ((-486 . -480) 139994) ((-238 . -504) 139927) ((-1003 . -111) 139894) ((-1133 . -869) 139807) ((-1132 . -869) 139713) ((-1126 . -869) 139546) ((-644 . -1075) T) ((-1088 . -869) 139530) ((-620 . -92) T) ((-346 . -1111) T) ((-314 . -1022) 139512) ((-243 . -765) 139491) ((-243 . -768) 139442) ((-243 . -767) 139421) ((-242 . -765) 139400) ((-242 . -768) 139351) ((-242 . -767) 139330) ((-31 . -592) 139296) ((-50 . -1023) T) ((-243 . -701) 139206) ((-242 . -701) 139116) ((-1166 . -1063) T) ((-644 . -23) T) ((-562 . -1023) T) ((-508 . -1023) T) ((-371 . -1022) 139081) ((-314 . -111) 139056) ((-72 . -375) T) ((-72 . -387) T) ((-993 . -38) 138993) ((-668 . -392) 138975) ((-98 . -101) T) ((-686 . -1063) T) ((-972 . -143) 138947) ((-972 . -145) 138919) ((-371 . -111) 138875) ((-311 . -1176) 138854) ((-465 . -971) 138820) ((-346 . -38) 138785) ((-40 . -362) 138757) ((-842 . -592) 138629) ((-127 . -125) 138613) ((-121 . -125) 138597) ((-808 . -1022) 138567) ((-807 . -21) 138519) ((-801 . -1022) 138503) ((-807 . -25) 138455) ((-311 . -540) 138406) ((-548 . -802) T) ((-233 . -1172) T) ((-808 . -111) 138371) ((-801 . -111) 138350) ((-1202 . -592) 138332) ((-1181 . -592) 138314) ((-1181 . -593) 137987) ((-1131 . -878) 137966) ((-1087 . -878) 137945) ((-48 . -38) 137910) ((-1240 . -1075) T) ((-581 . -592) 137822) ((-581 . -593) 137783) ((-1238 . -1075) T) ((-233 . -1007) 137610) ((-1131 . -622) 137535) ((-1087 . -622) 137460) ((-693 . -592) 137442) ((-825 . -622) 137416) ((-481 . -1063) T) ((-1240 . -23) T) ((-1238 . -23) T) ((-1003 . -1016) T) ((-1145 . -278) 137395) ((-166 . -360) 137346) ((-973 . -1172) T) ((-44 . -23) T) ((-470 . -278) 137325) ((-566 . -1063) T) ((-1106 . -1072) 137294) ((-1067 . -1066) 137246) ((-128 . -1172) T) ((-382 . -21) T) ((-382 . -25) T) ((-150 . -1075) T) ((-1246 . -101) T) ((-973 . -853) 137228) ((-973 . -855) 137210) ((-1166 . -692) 137107) ((-599 . -224) 137091) ((-597 . -21) T) ((-281 . -540) T) ((-597 . -25) T) ((-1152 . -1063) T) ((-686 . -692) 137056) ((-233 . -369) 137025) ((-973 . -1007) 136985) ((-371 . -1016) T) ((-216 . -1023) T) ((-117 . -224) 136962) ((-58 . -278) 136939) ((-150 . -23) T) ((-506 . -278) 136916) ((-319 . -504) 136849) ((-486 . -278) 136826) ((-371 . -236) T) ((-371 . -226) T) ((-808 . -1016) T) ((-801 . -1016) T) ((-687 . -918) 136795) ((-675 . -821) T) ((-465 . -592) 136777) ((-801 . -226) 136756) ((-133 . -821) T) ((-632 . -1063) T) ((-1145 . -583) 136735) ((-534 . -1148) 136714) ((-328 . -1063) T) ((-311 . -355) 136693) ((-399 . -145) 136672) ((-399 . -143) 136651) ((-933 . -1075) 136550) ((-233 . -869) 136482) ((-789 . -1075) 136392) ((-628 . -823) 136376) ((-470 . -583) 136355) ((-534 . -106) 136305) ((-973 . -369) 136287) ((-973 . -330) 136269) ((-96 . -1063) T) ((-933 . -23) 136080) ((-468 . -21) T) ((-468 . -25) T) ((-789 . -23) 135950) ((-1135 . -592) 135932) ((-58 . -19) 135916) ((-1135 . -593) 135838) ((-1131 . -701) T) ((-1087 . -701) T) ((-506 . -19) 135822) ((-486 . -19) 135806) ((-58 . -583) 135783) ((-1051 . -1063) T) ((-870 . -101) 135761) ((-825 . -701) T) ((-756 . -1063) T) ((-506 . -583) 135738) ((-486 . -583) 135715) ((-754 . -1063) T) ((-754 . -1030) 135682) ((-452 . -1063) T) ((-445 . -1063) T) ((-566 . -692) 135657) ((-623 . -1063) T) ((-973 . -869) NIL) ((-1210 . -47) 135634) ((-603 . -1075) T) ((-644 . -130) T) ((-1204 . -101) T) ((-1203 . -47) 135604) ((-1182 . -47) 135581) ((-1166 . -169) 135532) ((-1043 . -1176) 135483) ((-267 . -1063) T) ((-84 . -432) T) ((-84 . -387) T) ((-1132 . -299) 135462) ((-1126 . -299) 135441) ((-50 . -1063) T) ((-1043 . -540) 135392) ((-686 . -169) T) ((-575 . -47) 135369) ((-218 . -622) 135334) ((-562 . -1063) T) ((-508 . -1063) T) ((-351 . -1176) T) ((-345 . -1176) T) ((-337 . -1176) T) ((-478 . -794) T) ((-478 . -889) T) ((-311 . -1075) T) ((-107 . -1176) T) ((-331 . -821) T) ((-210 . -889) T) ((-210 . -794) T) ((-689 . -1022) 135304) ((-351 . -540) T) ((-345 . -540) T) ((-337 . -540) T) ((-107 . -540) T) ((-632 . -692) 135274) ((-1126 . -991) NIL) ((-311 . -23) T) ((-66 . -1172) T) ((-969 . -592) 135206) ((-668 . -224) 135188) ((-689 . -111) 135153) ((-619 . -34) T) ((-238 . -480) 135137) ((-1065 . -1061) 135121) ((-168 . -1063) T) ((-921 . -878) 135100) ((-472 . -878) 135079) ((-1246 . -1111) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1240 . -130) T) ((-1238 . -130) T) ((-1051 . -692) 134928) ((-1027 . -622) 134915) ((-921 . -622) 134840) ((-756 . -692) 134669) ((-524 . -592) 134651) ((-524 . -593) 134632) ((-754 . -692) 134481) ((-1231 . -101) T) ((-1040 . -101) T) ((-373 . -25) T) ((-373 . -21) T) ((-472 . -622) 134406) ((-452 . -692) 134377) ((-445 . -692) 134226) ((-956 . -101) T) ((-1214 . -592) 134192) ((-1203 . -1007) 134127) ((-1182 . -1172) 134106) ((-712 . -101) T) ((-1182 . -855) NIL) ((-1182 . -853) 134058) ((-1145 . -593) NIL) ((-1145 . -592) 134040) ((-520 . -25) T) ((-1102 . -1085) 133985) ((-1013 . -1165) 133914) ((-870 . -301) 133852) ((-335 . -1023) T) ((-139 . -101) T) ((-44 . -130) T) ((-281 . -1075) T) ((-655 . -92) T) ((-650 . -92) T) ((-638 . -592) 133834) ((-620 . -592) 133787) ((-469 . -92) T) ((-347 . -592) 133769) ((-344 . -592) 133751) ((-336 . -592) 133733) ((-256 . -593) 133481) ((-256 . -592) 133463) ((-240 . -592) 133445) ((-240 . -593) 133306) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1182 . -1007) 133272) ((-1166 . -504) 133239) ((-1101 . -592) 133221) ((-793 . -828) T) ((-793 . -701) T) ((-581 . -280) 133198) ((-562 . -692) 133163) ((-470 . -593) NIL) ((-470 . -592) 133145) ((-508 . -692) 133090) ((-308 . -101) T) ((-305 . -101) T) ((-281 . -23) T) ((-150 . -130) T) ((-378 . -701) T) ((-841 . -1022) 133042) ((-879 . -592) 133024) ((-879 . -593) 133006) ((-841 . -111) 132944) ((-135 . -101) T) ((-114 . -101) T) ((-687 . -1194) 132928) ((-689 . -1016) T) ((-668 . -341) NIL) ((-509 . -592) 132860) ((-371 . -769) T) ((-216 . -1063) T) ((-371 . -766) T) ((-218 . -768) T) ((-218 . -765) T) ((-58 . -593) 132821) ((-58 . -592) 132733) ((-218 . -701) T) ((-506 . -593) 132694) ((-506 . -592) 132606) ((-487 . -592) 132538) ((-486 . -593) 132499) ((-486 . -592) 132411) ((-1043 . -355) 132362) ((-40 . -403) 132339) ((-76 . -1172) T) ((-840 . -878) NIL) ((-351 . -321) 132323) ((-351 . -355) T) ((-345 . -321) 132307) ((-345 . -355) T) ((-337 . -321) 132291) ((-337 . -355) T) ((-308 . -276) 132270) ((-107 . -355) T) ((-69 . -1172) T) ((-1182 . -330) 132222) ((-840 . -622) 132167) ((-1182 . -369) 132119) ((-933 . -130) 131974) ((-789 . -130) 131844) ((-927 . -625) 131828) ((-1051 . -169) 131739) ((-927 . -365) 131723) ((-1027 . -768) T) ((-1027 . -765) T) ((-756 . -169) 131614) ((-754 . -169) 131525) ((-790 . -47) 131487) ((-1027 . -701) T) ((-319 . -480) 131471) ((-921 . -701) T) ((-445 . -169) 131382) ((-238 . -278) 131359) ((-472 . -701) T) ((-1231 . -301) 131297) ((-1210 . -869) 131210) ((-1203 . -869) 131116) ((-1202 . -1022) 130951) ((-1182 . -869) 130784) ((-1181 . -1022) 130592) ((-1166 . -282) 130571) ((-1106 . -149) 130555) ((-1082 . -101) T) ((-1038 . -101) T) ((-896 . -924) T) ((-74 . -1172) T) ((-712 . -301) 130493) ((-166 . -878) 130446) ((-638 . -374) 130418) ((-30 . -924) T) ((-1 . -592) 130400) ((-1080 . -1063) T) ((-1043 . -23) T) ((-50 . -596) 130384) ((-1043 . -1075) T) ((-972 . -401) 130356) ((-575 . -869) 130269) ((-430 . -101) T) ((-139 . -301) NIL) ((-841 . -1016) T) ((-807 . -821) 130248) ((-80 . -1172) T) ((-686 . -282) T) ((-40 . -1023) T) ((-562 . -169) T) ((-508 . -169) T) ((-501 . -592) 130230) ((-166 . -622) 130140) ((-497 . -592) 130122) ((-343 . -145) 130104) ((-343 . -143) T) ((-351 . -1075) T) ((-345 . -1075) T) ((-337 . -1075) T) ((-973 . -299) T) ((-883 . -299) T) ((-841 . -236) T) ((-107 . -1075) T) ((-841 . -226) 130083) ((-1202 . -111) 129904) ((-1181 . -111) 129693) ((-238 . -1206) 129677) ((-548 . -819) T) ((-351 . -23) T) ((-346 . -341) T) ((-308 . -301) 129664) ((-305 . -301) 129605) ((-345 . -23) T) ((-311 . -130) T) ((-337 . -23) T) ((-973 . -991) T) ((-107 . -23) T) ((-238 . -583) 129582) ((-1204 . -38) 129474) ((-1191 . -878) 129453) ((-112 . -1063) T) ((-1004 . -101) T) ((-1191 . -622) 129378) ((-840 . -768) NIL) ((-826 . -622) 129352) ((-840 . -765) NIL) ((-790 . -855) NIL) ((-840 . -701) T) ((-1051 . -504) 129225) ((-756 . -504) 129172) ((-754 . -504) 129124) ((-555 . -622) 129111) ((-790 . -1007) 128939) ((-445 . -504) 128882) ((-380 . -381) T) ((-59 . -1172) T) ((-597 . -821) 128861) ((-490 . -635) T) ((-1106 . -945) 128830) ((-972 . -443) T) ((-673 . -819) T) ((-500 . -766) T) ((-465 . -1022) 128665) ((-335 . -1063) T) ((-305 . -1111) NIL) ((-281 . -130) T) ((-386 . -1063) T) ((-668 . -362) 128632) ((-839 . -1023) T) ((-216 . -596) 128609) ((-319 . -278) 128586) ((-465 . -111) 128407) ((-1202 . -1016) T) ((-1181 . -1016) T) ((-790 . -369) 128391) ((-166 . -701) T) ((-628 . -101) T) ((-1202 . -236) 128370) ((-1202 . -226) 128322) ((-1181 . -226) 128227) ((-1181 . -236) 128206) ((-972 . -394) NIL) ((-644 . -615) 128154) ((-308 . -38) 128064) ((-305 . -38) 127993) ((-68 . -592) 127975) ((-311 . -483) 127941) ((-1145 . -280) 127920) ((-1076 . -1075) 127830) ((-82 . -1172) T) ((-60 . -592) 127812) ((-470 . -280) 127791) ((-1233 . -1007) 127768) ((-1124 . -1063) T) ((-1076 . -23) 127638) ((-790 . -869) 127574) ((-1191 . -701) T) ((-1065 . -1172) T) ((-1051 . -282) 127505) ((-862 . -101) T) ((-756 . -282) 127416) ((-319 . -19) 127400) ((-58 . -280) 127377) ((-754 . -282) 127308) ((-826 . -701) T) ((-117 . -819) NIL) ((-506 . -280) 127285) ((-319 . -583) 127262) ((-486 . -280) 127239) ((-445 . -282) 127170) ((-1004 . -301) 127021) ((-555 . -701) T) ((-655 . -592) 126971) ((-650 . -592) 126937) ((-636 . -592) 126919) ((-469 . -592) 126885) ((-238 . -593) 126846) ((-238 . -592) 126758) ((-137 . -592) 126724) ((-136 . -592) 126690) ((-132 . -592) 126656) ((-1107 . -34) T) ((-912 . -1172) T) ((-335 . -692) 126601) ((-644 . -25) T) ((-644 . -21) T) ((-465 . -1016) T) ((-611 . -409) 126566) ((-586 . -409) 126531) ((-1082 . -1111) T) ((-562 . -282) T) ((-508 . -282) T) ((-1203 . -299) 126510) ((-465 . -226) 126462) ((-465 . -236) 126441) ((-1182 . -299) 126420) ((-1182 . -991) NIL) ((-1043 . -130) T) ((-841 . -769) 126399) ((-142 . -101) T) ((-40 . -1063) T) ((-841 . -766) 126378) ((-619 . -979) 126362) ((-561 . -1023) T) ((-548 . -1023) T) ((-485 . -1023) T) ((-399 . -443) T) ((-351 . -130) T) ((-308 . -392) 126346) ((-305 . -392) 126307) ((-345 . -130) T) ((-337 . -130) T) ((-1140 . -1063) T) ((-1082 . -38) 126294) ((-1058 . -592) 126261) ((-107 . -130) T) ((-923 . -1063) T) ((-890 . -1063) T) ((-745 . -1063) T) ((-646 . -1063) T) ((-496 . -1047) T) ((-675 . -145) T) ((-116 . -145) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-638 . -1022) 126245) ((-520 . -821) T) ((-490 . -821) T) ((-347 . -1022) 126197) ((-344 . -1022) 126149) ((-336 . -1022) 126101) ((-243 . -1172) T) ((-242 . -1172) T) ((-256 . -1022) 125944) ((-240 . -1022) 125787) ((-638 . -111) 125766) ((-347 . -111) 125704) ((-344 . -111) 125642) ((-336 . -111) 125580) ((-256 . -111) 125409) ((-240 . -111) 125238) ((-791 . -1176) 125217) ((-599 . -403) 125201) ((-44 . -21) T) ((-44 . -25) T) ((-789 . -615) 125107) ((-791 . -540) 125086) ((-243 . -1007) 124913) ((-242 . -1007) 124740) ((-126 . -119) 124724) ((-879 . -1022) 124689) ((-673 . -1023) T) ((-687 . -101) T) ((-335 . -169) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -592) 124671) ((-879 . -111) 124627) ((-40 . -692) 124572) ((-839 . -1063) T) ((-319 . -593) 124533) ((-319 . -592) 124445) ((-1181 . -766) 124398) ((-1181 . -769) 124351) ((-243 . -369) 124320) ((-242 . -369) 124289) ((-628 . -38) 124259) ((-587 . -34) T) ((-473 . -1075) 124169) ((-466 . -34) T) ((-1076 . -130) 124039) ((-933 . -25) 123850) ((-843 . -592) 123832) ((-933 . -21) 123787) ((-789 . -21) 123697) ((-789 . -25) 123548) ((-599 . -1023) T) ((-1137 . -540) 123527) ((-1131 . -47) 123504) ((-347 . -1016) T) ((-344 . -1016) T) ((-473 . -23) 123374) ((-336 . -1016) T) ((-256 . -1016) T) ((-240 . -1016) T) ((-1087 . -47) 123346) ((-117 . -1023) T) ((-1003 . -622) 123320) ((-927 . -34) T) ((-347 . -226) 123299) ((-347 . -236) T) ((-344 . -226) 123278) ((-344 . -236) T) ((-240 . -318) 123235) ((-336 . -226) 123214) ((-336 . -236) T) ((-256 . -318) 123186) ((-256 . -226) 123165) ((-1116 . -149) 123149) ((-243 . -869) 123081) ((-242 . -869) 123013) ((-1045 . -821) T) ((-1185 . -1172) T) ((-406 . -1075) T) ((-1020 . -23) T) ((-879 . -1016) T) ((-314 . -622) 122995) ((-993 . -819) T) ((-1166 . -971) 122961) ((-1132 . -889) 122940) ((-1126 . -889) 122919) ((-879 . -236) T) ((-791 . -355) 122898) ((-377 . -23) T) ((-127 . -1063) 122876) ((-121 . -1063) 122854) ((-879 . -226) T) ((-1126 . -794) NIL) ((-371 . -622) 122819) ((-839 . -692) 122806) ((-1013 . -149) 122771) ((-40 . -169) T) ((-668 . -403) 122753) ((-687 . -301) 122740) ((-808 . -622) 122700) ((-801 . -622) 122674) ((-311 . -25) T) ((-311 . -21) T) ((-632 . -278) 122653) ((-561 . -1063) T) ((-548 . -1063) T) ((-485 . -1063) T) ((-238 . -280) 122630) ((-305 . -224) 122591) ((-1131 . -855) NIL) ((-1087 . -855) 122450) ((-129 . -821) T) ((-1131 . -1007) 122330) ((-1087 . -1007) 122213) ((-180 . -592) 122195) ((-825 . -1007) 122091) ((-756 . -278) 122018) ((-791 . -1075) T) ((-1003 . -701) T) ((-581 . -625) 122002) ((-1013 . -945) 121931) ((-968 . -101) T) ((-791 . -23) T) ((-687 . -1111) 121909) ((-668 . -1023) T) ((-581 . -365) 121893) ((-343 . -443) T) ((-335 . -282) T) ((-1219 . -1063) T) ((-241 . -1063) T) ((-391 . -101) T) ((-281 . -21) T) ((-281 . -25) T) ((-353 . -701) T) ((-685 . -1063) T) ((-673 . -1063) T) ((-353 . -464) T) ((-1166 . -592) 121875) ((-1131 . -369) 121859) ((-1087 . -369) 121843) ((-993 . -403) 121805) ((-139 . -222) 121787) ((-371 . -768) T) ((-371 . -765) T) ((-839 . -169) T) ((-371 . -701) T) ((-686 . -592) 121769) ((-687 . -38) 121598) ((-1218 . -1216) 121582) ((-343 . -394) T) ((-1218 . -1063) 121532) ((-561 . -692) 121519) ((-548 . -692) 121506) ((-485 . -692) 121471) ((-308 . -605) 121450) ((-808 . -701) T) ((-801 . -701) T) ((-619 . -1172) T) ((-1043 . -615) 121398) ((-1131 . -869) 121341) ((-1087 . -869) 121325) ((-636 . -1022) 121309) ((-107 . -615) 121291) ((-473 . -130) 121161) ((-1137 . -1075) T) ((-921 . -47) 121130) ((-599 . -1063) T) ((-636 . -111) 121109) ((-481 . -592) 121075) ((-319 . -280) 121052) ((-472 . -47) 121009) ((-1137 . -23) T) ((-117 . -1063) T) ((-102 . -101) 120987) ((-1230 . -1075) T) ((-1020 . -130) T) ((-993 . -1023) T) ((-793 . -1007) 120971) ((-972 . -699) 120943) ((-1230 . -23) T) ((-673 . -692) 120908) ((-566 . -592) 120890) ((-378 . -1007) 120874) ((-346 . -1023) T) ((-377 . -130) T) ((-316 . -1007) 120858) ((-218 . -855) 120840) ((-973 . -889) T) ((-90 . -34) T) ((-973 . -794) T) ((-883 . -889) T) ((-478 . -1176) T) ((-1152 . -592) 120822) ((-1068 . -1063) T) ((-210 . -1176) T) ((-968 . -301) 120787) ((-218 . -1007) 120747) ((-40 . -282) T) ((-1043 . -21) T) ((-1043 . -25) T) ((-1082 . -802) T) ((-478 . -540) T) ((-351 . -25) T) ((-210 . -540) T) ((-351 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-689 . -622) 120707) ((-337 . -25) T) ((-337 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1023) T) ((-561 . -169) T) ((-548 . -169) T) ((-485 . -169) T) ((-632 . -592) 120689) ((-712 . -711) 120673) ((-328 . -592) 120655) ((-67 . -375) T) ((-67 . -387) T) ((-1065 . -106) 120639) ((-1027 . -855) 120621) ((-921 . -855) 120546) ((-627 . -1075) T) ((-599 . -692) 120533) ((-472 . -855) NIL) ((-1106 . -101) T) ((-1027 . -1007) 120515) ((-96 . -592) 120497) ((-468 . -145) T) ((-921 . -1007) 120377) ((-117 . -692) 120322) ((-627 . -23) T) ((-472 . -1007) 120198) ((-1051 . -593) NIL) ((-1051 . -592) 120180) ((-756 . -593) NIL) ((-756 . -592) 120141) ((-754 . -593) 119775) ((-754 . -592) 119689) ((-1076 . -615) 119595) ((-452 . -592) 119577) ((-445 . -592) 119559) ((-445 . -593) 119420) ((-1004 . -222) 119366) ((-126 . -34) T) ((-791 . -130) T) ((-841 . -878) 119345) ((-623 . -592) 119327) ((-347 . -1237) 119311) ((-344 . -1237) 119295) ((-336 . -1237) 119279) ((-127 . -504) 119212) ((-121 . -504) 119145) ((-501 . -766) T) ((-501 . -769) T) ((-500 . -768) T) ((-102 . -301) 119083) ((-215 . -101) 119061) ((-668 . -1063) T) ((-673 . -169) T) ((-841 . -622) 119013) ((-64 . -376) T) ((-267 . -592) 118995) ((-64 . -387) T) ((-921 . -369) 118979) ((-839 . -282) T) ((-50 . -592) 118961) ((-968 . -38) 118909) ((-562 . -592) 118891) ((-472 . -369) 118875) ((-562 . -593) 118857) ((-508 . -592) 118839) ((-879 . -1237) 118826) ((-840 . -1172) T) ((-675 . -443) T) ((-485 . -504) 118792) ((-478 . -355) T) ((-347 . -360) 118771) ((-344 . -360) 118750) ((-336 . -360) 118729) ((-210 . -355) T) ((-689 . -701) T) ((-116 . -443) T) ((-1241 . -1232) 118713) ((-840 . -853) 118690) ((-840 . -855) NIL) ((-933 . -821) 118589) ((-789 . -821) 118540) ((-628 . -630) 118524) ((-1158 . -34) T) ((-168 . -592) 118506) ((-1076 . -21) 118416) ((-1076 . -25) 118267) ((-840 . -1007) 118244) ((-921 . -869) 118225) ((-1191 . -47) 118202) ((-879 . -360) T) ((-58 . -625) 118186) ((-506 . -625) 118170) ((-472 . -869) 118147) ((-70 . -432) T) ((-70 . -387) T) ((-486 . -625) 118131) ((-58 . -365) 118115) ((-599 . -169) T) ((-506 . -365) 118099) ((-486 . -365) 118083) ((-801 . -683) 118067) ((-1131 . -299) 118046) ((-1137 . -130) T) ((-117 . -169) T) ((-1106 . -301) 117984) ((-166 . -1172) T) ((-611 . -719) 117968) ((-586 . -719) 117952) ((-1230 . -130) T) ((-1203 . -889) 117931) ((-1182 . -889) 117910) ((-1182 . -794) NIL) ((-668 . -692) 117860) ((-1181 . -878) 117813) ((-993 . -1063) T) ((-840 . -369) 117790) ((-840 . -330) 117767) ((-874 . -1075) T) ((-166 . -853) 117751) ((-166 . -855) 117676) ((-478 . -1075) T) ((-346 . -1063) T) ((-210 . -1075) T) ((-75 . -432) T) ((-75 . -387) T) ((-166 . -1007) 117572) ((-311 . -821) T) ((-1218 . -504) 117505) ((-1202 . -622) 117402) ((-1181 . -622) 117272) ((-841 . -768) 117251) ((-841 . -765) 117230) ((-841 . -701) T) ((-478 . -23) T) ((-216 . -592) 117212) ((-171 . -443) T) ((-215 . -301) 117150) ((-85 . -432) T) ((-85 . -387) T) ((-210 . -23) T) ((-1242 . -1235) 117129) ((-561 . -282) T) ((-548 . -282) T) ((-651 . -1007) 117113) ((-485 . -282) T) ((-135 . -461) 117068) ((-48 . -1063) T) ((-687 . -224) 117052) ((-840 . -869) NIL) ((-1191 . -855) NIL) ((-858 . -101) T) ((-854 . -101) T) ((-380 . -1063) T) ((-166 . -369) 117036) ((-166 . -330) 117020) ((-1191 . -1007) 116900) ((-826 . -1007) 116796) ((-1102 . -101) T) ((-627 . -130) T) ((-117 . -504) 116704) ((-636 . -766) 116683) ((-636 . -769) 116662) ((-555 . -1007) 116644) ((-286 . -1225) 116614) ((-835 . -101) T) ((-932 . -540) 116593) ((-1166 . -1022) 116476) ((-473 . -615) 116382) ((-873 . -1063) T) ((-993 . -692) 116319) ((-686 . -1022) 116284) ((-581 . -34) T) ((-1107 . -1172) T) ((-1166 . -111) 116153) ((-465 . -622) 116050) ((-346 . -692) 115995) ((-166 . -869) 115954) ((-673 . -282) T) ((-668 . -169) T) ((-686 . -111) 115910) ((-1246 . -1023) T) ((-1191 . -369) 115894) ((-410 . -1176) 115872) ((-1080 . -592) 115854) ((-305 . -819) NIL) ((-410 . -540) T) ((-218 . -299) T) ((-1181 . -765) 115807) ((-1181 . -768) 115760) ((-1202 . -701) T) ((-1181 . -701) T) ((-48 . -692) 115725) ((-218 . -991) T) ((-343 . -1225) 115702) ((-1204 . -403) 115668) ((-693 . -701) T) ((-1191 . -869) 115611) ((-112 . -592) 115593) ((-112 . -593) 115575) ((-693 . -464) T) ((-473 . -21) 115485) ((-127 . -480) 115469) ((-121 . -480) 115453) ((-473 . -25) 115304) ((-599 . -282) T) ((-566 . -1022) 115279) ((-429 . -1063) T) ((-1027 . -299) T) ((-117 . -282) T) ((-1067 . -101) T) ((-972 . -101) T) ((-566 . -111) 115247) ((-1102 . -301) 115185) ((-1166 . -1016) T) ((-1027 . -991) T) ((-65 . -1172) T) ((-1020 . -25) T) ((-1020 . -21) T) ((-686 . -1016) T) ((-377 . -21) T) ((-377 . -25) T) ((-668 . -504) NIL) ((-993 . -169) T) ((-686 . -236) T) ((-1027 . -533) T) ((-496 . -101) T) ((-492 . -101) T) ((-346 . -169) T) ((-335 . -592) 115167) ((-386 . -592) 115149) ((-465 . -701) T) ((-1082 . -819) T) ((-861 . -1007) 115117) ((-107 . -821) T) ((-632 . -1022) 115101) ((-478 . -130) T) ((-1204 . -1023) T) ((-210 . -130) T) ((-1116 . -101) 115079) ((-98 . -1063) T) ((-238 . -640) 115063) ((-238 . -625) 115047) ((-632 . -111) 115026) ((-308 . -403) 115010) ((-238 . -365) 114994) ((-1119 . -228) 114941) ((-968 . -224) 114925) ((-73 . -1172) T) ((-48 . -169) T) ((-675 . -379) T) ((-675 . -141) T) ((-1241 . -101) T) ((-1051 . -1022) 114768) ((-256 . -878) 114747) ((-240 . -878) 114726) ((-756 . -1022) 114549) ((-754 . -1022) 114392) ((-587 . -1172) T) ((-1124 . -592) 114374) ((-1051 . -111) 114203) ((-1013 . -101) T) ((-466 . -1172) T) ((-452 . -1022) 114174) ((-445 . -1022) 114017) ((-638 . -622) 114001) ((-840 . -299) T) ((-756 . -111) 113810) ((-754 . -111) 113639) ((-347 . -622) 113591) ((-344 . -622) 113543) ((-336 . -622) 113495) ((-256 . -622) 113420) ((-240 . -622) 113345) ((-1118 . -821) T) ((-1052 . -1007) 113329) ((-452 . -111) 113290) ((-445 . -111) 113119) ((-1039 . -1007) 113096) ((-969 . -34) T) ((-935 . -592) 113057) ((-927 . -1172) T) ((-126 . -979) 113041) ((-932 . -1075) T) ((-840 . -991) NIL) ((-710 . -1075) T) ((-690 . -1075) T) ((-1218 . -480) 113025) ((-1102 . -38) 112985) ((-932 . -23) T) ((-814 . -101) T) ((-791 . -21) T) ((-791 . -25) T) ((-710 . -23) T) ((-690 . -23) T) ((-110 . -635) T) ((-879 . -622) 112950) ((-562 . -1022) 112915) ((-508 . -1022) 112860) ((-220 . -56) 112818) ((-444 . -23) T) ((-399 . -101) T) ((-255 . -101) T) ((-668 . -282) T) ((-835 . -38) 112788) ((-562 . -111) 112744) ((-508 . -111) 112673) ((-410 . -1075) T) ((-308 . -1023) 112563) ((-305 . -1023) T) ((-632 . -1016) T) ((-1246 . -1063) T) ((-166 . -299) 112494) ((-410 . -23) T) ((-40 . -592) 112476) ((-40 . -593) 112460) ((-107 . -961) 112442) ((-116 . -838) 112426) ((-48 . -504) 112392) ((-1158 . -979) 112376) ((-1140 . -592) 112358) ((-1145 . -34) T) ((-923 . -592) 112324) ((-890 . -592) 112306) ((-1076 . -821) 112257) ((-745 . -592) 112239) ((-646 . -592) 112221) ((-1116 . -301) 112159) ((-470 . -34) T) ((-1056 . -1172) T) ((-468 . -443) T) ((-1051 . -1016) T) ((-1101 . -34) T) ((-756 . -1016) T) ((-754 . -1016) T) ((-621 . -228) 112143) ((-608 . -228) 112089) ((-1191 . -299) 112068) ((-1051 . -318) 112029) ((-445 . -1016) T) ((-1137 . -21) T) ((-1051 . -226) 112008) ((-756 . -318) 111985) ((-756 . -226) T) ((-754 . -318) 111957) ((-706 . -1176) 111936) ((-319 . -625) 111920) ((-1137 . -25) T) ((-58 . -34) T) ((-509 . -34) T) ((-506 . -34) T) ((-445 . -318) 111899) ((-319 . -365) 111883) ((-487 . -34) T) ((-486 . -34) T) ((-972 . -1111) NIL) ((-611 . -101) T) ((-586 . -101) T) ((-706 . -540) 111814) ((-347 . -701) T) ((-344 . -701) T) ((-336 . -701) T) ((-256 . -701) T) ((-240 . -701) T) ((-1013 . -301) 111722) ((-870 . -1063) 111700) ((-50 . -1016) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-1133 . -540) 111679) ((-1132 . -1176) 111658) ((-562 . -1016) T) ((-508 . -1016) T) ((-1126 . -1176) 111637) ((-353 . -1007) 111621) ((-314 . -1007) 111605) ((-993 . -282) T) ((-371 . -855) 111587) ((-1132 . -540) 111538) ((-1126 . -540) 111489) ((-972 . -38) 111434) ((-773 . -1075) T) ((-879 . -701) T) ((-562 . -236) T) ((-562 . -226) T) ((-508 . -226) T) ((-508 . -236) T) ((-1088 . -540) 111413) ((-346 . -282) T) ((-621 . -669) 111397) ((-371 . -1007) 111357) ((-1082 . -1023) T) ((-102 . -125) 111341) ((-773 . -23) T) ((-1218 . -278) 111318) ((-399 . -301) 111283) ((-1240 . -1235) 111259) ((-1238 . -1235) 111238) ((-1204 . -1063) T) ((-839 . -592) 111220) ((-808 . -1007) 111189) ((-196 . -761) T) ((-195 . -761) T) ((-194 . -761) T) ((-193 . -761) T) ((-192 . -761) T) ((-191 . -761) T) ((-190 . -761) T) ((-189 . -761) T) ((-188 . -761) T) ((-187 . -761) T) ((-485 . -971) T) ((-266 . -810) T) ((-265 . -810) T) ((-264 . -810) T) ((-263 . -810) T) ((-48 . -282) T) ((-262 . -810) T) ((-261 . -810) T) ((-260 . -810) T) ((-186 . -761) T) ((-591 . -821) T) ((-628 . -403) 111173) ((-110 . -821) T) ((-627 . -21) T) ((-627 . -25) T) ((-1241 . -38) 111143) ((-117 . -278) 111094) ((-1218 . -19) 111078) ((-1218 . -583) 111055) ((-1231 . -1063) T) ((-1040 . -1063) T) ((-956 . -1063) T) ((-932 . -130) T) ((-712 . -1063) T) ((-710 . -130) T) ((-690 . -130) T) ((-501 . -767) T) ((-399 . -1111) 111033) ((-444 . -130) T) ((-501 . -768) T) ((-216 . -1016) T) ((-286 . -101) 110815) ((-139 . -1063) T) ((-673 . -971) T) ((-90 . -1172) T) ((-127 . -592) 110747) ((-121 . -592) 110679) ((-1246 . -169) T) ((-1132 . -355) 110658) ((-1126 . -355) 110637) ((-308 . -1063) T) ((-410 . -130) T) ((-305 . -1063) T) ((-399 . -38) 110589) ((-1095 . -101) T) ((-1204 . -692) 110481) ((-628 . -1023) T) ((-311 . -143) 110460) ((-311 . -145) 110439) ((-135 . -1063) T) ((-114 . -1063) T) ((-829 . -101) T) ((-561 . -592) 110421) ((-548 . -593) 110320) ((-548 . -592) 110302) ((-485 . -592) 110284) ((-485 . -593) 110229) ((-476 . -23) T) ((-473 . -821) 110180) ((-478 . -615) 110162) ((-934 . -592) 110144) ((-210 . -615) 110126) ((-218 . -396) T) ((-636 . -622) 110110) ((-1131 . -889) 110089) ((-706 . -1075) T) ((-343 . -101) T) ((-1171 . -1047) T) ((-792 . -821) T) ((-706 . -23) T) ((-335 . -1022) 110034) ((-1118 . -1117) T) ((-1107 . -106) 110018) ((-1133 . -1075) T) ((-1132 . -1075) T) ((-505 . -1007) 110002) ((-1126 . -1075) T) ((-1088 . -1075) T) ((-335 . -111) 109931) ((-973 . -1176) T) ((-126 . -1172) T) ((-883 . -1176) T) ((-668 . -278) NIL) ((-1219 . -592) 109913) ((-1133 . -23) T) ((-1132 . -23) T) ((-1126 . -23) T) ((-973 . -540) T) ((-1102 . -224) 109897) ((-883 . -540) T) ((-1088 . -23) T) ((-241 . -592) 109879) ((-1038 . -1063) T) ((-773 . -130) T) ((-685 . -592) 109861) ((-308 . -692) 109771) ((-305 . -692) 109700) ((-673 . -592) 109682) ((-673 . -593) 109627) ((-399 . -392) 109611) ((-430 . -1063) T) ((-478 . -25) T) ((-478 . -21) T) ((-1082 . -1063) T) ((-210 . -25) T) ((-210 . -21) T) ((-687 . -403) 109595) ((-689 . -1007) 109564) ((-1218 . -592) 109476) ((-1218 . -593) 109437) ((-1204 . -169) T) ((-238 . -34) T) ((-895 . -943) T) ((-1158 . -1172) T) ((-636 . -765) 109416) ((-636 . -768) 109395) ((-390 . -387) T) ((-513 . -101) 109373) ((-1004 . -1063) T) ((-215 . -964) 109357) ((-494 . -101) T) ((-599 . -592) 109339) ((-45 . -821) NIL) ((-599 . -593) 109316) ((-1004 . -589) 109291) ((-870 . -504) 109224) ((-335 . -1016) T) ((-117 . -593) NIL) ((-117 . -592) 109206) ((-841 . -1172) T) ((-644 . -409) 109190) ((-644 . -1085) 109135) ((-490 . -149) 109117) ((-335 . -226) T) ((-335 . -236) T) ((-40 . -1022) 109062) ((-841 . -853) 109046) ((-841 . -855) 108971) ((-687 . -1023) T) ((-668 . -971) NIL) ((-3 . |UnionCategory|) T) ((-1202 . -47) 108941) ((-1181 . -47) 108918) ((-1101 . -979) 108889) ((-218 . -889) T) ((-40 . -111) 108818) ((-841 . -1007) 108682) ((-1082 . -692) 108669) ((-1068 . -592) 108651) ((-1043 . -145) 108630) ((-1043 . -143) 108581) ((-973 . -355) T) ((-311 . -1160) 108547) ((-371 . -299) T) ((-311 . -1157) 108513) ((-308 . -169) 108492) ((-305 . -169) T) ((-972 . -224) 108469) ((-883 . -355) T) ((-562 . -1237) 108456) ((-508 . -1237) 108433) ((-351 . -145) 108412) ((-351 . -143) 108363) ((-345 . -145) 108342) ((-345 . -143) 108293) ((-587 . -1148) 108269) ((-337 . -145) 108248) ((-337 . -143) 108199) ((-311 . -35) 108165) ((-466 . -1148) 108144) ((0 . |EnumerationCategory|) T) ((-311 . -94) 108110) ((-371 . -991) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -228) 108060) ((-628 . -1063) T) ((-587 . -106) 108007) ((-476 . -130) T) ((-466 . -106) 107957) ((-233 . -1075) 107867) ((-841 . -369) 107851) ((-841 . -330) 107835) ((-233 . -23) 107705) ((-1027 . -889) T) ((-1027 . -794) T) ((-562 . -360) T) ((-508 . -360) T) ((-343 . -1111) T) ((-319 . -34) T) ((-44 . -409) 107689) ((-842 . -1172) T) ((-382 . -719) 107673) ((-1231 . -504) 107606) ((-706 . -130) T) ((-1210 . -540) 107585) ((-1203 . -1176) 107564) ((-1203 . -540) 107515) ((-1182 . -1176) 107494) ((-303 . -1047) T) ((-1182 . -540) 107445) ((-712 . -504) 107378) ((-1181 . -1172) 107357) ((-1181 . -855) 107230) ((-862 . -1063) T) ((-142 . -815) T) ((-1181 . -853) 107200) ((-665 . -592) 107182) ((-1133 . -130) T) ((-513 . -301) 107120) ((-1132 . -130) T) ((-139 . -504) NIL) ((-1126 . -130) T) ((-1088 . -130) T) ((-993 . -971) T) ((-973 . -23) T) ((-343 . -38) 107085) ((-973 . -1075) T) ((-883 . -1075) T) ((-81 . -592) 107067) ((-40 . -1016) T) ((-839 . -1022) 107054) ((-972 . -341) NIL) ((-841 . -869) 107013) ((-675 . -101) T) ((-940 . -23) T) ((-581 . -1172) T) ((-883 . -23) T) ((-839 . -111) 106998) ((-419 . -1075) T) ((-465 . -47) 106968) ((-206 . -101) T) ((-133 . -101) T) ((-40 . -226) 106940) ((-40 . -236) T) ((-116 . -101) T) ((-576 . -540) 106919) ((-575 . -540) 106898) ((-668 . -592) 106880) ((-668 . -593) 106788) ((-308 . -504) 106754) ((-305 . -504) 106646) ((-1202 . -1007) 106630) ((-1181 . -1007) 106416) ((-968 . -403) 106400) ((-419 . -23) T) ((-1082 . -169) T) ((-1204 . -282) T) ((-628 . -692) 106370) ((-142 . -1063) T) ((-48 . -971) T) ((-399 . -224) 106354) ((-287 . -228) 106304) ((-840 . -889) T) ((-840 . -794) NIL) ((-834 . -821) T) ((-1181 . -330) 106274) ((-1181 . -369) 106244) ((-215 . -1083) 106228) ((-1218 . -280) 106205) ((-1166 . -622) 106130) ((-932 . -21) T) ((-932 . -25) T) ((-710 . -21) T) ((-710 . -25) T) ((-690 . -21) T) ((-690 . -25) T) ((-686 . -622) 106095) ((-444 . -21) T) ((-444 . -25) T) ((-331 . -101) T) ((-171 . -101) T) ((-968 . -1023) T) ((-839 . -1016) T) ((-748 . -101) T) ((-1203 . -355) 106074) ((-1202 . -869) 105980) ((-1182 . -355) 105959) ((-1181 . -869) 105810) ((-993 . -592) 105792) ((-399 . -802) 105745) ((-1133 . -483) 105711) ((-166 . -889) 105642) ((-1132 . -483) 105608) ((-1126 . -483) 105574) ((-687 . -1063) T) ((-1088 . -483) 105540) ((-561 . -1022) 105527) ((-548 . -1022) 105514) ((-485 . -1022) 105479) ((-308 . -282) 105458) ((-305 . -282) T) ((-346 . -592) 105440) ((-410 . -25) T) ((-410 . -21) T) ((-98 . -278) 105419) ((-561 . -111) 105404) ((-548 . -111) 105389) ((-485 . -111) 105345) ((-1135 . -855) 105312) ((-870 . -480) 105296) ((-48 . -592) 105278) ((-48 . -593) 105223) ((-233 . -130) 105093) ((-1191 . -889) 105072) ((-790 . -1176) 105051) ((-1004 . -504) 104895) ((-380 . -592) 104877) ((-790 . -540) 104808) ((-566 . -622) 104783) ((-256 . -47) 104755) ((-240 . -47) 104712) ((-520 . -499) 104689) ((-969 . -1172) T) ((-673 . -1022) 104654) ((-1210 . -1075) T) ((-1203 . -1075) T) ((-1182 . -1075) T) ((-972 . -362) 104626) ((-112 . -360) T) ((-465 . -869) 104532) ((-1210 . -23) T) ((-1203 . -23) T) ((-873 . -592) 104514) ((-90 . -106) 104498) ((-1166 . -701) T) ((-874 . -821) 104449) ((-675 . -1111) T) ((-673 . -111) 104405) ((-1182 . -23) T) ((-576 . -1075) T) ((-575 . -1075) T) ((-687 . -692) 104234) ((-686 . -701) T) ((-1082 . -282) T) ((-973 . -130) T) ((-478 . -821) T) ((-940 . -130) T) ((-883 . -130) T) ((-773 . -25) T) ((-210 . -821) T) ((-773 . -21) T) ((-561 . -1016) T) ((-548 . -1016) T) ((-485 . -1016) T) ((-576 . -23) T) ((-335 . -1237) 104211) ((-311 . -443) 104190) ((-331 . -301) 104177) ((-575 . -23) T) ((-419 . -130) T) ((-632 . -622) 104151) ((-238 . -979) 104135) ((-841 . -299) T) ((-1242 . -1232) 104119) ((-745 . -766) T) ((-745 . -769) T) ((-675 . -38) 104106) ((-548 . -226) T) ((-485 . -236) T) ((-485 . -226) T) ((-1110 . -228) 104056) ((-1051 . -878) 104035) ((-116 . -38) 104022) ((-202 . -774) T) ((-201 . -774) T) ((-200 . -774) T) ((-199 . -774) T) ((-841 . -991) 104001) ((-1231 . -480) 103985) ((-756 . -878) 103964) ((-754 . -878) 103943) ((-1145 . -1172) T) ((-445 . -878) 103922) ((-712 . -480) 103906) ((-1051 . -622) 103831) ((-756 . -622) 103756) ((-599 . -1022) 103743) ((-470 . -1172) T) ((-335 . -360) T) ((-139 . -480) 103725) ((-754 . -622) 103650) ((-1101 . -1172) T) ((-452 . -622) 103621) ((-256 . -855) 103480) ((-240 . -855) NIL) ((-117 . -1022) 103425) ((-445 . -622) 103350) ((-638 . -1007) 103327) ((-599 . -111) 103312) ((-347 . -1007) 103296) ((-344 . -1007) 103280) ((-336 . -1007) 103264) ((-256 . -1007) 103108) ((-240 . -1007) 102984) ((-117 . -111) 102913) ((-58 . -1172) T) ((-509 . -1172) T) ((-506 . -1172) T) ((-487 . -1172) T) ((-486 . -1172) T) ((-429 . -592) 102895) ((-426 . -592) 102877) ((-3 . -101) T) ((-996 . -1165) 102846) ((-807 . -101) T) ((-663 . -56) 102804) ((-673 . -1016) T) ((-50 . -622) 102778) ((-281 . -443) T) ((-467 . -1165) 102747) ((0 . -101) T) ((-562 . -622) 102712) ((-508 . -622) 102657) ((-49 . -101) T) ((-879 . -1007) 102644) ((-673 . -236) T) ((-1043 . -401) 102623) ((-706 . -615) 102571) ((-968 . -1063) T) ((-687 . -169) 102462) ((-478 . -961) 102444) ((-256 . -369) 102428) ((-240 . -369) 102412) ((-391 . -1063) T) ((-331 . -38) 102396) ((-995 . -101) 102374) ((-210 . -961) 102356) ((-171 . -38) 102288) ((-1202 . -299) 102267) ((-1181 . -299) 102246) ((-632 . -701) T) ((-98 . -592) 102228) ((-1126 . -615) 102180) ((-476 . -25) T) ((-476 . -21) T) ((-1181 . -991) 102133) ((-599 . -1016) T) ((-371 . -396) T) ((-382 . -101) T) ((-256 . -869) 102079) ((-240 . -869) 102056) ((-117 . -1016) T) ((-790 . -1075) T) ((-1051 . -701) T) ((-599 . -226) 102035) ((-597 . -101) T) ((-756 . -701) T) ((-754 . -701) T) ((-405 . -1075) T) ((-117 . -236) T) ((-40 . -360) NIL) ((-117 . -226) NIL) ((-445 . -701) T) ((-790 . -23) T) ((-706 . -25) T) ((-706 . -21) T) ((-677 . -821) T) ((-1040 . -278) 102014) ((-77 . -388) T) ((-77 . -387) T) ((-668 . -1022) 101964) ((-1210 . -130) T) ((-1203 . -130) T) ((-1182 . -130) T) ((-1102 . -403) 101948) ((-611 . -359) 101880) ((-586 . -359) 101812) ((-1116 . -1109) 101796) ((-102 . -1063) 101774) ((-1133 . -25) T) ((-1133 . -21) T) ((-1132 . -21) T) ((-968 . -692) 101722) ((-216 . -622) 101689) ((-668 . -111) 101623) ((-50 . -701) T) ((-1132 . -25) T) ((-343 . -341) T) ((-1126 . -21) T) ((-1043 . -443) 101574) ((-1126 . -25) T) ((-687 . -504) 101521) ((-562 . -701) T) ((-508 . -701) T) ((-1088 . -21) T) ((-1088 . -25) T) ((-576 . -130) T) ((-575 . -130) T) ((-351 . -443) T) ((-345 . -443) T) ((-337 . -443) T) ((-465 . -299) 101500) ((-305 . -278) 101435) ((-107 . -443) T) ((-78 . -432) T) ((-78 . -387) T) ((-468 . -101) T) ((-1246 . -592) 101417) ((-1246 . -593) 101399) ((-1043 . -394) 101378) ((-1004 . -480) 101309) ((-548 . -769) T) ((-548 . -766) T) ((-1028 . -228) 101255) ((-351 . -394) 101206) ((-345 . -394) 101157) ((-337 . -394) 101108) ((-1233 . -1075) T) ((-1233 . -23) T) ((-1220 . -101) T) ((-172 . -592) 101090) ((-1102 . -1023) T) ((-644 . -719) 101074) ((-1137 . -143) 101053) ((-1137 . -145) 101032) ((-1106 . -1063) T) ((-1106 . -1036) 101001) ((-68 . -1172) T) ((-993 . -1022) 100938) ((-835 . -1023) T) ((-233 . -615) 100844) ((-668 . -1016) T) ((-346 . -1022) 100789) ((-60 . -1172) T) ((-993 . -111) 100705) ((-870 . -592) 100637) ((-668 . -236) T) ((-668 . -226) NIL) ((-814 . -819) 100616) ((-673 . -769) T) ((-673 . -766) T) ((-972 . -403) 100593) ((-346 . -111) 100522) ((-371 . -889) T) ((-399 . -819) 100501) ((-687 . -282) 100412) ((-216 . -701) T) ((-1210 . -483) 100378) ((-1203 . -483) 100344) ((-1182 . -483) 100310) ((-308 . -971) 100289) ((-215 . -1063) 100267) ((-311 . -942) 100229) ((-104 . -101) T) ((-48 . -1022) 100194) ((-1242 . -101) T) ((-373 . -101) T) ((-48 . -111) 100150) ((-973 . -615) 100132) ((-1204 . -592) 100114) ((-520 . -101) T) ((-490 . -101) T) ((-1095 . -1096) 100098) ((-150 . -1225) 100082) ((-238 . -1172) T) ((-1171 . -101) T) ((-1131 . -1176) 100061) ((-1087 . -1176) 100040) ((-233 . -21) 99950) ((-233 . -25) 99801) ((-127 . -119) 99785) ((-121 . -119) 99769) ((-44 . -719) 99753) ((-1131 . -540) 99664) ((-1087 . -540) 99595) ((-1004 . -278) 99570) ((-963 . -1047) T) ((-790 . -130) T) ((-117 . -769) NIL) ((-117 . -766) NIL) ((-347 . -299) T) ((-344 . -299) T) ((-336 . -299) T) ((-1058 . -1172) T) ((-243 . -1075) 99480) ((-242 . -1075) 99390) ((-993 . -1016) T) ((-972 . -1023) T) ((-335 . -622) 99335) ((-597 . -38) 99319) ((-1231 . -592) 99281) ((-1231 . -593) 99242) ((-1040 . -592) 99224) ((-993 . -236) T) ((-346 . -1016) T) ((-789 . -1225) 99194) ((-243 . -23) T) ((-242 . -23) T) ((-956 . -592) 99176) ((-712 . -593) 99137) ((-712 . -592) 99119) ((-773 . -821) 99098) ((-968 . -504) 99010) ((-346 . -226) T) ((-346 . -236) T) ((-1119 . -149) 98957) ((-973 . -25) T) ((-139 . -593) 98916) ((-139 . -592) 98898) ((-879 . -299) T) ((-973 . -21) T) ((-940 . -25) T) ((-883 . -21) T) ((-883 . -25) T) ((-419 . -21) T) ((-419 . -25) T) ((-814 . -403) 98882) ((-48 . -1016) T) ((-1240 . -1232) 98866) ((-1238 . -1232) 98850) ((-1004 . -583) 98825) ((-308 . -593) 98686) ((-308 . -592) 98668) ((-305 . -593) NIL) ((-305 . -592) 98650) ((-48 . -236) T) ((-48 . -226) T) ((-628 . -278) 98611) ((-534 . -228) 98561) ((-135 . -592) 98543) ((-114 . -592) 98525) ((-468 . -38) 98490) ((-1242 . -1239) 98469) ((-1233 . -130) T) ((-1241 . -1023) T) ((-1045 . -101) T) ((-87 . -1172) T) ((-490 . -301) NIL) ((-969 . -106) 98453) ((-858 . -1063) T) ((-854 . -1063) T) ((-1218 . -625) 98437) ((-1218 . -365) 98421) ((-319 . -1172) T) ((-573 . -821) T) ((-1102 . -1063) T) ((-1102 . -1019) 98361) ((-102 . -504) 98294) ((-896 . -592) 98276) ((-335 . -701) T) ((-30 . -592) 98258) ((-835 . -1063) T) ((-814 . -1023) 98237) ((-40 . -622) 98182) ((-218 . -1176) T) ((-399 . -1023) T) ((-1118 . -149) 98164) ((-968 . -282) 98115) ((-218 . -540) T) ((-311 . -1199) 98099) ((-311 . -1196) 98069) ((-1145 . -1148) 98048) ((-1038 . -592) 98030) ((-621 . -149) 98014) ((-608 . -149) 97960) ((-1145 . -106) 97910) ((-470 . -1148) 97889) ((-478 . -145) T) ((-478 . -143) NIL) ((-1082 . -593) 97804) ((-430 . -592) 97786) ((-210 . -145) T) ((-210 . -143) NIL) ((-1082 . -592) 97768) ((-129 . -101) T) ((-52 . -101) T) ((-1182 . -615) 97720) ((-470 . -106) 97670) ((-962 . -23) T) ((-1242 . -38) 97640) ((-1131 . -1075) T) ((-1087 . -1075) T) ((-1027 . -1176) T) ((-303 . -101) T) ((-825 . -1075) T) ((-921 . -1176) 97619) ((-472 . -1176) 97598) ((-706 . -821) 97577) ((-1027 . -540) T) ((-921 . -540) 97508) ((-1131 . -23) T) ((-1087 . -23) T) ((-825 . -23) T) ((-472 . -540) 97439) ((-1102 . -692) 97371) ((-1106 . -504) 97304) ((-1004 . -593) NIL) ((-1004 . -592) 97286) ((-95 . -1047) T) ((-835 . -692) 97256) ((-1166 . -47) 97225) ((-243 . -130) T) ((-242 . -130) T) ((-1067 . -1063) T) ((-972 . -1063) T) ((-61 . -592) 97207) ((-1126 . -821) NIL) ((-993 . -766) T) ((-993 . -769) T) ((-1246 . -1022) 97194) ((-1246 . -111) 97179) ((-839 . -622) 97166) ((-1210 . -25) T) ((-1210 . -21) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-996 . -149) 97150) ((-841 . -794) 97129) ((-841 . -889) T) ((-687 . -278) 97056) ((-576 . -21) T) ((-576 . -25) T) ((-575 . -21) T) ((-40 . -701) T) ((-215 . -504) 96989) ((-575 . -25) T) ((-467 . -149) 96973) ((-454 . -149) 96957) ((-890 . -768) T) ((-890 . -701) T) ((-745 . -767) T) ((-745 . -768) T) ((-496 . -1063) T) ((-492 . -1063) T) ((-745 . -701) T) ((-218 . -355) T) ((-1116 . -1063) 96935) ((-840 . -1176) T) ((-628 . -592) 96917) ((-840 . -540) T) ((-668 . -360) NIL) ((-351 . -1225) 96901) ((-644 . -101) T) ((-345 . -1225) 96885) ((-337 . -1225) 96869) ((-1241 . -1063) T) ((-510 . -821) 96848) ((-791 . -443) 96827) ((-1013 . -1063) T) ((-1013 . -1036) 96756) ((-996 . -945) 96725) ((-793 . -1075) T) ((-972 . -692) 96670) ((-378 . -1075) T) ((-467 . -945) 96639) ((-454 . -945) 96608) ((-110 . -149) 96590) ((-72 . -592) 96572) ((-862 . -592) 96554) ((-1043 . -699) 96533) ((-1246 . -1016) T) ((-790 . -615) 96481) ((-286 . -1023) 96423) ((-166 . -1176) 96328) ((-218 . -1075) T) ((-316 . -23) T) ((-1126 . -961) 96280) ((-814 . -1063) T) ((-1088 . -715) 96259) ((-1204 . -1022) 96164) ((-1202 . -889) 96143) ((-839 . -701) T) ((-166 . -540) 96054) ((-1181 . -889) 96033) ((-561 . -622) 96020) ((-399 . -1063) T) ((-548 . -622) 96007) ((-255 . -1063) T) ((-485 . -622) 95972) ((-218 . -23) T) ((-1181 . -794) 95925) ((-1240 . -101) T) ((-346 . -1237) 95902) ((-1238 . -101) T) ((-1204 . -111) 95794) ((-142 . -592) 95776) ((-962 . -130) T) ((-44 . -101) T) ((-233 . -821) 95727) ((-1191 . -1176) 95706) ((-102 . -480) 95690) ((-1241 . -692) 95660) ((-1051 . -47) 95621) ((-1027 . -1075) T) ((-921 . -1075) T) ((-127 . -34) T) ((-121 . -34) T) ((-756 . -47) 95598) ((-754 . -47) 95570) ((-1191 . -540) 95481) ((-346 . -360) T) ((-472 . -1075) T) ((-1131 . -130) T) ((-1087 . -130) T) ((-445 . -47) 95460) ((-840 . -355) T) ((-825 . -130) T) ((-150 . -101) T) ((-1027 . -23) T) ((-921 . -23) T) ((-555 . -540) T) ((-790 . -25) T) ((-790 . -21) T) ((-1102 . -504) 95393) ((-572 . -1047) T) ((-566 . -1007) 95377) ((-472 . -23) T) ((-343 . -1023) T) ((-1166 . -869) 95358) ((-644 . -301) 95296) ((-1076 . -1225) 95266) ((-673 . -622) 95231) ((-972 . -169) T) ((-932 . -143) 95210) ((-611 . -1063) T) ((-586 . -1063) T) ((-932 . -145) 95189) ((-973 . -821) T) ((-710 . -145) 95168) ((-710 . -143) 95147) ((-940 . -821) T) ((-465 . -889) 95126) ((-308 . -1022) 95036) ((-305 . -1022) 94965) ((-968 . -278) 94923) ((-399 . -692) 94875) ((-128 . -821) T) ((-675 . -819) T) ((-1204 . -1016) T) ((-308 . -111) 94771) ((-305 . -111) 94684) ((-933 . -101) T) ((-789 . -101) 94474) ((-687 . -593) NIL) ((-687 . -592) 94456) ((-632 . -1007) 94352) ((-1204 . -318) 94296) ((-1004 . -280) 94271) ((-561 . -701) T) ((-548 . -768) T) ((-166 . -355) 94222) ((-548 . -765) T) ((-548 . -701) T) ((-485 . -701) T) ((-1106 . -480) 94206) ((-1051 . -855) NIL) ((-840 . -1075) T) ((-117 . -878) NIL) ((-1240 . -1239) 94182) ((-1238 . -1239) 94161) ((-756 . -855) NIL) ((-754 . -855) 94020) ((-1233 . -25) T) ((-1233 . -21) T) ((-1169 . -101) 93998) ((-1069 . -387) T) ((-599 . -622) 93985) ((-445 . -855) NIL) ((-649 . -101) 93963) ((-1051 . -1007) 93790) ((-840 . -23) T) ((-756 . -1007) 93649) ((-754 . -1007) 93506) ((-117 . -622) 93451) ((-445 . -1007) 93327) ((-623 . -1007) 93311) ((-603 . -101) T) ((-215 . -480) 93295) ((-1218 . -34) T) ((-611 . -692) 93279) ((-586 . -692) 93263) ((-644 . -38) 93223) ((-311 . -101) T) ((-84 . -592) 93205) ((-50 . -1007) 93189) ((-1082 . -1022) 93176) ((-1051 . -369) 93160) ((-756 . -369) 93144) ((-59 . -56) 93106) ((-673 . -768) T) ((-673 . -765) T) ((-562 . -1007) 93093) ((-508 . -1007) 93070) ((-673 . -701) T) ((-316 . -130) T) ((-308 . -1016) 92960) ((-305 . -1016) T) ((-166 . -1075) T) ((-754 . -369) 92944) ((-45 . -149) 92894) ((-973 . -961) 92876) ((-445 . -369) 92860) ((-399 . -169) T) ((-308 . -236) 92839) ((-305 . -236) T) ((-305 . -226) NIL) ((-286 . -1063) 92621) ((-218 . -130) T) ((-1082 . -111) 92606) ((-166 . -23) T) ((-773 . -145) 92585) ((-773 . -143) 92564) ((-243 . -615) 92470) ((-242 . -615) 92376) ((-311 . -276) 92342) ((-1116 . -504) 92275) ((-1095 . -1063) T) ((-218 . -1025) T) ((-789 . -301) 92213) ((-1051 . -869) 92148) ((-756 . -869) 92091) ((-754 . -869) 92075) ((-1240 . -38) 92045) ((-1238 . -38) 92015) ((-1191 . -1075) T) ((-826 . -1075) T) ((-445 . -869) 91992) ((-829 . -1063) T) ((-1191 . -23) T) ((-555 . -1075) T) ((-826 . -23) T) ((-599 . -701) T) ((-347 . -889) T) ((-344 . -889) T) ((-281 . -101) T) ((-336 . -889) T) ((-1027 . -130) T) ((-939 . -1047) T) ((-921 . -130) T) ((-117 . -768) NIL) ((-117 . -765) NIL) ((-117 . -701) T) ((-668 . -878) NIL) ((-1013 . -504) 91893) ((-472 . -130) T) ((-555 . -23) T) ((-649 . -301) 91831) ((-611 . -736) T) ((-586 . -736) T) ((-1182 . -821) NIL) ((-972 . -282) T) ((-243 . -21) T) ((-668 . -622) 91781) ((-343 . -1063) T) ((-243 . -25) T) ((-242 . -21) T) ((-242 . -25) T) ((-150 . -38) 91765) ((-2 . -101) T) ((-879 . -889) T) ((-473 . -1225) 91735) ((-216 . -1007) 91712) ((-1082 . -1016) T) ((-686 . -299) T) ((-286 . -692) 91654) ((-675 . -1023) T) ((-478 . -443) T) ((-399 . -504) 91566) ((-210 . -443) T) ((-1082 . -226) T) ((-287 . -149) 91516) ((-968 . -593) 91477) ((-968 . -592) 91459) ((-958 . -592) 91441) ((-116 . -1023) T) ((-628 . -1022) 91425) ((-218 . -483) T) ((-391 . -592) 91407) ((-391 . -593) 91384) ((-1020 . -1225) 91354) ((-628 . -111) 91333) ((-1102 . -480) 91317) ((-789 . -38) 91287) ((-62 . -432) T) ((-62 . -387) T) ((-1119 . -101) T) ((-840 . -130) T) ((-475 . -101) 91265) ((-1246 . -360) T) ((-1043 . -101) T) ((-1026 . -101) T) ((-343 . -692) 91210) ((-706 . -145) 91189) ((-706 . -143) 91168) ((-993 . -622) 91105) ((-513 . -1063) 91083) ((-351 . -101) T) ((-345 . -101) T) ((-337 . -101) T) ((-107 . -101) T) ((-494 . -1063) T) ((-346 . -622) 91028) ((-1131 . -615) 90976) ((-1087 . -615) 90924) ((-377 . -499) 90903) ((-807 . -819) 90882) ((-371 . -1176) T) ((-668 . -701) T) ((-331 . -1023) T) ((-1182 . -961) 90834) ((-171 . -1023) T) ((-102 . -592) 90766) ((-1133 . -143) 90745) ((-1133 . -145) 90724) ((-371 . -540) T) ((-1132 . -145) 90703) ((-1132 . -143) 90682) ((-1126 . -143) 90589) ((-399 . -282) T) ((-1126 . -145) 90496) ((-1088 . -145) 90475) ((-1088 . -143) 90454) ((-311 . -38) 90295) ((-166 . -130) T) ((-305 . -769) NIL) ((-305 . -766) NIL) ((-628 . -1016) T) ((-48 . -622) 90260) ((-963 . -101) T) ((-962 . -21) T) ((-127 . -979) 90244) ((-121 . -979) 90228) ((-962 . -25) T) ((-870 . -119) 90212) ((-1118 . -101) T) ((-790 . -821) 90191) ((-1191 . -130) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-826 . -130) T) ((-1087 . -25) T) ((-1087 . -21) T) ((-825 . -25) T) ((-825 . -21) T) ((-756 . -299) 90170) ((-621 . -101) 90148) ((-608 . -101) T) ((-1119 . -301) 89943) ((-555 . -130) T) ((-597 . -819) 89922) ((-1116 . -480) 89906) ((-1110 . -149) 89856) ((-1106 . -592) 89818) ((-1106 . -593) 89779) ((-993 . -765) T) ((-993 . -768) T) ((-993 . -701) T) ((-475 . -301) 89717) ((-444 . -409) 89687) ((-343 . -169) T) ((-281 . -38) 89674) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-260 . -101) T) ((-335 . -1007) 89651) ((-205 . -101) T) ((-204 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-199 . -101) T) ((-196 . -101) T) ((-195 . -101) T) ((-687 . -1022) 89474) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-186 . -101) T) ((-346 . -701) T) ((-687 . -111) 89283) ((-644 . -224) 89267) ((-562 . -299) T) ((-508 . -299) T) ((-286 . -504) 89216) ((-107 . -301) NIL) ((-71 . -387) T) ((-1076 . -101) 89006) ((-807 . -403) 88990) ((-1082 . -769) T) ((-1082 . -766) T) ((-675 . -1063) T) ((-371 . -355) T) ((-166 . -483) 88968) ((-206 . -1063) T) ((-215 . -592) 88900) ((-133 . -1063) T) ((-116 . -1063) T) ((-48 . -701) T) ((-1013 . -480) 88865) ((-496 . -92) T) ((-139 . -417) 88847) ((-139 . -360) T) ((-996 . -101) T) ((-502 . -499) 88826) ((-467 . -101) T) ((-454 . -101) T) ((-1003 . -1075) T) ((-1133 . -35) 88792) ((-1133 . -94) 88758) ((-1133 . -1160) 88724) ((-1133 . -1157) 88690) ((-1118 . -301) NIL) ((-88 . -388) T) ((-88 . -387) T) ((-1043 . -1111) 88669) ((-1132 . -1157) 88635) ((-1132 . -1160) 88601) ((-1003 . -23) T) ((-1132 . -94) 88567) ((-555 . -483) T) ((-1132 . -35) 88533) ((-1126 . -1157) 88499) ((-1126 . -1160) 88465) ((-1126 . -94) 88431) ((-353 . -1075) T) ((-351 . -1111) 88410) ((-345 . -1111) 88389) ((-337 . -1111) 88368) ((-1126 . -35) 88334) ((-1088 . -35) 88300) ((-1088 . -94) 88266) ((-107 . -1111) T) ((-1088 . -1160) 88232) ((-807 . -1023) 88211) ((-621 . -301) 88149) ((-608 . -301) 88000) ((-1088 . -1157) 87966) ((-687 . -1016) T) ((-1027 . -615) 87948) ((-1043 . -38) 87816) ((-921 . -615) 87764) ((-973 . -145) T) ((-973 . -143) NIL) ((-371 . -1075) T) ((-316 . -25) T) ((-314 . -23) T) ((-912 . -821) 87743) ((-687 . -318) 87720) ((-472 . -615) 87668) ((-40 . -1007) 87556) ((-675 . -692) 87543) ((-687 . -226) T) ((-331 . -1063) T) ((-171 . -1063) T) ((-323 . -821) T) ((-410 . -443) 87493) ((-371 . -23) T) ((-351 . -38) 87458) ((-345 . -38) 87423) ((-337 . -38) 87388) ((-79 . -432) T) ((-79 . -387) T) ((-218 . -25) T) ((-218 . -21) T) ((-808 . -1075) T) ((-107 . -38) 87338) ((-801 . -1075) T) ((-748 . -1063) T) ((-116 . -692) 87325) ((-646 . -1007) 87309) ((-591 . -101) T) ((-808 . -23) T) ((-801 . -23) T) ((-1116 . -278) 87286) ((-1076 . -301) 87224) ((-1065 . -228) 87208) ((-63 . -388) T) ((-63 . -387) T) ((-110 . -101) T) ((-40 . -369) 87185) ((-95 . -101) T) ((-627 . -823) 87169) ((-1027 . -21) T) ((-1027 . -25) T) ((-789 . -224) 87138) ((-921 . -25) T) ((-921 . -21) T) ((-597 . -1023) T) ((-472 . -25) T) ((-472 . -21) T) ((-996 . -301) 87076) ((-858 . -592) 87058) ((-854 . -592) 87040) ((-243 . -821) 86991) ((-242 . -821) 86942) ((-513 . -504) 86875) ((-840 . -615) 86852) ((-467 . -301) 86790) ((-454 . -301) 86728) ((-343 . -282) T) ((-1116 . -1206) 86712) ((-1102 . -592) 86674) ((-1102 . -593) 86635) ((-1100 . -101) T) ((-968 . -1022) 86531) ((-40 . -869) 86483) ((-1116 . -583) 86460) ((-1246 . -622) 86447) ((-1028 . -149) 86393) ((-841 . -1176) T) ((-968 . -111) 86275) ((-331 . -692) 86259) ((-835 . -592) 86241) ((-171 . -692) 86173) ((-399 . -278) 86131) ((-841 . -540) T) ((-107 . -392) 86113) ((-83 . -376) T) ((-83 . -387) T) ((-675 . -169) T) ((-98 . -701) T) ((-473 . -101) 85903) ((-98 . -464) T) ((-116 . -169) T) ((-1076 . -38) 85873) ((-166 . -615) 85821) ((-1020 . -101) T) ((-840 . -25) T) ((-789 . -231) 85800) ((-840 . -21) T) ((-792 . -101) T) ((-406 . -101) T) ((-377 . -101) T) ((-110 . -301) NIL) ((-220 . -101) 85778) ((-127 . -1172) T) ((-121 . -1172) T) ((-1003 . -130) T) ((-644 . -359) 85762) ((-968 . -1016) T) ((-1191 . -615) 85710) ((-1067 . -592) 85692) ((-972 . -592) 85674) ((-505 . -23) T) ((-500 . -23) T) ((-335 . -299) T) ((-498 . -23) T) ((-314 . -130) T) ((-3 . -1063) T) ((-972 . -593) 85658) ((-968 . -236) 85637) ((-968 . -226) 85616) ((-1246 . -701) T) ((-1210 . -143) 85595) ((-807 . -1063) T) ((-1210 . -145) 85574) ((-1203 . -145) 85553) ((-1203 . -143) 85532) ((-1202 . -1176) 85511) ((-1182 . -143) 85418) ((-1182 . -145) 85325) ((-1181 . -1176) 85304) ((-371 . -130) T) ((-548 . -855) 85286) ((0 . -1063) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1063) T) ((-1204 . -622) 85191) ((-1202 . -540) 85142) ((-689 . -1075) T) ((-1181 . -540) 85093) ((-548 . -1007) 85075) ((-575 . -145) 85054) ((-575 . -143) 85033) ((-485 . -1007) 84976) ((-86 . -376) T) ((-86 . -387) T) ((-841 . -355) T) ((-808 . -130) T) ((-801 . -130) T) ((-689 . -23) T) ((-496 . -592) 84926) ((-492 . -592) 84908) ((-1242 . -1023) T) ((-371 . -1025) T) ((-995 . -1063) 84886) ((-870 . -34) T) ((-473 . -301) 84824) ((-572 . -101) T) ((-1116 . -593) 84785) ((-1116 . -592) 84717) ((-1131 . -821) 84696) ((-45 . -101) T) ((-1087 . -821) 84675) ((-791 . -101) T) ((-1191 . -25) T) ((-1191 . -21) T) ((-826 . -25) T) ((-44 . -359) 84659) ((-826 . -21) T) ((-706 . -443) 84610) ((-1241 . -592) 84592) ((-1020 . -301) 84530) ((-585 . -1047) T) ((-645 . -1047) T) ((-555 . -25) T) ((-555 . -21) T) ((-382 . -1063) T) ((-177 . -1047) T) ((-158 . -1047) T) ((-153 . -1047) T) ((-597 . -1063) T) ((-673 . -855) 84512) ((-1218 . -1172) T) ((-220 . -301) 84450) ((-142 . -360) T) ((-1013 . -593) 84392) ((-1013 . -592) 84335) ((-305 . -878) NIL) ((-673 . -1007) 84280) ((-686 . -889) T) ((-465 . -1176) 84259) ((-1132 . -443) 84238) ((-1126 . -443) 84217) ((-322 . -101) T) ((-841 . -1075) T) ((-308 . -622) 84038) ((-305 . -622) 83967) ((-465 . -540) 83918) ((-331 . -504) 83884) ((-534 . -149) 83834) ((-40 . -299) T) ((-814 . -592) 83816) ((-675 . -282) T) ((-841 . -23) T) ((-371 . -483) T) ((-1043 . -224) 83786) ((-502 . -101) T) ((-399 . -593) 83594) ((-399 . -592) 83576) ((-255 . -592) 83558) ((-116 . -282) T) ((-1204 . -701) T) ((-1202 . -355) 83537) ((-1181 . -355) 83516) ((-1231 . -34) T) ((-117 . -1172) T) ((-107 . -224) 83498) ((-1137 . -101) T) ((-468 . -1063) T) ((-513 . -480) 83482) ((-712 . -34) T) ((-473 . -38) 83452) ((-139 . -34) T) ((-117 . -853) 83429) ((-117 . -855) NIL) ((-599 . -1007) 83312) ((-619 . -821) 83291) ((-1230 . -101) T) ((-287 . -101) T) ((-687 . -360) 83270) ((-117 . -1007) 83247) ((-382 . -692) 83231) ((-597 . -692) 83215) ((-45 . -301) 83019) ((-790 . -143) 82998) ((-790 . -145) 82977) ((-1241 . -374) 82956) ((-793 . -821) T) ((-1220 . -1063) T) ((-1119 . -222) 82903) ((-378 . -821) 82882) ((-1210 . -1160) 82848) ((-1210 . -1157) 82814) ((-1203 . -1157) 82780) ((-505 . -130) T) ((-1203 . -1160) 82746) ((-1182 . -1157) 82712) ((-1182 . -1160) 82678) ((-1210 . -35) 82644) ((-1210 . -94) 82610) ((-611 . -592) 82579) ((-586 . -592) 82548) ((-218 . -821) T) ((-1203 . -94) 82514) ((-1203 . -35) 82480) ((-1202 . -1075) T) ((-1082 . -622) 82467) ((-1182 . -94) 82433) ((-1181 . -1075) T) ((-573 . -149) 82415) ((-1043 . -341) 82394) ((-117 . -369) 82371) ((-117 . -330) 82348) ((-171 . -282) T) ((-1182 . -35) 82314) ((-839 . -299) T) ((-305 . -768) NIL) ((-305 . -765) NIL) ((-308 . -701) 82163) ((-305 . -701) T) ((-465 . -355) 82142) ((-351 . -341) 82121) ((-345 . -341) 82100) ((-337 . -341) 82079) ((-308 . -464) 82058) ((-1202 . -23) T) ((-1181 . -23) T) ((-693 . -1075) T) ((-689 . -130) T) ((-627 . -101) T) ((-468 . -692) 82023) ((-45 . -274) 81973) ((-104 . -1063) T) ((-67 . -592) 81955) ((-939 . -101) T) ((-834 . -101) T) ((-599 . -869) 81914) ((-1242 . -1063) T) ((-373 . -1063) T) ((-1171 . -1063) T) ((-81 . -1172) T) ((-1027 . -821) T) ((-921 . -821) 81893) ((-117 . -869) NIL) ((-756 . -889) 81872) ((-688 . -821) T) ((-520 . -1063) T) ((-490 . -1063) T) ((-347 . -1176) T) ((-344 . -1176) T) ((-336 . -1176) T) ((-256 . -1176) 81851) ((-240 . -1176) 81830) ((-1076 . -224) 81799) ((-472 . -821) 81778) ((-1102 . -1022) 81762) ((-382 . -736) T) ((-1118 . -802) T) ((-668 . -1172) T) ((-347 . -540) T) ((-344 . -540) T) ((-336 . -540) T) ((-256 . -540) 81693) ((-240 . -540) 81624) ((-515 . -1047) T) ((-1102 . -111) 81603) ((-444 . -719) 81573) ((-835 . -1022) 81543) ((-791 . -38) 81485) ((-668 . -853) 81467) ((-668 . -855) 81449) ((-287 . -301) 81253) ((-879 . -1176) T) ((-644 . -403) 81237) ((-835 . -111) 81202) ((-668 . -1007) 81147) ((-973 . -443) T) ((-879 . -540) T) ((-562 . -889) T) ((-465 . -1075) T) ((-508 . -889) T) ((-1116 . -280) 81124) ((-883 . -443) T) ((-64 . -592) 81106) ((-608 . -222) 81052) ((-465 . -23) T) ((-1082 . -768) T) ((-841 . -130) T) ((-1082 . -765) T) ((-1233 . -1235) 81031) ((-1082 . -701) T) ((-628 . -622) 81005) ((-286 . -592) 80746) ((-1004 . -34) T) ((-789 . -819) 80725) ((-561 . -299) T) ((-548 . -299) T) ((-485 . -299) T) ((-1242 . -692) 80695) ((-668 . -369) 80677) ((-668 . -330) 80659) ((-468 . -169) T) ((-373 . -692) 80629) ((-840 . -821) NIL) ((-548 . -991) T) ((-485 . -991) T) ((-1095 . -592) 80611) ((-1076 . -231) 80590) ((-207 . -101) T) ((-1110 . -101) T) ((-70 . -592) 80572) ((-1102 . -1016) T) ((-1137 . -38) 80469) ((-829 . -592) 80451) ((-548 . -533) T) ((-644 . -1023) T) ((-706 . -918) 80404) ((-1102 . -226) 80383) ((-1045 . -1063) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-972 . -1022) 80328) ((-874 . -101) T) ((-835 . -1016) T) ((-668 . -869) NIL) ((-347 . -321) 80312) ((-347 . -355) T) ((-344 . -321) 80296) ((-344 . -355) T) ((-336 . -321) 80280) ((-336 . -355) T) ((-478 . -101) T) ((-1230 . -38) 80250) ((-513 . -661) 80200) ((-210 . -101) T) ((-993 . -1007) 80080) ((-972 . -111) 80009) ((-1133 . -942) 79978) ((-1132 . -942) 79940) ((-510 . -149) 79924) ((-1043 . -362) 79903) ((-343 . -592) 79885) ((-314 . -21) T) ((-346 . -1007) 79862) ((-314 . -25) T) ((-1126 . -942) 79831) ((-1088 . -942) 79798) ((-75 . -592) 79780) ((-673 . -299) T) ((-166 . -821) 79759) ((-879 . -355) T) ((-371 . -25) T) ((-371 . -21) T) ((-879 . -321) 79746) ((-85 . -592) 79728) ((-673 . -991) T) ((-651 . -821) T) ((-1202 . -130) T) ((-1181 . -130) T) ((-870 . -979) 79712) ((-808 . -21) T) ((-48 . -1007) 79655) ((-808 . -25) T) ((-801 . -25) T) ((-801 . -21) T) ((-1240 . -1023) T) ((-1238 . -1023) T) ((-628 . -701) T) ((-1241 . -1022) 79639) ((-1191 . -821) 79618) ((-789 . -403) 79587) ((-102 . -119) 79571) ((-129 . -1063) T) ((-52 . -1063) T) ((-895 . -592) 79553) ((-840 . -961) 79530) ((-797 . -101) T) ((-1241 . -111) 79509) ((-627 . -38) 79479) ((-555 . -821) T) ((-347 . -1075) T) ((-344 . -1075) T) ((-336 . -1075) T) ((-256 . -1075) T) ((-240 . -1075) T) ((-599 . -299) 79458) ((-1110 . -301) 79262) ((-514 . -1047) T) ((-303 . -1063) T) ((-638 . -23) T) ((-473 . -224) 79231) ((-150 . -1023) T) ((-347 . -23) T) ((-344 . -23) T) ((-336 . -23) T) ((-117 . -299) T) ((-256 . -23) T) ((-240 . -23) T) ((-972 . -1016) T) ((-687 . -878) 79210) ((-972 . -226) 79182) ((-972 . -236) T) ((-117 . -991) NIL) ((-879 . -1075) T) ((-1203 . -443) 79161) ((-1182 . -443) 79140) ((-513 . -592) 79072) ((-687 . -622) 78997) ((-399 . -1022) 78949) ((-494 . -592) 78931) ((-879 . -23) T) ((-478 . -301) NIL) ((-465 . -130) T) ((-210 . -301) NIL) ((-399 . -111) 78869) ((-789 . -1023) 78799) ((-712 . -1061) 78783) ((-1202 . -483) 78749) ((-1181 . -483) 78715) ((-468 . -282) T) ((-139 . -1061) 78697) ((-128 . -149) 78679) ((-1241 . -1016) T) ((-1028 . -101) T) ((-490 . -504) NIL) ((-677 . -101) T) ((-473 . -231) 78658) ((-1131 . -143) 78637) ((-1131 . -145) 78616) ((-1087 . -145) 78595) ((-1087 . -143) 78574) ((-611 . -1022) 78558) ((-586 . -1022) 78542) ((-644 . -1063) T) ((-644 . -1019) 78482) ((-1133 . -1209) 78466) ((-1133 . -1196) 78443) ((-478 . -1111) T) ((-1132 . -1201) 78404) ((-1132 . -1196) 78374) ((-1132 . -1199) 78358) ((-210 . -1111) T) ((-335 . -889) T) ((-792 . -258) 78342) ((-611 . -111) 78321) ((-586 . -111) 78300) ((-1126 . -1180) 78261) ((-814 . -1016) 78240) ((-1126 . -1196) 78217) ((-505 . -25) T) ((-485 . -294) T) ((-501 . -23) T) ((-500 . -25) T) ((-498 . -25) T) ((-497 . -23) T) ((-1126 . -1178) 78201) ((-399 . -1016) T) ((-311 . -1023) T) ((-668 . -299) T) ((-107 . -819) T) ((-399 . -236) T) ((-399 . -226) 78180) ((-687 . -701) T) ((-478 . -38) 78130) ((-210 . -38) 78080) ((-465 . -483) 78046) ((-1118 . -1104) T) ((-1064 . -101) T) ((-675 . -592) 78028) ((-675 . -593) 77943) ((-689 . -21) T) ((-689 . -25) T) ((-206 . -592) 77925) ((-133 . -592) 77907) ((-116 . -592) 77889) ((-154 . -25) T) ((-1240 . -1063) T) ((-841 . -615) 77837) ((-1238 . -1063) T) ((-932 . -101) T) ((-710 . -101) T) ((-690 . -101) T) ((-444 . -101) T) ((-790 . -443) 77788) ((-44 . -1063) T) ((-1052 . -821) T) ((-638 . -130) T) ((-1028 . -301) 77639) ((-644 . -692) 77623) ((-281 . -1023) T) ((-347 . -130) T) ((-344 . -130) T) ((-336 . -130) T) ((-256 . -130) T) ((-240 . -130) T) ((-410 . -101) T) ((-150 . -1063) T) ((-45 . -222) 77573) ((-927 . -821) 77552) ((-968 . -622) 77490) ((-233 . -1225) 77460) ((-993 . -299) T) ((-286 . -1022) 77381) ((-879 . -130) T) ((-40 . -889) T) ((-478 . -392) 77363) ((-346 . -299) T) ((-210 . -392) 77345) ((-1043 . -403) 77329) ((-286 . -111) 77245) ((-841 . -25) T) ((-841 . -21) T) ((-331 . -592) 77227) ((-1204 . -47) 77171) ((-218 . -145) T) ((-171 . -592) 77153) ((-1076 . -819) 77132) ((-748 . -592) 77114) ((-587 . -228) 77061) ((-466 . -228) 77011) ((-1240 . -692) 76981) ((-48 . -299) T) ((-1238 . -692) 76951) ((-933 . -1063) T) ((-789 . -1063) 76741) ((-304 . -101) T) ((-870 . -1172) T) ((-48 . -991) T) ((-1181 . -615) 76649) ((-663 . -101) 76627) ((-44 . -692) 76611) ((-534 . -101) T) ((-66 . -375) T) ((-66 . -387) T) ((-636 . -23) T) ((-644 . -736) T) ((-1169 . -1063) 76589) ((-343 . -1022) 76534) ((-649 . -1063) 76512) ((-1027 . -145) T) ((-921 . -145) 76491) ((-921 . -143) 76470) ((-773 . -101) T) ((-150 . -692) 76454) ((-472 . -145) 76433) ((-472 . -143) 76412) ((-343 . -111) 76341) ((-1043 . -1023) T) ((-314 . -821) 76320) ((-1210 . -942) 76289) ((-603 . -1063) T) ((-1203 . -942) 76251) ((-501 . -130) T) ((-497 . -130) T) ((-287 . -222) 76201) ((-351 . -1023) T) ((-345 . -1023) T) ((-337 . -1023) T) ((-286 . -1016) 76143) ((-1182 . -942) 76112) ((-371 . -821) T) ((-107 . -1023) T) ((-968 . -701) T) ((-839 . -889) T) ((-814 . -769) 76091) ((-814 . -766) 76070) ((-410 . -301) 76009) ((-459 . -101) T) ((-575 . -942) 75978) ((-311 . -1063) T) ((-399 . -769) 75957) ((-399 . -766) 75936) ((-490 . -480) 75918) ((-1204 . -1007) 75884) ((-1202 . -21) T) ((-1202 . -25) T) ((-1181 . -21) T) ((-1181 . -25) T) ((-789 . -692) 75826) ((-673 . -396) T) ((-585 . -101) T) ((-1231 . -1172) T) ((-1076 . -403) 75795) ((-972 . -360) NIL) ((-645 . -101) T) ((-177 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-102 . -34) T) ((-712 . -1172) T) ((-44 . -736) T) ((-573 . -101) T) ((-76 . -388) T) ((-76 . -387) T) ((-627 . -630) 75779) ((-139 . -1172) T) ((-840 . -145) T) ((-840 . -143) NIL) ((-1171 . -92) T) ((-343 . -1016) T) ((-69 . -375) T) ((-69 . -387) T) ((-1125 . -101) T) ((-644 . -504) 75712) ((-663 . -301) 75650) ((-932 . -38) 75547) ((-710 . -38) 75517) ((-534 . -301) 75321) ((-308 . -1172) T) ((-343 . -226) T) ((-343 . -236) T) ((-305 . -1172) T) ((-281 . -1063) T) ((-1139 . -592) 75303) ((-686 . -1176) T) ((-1116 . -625) 75287) ((-1166 . -540) 75266) ((-686 . -540) T) ((-308 . -853) 75250) ((-308 . -855) 75175) ((-305 . -853) 75136) ((-305 . -855) NIL) ((-773 . -301) 75101) ((-311 . -692) 74942) ((-316 . -315) 74919) ((-476 . -101) T) ((-465 . -25) T) ((-465 . -21) T) ((-410 . -38) 74893) ((-308 . -1007) 74556) ((-218 . -1157) T) ((-218 . -1160) T) ((-3 . -592) 74538) ((-305 . -1007) 74468) ((-2 . -1063) T) ((-2 . |RecordCategory|) T) ((-807 . -592) 74450) ((-1076 . -1023) 74380) ((-561 . -889) T) ((-548 . -794) T) ((-548 . -889) T) ((-485 . -889) T) ((-135 . -1007) 74364) ((-218 . -94) T) ((-74 . -432) T) ((-74 . -387) T) ((0 . -592) 74346) ((-166 . -145) 74325) ((-166 . -143) 74276) ((-218 . -35) T) ((-49 . -592) 74258) ((-468 . -1023) T) ((-478 . -224) 74240) ((-475 . -937) 74224) ((-473 . -819) 74203) ((-210 . -224) 74185) ((-80 . -432) T) ((-80 . -387) T) ((-1106 . -34) T) ((-789 . -169) 74164) ((-706 . -101) T) ((-995 . -592) 74131) ((-490 . -278) 74106) ((-308 . -369) 74075) ((-305 . -369) 74036) ((-305 . -330) 73997) ((-1049 . -592) 73979) ((-790 . -918) 73926) ((-636 . -130) T) ((-1191 . -143) 73905) ((-1191 . -145) 73884) ((-1133 . -101) T) ((-1132 . -101) T) ((-1126 . -101) T) ((-1119 . -1063) T) ((-1088 . -101) T) ((-215 . -34) T) ((-281 . -692) 73871) ((-1119 . -589) 73847) ((-573 . -301) NIL) ((-475 . -1063) 73825) ((-382 . -592) 73807) ((-500 . -821) T) ((-1110 . -222) 73757) ((-1210 . -1209) 73741) ((-1210 . -1196) 73718) ((-1203 . -1201) 73679) ((-1203 . -1196) 73649) ((-1203 . -1199) 73633) ((-1182 . -1180) 73594) ((-1182 . -1196) 73571) ((-597 . -592) 73553) ((-1182 . -1178) 73537) ((-673 . -889) T) ((-1133 . -276) 73503) ((-1132 . -276) 73469) ((-1126 . -276) 73435) ((-1043 . -1063) T) ((-1026 . -1063) T) ((-48 . -294) T) ((-308 . -869) 73401) ((-305 . -869) NIL) ((-1026 . -1033) 73380) ((-1082 . -855) 73362) ((-773 . -38) 73346) ((-256 . -615) 73294) ((-240 . -615) 73242) ((-675 . -1022) 73229) ((-575 . -1196) 73206) ((-1088 . -276) 73172) ((-311 . -169) 73103) ((-351 . -1063) T) ((-345 . -1063) T) ((-337 . -1063) T) ((-490 . -19) 73085) ((-1082 . -1007) 73067) ((-1065 . -149) 73051) ((-107 . -1063) T) ((-116 . -1022) 73038) ((-686 . -355) T) ((-490 . -583) 73013) ((-675 . -111) 72998) ((-428 . -101) T) ((-45 . -1109) 72948) ((-116 . -111) 72933) ((-611 . -695) T) ((-586 . -695) T) ((-789 . -504) 72866) ((-1004 . -1172) T) ((-912 . -149) 72850) ((-515 . -101) T) ((-510 . -101) 72800) ((-1131 . -443) 72731) ((-1051 . -1176) 72710) ((-756 . -1176) 72689) ((-754 . -1176) 72668) ((-61 . -1172) T) ((-468 . -592) 72620) ((-468 . -593) 72542) ((-1118 . -1063) T) ((-1102 . -622) 72516) ((-1087 . -443) 72467) ((-1051 . -540) 72398) ((-473 . -403) 72367) ((-599 . -889) 72346) ((-445 . -1176) 72325) ((-963 . -1063) T) ((-756 . -540) 72236) ((-390 . -592) 72218) ((-754 . -540) 72149) ((-649 . -504) 72082) ((-706 . -301) 72069) ((-638 . -25) T) ((-638 . -21) T) ((-445 . -540) 72000) ((-117 . -889) T) ((-117 . -794) NIL) ((-347 . -25) T) ((-347 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-336 . -25) T) ((-336 . -21) T) ((-256 . -25) T) ((-256 . -21) T) ((-82 . -376) T) ((-82 . -387) T) ((-240 . -25) T) ((-240 . -21) T) ((-1220 . -592) 71982) ((-1166 . -1075) T) ((-1166 . -23) T) ((-1126 . -301) 71867) ((-1088 . -301) 71854) ((-1043 . -692) 71722) ((-835 . -622) 71682) ((-912 . -949) 71666) ((-879 . -21) T) ((-281 . -169) T) ((-879 . -25) T) ((-303 . -92) T) ((-841 . -821) 71617) ((-686 . -1075) T) ((-686 . -23) T) ((-621 . -1063) 71595) ((-608 . -589) 71570) ((-608 . -1063) T) ((-562 . -1176) T) ((-508 . -1176) T) ((-562 . -540) T) ((-508 . -540) T) ((-351 . -692) 71522) ((-345 . -692) 71474) ((-337 . -692) 71426) ((-331 . -1022) 71410) ((-171 . -111) 71321) ((-171 . -1022) 71253) ((-107 . -692) 71203) ((-331 . -111) 71182) ((-266 . -1063) T) ((-265 . -1063) T) ((-264 . -1063) T) ((-263 . -1063) T) ((-675 . -1016) T) ((-262 . -1063) T) ((-261 . -1063) T) ((-260 . -1063) T) ((-205 . -1063) T) ((-204 . -1063) T) ((-202 . -1063) T) ((-166 . -1160) 71160) ((-166 . -1157) 71138) ((-201 . -1063) T) ((-200 . -1063) T) ((-116 . -1016) T) ((-199 . -1063) T) ((-196 . -1063) T) ((-675 . -226) T) ((-195 . -1063) T) ((-194 . -1063) T) ((-193 . -1063) T) ((-192 . -1063) T) ((-191 . -1063) T) ((-190 . -1063) T) ((-189 . -1063) T) ((-188 . -1063) T) ((-187 . -1063) T) ((-186 . -1063) T) ((-233 . -101) 70928) ((-166 . -35) 70906) ((-166 . -94) 70884) ((-628 . -1007) 70780) ((-473 . -1023) 70710) ((-1076 . -1063) 70500) ((-1102 . -34) T) ((-644 . -480) 70484) ((-72 . -1172) T) ((-104 . -592) 70466) ((-1242 . -592) 70448) ((-373 . -592) 70430) ((-555 . -1160) T) ((-555 . -1157) T) ((-706 . -38) 70279) ((-520 . -592) 70261) ((-510 . -301) 70199) ((-490 . -592) 70181) ((-490 . -593) 70163) ((-1171 . -592) 70129) ((-1126 . -1111) NIL) ((-996 . -1036) 70098) ((-996 . -1063) T) ((-973 . -101) T) ((-940 . -101) T) ((-883 . -101) T) ((-862 . -1007) 70075) ((-1102 . -701) T) ((-972 . -622) 70020) ((-467 . -1063) T) ((-454 . -1063) T) ((-566 . -23) T) ((-555 . -35) T) ((-555 . -94) T) ((-419 . -101) T) ((-1028 . -222) 69966) ((-128 . -101) T) ((-1133 . -38) 69863) ((-835 . -701) T) ((-668 . -889) T) ((-501 . -25) T) ((-497 . -21) T) ((-497 . -25) T) ((-1132 . -38) 69704) ((-331 . -1016) T) ((-1126 . -38) 69500) ((-1043 . -169) T) ((-171 . -1016) T) ((-1088 . -38) 69397) ((-687 . -47) 69374) ((-351 . -169) T) ((-345 . -169) T) ((-509 . -56) 69348) ((-487 . -56) 69298) ((-343 . -1237) 69275) ((-218 . -443) T) ((-311 . -282) 69226) ((-337 . -169) T) ((-171 . -236) T) ((-1181 . -821) 69125) ((-107 . -169) T) ((-841 . -961) 69109) ((-632 . -1075) T) ((-562 . -355) T) ((-562 . -321) 69096) ((-508 . -321) 69073) ((-508 . -355) T) ((-308 . -299) 69052) ((-305 . -299) T) ((-581 . -821) 69031) ((-1076 . -692) 68973) ((-510 . -274) 68957) ((-632 . -23) T) ((-410 . -224) 68941) ((-305 . -991) NIL) ((-328 . -23) T) ((-102 . -979) 68925) ((-45 . -36) 68904) ((-591 . -1063) T) ((-343 . -360) T) ((-514 . -101) T) ((-485 . -27) T) ((-233 . -301) 68842) ((-1051 . -1075) T) ((-1241 . -622) 68816) ((-756 . -1075) T) ((-754 . -1075) T) ((-445 . -1075) T) ((-1027 . -443) T) ((-921 . -443) 68767) ((-110 . -1063) T) ((-1051 . -23) T) ((-791 . -1023) T) ((-756 . -23) T) ((-754 . -23) T) ((-472 . -443) 68718) ((-1119 . -504) 68501) ((-373 . -374) 68480) ((-1137 . -403) 68464) ((-452 . -23) T) ((-445 . -23) T) ((-95 . -1063) T) ((-475 . -504) 68397) ((-281 . -282) T) ((-1045 . -592) 68379) ((-399 . -878) 68358) ((-50 . -1075) T) ((-993 . -889) T) ((-972 . -701) T) ((-687 . -855) NIL) ((-562 . -1075) T) ((-508 . -1075) T) ((-814 . -622) 68331) ((-1166 . -130) T) ((-1126 . -392) 68283) ((-973 . -301) NIL) ((-789 . -480) 68267) ((-346 . -889) T) ((-1116 . -34) T) ((-399 . -622) 68219) ((-50 . -23) T) ((-686 . -130) T) ((-687 . -1007) 68099) ((-562 . -23) T) ((-107 . -504) NIL) ((-508 . -23) T) ((-166 . -401) 68070) ((-128 . -301) NIL) ((-1100 . -1063) T) ((-1233 . -1232) 68054) ((-675 . -769) T) ((-675 . -766) T) ((-1082 . -299) T) ((-371 . -145) T) ((-272 . -592) 68036) ((-1181 . -961) 68006) ((-48 . -889) T) ((-649 . -480) 67990) ((-243 . -1225) 67960) ((-242 . -1225) 67930) ((-1135 . -821) T) ((-1076 . -169) 67909) ((-1082 . -991) T) ((-1013 . -34) T) ((-808 . -145) 67888) ((-808 . -143) 67867) ((-712 . -106) 67851) ((-591 . -131) T) ((-473 . -1063) 67641) ((-1137 . -1023) T) ((-840 . -443) T) ((-84 . -1172) T) ((-233 . -38) 67611) ((-139 . -106) 67593) ((-687 . -369) 67577) ((-1082 . -533) T) ((-382 . -1022) 67561) ((-1241 . -701) T) ((-1131 . -918) 67530) ((-129 . -592) 67497) ((-52 . -592) 67479) ((-1087 . -918) 67446) ((-627 . -403) 67430) ((-1230 . -1023) T) ((-597 . -1022) 67414) ((-636 . -25) T) ((-636 . -21) T) ((-1118 . -504) NIL) ((-1210 . -101) T) ((-1203 . -101) T) ((-382 . -111) 67393) ((-215 . -246) 67377) ((-1182 . -101) T) ((-1020 . -1063) T) ((-973 . -1111) T) ((-1020 . -1019) 67317) ((-792 . -1063) T) ((-335 . -1176) T) ((-611 . -622) 67301) ((-597 . -111) 67280) ((-586 . -622) 67264) ((-576 . -101) T) ((-566 . -130) T) ((-575 . -101) T) ((-406 . -1063) T) ((-377 . -1063) T) ((-303 . -592) 67230) ((-220 . -1063) 67208) ((-621 . -504) 67141) ((-608 . -504) 66985) ((-807 . -1016) 66964) ((-619 . -149) 66948) ((-335 . -540) T) ((-687 . -869) 66891) ((-534 . -222) 66841) ((-1210 . -276) 66807) ((-1043 . -282) 66758) ((-478 . -819) T) ((-216 . -1075) T) ((-1203 . -276) 66724) ((-1182 . -276) 66690) ((-973 . -38) 66640) ((-210 . -819) T) ((-1166 . -483) 66606) ((-883 . -38) 66558) ((-814 . -768) 66537) ((-814 . -765) 66516) ((-814 . -701) 66495) ((-351 . -282) T) ((-345 . -282) T) ((-337 . -282) T) ((-166 . -443) 66426) ((-419 . -38) 66410) ((-107 . -282) T) ((-216 . -23) T) ((-399 . -768) 66389) ((-399 . -765) 66368) ((-399 . -701) T) ((-490 . -280) 66343) ((-468 . -1022) 66308) ((-632 . -130) T) ((-1076 . -504) 66241) ((-328 . -130) T) ((-166 . -394) 66220) ((-473 . -692) 66162) ((-789 . -278) 66139) ((-468 . -111) 66095) ((-627 . -1023) T) ((-1191 . -443) 66026) ((-1229 . -1047) T) ((-1228 . -1047) T) ((-1051 . -130) T) ((-256 . -821) 66005) ((-240 . -821) 65984) ((-756 . -130) T) ((-754 . -130) T) ((-555 . -443) T) ((-1020 . -692) 65926) ((-597 . -1016) T) ((-996 . -504) 65859) ((-572 . -1063) T) ((-452 . -130) T) ((-445 . -130) T) ((-45 . -1063) T) ((-377 . -692) 65829) ((-791 . -1063) T) ((-467 . -504) 65762) ((-454 . -504) 65695) ((-444 . -359) 65665) ((-45 . -589) 65644) ((-308 . -294) T) ((-644 . -592) 65606) ((-58 . -821) 65585) ((-1182 . -301) 65470) ((-973 . -392) 65452) ((-789 . -583) 65429) ((-506 . -821) 65408) ((-486 . -821) 65387) ((-40 . -1176) T) ((-968 . -1007) 65283) ((-50 . -130) T) ((-562 . -130) T) ((-508 . -130) T) ((-286 . -622) 65143) ((-335 . -321) 65120) ((-335 . -355) T) ((-314 . -315) 65097) ((-311 . -278) 65082) ((-40 . -540) T) ((-371 . -1157) T) ((-371 . -1160) T) ((-1004 . -1148) 65057) ((-1145 . -228) 65007) ((-1126 . -224) 64959) ((-322 . -1063) T) ((-371 . -94) T) ((-371 . -35) T) ((-1004 . -106) 64905) ((-468 . -1016) T) ((-470 . -228) 64855) ((-1119 . -480) 64789) ((-1242 . -1022) 64773) ((-373 . -1022) 64757) ((-468 . -236) T) ((-790 . -101) T) ((-689 . -145) 64736) ((-689 . -143) 64715) ((-475 . -480) 64699) ((-476 . -327) 64668) ((-1242 . -111) 64647) ((-502 . -1063) T) ((-473 . -169) 64626) ((-968 . -369) 64610) ((-405 . -101) T) ((-373 . -111) 64589) ((-968 . -330) 64573) ((-271 . -952) 64557) ((-270 . -952) 64541) ((-1240 . -592) 64523) ((-1238 . -592) 64505) ((-110 . -504) NIL) ((-1131 . -1194) 64489) ((-825 . -823) 64473) ((-1137 . -1063) T) ((-102 . -1172) T) ((-921 . -918) 64434) ((-791 . -692) 64376) ((-1182 . -1111) NIL) ((-472 . -918) 64321) ((-1027 . -141) T) ((-59 . -101) 64299) ((-44 . -592) 64281) ((-77 . -592) 64263) ((-343 . -622) 64208) ((-1230 . -1063) T) ((-501 . -821) T) ((-335 . -1075) T) ((-287 . -1063) T) ((-968 . -869) 64167) ((-287 . -589) 64146) ((-1210 . -38) 64043) ((-1203 . -38) 63884) ((-478 . -1023) T) ((-1182 . -38) 63680) ((-210 . -1023) T) ((-335 . -23) T) ((-150 . -592) 63662) ((-807 . -769) 63641) ((-807 . -766) 63620) ((-576 . -38) 63593) ((-575 . -38) 63490) ((-839 . -540) T) ((-216 . -130) T) ((-311 . -971) 63456) ((-78 . -592) 63438) ((-687 . -299) 63417) ((-286 . -701) 63319) ((-798 . -101) T) ((-834 . -815) T) ((-286 . -464) 63298) ((-1233 . -101) T) ((-40 . -355) T) ((-841 . -145) 63277) ((-841 . -143) 63256) ((-1118 . -480) 63238) ((-1242 . -1016) T) ((-473 . -504) 63171) ((-1106 . -1172) T) ((-933 . -592) 63153) ((-621 . -480) 63137) ((-608 . -480) 63068) ((-789 . -592) 62799) ((-48 . -27) T) ((-1137 . -692) 62696) ((-627 . -1063) T) ((-428 . -356) 62670) ((-1065 . -101) T) ((-790 . -301) 62657) ((-939 . -1063) T) ((-834 . -1063) T) ((-1238 . -374) 62629) ((-1020 . -504) 62562) ((-1119 . -278) 62538) ((-233 . -224) 62507) ((-1230 . -692) 62477) ((-963 . -92) T) ((-791 . -169) 62456) ((-220 . -504) 62389) ((-597 . -769) 62368) ((-597 . -766) 62347) ((-1169 . -592) 62259) ((-215 . -1172) T) ((-649 . -592) 62191) ((-1116 . -979) 62175) ((-343 . -701) T) ((-912 . -101) 62125) ((-1182 . -392) 62077) ((-1076 . -480) 62061) ((-59 . -301) 61999) ((-323 . -101) T) ((-1166 . -21) T) ((-1166 . -25) T) ((-40 . -1075) T) ((-686 . -21) T) ((-603 . -592) 61981) ((-505 . -315) 61960) ((-686 . -25) T) ((-107 . -278) NIL) ((-890 . -1075) T) ((-40 . -23) T) ((-745 . -1075) T) ((-548 . -1176) T) ((-485 . -1176) T) ((-311 . -592) 61942) ((-973 . -224) 61924) ((-166 . -163) 61908) ((-561 . -540) T) ((-548 . -540) T) ((-485 . -540) T) ((-745 . -23) T) ((-1202 . -145) 61887) ((-1119 . -583) 61863) ((-1202 . -143) 61842) ((-996 . -480) 61826) ((-1181 . -143) 61751) ((-1181 . -145) 61676) ((-1233 . -1239) 61655) ((-467 . -480) 61639) ((-454 . -480) 61623) ((-513 . -34) T) ((-627 . -692) 61593) ((-112 . -936) T) ((-636 . -821) 61572) ((-1137 . -169) 61523) ((-357 . -101) T) ((-233 . -231) 61502) ((-243 . -101) T) ((-242 . -101) T) ((-1191 . -918) 61471) ((-109 . -101) T) ((-238 . -821) 61450) ((-790 . -38) 61299) ((-45 . -504) 61091) ((-1118 . -278) 61066) ((-207 . -1063) T) ((-1110 . -1063) T) ((-1110 . -589) 61045) ((-566 . -25) T) ((-566 . -21) T) ((-1065 . -301) 60983) ((-932 . -403) 60967) ((-673 . -1176) T) ((-608 . -278) 60942) ((-1051 . -615) 60890) ((-756 . -615) 60838) ((-754 . -615) 60786) ((-335 . -130) T) ((-281 . -592) 60768) ((-673 . -540) T) ((-874 . -1063) T) ((-839 . -1075) T) ((-445 . -615) 60716) ((-874 . -872) 60700) ((-371 . -443) T) ((-478 . -1063) T) ((-675 . -622) 60687) ((-912 . -301) 60625) ((-210 . -1063) T) ((-308 . -889) 60604) ((-305 . -889) T) ((-305 . -794) NIL) ((-382 . -695) T) ((-839 . -23) T) ((-116 . -622) 60591) ((-465 . -143) 60570) ((-410 . -403) 60554) ((-465 . -145) 60533) ((-110 . -480) 60515) ((-2 . -592) 60497) ((-1118 . -19) 60479) ((-1118 . -583) 60454) ((-632 . -21) T) ((-632 . -25) T) ((-573 . -1104) T) ((-1076 . -278) 60431) ((-328 . -25) T) ((-328 . -21) T) ((-485 . -355) T) ((-1233 . -38) 60401) ((-1102 . -1172) T) ((-608 . -583) 60376) ((-1051 . -25) T) ((-1051 . -21) T) ((-520 . -766) T) ((-520 . -769) T) ((-117 . -1176) T) ((-932 . -1023) T) ((-599 . -540) T) ((-756 . -25) T) ((-756 . -21) T) ((-754 . -21) T) ((-754 . -25) T) ((-710 . -1023) T) ((-690 . -1023) T) ((-644 . -1022) 60360) ((-507 . -1047) T) ((-452 . -25) T) ((-117 . -540) T) ((-452 . -21) T) ((-445 . -25) T) ((-445 . -21) T) ((-1102 . -1007) 60256) ((-791 . -282) 60235) ((-797 . -1063) T) ((-935 . -936) T) ((-644 . -111) 60214) ((-287 . -504) 60006) ((-1240 . -1022) 59990) ((-1238 . -1022) 59974) ((-1202 . -1157) 59940) ((-243 . -301) 59878) ((-242 . -301) 59816) ((-1185 . -101) 59794) ((-1119 . -593) NIL) ((-1119 . -592) 59776) ((-1202 . -1160) 59742) ((-1182 . -224) 59694) ((-1181 . -1157) 59660) ((-95 . -92) T) ((-1181 . -1160) 59626) ((-1102 . -369) 59610) ((-1082 . -794) T) ((-1082 . -889) T) ((-1076 . -583) 59587) ((-1043 . -593) 59571) ((-475 . -592) 59503) ((-789 . -280) 59480) ((-587 . -149) 59427) ((-410 . -1023) T) ((-478 . -692) 59377) ((-473 . -480) 59361) ((-319 . -821) 59340) ((-331 . -622) 59314) ((-50 . -21) T) ((-50 . -25) T) ((-210 . -692) 59264) ((-166 . -699) 59235) ((-171 . -622) 59167) ((-562 . -21) T) ((-562 . -25) T) ((-508 . -25) T) ((-508 . -21) T) ((-466 . -149) 59117) ((-1043 . -592) 59099) ((-1026 . -592) 59081) ((-962 . -101) T) ((-832 . -101) T) ((-773 . -403) 59045) ((-40 . -130) T) ((-673 . -355) T) ((-205 . -864) T) ((-675 . -768) T) ((-675 . -765) T) ((-561 . -1075) T) ((-548 . -1075) T) ((-485 . -1075) T) ((-675 . -701) T) ((-351 . -592) 59027) ((-345 . -592) 59009) ((-337 . -592) 58991) ((-65 . -388) T) ((-65 . -387) T) ((-107 . -593) 58921) ((-107 . -592) 58903) ((-204 . -864) T) ((-927 . -149) 58887) ((-1202 . -94) 58853) ((-745 . -130) T) ((-133 . -701) T) ((-116 . -701) T) ((-1202 . -35) 58819) ((-1020 . -480) 58803) ((-561 . -23) T) ((-548 . -23) T) ((-485 . -23) T) ((-1181 . -94) 58769) ((-1181 . -35) 58735) ((-1131 . -101) T) ((-1087 . -101) T) ((-825 . -101) T) ((-220 . -480) 58719) ((-1240 . -111) 58698) ((-1238 . -111) 58677) ((-44 . -1022) 58661) ((-1191 . -1194) 58645) ((-826 . -823) 58629) ((-1137 . -282) 58608) ((-110 . -278) 58583) ((-1102 . -869) 58542) ((-44 . -111) 58521) ((-1140 . -1213) T) ((-644 . -1016) T) ((-1118 . -593) NIL) ((-1118 . -592) 58503) ((-1028 . -589) 58478) ((-1028 . -1063) T) ((-963 . -592) 58444) ((-73 . -432) T) ((-73 . -387) T) ((-644 . -226) 58423) ((-150 . -1022) 58407) ((-555 . -538) 58391) ((-347 . -145) 58370) ((-347 . -143) 58321) ((-344 . -145) 58300) ((-677 . -1063) T) ((-344 . -143) 58251) ((-336 . -145) 58230) ((-336 . -143) 58181) ((-256 . -143) 58160) ((-256 . -145) 58139) ((-243 . -38) 58109) ((-240 . -145) 58088) ((-117 . -355) T) ((-240 . -143) 58067) ((-242 . -38) 58037) ((-150 . -111) 58016) ((-972 . -1007) 57904) ((-1126 . -819) NIL) ((-668 . -1176) T) ((-773 . -1023) T) ((-673 . -1075) T) ((-1240 . -1016) T) ((-1238 . -1016) T) ((-1116 . -1172) T) ((-972 . -369) 57881) ((-879 . -143) T) ((-879 . -145) 57863) ((-839 . -130) T) ((-789 . -1022) 57760) ((-668 . -540) T) ((-673 . -23) T) ((-621 . -592) 57692) ((-621 . -593) 57653) ((-608 . -593) NIL) ((-608 . -592) 57635) ((-478 . -169) T) ((-216 . -21) T) ((-210 . -169) T) ((-216 . -25) T) ((-465 . -1160) 57601) ((-465 . -1157) 57567) ((-266 . -592) 57549) ((-265 . -592) 57531) ((-264 . -592) 57513) ((-263 . -592) 57495) ((-262 . -592) 57477) ((-490 . -625) 57459) ((-261 . -592) 57441) ((-331 . -701) T) ((-260 . -592) 57423) ((-110 . -19) 57405) ((-171 . -701) T) ((-490 . -365) 57387) ((-205 . -592) 57369) ((-510 . -1109) 57353) ((-490 . -123) T) ((-110 . -583) 57328) ((-204 . -592) 57310) ((-465 . -35) 57276) ((-465 . -94) 57242) ((-202 . -592) 57224) ((-201 . -592) 57206) ((-200 . -592) 57188) ((-199 . -592) 57170) ((-196 . -592) 57152) ((-195 . -592) 57134) ((-194 . -592) 57116) ((-193 . -592) 57098) ((-192 . -592) 57080) ((-191 . -592) 57062) ((-190 . -592) 57044) ((-524 . -1066) 56996) ((-189 . -592) 56978) ((-188 . -592) 56960) ((-45 . -480) 56897) ((-187 . -592) 56879) ((-186 . -592) 56861) ((-789 . -111) 56751) ((-619 . -101) 56701) ((-473 . -278) 56678) ((-1076 . -592) 56409) ((-1064 . -1063) T) ((-1013 . -1172) T) ((-599 . -1075) T) ((-1241 . -1007) 56393) ((-1131 . -301) 56380) ((-1087 . -301) 56367) ((-1054 . -1047) T) ((-1031 . -1047) T) ((-1005 . -1047) T) ((-988 . -1047) T) ((-117 . -1075) T) ((-793 . -101) T) ((-602 . -1047) T) ((-599 . -23) T) ((-1110 . -504) 56159) ((-474 . -1047) T) ((-972 . -869) 56111) ((-378 . -101) T) ((-316 . -101) T) ((-211 . -1047) T) ((-932 . -1063) T) ((-150 . -1016) T) ((-117 . -23) T) ((-706 . -403) 56095) ((-710 . -1063) T) ((-690 . -1063) T) ((-677 . -131) T) ((-444 . -1063) T) ((-399 . -1172) T) ((-308 . -422) 56079) ((-572 . -92) T) ((-996 . -593) 56040) ((-993 . -1176) T) ((-218 . -101) T) ((-996 . -592) 56002) ((-790 . -224) 55986) ((-993 . -540) T) ((-807 . -622) 55959) ((-346 . -1176) T) ((-467 . -592) 55921) ((-467 . -593) 55882) ((-454 . -593) 55843) ((-454 . -592) 55805) ((-399 . -853) 55789) ((-311 . -1022) 55624) ((-399 . -855) 55549) ((-814 . -1007) 55445) ((-478 . -504) NIL) ((-473 . -583) 55422) ((-346 . -540) T) ((-210 . -504) NIL) ((-841 . -443) T) ((-410 . -1063) T) ((-399 . -1007) 55286) ((-311 . -111) 55107) ((-668 . -355) T) ((-218 . -276) T) ((-48 . -1176) T) ((-789 . -1016) 55037) ((-561 . -130) T) ((-548 . -130) T) ((-485 . -130) T) ((-48 . -540) T) ((-1119 . -280) 55013) ((-1131 . -1111) 54991) ((-308 . -27) 54970) ((-1027 . -101) T) ((-789 . -226) 54922) ((-233 . -819) 54901) ((-921 . -101) T) ((-688 . -101) T) ((-287 . -480) 54838) ((-472 . -101) T) ((-706 . -1023) T) ((-591 . -592) 54820) ((-591 . -593) 54681) ((-399 . -369) 54665) ((-399 . -330) 54649) ((-1131 . -38) 54478) ((-1087 . -38) 54327) ((-825 . -38) 54297) ((-382 . -622) 54281) ((-619 . -301) 54219) ((-932 . -692) 54116) ((-710 . -692) 54086) ((-215 . -106) 54070) ((-45 . -278) 53995) ((-597 . -622) 53969) ((-304 . -1063) T) ((-281 . -1022) 53956) ((-110 . -592) 53938) ((-110 . -593) 53920) ((-444 . -692) 53890) ((-790 . -245) 53829) ((-663 . -1063) 53807) ((-534 . -1063) T) ((-1133 . -1023) T) ((-1132 . -1023) T) ((-1126 . -1023) T) ((-281 . -111) 53792) ((-1088 . -1023) T) ((-534 . -589) 53771) ((-95 . -592) 53737) ((-973 . -819) T) ((-220 . -661) 53695) ((-668 . -1075) T) ((-1166 . -715) 53671) ((-311 . -1016) T) ((-335 . -25) T) ((-335 . -21) T) ((-399 . -869) 53630) ((-67 . -1172) T) ((-807 . -768) 53609) ((-410 . -692) 53583) ((-773 . -1063) T) ((-807 . -765) 53562) ((-673 . -130) T) ((-687 . -889) 53541) ((-668 . -23) T) ((-478 . -282) T) ((-807 . -701) 53520) ((-311 . -226) 53472) ((-311 . -236) 53451) ((-210 . -282) T) ((-993 . -355) T) ((-1202 . -443) 53430) ((-1181 . -443) 53409) ((-346 . -321) 53386) ((-346 . -355) T) ((-1100 . -592) 53368) ((-45 . -1206) 53318) ((-840 . -101) T) ((-619 . -274) 53302) ((-673 . -1025) T) ((-1229 . -101) T) ((-468 . -622) 53267) ((-459 . -1063) T) ((-45 . -583) 53192) ((-1228 . -101) T) ((-1118 . -280) 53167) ((-40 . -615) 53106) ((-48 . -355) T) ((-1069 . -592) 53088) ((-1051 . -821) 53067) ((-608 . -280) 53042) ((-756 . -821) 53021) ((-754 . -821) 53000) ((-473 . -592) 52731) ((-233 . -403) 52700) ((-921 . -301) 52687) ((-445 . -821) 52666) ((-64 . -1172) T) ((-599 . -130) T) ((-472 . -301) 52653) ((-585 . -1063) T) ((-1028 . -504) 52497) ((-117 . -130) T) ((-645 . -1063) T) ((-281 . -1016) T) ((-177 . -1063) T) ((-158 . -1063) T) ((-153 . -1063) T) ((-444 . -736) T) ((-31 . -1047) T) ((-932 . -169) 52448) ((-939 . -92) T) ((-1043 . -1022) 52358) ((-597 . -768) 52337) ((-573 . -1063) T) ((-597 . -765) 52316) ((-597 . -701) T) ((-287 . -278) 52295) ((-286 . -1172) T) ((-1020 . -592) 52257) ((-1020 . -593) 52218) ((-993 . -1075) T) ((-166 . -101) T) ((-267 . -821) T) ((-1125 . -1063) T) ((-792 . -592) 52200) ((-1076 . -280) 52177) ((-1065 . -222) 52161) ((-972 . -299) T) ((-773 . -692) 52145) ((-351 . -1022) 52097) ((-346 . -1075) T) ((-345 . -1022) 52049) ((-406 . -592) 52031) ((-377 . -592) 52013) ((-337 . -1022) 51965) ((-220 . -592) 51897) ((-1043 . -111) 51793) ((-993 . -23) T) ((-107 . -1022) 51743) ((-867 . -101) T) ((-812 . -101) T) ((-782 . -101) T) ((-743 . -101) T) ((-651 . -101) T) ((-465 . -443) 51722) ((-410 . -169) T) ((-351 . -111) 51660) ((-345 . -111) 51598) ((-337 . -111) 51536) ((-243 . -224) 51505) ((-242 . -224) 51474) ((-346 . -23) T) ((-70 . -1172) T) ((-218 . -38) 51439) ((-107 . -111) 51373) ((-40 . -25) T) ((-40 . -21) T) ((-644 . -695) T) ((-166 . -276) 51351) ((-48 . -1075) T) ((-890 . -25) T) ((-745 . -25) T) ((-1110 . -480) 51288) ((-476 . -1063) T) ((-1242 . -622) 51262) ((-1191 . -101) T) ((-826 . -101) T) ((-233 . -1023) 51192) ((-1027 . -1111) T) ((-933 . -766) 51145) ((-373 . -622) 51129) ((-48 . -23) T) ((-933 . -769) 51082) ((-789 . -769) 51033) ((-789 . -766) 50984) ((-287 . -583) 50963) ((-468 . -701) T) ((-555 . -101) T) ((-840 . -301) 50920) ((-627 . -278) 50899) ((-112 . -635) T) ((-75 . -1172) T) ((-1027 . -38) 50886) ((-638 . -366) 50865) ((-921 . -38) 50714) ((-706 . -1063) T) ((-472 . -38) 50563) ((-85 . -1172) T) ((-555 . -276) T) ((-1182 . -819) NIL) ((-572 . -592) 50529) ((-1133 . -1063) T) ((-1132 . -1063) T) ((-1126 . -1063) T) ((-343 . -1007) 50506) ((-1043 . -1016) T) ((-973 . -1023) T) ((-45 . -592) 50488) ((-45 . -593) NIL) ((-883 . -1023) T) ((-791 . -592) 50470) ((-1107 . -101) 50448) ((-1043 . -236) 50399) ((-419 . -1023) T) ((-351 . -1016) T) ((-345 . -1016) T) ((-357 . -356) 50376) ((-337 . -1016) T) ((-243 . -231) 50355) ((-242 . -231) 50334) ((-109 . -356) 50308) ((-1043 . -226) 50233) ((-1088 . -1063) T) ((-286 . -869) 50192) ((-107 . -1016) T) ((-668 . -130) T) ((-410 . -504) 50034) ((-351 . -226) 50013) ((-351 . -236) T) ((-44 . -695) T) ((-345 . -226) 49992) ((-345 . -236) T) ((-337 . -226) 49971) ((-337 . -236) T) ((-166 . -301) 49936) ((-107 . -236) T) ((-107 . -226) T) ((-311 . -766) T) ((-839 . -21) T) ((-839 . -25) T) ((-399 . -299) T) ((-490 . -34) T) ((-110 . -280) 49911) ((-1076 . -1022) 49808) ((-840 . -1111) NIL) ((-322 . -592) 49790) ((-399 . -991) 49769) ((-1076 . -111) 49659) ((-665 . -1213) T) ((-428 . -1063) T) ((-1242 . -701) T) ((-62 . -592) 49641) ((-840 . -38) 49586) ((-513 . -1172) T) ((-581 . -149) 49570) ((-502 . -592) 49552) ((-1191 . -301) 49539) ((-706 . -692) 49388) ((-520 . -767) T) ((-520 . -768) T) ((-548 . -615) 49370) ((-485 . -615) 49330) ((-347 . -443) T) ((-344 . -443) T) ((-336 . -443) T) ((-256 . -443) 49281) ((-515 . -1063) T) ((-510 . -1063) 49231) ((-240 . -443) 49182) ((-1110 . -278) 49161) ((-1137 . -592) 49143) ((-663 . -504) 49076) ((-932 . -282) 49055) ((-534 . -504) 48847) ((-1131 . -224) 48831) ((-166 . -1111) 48810) ((-1230 . -592) 48792) ((-1133 . -692) 48689) ((-1132 . -692) 48530) ((-861 . -101) T) ((-1126 . -692) 48326) ((-1088 . -692) 48223) ((-1116 . -648) 48207) ((-347 . -394) 48158) ((-344 . -394) 48109) ((-336 . -394) 48060) ((-993 . -130) T) ((-773 . -504) 47972) ((-287 . -593) NIL) ((-287 . -592) 47954) ((-879 . -443) T) ((-933 . -360) 47907) ((-789 . -360) 47886) ((-500 . -499) 47865) ((-498 . -499) 47844) ((-478 . -278) NIL) ((-473 . -280) 47821) ((-410 . -282) T) ((-346 . -130) T) ((-210 . -278) NIL) ((-668 . -483) NIL) ((-98 . -1075) T) ((-166 . -38) 47649) ((-1202 . -942) 47611) ((-1107 . -301) 47549) ((-1181 . -942) 47518) ((-879 . -394) T) ((-1076 . -1016) 47448) ((-1204 . -540) T) ((-1110 . -583) 47427) ((-112 . -821) T) ((-1028 . -480) 47358) ((-561 . -21) T) ((-561 . -25) T) ((-548 . -21) T) ((-548 . -25) T) ((-485 . -25) T) ((-485 . -21) T) ((-1191 . -1111) 47336) ((-1076 . -226) 47288) ((-48 . -130) T) ((-1153 . -101) T) ((-233 . -1063) 47078) ((-840 . -392) 47055) ((-1052 . -101) T) ((-1039 . -101) T) ((-587 . -101) T) ((-466 . -101) T) ((-1191 . -38) 46884) ((-826 . -38) 46854) ((-706 . -169) 46765) ((-627 . -592) 46747) ((-620 . -1047) T) ((-555 . -38) 46734) ((-939 . -592) 46700) ((-927 . -101) 46650) ((-834 . -592) 46632) ((-834 . -593) 46554) ((-573 . -504) NIL) ((-1210 . -1023) T) ((-1203 . -1023) T) ((-1182 . -1023) T) ((-576 . -1023) T) ((-575 . -1023) T) ((-1246 . -1075) T) ((-1133 . -169) 46505) ((-1132 . -169) 46436) ((-1126 . -169) 46367) ((-1088 . -169) 46318) ((-973 . -1063) T) ((-940 . -1063) T) ((-883 . -1063) T) ((-1166 . -145) 46297) ((-773 . -771) 46281) ((-673 . -25) T) ((-673 . -21) T) ((-117 . -615) 46258) ((-675 . -855) 46240) ((-419 . -1063) T) ((-308 . -1176) 46219) ((-305 . -1176) T) ((-166 . -392) 46203) ((-1166 . -143) 46182) ((-465 . -942) 46144) ((-128 . -1063) T) ((-71 . -592) 46126) ((-107 . -769) T) ((-107 . -766) T) ((-308 . -540) 46105) ((-675 . -1007) 46087) ((-305 . -540) T) ((-1246 . -23) T) ((-133 . -1007) 46069) ((-473 . -1022) 45966) ((-45 . -280) 45891) ((-233 . -692) 45833) ((-507 . -101) T) ((-473 . -111) 45723) ((-1056 . -101) 45701) ((-1003 . -101) T) ((-619 . -802) 45680) ((-706 . -504) 45623) ((-1020 . -1022) 45607) ((-1028 . -278) 45582) ((-599 . -21) T) ((-599 . -25) T) ((-514 . -1063) T) ((-353 . -101) T) ((-314 . -101) T) ((-644 . -622) 45556) ((-377 . -1022) 45540) ((-1020 . -111) 45519) ((-790 . -403) 45503) ((-117 . -25) T) ((-88 . -592) 45485) ((-117 . -21) T) ((-587 . -301) 45280) ((-466 . -301) 45084) ((-1110 . -593) NIL) ((-377 . -111) 45063) ((-371 . -101) T) ((-207 . -592) 45045) ((-1110 . -592) 45027) ((-973 . -692) 44977) ((-1126 . -504) 44746) ((-883 . -692) 44698) ((-1088 . -504) 44668) ((-343 . -299) T) ((-1145 . -149) 44618) ((-927 . -301) 44556) ((-808 . -101) T) ((-419 . -692) 44540) ((-218 . -802) T) ((-801 . -101) T) ((-799 . -101) T) ((-470 . -149) 44490) ((-1202 . -1201) 44469) ((-1082 . -1176) T) ((-331 . -1007) 44436) ((-1202 . -1196) 44406) ((-1202 . -1199) 44390) ((-1181 . -1180) 44369) ((-79 . -592) 44351) ((-874 . -592) 44333) ((-1181 . -1196) 44310) ((-1082 . -540) T) ((-890 . -821) T) ((-745 . -821) T) ((-478 . -593) 44240) ((-478 . -592) 44222) ((-371 . -276) T) ((-646 . -821) T) ((-1181 . -1178) 44206) ((-1204 . -1075) T) ((-210 . -593) 44136) ((-210 . -592) 44118) ((-1028 . -583) 44093) ((-58 . -149) 44077) ((-506 . -149) 44061) ((-486 . -149) 44045) ((-351 . -1237) 44029) ((-345 . -1237) 44013) ((-337 . -1237) 43997) ((-308 . -355) 43976) ((-305 . -355) T) ((-473 . -1016) 43906) ((-668 . -615) 43888) ((-1240 . -622) 43862) ((-1238 . -622) 43836) ((-1204 . -23) T) ((-663 . -480) 43820) ((-63 . -592) 43802) ((-1076 . -769) 43753) ((-1076 . -766) 43704) ((-534 . -480) 43641) ((-644 . -34) T) ((-473 . -226) 43593) ((-287 . -280) 43572) ((-233 . -169) 43551) ((-790 . -1023) T) ((-44 . -622) 43509) ((-1043 . -360) 43460) ((-706 . -282) 43391) ((-510 . -504) 43324) ((-791 . -1022) 43275) ((-1051 . -143) 43254) ((-351 . -360) 43233) ((-345 . -360) 43212) ((-337 . -360) 43191) ((-1051 . -145) 43170) ((-840 . -224) 43147) ((-791 . -111) 43089) ((-756 . -143) 43068) ((-756 . -145) 43047) ((-256 . -918) 43014) ((-243 . -819) 42993) ((-240 . -918) 42938) ((-242 . -819) 42917) ((-754 . -143) 42896) ((-754 . -145) 42875) ((-150 . -622) 42849) ((-445 . -145) 42828) ((-445 . -143) 42807) ((-644 . -701) T) ((-797 . -592) 42789) ((-1210 . -1063) T) ((-1203 . -1063) T) ((-1182 . -1063) T) ((-1166 . -1160) 42755) ((-1166 . -1157) 42721) ((-1133 . -282) 42700) ((-1132 . -282) 42651) ((-1126 . -282) 42602) ((-1088 . -282) 42581) ((-331 . -869) 42562) ((-973 . -169) T) ((-883 . -169) T) ((-576 . -1063) T) ((-575 . -1063) T) ((-668 . -21) T) ((-668 . -25) T) ((-465 . -1199) 42546) ((-465 . -1196) 42516) ((-410 . -278) 42444) ((-308 . -1075) 42293) ((-305 . -1075) T) ((-1166 . -35) 42259) ((-1166 . -94) 42225) ((-83 . -592) 42207) ((-90 . -101) 42185) ((-1246 . -130) T) ((-562 . -143) T) ((-562 . -145) 42167) ((-508 . -145) 42149) ((-508 . -143) T) ((-308 . -23) 42001) ((-40 . -334) 41975) ((-305 . -23) T) ((-1118 . -625) 41957) ((-789 . -622) 41805) ((-1233 . -1023) T) ((-1118 . -365) 41787) ((-1054 . -101) T) ((-166 . -224) 41771) ((-1031 . -101) T) ((-1005 . -101) T) ((-988 . -101) T) ((-573 . -480) 41753) ((-602 . -101) T) ((-233 . -504) 41686) ((-474 . -101) T) ((-1240 . -701) T) ((-1238 . -701) T) ((-211 . -101) T) ((-1137 . -1022) 41569) ((-1137 . -111) 41438) ((-791 . -1016) T) ((-655 . -1047) T) ((-650 . -1047) T) ((-505 . -101) T) ((-500 . -101) T) ((-48 . -615) 41398) ((-498 . -101) T) ((-469 . -1047) T) ((-1230 . -1022) 41368) ((-137 . -1047) T) ((-136 . -1047) T) ((-132 . -1047) T) ((-1003 . -38) 41352) ((-791 . -226) T) ((-791 . -236) 41331) ((-1230 . -111) 41296) ((-534 . -278) 41275) ((-1210 . -692) 41172) ((-1203 . -692) 41013) ((-585 . -92) T) ((-1191 . -224) 40997) ((-1028 . -593) NIL) ((-1028 . -592) 40979) ((-645 . -92) T) ((-177 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-1182 . -692) 40775) ((-972 . -889) T) ((-677 . -592) 40744) ((-150 . -701) T) ((-1076 . -360) 40723) ((-973 . -504) NIL) ((-243 . -403) 40692) ((-242 . -403) 40661) ((-993 . -25) T) ((-993 . -21) T) ((-576 . -692) 40634) ((-575 . -692) 40531) ((-773 . -278) 40489) ((-126 . -101) 40467) ((-807 . -1007) 40363) ((-166 . -802) 40342) ((-311 . -622) 40239) ((-789 . -34) T) ((-689 . -101) T) ((-1082 . -1075) T) ((-128 . -504) NIL) ((-995 . -1172) T) ((-371 . -38) 40204) ((-346 . -25) T) ((-346 . -21) T) ((-159 . -101) T) ((-154 . -101) T) ((-347 . -1225) 40188) ((-344 . -1225) 40172) ((-336 . -1225) 40156) ((-166 . -341) 40135) ((-548 . -821) T) ((-485 . -821) T) ((-1082 . -23) T) ((-86 . -592) 40117) ((-675 . -299) T) ((-808 . -38) 40087) ((-801 . -38) 40057) ((-1204 . -130) T) ((-1110 . -280) 40036) ((-933 . -767) 39989) ((-933 . -768) 39942) ((-789 . -765) 39921) ((-116 . -299) T) ((-90 . -301) 39859) ((-649 . -34) T) ((-534 . -583) 39838) ((-48 . -25) T) ((-48 . -21) T) ((-789 . -768) 39789) ((-789 . -767) 39768) ((-675 . -991) T) ((-627 . -1022) 39752) ((-933 . -701) 39651) ((-789 . -701) 39561) ((-933 . -464) 39514) ((-473 . -769) 39465) ((-473 . -766) 39416) ((-879 . -1225) 39403) ((-1137 . -1016) T) ((-627 . -111) 39382) ((-1137 . -318) 39359) ((-1158 . -101) 39337) ((-1064 . -592) 39319) ((-675 . -533) T) ((-790 . -1063) T) ((-1230 . -1016) T) ((-405 . -1063) T) ((-243 . -1023) 39249) ((-242 . -1023) 39179) ((-281 . -622) 39166) ((-573 . -278) 39141) ((-663 . -661) 39099) ((-932 . -592) 39081) ((-841 . -101) T) ((-710 . -592) 39063) ((-690 . -592) 39045) ((-1210 . -169) 38996) ((-1203 . -169) 38927) ((-1182 . -169) 38858) ((-673 . -821) T) ((-973 . -282) T) ((-444 . -592) 38840) ((-603 . -701) T) ((-59 . -1063) 38818) ((-238 . -149) 38802) ((-883 . -282) T) ((-993 . -981) T) ((-603 . -464) T) ((-687 . -1176) 38781) ((-576 . -169) 38760) ((-575 . -169) 38711) ((-1218 . -821) 38690) ((-687 . -540) 38601) ((-399 . -889) T) ((-399 . -794) 38580) ((-311 . -768) T) ((-311 . -701) T) ((-410 . -592) 38562) ((-410 . -593) 38470) ((-619 . -1109) 38454) ((-110 . -625) 38436) ((-171 . -299) T) ((-126 . -301) 38374) ((-110 . -365) 38356) ((-390 . -1172) T) ((-308 . -130) 38227) ((-305 . -130) T) ((-68 . -387) T) ((-110 . -123) T) ((-510 . -480) 38211) ((-628 . -1075) T) ((-573 . -19) 38193) ((-60 . -432) T) ((-60 . -387) T) ((-798 . -1063) T) ((-573 . -583) 38168) ((-468 . -1007) 38128) ((-627 . -1016) T) ((-628 . -23) T) ((-1233 . -1063) T) ((-31 . -101) T) ((-790 . -692) 37977) ((-117 . -821) NIL) ((-1131 . -403) 37961) ((-1087 . -403) 37945) ((-825 . -403) 37929) ((-842 . -101) 37880) ((-1202 . -101) T) ((-1182 . -504) 37649) ((-515 . -92) T) ((-1158 . -301) 37587) ((-304 . -592) 37569) ((-1181 . -101) T) ((-1065 . -1063) T) ((-1133 . -278) 37554) ((-1132 . -278) 37539) ((-281 . -701) T) ((-107 . -878) NIL) ((-663 . -592) 37471) ((-663 . -593) 37432) ((-1043 . -622) 37342) ((-580 . -592) 37324) ((-534 . -593) NIL) ((-534 . -592) 37306) ((-1126 . -278) 37154) ((-478 . -1022) 37104) ((-686 . -443) T) ((-501 . -499) 37083) ((-497 . -499) 37062) ((-210 . -1022) 37012) ((-351 . -622) 36964) ((-345 . -622) 36916) ((-218 . -819) T) ((-337 . -622) 36868) ((-581 . -101) 36818) ((-473 . -360) 36797) ((-107 . -622) 36747) ((-478 . -111) 36681) ((-233 . -480) 36665) ((-335 . -145) 36647) ((-335 . -143) T) ((-166 . -362) 36618) ((-912 . -1216) 36602) ((-210 . -111) 36536) ((-841 . -301) 36501) ((-912 . -1063) 36451) ((-773 . -593) 36412) ((-773 . -592) 36394) ((-693 . -101) T) ((-323 . -1063) T) ((-1082 . -130) T) ((-689 . -38) 36364) ((-308 . -483) 36343) ((-490 . -1172) T) ((-1202 . -276) 36309) ((-1181 . -276) 36275) ((-319 . -149) 36259) ((-1028 . -280) 36234) ((-1233 . -692) 36204) ((-1119 . -34) T) ((-1242 . -1007) 36181) ((-459 . -592) 36163) ((-475 . -34) T) ((-373 . -1007) 36147) ((-1131 . -1023) T) ((-1087 . -1023) T) ((-825 . -1023) T) ((-1027 . -819) T) ((-790 . -169) 36058) ((-510 . -278) 36035) ((-128 . -480) 36017) ((-117 . -961) 35994) ((-1210 . -282) 35973) ((-1203 . -282) 35924) ((-1153 . -356) 35898) ((-1052 . -258) 35882) ((-645 . -592) 35848) ((-585 . -592) 35798) ((-465 . -101) T) ((-177 . -592) 35764) ((-158 . -592) 35730) ((-357 . -1063) T) ((-243 . -1063) T) ((-242 . -1063) T) ((-153 . -592) 35696) ((-109 . -1063) T) ((-1182 . -282) 35647) ((-841 . -1111) 35625) ((-1133 . -971) 35591) ((-587 . -356) 35531) ((-1132 . -971) 35497) ((-587 . -222) 35444) ((-573 . -592) 35426) ((-573 . -593) NIL) ((-668 . -821) T) ((-466 . -222) 35376) ((-478 . -1016) T) ((-1126 . -971) 35342) ((-87 . -431) T) ((-87 . -387) T) ((-210 . -1016) T) ((-1088 . -971) 35308) ((-1043 . -701) T) ((-687 . -1075) T) ((-576 . -282) 35287) ((-575 . -282) 35266) ((-478 . -236) T) ((-478 . -226) T) ((-210 . -236) T) ((-210 . -226) T) ((-1125 . -592) 35248) ((-841 . -38) 35200) ((-351 . -701) T) ((-345 . -701) T) ((-337 . -701) T) ((-107 . -768) T) ((-107 . -765) T) ((-510 . -1206) 35184) ((-107 . -701) T) ((-687 . -23) T) ((-1246 . -25) T) ((-465 . -276) 35150) ((-1246 . -21) T) ((-1181 . -301) 35089) ((-1135 . -101) T) ((-40 . -143) 35061) ((-40 . -145) 35033) ((-510 . -583) 35010) ((-1076 . -622) 34858) ((-581 . -301) 34796) ((-45 . -625) 34746) ((-45 . -640) 34696) ((-45 . -365) 34646) ((-1118 . -34) T) ((-840 . -819) NIL) ((-628 . -130) T) ((-476 . -592) 34628) ((-233 . -278) 34605) ((-621 . -34) T) ((-608 . -34) T) ((-1051 . -443) 34556) ((-790 . -504) 34430) ((-756 . -443) 34361) ((-754 . -443) 34312) ((-445 . -443) 34263) ((-921 . -403) 34247) ((-706 . -592) 34229) ((-243 . -692) 34171) ((-242 . -692) 34113) ((-706 . -593) 33974) ((-472 . -403) 33958) ((-331 . -294) T) ((-514 . -92) T) ((-343 . -889) T) ((-969 . -101) 33936) ((-993 . -821) T) ((-59 . -504) 33869) ((-1181 . -1111) 33821) ((-973 . -278) NIL) ((-218 . -1023) T) ((-371 . -802) T) ((-1076 . -34) T) ((-1185 . -1057) 33805) ((-562 . -443) T) ((-508 . -443) T) ((-1185 . -1063) 33783) ((-1185 . -1059) 33740) ((-233 . -583) 33717) ((-1133 . -592) 33699) ((-1132 . -592) 33681) ((-1126 . -592) 33663) ((-1126 . -593) NIL) ((-1088 . -592) 33645) ((-128 . -278) 33620) ((-841 . -392) 33604) ((-524 . -101) T) ((-1202 . -38) 33445) ((-1181 . -38) 33259) ((-839 . -145) T) ((-562 . -394) T) ((-48 . -821) T) ((-508 . -394) T) ((-1214 . -101) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-1076 . -765) 33238) ((-1076 . -768) 33189) ((-1076 . -767) 33168) ((-962 . -1063) T) ((-996 . -34) T) ((-832 . -1063) T) ((-1076 . -701) 33078) ((-638 . -101) T) ((-620 . -101) T) ((-534 . -280) 33057) ((-1145 . -101) T) ((-467 . -34) T) ((-454 . -34) T) ((-347 . -101) T) ((-344 . -101) T) ((-336 . -101) T) ((-256 . -101) T) ((-240 . -101) T) ((-468 . -299) T) ((-1027 . -1023) T) ((-921 . -1023) T) ((-308 . -615) 32963) ((-305 . -615) 32924) ((-472 . -1023) T) ((-470 . -101) T) ((-428 . -592) 32906) ((-1131 . -1063) T) ((-1087 . -1063) T) ((-825 . -1063) T) ((-1101 . -101) T) ((-790 . -282) 32837) ((-932 . -1022) 32720) ((-468 . -991) T) ((-128 . -19) 32702) ((-710 . -1022) 32672) ((-128 . -583) 32647) ((-444 . -1022) 32617) ((-1107 . -1083) 32601) ((-1065 . -504) 32534) ((-932 . -111) 32403) ((-879 . -101) T) ((-710 . -111) 32368) ((-515 . -592) 32334) ((-58 . -101) 32284) ((-510 . -593) 32245) ((-510 . -592) 32157) ((-509 . -101) 32135) ((-506 . -101) 32085) ((-487 . -101) 32063) ((-486 . -101) 32013) ((-444 . -111) 31976) ((-243 . -169) 31955) ((-242 . -169) 31934) ((-410 . -1022) 31908) ((-1166 . -942) 31870) ((-968 . -1075) T) ((-912 . -504) 31803) ((-478 . -769) T) ((-465 . -38) 31644) ((-410 . -111) 31611) ((-478 . -766) T) ((-969 . -301) 31549) ((-210 . -769) T) ((-210 . -766) T) ((-968 . -23) T) ((-687 . -130) T) ((-1181 . -392) 31519) ((-308 . -25) 31371) ((-166 . -403) 31355) ((-308 . -21) 31226) ((-305 . -25) T) ((-305 . -21) T) ((-834 . -360) T) ((-110 . -34) T) ((-473 . -622) 31074) ((-840 . -1023) T) ((-573 . -280) 31049) ((-561 . -145) T) ((-548 . -145) T) ((-485 . -145) T) ((-1131 . -692) 30878) ((-1087 . -692) 30727) ((-1082 . -615) 30709) ((-825 . -692) 30679) ((-644 . -1172) T) ((-1 . -101) T) ((-233 . -592) 30410) ((-1191 . -403) 30394) ((-1145 . -301) 30198) ((-932 . -1016) T) ((-710 . -1016) T) ((-690 . -1016) T) ((-619 . -1063) 30148) ((-1020 . -622) 30132) ((-826 . -403) 30116) ((-501 . -101) T) ((-497 . -101) T) ((-240 . -301) 30103) ((-256 . -301) 30090) ((-932 . -318) 30069) ((-377 . -622) 30053) ((-470 . -301) 29857) ((-243 . -504) 29790) ((-644 . -1007) 29686) ((-242 . -504) 29619) ((-1101 . -301) 29545) ((-793 . -1063) T) ((-773 . -1022) 29529) ((-1210 . -278) 29514) ((-1203 . -278) 29499) ((-1182 . -278) 29347) ((-378 . -1063) T) ((-316 . -1063) T) ((-410 . -1016) T) ((-166 . -1023) T) ((-58 . -301) 29285) ((-773 . -111) 29264) ((-575 . -278) 29249) ((-509 . -301) 29187) ((-506 . -301) 29125) ((-487 . -301) 29063) ((-486 . -301) 29001) ((-410 . -226) 28980) ((-473 . -34) T) ((-973 . -593) 28910) ((-218 . -1063) T) ((-973 . -592) 28892) ((-940 . -592) 28874) ((-940 . -593) 28849) ((-883 . -592) 28831) ((-673 . -145) T) ((-675 . -889) T) ((-675 . -794) T) ((-419 . -592) 28813) ((-1082 . -21) T) ((-128 . -593) NIL) ((-128 . -592) 28795) ((-1082 . -25) T) ((-644 . -369) 28779) ((-116 . -889) T) ((-841 . -224) 28763) ((-77 . -1172) T) ((-126 . -125) 28747) ((-1020 . -34) T) ((-1240 . -1007) 28721) ((-1238 . -1007) 28678) ((-1191 . -1023) T) ((-826 . -1023) T) ((-473 . -765) 28657) ((-347 . -1111) 28636) ((-344 . -1111) 28615) ((-336 . -1111) 28594) ((-473 . -768) 28545) ((-473 . -767) 28524) ((-220 . -34) T) ((-473 . -701) 28434) ((-59 . -480) 28418) ((-555 . -1023) T) ((-1131 . -169) 28309) ((-1087 . -169) 28220) ((-1027 . -1063) T) ((-1051 . -918) 28165) ((-921 . -1063) T) ((-791 . -622) 28116) ((-756 . -918) 28085) ((-688 . -1063) T) ((-754 . -918) 28052) ((-506 . -274) 28036) ((-644 . -869) 27995) ((-472 . -1063) T) ((-445 . -918) 27962) ((-78 . -1172) T) ((-347 . -38) 27927) ((-344 . -38) 27892) ((-336 . -38) 27857) ((-256 . -38) 27706) ((-240 . -38) 27555) ((-879 . -1111) T) ((-599 . -145) 27534) ((-599 . -143) 27513) ((-514 . -592) 27479) ((-117 . -145) T) ((-117 . -143) NIL) ((-406 . -701) T) ((-773 . -1016) T) ((-335 . -443) T) ((-1210 . -971) 27445) ((-1203 . -971) 27411) ((-1182 . -971) 27377) ((-879 . -38) 27342) ((-218 . -692) 27307) ((-311 . -47) 27277) ((-40 . -401) 27249) ((-138 . -592) 27231) ((-968 . -130) T) ((-789 . -1172) T) ((-171 . -889) T) ((-335 . -394) T) ((-510 . -280) 27208) ((-789 . -1007) 27035) ((-45 . -34) T) ((-655 . -101) T) ((-650 . -101) T) ((-636 . -101) T) ((-628 . -21) T) ((-628 . -25) T) ((-1181 . -224) 27005) ((-1065 . -480) 26989) ((-469 . -101) T) ((-649 . -1172) T) ((-238 . -101) 26939) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-840 . -1063) T) ((-1137 . -622) 26864) ((-1027 . -692) 26851) ((-706 . -1022) 26694) ((-1131 . -504) 26641) ((-921 . -692) 26490) ((-1087 . -504) 26442) ((-1229 . -1063) T) ((-1228 . -1063) T) ((-472 . -692) 26291) ((-66 . -592) 26273) ((-706 . -111) 26102) ((-912 . -480) 26086) ((-1230 . -622) 26046) ((-791 . -701) T) ((-1133 . -1022) 25929) ((-1132 . -1022) 25764) ((-1126 . -1022) 25554) ((-1088 . -1022) 25437) ((-972 . -1176) T) ((-1058 . -101) 25415) ((-789 . -369) 25384) ((-972 . -540) T) ((-1133 . -111) 25253) ((-1132 . -111) 25074) ((-1126 . -111) 24843) ((-1088 . -111) 24712) ((-1068 . -1066) 24676) ((-371 . -819) T) ((-1210 . -592) 24658) ((-1203 . -592) 24640) ((-1182 . -592) 24622) ((-1182 . -593) NIL) ((-233 . -280) 24599) ((-40 . -443) T) ((-218 . -169) T) ((-166 . -1063) T) ((-668 . -145) T) ((-668 . -143) NIL) ((-576 . -592) 24581) ((-575 . -592) 24563) ((-867 . -1063) T) ((-812 . -1063) T) ((-782 . -1063) T) ((-743 . -1063) T) ((-632 . -823) 24547) ((-651 . -1063) T) ((-789 . -869) 24479) ((-40 . -394) NIL) ((-1082 . -635) T) ((-840 . -692) 24424) ((-243 . -480) 24408) ((-242 . -480) 24392) ((-687 . -615) 24340) ((-627 . -622) 24314) ((-287 . -34) T) ((-706 . -1016) T) ((-562 . -1225) 24301) ((-508 . -1225) 24278) ((-1191 . -1063) T) ((-1131 . -282) 24189) ((-1087 . -282) 24120) ((-1027 . -169) T) ((-826 . -1063) T) ((-921 . -169) 24031) ((-756 . -1194) 24015) ((-619 . -504) 23948) ((-76 . -592) 23930) ((-706 . -318) 23895) ((-1137 . -701) T) ((-555 . -1063) T) ((-472 . -169) 23806) ((-238 . -301) 23744) ((-128 . -280) 23719) ((-1102 . -1075) T) ((-69 . -592) 23701) ((-1230 . -701) T) ((-1133 . -1016) T) ((-1132 . -1016) T) ((-319 . -101) 23651) ((-1126 . -1016) T) ((-1102 . -23) T) ((-1088 . -1016) T) ((-90 . -1083) 23635) ((-835 . -1075) T) ((-1133 . -226) 23594) ((-1132 . -236) 23573) ((-1132 . -226) 23525) ((-1126 . -226) 23412) ((-1126 . -236) 23391) ((-311 . -869) 23297) ((-835 . -23) T) ((-166 . -692) 23125) ((-399 . -1176) T) ((-1064 . -360) T) ((-993 . -145) T) ((-972 . -355) T) ((-839 . -443) T) ((-912 . -278) 23102) ((-308 . -821) T) ((-305 . -821) NIL) ((-843 . -101) T) ((-687 . -25) T) ((-399 . -540) T) ((-687 . -21) T) ((-346 . -145) 23084) ((-346 . -143) T) ((-1107 . -1063) 23062) ((-444 . -695) T) ((-74 . -592) 23044) ((-114 . -821) T) ((-238 . -274) 23028) ((-233 . -1022) 22925) ((-80 . -592) 22907) ((-710 . -360) 22860) ((-1135 . -802) T) ((-712 . -228) 22844) ((-1119 . -1172) T) ((-139 . -228) 22826) ((-233 . -111) 22716) ((-1191 . -692) 22545) ((-48 . -145) T) ((-840 . -169) T) ((-826 . -692) 22515) ((-475 . -1172) T) ((-921 . -504) 22462) ((-627 . -701) T) ((-555 . -692) 22449) ((-1003 . -1023) T) ((-472 . -504) 22392) ((-912 . -19) 22376) ((-912 . -583) 22353) ((-790 . -593) NIL) ((-790 . -592) 22335) ((-973 . -1022) 22285) ((-405 . -592) 22267) ((-243 . -278) 22244) ((-242 . -278) 22221) ((-478 . -878) NIL) ((-308 . -29) 22191) ((-107 . -1172) T) ((-972 . -1075) T) ((-210 . -878) NIL) ((-883 . -1022) 22143) ((-1043 . -1007) 22039) ((-973 . -111) 21973) ((-712 . -669) 21957) ((-256 . -224) 21941) ((-419 . -1022) 21925) ((-371 . -1023) T) ((-972 . -23) T) ((-883 . -111) 21863) ((-668 . -1160) NIL) ((-478 . -622) 21813) ((-107 . -853) 21795) ((-107 . -855) 21777) ((-668 . -1157) NIL) ((-210 . -622) 21727) ((-351 . -1007) 21711) ((-345 . -1007) 21695) ((-319 . -301) 21633) ((-337 . -1007) 21617) ((-218 . -282) T) ((-419 . -111) 21596) ((-59 . -592) 21528) ((-166 . -169) T) ((-1082 . -821) T) ((-107 . -1007) 21488) ((-861 . -1063) T) ((-808 . -1023) T) ((-801 . -1023) T) ((-668 . -35) NIL) ((-668 . -94) NIL) ((-305 . -961) 21449) ((-180 . -101) T) ((-561 . -443) T) ((-548 . -443) T) ((-485 . -443) T) ((-399 . -355) T) ((-233 . -1016) 21379) ((-1110 . -34) T) ((-468 . -889) T) ((-968 . -615) 21327) ((-243 . -583) 21304) ((-242 . -583) 21281) ((-1043 . -369) 21265) ((-840 . -504) 21173) ((-233 . -226) 21125) ((-1118 . -1172) T) ((-798 . -592) 21107) ((-1241 . -1075) T) ((-1233 . -592) 21089) ((-1191 . -169) 20980) ((-107 . -369) 20962) ((-107 . -330) 20944) ((-1027 . -282) T) ((-921 . -282) 20875) ((-773 . -360) 20854) ((-621 . -1172) T) ((-608 . -1172) T) ((-472 . -282) 20785) ((-555 . -169) T) ((-319 . -274) 20769) ((-1241 . -23) T) ((-1166 . -101) T) ((-1153 . -1063) T) ((-1052 . -1063) T) ((-1039 . -1063) T) ((-82 . -592) 20751) ((-686 . -101) T) ((-347 . -341) 20730) ((-587 . -1063) T) ((-344 . -341) 20709) ((-336 . -341) 20688) ((-466 . -1063) T) ((-1145 . -222) 20638) ((-256 . -245) 20600) ((-1102 . -130) T) ((-587 . -589) 20576) ((-1043 . -869) 20509) ((-973 . -1016) T) ((-883 . -1016) T) ((-466 . -589) 20488) ((-1126 . -766) NIL) ((-1126 . -769) NIL) ((-1065 . -593) 20449) ((-470 . -222) 20399) ((-1065 . -592) 20381) ((-973 . -236) T) ((-973 . -226) T) ((-419 . -1016) T) ((-927 . -1063) 20331) ((-883 . -236) T) ((-835 . -130) T) ((-673 . -443) T) ((-814 . -1075) 20310) ((-107 . -869) NIL) ((-1166 . -276) 20276) ((-841 . -819) 20255) ((-1076 . -1172) T) ((-874 . -701) T) ((-166 . -504) 20167) ((-968 . -25) T) ((-874 . -464) T) ((-399 . -1075) T) ((-478 . -768) T) ((-478 . -765) T) ((-879 . -341) T) ((-478 . -701) T) ((-210 . -768) T) ((-210 . -765) T) ((-968 . -21) T) ((-210 . -701) T) ((-814 . -23) 20119) ((-311 . -299) 20098) ((-1004 . -228) 20044) ((-399 . -23) T) ((-912 . -593) 20005) ((-912 . -592) 19917) ((-619 . -480) 19901) ((-45 . -979) 19851) ((-481 . -101) T) ((-323 . -592) 19833) ((-1076 . -1007) 19660) ((-573 . -625) 19642) ((-573 . -365) 19624) ((-335 . -1225) 19601) ((-996 . -1172) T) ((-840 . -282) T) ((-1191 . -504) 19548) ((-467 . -1172) T) ((-454 . -1172) T) ((-566 . -101) T) ((-1131 . -278) 19475) ((-599 . -443) 19454) ((-969 . -964) 19438) ((-1233 . -374) 19410) ((-507 . -1063) T) ((-117 . -443) T) ((-1152 . -101) T) ((-1056 . -1063) 19388) ((-1003 . -1063) T) ((-862 . -821) T) ((-343 . -1176) T) ((-1210 . -1022) 19271) ((-1076 . -369) 19240) ((-1203 . -1022) 19075) ((-1182 . -1022) 18865) ((-1210 . -111) 18734) ((-1203 . -111) 18555) ((-1182 . -111) 18324) ((-1166 . -301) 18311) ((-343 . -540) T) ((-357 . -592) 18293) ((-281 . -299) T) ((-576 . -1022) 18266) ((-575 . -1022) 18149) ((-353 . -1063) T) ((-314 . -1063) T) ((-243 . -592) 18110) ((-242 . -592) 18071) ((-972 . -130) T) ((-109 . -592) 18053) ((-611 . -23) T) ((-668 . -401) 18020) ((-586 . -23) T) ((-632 . -101) T) ((-576 . -111) 17991) ((-575 . -111) 17860) ((-371 . -1063) T) ((-328 . -101) T) ((-166 . -282) 17771) ((-1181 . -819) 17724) ((-689 . -1023) T) ((-1107 . -504) 17657) ((-1076 . -869) 17589) ((-808 . -1063) T) ((-801 . -1063) T) ((-799 . -1063) T) ((-96 . -101) T) ((-142 . -821) T) ((-591 . -853) 17573) ((-110 . -1172) T) ((-1051 . -101) T) ((-1028 . -34) T) ((-756 . -101) T) ((-754 . -101) T) ((-452 . -101) T) ((-445 . -101) T) ((-233 . -769) 17524) ((-233 . -766) 17475) ((-623 . -101) T) ((-1191 . -282) 17386) ((-638 . -610) 17370) ((-619 . -278) 17347) ((-1003 . -692) 17331) ((-555 . -282) T) ((-932 . -622) 17256) ((-1241 . -130) T) ((-710 . -622) 17216) ((-690 . -622) 17203) ((-267 . -101) T) ((-444 . -622) 17133) ((-50 . -101) T) ((-562 . -101) T) ((-508 . -101) T) ((-1210 . -1016) T) ((-1203 . -1016) T) ((-1182 . -1016) T) ((-1210 . -226) 17092) ((-314 . -692) 17074) ((-1203 . -236) 17053) ((-1203 . -226) 17005) ((-1182 . -226) 16892) ((-1182 . -236) 16871) ((-1166 . -38) 16768) ((-973 . -769) T) ((-576 . -1016) T) ((-575 . -1016) T) ((-973 . -766) T) ((-940 . -769) T) ((-940 . -766) T) ((-841 . -1023) T) ((-839 . -838) 16752) ((-108 . -592) 16734) ((-668 . -443) T) ((-371 . -692) 16699) ((-410 . -622) 16673) ((-687 . -821) 16652) ((-686 . -38) 16617) ((-575 . -226) 16576) ((-40 . -699) 16548) ((-343 . -321) 16525) ((-343 . -355) T) ((-1043 . -299) 16476) ((-286 . -1075) 16357) ((-1069 . -1172) T) ((-168 . -101) T) ((-1185 . -592) 16324) ((-814 . -130) 16276) ((-619 . -1206) 16260) ((-808 . -692) 16230) ((-801 . -692) 16200) ((-473 . -1172) T) ((-351 . -299) T) ((-345 . -299) T) ((-337 . -299) T) ((-619 . -583) 16177) ((-399 . -130) T) ((-510 . -640) 16161) ((-107 . -299) T) ((-286 . -23) 16044) ((-510 . -625) 16028) ((-668 . -394) NIL) ((-510 . -365) 16012) ((-283 . -592) 15994) ((-90 . -1063) 15972) ((-107 . -991) T) ((-548 . -141) T) ((-1218 . -149) 15956) ((-473 . -1007) 15783) ((-1204 . -143) 15744) ((-1204 . -145) 15705) ((-1020 . -1172) T) ((-962 . -592) 15687) ((-832 . -592) 15669) ((-790 . -1022) 15512) ((-1054 . -1063) T) ((-1051 . -301) 15499) ((-220 . -1172) T) ((-1031 . -1063) T) ((-1005 . -1063) T) ((-988 . -1063) T) ((-756 . -301) 15486) ((-754 . -301) 15473) ((-1229 . -92) T) ((-790 . -111) 15302) ((-1228 . -92) T) ((-602 . -1063) T) ((-1131 . -593) NIL) ((-1131 . -592) 15284) ((-445 . -301) 15271) ((-474 . -1063) T) ((-1087 . -592) 15253) ((-1087 . -593) 15001) ((-1003 . -169) T) ((-211 . -1063) T) ((-825 . -592) 14983) ((-912 . -280) 14960) ((-587 . -504) 14743) ((-792 . -1007) 14727) ((-466 . -504) 14519) ((-932 . -701) T) ((-710 . -701) T) ((-690 . -701) T) ((-343 . -1075) T) ((-1138 . -592) 14501) ((-216 . -101) T) ((-473 . -369) 14470) ((-505 . -1063) T) ((-500 . -1063) T) ((-498 . -1063) T) ((-773 . -622) 14444) ((-993 . -443) T) ((-927 . -504) 14377) ((-343 . -23) T) ((-611 . -130) T) ((-586 . -130) T) ((-346 . -443) T) ((-233 . -360) 14356) ((-371 . -169) T) ((-1202 . -1023) T) ((-1181 . -1023) T) ((-218 . -971) T) ((-673 . -379) T) ((-410 . -701) T) ((-675 . -1176) T) ((-1102 . -615) 14304) ((-561 . -838) 14288) ((-1119 . -1148) 14264) ((-675 . -540) T) ((-126 . -1063) 14242) ((-1233 . -1022) 14226) ((-689 . -1063) T) ((-473 . -869) 14158) ((-632 . -38) 14128) ((-346 . -394) T) ((-308 . -145) 14107) ((-308 . -143) 14086) ((-116 . -540) T) ((-305 . -145) 14042) ((-305 . -143) 13998) ((-48 . -443) T) ((-159 . -1063) T) ((-154 . -1063) T) ((-1119 . -106) 13945) ((-756 . -1111) 13923) ((-663 . -34) T) ((-1233 . -111) 13902) ((-534 . -34) T) ((-475 . -106) 13886) ((-243 . -280) 13863) ((-242 . -280) 13840) ((-840 . -278) 13791) ((-45 . -1172) T) ((-790 . -1016) T) ((-1137 . -47) 13768) ((-790 . -318) 13730) ((-1051 . -38) 13579) ((-790 . -226) 13558) ((-756 . -38) 13387) ((-754 . -38) 13236) ((-128 . -625) 13218) ((-445 . -38) 13067) ((-128 . -365) 13049) ((-1080 . -101) T) ((-619 . -593) 13010) ((-619 . -592) 12922) ((-562 . -1111) T) ((-508 . -1111) T) ((-1107 . -480) 12906) ((-1158 . -1063) 12884) ((-1102 . -25) T) ((-1102 . -21) T) ((-465 . -1023) T) ((-1182 . -766) NIL) ((-1182 . -769) NIL) ((-968 . -821) 12863) ((-793 . -592) 12845) ((-835 . -21) T) ((-835 . -25) T) ((-773 . -701) T) ((-171 . -1176) T) ((-562 . -38) 12810) ((-508 . -38) 12775) ((-378 . -592) 12757) ((-316 . -592) 12739) ((-166 . -278) 12697) ((-62 . -1172) T) ((-112 . -101) T) ((-841 . -1063) T) ((-171 . -540) T) ((-689 . -692) 12667) ((-286 . -130) 12550) ((-218 . -592) 12532) ((-218 . -593) 12462) ((-972 . -615) 12401) ((-1233 . -1016) T) ((-1082 . -145) T) ((-608 . -1148) 12376) ((-706 . -878) 12355) ((-573 . -34) T) ((-621 . -106) 12339) ((-608 . -106) 12285) ((-1191 . -278) 12212) ((-706 . -622) 12137) ((-287 . -1172) T) ((-1137 . -1007) 12033) ((-1126 . -878) NIL) ((-1027 . -593) 11948) ((-1027 . -592) 11930) ((-921 . -592) 11912) ((-335 . -101) T) ((-243 . -1022) 11809) ((-242 . -1022) 11706) ((-386 . -101) T) ((-31 . -1063) T) ((-921 . -593) 11567) ((-688 . -592) 11549) ((-1231 . -1165) 11518) ((-472 . -592) 11500) ((-472 . -593) 11361) ((-240 . -403) 11345) ((-256 . -403) 11329) ((-243 . -111) 11219) ((-242 . -111) 11109) ((-1133 . -622) 11034) ((-1132 . -622) 10931) ((-1126 . -622) 10783) ((-1088 . -622) 10708) ((-343 . -130) T) ((-81 . -432) T) ((-81 . -387) T) ((-972 . -25) T) ((-972 . -21) T) ((-842 . -1063) 10659) ((-841 . -692) 10611) ((-371 . -282) T) ((-166 . -971) 10563) ((-668 . -379) T) ((-968 . -966) 10547) ((-675 . -1075) T) ((-668 . -163) 10529) ((-1202 . -1063) T) ((-1181 . -1063) T) ((-308 . -1157) 10508) ((-308 . -1160) 10487) ((-1124 . -101) T) ((-308 . -928) 10466) ((-133 . -1075) T) ((-116 . -1075) T) ((-581 . -1216) 10450) ((-675 . -23) T) ((-581 . -1063) 10400) ((-90 . -504) 10333) ((-171 . -355) T) ((-308 . -94) 10312) ((-308 . -35) 10291) ((-587 . -480) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-693 . -1063) T) ((-466 . -480) 10162) ((-399 . -615) 10110) ((-627 . -1007) 10006) ((-927 . -480) 9990) ((-347 . -1023) T) ((-344 . -1023) T) ((-336 . -1023) T) ((-256 . -1023) T) ((-240 . -1023) T) ((-840 . -593) NIL) ((-840 . -592) 9972) ((-1241 . -21) T) ((-1229 . -592) 9938) ((-1228 . -592) 9904) ((-555 . -971) T) ((-706 . -701) T) ((-1241 . -25) T) ((-243 . -1016) 9834) ((-242 . -1016) 9764) ((-71 . -1172) T) ((-243 . -226) 9716) ((-242 . -226) 9668) ((-40 . -101) T) ((-879 . -1023) T) ((-1140 . -101) T) ((-1133 . -701) T) ((-1132 . -701) T) ((-1126 . -701) T) ((-1126 . -765) NIL) ((-1126 . -768) NIL) ((-923 . -101) T) ((-890 . -101) T) ((-1088 . -701) T) ((-745 . -101) T) ((-646 . -101) T) ((-465 . -1063) T) ((-331 . -1075) T) ((-171 . -1075) T) ((-311 . -889) 9647) ((-1202 . -692) 9488) ((-841 . -169) T) ((-1181 . -692) 9302) ((-814 . -21) 9254) ((-814 . -25) 9206) ((-238 . -1109) 9190) ((-126 . -504) 9123) ((-399 . -25) T) ((-399 . -21) T) ((-331 . -23) T) ((-166 . -593) 8891) ((-166 . -592) 8873) ((-171 . -23) T) ((-619 . -280) 8850) ((-510 . -34) T) ((-867 . -592) 8832) ((-88 . -1172) T) ((-812 . -592) 8814) ((-782 . -592) 8796) ((-743 . -592) 8778) ((-651 . -592) 8760) ((-233 . -622) 8608) ((-1135 . -1063) T) ((-1131 . -1022) 8431) ((-1110 . -1172) T) ((-1087 . -1022) 8274) ((-825 . -1022) 8258) ((-1131 . -111) 8067) ((-1087 . -111) 7896) ((-825 . -111) 7875) ((-1191 . -593) NIL) ((-1191 . -592) 7857) ((-335 . -1111) T) ((-826 . -592) 7839) ((-1039 . -278) 7818) ((-79 . -1172) T) ((-973 . -878) NIL) ((-587 . -278) 7794) ((-1158 . -504) 7727) ((-478 . -1172) T) ((-555 . -592) 7709) ((-466 . -278) 7688) ((-507 . -92) T) ((-210 . -1172) T) ((-1051 . -224) 7672) ((-281 . -889) T) ((-791 . -299) 7651) ((-839 . -101) T) ((-756 . -224) 7635) ((-973 . -622) 7585) ((-927 . -278) 7562) ((-883 . -622) 7514) ((-611 . -21) T) ((-611 . -25) T) ((-586 . -21) T) ((-335 . -38) 7479) ((-668 . -699) 7446) ((-478 . -853) 7428) ((-478 . -855) 7410) ((-465 . -692) 7251) ((-210 . -853) 7233) ((-63 . -1172) T) ((-210 . -855) 7215) ((-586 . -25) T) ((-419 . -622) 7189) ((-478 . -1007) 7149) ((-841 . -504) 7061) ((-210 . -1007) 7021) ((-233 . -34) T) ((-969 . -1063) 6999) ((-1202 . -169) 6930) ((-1181 . -169) 6861) ((-687 . -143) 6840) ((-687 . -145) 6819) ((-675 . -130) T) ((-135 . -456) 6796) ((-632 . -630) 6780) ((-1107 . -592) 6712) ((-116 . -130) T) ((-468 . -1176) T) ((-587 . -583) 6688) ((-466 . -583) 6667) ((-328 . -327) 6636) ((-524 . -1063) T) ((-468 . -540) T) ((-1131 . -1016) T) ((-1087 . -1016) T) ((-825 . -1016) T) ((-233 . -765) 6615) ((-233 . -768) 6566) ((-233 . -767) 6545) ((-1131 . -318) 6522) ((-233 . -701) 6432) ((-927 . -19) 6416) ((-478 . -369) 6398) ((-478 . -330) 6380) ((-1087 . -318) 6352) ((-346 . -1225) 6329) ((-210 . -369) 6311) ((-210 . -330) 6293) ((-927 . -583) 6270) ((-1131 . -226) T) ((-638 . -1063) T) ((-620 . -1063) T) ((-1214 . -1063) T) ((-1145 . -1063) T) ((-1051 . -245) 6207) ((-347 . -1063) T) ((-344 . -1063) T) ((-336 . -1063) T) ((-256 . -1063) T) ((-240 . -1063) T) ((-83 . -1172) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1145 . -589) 6142) ((-470 . -1063) T) ((-1101 . -1063) T) ((-470 . -589) 6121) ((-243 . -769) 6072) ((-243 . -766) 6023) ((-242 . -769) 5974) ((-40 . -1111) NIL) ((-242 . -766) 5925) ((-1043 . -889) 5876) ((-973 . -768) T) ((-973 . -765) T) ((-973 . -701) T) ((-940 . -768) T) ((-883 . -701) T) ((-90 . -480) 5860) ((-478 . -869) NIL) ((-879 . -1063) T) ((-218 . -1022) 5825) ((-841 . -282) T) ((-210 . -869) NIL) ((-807 . -1075) 5804) ((-58 . -1063) 5754) ((-509 . -1063) 5732) ((-506 . -1063) 5682) ((-487 . -1063) 5660) ((-486 . -1063) 5610) ((-561 . -101) T) ((-548 . -101) T) ((-485 . -101) T) ((-465 . -169) 5541) ((-351 . -889) T) ((-345 . -889) T) ((-337 . -889) T) ((-218 . -111) 5497) ((-807 . -23) 5449) ((-419 . -701) T) ((-107 . -889) T) ((-40 . -38) 5394) ((-107 . -794) T) ((-562 . -341) T) ((-508 . -341) T) ((-1181 . -504) 5254) ((-308 . -443) 5233) ((-305 . -443) T) ((-808 . -278) 5212) ((-331 . -130) T) ((-171 . -130) T) ((-286 . -25) 5076) ((-286 . -21) 4959) ((-45 . -1148) 4938) ((-65 . -592) 4920) ((-861 . -592) 4902) ((-581 . -504) 4835) ((-45 . -106) 4785) ((-1065 . -417) 4769) ((-1065 . -360) 4748) ((-1028 . -1172) T) ((-1027 . -1022) 4735) ((-921 . -1022) 4578) ((-472 . -1022) 4421) ((-638 . -692) 4405) ((-1027 . -111) 4390) ((-921 . -111) 4219) ((-468 . -355) T) ((-347 . -692) 4171) ((-344 . -692) 4123) ((-336 . -692) 4075) ((-256 . -692) 3924) ((-240 . -692) 3773) ((-1219 . -101) T) ((-1218 . -101) 3723) ((-1210 . -622) 3648) ((-1182 . -878) NIL) ((-912 . -625) 3632) ((-1054 . -92) T) ((-472 . -111) 3461) ((-1031 . -92) T) ((-1005 . -92) T) ((-912 . -365) 3445) ((-241 . -101) T) ((-988 . -92) T) ((-73 . -592) 3427) ((-932 . -47) 3406) ((-597 . -1075) T) ((-1 . -1063) T) ((-685 . -101) T) ((-673 . -101) T) ((-1203 . -622) 3303) ((-602 . -92) T) ((-1153 . -592) 3285) ((-1052 . -592) 3267) ((-126 . -480) 3251) ((-474 . -92) T) ((-1039 . -592) 3233) ((-382 . -23) T) ((-86 . -1172) T) ((-211 . -92) T) ((-1182 . -622) 3085) ((-879 . -692) 3050) ((-597 . -23) T) ((-587 . -592) 3032) ((-587 . -593) NIL) ((-466 . -593) NIL) ((-466 . -592) 3014) ((-501 . -1063) T) ((-497 . -1063) T) ((-343 . -25) T) ((-343 . -21) T) ((-127 . -301) 2952) ((-121 . -301) 2890) ((-576 . -622) 2877) ((-218 . -1016) T) ((-575 . -622) 2802) ((-371 . -971) T) ((-218 . -236) T) ((-218 . -226) T) ((-927 . -593) 2763) ((-927 . -592) 2675) ((-839 . -38) 2662) ((-1202 . -282) 2613) ((-1181 . -282) 2564) ((-1082 . -443) T) ((-492 . -821) T) ((-308 . -1099) 2543) ((-968 . -145) 2522) ((-968 . -143) 2501) ((-485 . -301) 2488) ((-287 . -1148) 2467) ((-468 . -1075) T) ((-840 . -1022) 2412) ((-599 . -101) T) ((-1158 . -480) 2396) ((-243 . -360) 2375) ((-242 . -360) 2354) ((-287 . -106) 2304) ((-1027 . -1016) T) ((-117 . -101) T) ((-921 . -1016) T) ((-840 . -111) 2233) ((-468 . -23) T) ((-472 . -1016) T) ((-1027 . -226) T) ((-921 . -318) 2202) ((-472 . -318) 2159) ((-347 . -169) T) ((-344 . -169) T) ((-336 . -169) T) ((-256 . -169) 2070) ((-240 . -169) 1981) ((-932 . -1007) 1877) ((-710 . -1007) 1848) ((-507 . -592) 1814) ((-1068 . -101) T) ((-1056 . -592) 1781) ((-1003 . -592) 1763) ((-1210 . -701) T) ((-1203 . -701) T) ((-1182 . -765) NIL) ((-166 . -1022) 1673) ((-1182 . -768) NIL) ((-879 . -169) T) ((-1182 . -701) T) ((-1231 . -149) 1657) ((-972 . -334) 1631) ((-969 . -504) 1564) ((-814 . -821) 1543) ((-548 . -1111) T) ((-465 . -282) 1494) ((-576 . -701) T) ((-353 . -592) 1476) ((-314 . -592) 1458) ((-410 . -1007) 1354) ((-575 . -701) T) ((-399 . -821) 1305) ((-166 . -111) 1201) ((-807 . -130) 1153) ((-712 . -149) 1137) ((-1218 . -301) 1075) ((-478 . -299) T) ((-371 . -592) 1042) ((-510 . -979) 1026) ((-371 . -593) 940) ((-210 . -299) T) ((-139 . -149) 922) ((-689 . -278) 901) ((-478 . -991) T) ((-561 . -38) 888) ((-548 . -38) 875) ((-485 . -38) 840) ((-210 . -991) T) ((-840 . -1016) T) ((-808 . -592) 822) ((-801 . -592) 804) ((-799 . -592) 786) ((-790 . -878) 765) ((-1242 . -1075) T) ((-1191 . -1022) 588) ((-826 . -1022) 572) ((-840 . -236) T) ((-840 . -226) NIL) ((-663 . -1172) T) ((-1242 . -23) T) ((-790 . -622) 497) ((-534 . -1172) T) ((-410 . -330) 481) ((-555 . -1022) 468) ((-1191 . -111) 277) ((-675 . -615) 259) ((-826 . -111) 238) ((-373 . -23) T) ((-1145 . -504) 30) ((-636 . -1063) T) ((-655 . -1063) T) ((-650 . -1063) T))
\ No newline at end of file +((($ $) . T) ((|#2| $) |has| |#1| (-225)) ((|#2| |#1|) |has| |#1| (-225)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-468 . -1063) T) ((-255 . -503) 144639) ((-239 . -503) 144582) ((-237 . -1063) 144532) ((-554 . -111) 144517) ((-519 . -23) T) ((-137 . -1063) T) ((-136 . -1063) T) ((-117 . -300) 144474) ((-132 . -1063) T) ((-469 . -503) 144266) ((-668 . -101) T) ((-1101 . -503) 144185) ((-381 . -130) T) ((-1231 . -945) 144154) ((-31 . -92) T) ((-580 . -479) 144138) ((-597 . -130) T) ((-793 . -817) T) ((-512 . -56) 144088) ((-58 . -503) 144021) ((-508 . -503) 143954) ((-409 . -869) 143913) ((-166 . -1016) T) ((-505 . -503) 143846) ((-486 . -503) 143779) ((-485 . -503) 143712) ((-773 . -1007) 143495) ((-673 . -38) 143460) ((-334 . -340) T) ((-1058 . -1057) 143444) ((-1058 . -1063) 143422) ((-166 . -235) 143373) ((-166 . -225) 143324) ((-1058 . -1059) 143282) ((-841 . -277) 143240) ((-217 . -769) T) ((-217 . -766) T) ((-668 . -275) NIL) ((-1110 . -1148) 143219) ((-398 . -961) 143203) ((-675 . -21) T) ((-675 . -25) T) ((-1233 . -622) 143177) ((-307 . -157) 143156) ((-307 . -141) 143135) ((-1110 . -106) 143085) ((-133 . -25) T) ((-40 . -223) 143062) ((-116 . -21) T) ((-116 . -25) T) ((-586 . -279) 143038) ((-465 . -279) 143017) ((-1191 . -1016) T) ((-826 . -1016) T) ((-773 . -329) 143001) ((-117 . -1111) NIL) ((-90 . -591) 142933) ((-467 . -130) T) ((-572 . -1172) T) ((-1191 . -317) 142910) ((-554 . -1016) T) ((-1191 . -225) T) ((-636 . -692) 142894) ((-927 . -279) 142871) ((-59 . -34) T) ((-1054 . -591) 142837) ((-1027 . -769) T) ((-1027 . -766) T) ((-790 . -701) T) ((-706 . -47) 142802) ((-599 . -38) 142789) ((-346 . -281) T) ((-343 . -281) T) ((-335 . -281) T) ((-255 . -281) 142720) ((-239 . -281) 142651) ((-1031 . -591) 142617) ((-1005 . -591) 142583) ((-993 . -101) T) ((-988 . -591) 142549) ((-404 . -701) T) ((-117 . -38) 142494) ((-602 . -591) 142460) ((-404 . -463) T) ((-473 . -591) 142426) ((-345 . -101) T) ((-210 . -591) 142392) ((-1166 . -1023) T) ((-686 . -1023) T) ((-1133 . -47) 142369) ((-1132 . -47) 142339) ((-1126 . -47) 142316) ((-1004 . -149) 142262) ((-879 . -281) T) ((-1088 . -47) 142234) ((-668 . -300) NIL) ((-504 . -591) 142216) ((-499 . -591) 142198) ((-497 . -591) 142180) ((-318 . -1063) 142130) ((-687 . -442) 142061) ((-48 . -101) T) ((-1202 . -277) 142046) ((-1181 . -277) 141966) ((-619 . -640) 141950) ((-619 . -625) 141934) ((-330 . -21) T) ((-330 . -25) T) ((-40 . -340) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-619 . -364) 141918) ((-580 . -277) 141895) ((-583 . -591) 141862) ((-379 . -101) T) ((-1082 . -141) T) ((-126 . -591) 141794) ((-843 . -1063) T) ((-632 . -402) 141778) ((-689 . -591) 141760) ((-159 . -591) 141742) ((-154 . -591) 141724) ((-1233 . -701) T) ((-1065 . -34) T) ((-840 . -769) NIL) ((-840 . -766) NIL) ((-829 . -821) T) ((-706 . -855) NIL) ((-1242 . -130) T) ((-372 . -130) T) ((-873 . -101) T) ((-706 . -1007) 141600) ((-519 . -130) T) ((-1051 . -402) 141584) ((-969 . -479) 141568) ((-117 . -391) 141545) ((-1126 . -1172) 141524) ((-756 . -402) 141508) ((-754 . -402) 141492) ((-912 . -34) T) ((-668 . -1111) NIL) ((-242 . -622) 141327) ((-241 . -622) 141149) ((-791 . -889) 141128) ((-444 . -402) 141112) ((-580 . -19) 141096) ((-1106 . -1165) 141065) ((-1126 . -855) NIL) ((-1126 . -853) 141017) ((-580 . -582) 140994) ((-1158 . -591) 140926) ((-1134 . -591) 140908) ((-61 . -386) T) ((-1132 . -1007) 140843) ((-1126 . -1007) 140809) ((-668 . -38) 140759) ((-464 . -277) 140744) ((-706 . -368) 140728) ((-632 . -1023) T) ((-1202 . -971) 140694) ((-1181 . -971) 140660) ((-1028 . -1148) 140635) ((-841 . -592) 140443) ((-841 . -591) 140425) ((-1145 . -479) 140362) ((-409 . -991) 140341) ((-48 . -300) 140328) ((-1028 . -106) 140274) ((-469 . -479) 140211) ((-509 . -1172) T) ((-1126 . -329) 140163) ((-1101 . -479) 140134) ((-1126 . -368) 140086) ((-1051 . -1023) T) ((-428 . -101) T) ((-179 . -1063) T) ((-242 . -34) T) ((-241 . -34) T) ((-756 . -1023) T) ((-754 . -1023) T) ((-706 . -869) 140063) ((-444 . -1023) T) ((-58 . -479) 140047) ((-1003 . -1022) 140021) ((-508 . -479) 140005) ((-505 . -479) 139989) ((-486 . -479) 139973) ((-485 . -479) 139957) ((-237 . -503) 139890) ((-1003 . -111) 139857) ((-1133 . -869) 139770) ((-1132 . -869) 139676) ((-1126 . -869) 139509) ((-644 . -1075) T) ((-1088 . -869) 139493) ((-620 . -92) T) ((-345 . -1111) T) ((-313 . -1022) 139475) ((-242 . -765) 139454) ((-242 . -768) 139405) ((-242 . -767) 139384) ((-241 . -765) 139363) ((-241 . -768) 139314) ((-241 . -767) 139293) ((-31 . -591) 139259) ((-50 . -1023) T) ((-242 . -701) 139169) ((-241 . -701) 139079) ((-1166 . -1063) T) ((-644 . -23) T) ((-561 . -1023) T) ((-507 . -1023) T) ((-370 . -1022) 139044) ((-313 . -111) 139019) ((-72 . -374) T) ((-72 . -386) T) ((-993 . -38) 138956) ((-668 . -391) 138938) ((-98 . -101) T) ((-686 . -1063) T) ((-972 . -143) 138910) ((-972 . -145) 138882) ((-370 . -111) 138838) ((-310 . -1176) 138817) ((-464 . -971) 138783) ((-345 . -38) 138748) ((-40 . -361) 138720) ((-842 . -591) 138592) ((-127 . -125) 138576) ((-121 . -125) 138560) ((-808 . -1022) 138530) ((-807 . -21) 138482) ((-801 . -1022) 138466) ((-807 . -25) 138418) ((-310 . -539) 138369) ((-547 . -802) T) ((-232 . -1172) T) ((-808 . -111) 138334) ((-801 . -111) 138313) ((-1202 . -591) 138295) ((-1181 . -591) 138277) ((-1181 . -592) 137950) ((-1131 . -878) 137929) ((-1087 . -878) 137908) ((-48 . -38) 137873) ((-1240 . -1075) T) ((-580 . -591) 137785) ((-580 . -592) 137746) ((-1238 . -1075) T) ((-232 . -1007) 137573) ((-1131 . -622) 137498) ((-1087 . -622) 137423) ((-693 . -591) 137405) ((-825 . -622) 137379) ((-480 . -1063) T) ((-1240 . -23) T) ((-1238 . -23) T) ((-1003 . -1016) T) ((-1145 . -277) 137358) ((-166 . -359) 137309) ((-973 . -1172) T) ((-44 . -23) T) ((-469 . -277) 137288) ((-565 . -1063) T) ((-1106 . -1072) 137257) ((-1067 . -1066) 137209) ((-128 . -1172) T) ((-381 . -21) T) ((-381 . -25) T) ((-150 . -1075) T) ((-1246 . -101) T) ((-973 . -853) 137191) ((-973 . -855) 137173) ((-1166 . -692) 137070) ((-599 . -223) 137054) ((-597 . -21) T) ((-280 . -539) T) ((-597 . -25) T) ((-1152 . -1063) T) ((-686 . -692) 137019) ((-232 . -368) 136988) ((-973 . -1007) 136948) ((-370 . -1016) T) ((-215 . -1023) T) ((-117 . -223) 136925) ((-58 . -277) 136902) ((-150 . -23) T) ((-505 . -277) 136879) ((-318 . -503) 136812) ((-485 . -277) 136789) ((-370 . -235) T) ((-370 . -225) T) ((-808 . -1016) T) ((-801 . -1016) T) ((-687 . -918) 136758) ((-675 . -821) T) ((-464 . -591) 136740) ((-801 . -225) 136719) ((-133 . -821) T) ((-632 . -1063) T) ((-1145 . -582) 136698) ((-533 . -1148) 136677) ((-327 . -1063) T) ((-310 . -354) 136656) ((-398 . -145) 136635) ((-398 . -143) 136614) ((-933 . -1075) 136513) ((-232 . -869) 136445) ((-789 . -1075) 136355) ((-628 . -823) 136339) ((-469 . -582) 136318) ((-533 . -106) 136268) ((-973 . -368) 136250) ((-973 . -329) 136232) ((-96 . -1063) T) ((-933 . -23) 136043) ((-467 . -21) T) ((-467 . -25) T) ((-789 . -23) 135913) ((-1135 . -591) 135895) ((-58 . -19) 135879) ((-1135 . -592) 135801) ((-1131 . -701) T) ((-1087 . -701) T) ((-505 . -19) 135785) ((-485 . -19) 135769) ((-58 . -582) 135746) ((-1051 . -1063) T) ((-870 . -101) 135724) ((-825 . -701) T) ((-756 . -1063) T) ((-505 . -582) 135701) ((-485 . -582) 135678) ((-754 . -1063) T) ((-754 . -1030) 135645) ((-451 . -1063) T) ((-444 . -1063) T) ((-565 . -692) 135620) ((-623 . -1063) T) ((-973 . -869) NIL) ((-1210 . -47) 135597) ((-603 . -1075) T) ((-644 . -130) T) ((-1204 . -101) T) ((-1203 . -47) 135567) ((-1182 . -47) 135544) ((-1166 . -169) 135495) ((-1043 . -1176) 135446) ((-266 . -1063) T) ((-84 . -431) T) ((-84 . -386) T) ((-1132 . -298) 135425) ((-1126 . -298) 135404) ((-50 . -1063) T) ((-1043 . -539) 135355) ((-686 . -169) T) ((-574 . -47) 135332) ((-217 . -622) 135297) ((-561 . -1063) T) ((-507 . -1063) T) ((-350 . -1176) T) ((-344 . -1176) T) ((-336 . -1176) T) ((-477 . -794) T) ((-477 . -889) T) ((-310 . -1075) T) ((-107 . -1176) T) ((-330 . -821) T) ((-209 . -889) T) ((-209 . -794) T) ((-689 . -1022) 135267) ((-350 . -539) T) ((-344 . -539) T) ((-336 . -539) T) ((-107 . -539) T) ((-632 . -692) 135237) ((-1126 . -991) NIL) ((-310 . -23) T) ((-66 . -1172) T) ((-969 . -591) 135169) ((-668 . -223) 135151) ((-689 . -111) 135116) ((-619 . -34) T) ((-237 . -479) 135100) ((-1065 . -1061) 135084) ((-168 . -1063) T) ((-921 . -878) 135063) ((-471 . -878) 135042) ((-1246 . -1111) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1240 . -130) T) ((-1238 . -130) T) ((-1051 . -692) 134891) ((-1027 . -622) 134878) ((-921 . -622) 134803) ((-756 . -692) 134632) ((-523 . -591) 134614) ((-523 . -592) 134595) ((-754 . -692) 134444) ((-1231 . -101) T) ((-1040 . -101) T) ((-372 . -25) T) ((-372 . -21) T) ((-471 . -622) 134369) ((-451 . -692) 134340) ((-444 . -692) 134189) ((-956 . -101) T) ((-1214 . -591) 134155) ((-1203 . -1007) 134090) ((-1182 . -1172) 134069) ((-712 . -101) T) ((-1182 . -855) NIL) ((-1182 . -853) 134021) ((-1145 . -592) NIL) ((-1145 . -591) 134003) ((-519 . -25) T) ((-1102 . -1085) 133948) ((-1013 . -1165) 133877) ((-870 . -300) 133815) ((-334 . -1023) T) ((-139 . -101) T) ((-44 . -130) T) ((-280 . -1075) T) ((-655 . -92) T) ((-650 . -92) T) ((-638 . -591) 133797) ((-620 . -591) 133750) ((-468 . -92) T) ((-346 . -591) 133732) ((-343 . -591) 133714) ((-335 . -591) 133696) ((-255 . -592) 133444) ((-255 . -591) 133426) ((-239 . -591) 133408) ((-239 . -592) 133269) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1182 . -1007) 133235) ((-1166 . -503) 133202) ((-1101 . -591) 133184) ((-793 . -828) T) ((-793 . -701) T) ((-580 . -279) 133161) ((-561 . -692) 133126) ((-469 . -592) NIL) ((-469 . -591) 133108) ((-507 . -692) 133053) ((-307 . -101) T) ((-304 . -101) T) ((-280 . -23) T) ((-150 . -130) T) ((-377 . -701) T) ((-841 . -1022) 133005) ((-879 . -591) 132987) ((-879 . -592) 132969) ((-841 . -111) 132907) ((-135 . -101) T) ((-114 . -101) T) ((-687 . -1194) 132891) ((-689 . -1016) T) ((-668 . -340) NIL) ((-508 . -591) 132823) ((-370 . -769) T) ((-215 . -1063) T) ((-370 . -766) T) ((-217 . -768) T) ((-217 . -765) T) ((-58 . -592) 132784) ((-58 . -591) 132696) ((-217 . -701) T) ((-505 . -592) 132657) ((-505 . -591) 132569) ((-486 . -591) 132501) ((-485 . -592) 132462) ((-485 . -591) 132374) ((-1043 . -354) 132325) ((-40 . -402) 132302) ((-76 . -1172) T) ((-840 . -878) NIL) ((-350 . -320) 132286) ((-350 . -354) T) ((-344 . -320) 132270) ((-344 . -354) T) ((-336 . -320) 132254) ((-336 . -354) T) ((-307 . -275) 132233) ((-107 . -354) T) ((-69 . -1172) T) ((-1182 . -329) 132185) ((-840 . -622) 132130) ((-1182 . -368) 132082) ((-933 . -130) 131937) ((-789 . -130) 131807) ((-927 . -625) 131791) ((-1051 . -169) 131702) ((-927 . -364) 131686) ((-1027 . -768) T) ((-1027 . -765) T) ((-756 . -169) 131577) ((-754 . -169) 131488) ((-790 . -47) 131450) ((-1027 . -701) T) ((-318 . -479) 131434) ((-921 . -701) T) ((-444 . -169) 131345) ((-237 . -277) 131322) ((-471 . -701) T) ((-1231 . -300) 131260) ((-1210 . -869) 131173) ((-1203 . -869) 131079) ((-1202 . -1022) 130914) ((-1182 . -869) 130747) ((-1181 . -1022) 130555) ((-1166 . -281) 130534) ((-1106 . -149) 130518) ((-1082 . -101) T) ((-1038 . -101) T) ((-896 . -924) T) ((-74 . -1172) T) ((-712 . -300) 130456) ((-166 . -878) 130409) ((-638 . -373) 130381) ((-30 . -924) T) ((-1 . -591) 130363) ((-1080 . -1063) T) ((-1043 . -23) T) ((-50 . -596) 130347) ((-1043 . -1075) T) ((-972 . -400) 130319) ((-574 . -869) 130232) ((-429 . -101) T) ((-139 . -300) NIL) ((-841 . -1016) T) ((-807 . -821) 130211) ((-80 . -1172) T) ((-686 . -281) T) ((-40 . -1023) T) ((-561 . -169) T) ((-507 . -169) T) ((-500 . -591) 130193) ((-166 . -622) 130103) ((-496 . -591) 130085) ((-342 . -145) 130067) ((-342 . -143) T) ((-350 . -1075) T) ((-344 . -1075) T) ((-336 . -1075) T) ((-973 . -298) T) ((-883 . -298) T) ((-841 . -235) T) ((-107 . -1075) T) ((-841 . -225) 130046) ((-1202 . -111) 129867) ((-1181 . -111) 129656) ((-237 . -1206) 129640) ((-547 . -819) T) ((-350 . -23) T) ((-345 . -340) T) ((-307 . -300) 129627) ((-304 . -300) 129568) ((-344 . -23) T) ((-310 . -130) T) ((-336 . -23) T) ((-973 . -991) T) ((-107 . -23) T) ((-237 . -582) 129545) ((-1204 . -38) 129437) ((-1191 . -878) 129416) ((-112 . -1063) T) ((-1004 . -101) T) ((-1191 . -622) 129341) ((-840 . -768) NIL) ((-826 . -622) 129315) ((-840 . -765) NIL) ((-790 . -855) NIL) ((-840 . -701) T) ((-1051 . -503) 129188) ((-756 . -503) 129135) ((-754 . -503) 129087) ((-554 . -622) 129074) ((-790 . -1007) 128902) ((-444 . -503) 128845) ((-379 . -380) T) ((-59 . -1172) T) ((-597 . -821) 128824) ((-489 . -635) T) ((-1106 . -945) 128793) ((-972 . -442) T) ((-673 . -819) T) ((-499 . -766) T) ((-464 . -1022) 128628) ((-334 . -1063) T) ((-304 . -1111) NIL) ((-280 . -130) T) ((-385 . -1063) T) ((-668 . -361) 128595) ((-839 . -1023) T) ((-215 . -596) 128572) ((-318 . -277) 128549) ((-464 . -111) 128370) ((-1202 . -1016) T) ((-1181 . -1016) T) ((-790 . -368) 128354) ((-166 . -701) T) ((-628 . -101) T) ((-1202 . -235) 128333) ((-1202 . -225) 128285) ((-1181 . -225) 128190) ((-1181 . -235) 128169) ((-972 . -393) NIL) ((-644 . -615) 128117) ((-307 . -38) 128027) ((-304 . -38) 127956) ((-68 . -591) 127938) ((-310 . -482) 127904) ((-1145 . -279) 127883) ((-1076 . -1075) 127793) ((-82 . -1172) T) ((-60 . -591) 127775) ((-469 . -279) 127754) ((-1233 . -1007) 127731) ((-1124 . -1063) T) ((-1076 . -23) 127601) ((-790 . -869) 127537) ((-1191 . -701) T) ((-1065 . -1172) T) ((-1051 . -281) 127468) ((-935 . -1063) T) ((-862 . -101) T) ((-756 . -281) 127379) ((-318 . -19) 127363) ((-58 . -279) 127340) ((-754 . -281) 127271) ((-826 . -701) T) ((-117 . -819) NIL) ((-505 . -279) 127248) ((-318 . -582) 127225) ((-485 . -279) 127202) ((-444 . -281) 127133) ((-1004 . -300) 126984) ((-554 . -701) T) ((-655 . -591) 126934) ((-650 . -591) 126900) ((-636 . -591) 126882) ((-468 . -591) 126848) ((-237 . -592) 126809) ((-237 . -591) 126721) ((-137 . -591) 126687) ((-136 . -591) 126653) ((-132 . -591) 126619) ((-1107 . -34) T) ((-912 . -1172) T) ((-334 . -692) 126564) ((-644 . -25) T) ((-644 . -21) T) ((-464 . -1016) T) ((-611 . -408) 126529) ((-585 . -408) 126494) ((-1082 . -1111) T) ((-561 . -281) T) ((-507 . -281) T) ((-1203 . -298) 126473) ((-464 . -225) 126425) ((-464 . -235) 126404) ((-1182 . -298) 126383) ((-1182 . -991) NIL) ((-1043 . -130) T) ((-841 . -769) 126362) ((-142 . -101) T) ((-40 . -1063) T) ((-841 . -766) 126341) ((-619 . -979) 126325) ((-560 . -1023) T) ((-547 . -1023) T) ((-484 . -1023) T) ((-398 . -442) T) ((-350 . -130) T) ((-307 . -391) 126309) ((-304 . -391) 126270) ((-344 . -130) T) ((-336 . -130) T) ((-1140 . -1063) T) ((-1082 . -38) 126257) ((-1058 . -591) 126224) ((-107 . -130) T) ((-923 . -1063) T) ((-890 . -1063) T) ((-745 . -1063) T) ((-646 . -1063) T) ((-495 . -1047) T) ((-675 . -145) T) ((-116 . -145) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-638 . -1022) 126208) ((-519 . -821) T) ((-489 . -821) T) ((-346 . -1022) 126160) ((-343 . -1022) 126112) ((-335 . -1022) 126064) ((-242 . -1172) T) ((-241 . -1172) T) ((-255 . -1022) 125907) ((-239 . -1022) 125750) ((-638 . -111) 125729) ((-346 . -111) 125667) ((-343 . -111) 125605) ((-335 . -111) 125543) ((-255 . -111) 125372) ((-239 . -111) 125201) ((-791 . -1176) 125180) ((-599 . -402) 125164) ((-44 . -21) T) ((-44 . -25) T) ((-789 . -615) 125070) ((-791 . -539) 125049) ((-242 . -1007) 124876) ((-241 . -1007) 124703) ((-126 . -119) 124687) ((-879 . -1022) 124652) ((-673 . -1023) T) ((-687 . -101) T) ((-334 . -169) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -591) 124634) ((-879 . -111) 124590) ((-40 . -692) 124535) ((-839 . -1063) T) ((-318 . -592) 124496) ((-318 . -591) 124408) ((-1181 . -766) 124361) ((-1181 . -769) 124314) ((-242 . -368) 124283) ((-241 . -368) 124252) ((-628 . -38) 124222) ((-586 . -34) T) ((-472 . -1075) 124132) ((-465 . -34) T) ((-1076 . -130) 124002) ((-933 . -25) 123813) ((-843 . -591) 123795) ((-933 . -21) 123750) ((-789 . -21) 123660) ((-789 . -25) 123511) ((-599 . -1023) T) ((-1137 . -539) 123490) ((-1131 . -47) 123467) ((-346 . -1016) T) ((-343 . -1016) T) ((-472 . -23) 123337) ((-335 . -1016) T) ((-255 . -1016) T) ((-239 . -1016) T) ((-1087 . -47) 123309) ((-117 . -1023) T) ((-1003 . -622) 123283) ((-927 . -34) T) ((-346 . -225) 123262) ((-346 . -235) T) ((-343 . -225) 123241) ((-343 . -235) T) ((-239 . -317) 123198) ((-335 . -225) 123177) ((-335 . -235) T) ((-255 . -317) 123149) ((-255 . -225) 123128) ((-1116 . -149) 123112) ((-242 . -869) 123044) ((-241 . -869) 122976) ((-1045 . -821) T) ((-1185 . -1172) T) ((-405 . -1075) T) ((-1020 . -23) T) ((-879 . -1016) T) ((-313 . -622) 122958) ((-993 . -819) T) ((-1166 . -971) 122924) ((-1132 . -889) 122903) ((-1126 . -889) 122882) ((-879 . -235) T) ((-791 . -354) 122861) ((-376 . -23) T) ((-127 . -1063) 122839) ((-121 . -1063) 122817) ((-879 . -225) T) ((-1126 . -794) NIL) ((-370 . -622) 122782) ((-839 . -692) 122769) ((-1013 . -149) 122734) ((-40 . -169) T) ((-668 . -402) 122716) ((-687 . -300) 122703) ((-808 . -622) 122663) ((-801 . -622) 122637) ((-310 . -25) T) ((-310 . -21) T) ((-632 . -277) 122616) ((-560 . -1063) T) ((-547 . -1063) T) ((-484 . -1063) T) ((-237 . -279) 122593) ((-304 . -223) 122554) ((-1131 . -855) NIL) ((-1087 . -855) 122413) ((-129 . -821) T) ((-1131 . -1007) 122293) ((-1087 . -1007) 122176) ((-179 . -591) 122158) ((-825 . -1007) 122054) ((-756 . -277) 121981) ((-791 . -1075) T) ((-1003 . -701) T) ((-580 . -625) 121965) ((-1013 . -945) 121894) ((-968 . -101) T) ((-791 . -23) T) ((-687 . -1111) 121872) ((-668 . -1023) T) ((-580 . -364) 121856) ((-342 . -442) T) ((-334 . -281) T) ((-1219 . -1063) T) ((-240 . -1063) T) ((-390 . -101) T) ((-280 . -21) T) ((-280 . -25) T) ((-352 . -701) T) ((-685 . -1063) T) ((-673 . -1063) T) ((-352 . -463) T) ((-1166 . -591) 121838) ((-1131 . -368) 121822) ((-1087 . -368) 121806) ((-993 . -402) 121768) ((-139 . -221) 121750) ((-370 . -768) T) ((-370 . -765) T) ((-839 . -169) T) ((-370 . -701) T) ((-686 . -591) 121732) ((-687 . -38) 121561) ((-1218 . -1216) 121545) ((-342 . -393) T) ((-1218 . -1063) 121495) ((-560 . -692) 121482) ((-547 . -692) 121469) ((-484 . -692) 121434) ((-307 . -605) 121413) ((-808 . -701) T) ((-801 . -701) T) ((-619 . -1172) T) ((-1043 . -615) 121361) ((-1131 . -869) 121304) ((-1087 . -869) 121288) ((-636 . -1022) 121272) ((-107 . -615) 121254) ((-472 . -130) 121124) ((-1137 . -1075) T) ((-921 . -47) 121093) ((-599 . -1063) T) ((-636 . -111) 121072) ((-480 . -591) 121038) ((-318 . -279) 121015) ((-471 . -47) 120972) ((-1137 . -23) T) ((-117 . -1063) T) ((-102 . -101) 120950) ((-1230 . -1075) T) ((-1020 . -130) T) ((-993 . -1023) T) ((-793 . -1007) 120934) ((-972 . -699) 120906) ((-1230 . -23) T) ((-673 . -692) 120871) ((-565 . -591) 120853) ((-377 . -1007) 120837) ((-345 . -1023) T) ((-376 . -130) T) ((-315 . -1007) 120821) ((-217 . -855) 120803) ((-973 . -889) T) ((-90 . -34) T) ((-973 . -794) T) ((-883 . -889) T) ((-477 . -1176) T) ((-1152 . -591) 120785) ((-1068 . -1063) T) ((-209 . -1176) T) ((-968 . -300) 120750) ((-217 . -1007) 120710) ((-40 . -281) T) ((-1043 . -21) T) ((-1043 . -25) T) ((-1082 . -802) T) ((-477 . -539) T) ((-350 . -25) T) ((-209 . -539) T) ((-350 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-689 . -622) 120670) ((-336 . -25) T) ((-336 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1023) T) ((-560 . -169) T) ((-547 . -169) T) ((-484 . -169) T) ((-632 . -591) 120652) ((-712 . -711) 120636) ((-327 . -591) 120618) ((-67 . -374) T) ((-67 . -386) T) ((-1065 . -106) 120602) ((-1027 . -855) 120584) ((-921 . -855) 120509) ((-627 . -1075) T) ((-599 . -692) 120496) ((-471 . -855) NIL) ((-1106 . -101) T) ((-1027 . -1007) 120478) ((-96 . -591) 120460) ((-467 . -145) T) ((-921 . -1007) 120340) ((-117 . -692) 120285) ((-627 . -23) T) ((-471 . -1007) 120161) ((-1051 . -592) NIL) ((-1051 . -591) 120143) ((-756 . -592) NIL) ((-756 . -591) 120104) ((-754 . -592) 119738) ((-754 . -591) 119652) ((-1076 . -615) 119558) ((-451 . -591) 119540) ((-444 . -591) 119522) ((-444 . -592) 119383) ((-1004 . -221) 119329) ((-126 . -34) T) ((-791 . -130) T) ((-841 . -878) 119308) ((-623 . -591) 119290) ((-346 . -1237) 119274) ((-343 . -1237) 119258) ((-335 . -1237) 119242) ((-127 . -503) 119175) ((-121 . -503) 119108) ((-500 . -766) T) ((-500 . -769) T) ((-499 . -768) T) ((-102 . -300) 119046) ((-214 . -101) 119024) ((-668 . -1063) T) ((-673 . -169) T) ((-841 . -622) 118976) ((-64 . -375) T) ((-266 . -591) 118958) ((-64 . -386) T) ((-921 . -368) 118942) ((-839 . -281) T) ((-50 . -591) 118924) ((-968 . -38) 118872) ((-561 . -591) 118854) ((-471 . -368) 118838) ((-561 . -592) 118820) ((-507 . -591) 118802) ((-879 . -1237) 118789) ((-840 . -1172) T) ((-675 . -442) T) ((-484 . -503) 118755) ((-477 . -354) T) ((-346 . -359) 118734) ((-343 . -359) 118713) ((-335 . -359) 118692) ((-209 . -354) T) ((-689 . -701) T) ((-116 . -442) T) ((-1241 . -1232) 118676) ((-840 . -853) 118653) ((-840 . -855) NIL) ((-933 . -821) 118552) ((-789 . -821) 118503) ((-628 . -630) 118487) ((-1158 . -34) T) ((-168 . -591) 118469) ((-1076 . -21) 118379) ((-1076 . -25) 118230) ((-840 . -1007) 118207) ((-921 . -869) 118188) ((-1191 . -47) 118165) ((-879 . -359) T) ((-58 . -625) 118149) ((-505 . -625) 118133) ((-471 . -869) 118110) ((-70 . -431) T) ((-70 . -386) T) ((-485 . -625) 118094) ((-58 . -364) 118078) ((-599 . -169) T) ((-505 . -364) 118062) ((-485 . -364) 118046) ((-801 . -683) 118030) ((-1131 . -298) 118009) ((-1137 . -130) T) ((-117 . -169) T) ((-1106 . -300) 117947) ((-166 . -1172) T) ((-611 . -719) 117931) ((-585 . -719) 117915) ((-1230 . -130) T) ((-1203 . -889) 117894) ((-1182 . -889) 117873) ((-1182 . -794) NIL) ((-668 . -692) 117823) ((-1181 . -878) 117776) ((-993 . -1063) T) ((-840 . -368) 117753) ((-840 . -329) 117730) ((-874 . -1075) T) ((-166 . -853) 117714) ((-166 . -855) 117639) ((-477 . -1075) T) ((-345 . -1063) T) ((-209 . -1075) T) ((-75 . -431) T) ((-75 . -386) T) ((-166 . -1007) 117535) ((-310 . -821) T) ((-1218 . -503) 117468) ((-1202 . -622) 117365) ((-1181 . -622) 117235) ((-841 . -768) 117214) ((-841 . -765) 117193) ((-841 . -701) T) ((-477 . -23) T) ((-215 . -591) 117175) ((-171 . -442) T) ((-214 . -300) 117113) ((-85 . -431) T) ((-85 . -386) T) ((-209 . -23) T) ((-1242 . -1235) 117092) ((-560 . -281) T) ((-547 . -281) T) ((-651 . -1007) 117076) ((-484 . -281) T) ((-135 . -460) 117031) ((-48 . -1063) T) ((-687 . -223) 117015) ((-840 . -869) NIL) ((-1191 . -855) NIL) ((-858 . -101) T) ((-854 . -101) T) ((-379 . -1063) T) ((-166 . -368) 116999) ((-166 . -329) 116983) ((-1191 . -1007) 116863) ((-826 . -1007) 116759) ((-1102 . -101) T) ((-627 . -130) T) ((-117 . -503) 116667) ((-636 . -766) 116646) ((-636 . -769) 116625) ((-554 . -1007) 116607) ((-285 . -1225) 116577) ((-835 . -101) T) ((-932 . -539) 116556) ((-1166 . -1022) 116439) ((-472 . -615) 116345) ((-873 . -1063) T) ((-993 . -692) 116282) ((-686 . -1022) 116247) ((-594 . -101) T) ((-580 . -34) T) ((-1107 . -1172) T) ((-1166 . -111) 116116) ((-464 . -622) 116013) ((-345 . -692) 115958) ((-166 . -869) 115917) ((-673 . -281) T) ((-668 . -169) T) ((-686 . -111) 115873) ((-1246 . -1023) T) ((-1191 . -368) 115857) ((-409 . -1176) 115835) ((-1080 . -591) 115817) ((-304 . -819) NIL) ((-409 . -539) T) ((-217 . -298) T) ((-1181 . -765) 115770) ((-1181 . -768) 115723) ((-1202 . -701) T) ((-1181 . -701) T) ((-48 . -692) 115688) ((-217 . -991) T) ((-342 . -1225) 115665) ((-1204 . -402) 115631) ((-693 . -701) T) ((-1191 . -869) 115574) ((-112 . -591) 115556) ((-112 . -592) 115538) ((-693 . -463) T) ((-472 . -21) 115448) ((-127 . -479) 115432) ((-121 . -479) 115416) ((-472 . -25) 115267) ((-599 . -281) T) ((-565 . -1022) 115242) ((-428 . -1063) T) ((-1027 . -298) T) ((-117 . -281) T) ((-1067 . -101) T) ((-972 . -101) T) ((-565 . -111) 115210) ((-1102 . -300) 115148) ((-1166 . -1016) T) ((-1027 . -991) T) ((-65 . -1172) T) ((-1020 . -25) T) ((-1020 . -21) T) ((-686 . -1016) T) ((-376 . -21) T) ((-376 . -25) T) ((-668 . -503) NIL) ((-993 . -169) T) ((-686 . -235) T) ((-1027 . -532) T) ((-495 . -101) T) ((-491 . -101) T) ((-345 . -169) T) ((-334 . -591) 115130) ((-385 . -591) 115112) ((-464 . -701) T) ((-1082 . -819) T) ((-861 . -1007) 115080) ((-107 . -821) T) ((-632 . -1022) 115064) ((-477 . -130) T) ((-1204 . -1023) T) ((-209 . -130) T) ((-1116 . -101) 115042) ((-98 . -1063) T) ((-237 . -640) 115026) ((-237 . -625) 115010) ((-632 . -111) 114989) ((-307 . -402) 114973) ((-237 . -364) 114957) ((-1119 . -227) 114904) ((-968 . -223) 114888) ((-73 . -1172) T) ((-48 . -169) T) ((-675 . -378) T) ((-675 . -141) T) ((-1241 . -101) T) ((-1051 . -1022) 114731) ((-255 . -878) 114710) ((-239 . -878) 114689) ((-756 . -1022) 114512) ((-754 . -1022) 114355) ((-586 . -1172) T) ((-1124 . -591) 114337) ((-1051 . -111) 114166) ((-1013 . -101) T) ((-465 . -1172) T) ((-451 . -1022) 114137) ((-444 . -1022) 113980) ((-638 . -622) 113964) ((-840 . -298) T) ((-756 . -111) 113773) ((-754 . -111) 113602) ((-346 . -622) 113554) ((-343 . -622) 113506) ((-335 . -622) 113458) ((-255 . -622) 113383) ((-239 . -622) 113308) ((-1118 . -821) T) ((-1052 . -1007) 113292) ((-451 . -111) 113253) ((-444 . -111) 113082) ((-1039 . -1007) 113059) ((-969 . -34) T) ((-935 . -591) 113041) ((-927 . -1172) T) ((-126 . -979) 113025) ((-932 . -1075) T) ((-840 . -991) NIL) ((-710 . -1075) T) ((-690 . -1075) T) ((-1218 . -479) 113009) ((-1102 . -38) 112969) ((-932 . -23) T) ((-814 . -101) T) ((-791 . -21) T) ((-791 . -25) T) ((-710 . -23) T) ((-690 . -23) T) ((-110 . -635) T) ((-879 . -622) 112934) ((-561 . -1022) 112899) ((-507 . -1022) 112844) ((-219 . -56) 112802) ((-443 . -23) T) ((-398 . -101) T) ((-254 . -101) T) ((-668 . -281) T) ((-835 . -38) 112772) ((-561 . -111) 112728) ((-507 . -111) 112657) ((-409 . -1075) T) ((-307 . -1023) 112547) ((-304 . -1023) T) ((-632 . -1016) T) ((-1246 . -1063) T) ((-166 . -298) 112478) ((-409 . -23) T) ((-40 . -591) 112460) ((-40 . -592) 112444) ((-107 . -961) 112426) ((-116 . -838) 112410) ((-48 . -503) 112376) ((-1158 . -979) 112360) ((-1140 . -591) 112342) ((-1145 . -34) T) ((-923 . -591) 112308) ((-890 . -591) 112290) ((-1076 . -821) 112241) ((-745 . -591) 112223) ((-646 . -591) 112205) ((-1116 . -300) 112143) ((-469 . -34) T) ((-1056 . -1172) T) ((-467 . -442) T) ((-1051 . -1016) T) ((-1101 . -34) T) ((-756 . -1016) T) ((-754 . -1016) T) ((-621 . -227) 112127) ((-608 . -227) 112073) ((-1191 . -298) 112052) ((-1051 . -317) 112013) ((-444 . -1016) T) ((-1137 . -21) T) ((-1051 . -225) 111992) ((-756 . -317) 111969) ((-756 . -225) T) ((-754 . -317) 111941) ((-706 . -1176) 111920) ((-318 . -625) 111904) ((-1137 . -25) T) ((-58 . -34) T) ((-508 . -34) T) ((-505 . -34) T) ((-444 . -317) 111883) ((-318 . -364) 111867) ((-486 . -34) T) ((-485 . -34) T) ((-972 . -1111) NIL) ((-611 . -101) T) ((-585 . -101) T) ((-706 . -539) 111798) ((-346 . -701) T) ((-343 . -701) T) ((-335 . -701) T) ((-255 . -701) T) ((-239 . -701) T) ((-1013 . -300) 111706) ((-870 . -1063) 111684) ((-50 . -1016) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-1133 . -539) 111663) ((-1132 . -1176) 111642) ((-561 . -1016) T) ((-507 . -1016) T) ((-1126 . -1176) 111621) ((-352 . -1007) 111605) ((-313 . -1007) 111589) ((-993 . -281) T) ((-370 . -855) 111571) ((-1132 . -539) 111522) ((-1126 . -539) 111473) ((-972 . -38) 111418) ((-773 . -1075) T) ((-879 . -701) T) ((-561 . -235) T) ((-561 . -225) T) ((-507 . -225) T) ((-507 . -235) T) ((-1088 . -539) 111397) ((-345 . -281) T) ((-621 . -669) 111381) ((-370 . -1007) 111341) ((-1082 . -1023) T) ((-102 . -125) 111325) ((-773 . -23) T) ((-1218 . -277) 111302) ((-398 . -300) 111267) ((-1240 . -1235) 111243) ((-1238 . -1235) 111222) ((-1204 . -1063) T) ((-839 . -591) 111204) ((-808 . -1007) 111173) ((-195 . -761) T) ((-194 . -761) T) ((-193 . -761) T) ((-192 . -761) T) ((-191 . -761) T) ((-190 . -761) T) ((-189 . -761) T) ((-188 . -761) T) ((-187 . -761) T) ((-186 . -761) T) ((-484 . -971) T) ((-265 . -810) T) ((-264 . -810) T) ((-263 . -810) T) ((-262 . -810) T) ((-48 . -281) T) ((-261 . -810) T) ((-260 . -810) T) ((-259 . -810) T) ((-185 . -761) T) ((-590 . -821) T) ((-628 . -402) 111157) ((-110 . -821) T) ((-627 . -21) T) ((-627 . -25) T) ((-1241 . -38) 111127) ((-117 . -277) 111078) ((-1218 . -19) 111062) ((-1218 . -582) 111039) ((-1231 . -1063) T) ((-1040 . -1063) T) ((-956 . -1063) T) ((-932 . -130) T) ((-712 . -1063) T) ((-710 . -130) T) ((-690 . -130) T) ((-500 . -767) T) ((-398 . -1111) 111017) ((-443 . -130) T) ((-500 . -768) T) ((-215 . -1016) T) ((-285 . -101) 110799) ((-139 . -1063) T) ((-673 . -971) T) ((-90 . -1172) T) ((-127 . -591) 110731) ((-121 . -591) 110663) ((-1246 . -169) T) ((-1132 . -354) 110642) ((-1126 . -354) 110621) ((-307 . -1063) T) ((-409 . -130) T) ((-304 . -1063) T) ((-398 . -38) 110573) ((-1095 . -101) T) ((-1204 . -692) 110465) ((-628 . -1023) T) ((-310 . -143) 110444) ((-310 . -145) 110423) ((-135 . -1063) T) ((-114 . -1063) T) ((-829 . -101) T) ((-560 . -591) 110405) ((-547 . -592) 110304) ((-547 . -591) 110286) ((-484 . -591) 110268) ((-484 . -592) 110213) ((-475 . -23) T) ((-472 . -821) 110164) ((-477 . -615) 110146) ((-934 . -591) 110128) ((-209 . -615) 110110) ((-217 . -395) T) ((-636 . -622) 110094) ((-1131 . -889) 110073) ((-706 . -1075) T) ((-342 . -101) T) ((-1171 . -1047) T) ((-792 . -821) T) ((-706 . -23) T) ((-334 . -1022) 110018) ((-1118 . -1117) T) ((-1107 . -106) 110002) ((-1133 . -1075) T) ((-1132 . -1075) T) ((-504 . -1007) 109986) ((-1126 . -1075) T) ((-1088 . -1075) T) ((-334 . -111) 109915) ((-973 . -1176) T) ((-126 . -1172) T) ((-883 . -1176) T) ((-668 . -277) NIL) ((-1219 . -591) 109897) ((-1133 . -23) T) ((-1132 . -23) T) ((-1126 . -23) T) ((-973 . -539) T) ((-1102 . -223) 109881) ((-883 . -539) T) ((-1088 . -23) T) ((-240 . -591) 109863) ((-1038 . -1063) T) ((-773 . -130) T) ((-685 . -591) 109845) ((-307 . -692) 109755) ((-304 . -692) 109684) ((-673 . -591) 109666) ((-673 . -592) 109611) ((-398 . -391) 109595) ((-429 . -1063) T) ((-477 . -25) T) ((-477 . -21) T) ((-1082 . -1063) T) ((-209 . -25) T) ((-209 . -21) T) ((-687 . -402) 109579) ((-689 . -1007) 109548) ((-1218 . -591) 109460) ((-1218 . -592) 109421) ((-1204 . -169) T) ((-237 . -34) T) ((-895 . -943) T) ((-1158 . -1172) T) ((-636 . -765) 109400) ((-636 . -768) 109379) ((-389 . -386) T) ((-512 . -101) 109357) ((-1004 . -1063) T) ((-214 . -964) 109341) ((-493 . -101) T) ((-599 . -591) 109323) ((-45 . -821) NIL) ((-599 . -592) 109300) ((-1004 . -588) 109275) ((-870 . -503) 109208) ((-334 . -1016) T) ((-117 . -592) NIL) ((-117 . -591) 109190) ((-841 . -1172) T) ((-644 . -408) 109174) ((-644 . -1085) 109119) ((-489 . -149) 109101) ((-334 . -225) T) ((-334 . -235) T) ((-40 . -1022) 109046) ((-841 . -853) 109030) ((-841 . -855) 108955) ((-687 . -1023) T) ((-668 . -971) NIL) ((-3 . |UnionCategory|) T) ((-1202 . -47) 108925) ((-1181 . -47) 108902) ((-1101 . -979) 108873) ((-217 . -889) T) ((-40 . -111) 108802) ((-841 . -1007) 108666) ((-1082 . -692) 108653) ((-1068 . -591) 108635) ((-1043 . -145) 108614) ((-1043 . -143) 108565) ((-973 . -354) T) ((-310 . -1160) 108531) ((-370 . -298) T) ((-310 . -1157) 108497) ((-307 . -169) 108476) ((-304 . -169) T) ((-972 . -223) 108453) ((-883 . -354) T) ((-561 . -1237) 108440) ((-507 . -1237) 108417) ((-350 . -145) 108396) ((-350 . -143) 108347) ((-344 . -145) 108326) ((-344 . -143) 108277) ((-586 . -1148) 108253) ((-336 . -145) 108232) ((-336 . -143) 108183) ((-310 . -35) 108149) ((-465 . -1148) 108128) ((0 . |EnumerationCategory|) T) ((-310 . -94) 108094) ((-370 . -991) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -227) 108044) ((-628 . -1063) T) ((-586 . -106) 107991) ((-475 . -130) T) ((-465 . -106) 107941) ((-232 . -1075) 107851) ((-841 . -368) 107835) ((-841 . -329) 107819) ((-232 . -23) 107689) ((-1027 . -889) T) ((-1027 . -794) T) ((-561 . -359) T) ((-507 . -359) T) ((-342 . -1111) T) ((-318 . -34) T) ((-44 . -408) 107673) ((-842 . -1172) T) ((-381 . -719) 107657) ((-1231 . -503) 107590) ((-706 . -130) T) ((-1210 . -539) 107569) ((-1203 . -1176) 107548) ((-1203 . -539) 107499) ((-1182 . -1176) 107478) ((-302 . -1047) T) ((-1182 . -539) 107429) ((-712 . -503) 107362) ((-1181 . -1172) 107341) ((-1181 . -855) 107214) ((-862 . -1063) T) ((-142 . -815) T) ((-1181 . -853) 107184) ((-665 . -591) 107166) ((-1133 . -130) T) ((-512 . -300) 107104) ((-1132 . -130) T) ((-139 . -503) NIL) ((-1126 . -130) T) ((-1088 . -130) T) ((-993 . -971) T) ((-973 . -23) T) ((-342 . -38) 107069) ((-973 . -1075) T) ((-883 . -1075) T) ((-81 . -591) 107051) ((-40 . -1016) T) ((-839 . -1022) 107038) ((-972 . -340) NIL) ((-841 . -869) 106997) ((-675 . -101) T) ((-940 . -23) T) ((-580 . -1172) T) ((-883 . -23) T) ((-839 . -111) 106982) ((-418 . -1075) T) ((-464 . -47) 106952) ((-205 . -101) T) ((-133 . -101) T) ((-40 . -225) 106924) ((-40 . -235) T) ((-116 . -101) T) ((-575 . -539) 106903) ((-574 . -539) 106882) ((-668 . -591) 106864) ((-668 . -592) 106772) ((-307 . -503) 106738) ((-304 . -503) 106630) ((-1202 . -1007) 106614) ((-1181 . -1007) 106400) ((-968 . -402) 106384) ((-418 . -23) T) ((-1082 . -169) T) ((-1204 . -281) T) ((-628 . -692) 106354) ((-142 . -1063) T) ((-48 . -971) T) ((-398 . -223) 106338) ((-286 . -227) 106288) ((-840 . -889) T) ((-840 . -794) NIL) ((-834 . -821) T) ((-1181 . -329) 106258) ((-1181 . -368) 106228) ((-214 . -1083) 106212) ((-1218 . -279) 106189) ((-1166 . -622) 106114) ((-932 . -21) T) ((-932 . -25) T) ((-710 . -21) T) ((-710 . -25) T) ((-690 . -21) T) ((-690 . -25) T) ((-686 . -622) 106079) ((-443 . -21) T) ((-443 . -25) T) ((-330 . -101) T) ((-171 . -101) T) ((-968 . -1023) T) ((-839 . -1016) T) ((-748 . -101) T) ((-1203 . -354) 106058) ((-1202 . -869) 105964) ((-1182 . -354) 105943) ((-1181 . -869) 105794) ((-993 . -591) 105776) ((-398 . -802) 105729) ((-1133 . -482) 105695) ((-166 . -889) 105626) ((-1132 . -482) 105592) ((-1126 . -482) 105558) ((-687 . -1063) T) ((-1088 . -482) 105524) ((-560 . -1022) 105511) ((-547 . -1022) 105498) ((-484 . -1022) 105463) ((-307 . -281) 105442) ((-304 . -281) T) ((-345 . -591) 105424) ((-409 . -25) T) ((-409 . -21) T) ((-98 . -277) 105403) ((-560 . -111) 105388) ((-547 . -111) 105373) ((-484 . -111) 105329) ((-1135 . -855) 105296) ((-870 . -479) 105280) ((-48 . -591) 105262) ((-48 . -592) 105207) ((-232 . -130) 105077) ((-1191 . -889) 105056) ((-790 . -1176) 105035) ((-1004 . -503) 104879) ((-379 . -591) 104861) ((-790 . -539) 104792) ((-565 . -622) 104767) ((-255 . -47) 104739) ((-239 . -47) 104696) ((-519 . -498) 104673) ((-969 . -1172) T) ((-673 . -1022) 104638) ((-1210 . -1075) T) ((-1203 . -1075) T) ((-1182 . -1075) T) ((-972 . -361) 104610) ((-112 . -359) T) ((-464 . -869) 104516) ((-1210 . -23) T) ((-1203 . -23) T) ((-873 . -591) 104498) ((-90 . -106) 104482) ((-1166 . -701) T) ((-874 . -821) 104433) ((-675 . -1111) T) ((-673 . -111) 104389) ((-1182 . -23) T) ((-575 . -1075) T) ((-574 . -1075) T) ((-687 . -692) 104218) ((-686 . -701) T) ((-1082 . -281) T) ((-973 . -130) T) ((-477 . -821) T) ((-940 . -130) T) ((-883 . -130) T) ((-773 . -25) T) ((-209 . -821) T) ((-773 . -21) T) ((-560 . -1016) T) ((-547 . -1016) T) ((-484 . -1016) T) ((-575 . -23) T) ((-334 . -1237) 104195) ((-310 . -442) 104174) ((-330 . -300) 104161) ((-574 . -23) T) ((-418 . -130) T) ((-632 . -622) 104135) ((-237 . -979) 104119) ((-841 . -298) T) ((-1242 . -1232) 104103) ((-745 . -766) T) ((-745 . -769) T) ((-675 . -38) 104090) ((-547 . -225) T) ((-484 . -235) T) ((-484 . -225) T) ((-1110 . -227) 104040) ((-1051 . -878) 104019) ((-116 . -38) 104006) ((-201 . -774) T) ((-200 . -774) T) ((-199 . -774) T) ((-198 . -774) T) ((-841 . -991) 103985) ((-1231 . -479) 103969) ((-756 . -878) 103948) ((-754 . -878) 103927) ((-1145 . -1172) T) ((-444 . -878) 103906) ((-712 . -479) 103890) ((-1051 . -622) 103815) ((-756 . -622) 103740) ((-599 . -1022) 103727) ((-469 . -1172) T) ((-334 . -359) T) ((-139 . -479) 103709) ((-754 . -622) 103634) ((-1101 . -1172) T) ((-451 . -622) 103605) ((-255 . -855) 103464) ((-239 . -855) NIL) ((-117 . -1022) 103409) ((-444 . -622) 103334) ((-638 . -1007) 103311) ((-599 . -111) 103296) ((-346 . -1007) 103280) ((-343 . -1007) 103264) ((-335 . -1007) 103248) ((-255 . -1007) 103092) ((-239 . -1007) 102968) ((-117 . -111) 102897) ((-58 . -1172) T) ((-508 . -1172) T) ((-505 . -1172) T) ((-486 . -1172) T) ((-485 . -1172) T) ((-428 . -591) 102879) ((-425 . -591) 102861) ((-3 . -101) T) ((-996 . -1165) 102830) ((-807 . -101) T) ((-663 . -56) 102788) ((-673 . -1016) T) ((-50 . -622) 102762) ((-280 . -442) T) ((-466 . -1165) 102731) ((0 . -101) T) ((-561 . -622) 102696) ((-507 . -622) 102641) ((-49 . -101) T) ((-879 . -1007) 102628) ((-673 . -235) T) ((-1043 . -400) 102607) ((-706 . -615) 102555) ((-968 . -1063) T) ((-687 . -169) 102446) ((-477 . -961) 102428) ((-255 . -368) 102412) ((-239 . -368) 102396) ((-390 . -1063) T) ((-330 . -38) 102380) ((-995 . -101) 102358) ((-209 . -961) 102340) ((-171 . -38) 102272) ((-1202 . -298) 102251) ((-1181 . -298) 102230) ((-632 . -701) T) ((-98 . -591) 102212) ((-1126 . -615) 102164) ((-475 . -25) T) ((-475 . -21) T) ((-1181 . -991) 102117) ((-599 . -1016) T) ((-370 . -395) T) ((-381 . -101) T) ((-255 . -869) 102063) ((-239 . -869) 102040) ((-117 . -1016) T) ((-790 . -1075) T) ((-1051 . -701) T) ((-599 . -225) 102019) ((-597 . -101) T) ((-756 . -701) T) ((-754 . -701) T) ((-404 . -1075) T) ((-117 . -235) T) ((-40 . -359) NIL) ((-117 . -225) NIL) ((-444 . -701) T) ((-790 . -23) T) ((-706 . -25) T) ((-706 . -21) T) ((-677 . -821) T) ((-1040 . -277) 101998) ((-77 . -387) T) ((-77 . -386) T) ((-668 . -1022) 101948) ((-1210 . -130) T) ((-1203 . -130) T) ((-1182 . -130) T) ((-1102 . -402) 101932) ((-611 . -358) 101864) ((-585 . -358) 101796) ((-1116 . -1109) 101780) ((-102 . -1063) 101758) ((-1133 . -25) T) ((-1133 . -21) T) ((-1132 . -21) T) ((-968 . -692) 101706) ((-215 . -622) 101673) ((-668 . -111) 101607) ((-50 . -701) T) ((-1132 . -25) T) ((-342 . -340) T) ((-1126 . -21) T) ((-1043 . -442) 101558) ((-1126 . -25) T) ((-687 . -503) 101505) ((-561 . -701) T) ((-507 . -701) T) ((-1088 . -21) T) ((-1088 . -25) T) ((-575 . -130) T) ((-574 . -130) T) ((-350 . -442) T) ((-344 . -442) T) ((-336 . -442) T) ((-464 . -298) 101484) ((-304 . -277) 101419) ((-107 . -442) T) ((-78 . -431) T) ((-78 . -386) T) ((-467 . -101) T) ((-1246 . -591) 101401) ((-1246 . -592) 101383) ((-1043 . -393) 101362) ((-1004 . -479) 101293) ((-547 . -769) T) ((-547 . -766) T) ((-1028 . -227) 101239) ((-350 . -393) 101190) ((-344 . -393) 101141) ((-336 . -393) 101092) ((-1233 . -1075) T) ((-1233 . -23) T) ((-1220 . -101) T) ((-172 . -591) 101074) ((-1102 . -1023) T) ((-644 . -719) 101058) ((-1137 . -143) 101037) ((-1137 . -145) 101016) ((-1106 . -1063) T) ((-1106 . -1036) 100985) ((-68 . -1172) T) ((-993 . -1022) 100922) ((-835 . -1023) T) ((-232 . -615) 100828) ((-668 . -1016) T) ((-345 . -1022) 100773) ((-60 . -1172) T) ((-993 . -111) 100689) ((-870 . -591) 100621) ((-668 . -235) T) ((-668 . -225) NIL) ((-814 . -819) 100600) ((-673 . -769) T) ((-673 . -766) T) ((-972 . -402) 100577) ((-345 . -111) 100506) ((-370 . -889) T) ((-398 . -819) 100485) ((-687 . -281) 100396) ((-215 . -701) T) ((-1210 . -482) 100362) ((-1203 . -482) 100328) ((-1182 . -482) 100294) ((-307 . -971) 100273) ((-214 . -1063) 100251) ((-310 . -942) 100213) ((-104 . -101) T) ((-48 . -1022) 100178) ((-1242 . -101) T) ((-372 . -101) T) ((-48 . -111) 100134) ((-973 . -615) 100116) ((-1204 . -591) 100098) ((-519 . -101) T) ((-489 . -101) T) ((-1095 . -1096) 100082) ((-150 . -1225) 100066) ((-237 . -1172) T) ((-1171 . -101) T) ((-1131 . -1176) 100045) ((-1087 . -1176) 100024) ((-232 . -21) 99934) ((-232 . -25) 99785) ((-127 . -119) 99769) ((-121 . -119) 99753) ((-44 . -719) 99737) ((-1131 . -539) 99648) ((-1087 . -539) 99579) ((-1004 . -277) 99554) ((-963 . -1047) T) ((-790 . -130) T) ((-117 . -769) NIL) ((-117 . -766) NIL) ((-346 . -298) T) ((-343 . -298) T) ((-335 . -298) T) ((-1058 . -1172) T) ((-242 . -1075) 99464) ((-241 . -1075) 99374) ((-993 . -1016) T) ((-972 . -1023) T) ((-334 . -622) 99319) ((-597 . -38) 99303) ((-1231 . -591) 99265) ((-1231 . -592) 99226) ((-1040 . -591) 99208) ((-993 . -235) T) ((-345 . -1016) T) ((-789 . -1225) 99178) ((-242 . -23) T) ((-241 . -23) T) ((-956 . -591) 99160) ((-712 . -592) 99121) ((-712 . -591) 99103) ((-773 . -821) 99082) ((-968 . -503) 98994) ((-345 . -225) T) ((-345 . -235) T) ((-1119 . -149) 98941) ((-973 . -25) T) ((-139 . -592) 98900) ((-139 . -591) 98882) ((-879 . -298) T) ((-973 . -21) T) ((-940 . -25) T) ((-883 . -21) T) ((-883 . -25) T) ((-418 . -21) T) ((-418 . -25) T) ((-814 . -402) 98866) ((-48 . -1016) T) ((-1240 . -1232) 98850) ((-1238 . -1232) 98834) ((-1004 . -582) 98809) ((-307 . -592) 98670) ((-307 . -591) 98652) ((-304 . -592) NIL) ((-304 . -591) 98634) ((-48 . -235) T) ((-48 . -225) T) ((-628 . -277) 98595) ((-533 . -227) 98545) ((-135 . -591) 98527) ((-114 . -591) 98509) ((-467 . -38) 98474) ((-1242 . -1239) 98453) ((-1233 . -130) T) ((-1241 . -1023) T) ((-1045 . -101) T) ((-87 . -1172) T) ((-489 . -300) NIL) ((-969 . -106) 98437) ((-858 . -1063) T) ((-854 . -1063) T) ((-1218 . -625) 98421) ((-1218 . -364) 98405) ((-318 . -1172) T) ((-572 . -821) T) ((-1102 . -1063) T) ((-1102 . -1019) 98345) ((-102 . -503) 98278) ((-896 . -591) 98260) ((-334 . -701) T) ((-30 . -591) 98242) ((-835 . -1063) T) ((-814 . -1023) 98221) ((-40 . -622) 98166) ((-217 . -1176) T) ((-398 . -1023) T) ((-1118 . -149) 98148) ((-968 . -281) 98099) ((-594 . -1063) T) ((-217 . -539) T) ((-310 . -1199) 98083) ((-310 . -1196) 98053) ((-1145 . -1148) 98032) ((-1038 . -591) 98014) ((-621 . -149) 97998) ((-608 . -149) 97944) ((-1145 . -106) 97894) ((-469 . -1148) 97873) ((-477 . -145) T) ((-477 . -143) NIL) ((-1082 . -592) 97788) ((-429 . -591) 97770) ((-209 . -145) T) ((-209 . -143) NIL) ((-1082 . -591) 97752) ((-129 . -101) T) ((-52 . -101) T) ((-1182 . -615) 97704) ((-469 . -106) 97654) ((-962 . -23) T) ((-1242 . -38) 97624) ((-1131 . -1075) T) ((-1087 . -1075) T) ((-1027 . -1176) T) ((-302 . -101) T) ((-825 . -1075) T) ((-921 . -1176) 97603) ((-471 . -1176) 97582) ((-706 . -821) 97561) ((-1027 . -539) T) ((-921 . -539) 97492) ((-1131 . -23) T) ((-1087 . -23) T) ((-825 . -23) T) ((-471 . -539) 97423) ((-1102 . -692) 97355) ((-1106 . -503) 97288) ((-1004 . -592) NIL) ((-1004 . -591) 97270) ((-95 . -1047) T) ((-835 . -692) 97240) ((-1166 . -47) 97209) ((-242 . -130) T) ((-241 . -130) T) ((-1067 . -1063) T) ((-972 . -1063) T) ((-61 . -591) 97191) ((-1126 . -821) NIL) ((-993 . -766) T) ((-993 . -769) T) ((-1246 . -1022) 97178) ((-1246 . -111) 97163) ((-839 . -622) 97150) ((-1210 . -25) T) ((-1210 . -21) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-996 . -149) 97134) ((-841 . -794) 97113) ((-841 . -889) T) ((-687 . -277) 97040) ((-575 . -21) T) ((-575 . -25) T) ((-574 . -21) T) ((-40 . -701) T) ((-214 . -503) 96973) ((-574 . -25) T) ((-466 . -149) 96957) ((-453 . -149) 96941) ((-890 . -768) T) ((-890 . -701) T) ((-745 . -767) T) ((-745 . -768) T) ((-495 . -1063) T) ((-491 . -1063) T) ((-745 . -701) T) ((-217 . -354) T) ((-1116 . -1063) 96919) ((-840 . -1176) T) ((-628 . -591) 96901) ((-840 . -539) T) ((-668 . -359) NIL) ((-350 . -1225) 96885) ((-644 . -101) T) ((-344 . -1225) 96869) ((-336 . -1225) 96853) ((-1241 . -1063) T) ((-509 . -821) 96832) ((-791 . -442) 96811) ((-1013 . -1063) T) ((-1013 . -1036) 96740) ((-996 . -945) 96709) ((-793 . -1075) T) ((-972 . -692) 96654) ((-377 . -1075) T) ((-466 . -945) 96623) ((-453 . -945) 96592) ((-110 . -149) 96574) ((-72 . -591) 96556) ((-862 . -591) 96538) ((-1043 . -699) 96517) ((-1246 . -1016) T) ((-790 . -615) 96465) ((-285 . -1023) 96407) ((-166 . -1176) 96312) ((-217 . -1075) T) ((-315 . -23) T) ((-1126 . -961) 96264) ((-814 . -1063) T) ((-1088 . -715) 96243) ((-1204 . -1022) 96148) ((-1202 . -889) 96127) ((-839 . -701) T) ((-166 . -539) 96038) ((-1181 . -889) 96017) ((-560 . -622) 96004) ((-398 . -1063) T) ((-547 . -622) 95991) ((-254 . -1063) T) ((-484 . -622) 95956) ((-217 . -23) T) ((-1181 . -794) 95909) ((-1240 . -101) T) ((-345 . -1237) 95886) ((-1238 . -101) T) ((-1204 . -111) 95778) ((-142 . -591) 95760) ((-962 . -130) T) ((-44 . -101) T) ((-232 . -821) 95711) ((-1191 . -1176) 95690) ((-102 . -479) 95674) ((-1241 . -692) 95644) ((-1051 . -47) 95605) ((-1027 . -1075) T) ((-921 . -1075) T) ((-127 . -34) T) ((-121 . -34) T) ((-756 . -47) 95582) ((-754 . -47) 95554) ((-1191 . -539) 95465) ((-345 . -359) T) ((-471 . -1075) T) ((-1131 . -130) T) ((-1087 . -130) T) ((-444 . -47) 95444) ((-840 . -354) T) ((-825 . -130) T) ((-150 . -101) T) ((-1027 . -23) T) ((-921 . -23) T) ((-554 . -539) T) ((-790 . -25) T) ((-790 . -21) T) ((-1102 . -503) 95377) ((-571 . -1047) T) ((-565 . -1007) 95361) ((-471 . -23) T) ((-342 . -1023) T) ((-1166 . -869) 95342) ((-644 . -300) 95280) ((-1076 . -1225) 95250) ((-673 . -622) 95215) ((-972 . -169) T) ((-932 . -143) 95194) ((-611 . -1063) T) ((-585 . -1063) T) ((-932 . -145) 95173) ((-973 . -821) T) ((-710 . -145) 95152) ((-710 . -143) 95131) ((-940 . -821) T) ((-464 . -889) 95110) ((-307 . -1022) 95020) ((-304 . -1022) 94949) ((-968 . -277) 94907) ((-398 . -692) 94859) ((-128 . -821) T) ((-675 . -819) T) ((-1204 . -1016) T) ((-307 . -111) 94755) ((-304 . -111) 94668) ((-933 . -101) T) ((-789 . -101) 94458) ((-687 . -592) NIL) ((-687 . -591) 94440) ((-632 . -1007) 94336) ((-1204 . -317) 94280) ((-1004 . -279) 94255) ((-560 . -701) T) ((-547 . -768) T) ((-166 . -354) 94206) ((-547 . -765) T) ((-547 . -701) T) ((-484 . -701) T) ((-1106 . -479) 94190) ((-1051 . -855) NIL) ((-840 . -1075) T) ((-117 . -878) NIL) ((-1240 . -1239) 94166) ((-1238 . -1239) 94145) ((-756 . -855) NIL) ((-754 . -855) 94004) ((-1233 . -25) T) ((-1233 . -21) T) ((-1169 . -101) 93982) ((-1069 . -386) T) ((-599 . -622) 93969) ((-444 . -855) NIL) ((-649 . -101) 93947) ((-1051 . -1007) 93774) ((-840 . -23) T) ((-756 . -1007) 93633) ((-754 . -1007) 93490) ((-117 . -622) 93435) ((-444 . -1007) 93311) ((-623 . -1007) 93295) ((-603 . -101) T) ((-214 . -479) 93279) ((-1218 . -34) T) ((-611 . -692) 93263) ((-585 . -692) 93247) ((-644 . -38) 93207) ((-310 . -101) T) ((-84 . -591) 93189) ((-50 . -1007) 93173) ((-1082 . -1022) 93160) ((-1051 . -368) 93144) ((-756 . -368) 93128) ((-59 . -56) 93090) ((-673 . -768) T) ((-673 . -765) T) ((-561 . -1007) 93077) ((-507 . -1007) 93054) ((-673 . -701) T) ((-315 . -130) T) ((-307 . -1016) 92944) ((-304 . -1016) T) ((-166 . -1075) T) ((-754 . -368) 92928) ((-45 . -149) 92878) ((-973 . -961) 92860) ((-444 . -368) 92844) ((-398 . -169) T) ((-307 . -235) 92823) ((-304 . -235) T) ((-304 . -225) NIL) ((-285 . -1063) 92605) ((-217 . -130) T) ((-1082 . -111) 92590) ((-166 . -23) T) ((-773 . -145) 92569) ((-773 . -143) 92548) ((-242 . -615) 92454) ((-241 . -615) 92360) ((-310 . -275) 92326) ((-1116 . -503) 92259) ((-1095 . -1063) T) ((-217 . -1025) T) ((-789 . -300) 92197) ((-1051 . -869) 92132) ((-756 . -869) 92075) ((-754 . -869) 92059) ((-1240 . -38) 92029) ((-1238 . -38) 91999) ((-1191 . -1075) T) ((-826 . -1075) T) ((-444 . -869) 91976) ((-829 . -1063) T) ((-1191 . -23) T) ((-554 . -1075) T) ((-826 . -23) T) ((-599 . -701) T) ((-346 . -889) T) ((-343 . -889) T) ((-280 . -101) T) ((-335 . -889) T) ((-1027 . -130) T) ((-939 . -1047) T) ((-921 . -130) T) ((-117 . -768) NIL) ((-117 . -765) NIL) ((-117 . -701) T) ((-668 . -878) NIL) ((-1013 . -503) 91877) ((-471 . -130) T) ((-554 . -23) T) ((-649 . -300) 91815) ((-611 . -736) T) ((-585 . -736) T) ((-1182 . -821) NIL) ((-972 . -281) T) ((-242 . -21) T) ((-668 . -622) 91765) ((-342 . -1063) T) ((-242 . -25) T) ((-241 . -21) T) ((-241 . -25) T) ((-150 . -38) 91749) ((-2 . -101) T) ((-879 . -889) T) ((-472 . -1225) 91719) ((-215 . -1007) 91696) ((-1082 . -1016) T) ((-686 . -298) T) ((-285 . -692) 91638) ((-675 . -1023) T) ((-477 . -442) T) ((-398 . -503) 91550) ((-209 . -442) T) ((-1082 . -225) T) ((-286 . -149) 91500) ((-968 . -592) 91461) ((-968 . -591) 91443) ((-958 . -591) 91425) ((-116 . -1023) T) ((-628 . -1022) 91409) ((-217 . -482) T) ((-390 . -591) 91391) ((-390 . -592) 91368) ((-1020 . -1225) 91338) ((-628 . -111) 91317) ((-1102 . -479) 91301) ((-789 . -38) 91271) ((-62 . -431) T) ((-62 . -386) T) ((-1119 . -101) T) ((-840 . -130) T) ((-474 . -101) 91249) ((-1246 . -359) T) ((-1043 . -101) T) ((-1026 . -101) T) ((-342 . -692) 91194) ((-706 . -145) 91173) ((-706 . -143) 91152) ((-993 . -622) 91089) ((-512 . -1063) 91067) ((-350 . -101) T) ((-344 . -101) T) ((-336 . -101) T) ((-107 . -101) T) ((-493 . -1063) T) ((-345 . -622) 91012) ((-1131 . -615) 90960) ((-1087 . -615) 90908) ((-376 . -498) 90887) ((-807 . -819) 90866) ((-370 . -1176) T) ((-668 . -701) T) ((-330 . -1023) T) ((-1182 . -961) 90818) ((-171 . -1023) T) ((-102 . -591) 90750) ((-1133 . -143) 90729) ((-1133 . -145) 90708) ((-370 . -539) T) ((-1132 . -145) 90687) ((-1132 . -143) 90666) ((-1126 . -143) 90573) ((-398 . -281) T) ((-1126 . -145) 90480) ((-1088 . -145) 90459) ((-1088 . -143) 90438) ((-310 . -38) 90279) ((-166 . -130) T) ((-304 . -769) NIL) ((-304 . -766) NIL) ((-628 . -1016) T) ((-48 . -622) 90244) ((-963 . -101) T) ((-962 . -21) T) ((-127 . -979) 90228) ((-121 . -979) 90212) ((-962 . -25) T) ((-870 . -119) 90196) ((-1118 . -101) T) ((-790 . -821) 90175) ((-1191 . -130) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-826 . -130) T) ((-1087 . -25) T) ((-1087 . -21) T) ((-825 . -25) T) ((-825 . -21) T) ((-756 . -298) 90154) ((-621 . -101) 90132) ((-608 . -101) T) ((-1119 . -300) 89927) ((-554 . -130) T) ((-597 . -819) 89906) ((-1116 . -479) 89890) ((-1110 . -149) 89840) ((-1106 . -591) 89802) ((-1106 . -592) 89763) ((-993 . -765) T) ((-993 . -768) T) ((-993 . -701) T) ((-474 . -300) 89701) ((-443 . -408) 89671) ((-342 . -169) T) ((-280 . -38) 89658) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-261 . -101) T) ((-260 . -101) T) ((-259 . -101) T) ((-334 . -1007) 89635) ((-204 . -101) T) ((-203 . -101) T) ((-201 . -101) T) ((-200 . -101) T) ((-199 . -101) T) ((-198 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-687 . -1022) 89458) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-187 . -101) T) ((-186 . -101) T) ((-185 . -101) T) ((-345 . -701) T) ((-687 . -111) 89267) ((-644 . -223) 89251) ((-561 . -298) T) ((-507 . -298) T) ((-285 . -503) 89200) ((-107 . -300) NIL) ((-71 . -386) T) ((-1076 . -101) 88990) ((-807 . -402) 88974) ((-1082 . -769) T) ((-1082 . -766) T) ((-675 . -1063) T) ((-370 . -354) T) ((-166 . -482) 88952) ((-205 . -1063) T) ((-214 . -591) 88884) ((-133 . -1063) T) ((-116 . -1063) T) ((-48 . -701) T) ((-1013 . -479) 88849) ((-495 . -92) T) ((-139 . -416) 88831) ((-139 . -359) T) ((-996 . -101) T) ((-501 . -498) 88810) ((-466 . -101) T) ((-453 . -101) T) ((-1003 . -1075) T) ((-1133 . -35) 88776) ((-1133 . -94) 88742) ((-1133 . -1160) 88708) ((-1133 . -1157) 88674) ((-1118 . -300) NIL) ((-88 . -387) T) ((-88 . -386) T) ((-1043 . -1111) 88653) ((-1132 . -1157) 88619) ((-1132 . -1160) 88585) ((-1003 . -23) T) ((-1132 . -94) 88551) ((-554 . -482) T) ((-1132 . -35) 88517) ((-1126 . -1157) 88483) ((-1126 . -1160) 88449) ((-1126 . -94) 88415) ((-352 . -1075) T) ((-350 . -1111) 88394) ((-344 . -1111) 88373) ((-336 . -1111) 88352) ((-1126 . -35) 88318) ((-1088 . -35) 88284) ((-1088 . -94) 88250) ((-107 . -1111) T) ((-1088 . -1160) 88216) ((-807 . -1023) 88195) ((-621 . -300) 88133) ((-608 . -300) 87984) ((-1088 . -1157) 87950) ((-687 . -1016) T) ((-1027 . -615) 87932) ((-1043 . -38) 87800) ((-921 . -615) 87748) ((-973 . -145) T) ((-973 . -143) NIL) ((-370 . -1075) T) ((-315 . -25) T) ((-313 . -23) T) ((-912 . -821) 87727) ((-687 . -317) 87704) ((-471 . -615) 87652) ((-40 . -1007) 87540) ((-675 . -692) 87527) ((-687 . -225) T) ((-330 . -1063) T) ((-171 . -1063) T) ((-322 . -821) T) ((-409 . -442) 87477) ((-370 . -23) T) ((-350 . -38) 87442) ((-344 . -38) 87407) ((-336 . -38) 87372) ((-79 . -431) T) ((-79 . -386) T) ((-217 . -25) T) ((-217 . -21) T) ((-808 . -1075) T) ((-107 . -38) 87322) ((-801 . -1075) T) ((-748 . -1063) T) ((-116 . -692) 87309) ((-646 . -1007) 87293) ((-590 . -101) T) ((-808 . -23) T) ((-801 . -23) T) ((-1116 . -277) 87270) ((-1076 . -300) 87208) ((-1065 . -227) 87192) ((-63 . -387) T) ((-63 . -386) T) ((-110 . -101) T) ((-40 . -368) 87169) ((-95 . -101) T) ((-627 . -823) 87153) ((-1027 . -21) T) ((-1027 . -25) T) ((-789 . -223) 87122) ((-921 . -25) T) ((-921 . -21) T) ((-597 . -1023) T) ((-471 . -25) T) ((-471 . -21) T) ((-996 . -300) 87060) ((-858 . -591) 87042) ((-854 . -591) 87024) ((-242 . -821) 86975) ((-241 . -821) 86926) ((-512 . -503) 86859) ((-840 . -615) 86836) ((-466 . -300) 86774) ((-453 . -300) 86712) ((-342 . -281) T) ((-1116 . -1206) 86696) ((-1102 . -591) 86658) ((-1102 . -592) 86619) ((-1100 . -101) T) ((-968 . -1022) 86515) ((-40 . -869) 86467) ((-1116 . -582) 86444) ((-1246 . -622) 86431) ((-1028 . -149) 86377) ((-841 . -1176) T) ((-968 . -111) 86259) ((-330 . -692) 86243) ((-835 . -591) 86225) ((-171 . -692) 86157) ((-398 . -277) 86115) ((-841 . -539) T) ((-107 . -391) 86097) ((-83 . -375) T) ((-83 . -386) T) ((-675 . -169) T) ((-594 . -591) 86079) ((-98 . -701) T) ((-472 . -101) 85869) ((-98 . -463) T) ((-116 . -169) T) ((-1076 . -38) 85839) ((-166 . -615) 85787) ((-1020 . -101) T) ((-840 . -25) T) ((-789 . -230) 85766) ((-840 . -21) T) ((-792 . -101) T) ((-405 . -101) T) ((-376 . -101) T) ((-110 . -300) NIL) ((-219 . -101) 85744) ((-127 . -1172) T) ((-121 . -1172) T) ((-1003 . -130) T) ((-644 . -358) 85728) ((-968 . -1016) T) ((-1191 . -615) 85676) ((-1067 . -591) 85658) ((-972 . -591) 85640) ((-504 . -23) T) ((-499 . -23) T) ((-334 . -298) T) ((-497 . -23) T) ((-313 . -130) T) ((-3 . -1063) T) ((-972 . -592) 85624) ((-968 . -235) 85603) ((-968 . -225) 85582) ((-1246 . -701) T) ((-1210 . -143) 85561) ((-807 . -1063) T) ((-1210 . -145) 85540) ((-1203 . -145) 85519) ((-1203 . -143) 85498) ((-1202 . -1176) 85477) ((-1182 . -143) 85384) ((-1182 . -145) 85291) ((-1181 . -1176) 85270) ((-370 . -130) T) ((-547 . -855) 85252) ((0 . -1063) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1063) T) ((-1204 . -622) 85157) ((-1202 . -539) 85108) ((-689 . -1075) T) ((-1181 . -539) 85059) ((-547 . -1007) 85041) ((-574 . -145) 85020) ((-574 . -143) 84999) ((-484 . -1007) 84942) ((-86 . -375) T) ((-86 . -386) T) ((-841 . -354) T) ((-808 . -130) T) ((-801 . -130) T) ((-689 . -23) T) ((-495 . -591) 84892) ((-491 . -591) 84874) ((-1242 . -1023) T) ((-370 . -1025) T) ((-995 . -1063) 84852) ((-870 . -34) T) ((-472 . -300) 84790) ((-571 . -101) T) ((-1116 . -592) 84751) ((-1116 . -591) 84683) ((-1131 . -821) 84662) ((-45 . -101) T) ((-1087 . -821) 84641) ((-791 . -101) T) ((-1191 . -25) T) ((-1191 . -21) T) ((-826 . -25) T) ((-44 . -358) 84625) ((-826 . -21) T) ((-706 . -442) 84576) ((-1241 . -591) 84558) ((-584 . -1047) T) ((-1020 . -300) 84496) ((-554 . -25) T) ((-554 . -21) T) ((-381 . -1063) T) ((-645 . -1047) T) ((-158 . -1047) T) ((-153 . -1047) T) ((-597 . -1063) T) ((-673 . -855) 84478) ((-1218 . -1172) T) ((-219 . -300) 84416) ((-142 . -359) T) ((-1013 . -592) 84358) ((-1013 . -591) 84301) ((-304 . -878) NIL) ((-673 . -1007) 84246) ((-686 . -889) T) ((-464 . -1176) 84225) ((-1132 . -442) 84204) ((-1126 . -442) 84183) ((-321 . -101) T) ((-841 . -1075) T) ((-307 . -622) 84004) ((-304 . -622) 83933) ((-464 . -539) 83884) ((-330 . -503) 83850) ((-533 . -149) 83800) ((-40 . -298) T) ((-814 . -591) 83782) ((-675 . -281) T) ((-841 . -23) T) ((-370 . -482) T) ((-1043 . -223) 83752) ((-501 . -101) T) ((-398 . -592) 83560) ((-398 . -591) 83542) ((-254 . -591) 83524) ((-116 . -281) T) ((-1204 . -701) T) ((-1202 . -354) 83503) ((-1181 . -354) 83482) ((-1231 . -34) T) ((-117 . -1172) T) ((-107 . -223) 83464) ((-1137 . -101) T) ((-467 . -1063) T) ((-512 . -479) 83448) ((-712 . -34) T) ((-472 . -38) 83418) ((-139 . -34) T) ((-117 . -853) 83395) ((-117 . -855) NIL) ((-599 . -1007) 83278) ((-619 . -821) 83257) ((-1230 . -101) T) ((-286 . -101) T) ((-687 . -359) 83236) ((-117 . -1007) 83213) ((-381 . -692) 83197) ((-597 . -692) 83181) ((-45 . -300) 82985) ((-790 . -143) 82964) ((-790 . -145) 82943) ((-1241 . -373) 82922) ((-793 . -821) T) ((-1220 . -1063) T) ((-1119 . -221) 82869) ((-377 . -821) 82848) ((-1210 . -1160) 82814) ((-1210 . -1157) 82780) ((-1203 . -1157) 82746) ((-504 . -130) T) ((-1203 . -1160) 82712) ((-1182 . -1157) 82678) ((-1182 . -1160) 82644) ((-1210 . -35) 82610) ((-1210 . -94) 82576) ((-611 . -591) 82545) ((-585 . -591) 82514) ((-217 . -821) T) ((-1203 . -94) 82480) ((-1203 . -35) 82446) ((-1202 . -1075) T) ((-1082 . -622) 82433) ((-1182 . -94) 82399) ((-1181 . -1075) T) ((-572 . -149) 82381) ((-1043 . -340) 82360) ((-117 . -368) 82337) ((-117 . -329) 82314) ((-171 . -281) T) ((-1182 . -35) 82280) ((-839 . -298) T) ((-304 . -768) NIL) ((-304 . -765) NIL) ((-307 . -701) 82129) ((-304 . -701) T) ((-464 . -354) 82108) ((-350 . -340) 82087) ((-344 . -340) 82066) ((-336 . -340) 82045) ((-307 . -463) 82024) ((-1202 . -23) T) ((-1181 . -23) T) ((-693 . -1075) T) ((-689 . -130) T) ((-627 . -101) T) ((-467 . -692) 81989) ((-45 . -273) 81939) ((-104 . -1063) T) ((-67 . -591) 81921) ((-939 . -101) T) ((-834 . -101) T) ((-599 . -869) 81880) ((-1242 . -1063) T) ((-372 . -1063) T) ((-1171 . -1063) T) ((-81 . -1172) T) ((-1027 . -821) T) ((-921 . -821) 81859) ((-117 . -869) NIL) ((-756 . -889) 81838) ((-688 . -821) T) ((-519 . -1063) T) ((-489 . -1063) T) ((-346 . -1176) T) ((-343 . -1176) T) ((-335 . -1176) T) ((-255 . -1176) 81817) ((-239 . -1176) 81796) ((-1076 . -223) 81765) ((-471 . -821) 81744) ((-1102 . -1022) 81728) ((-381 . -736) T) ((-1118 . -802) T) ((-668 . -1172) T) ((-346 . -539) T) ((-343 . -539) T) ((-335 . -539) T) ((-255 . -539) 81659) ((-239 . -539) 81590) ((-514 . -1047) T) ((-1102 . -111) 81569) ((-443 . -719) 81539) ((-835 . -1022) 81509) ((-791 . -38) 81451) ((-668 . -853) 81433) ((-668 . -855) 81415) ((-286 . -300) 81219) ((-879 . -1176) T) ((-644 . -402) 81203) ((-835 . -111) 81168) ((-668 . -1007) 81113) ((-973 . -442) T) ((-879 . -539) T) ((-561 . -889) T) ((-464 . -1075) T) ((-507 . -889) T) ((-1116 . -279) 81090) ((-883 . -442) T) ((-64 . -591) 81072) ((-608 . -221) 81018) ((-464 . -23) T) ((-1082 . -768) T) ((-841 . -130) T) ((-1082 . -765) T) ((-1233 . -1235) 80997) ((-1082 . -701) T) ((-628 . -622) 80971) ((-285 . -591) 80712) ((-1004 . -34) T) ((-789 . -819) 80691) ((-560 . -298) T) ((-547 . -298) T) ((-484 . -298) T) ((-1242 . -692) 80661) ((-668 . -368) 80643) ((-668 . -329) 80625) ((-467 . -169) T) ((-372 . -692) 80595) ((-840 . -821) NIL) ((-547 . -991) T) ((-484 . -991) T) ((-1095 . -591) 80577) ((-1076 . -230) 80556) ((-206 . -101) T) ((-1110 . -101) T) ((-70 . -591) 80538) ((-1102 . -1016) T) ((-1137 . -38) 80435) ((-829 . -591) 80417) ((-547 . -532) T) ((-644 . -1023) T) ((-706 . -918) 80370) ((-1102 . -225) 80349) ((-1045 . -1063) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-972 . -1022) 80294) ((-874 . -101) T) ((-835 . -1016) T) ((-668 . -869) NIL) ((-346 . -320) 80278) ((-346 . -354) T) ((-343 . -320) 80262) ((-343 . -354) T) ((-335 . -320) 80246) ((-335 . -354) T) ((-477 . -101) T) ((-1230 . -38) 80216) ((-512 . -661) 80166) ((-209 . -101) T) ((-993 . -1007) 80046) ((-972 . -111) 79975) ((-1133 . -942) 79944) ((-1132 . -942) 79906) ((-509 . -149) 79890) ((-1043 . -361) 79869) ((-342 . -591) 79851) ((-313 . -21) T) ((-345 . -1007) 79828) ((-313 . -25) T) ((-1126 . -942) 79797) ((-1088 . -942) 79764) ((-75 . -591) 79746) ((-673 . -298) T) ((-166 . -821) 79725) ((-879 . -354) T) ((-370 . -25) T) ((-370 . -21) T) ((-879 . -320) 79712) ((-85 . -591) 79694) ((-673 . -991) T) ((-651 . -821) T) ((-1202 . -130) T) ((-1181 . -130) T) ((-870 . -979) 79678) ((-808 . -21) T) ((-48 . -1007) 79621) ((-808 . -25) T) ((-801 . -25) T) ((-801 . -21) T) ((-1240 . -1023) T) ((-1238 . -1023) T) ((-628 . -701) T) ((-1241 . -1022) 79605) ((-1191 . -821) 79584) ((-789 . -402) 79553) ((-102 . -119) 79537) ((-129 . -1063) T) ((-52 . -1063) T) ((-895 . -591) 79519) ((-840 . -961) 79496) ((-797 . -101) T) ((-1241 . -111) 79475) ((-627 . -38) 79445) ((-554 . -821) T) ((-346 . -1075) T) ((-343 . -1075) T) ((-335 . -1075) T) ((-255 . -1075) T) ((-239 . -1075) T) ((-599 . -298) 79424) ((-1110 . -300) 79228) ((-513 . -1047) T) ((-302 . -1063) T) ((-638 . -23) T) ((-472 . -223) 79197) ((-150 . -1023) T) ((-346 . -23) T) ((-343 . -23) T) ((-335 . -23) T) ((-117 . -298) T) ((-255 . -23) T) ((-239 . -23) T) ((-972 . -1016) T) ((-687 . -878) 79176) ((-972 . -225) 79148) ((-972 . -235) T) ((-117 . -991) NIL) ((-879 . -1075) T) ((-1203 . -442) 79127) ((-1182 . -442) 79106) ((-512 . -591) 79038) ((-687 . -622) 78963) ((-398 . -1022) 78915) ((-493 . -591) 78897) ((-879 . -23) T) ((-477 . -300) NIL) ((-464 . -130) T) ((-209 . -300) NIL) ((-398 . -111) 78835) ((-789 . -1023) 78765) ((-712 . -1061) 78749) ((-1202 . -482) 78715) ((-1181 . -482) 78681) ((-467 . -281) T) ((-139 . -1061) 78663) ((-128 . -149) 78645) ((-1241 . -1016) T) ((-1028 . -101) T) ((-489 . -503) NIL) ((-677 . -101) T) ((-472 . -230) 78624) ((-1131 . -143) 78603) ((-1131 . -145) 78582) ((-1087 . -145) 78561) ((-1087 . -143) 78540) ((-611 . -1022) 78524) ((-585 . -1022) 78508) ((-644 . -1063) T) ((-644 . -1019) 78448) ((-1133 . -1209) 78432) ((-1133 . -1196) 78409) ((-477 . -1111) T) ((-1132 . -1201) 78370) ((-1132 . -1196) 78340) ((-1132 . -1199) 78324) ((-209 . -1111) T) ((-334 . -889) T) ((-792 . -257) 78308) ((-611 . -111) 78287) ((-585 . -111) 78266) ((-1126 . -1180) 78227) ((-814 . -1016) 78206) ((-1126 . -1196) 78183) ((-504 . -25) T) ((-484 . -293) T) ((-500 . -23) T) ((-499 . -25) T) ((-497 . -25) T) ((-496 . -23) T) ((-1126 . -1178) 78167) ((-398 . -1016) T) ((-310 . -1023) T) ((-668 . -298) T) ((-107 . -819) T) ((-398 . -235) T) ((-398 . -225) 78146) ((-687 . -701) T) ((-477 . -38) 78096) ((-209 . -38) 78046) ((-464 . -482) 78012) ((-1118 . -1104) T) ((-1064 . -101) T) ((-675 . -591) 77994) ((-675 . -592) 77909) ((-689 . -21) T) ((-689 . -25) T) ((-205 . -591) 77891) ((-133 . -591) 77873) ((-116 . -591) 77855) ((-154 . -25) T) ((-1240 . -1063) T) ((-841 . -615) 77803) ((-1238 . -1063) T) ((-932 . -101) T) ((-710 . -101) T) ((-690 . -101) T) ((-443 . -101) T) ((-790 . -442) 77754) ((-44 . -1063) T) ((-1052 . -821) T) ((-638 . -130) T) ((-1028 . -300) 77605) ((-644 . -692) 77589) ((-280 . -1023) T) ((-346 . -130) T) ((-343 . -130) T) ((-335 . -130) T) ((-255 . -130) T) ((-239 . -130) T) ((-409 . -101) T) ((-150 . -1063) T) ((-45 . -221) 77539) ((-927 . -821) 77518) ((-968 . -622) 77456) ((-232 . -1225) 77426) ((-993 . -298) T) ((-285 . -1022) 77347) ((-879 . -130) T) ((-40 . -889) T) ((-477 . -391) 77329) ((-345 . -298) T) ((-209 . -391) 77311) ((-1043 . -402) 77295) ((-285 . -111) 77211) ((-841 . -25) T) ((-841 . -21) T) ((-330 . -591) 77193) ((-1204 . -47) 77137) ((-217 . -145) T) ((-171 . -591) 77119) ((-1076 . -819) 77098) ((-748 . -591) 77080) ((-586 . -227) 77027) ((-465 . -227) 76977) ((-1240 . -692) 76947) ((-48 . -298) T) ((-1238 . -692) 76917) ((-933 . -1063) T) ((-789 . -1063) 76707) ((-303 . -101) T) ((-870 . -1172) T) ((-48 . -991) T) ((-1181 . -615) 76615) ((-663 . -101) 76593) ((-44 . -692) 76577) ((-533 . -101) T) ((-66 . -374) T) ((-66 . -386) T) ((-636 . -23) T) ((-644 . -736) T) ((-1169 . -1063) 76555) ((-342 . -1022) 76500) ((-649 . -1063) 76478) ((-1027 . -145) T) ((-921 . -145) 76457) ((-921 . -143) 76436) ((-773 . -101) T) ((-150 . -692) 76420) ((-471 . -145) 76399) ((-471 . -143) 76378) ((-342 . -111) 76307) ((-1043 . -1023) T) ((-313 . -821) 76286) ((-1210 . -942) 76255) ((-603 . -1063) T) ((-1203 . -942) 76217) ((-500 . -130) T) ((-496 . -130) T) ((-286 . -221) 76167) ((-350 . -1023) T) ((-344 . -1023) T) ((-336 . -1023) T) ((-285 . -1016) 76109) ((-1182 . -942) 76078) ((-370 . -821) T) ((-107 . -1023) T) ((-968 . -701) T) ((-839 . -889) T) ((-814 . -769) 76057) ((-814 . -766) 76036) ((-409 . -300) 75975) ((-458 . -101) T) ((-574 . -942) 75944) ((-310 . -1063) T) ((-398 . -769) 75923) ((-398 . -766) 75902) ((-489 . -479) 75884) ((-1204 . -1007) 75850) ((-1202 . -21) T) ((-1202 . -25) T) ((-1181 . -21) T) ((-1181 . -25) T) ((-789 . -692) 75792) ((-673 . -395) T) ((-584 . -101) T) ((-1231 . -1172) T) ((-1076 . -402) 75761) ((-972 . -359) NIL) ((-645 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-102 . -34) T) ((-712 . -1172) T) ((-44 . -736) T) ((-572 . -101) T) ((-76 . -387) T) ((-76 . -386) T) ((-627 . -630) 75745) ((-139 . -1172) T) ((-840 . -145) T) ((-840 . -143) NIL) ((-1171 . -92) T) ((-342 . -1016) T) ((-69 . -374) T) ((-69 . -386) T) ((-1125 . -101) T) ((-644 . -503) 75678) ((-663 . -300) 75616) ((-932 . -38) 75513) ((-710 . -38) 75483) ((-533 . -300) 75287) ((-307 . -1172) T) ((-342 . -225) T) ((-342 . -235) T) ((-304 . -1172) T) ((-280 . -1063) T) ((-1139 . -591) 75269) ((-686 . -1176) T) ((-1116 . -625) 75253) ((-1166 . -539) 75232) ((-686 . -539) T) ((-307 . -853) 75216) ((-307 . -855) 75141) ((-304 . -853) 75102) ((-304 . -855) NIL) ((-773 . -300) 75067) ((-310 . -692) 74908) ((-315 . -314) 74885) ((-475 . -101) T) ((-464 . -25) T) ((-464 . -21) T) ((-409 . -38) 74859) ((-307 . -1007) 74522) ((-217 . -1157) T) ((-217 . -1160) T) ((-3 . -591) 74504) ((-304 . -1007) 74434) ((-2 . -1063) T) ((-2 . |RecordCategory|) T) ((-807 . -591) 74416) ((-1076 . -1023) 74346) ((-560 . -889) T) ((-547 . -794) T) ((-547 . -889) T) ((-484 . -889) T) ((-135 . -1007) 74330) ((-217 . -94) T) ((-74 . -431) T) ((-74 . -386) T) ((0 . -591) 74312) ((-166 . -145) 74291) ((-166 . -143) 74242) ((-217 . -35) T) ((-49 . -591) 74224) ((-467 . -1023) T) ((-477 . -223) 74206) ((-474 . -937) 74190) ((-472 . -819) 74169) ((-209 . -223) 74151) ((-80 . -431) T) ((-80 . -386) T) ((-1106 . -34) T) ((-789 . -169) 74130) ((-706 . -101) T) ((-995 . -591) 74097) ((-489 . -277) 74072) ((-307 . -368) 74041) ((-304 . -368) 74002) ((-304 . -329) 73963) ((-1049 . -591) 73945) ((-790 . -918) 73892) ((-636 . -130) T) ((-1191 . -143) 73871) ((-1191 . -145) 73850) ((-1133 . -101) T) ((-1132 . -101) T) ((-1126 . -101) T) ((-1119 . -1063) T) ((-1088 . -101) T) ((-214 . -34) T) ((-280 . -692) 73837) ((-1119 . -588) 73813) ((-572 . -300) NIL) ((-474 . -1063) 73791) ((-381 . -591) 73773) ((-499 . -821) T) ((-1110 . -221) 73723) ((-1210 . -1209) 73707) ((-1210 . -1196) 73684) ((-1203 . -1201) 73645) ((-1203 . -1196) 73615) ((-1203 . -1199) 73599) ((-1182 . -1180) 73560) ((-1182 . -1196) 73537) ((-597 . -591) 73519) ((-1182 . -1178) 73503) ((-673 . -889) T) ((-1133 . -275) 73469) ((-1132 . -275) 73435) ((-1126 . -275) 73401) ((-1043 . -1063) T) ((-1026 . -1063) T) ((-48 . -293) T) ((-307 . -869) 73367) ((-304 . -869) NIL) ((-1026 . -1033) 73346) ((-1082 . -855) 73328) ((-773 . -38) 73312) ((-255 . -615) 73260) ((-239 . -615) 73208) ((-675 . -1022) 73195) ((-574 . -1196) 73172) ((-1088 . -275) 73138) ((-310 . -169) 73069) ((-350 . -1063) T) ((-344 . -1063) T) ((-336 . -1063) T) ((-489 . -19) 73051) ((-1082 . -1007) 73033) ((-1065 . -149) 73017) ((-107 . -1063) T) ((-116 . -1022) 73004) ((-686 . -354) T) ((-489 . -582) 72979) ((-675 . -111) 72964) ((-427 . -101) T) ((-45 . -1109) 72914) ((-116 . -111) 72899) ((-611 . -695) T) ((-585 . -695) T) ((-789 . -503) 72832) ((-1004 . -1172) T) ((-912 . -149) 72816) ((-514 . -101) T) ((-509 . -101) 72766) ((-1131 . -442) 72697) ((-1051 . -1176) 72676) ((-756 . -1176) 72655) ((-754 . -1176) 72634) ((-61 . -1172) T) ((-467 . -591) 72586) ((-467 . -592) 72508) ((-1118 . -1063) T) ((-1102 . -622) 72482) ((-1087 . -442) 72433) ((-1051 . -539) 72364) ((-472 . -402) 72333) ((-599 . -889) 72312) ((-444 . -1176) 72291) ((-963 . -1063) T) ((-756 . -539) 72202) ((-389 . -591) 72184) ((-754 . -539) 72115) ((-649 . -503) 72048) ((-706 . -300) 72035) ((-638 . -25) T) ((-638 . -21) T) ((-444 . -539) 71966) ((-117 . -889) T) ((-117 . -794) NIL) ((-346 . -25) T) ((-346 . -21) T) ((-343 . -25) T) ((-343 . -21) T) ((-335 . -25) T) ((-335 . -21) T) ((-255 . -25) T) ((-255 . -21) T) ((-82 . -375) T) ((-82 . -386) T) ((-239 . -25) T) ((-239 . -21) T) ((-1220 . -591) 71948) ((-1166 . -1075) T) ((-1166 . -23) T) ((-1126 . -300) 71833) ((-1088 . -300) 71820) ((-1043 . -692) 71688) ((-835 . -622) 71648) ((-912 . -949) 71632) ((-879 . -21) T) ((-280 . -169) T) ((-879 . -25) T) ((-302 . -92) T) ((-841 . -821) 71583) ((-686 . -1075) T) ((-686 . -23) T) ((-621 . -1063) 71561) ((-608 . -588) 71536) ((-608 . -1063) T) ((-561 . -1176) T) ((-507 . -1176) T) ((-561 . -539) T) ((-507 . -539) T) ((-350 . -692) 71488) ((-344 . -692) 71440) ((-171 . -111) 71351) ((-330 . -1022) 71335) ((-171 . -1022) 71267) ((-107 . -692) 71217) ((-336 . -692) 71169) ((-330 . -111) 71148) ((-265 . -1063) T) ((-264 . -1063) T) ((-263 . -1063) T) ((-262 . -1063) T) ((-675 . -1016) T) ((-261 . -1063) T) ((-260 . -1063) T) ((-259 . -1063) T) ((-204 . -1063) T) ((-203 . -1063) T) ((-201 . -1063) T) ((-166 . -1160) 71126) ((-166 . -1157) 71104) ((-200 . -1063) T) ((-199 . -1063) T) ((-116 . -1016) T) ((-198 . -1063) T) ((-195 . -1063) T) ((-675 . -225) T) ((-194 . -1063) T) ((-193 . -1063) T) ((-192 . -1063) T) ((-191 . -1063) T) ((-190 . -1063) T) ((-189 . -1063) T) ((-188 . -1063) T) ((-187 . -1063) T) ((-186 . -1063) T) ((-185 . -1063) T) ((-232 . -101) 70894) ((-166 . -35) 70872) ((-166 . -94) 70850) ((-628 . -1007) 70746) ((-472 . -1023) 70676) ((-1076 . -1063) 70466) ((-1102 . -34) T) ((-644 . -479) 70450) ((-72 . -1172) T) ((-104 . -591) 70432) ((-1242 . -591) 70414) ((-372 . -591) 70396) ((-554 . -1160) T) ((-554 . -1157) T) ((-706 . -38) 70245) ((-519 . -591) 70227) ((-509 . -300) 70165) ((-489 . -591) 70147) ((-489 . -592) 70129) ((-1171 . -591) 70095) ((-1126 . -1111) NIL) ((-996 . -1036) 70064) ((-996 . -1063) T) ((-973 . -101) T) ((-940 . -101) T) ((-883 . -101) T) ((-862 . -1007) 70041) ((-1102 . -701) T) ((-972 . -622) 69986) ((-466 . -1063) T) ((-453 . -1063) T) ((-565 . -23) T) ((-554 . -35) T) ((-554 . -94) T) ((-418 . -101) T) ((-1028 . -221) 69932) ((-128 . -101) T) ((-1133 . -38) 69829) ((-835 . -701) T) ((-668 . -889) T) ((-500 . -25) T) ((-496 . -21) T) ((-496 . -25) T) ((-1132 . -38) 69670) ((-330 . -1016) T) ((-1126 . -38) 69466) ((-1043 . -169) T) ((-171 . -1016) T) ((-1088 . -38) 69363) ((-687 . -47) 69340) ((-350 . -169) T) ((-344 . -169) T) ((-508 . -56) 69314) ((-486 . -56) 69264) ((-342 . -1237) 69241) ((-217 . -442) T) ((-310 . -281) 69192) ((-336 . -169) T) ((-171 . -235) T) ((-1181 . -821) 69091) ((-107 . -169) T) ((-841 . -961) 69075) ((-632 . -1075) T) ((-561 . -354) T) ((-561 . -320) 69062) ((-507 . -320) 69039) ((-507 . -354) T) ((-307 . -298) 69018) ((-304 . -298) T) ((-580 . -821) 68997) ((-1076 . -692) 68939) ((-509 . -273) 68923) ((-632 . -23) T) ((-409 . -223) 68907) ((-304 . -991) NIL) ((-327 . -23) T) ((-102 . -979) 68891) ((-45 . -36) 68870) ((-590 . -1063) T) ((-342 . -359) T) ((-513 . -101) T) ((-484 . -27) T) ((-232 . -300) 68808) ((-1051 . -1075) T) ((-1241 . -622) 68782) ((-756 . -1075) T) ((-754 . -1075) T) ((-444 . -1075) T) ((-1027 . -442) T) ((-921 . -442) 68733) ((-110 . -1063) T) ((-1051 . -23) T) ((-791 . -1023) T) ((-756 . -23) T) ((-754 . -23) T) ((-471 . -442) 68684) ((-1119 . -503) 68467) ((-372 . -373) 68446) ((-1137 . -402) 68430) ((-451 . -23) T) ((-444 . -23) T) ((-95 . -1063) T) ((-474 . -503) 68363) ((-280 . -281) T) ((-1045 . -591) 68345) ((-398 . -878) 68324) ((-50 . -1075) T) ((-993 . -889) T) ((-972 . -701) T) ((-687 . -855) NIL) ((-561 . -1075) T) ((-507 . -1075) T) ((-814 . -622) 68297) ((-1166 . -130) T) ((-1126 . -391) 68249) ((-973 . -300) NIL) ((-789 . -479) 68233) ((-345 . -889) T) ((-1116 . -34) T) ((-398 . -622) 68185) ((-50 . -23) T) ((-686 . -130) T) ((-687 . -1007) 68065) ((-561 . -23) T) ((-107 . -503) NIL) ((-507 . -23) T) ((-166 . -400) 68036) ((-128 . -300) NIL) ((-1100 . -1063) T) ((-1233 . -1232) 68020) ((-675 . -769) T) ((-675 . -766) T) ((-1082 . -298) T) ((-370 . -145) T) ((-271 . -591) 68002) ((-1181 . -961) 67972) ((-48 . -889) T) ((-649 . -479) 67956) ((-242 . -1225) 67926) ((-241 . -1225) 67896) ((-1135 . -821) T) ((-1076 . -169) 67875) ((-1082 . -991) T) ((-1013 . -34) T) ((-808 . -145) 67854) ((-808 . -143) 67833) ((-712 . -106) 67817) ((-590 . -131) T) ((-472 . -1063) 67607) ((-1137 . -1023) T) ((-840 . -442) T) ((-84 . -1172) T) ((-232 . -38) 67577) ((-139 . -106) 67559) ((-687 . -368) 67543) ((-1082 . -532) T) ((-381 . -1022) 67527) ((-1241 . -701) T) ((-1131 . -918) 67496) ((-129 . -591) 67463) ((-52 . -591) 67445) ((-1087 . -918) 67412) ((-627 . -402) 67396) ((-1230 . -1023) T) ((-597 . -1022) 67380) ((-636 . -25) T) ((-636 . -21) T) ((-1118 . -503) NIL) ((-1210 . -101) T) ((-1203 . -101) T) ((-381 . -111) 67359) ((-214 . -245) 67343) ((-1182 . -101) T) ((-1020 . -1063) T) ((-973 . -1111) T) ((-1020 . -1019) 67283) ((-792 . -1063) T) ((-334 . -1176) T) ((-611 . -622) 67267) ((-597 . -111) 67246) ((-585 . -622) 67230) ((-575 . -101) T) ((-565 . -130) T) ((-574 . -101) T) ((-405 . -1063) T) ((-376 . -1063) T) ((-302 . -591) 67196) ((-219 . -1063) 67174) ((-621 . -503) 67107) ((-608 . -503) 66951) ((-807 . -1016) 66930) ((-619 . -149) 66914) ((-334 . -539) T) ((-687 . -869) 66857) ((-533 . -221) 66807) ((-1210 . -275) 66773) ((-1043 . -281) 66724) ((-477 . -819) T) ((-215 . -1075) T) ((-1203 . -275) 66690) ((-1182 . -275) 66656) ((-973 . -38) 66606) ((-209 . -819) T) ((-1166 . -482) 66572) ((-883 . -38) 66524) ((-814 . -768) 66503) ((-814 . -765) 66482) ((-814 . -701) 66461) ((-350 . -281) T) ((-344 . -281) T) ((-336 . -281) T) ((-166 . -442) 66392) ((-418 . -38) 66376) ((-107 . -281) T) ((-215 . -23) T) ((-398 . -768) 66355) ((-398 . -765) 66334) ((-398 . -701) T) ((-489 . -279) 66309) ((-467 . -1022) 66274) ((-632 . -130) T) ((-1076 . -503) 66207) ((-327 . -130) T) ((-166 . -393) 66186) ((-472 . -692) 66128) ((-789 . -277) 66105) ((-467 . -111) 66061) ((-627 . -1023) T) ((-1191 . -442) 65992) ((-1229 . -1047) T) ((-1228 . -1047) T) ((-1051 . -130) T) ((-255 . -821) 65971) ((-239 . -821) 65950) ((-756 . -130) T) ((-754 . -130) T) ((-554 . -442) T) ((-1020 . -692) 65892) ((-597 . -1016) T) ((-996 . -503) 65825) ((-571 . -1063) T) ((-451 . -130) T) ((-444 . -130) T) ((-45 . -1063) T) ((-376 . -692) 65795) ((-791 . -1063) T) ((-466 . -503) 65728) ((-453 . -503) 65661) ((-443 . -358) 65631) ((-45 . -588) 65610) ((-307 . -293) T) ((-644 . -591) 65572) ((-58 . -821) 65551) ((-1182 . -300) 65436) ((-973 . -391) 65418) ((-789 . -582) 65395) ((-505 . -821) 65374) ((-485 . -821) 65353) ((-40 . -1176) T) ((-968 . -1007) 65249) ((-50 . -130) T) ((-561 . -130) T) ((-507 . -130) T) ((-285 . -622) 65109) ((-334 . -320) 65086) ((-334 . -354) T) ((-313 . -314) 65063) ((-310 . -277) 65048) ((-40 . -539) T) ((-370 . -1157) T) ((-370 . -1160) T) ((-1004 . -1148) 65023) ((-1145 . -227) 64973) ((-1126 . -223) 64925) ((-321 . -1063) T) ((-370 . -94) T) ((-370 . -35) T) ((-1004 . -106) 64871) ((-467 . -1016) T) ((-469 . -227) 64821) ((-1119 . -479) 64755) ((-1242 . -1022) 64739) ((-372 . -1022) 64723) ((-467 . -235) T) ((-790 . -101) T) ((-689 . -145) 64702) ((-689 . -143) 64681) ((-474 . -479) 64665) ((-475 . -326) 64634) ((-1242 . -111) 64613) ((-501 . -1063) T) ((-472 . -169) 64592) ((-968 . -368) 64576) ((-404 . -101) T) ((-372 . -111) 64555) ((-968 . -329) 64539) ((-270 . -952) 64523) ((-269 . -952) 64507) ((-1240 . -591) 64489) ((-1238 . -591) 64471) ((-110 . -503) NIL) ((-1131 . -1194) 64455) ((-825 . -823) 64439) ((-1137 . -1063) T) ((-102 . -1172) T) ((-921 . -918) 64400) ((-791 . -692) 64342) ((-1182 . -1111) NIL) ((-471 . -918) 64287) ((-1027 . -141) T) ((-59 . -101) 64265) ((-44 . -591) 64247) ((-77 . -591) 64229) ((-342 . -622) 64174) ((-1230 . -1063) T) ((-500 . -821) T) ((-334 . -1075) T) ((-286 . -1063) T) ((-968 . -869) 64133) ((-286 . -588) 64112) ((-1210 . -38) 64009) ((-1203 . -38) 63850) ((-477 . -1023) T) ((-1182 . -38) 63646) ((-209 . -1023) T) ((-334 . -23) T) ((-150 . -591) 63628) ((-807 . -769) 63607) ((-807 . -766) 63586) ((-575 . -38) 63559) ((-574 . -38) 63456) ((-839 . -539) T) ((-215 . -130) T) ((-310 . -971) 63422) ((-78 . -591) 63404) ((-687 . -298) 63383) ((-285 . -701) 63285) ((-798 . -101) T) ((-834 . -815) T) ((-285 . -463) 63264) ((-1233 . -101) T) ((-40 . -354) T) ((-841 . -145) 63243) ((-841 . -143) 63222) ((-1118 . -479) 63204) ((-1242 . -1016) T) ((-472 . -503) 63137) ((-1106 . -1172) T) ((-933 . -591) 63119) ((-621 . -479) 63103) ((-608 . -479) 63034) ((-789 . -591) 62765) ((-48 . -27) T) ((-1137 . -692) 62662) ((-627 . -1063) T) ((-427 . -355) 62636) ((-1065 . -101) T) ((-790 . -300) 62623) ((-939 . -1063) T) ((-834 . -1063) T) ((-1238 . -373) 62595) ((-1020 . -503) 62528) ((-1119 . -277) 62504) ((-232 . -223) 62473) ((-1230 . -692) 62443) ((-963 . -92) T) ((-791 . -169) 62422) ((-219 . -503) 62355) ((-597 . -769) 62334) ((-597 . -766) 62313) ((-1169 . -591) 62225) ((-214 . -1172) T) ((-649 . -591) 62157) ((-1116 . -979) 62141) ((-342 . -701) T) ((-912 . -101) 62091) ((-1182 . -391) 62043) ((-1076 . -479) 62027) ((-59 . -300) 61965) ((-322 . -101) T) ((-1166 . -21) T) ((-1166 . -25) T) ((-40 . -1075) T) ((-686 . -21) T) ((-603 . -591) 61947) ((-504 . -314) 61926) ((-686 . -25) T) ((-107 . -277) NIL) ((-890 . -1075) T) ((-40 . -23) T) ((-745 . -1075) T) ((-547 . -1176) T) ((-484 . -1176) T) ((-310 . -591) 61908) ((-973 . -223) 61890) ((-166 . -163) 61874) ((-560 . -539) T) ((-547 . -539) T) ((-484 . -539) T) ((-745 . -23) T) ((-1202 . -145) 61853) ((-1119 . -582) 61829) ((-1202 . -143) 61808) ((-996 . -479) 61792) ((-1181 . -143) 61717) ((-1181 . -145) 61642) ((-1233 . -1239) 61621) ((-466 . -479) 61605) ((-453 . -479) 61589) ((-512 . -34) T) ((-627 . -692) 61559) ((-112 . -936) T) ((-636 . -821) 61538) ((-1137 . -169) 61489) ((-356 . -101) T) ((-232 . -230) 61468) ((-242 . -101) T) ((-241 . -101) T) ((-1191 . -918) 61437) ((-109 . -101) T) ((-237 . -821) 61416) ((-790 . -38) 61265) ((-45 . -503) 61057) ((-1118 . -277) 61032) ((-206 . -1063) T) ((-1110 . -1063) T) ((-1110 . -588) 61011) ((-565 . -25) T) ((-565 . -21) T) ((-1065 . -300) 60949) ((-932 . -402) 60933) ((-673 . -1176) T) ((-608 . -277) 60908) ((-1051 . -615) 60856) ((-756 . -615) 60804) ((-754 . -615) 60752) ((-334 . -130) T) ((-280 . -591) 60734) ((-673 . -539) T) ((-874 . -1063) T) ((-839 . -1075) T) ((-444 . -615) 60682) ((-874 . -872) 60666) ((-370 . -442) T) ((-477 . -1063) T) ((-675 . -622) 60653) ((-912 . -300) 60591) ((-209 . -1063) T) ((-307 . -889) 60570) ((-304 . -889) T) ((-304 . -794) NIL) ((-381 . -695) T) ((-839 . -23) T) ((-116 . -622) 60557) ((-464 . -143) 60536) ((-409 . -402) 60520) ((-464 . -145) 60499) ((-110 . -479) 60481) ((-2 . -591) 60463) ((-1118 . -19) 60445) ((-1118 . -582) 60420) ((-632 . -21) T) ((-632 . -25) T) ((-572 . -1104) T) ((-1076 . -277) 60397) ((-327 . -25) T) ((-327 . -21) T) ((-484 . -354) T) ((-1233 . -38) 60367) ((-1102 . -1172) T) ((-608 . -582) 60342) ((-1051 . -25) T) ((-1051 . -21) T) ((-519 . -766) T) ((-519 . -769) T) ((-117 . -1176) T) ((-932 . -1023) T) ((-599 . -539) T) ((-756 . -25) T) ((-756 . -21) T) ((-754 . -21) T) ((-754 . -25) T) ((-710 . -1023) T) ((-690 . -1023) T) ((-644 . -1022) 60326) ((-506 . -1047) T) ((-451 . -25) T) ((-117 . -539) T) ((-451 . -21) T) ((-444 . -25) T) ((-444 . -21) T) ((-1102 . -1007) 60222) ((-791 . -281) 60201) ((-797 . -1063) T) ((-935 . -936) T) ((-644 . -111) 60180) ((-286 . -503) 59972) ((-1240 . -1022) 59956) ((-1238 . -1022) 59940) ((-1202 . -1157) 59906) ((-242 . -300) 59844) ((-241 . -300) 59782) ((-1185 . -101) 59760) ((-1119 . -592) NIL) ((-1119 . -591) 59742) ((-1202 . -1160) 59708) ((-1182 . -223) 59660) ((-1181 . -1157) 59626) ((-95 . -92) T) ((-1181 . -1160) 59592) ((-1102 . -368) 59576) ((-1082 . -794) T) ((-1082 . -889) T) ((-1076 . -582) 59553) ((-1043 . -592) 59537) ((-474 . -591) 59469) ((-789 . -279) 59446) ((-586 . -149) 59393) ((-409 . -1023) T) ((-477 . -692) 59343) ((-472 . -479) 59327) ((-318 . -821) 59306) ((-330 . -622) 59280) ((-50 . -21) T) ((-50 . -25) T) ((-209 . -692) 59230) ((-166 . -699) 59201) ((-171 . -622) 59133) ((-561 . -21) T) ((-561 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-465 . -149) 59083) ((-1043 . -591) 59065) ((-1026 . -591) 59047) ((-962 . -101) T) ((-832 . -101) T) ((-773 . -402) 59011) ((-40 . -130) T) ((-673 . -354) T) ((-204 . -864) T) ((-675 . -768) T) ((-675 . -765) T) ((-560 . -1075) T) ((-547 . -1075) T) ((-484 . -1075) T) ((-675 . -701) T) ((-350 . -591) 58993) ((-344 . -591) 58975) ((-336 . -591) 58957) ((-65 . -387) T) ((-65 . -386) T) ((-107 . -592) 58887) ((-107 . -591) 58869) ((-203 . -864) T) ((-927 . -149) 58853) ((-1202 . -94) 58819) ((-745 . -130) T) ((-133 . -701) T) ((-116 . -701) T) ((-1202 . -35) 58785) ((-1020 . -479) 58769) ((-560 . -23) T) ((-547 . -23) T) ((-484 . -23) T) ((-1181 . -94) 58735) ((-1181 . -35) 58701) ((-1131 . -101) T) ((-1087 . -101) T) ((-825 . -101) T) ((-219 . -479) 58685) ((-1240 . -111) 58664) ((-1238 . -111) 58643) ((-44 . -1022) 58627) ((-1191 . -1194) 58611) ((-826 . -823) 58595) ((-1137 . -281) 58574) ((-110 . -277) 58549) ((-1102 . -869) 58508) ((-44 . -111) 58487) ((-1140 . -1213) T) ((-644 . -1016) T) ((-1118 . -592) NIL) ((-1118 . -591) 58469) ((-1028 . -588) 58444) ((-1028 . -1063) T) ((-963 . -591) 58410) ((-73 . -431) T) ((-73 . -386) T) ((-644 . -225) 58389) ((-150 . -1022) 58373) ((-554 . -537) 58357) ((-346 . -145) 58336) ((-346 . -143) 58287) ((-343 . -145) 58266) ((-677 . -1063) T) ((-343 . -143) 58217) ((-335 . -145) 58196) ((-335 . -143) 58147) ((-255 . -143) 58126) ((-255 . -145) 58105) ((-242 . -38) 58075) ((-239 . -145) 58054) ((-117 . -354) T) ((-239 . -143) 58033) ((-241 . -38) 58003) ((-150 . -111) 57982) ((-972 . -1007) 57870) ((-1126 . -819) NIL) ((-668 . -1176) T) ((-773 . -1023) T) ((-673 . -1075) T) ((-1240 . -1016) T) ((-1238 . -1016) T) ((-1116 . -1172) T) ((-972 . -368) 57847) ((-879 . -143) T) ((-879 . -145) 57829) ((-839 . -130) T) ((-789 . -1022) 57726) ((-668 . -539) T) ((-673 . -23) T) ((-621 . -591) 57658) ((-621 . -592) 57619) ((-608 . -592) NIL) ((-608 . -591) 57601) ((-477 . -169) T) ((-215 . -21) T) ((-209 . -169) T) ((-215 . -25) T) ((-464 . -1160) 57567) ((-464 . -1157) 57533) ((-265 . -591) 57515) ((-264 . -591) 57497) ((-263 . -591) 57479) ((-262 . -591) 57461) ((-261 . -591) 57443) ((-489 . -625) 57425) ((-260 . -591) 57407) ((-330 . -701) T) ((-259 . -591) 57389) ((-110 . -19) 57371) ((-171 . -701) T) ((-489 . -364) 57353) ((-204 . -591) 57335) ((-509 . -1109) 57319) ((-489 . -123) T) ((-110 . -582) 57294) ((-203 . -591) 57276) ((-464 . -35) 57242) ((-464 . -94) 57208) ((-201 . -591) 57190) ((-200 . -591) 57172) ((-199 . -591) 57154) ((-198 . -591) 57136) ((-195 . -591) 57118) ((-194 . -591) 57100) ((-193 . -591) 57082) ((-192 . -591) 57064) ((-191 . -591) 57046) ((-190 . -591) 57028) ((-189 . -591) 57010) ((-523 . -1066) 56962) ((-188 . -591) 56944) ((-187 . -591) 56926) ((-45 . -479) 56863) ((-186 . -591) 56845) ((-185 . -591) 56827) ((-789 . -111) 56717) ((-619 . -101) 56667) ((-472 . -277) 56644) ((-1076 . -591) 56375) ((-1064 . -1063) T) ((-1013 . -1172) T) ((-599 . -1075) T) ((-1241 . -1007) 56359) ((-1131 . -300) 56346) ((-1087 . -300) 56333) ((-1054 . -1047) T) ((-1031 . -1047) T) ((-1005 . -1047) T) ((-988 . -1047) T) ((-117 . -1075) T) ((-793 . -101) T) ((-602 . -1047) T) ((-599 . -23) T) ((-1110 . -503) 56125) ((-473 . -1047) T) ((-972 . -869) 56077) ((-377 . -101) T) ((-315 . -101) T) ((-210 . -1047) T) ((-932 . -1063) T) ((-150 . -1016) T) ((-117 . -23) T) ((-706 . -402) 56061) ((-710 . -1063) T) ((-690 . -1063) T) ((-677 . -131) T) ((-443 . -1063) T) ((-398 . -1172) T) ((-307 . -421) 56045) ((-571 . -92) T) ((-996 . -592) 56006) ((-993 . -1176) T) ((-217 . -101) T) ((-996 . -591) 55968) ((-790 . -223) 55952) ((-993 . -539) T) ((-807 . -622) 55925) ((-345 . -1176) T) ((-466 . -591) 55887) ((-466 . -592) 55848) ((-453 . -592) 55809) ((-453 . -591) 55771) ((-398 . -853) 55755) ((-310 . -1022) 55590) ((-398 . -855) 55515) ((-814 . -1007) 55411) ((-477 . -503) NIL) ((-472 . -582) 55388) ((-345 . -539) T) ((-209 . -503) NIL) ((-841 . -442) T) ((-409 . -1063) T) ((-398 . -1007) 55252) ((-310 . -111) 55073) ((-668 . -354) T) ((-217 . -275) T) ((-48 . -1176) T) ((-789 . -1016) 55003) ((-560 . -130) T) ((-547 . -130) T) ((-484 . -130) T) ((-48 . -539) T) ((-1119 . -279) 54979) ((-1131 . -1111) 54957) ((-307 . -27) 54936) ((-1027 . -101) T) ((-789 . -225) 54888) ((-232 . -819) 54867) ((-921 . -101) T) ((-688 . -101) T) ((-286 . -479) 54804) ((-471 . -101) T) ((-706 . -1023) T) ((-590 . -591) 54786) ((-590 . -592) 54647) ((-398 . -368) 54631) ((-398 . -329) 54615) ((-1131 . -38) 54444) ((-1087 . -38) 54293) ((-825 . -38) 54263) ((-381 . -622) 54247) ((-619 . -300) 54185) ((-932 . -692) 54082) ((-710 . -692) 54052) ((-214 . -106) 54036) ((-45 . -277) 53961) ((-597 . -622) 53935) ((-303 . -1063) T) ((-280 . -1022) 53922) ((-110 . -591) 53904) ((-110 . -592) 53886) ((-443 . -692) 53856) ((-790 . -244) 53795) ((-663 . -1063) 53773) ((-533 . -1063) T) ((-1133 . -1023) T) ((-1132 . -1023) T) ((-1126 . -1023) T) ((-280 . -111) 53758) ((-1088 . -1023) T) ((-533 . -588) 53737) ((-95 . -591) 53703) ((-973 . -819) T) ((-219 . -661) 53661) ((-668 . -1075) T) ((-1166 . -715) 53637) ((-310 . -1016) T) ((-334 . -25) T) ((-334 . -21) T) ((-398 . -869) 53596) ((-67 . -1172) T) ((-807 . -768) 53575) ((-409 . -692) 53549) ((-773 . -1063) T) ((-807 . -765) 53528) ((-673 . -130) T) ((-687 . -889) 53507) ((-668 . -23) T) ((-477 . -281) T) ((-807 . -701) 53486) ((-310 . -225) 53438) ((-310 . -235) 53417) ((-209 . -281) T) ((-993 . -354) T) ((-1202 . -442) 53396) ((-1181 . -442) 53375) ((-345 . -320) 53352) ((-345 . -354) T) ((-1100 . -591) 53334) ((-45 . -1206) 53284) ((-840 . -101) T) ((-619 . -273) 53268) ((-673 . -1025) T) ((-1229 . -101) T) ((-467 . -622) 53233) ((-458 . -1063) T) ((-45 . -582) 53158) ((-1228 . -101) T) ((-1118 . -279) 53133) ((-40 . -615) 53072) ((-48 . -354) T) ((-1069 . -591) 53054) ((-1051 . -821) 53033) ((-608 . -279) 53008) ((-756 . -821) 52987) ((-754 . -821) 52966) ((-472 . -591) 52697) ((-232 . -402) 52666) ((-921 . -300) 52653) ((-444 . -821) 52632) ((-64 . -1172) T) ((-599 . -130) T) ((-471 . -300) 52619) ((-584 . -1063) T) ((-1028 . -503) 52463) ((-117 . -130) T) ((-645 . -1063) T) ((-280 . -1016) T) ((-158 . -1063) T) ((-153 . -1063) T) ((-443 . -736) T) ((-31 . -1047) T) ((-932 . -169) 52414) ((-939 . -92) T) ((-1043 . -1022) 52324) ((-597 . -768) 52303) ((-572 . -1063) T) ((-597 . -765) 52282) ((-597 . -701) T) ((-286 . -277) 52261) ((-285 . -1172) T) ((-1020 . -591) 52223) ((-1020 . -592) 52184) ((-993 . -1075) T) ((-166 . -101) T) ((-266 . -821) T) ((-1125 . -1063) T) ((-792 . -591) 52166) ((-1076 . -279) 52143) ((-1065 . -221) 52127) ((-972 . -298) T) ((-773 . -692) 52111) ((-350 . -1022) 52063) ((-345 . -1075) T) ((-344 . -1022) 52015) ((-405 . -591) 51997) ((-376 . -591) 51979) ((-336 . -1022) 51931) ((-219 . -591) 51863) ((-1043 . -111) 51759) ((-993 . -23) T) ((-107 . -1022) 51709) ((-867 . -101) T) ((-812 . -101) T) ((-782 . -101) T) ((-743 . -101) T) ((-651 . -101) T) ((-464 . -442) 51688) ((-409 . -169) T) ((-350 . -111) 51626) ((-344 . -111) 51564) ((-336 . -111) 51502) ((-242 . -223) 51471) ((-241 . -223) 51440) ((-345 . -23) T) ((-70 . -1172) T) ((-217 . -38) 51405) ((-107 . -111) 51339) ((-40 . -25) T) ((-40 . -21) T) ((-644 . -695) T) ((-166 . -275) 51317) ((-48 . -1075) T) ((-890 . -25) T) ((-745 . -25) T) ((-1110 . -479) 51254) ((-475 . -1063) T) ((-1242 . -622) 51228) ((-1191 . -101) T) ((-826 . -101) T) ((-232 . -1023) 51158) ((-1027 . -1111) T) ((-933 . -766) 51111) ((-372 . -622) 51095) ((-48 . -23) T) ((-933 . -769) 51048) ((-789 . -769) 50999) ((-789 . -766) 50950) ((-286 . -582) 50929) ((-467 . -701) T) ((-554 . -101) T) ((-840 . -300) 50886) ((-627 . -277) 50865) ((-112 . -635) T) ((-75 . -1172) T) ((-1027 . -38) 50852) ((-638 . -365) 50831) ((-921 . -38) 50680) ((-706 . -1063) T) ((-471 . -38) 50529) ((-85 . -1172) T) ((-554 . -275) T) ((-1182 . -819) NIL) ((-571 . -591) 50495) ((-1133 . -1063) T) ((-1132 . -1063) T) ((-1126 . -1063) T) ((-342 . -1007) 50472) ((-1043 . -1016) T) ((-973 . -1023) T) ((-45 . -591) 50454) ((-45 . -592) NIL) ((-883 . -1023) T) ((-791 . -591) 50436) ((-1107 . -101) 50414) ((-1043 . -235) 50365) ((-418 . -1023) T) ((-350 . -1016) T) ((-344 . -1016) T) ((-356 . -355) 50342) ((-336 . -1016) T) ((-242 . -230) 50321) ((-241 . -230) 50300) ((-109 . -355) 50274) ((-1043 . -225) 50199) ((-1088 . -1063) T) ((-285 . -869) 50158) ((-107 . -1016) T) ((-668 . -130) T) ((-409 . -503) 50000) ((-350 . -225) 49979) ((-350 . -235) T) ((-44 . -695) T) ((-344 . -225) 49958) ((-344 . -235) T) ((-336 . -225) 49937) ((-336 . -235) T) ((-166 . -300) 49902) ((-107 . -235) T) ((-107 . -225) T) ((-310 . -766) T) ((-839 . -21) T) ((-839 . -25) T) ((-398 . -298) T) ((-489 . -34) T) ((-110 . -279) 49877) ((-1076 . -1022) 49774) ((-840 . -1111) NIL) ((-321 . -591) 49756) ((-398 . -991) 49735) ((-1076 . -111) 49625) ((-665 . -1213) T) ((-427 . -1063) T) ((-1242 . -701) T) ((-62 . -591) 49607) ((-840 . -38) 49552) ((-512 . -1172) T) ((-580 . -149) 49536) ((-501 . -591) 49518) ((-1191 . -300) 49505) ((-706 . -692) 49354) ((-519 . -767) T) ((-519 . -768) T) ((-547 . -615) 49336) ((-484 . -615) 49296) ((-346 . -442) T) ((-343 . -442) T) ((-335 . -442) T) ((-255 . -442) 49247) ((-514 . -1063) T) ((-509 . -1063) 49197) ((-239 . -442) 49148) ((-1110 . -277) 49127) ((-1137 . -591) 49109) ((-663 . -503) 49042) ((-932 . -281) 49021) ((-533 . -503) 48813) ((-1131 . -223) 48797) ((-166 . -1111) 48776) ((-1230 . -591) 48758) ((-1133 . -692) 48655) ((-1132 . -692) 48496) ((-861 . -101) T) ((-1126 . -692) 48292) ((-1088 . -692) 48189) ((-1116 . -648) 48173) ((-346 . -393) 48124) ((-343 . -393) 48075) ((-335 . -393) 48026) ((-993 . -130) T) ((-773 . -503) 47938) ((-286 . -592) NIL) ((-286 . -591) 47920) ((-879 . -442) T) ((-933 . -359) 47873) ((-789 . -359) 47852) ((-499 . -498) 47831) ((-497 . -498) 47810) ((-477 . -277) NIL) ((-472 . -279) 47787) ((-409 . -281) T) ((-345 . -130) T) ((-209 . -277) NIL) ((-668 . -482) NIL) ((-98 . -1075) T) ((-166 . -38) 47615) ((-1202 . -942) 47577) ((-1107 . -300) 47515) ((-1181 . -942) 47484) ((-879 . -393) T) ((-1076 . -1016) 47414) ((-1204 . -539) T) ((-1110 . -582) 47393) ((-112 . -821) T) ((-1028 . -479) 47324) ((-560 . -21) T) ((-560 . -25) T) ((-547 . -21) T) ((-547 . -25) T) ((-484 . -25) T) ((-484 . -21) T) ((-1191 . -1111) 47302) ((-1076 . -225) 47254) ((-48 . -130) T) ((-1153 . -101) T) ((-232 . -1063) 47044) ((-840 . -391) 47021) ((-1052 . -101) T) ((-1039 . -101) T) ((-586 . -101) T) ((-465 . -101) T) ((-1191 . -38) 46850) ((-826 . -38) 46820) ((-706 . -169) 46731) ((-627 . -591) 46713) ((-620 . -1047) T) ((-554 . -38) 46700) ((-939 . -591) 46666) ((-927 . -101) 46616) ((-834 . -591) 46598) ((-834 . -592) 46520) ((-572 . -503) NIL) ((-1210 . -1023) T) ((-1203 . -1023) T) ((-1182 . -1023) T) ((-575 . -1023) T) ((-574 . -1023) T) ((-1246 . -1075) T) ((-1133 . -169) 46471) ((-1132 . -169) 46402) ((-1126 . -169) 46333) ((-1088 . -169) 46284) ((-973 . -1063) T) ((-940 . -1063) T) ((-883 . -1063) T) ((-1166 . -145) 46263) ((-773 . -771) 46247) ((-673 . -25) T) ((-673 . -21) T) ((-117 . -615) 46224) ((-675 . -855) 46206) ((-418 . -1063) T) ((-307 . -1176) 46185) ((-304 . -1176) T) ((-166 . -391) 46169) ((-1166 . -143) 46148) ((-464 . -942) 46110) ((-128 . -1063) T) ((-71 . -591) 46092) ((-107 . -769) T) ((-107 . -766) T) ((-307 . -539) 46071) ((-675 . -1007) 46053) ((-304 . -539) T) ((-1246 . -23) T) ((-133 . -1007) 46035) ((-472 . -1022) 45932) ((-45 . -279) 45857) ((-232 . -692) 45799) ((-506 . -101) T) ((-472 . -111) 45689) ((-1056 . -101) 45667) ((-1003 . -101) T) ((-619 . -802) 45646) ((-706 . -503) 45589) ((-1020 . -1022) 45573) ((-1028 . -277) 45548) ((-599 . -21) T) ((-599 . -25) T) ((-513 . -1063) T) ((-352 . -101) T) ((-313 . -101) T) ((-644 . -622) 45522) ((-376 . -1022) 45506) ((-1020 . -111) 45485) ((-790 . -402) 45469) ((-117 . -25) T) ((-88 . -591) 45451) ((-117 . -21) T) ((-586 . -300) 45246) ((-465 . -300) 45050) ((-1110 . -592) NIL) ((-376 . -111) 45029) ((-370 . -101) T) ((-206 . -591) 45011) ((-1110 . -591) 44993) ((-973 . -692) 44943) ((-1126 . -503) 44712) ((-883 . -692) 44664) ((-1088 . -503) 44634) ((-342 . -298) T) ((-1145 . -149) 44584) ((-927 . -300) 44522) ((-808 . -101) T) ((-418 . -692) 44506) ((-217 . -802) T) ((-801 . -101) T) ((-799 . -101) T) ((-469 . -149) 44456) ((-1202 . -1201) 44435) ((-1082 . -1176) T) ((-330 . -1007) 44402) ((-1202 . -1196) 44372) ((-1202 . -1199) 44356) ((-1181 . -1180) 44335) ((-79 . -591) 44317) ((-874 . -591) 44299) ((-1181 . -1196) 44276) ((-1082 . -539) T) ((-890 . -821) T) ((-745 . -821) T) ((-477 . -592) 44206) ((-477 . -591) 44188) ((-370 . -275) T) ((-646 . -821) T) ((-1181 . -1178) 44172) ((-1204 . -1075) T) ((-209 . -592) 44102) ((-209 . -591) 44084) ((-1028 . -582) 44059) ((-58 . -149) 44043) ((-505 . -149) 44027) ((-485 . -149) 44011) ((-350 . -1237) 43995) ((-344 . -1237) 43979) ((-336 . -1237) 43963) ((-307 . -354) 43942) ((-304 . -354) T) ((-472 . -1016) 43872) ((-668 . -615) 43854) ((-1240 . -622) 43828) ((-1238 . -622) 43802) ((-1204 . -23) T) ((-663 . -479) 43786) ((-63 . -591) 43768) ((-1076 . -769) 43719) ((-1076 . -766) 43670) ((-533 . -479) 43607) ((-644 . -34) T) ((-472 . -225) 43559) ((-286 . -279) 43538) ((-232 . -169) 43517) ((-790 . -1023) T) ((-44 . -622) 43475) ((-1043 . -359) 43426) ((-706 . -281) 43357) ((-509 . -503) 43290) ((-791 . -1022) 43241) ((-1051 . -143) 43220) ((-350 . -359) 43199) ((-344 . -359) 43178) ((-336 . -359) 43157) ((-1051 . -145) 43136) ((-840 . -223) 43113) ((-791 . -111) 43055) ((-756 . -143) 43034) ((-756 . -145) 43013) ((-255 . -918) 42980) ((-242 . -819) 42959) ((-239 . -918) 42904) ((-241 . -819) 42883) ((-754 . -143) 42862) ((-754 . -145) 42841) ((-150 . -622) 42815) ((-444 . -145) 42794) ((-444 . -143) 42773) ((-644 . -701) T) ((-797 . -591) 42755) ((-1210 . -1063) T) ((-1203 . -1063) T) ((-1182 . -1063) T) ((-1166 . -1160) 42721) ((-1166 . -1157) 42687) ((-1133 . -281) 42666) ((-1132 . -281) 42617) ((-1126 . -281) 42568) ((-1088 . -281) 42547) ((-330 . -869) 42528) ((-973 . -169) T) ((-883 . -169) T) ((-575 . -1063) T) ((-574 . -1063) T) ((-668 . -21) T) ((-668 . -25) T) ((-464 . -1199) 42512) ((-464 . -1196) 42482) ((-409 . -277) 42410) ((-307 . -1075) 42259) ((-304 . -1075) T) ((-1166 . -35) 42225) ((-1166 . -94) 42191) ((-83 . -591) 42173) ((-90 . -101) 42151) ((-1246 . -130) T) ((-561 . -143) T) ((-561 . -145) 42133) ((-507 . -145) 42115) ((-507 . -143) T) ((-307 . -23) 41967) ((-40 . -333) 41941) ((-304 . -23) T) ((-1118 . -625) 41923) ((-789 . -622) 41771) ((-1233 . -1023) T) ((-1118 . -364) 41753) ((-1054 . -101) T) ((-166 . -223) 41737) ((-1031 . -101) T) ((-1005 . -101) T) ((-988 . -101) T) ((-572 . -479) 41719) ((-602 . -101) T) ((-232 . -503) 41652) ((-473 . -101) T) ((-1240 . -701) T) ((-1238 . -701) T) ((-210 . -101) T) ((-1137 . -1022) 41535) ((-1137 . -111) 41404) ((-791 . -1016) T) ((-655 . -1047) T) ((-650 . -1047) T) ((-504 . -101) T) ((-499 . -101) T) ((-48 . -615) 41364) ((-497 . -101) T) ((-468 . -1047) T) ((-1230 . -1022) 41334) ((-137 . -1047) T) ((-136 . -1047) T) ((-132 . -1047) T) ((-1003 . -38) 41318) ((-791 . -225) T) ((-791 . -235) 41297) ((-533 . -277) 41276) ((-1230 . -111) 41241) ((-1210 . -692) 41138) ((-584 . -92) T) ((-1203 . -692) 40979) ((-1191 . -223) 40963) ((-1028 . -592) NIL) ((-1028 . -591) 40945) ((-645 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-1182 . -692) 40741) ((-972 . -889) T) ((-677 . -591) 40710) ((-150 . -701) T) ((-1076 . -359) 40689) ((-973 . -503) NIL) ((-242 . -402) 40658) ((-241 . -402) 40627) ((-993 . -25) T) ((-993 . -21) T) ((-575 . -692) 40600) ((-574 . -692) 40497) ((-773 . -277) 40455) ((-126 . -101) 40433) ((-807 . -1007) 40329) ((-166 . -802) 40308) ((-310 . -622) 40205) ((-789 . -34) T) ((-689 . -101) T) ((-1082 . -1075) T) ((-128 . -503) NIL) ((-995 . -1172) T) ((-370 . -38) 40170) ((-345 . -25) T) ((-345 . -21) T) ((-159 . -101) T) ((-154 . -101) T) ((-346 . -1225) 40154) ((-343 . -1225) 40138) ((-335 . -1225) 40122) ((-166 . -340) 40101) ((-547 . -821) T) ((-484 . -821) T) ((-1082 . -23) T) ((-86 . -591) 40083) ((-675 . -298) T) ((-808 . -38) 40053) ((-801 . -38) 40023) ((-1204 . -130) T) ((-1110 . -279) 40002) ((-933 . -767) 39955) ((-933 . -768) 39908) ((-789 . -765) 39887) ((-116 . -298) T) ((-90 . -300) 39825) ((-649 . -34) T) ((-533 . -582) 39804) ((-48 . -25) T) ((-48 . -21) T) ((-789 . -768) 39755) ((-789 . -767) 39734) ((-675 . -991) T) ((-627 . -1022) 39718) ((-933 . -701) 39617) ((-789 . -701) 39527) ((-933 . -463) 39480) ((-472 . -769) 39431) ((-472 . -766) 39382) ((-879 . -1225) 39369) ((-1137 . -1016) T) ((-627 . -111) 39348) ((-1137 . -317) 39325) ((-1158 . -101) 39303) ((-1064 . -591) 39285) ((-675 . -532) T) ((-790 . -1063) T) ((-1230 . -1016) T) ((-404 . -1063) T) ((-242 . -1023) 39215) ((-241 . -1023) 39145) ((-280 . -622) 39132) ((-572 . -277) 39107) ((-663 . -661) 39065) ((-932 . -591) 39047) ((-841 . -101) T) ((-710 . -591) 39029) ((-690 . -591) 39011) ((-1210 . -169) 38962) ((-1203 . -169) 38893) ((-1182 . -169) 38824) ((-673 . -821) T) ((-973 . -281) T) ((-443 . -591) 38806) ((-603 . -701) T) ((-59 . -1063) 38784) ((-237 . -149) 38768) ((-883 . -281) T) ((-993 . -981) T) ((-603 . -463) T) ((-687 . -1176) 38747) ((-575 . -169) 38726) ((-574 . -169) 38677) ((-1218 . -821) 38656) ((-687 . -539) 38567) ((-398 . -889) T) ((-398 . -794) 38546) ((-310 . -768) T) ((-310 . -701) T) ((-409 . -591) 38528) ((-409 . -592) 38436) ((-619 . -1109) 38420) ((-110 . -625) 38402) ((-171 . -298) T) ((-126 . -300) 38340) ((-110 . -364) 38322) ((-389 . -1172) T) ((-307 . -130) 38193) ((-304 . -130) T) ((-68 . -386) T) ((-110 . -123) T) ((-509 . -479) 38177) ((-628 . -1075) T) ((-572 . -19) 38159) ((-60 . -431) T) ((-60 . -386) T) ((-798 . -1063) T) ((-572 . -582) 38134) ((-467 . -1007) 38094) ((-627 . -1016) T) ((-628 . -23) T) ((-1233 . -1063) T) ((-31 . -101) T) ((-790 . -692) 37943) ((-117 . -821) NIL) ((-1131 . -402) 37927) ((-1087 . -402) 37911) ((-825 . -402) 37895) ((-842 . -101) 37846) ((-1202 . -101) T) ((-1182 . -503) 37615) ((-514 . -92) T) ((-1158 . -300) 37553) ((-303 . -591) 37535) ((-1181 . -101) T) ((-1065 . -1063) T) ((-1133 . -277) 37520) ((-1132 . -277) 37505) ((-280 . -701) T) ((-107 . -878) NIL) ((-663 . -591) 37437) ((-663 . -592) 37398) ((-1043 . -622) 37308) ((-579 . -591) 37290) ((-533 . -592) NIL) ((-533 . -591) 37272) ((-1126 . -277) 37120) ((-477 . -1022) 37070) ((-686 . -442) T) ((-500 . -498) 37049) ((-496 . -498) 37028) ((-209 . -1022) 36978) ((-350 . -622) 36930) ((-344 . -622) 36882) ((-217 . -819) T) ((-336 . -622) 36834) ((-580 . -101) 36784) ((-472 . -359) 36763) ((-107 . -622) 36713) ((-477 . -111) 36647) ((-232 . -479) 36631) ((-334 . -145) 36613) ((-334 . -143) T) ((-166 . -361) 36584) ((-912 . -1216) 36568) ((-209 . -111) 36502) ((-841 . -300) 36467) ((-912 . -1063) 36417) ((-773 . -592) 36378) ((-773 . -591) 36360) ((-693 . -101) T) ((-322 . -1063) T) ((-1082 . -130) T) ((-689 . -38) 36330) ((-307 . -482) 36309) ((-489 . -1172) T) ((-1202 . -275) 36275) ((-1181 . -275) 36241) ((-318 . -149) 36225) ((-1028 . -279) 36200) ((-1233 . -692) 36170) ((-1119 . -34) T) ((-1242 . -1007) 36147) ((-458 . -591) 36129) ((-474 . -34) T) ((-372 . -1007) 36113) ((-1131 . -1023) T) ((-1087 . -1023) T) ((-825 . -1023) T) ((-1027 . -819) T) ((-790 . -169) 36024) ((-509 . -277) 36001) ((-128 . -479) 35983) ((-117 . -961) 35960) ((-1210 . -281) 35939) ((-1203 . -281) 35890) ((-1153 . -355) 35864) ((-1052 . -257) 35848) ((-584 . -591) 35798) ((-645 . -591) 35764) ((-464 . -101) T) ((-158 . -591) 35730) ((-356 . -1063) T) ((-242 . -1063) T) ((-241 . -1063) T) ((-153 . -591) 35696) ((-109 . -1063) T) ((-1182 . -281) 35647) ((-841 . -1111) 35625) ((-1133 . -971) 35591) ((-586 . -355) 35531) ((-1132 . -971) 35497) ((-586 . -221) 35444) ((-572 . -591) 35426) ((-572 . -592) NIL) ((-668 . -821) T) ((-465 . -221) 35376) ((-477 . -1016) T) ((-1126 . -971) 35342) ((-87 . -430) T) ((-87 . -386) T) ((-209 . -1016) T) ((-1088 . -971) 35308) ((-1043 . -701) T) ((-687 . -1075) T) ((-575 . -281) 35287) ((-574 . -281) 35266) ((-477 . -235) T) ((-477 . -225) T) ((-209 . -235) T) ((-209 . -225) T) ((-1125 . -591) 35248) ((-841 . -38) 35200) ((-350 . -701) T) ((-344 . -701) T) ((-336 . -701) T) ((-107 . -768) T) ((-107 . -765) T) ((-509 . -1206) 35184) ((-107 . -701) T) ((-687 . -23) T) ((-1246 . -25) T) ((-464 . -275) 35150) ((-1246 . -21) T) ((-1181 . -300) 35089) ((-1135 . -101) T) ((-40 . -143) 35061) ((-40 . -145) 35033) ((-509 . -582) 35010) ((-1076 . -622) 34858) ((-580 . -300) 34796) ((-45 . -625) 34746) ((-45 . -640) 34696) ((-45 . -364) 34646) ((-1118 . -34) T) ((-840 . -819) NIL) ((-628 . -130) T) ((-475 . -591) 34628) ((-232 . -277) 34605) ((-621 . -34) T) ((-608 . -34) T) ((-1051 . -442) 34556) ((-790 . -503) 34430) ((-756 . -442) 34361) ((-754 . -442) 34312) ((-444 . -442) 34263) ((-921 . -402) 34247) ((-706 . -591) 34229) ((-242 . -692) 34171) ((-241 . -692) 34113) ((-706 . -592) 33974) ((-471 . -402) 33958) ((-330 . -293) T) ((-513 . -92) T) ((-342 . -889) T) ((-969 . -101) 33936) ((-993 . -821) T) ((-59 . -503) 33869) ((-1181 . -1111) 33821) ((-973 . -277) NIL) ((-217 . -1023) T) ((-370 . -802) T) ((-1076 . -34) T) ((-1185 . -1057) 33805) ((-561 . -442) T) ((-507 . -442) T) ((-1185 . -1063) 33783) ((-1185 . -1059) 33740) ((-232 . -582) 33717) ((-1133 . -591) 33699) ((-1132 . -591) 33681) ((-1126 . -591) 33663) ((-1126 . -592) NIL) ((-1088 . -591) 33645) ((-128 . -277) 33620) ((-841 . -391) 33604) ((-523 . -101) T) ((-1202 . -38) 33445) ((-1181 . -38) 33259) ((-839 . -145) T) ((-561 . -393) T) ((-48 . -821) T) ((-507 . -393) T) ((-1214 . -101) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-1076 . -765) 33238) ((-1076 . -768) 33189) ((-1076 . -767) 33168) ((-962 . -1063) T) ((-996 . -34) T) ((-832 . -1063) T) ((-1076 . -701) 33078) ((-638 . -101) T) ((-620 . -101) T) ((-533 . -279) 33057) ((-1145 . -101) T) ((-466 . -34) T) ((-453 . -34) T) ((-346 . -101) T) ((-343 . -101) T) ((-335 . -101) T) ((-255 . -101) T) ((-239 . -101) T) ((-467 . -298) T) ((-1027 . -1023) T) ((-921 . -1023) T) ((-307 . -615) 32963) ((-304 . -615) 32924) ((-471 . -1023) T) ((-469 . -101) T) ((-427 . -591) 32906) ((-1131 . -1063) T) ((-1087 . -1063) T) ((-825 . -1063) T) ((-1101 . -101) T) ((-790 . -281) 32837) ((-932 . -1022) 32720) ((-467 . -991) T) ((-128 . -19) 32702) ((-710 . -1022) 32672) ((-128 . -582) 32647) ((-443 . -1022) 32617) ((-1107 . -1083) 32601) ((-1065 . -503) 32534) ((-932 . -111) 32403) ((-879 . -101) T) ((-710 . -111) 32368) ((-514 . -591) 32334) ((-58 . -101) 32284) ((-509 . -592) 32245) ((-509 . -591) 32157) ((-508 . -101) 32135) ((-505 . -101) 32085) ((-486 . -101) 32063) ((-485 . -101) 32013) ((-443 . -111) 31976) ((-242 . -169) 31955) ((-241 . -169) 31934) ((-409 . -1022) 31908) ((-1166 . -942) 31870) ((-968 . -1075) T) ((-912 . -503) 31803) ((-477 . -769) T) ((-464 . -38) 31644) ((-409 . -111) 31611) ((-477 . -766) T) ((-969 . -300) 31549) ((-209 . -769) T) ((-209 . -766) T) ((-968 . -23) T) ((-687 . -130) T) ((-1181 . -391) 31519) ((-307 . -25) 31371) ((-166 . -402) 31355) ((-307 . -21) 31226) ((-304 . -25) T) ((-304 . -21) T) ((-834 . -359) T) ((-110 . -34) T) ((-472 . -622) 31074) ((-840 . -1023) T) ((-572 . -279) 31049) ((-560 . -145) T) ((-547 . -145) T) ((-484 . -145) T) ((-1131 . -692) 30878) ((-1087 . -692) 30727) ((-1082 . -615) 30709) ((-825 . -692) 30679) ((-644 . -1172) T) ((-1 . -101) T) ((-232 . -591) 30410) ((-1191 . -402) 30394) ((-1145 . -300) 30198) ((-932 . -1016) T) ((-710 . -1016) T) ((-690 . -1016) T) ((-619 . -1063) 30148) ((-1020 . -622) 30132) ((-826 . -402) 30116) ((-500 . -101) T) ((-496 . -101) T) ((-239 . -300) 30103) ((-255 . -300) 30090) ((-932 . -317) 30069) ((-376 . -622) 30053) ((-469 . -300) 29857) ((-242 . -503) 29790) ((-644 . -1007) 29686) ((-241 . -503) 29619) ((-1101 . -300) 29545) ((-793 . -1063) T) ((-773 . -1022) 29529) ((-1210 . -277) 29514) ((-1203 . -277) 29499) ((-1182 . -277) 29347) ((-377 . -1063) T) ((-315 . -1063) T) ((-409 . -1016) T) ((-166 . -1023) T) ((-58 . -300) 29285) ((-773 . -111) 29264) ((-574 . -277) 29249) ((-508 . -300) 29187) ((-505 . -300) 29125) ((-486 . -300) 29063) ((-485 . -300) 29001) ((-409 . -225) 28980) ((-472 . -34) T) ((-973 . -592) 28910) ((-217 . -1063) T) ((-973 . -591) 28892) ((-940 . -591) 28874) ((-940 . -592) 28849) ((-883 . -591) 28831) ((-673 . -145) T) ((-675 . -889) T) ((-675 . -794) T) ((-418 . -591) 28813) ((-1082 . -21) T) ((-128 . -592) NIL) ((-128 . -591) 28795) ((-1082 . -25) T) ((-644 . -368) 28779) ((-116 . -889) T) ((-841 . -223) 28763) ((-77 . -1172) T) ((-126 . -125) 28747) ((-1020 . -34) T) ((-1240 . -1007) 28721) ((-1238 . -1007) 28678) ((-1191 . -1023) T) ((-826 . -1023) T) ((-472 . -765) 28657) ((-346 . -1111) 28636) ((-343 . -1111) 28615) ((-335 . -1111) 28594) ((-472 . -768) 28545) ((-472 . -767) 28524) ((-219 . -34) T) ((-472 . -701) 28434) ((-59 . -479) 28418) ((-554 . -1023) T) ((-1131 . -169) 28309) ((-1087 . -169) 28220) ((-1027 . -1063) T) ((-1051 . -918) 28165) ((-921 . -1063) T) ((-791 . -622) 28116) ((-756 . -918) 28085) ((-688 . -1063) T) ((-754 . -918) 28052) ((-505 . -273) 28036) ((-644 . -869) 27995) ((-471 . -1063) T) ((-444 . -918) 27962) ((-78 . -1172) T) ((-346 . -38) 27927) ((-343 . -38) 27892) ((-335 . -38) 27857) ((-255 . -38) 27706) ((-239 . -38) 27555) ((-879 . -1111) T) ((-599 . -145) 27534) ((-599 . -143) 27513) ((-513 . -591) 27479) ((-117 . -145) T) ((-117 . -143) NIL) ((-405 . -701) T) ((-773 . -1016) T) ((-334 . -442) T) ((-1210 . -971) 27445) ((-1203 . -971) 27411) ((-1182 . -971) 27377) ((-879 . -38) 27342) ((-217 . -692) 27307) ((-310 . -47) 27277) ((-40 . -400) 27249) ((-138 . -591) 27231) ((-968 . -130) T) ((-789 . -1172) T) ((-171 . -889) T) ((-334 . -393) T) ((-509 . -279) 27208) ((-789 . -1007) 27035) ((-45 . -34) T) ((-655 . -101) T) ((-650 . -101) T) ((-636 . -101) T) ((-628 . -21) T) ((-628 . -25) T) ((-1181 . -223) 27005) ((-1065 . -479) 26989) ((-468 . -101) T) ((-649 . -1172) T) ((-237 . -101) 26939) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-840 . -1063) T) ((-1137 . -622) 26864) ((-1027 . -692) 26851) ((-706 . -1022) 26694) ((-1131 . -503) 26641) ((-921 . -692) 26490) ((-1087 . -503) 26442) ((-1229 . -1063) T) ((-1228 . -1063) T) ((-471 . -692) 26291) ((-66 . -591) 26273) ((-706 . -111) 26102) ((-912 . -479) 26086) ((-1230 . -622) 26046) ((-791 . -701) T) ((-1133 . -1022) 25929) ((-1132 . -1022) 25764) ((-1126 . -1022) 25554) ((-1088 . -1022) 25437) ((-972 . -1176) T) ((-1058 . -101) 25415) ((-789 . -368) 25384) ((-972 . -539) T) ((-1133 . -111) 25253) ((-1132 . -111) 25074) ((-1126 . -111) 24843) ((-1088 . -111) 24712) ((-1068 . -1066) 24676) ((-370 . -819) T) ((-1210 . -591) 24658) ((-1203 . -591) 24640) ((-1182 . -591) 24622) ((-1182 . -592) NIL) ((-232 . -279) 24599) ((-40 . -442) T) ((-217 . -169) T) ((-166 . -1063) T) ((-668 . -145) T) ((-668 . -143) NIL) ((-575 . -591) 24581) ((-574 . -591) 24563) ((-867 . -1063) T) ((-812 . -1063) T) ((-782 . -1063) T) ((-743 . -1063) T) ((-632 . -823) 24547) ((-651 . -1063) T) ((-789 . -869) 24479) ((-40 . -393) NIL) ((-1082 . -635) T) ((-840 . -692) 24424) ((-242 . -479) 24408) ((-241 . -479) 24392) ((-687 . -615) 24340) ((-627 . -622) 24314) ((-286 . -34) T) ((-706 . -1016) T) ((-561 . -1225) 24301) ((-507 . -1225) 24278) ((-1191 . -1063) T) ((-1131 . -281) 24189) ((-1087 . -281) 24120) ((-1027 . -169) T) ((-826 . -1063) T) ((-921 . -169) 24031) ((-756 . -1194) 24015) ((-619 . -503) 23948) ((-76 . -591) 23930) ((-706 . -317) 23895) ((-1137 . -701) T) ((-554 . -1063) T) ((-471 . -169) 23806) ((-237 . -300) 23744) ((-128 . -279) 23719) ((-1102 . -1075) T) ((-69 . -591) 23701) ((-1230 . -701) T) ((-1133 . -1016) T) ((-1132 . -1016) T) ((-318 . -101) 23651) ((-1126 . -1016) T) ((-1102 . -23) T) ((-1088 . -1016) T) ((-90 . -1083) 23635) ((-835 . -1075) T) ((-1133 . -225) 23594) ((-1132 . -235) 23573) ((-1132 . -225) 23525) ((-1126 . -225) 23412) ((-1126 . -235) 23391) ((-310 . -869) 23297) ((-835 . -23) T) ((-166 . -692) 23125) ((-398 . -1176) T) ((-1064 . -359) T) ((-993 . -145) T) ((-972 . -354) T) ((-839 . -442) T) ((-912 . -277) 23102) ((-307 . -821) T) ((-304 . -821) NIL) ((-843 . -101) T) ((-687 . -25) T) ((-398 . -539) T) ((-687 . -21) T) ((-345 . -145) 23084) ((-345 . -143) T) ((-1107 . -1063) 23062) ((-443 . -695) T) ((-74 . -591) 23044) ((-114 . -821) T) ((-237 . -273) 23028) ((-232 . -1022) 22925) ((-80 . -591) 22907) ((-710 . -359) 22860) ((-1135 . -802) T) ((-712 . -227) 22844) ((-1119 . -1172) T) ((-139 . -227) 22826) ((-232 . -111) 22716) ((-1191 . -692) 22545) ((-48 . -145) T) ((-840 . -169) T) ((-826 . -692) 22515) ((-474 . -1172) T) ((-921 . -503) 22462) ((-627 . -701) T) ((-554 . -692) 22449) ((-1003 . -1023) T) ((-471 . -503) 22392) ((-912 . -19) 22376) ((-912 . -582) 22353) ((-790 . -592) NIL) ((-790 . -591) 22335) ((-973 . -1022) 22285) ((-404 . -591) 22267) ((-242 . -277) 22244) ((-241 . -277) 22221) ((-477 . -878) NIL) ((-307 . -29) 22191) ((-107 . -1172) T) ((-972 . -1075) T) ((-209 . -878) NIL) ((-883 . -1022) 22143) ((-1043 . -1007) 22039) ((-973 . -111) 21973) ((-712 . -669) 21957) ((-255 . -223) 21941) ((-418 . -1022) 21925) ((-370 . -1023) T) ((-972 . -23) T) ((-883 . -111) 21863) ((-668 . -1160) NIL) ((-477 . -622) 21813) ((-107 . -853) 21795) ((-107 . -855) 21777) ((-668 . -1157) NIL) ((-209 . -622) 21727) ((-350 . -1007) 21711) ((-344 . -1007) 21695) ((-318 . -300) 21633) ((-336 . -1007) 21617) ((-217 . -281) T) ((-418 . -111) 21596) ((-59 . -591) 21528) ((-166 . -169) T) ((-1082 . -821) T) ((-107 . -1007) 21488) ((-861 . -1063) T) ((-808 . -1023) T) ((-801 . -1023) T) ((-668 . -35) NIL) ((-668 . -94) NIL) ((-304 . -961) 21449) ((-179 . -101) T) ((-560 . -442) T) ((-547 . -442) T) ((-484 . -442) T) ((-398 . -354) T) ((-232 . -1016) 21379) ((-1110 . -34) T) ((-467 . -889) T) ((-968 . -615) 21327) ((-242 . -582) 21304) ((-241 . -582) 21281) ((-1043 . -368) 21265) ((-840 . -503) 21173) ((-232 . -225) 21125) ((-1118 . -1172) T) ((-798 . -591) 21107) ((-1241 . -1075) T) ((-1233 . -591) 21089) ((-1191 . -169) 20980) ((-107 . -368) 20962) ((-107 . -329) 20944) ((-1027 . -281) T) ((-921 . -281) 20875) ((-773 . -359) 20854) ((-621 . -1172) T) ((-608 . -1172) T) ((-471 . -281) 20785) ((-554 . -169) T) ((-318 . -273) 20769) ((-1241 . -23) T) ((-1166 . -101) T) ((-1153 . -1063) T) ((-1052 . -1063) T) ((-1039 . -1063) T) ((-82 . -591) 20751) ((-686 . -101) T) ((-346 . -340) 20730) ((-586 . -1063) T) ((-343 . -340) 20709) ((-335 . -340) 20688) ((-465 . -1063) T) ((-1145 . -221) 20638) ((-255 . -244) 20600) ((-1102 . -130) T) ((-586 . -588) 20576) ((-1043 . -869) 20509) ((-973 . -1016) T) ((-883 . -1016) T) ((-465 . -588) 20488) ((-1126 . -766) NIL) ((-1126 . -769) NIL) ((-1065 . -592) 20449) ((-469 . -221) 20399) ((-1065 . -591) 20381) ((-973 . -235) T) ((-973 . -225) T) ((-418 . -1016) T) ((-927 . -1063) 20331) ((-883 . -235) T) ((-835 . -130) T) ((-673 . -442) T) ((-814 . -1075) 20310) ((-107 . -869) NIL) ((-1166 . -275) 20276) ((-841 . -819) 20255) ((-1076 . -1172) T) ((-874 . -701) T) ((-166 . -503) 20167) ((-968 . -25) T) ((-874 . -463) T) ((-398 . -1075) T) ((-477 . -768) T) ((-477 . -765) T) ((-879 . -340) T) ((-477 . -701) T) ((-209 . -768) T) ((-209 . -765) T) ((-968 . -21) T) ((-209 . -701) T) ((-814 . -23) 20119) ((-310 . -298) 20098) ((-1004 . -227) 20044) ((-398 . -23) T) ((-912 . -592) 20005) ((-912 . -591) 19917) ((-619 . -479) 19901) ((-45 . -979) 19851) ((-594 . -936) T) ((-480 . -101) T) ((-322 . -591) 19833) ((-1076 . -1007) 19660) ((-572 . -625) 19642) ((-572 . -364) 19624) ((-334 . -1225) 19601) ((-996 . -1172) T) ((-840 . -281) T) ((-1191 . -503) 19548) ((-466 . -1172) T) ((-453 . -1172) T) ((-565 . -101) T) ((-1131 . -277) 19475) ((-599 . -442) 19454) ((-969 . -964) 19438) ((-1233 . -373) 19410) ((-506 . -1063) T) ((-117 . -442) T) ((-1152 . -101) T) ((-1056 . -1063) 19388) ((-1003 . -1063) T) ((-862 . -821) T) ((-342 . -1176) T) ((-1210 . -1022) 19271) ((-1076 . -368) 19240) ((-1203 . -1022) 19075) ((-1182 . -1022) 18865) ((-1210 . -111) 18734) ((-1203 . -111) 18555) ((-1182 . -111) 18324) ((-1166 . -300) 18311) ((-342 . -539) T) ((-356 . -591) 18293) ((-280 . -298) T) ((-575 . -1022) 18266) ((-574 . -1022) 18149) ((-352 . -1063) T) ((-313 . -1063) T) ((-242 . -591) 18110) ((-241 . -591) 18071) ((-972 . -130) T) ((-109 . -591) 18053) ((-611 . -23) T) ((-668 . -400) 18020) ((-585 . -23) T) ((-632 . -101) T) ((-575 . -111) 17991) ((-574 . -111) 17860) ((-370 . -1063) T) ((-327 . -101) T) ((-166 . -281) 17771) ((-1181 . -819) 17724) ((-689 . -1023) T) ((-1107 . -503) 17657) ((-1076 . -869) 17589) ((-808 . -1063) T) ((-801 . -1063) T) ((-799 . -1063) T) ((-96 . -101) T) ((-142 . -821) T) ((-590 . -853) 17573) ((-110 . -1172) T) ((-1051 . -101) T) ((-1028 . -34) T) ((-756 . -101) T) ((-754 . -101) T) ((-451 . -101) T) ((-444 . -101) T) ((-232 . -769) 17524) ((-232 . -766) 17475) ((-623 . -101) T) ((-1191 . -281) 17386) ((-638 . -610) 17370) ((-619 . -277) 17347) ((-1003 . -692) 17331) ((-554 . -281) T) ((-932 . -622) 17256) ((-1241 . -130) T) ((-710 . -622) 17216) ((-690 . -622) 17203) ((-266 . -101) T) ((-443 . -622) 17133) ((-50 . -101) T) ((-561 . -101) T) ((-507 . -101) T) ((-1210 . -1016) T) ((-1203 . -1016) T) ((-1182 . -1016) T) ((-1210 . -225) 17092) ((-313 . -692) 17074) ((-1203 . -235) 17053) ((-1203 . -225) 17005) ((-1182 . -225) 16892) ((-1182 . -235) 16871) ((-1166 . -38) 16768) ((-973 . -769) T) ((-575 . -1016) T) ((-574 . -1016) T) ((-973 . -766) T) ((-940 . -769) T) ((-940 . -766) T) ((-841 . -1023) T) ((-839 . -838) 16752) ((-108 . -591) 16734) ((-668 . -442) T) ((-370 . -692) 16699) ((-409 . -622) 16673) ((-687 . -821) 16652) ((-686 . -38) 16617) ((-574 . -225) 16576) ((-40 . -699) 16548) ((-342 . -320) 16525) ((-342 . -354) T) ((-1043 . -298) 16476) ((-285 . -1075) 16357) ((-1069 . -1172) T) ((-168 . -101) T) ((-1185 . -591) 16324) ((-814 . -130) 16276) ((-619 . -1206) 16260) ((-808 . -692) 16230) ((-801 . -692) 16200) ((-472 . -1172) T) ((-350 . -298) T) ((-344 . -298) T) ((-336 . -298) T) ((-619 . -582) 16177) ((-398 . -130) T) ((-509 . -640) 16161) ((-107 . -298) T) ((-285 . -23) 16044) ((-509 . -625) 16028) ((-668 . -393) NIL) ((-509 . -364) 16012) ((-282 . -591) 15994) ((-90 . -1063) 15972) ((-107 . -991) T) ((-547 . -141) T) ((-1218 . -149) 15956) ((-472 . -1007) 15783) ((-1204 . -143) 15744) ((-1204 . -145) 15705) ((-1020 . -1172) T) ((-962 . -591) 15687) ((-832 . -591) 15669) ((-790 . -1022) 15512) ((-1054 . -1063) T) ((-1051 . -300) 15499) ((-219 . -1172) T) ((-1031 . -1063) T) ((-1005 . -1063) T) ((-988 . -1063) T) ((-756 . -300) 15486) ((-754 . -300) 15473) ((-1229 . -92) T) ((-790 . -111) 15302) ((-1228 . -92) T) ((-602 . -1063) T) ((-1131 . -592) NIL) ((-1131 . -591) 15284) ((-444 . -300) 15271) ((-473 . -1063) T) ((-1087 . -591) 15253) ((-1087 . -592) 15001) ((-1003 . -169) T) ((-210 . -1063) T) ((-825 . -591) 14983) ((-912 . -279) 14960) ((-586 . -503) 14743) ((-792 . -1007) 14727) ((-465 . -503) 14519) ((-932 . -701) T) ((-710 . -701) T) ((-690 . -701) T) ((-342 . -1075) T) ((-1138 . -591) 14501) ((-215 . -101) T) ((-472 . -368) 14470) ((-504 . -1063) T) ((-499 . -1063) T) ((-497 . -1063) T) ((-773 . -622) 14444) ((-993 . -442) T) ((-927 . -503) 14377) ((-342 . -23) T) ((-611 . -130) T) ((-585 . -130) T) ((-345 . -442) T) ((-232 . -359) 14356) ((-370 . -169) T) ((-1202 . -1023) T) ((-1181 . -1023) T) ((-217 . -971) T) ((-673 . -378) T) ((-409 . -701) T) ((-675 . -1176) T) ((-1102 . -615) 14304) ((-560 . -838) 14288) ((-1119 . -1148) 14264) ((-675 . -539) T) ((-126 . -1063) 14242) ((-1233 . -1022) 14226) ((-689 . -1063) T) ((-472 . -869) 14158) ((-632 . -38) 14128) ((-345 . -393) T) ((-307 . -145) 14107) ((-307 . -143) 14086) ((-116 . -539) T) ((-304 . -145) 14042) ((-304 . -143) 13998) ((-48 . -442) T) ((-159 . -1063) T) ((-154 . -1063) T) ((-1119 . -106) 13945) ((-756 . -1111) 13923) ((-663 . -34) T) ((-1233 . -111) 13902) ((-533 . -34) T) ((-474 . -106) 13886) ((-242 . -279) 13863) ((-241 . -279) 13840) ((-840 . -277) 13791) ((-45 . -1172) T) ((-790 . -1016) T) ((-1137 . -47) 13768) ((-790 . -317) 13730) ((-1051 . -38) 13579) ((-790 . -225) 13558) ((-756 . -38) 13387) ((-754 . -38) 13236) ((-128 . -625) 13218) ((-444 . -38) 13067) ((-128 . -364) 13049) ((-1080 . -101) T) ((-619 . -592) 13010) ((-619 . -591) 12922) ((-561 . -1111) T) ((-507 . -1111) T) ((-1107 . -479) 12906) ((-1158 . -1063) 12884) ((-1102 . -25) T) ((-1102 . -21) T) ((-464 . -1023) T) ((-1182 . -766) NIL) ((-1182 . -769) NIL) ((-968 . -821) 12863) ((-793 . -591) 12845) ((-835 . -21) T) ((-835 . -25) T) ((-773 . -701) T) ((-171 . -1176) T) ((-561 . -38) 12810) ((-507 . -38) 12775) ((-377 . -591) 12757) ((-315 . -591) 12739) ((-166 . -277) 12697) ((-62 . -1172) T) ((-112 . -101) T) ((-841 . -1063) T) ((-171 . -539) T) ((-689 . -692) 12667) ((-285 . -130) 12550) ((-217 . -591) 12532) ((-217 . -592) 12462) ((-972 . -615) 12401) ((-1233 . -1016) T) ((-1082 . -145) T) ((-608 . -1148) 12376) ((-706 . -878) 12355) ((-572 . -34) T) ((-621 . -106) 12339) ((-608 . -106) 12285) ((-1191 . -277) 12212) ((-706 . -622) 12137) ((-286 . -1172) T) ((-1137 . -1007) 12033) ((-1126 . -878) NIL) ((-1027 . -592) 11948) ((-1027 . -591) 11930) ((-921 . -591) 11912) ((-334 . -101) T) ((-242 . -1022) 11809) ((-241 . -1022) 11706) ((-385 . -101) T) ((-31 . -1063) T) ((-921 . -592) 11567) ((-688 . -591) 11549) ((-1231 . -1165) 11518) ((-471 . -591) 11500) ((-471 . -592) 11361) ((-239 . -402) 11345) ((-255 . -402) 11329) ((-242 . -111) 11219) ((-241 . -111) 11109) ((-1133 . -622) 11034) ((-1132 . -622) 10931) ((-1126 . -622) 10783) ((-1088 . -622) 10708) ((-342 . -130) T) ((-81 . -431) T) ((-81 . -386) T) ((-972 . -25) T) ((-972 . -21) T) ((-842 . -1063) 10659) ((-841 . -692) 10611) ((-370 . -281) T) ((-166 . -971) 10563) ((-668 . -378) T) ((-968 . -966) 10547) ((-675 . -1075) T) ((-668 . -163) 10529) ((-1202 . -1063) T) ((-1181 . -1063) T) ((-307 . -1157) 10508) ((-307 . -1160) 10487) ((-1124 . -101) T) ((-307 . -928) 10466) ((-133 . -1075) T) ((-116 . -1075) T) ((-580 . -1216) 10450) ((-675 . -23) T) ((-580 . -1063) 10400) ((-90 . -503) 10333) ((-171 . -354) T) ((-307 . -94) 10312) ((-307 . -35) 10291) ((-586 . -479) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-935 . -101) T) ((-693 . -1063) T) ((-465 . -479) 10162) ((-398 . -615) 10110) ((-627 . -1007) 10006) ((-927 . -479) 9990) ((-346 . -1023) T) ((-343 . -1023) T) ((-335 . -1023) T) ((-255 . -1023) T) ((-239 . -1023) T) ((-840 . -592) NIL) ((-840 . -591) 9972) ((-1241 . -21) T) ((-1229 . -591) 9938) ((-1228 . -591) 9904) ((-554 . -971) T) ((-706 . -701) T) ((-1241 . -25) T) ((-242 . -1016) 9834) ((-241 . -1016) 9764) ((-71 . -1172) T) ((-242 . -225) 9716) ((-241 . -225) 9668) ((-40 . -101) T) ((-879 . -1023) T) ((-1140 . -101) T) ((-1133 . -701) T) ((-1132 . -701) T) ((-1126 . -701) T) ((-1126 . -765) NIL) ((-1126 . -768) NIL) ((-923 . -101) T) ((-890 . -101) T) ((-1088 . -701) T) ((-745 . -101) T) ((-646 . -101) T) ((-464 . -1063) T) ((-330 . -1075) T) ((-171 . -1075) T) ((-310 . -889) 9647) ((-1202 . -692) 9488) ((-841 . -169) T) ((-1181 . -692) 9302) ((-814 . -21) 9254) ((-814 . -25) 9206) ((-237 . -1109) 9190) ((-126 . -503) 9123) ((-398 . -25) T) ((-398 . -21) T) ((-330 . -23) T) ((-166 . -592) 8891) ((-166 . -591) 8873) ((-171 . -23) T) ((-619 . -279) 8850) ((-509 . -34) T) ((-867 . -591) 8832) ((-88 . -1172) T) ((-812 . -591) 8814) ((-782 . -591) 8796) ((-743 . -591) 8778) ((-651 . -591) 8760) ((-232 . -622) 8608) ((-1135 . -1063) T) ((-1131 . -1022) 8431) ((-1110 . -1172) T) ((-1087 . -1022) 8274) ((-825 . -1022) 8258) ((-1131 . -111) 8067) ((-1087 . -111) 7896) ((-825 . -111) 7875) ((-1191 . -592) NIL) ((-1191 . -591) 7857) ((-334 . -1111) T) ((-826 . -591) 7839) ((-1039 . -277) 7818) ((-79 . -1172) T) ((-973 . -878) NIL) ((-586 . -277) 7794) ((-1158 . -503) 7727) ((-477 . -1172) T) ((-554 . -591) 7709) ((-465 . -277) 7688) ((-506 . -92) T) ((-209 . -1172) T) ((-1051 . -223) 7672) ((-280 . -889) T) ((-791 . -298) 7651) ((-839 . -101) T) ((-756 . -223) 7635) ((-973 . -622) 7585) ((-927 . -277) 7562) ((-883 . -622) 7514) ((-611 . -21) T) ((-611 . -25) T) ((-585 . -21) T) ((-334 . -38) 7479) ((-668 . -699) 7446) ((-477 . -853) 7428) ((-477 . -855) 7410) ((-464 . -692) 7251) ((-209 . -853) 7233) ((-63 . -1172) T) ((-209 . -855) 7215) ((-585 . -25) T) ((-418 . -622) 7189) ((-477 . -1007) 7149) ((-841 . -503) 7061) ((-209 . -1007) 7021) ((-232 . -34) T) ((-969 . -1063) 6999) ((-1202 . -169) 6930) ((-1181 . -169) 6861) ((-687 . -143) 6840) ((-687 . -145) 6819) ((-675 . -130) T) ((-135 . -455) 6796) ((-632 . -630) 6780) ((-1107 . -591) 6712) ((-116 . -130) T) ((-467 . -1176) T) ((-586 . -582) 6688) ((-465 . -582) 6667) ((-327 . -326) 6636) ((-523 . -1063) T) ((-467 . -539) T) ((-1131 . -1016) T) ((-1087 . -1016) T) ((-825 . -1016) T) ((-232 . -765) 6615) ((-232 . -768) 6566) ((-232 . -767) 6545) ((-1131 . -317) 6522) ((-232 . -701) 6432) ((-927 . -19) 6416) ((-477 . -368) 6398) ((-477 . -329) 6380) ((-1087 . -317) 6352) ((-345 . -1225) 6329) ((-209 . -368) 6311) ((-209 . -329) 6293) ((-927 . -582) 6270) ((-1131 . -225) T) ((-638 . -1063) T) ((-620 . -1063) T) ((-1214 . -1063) T) ((-1145 . -1063) T) ((-1051 . -244) 6207) ((-346 . -1063) T) ((-343 . -1063) T) ((-335 . -1063) T) ((-255 . -1063) T) ((-239 . -1063) T) ((-83 . -1172) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1145 . -588) 6142) ((-469 . -1063) T) ((-1101 . -1063) T) ((-469 . -588) 6121) ((-242 . -769) 6072) ((-242 . -766) 6023) ((-241 . -769) 5974) ((-40 . -1111) NIL) ((-241 . -766) 5925) ((-1043 . -889) 5876) ((-973 . -768) T) ((-973 . -765) T) ((-973 . -701) T) ((-940 . -768) T) ((-883 . -701) T) ((-90 . -479) 5860) ((-477 . -869) NIL) ((-879 . -1063) T) ((-217 . -1022) 5825) ((-841 . -281) T) ((-209 . -869) NIL) ((-807 . -1075) 5804) ((-58 . -1063) 5754) ((-508 . -1063) 5732) ((-505 . -1063) 5682) ((-486 . -1063) 5660) ((-485 . -1063) 5610) ((-560 . -101) T) ((-547 . -101) T) ((-484 . -101) T) ((-464 . -169) 5541) ((-350 . -889) T) ((-344 . -889) T) ((-336 . -889) T) ((-217 . -111) 5497) ((-807 . -23) 5449) ((-418 . -701) T) ((-107 . -889) T) ((-40 . -38) 5394) ((-107 . -794) T) ((-561 . -340) T) ((-507 . -340) T) ((-1181 . -503) 5254) ((-307 . -442) 5233) ((-304 . -442) T) ((-808 . -277) 5212) ((-330 . -130) T) ((-171 . -130) T) ((-285 . -25) 5076) ((-285 . -21) 4959) ((-45 . -1148) 4938) ((-65 . -591) 4920) ((-861 . -591) 4902) ((-580 . -503) 4835) ((-45 . -106) 4785) ((-1065 . -416) 4769) ((-1065 . -359) 4748) ((-1028 . -1172) T) ((-1027 . -1022) 4735) ((-921 . -1022) 4578) ((-471 . -1022) 4421) ((-638 . -692) 4405) ((-1027 . -111) 4390) ((-921 . -111) 4219) ((-467 . -354) T) ((-346 . -692) 4171) ((-343 . -692) 4123) ((-335 . -692) 4075) ((-255 . -692) 3924) ((-239 . -692) 3773) ((-1219 . -101) T) ((-1218 . -101) 3723) ((-1210 . -622) 3648) ((-1182 . -878) NIL) ((-912 . -625) 3632) ((-1054 . -92) T) ((-471 . -111) 3461) ((-1031 . -92) T) ((-1005 . -92) T) ((-912 . -364) 3445) ((-240 . -101) T) ((-988 . -92) T) ((-73 . -591) 3427) ((-932 . -47) 3406) ((-597 . -1075) T) ((-1 . -1063) T) ((-685 . -101) T) ((-673 . -101) T) ((-1203 . -622) 3303) ((-602 . -92) T) ((-1153 . -591) 3285) ((-1052 . -591) 3267) ((-126 . -479) 3251) ((-473 . -92) T) ((-1039 . -591) 3233) ((-381 . -23) T) ((-86 . -1172) T) ((-210 . -92) T) ((-1182 . -622) 3085) ((-879 . -692) 3050) ((-597 . -23) T) ((-586 . -591) 3032) ((-586 . -592) NIL) ((-465 . -592) NIL) ((-465 . -591) 3014) ((-500 . -1063) T) ((-496 . -1063) T) ((-342 . -25) T) ((-342 . -21) T) ((-127 . -300) 2952) ((-121 . -300) 2890) ((-575 . -622) 2877) ((-217 . -1016) T) ((-574 . -622) 2802) ((-370 . -971) T) ((-217 . -235) T) ((-217 . -225) T) ((-927 . -592) 2763) ((-927 . -591) 2675) ((-839 . -38) 2662) ((-1202 . -281) 2613) ((-1181 . -281) 2564) ((-1082 . -442) T) ((-491 . -821) T) ((-307 . -1099) 2543) ((-968 . -145) 2522) ((-968 . -143) 2501) ((-484 . -300) 2488) ((-286 . -1148) 2467) ((-467 . -1075) T) ((-840 . -1022) 2412) ((-599 . -101) T) ((-1158 . -479) 2396) ((-242 . -359) 2375) ((-241 . -359) 2354) ((-286 . -106) 2304) ((-1027 . -1016) T) ((-117 . -101) T) ((-921 . -1016) T) ((-840 . -111) 2233) ((-467 . -23) T) ((-471 . -1016) T) ((-1027 . -225) T) ((-921 . -317) 2202) ((-471 . -317) 2159) ((-346 . -169) T) ((-343 . -169) T) ((-335 . -169) T) ((-255 . -169) 2070) ((-239 . -169) 1981) ((-932 . -1007) 1877) ((-710 . -1007) 1848) ((-506 . -591) 1814) ((-1068 . -101) T) ((-1056 . -591) 1781) ((-1003 . -591) 1763) ((-1210 . -701) T) ((-1203 . -701) T) ((-1182 . -765) NIL) ((-166 . -1022) 1673) ((-1182 . -768) NIL) ((-879 . -169) T) ((-1182 . -701) T) ((-1231 . -149) 1657) ((-972 . -333) 1631) ((-969 . -503) 1564) ((-814 . -821) 1543) ((-547 . -1111) T) ((-464 . -281) 1494) ((-575 . -701) T) ((-352 . -591) 1476) ((-313 . -591) 1458) ((-409 . -1007) 1354) ((-574 . -701) T) ((-398 . -821) 1305) ((-166 . -111) 1201) ((-807 . -130) 1153) ((-712 . -149) 1137) ((-1218 . -300) 1075) ((-477 . -298) T) ((-370 . -591) 1042) ((-509 . -979) 1026) ((-370 . -592) 940) ((-209 . -298) T) ((-139 . -149) 922) ((-689 . -277) 901) ((-477 . -991) T) ((-560 . -38) 888) ((-547 . -38) 875) ((-484 . -38) 840) ((-209 . -991) T) ((-840 . -1016) T) ((-808 . -591) 822) ((-801 . -591) 804) ((-799 . -591) 786) ((-790 . -878) 765) ((-1242 . -1075) T) ((-1191 . -1022) 588) ((-826 . -1022) 572) ((-840 . -235) T) ((-840 . -225) NIL) ((-663 . -1172) T) ((-1242 . -23) T) ((-790 . -622) 497) ((-533 . -1172) T) ((-409 . -329) 481) ((-554 . -1022) 468) ((-1191 . -111) 277) ((-675 . -615) 259) ((-826 . -111) 238) ((-372 . -23) T) ((-1145 . -503) 30) ((-636 . -1063) T) ((-655 . -1063) T) ((-650 . -1063) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 36084945..65954de7 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3430739783) -(4330 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3430960040) +(4331 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -49,18 +49,18 @@ |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |CoerceAst| |ComplexRootFindingPackage| - |CyclicStreamTools| |ConstructorCall| - |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| - |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| - |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| - |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| - |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| - |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| - |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| - |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| - |DefinitionAst| |ElementaryFunctionDefiniteIntegration| + |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| + |ConstructorCall| |ComplexTrigonometricManipulations| + |CoerceVectorMatrixPackage| |CycleIndicators| + |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| + |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| + |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| + |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| + |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| + |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| + |DataBuffer| |Database| |DoubleResultantPackage| + |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| + |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| @@ -213,10 +213,11 @@ |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| - |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| - |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| - |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst| - |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| + |CoercibleTo| |ConvertibleTo| |Kovacic| |KleeneTrivalentLogic| + |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| + |LaurentPolynomial| |LazardSetSolvingPackage| + |LeadingCoefDetermination| |LetAst| |LieExponentials| + |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| @@ -467,649 +468,653 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |f04axf| |mesh?| |setleaves!| |equality| - |createNormalElement| |trailingCoefficient| |rischDE| ~ |messagePrint| - |resetVariableOrder| |denominators| |zeroOf| |genericLeftNorm| - |f04faf| |mesh| |balancedBinaryTree| |setLabelValue| |normalizeIfCan| - |rischDEsys| |padecf| |prime?| |tail| |numerators| |rootsOf| - |genericLeftTrace| |f04jgf| |polygon?| |sylvesterMatrix| |getCode| - |open| |polCase| |monomRDE| |pade| |rationalFunction| |convergents| - |genericLeftMinimalPolynomial| |f04maf| |polygon| |char| - |bezoutMatrix| |printCode| |distFact| |baseRDE| |root| |taylorIfCan| - |approximants| |hexDigit?| |leftRankPolynomial| |f04mbf| - |closedCurve?| |bezoutResultant| |printStatement| |identification| - |polyRDE| |quotientByP| |removeZeroes| |escape| |reducedForm| - |generic| |f04mcf| |closedCurve| |printInfo| |bezoutDiscriminant| - |block| |LyndonCoordinates| |monomRDEsys| |moduloP| |taylorRep| - |partialQuotients| |ord| |rightUnits| |f04qaf| |curve?| |bfEntry| - |returns| |LyndonBasis| |baseRDEsys| |modulus| |factorSquareFree| - |partialDenominators| |mkIntegral| |leftUnits| |f07adf| |curve| - |float| |bfKeys| |goto| |zeroDimensional?| |weighted| |digits| - |henselFact| |partialNumerators| |compBound| |f07aef| |point?| - |inspect| |repeatUntilLoop| |fglmIfCan| |rdHack1| |generate| - |continuedFraction| |hasHi| |reducedContinuedFraction| |tablePow| - |f07fdf| |enterPointData| |extract!| |whileLoop| |groebner| |midpoint| - |light| |fmecg| |push| |solveid| |pi| |f07fef| |composites| |bag| - |forLoop| |incrementBy| |lexTriangular| |midpoints| |pastel| - |commonDenominator| |bindings| |testModulus| |infinity| |s01eaf| - |components| |sin?| |squareFreeLexTriangular| |mantissa| |realZeros| - |expand| |dark| |clearDenominator| |cartesian| |HenselLift| |s13aaf| - |numberOfComposites| |zeroVector| |belong?| |mainCharacterization| - |filterWhile| |getSyntaxFormsFromFile| |splitDenominator| |polar| - |completeHensel| |s13acf| |numberOfComponents| |zeroSquareMatrix| - |operator| |algebraicOf| |filterUntil| |surface| - |monicRightFactorIfCan| |cylindrical| |multMonom| |kernel| |s13adf| - |create3Space| |identitySquareMatrix| |Ci| |ReduceOrder| |select| - |coordinate| |rightFactorIfCan| |spherical| |draw| |build| |s14aaf| - |outputAsScript| |lSpaceBasis| |Si| |setref| F |partitions| - |leftFactorIfCan| |basisOfRightAnnihilator| |parabolic| |leadingIndex| - |s14abf| |level| |union| |outputAsTex| |finiteBasis| |Ei| |deref| - |conjugates| |monicDecomposeIfCan| |basisOfLeftNucleus| - |parabolicCylindrical| |leadingExponent| |optimize| |s14baf| |abs| - |principal?| |linGenPos| |ref| |shuffle| |monicCompleteDecompose| - |paraboloidal| |basisOfRightNucleus| |GospersMethod| |s15adf| |Beta| - |divisor| |groebgen| |radicalEigenvectors| |shufflein| |divideIfCan| - |basisOfMiddleNucleus| |ellipticCylindrical| |makeObject| - |nextSubsetGray| |s15aef| |digamma| |useNagFunctions| |options| - |totolex| |radicalEigenvector| |sequences| |noKaratsuba| - |prolateSpheroidal| |basisOfNucleus| |firstSubsetGray| |s17acf| - |polygamma| |rationalPoints| |minPol| |makeRecord| - |radicalEigenvalues| |permutations| |karatsubaOnce| |basisOfCenter| - |constantOpIfCan| |oblateSpheroidal| |clipPointsDefault| |coef| - |s17adf| |Gamma| |nonSingularModel| |computeBasis| |eigenMatrix| - |atoms| |karatsuba| |basisOfLeftNucloid| |bipolar| |integerBound| - |drawToScale| |s17aef| |besselJ| |algSplitSimple| |string| |coord| - |normalise| |makeResult| |separate| |bipolarCylindrical| |dom| - |adaptive| |s17aff| |besselY| NOT |hyperelliptic| |anticoord| - |gramschmidt| |is?| |pseudoDivide| |toroidal| |figureUnits| |s17agf| - |besselI| OR |elliptic| |intcompBasis| |orthonormalBasis| |Is| - |pseudoQuotient| |conical| |putColorInfo| |s17ahf| |besselK| AND - |integralDerivationMatrix| |choosemon| |antisymmetricTensors| - |addMatchRestricted| |composite| |appendPoint| |s17ajf| |airyAi| - |nary?| |integralRepresents| |transform| |createGenericMatrix| - |insertMatch| |subResultantGcd| |component| |s17akf| |airyBi| |unary?| - |integralCoordinates| |pack!| |symmetricTensors| |addMatch| - |resultant| |ranges| |s17dcf| |title| |subNode?| |yCoordinates| - |complexLimit| |tensorProduct| |getMatch| |discriminant| |pointLists| - |s17def| |infLex?| |setProperties| |limit| |permutationRepresentation| - |failed?| |pseudoRemainder| |basisOfRightNucloid| |makeGraphImage| - |s17dgf| |setEmpty!| |setProperty| |categoryFrame| - |linearlyDependent?| |completeEchelonBasis| |optpair| |shiftLeft| - |basisOfCentroid| |e| |graphImage| |s17dhf| |setStatus!| - |setProperties!| |linearDependence| |createRandomElement| - |getBadValues| |shiftRight| |groebSolve| |s17dlf| |setCondition!| - |getProperties| |solveLinear| |cyclicSubmodule| |resetBadValues| - |karatsubaDivide| |s18acf| |qualifier| |delta| |setValue!| - |setProperty!| |reducedSystem| |standardBasisOfCyclicSubmodule| - |hasTopPredicate?| |monicDivide| |fortranComplex| |li| |s18adf| - |mainExpression| |empty?| |getProperty| * |next| |duplicates?| - |areEquivalent?| |topPredicate| |divideExponents| |fortranLogical| - |s18aef| |splitNodeOf!| |scopes| |mapGen| |isAbsolutelyIrreducible?| - |rule| |setTopPredicate| |unmakeSUP| |nullary?| |fortranInteger| - |s18aff| |remove!| |eigenvalues| |patternVariable| |makeSUP| |arity| - |fortranDouble| |s18dcf| |subNodeOf?| |eigenvector| - |monomialIntegrate| |shade| |withPredicates| |vectorise| |fortranReal| - |s18def| |nodeOf?| |generalizedEigenvector| |monomialIntPoly| - |nthRootIfCan| |setPredicates| |extend| |entry| |external?| |s19aaf| - |updateStatus!| |generalizedEigenvectors| |inverseLaplace| |expIfCan| - |predicates| |truncate| |scalarTypeOf| |print| |eigenvectors| |iprint| - |logIfCan| |hasPredicate?| |order| |fortranCarriageReturn| |d02gaf| - |subCase?| |factorAndSplit| |elem?| |sinIfCan| |optional?| |terms| - |fortranLiteral| |d02gbf| |removeSuperfluousCases| |rightOne| - |notelem| |cosIfCan| |multiple?| |squareFreePart| |fortranLiteralLine| - |d02kef| |prepareDecompose| |leftOne| |logpart| |tanIfCan| - |processTemplate| |d02raf| |branchIfCan| |rightZero| |ratpart| - |cotIfCan| |OMreceive| |simplifyExp| |makeFR| |d03edf| - |startTableGcd!| |leftZero| |mkAnswer| |secIfCan| |OMsend| - |simplifyLog| |musserTrials| |d03eef| |stopTableGcd!| |true| |swap| - |perfectNthPower?| |cscIfCan| |OMserve| |expandPower| - |stopMusserTrials| |d03faf| |startTableInvSet!| |and| |minPoly| - |perfectNthRoot| |asinIfCan| |makeop| |expandLog| |comment| - |numberOfFactors| |e01baf| |stopTableInvSet!| |point| |freeOf?| - |approxNthRoot| |acosIfCan| |opeval| |cos2sec| |operation| - |modularFactor| |prefix| |e01bef| |stosePrepareSubResAlgo| |operators| - |perfectSquare?| |atanIfCan| |evaluateInverse| |cosh2sech| - |useSingleFactorBound?| |e01bff| |stoseInternalLastSubResultant| - |test| |mainKernel| |perfectSqrt| |acotIfCan| |evaluate| |cot2trig| - |useSingleFactorBound| |e01bgf| |stoseIntegralLastSubResultant| - |series| |distribute| |approxSqrt| |asecIfCan| |conjug| |coth2trigh| - |useEisensteinCriterion?| |e01bhf| |stoseLastSubResultant| - |functionIsFracPolynomial?| |generateIrredPoly| |acscIfCan| |adjoint| - |csc2sin| |useEisensteinCriterion| |e01daf| |stoseInvertible?sqfreg| - |problemPoints| |complexExpand| |sinhIfCan| |getDatabase| |csch2sinh| - |eisensteinIrreducible?| |e01saf| |stoseInvertibleSetsqfreg| |zerosOf| - |complexIntegrate| |coshIfCan| |numericalOptimization| |sec2cos| - |tryFunctionalDecomposition?| |e01sbf| |stoseInvertible?reg| SEGMENT - |min| |singularitiesOf| |dimensionOfIrreducibleRepresentation| - |tanhIfCan| |goodnessOfFit| |sech2cosh| |tryFunctionalDecomposition| - |e01sef| |stoseInvertibleSetreg| |radicalOfLeftTraceForm| - |polynomialZeros| |tower| |irreducibleRepresentation| |cothIfCan| - |whatInfinity| |sin2csc| |btwFact| |property| |e01sff| - |stoseInvertible?| |showTypeInOutput| |setright!| |f2df| |checkRur| - |sechIfCan| |infinite?| |sinh2csch| |beauzamyBound| |e02adf| - |stoseInvertibleSet| |setleft!| |ef2edf| |cAcsch| |finite?| - |cschIfCan| |tan2trig| |concat| |bombieriNorm| |e02aef| - |stoseSquareFreePart| |ocf2ocdf| |cAsech| |asinhIfCan| |pureLex| - |tanh2trigh| |rootBound| |units| |e02agf| |coleman| |socf2socdf| - |cAcoth| |acoshIfCan| |totalLex| |tan2cot| |singleFactorBound| - |e02ahf| |inverseColeman| |df2fi| |cAtanh| |complexNumeric| - |atanhIfCan| |reverseLex| |tanh2coth| |quadraticNorm| |e02ajf| - |listYoungTableaus| |edf2fi| |primitiveMonomials| |cAcosh| - |acothIfCan| |leftLcm| |cot2tan| |infinityNorm| |e02akf| - |makeYoungTableau| |kernels| |edf2df| |reductum| |cAsinh| |asechIfCan| - |rightExtendedGcd| |coth2tanh| |erf| |scaleRoots| |e02baf| - |nextColeman| |expenseOfEvaluation| |cCsch| |acschIfCan| |univariate| - |rightGcd| |removeCosSq| |code| |shiftRoots| |e02bbf| - |nextLatticePermutation| |numberOfOperations| |cSech| |pushdown| - |rightExactQuotient| |removeSinSq| |degreePartition| |e02bcf| - |nextPartition| |compile| |exquo| |edf2efi| |status| |cCoth| |pushup| - |rightRemainder| |removeCoshSq| |dilog| |factorOfDegree| |e02bdf| - |numberOfImproperPartitions| |div| |dfRange| |cTanh| - |reducedDiscriminant| |factor| |rightQuotient| |removeSinhSq| |sin| - |factorsOfDegree| |e02bef| |subSet| |quo| |dflist| |cCosh| - |idealSimplify| |sqrt| |rightLcm| |expandTrigProducts| |cos| - |pascalTriangle| |e02daf| |unrankImproperPartitions0| |df2mf| |parts| - |cSinh| |definingInequation| |real| |leftExtendedGcd| |fintegrate| - |tan| |rangePascalTriangle| |e02dcf| |unrankImproperPartitions1| - |ldf2vmf| |rem| |cAcsc| |definingEquations| |imag| |target| |leftGcd| - |coefficient| |cot| |sizePascalTriangle| |e02ddf| - |subresultantSequence| |leader| |directProduct| |edf2ef| |cAsec| - |setStatus| |leftExactQuotient| |coHeight| |sec| |fillPascalTriangle| - |e02def| |SturmHabichtSequence| |vedf2vef| |cAcot| |quasiAlgebraicSet| - |leftRemainder| |extendIfCan| |safeCeiling| |csc| |lhs| |second| - |e02dff| |SturmHabichtCoefficients| |df2st| |cAtan| |radicalSimplify| - |destruct| |leftQuotient| |algebraicVariables| BY |safeFloor| |asin| - |rhs| |third| |e02gaf| |SturmHabicht| |f2st| |cAcos| |denominator| - |monicLeftDivide| |zeroSetSplitIntoTriangularSystems| |acos| - |safetyMargin| |e02zaf| |countRealRoots| |ldf2lst| |cAsin| |numerator| - |monicRightDivide| |zeroSetSplit| |droot| |atan| |sumSquares| |delete| - |e04dgf| |SturmHabichtMultiple| |sdf2lst| |cCsc| |quadraticForm| - |leftDivide| |reduceByQuasiMonic| |iroot| |acot| |euclideanNormalForm| - |e04fdf| |countRealRootsMultiple| |node| |getlo| |cSec| |monomial| - |back| |rightDivide| |collectQuasiMonic| |size?| |asec| - |euclideanGroebner| |e04gcf| |pop!| |gethi| |cCot| |front| - |multivariate| |hermiteH| |removeZero| |eq?| |acsc| - |factorGroebnerBasis| |e04jaf| |push!| |datalist| |initial| - |outputMeasure| |cTan| |rotate!| |variables| |lift| |laguerreL| - |initiallyReduce| |doublyTransitive?| |sinh| |groebnerFactorize| - |e04mbf| |minordet| |measure2Result| |cCos| |dequeue!| |reduce| - |legendreP| |headReduce| |knownInfBasis| |cosh| |credPol| |e04naf| - |determinant| |att2Result| |cSin| |enqueue!| |writeBytes!| - |stronglyReduce| |tanh| |redPol| |e04ucf| |diagonalProduct| - |iflist2Result| |cLog| |quatern| |writeByteIfCan!| - |rewriteSetWithReduction| |rootSplit| |gbasis| |nothing| |coth| - |e04ycf| |top| |setelt| |diagonal| |pdf2ef| |cExp| |imagK| |width| - |blankSeparate| |autoReduced?| |ratDenom| |sech| |continue| |critT| - |f01brf| |diagonalMatrix| |rank| |pdf2df| |cRationalPower| |imagJ| - |taylor| |semicolonSeparate| |initiallyReduced?| |csch| |critM| - |f01bsf| |copy| |scalarMatrix| |rootKerSimp| |df2ef| |cPower| |imagI| - |laurent| |commaSeparate| |headReduced?| |asinh| |critB| |f01maf| - |hermite| |leftRank| |seriesToOutputForm| |conjugate| |puiseux| |pile| - |stronglyReduced?| |acosh| |log10| |critBonD| |f01mcf| - |completeHermite| |deleteProperty!| |finiteBound| |iCompose| |queue| - |match?| |paren| |reduced?| |bitand| |atanh| |critMTonD1| |f01qcf| - |autoCoerce| |smith| |has?| |sortConstraints| |taylorQuoByVar| |inv| - |nthRoot| |equation| |bracket| |normalized?| |acoth| |bitior| - |critMonD1| |f01qdf| |completeSmith| |sumOfSquares| |ground?| |iExquo| - |fractRadix| |optional| |prod| |quasiComponent| |asech| |f01qef| - |diophantineSystem| |lists| |splitLinear| |ground| |getStream| - |wholeRadix| |overlabel| |initials| |fracPart| |f01rcf| |csubst| - |simpleBounds?| |getRef| |leadingMonomial| |cycleRagits| |overbar| - |basicSet| |polyPart| |multiple| |f01rdf| |particularSolution| - |linearMatrix| |say| |makeSeries| |prefixRagits| |leadingCoefficient| - |prime| |infRittWu?| |fullPartialFraction| |applyQuote| |implies| - |f01ref| |mapSolve| |linearPart| |quote| |getCurve| |primeFrobenius| - |f02aaf| |quadratic| |nonLinearPart| |lfextlimint| - |rewriteIdealWithRemainder| = |supersub| |listLoops| |discreteLog| - |xor| |f02abf| |cubic| |quadratic?| |BasicMethod| - |rewriteIdealWithHeadRemainder| |presuper| |closed?| - |decreasePrecision| |ruleset| |f02adf| |quartic| |changeNameToObjf| - |PollardSmallFactor| |precision| |remainder| < |presub| |open?| - |increasePrecision| |optAttributes| |showTheFTable| |headRemainder| > - |super| |setClosed| |constructorName| |bits| |rightPower| - |algebraicCoefficients?| |Nul| |clearTheFTable| |reset| - |roughUnitIdeal?| <= |sub| |tube| |unitNormalize| |suchThat| - |derivationCoordinates| |purelyTranscendental?| |exponents| |fTable| - |roughEqualIdeals?| >= |rarrow| |unitVector| |unit| |one?| - |purelyAlgebraic?| |iisqrt2| |write| |palgint0| |roughSubIdeal?| - |flagFactor| |splitSquarefree| |prepareSubResAlgo| |name| |iisqrt3| - |save| |center| |palgextint0| |roughBase?| |OMputBVar| |bumptab| - |sqfrFactor| |normalDenom| |internalLastSubResultant| |body| |iiexp| - |palglimint0| |trivialIdeal?| + |OMputError| |bumptab1| |primeFactor| - |totalfract| |integralLastSubResultant| |iilog| |palgRDE0| - |collectUpper| - |OMputObject| |untab| |nthFlag| |pushdterm| - |toseLastSubResultant| |binding| |iisin| |palgLODE0| |collect| / - |OMputEndApp| |bat1| |nthExponent| |pushucoef| |toseInvertible?| - |characteristicSerie| |position!| |iicos| |chineseRemainder| - |collectUnder| |OMputEndAtp| |bat| |irreducibleFactor| |pushuconst| - |toseInvertibleSet| |constant| |characteristicSet| |iitan| |divisors| - |mainVariable?| |OMputEndAttr| |tab1| |nilFactor| |numberOfMonomials| - |toseSquareFreePart| |medialSet| |iicot| |eulerPhi| |mainVariables| - |OMputEndBind| |tab| |regularRepresentation| |members| - |quotedOperators| |Hausdorff| |iisec| |fibonacci| |removeSquaresIfCan| - |OMputEndBVar| |lex| |traceMatrix| |multiset| |rur| |clearCache| - |Frobenius| |any| |iicsc| |harmonic| - |unprotectedRemoveRedundantFactors| |OMputEndError| |slex| |randomLC| - |mergeDifference| |create| |transcendenceDegree| |iiasin| |jacobi| - |removeRedundantFactors| |OMputEndObject| |inverse| |minimize| - |squareFreePrim| |enterInCache| |extensionDegree| |iiacos| |retract| - |moebiusMu| |certainlySubVariety?| |OMputInteger| |maxrow| |module| - |compdegd| |currentCategoryFrame| |eq| |inGroundField?| |iiatan| - |numberOfDivisors| |insert| |possiblyNewVariety?| |OMputFloat| - |tableau| |rightRegularRepresentation| |iter| |univcase| - |currentScope| |transcendent?| |charClass| |iiacot| |sumOfDivisors| - |probablyZeroDim?| |OMputVariable| |listOfLists| - |leftRegularRepresentation| |consnewpol| |pushNewContour| |t| - |algebraic?| |iiasec| |sumOfKthPowerDivisors| |nil| - |selectPolynomials| |OMputString| |tanSum| |rightTraceMatrix| - |nsqfree| |findBinding| |sh| |iiacsc| |HermiteIntegrate| - |selectOrPolynomials| |OMputSymbol| |tanAn| |leftTraceMatrix| - |intChoose| |contours| |mirror| |iisinh| |palgint| Y - |selectAndPolynomials| |OMgetApp| |tanNa| |rightDiscriminant| - |coefChoose| |structuralConstants| |monomial?| |iicosh| |palgextint| - |quasiMonicPolynomials| |approximate| |OMgetAtp| |retractIfCan| - |initTable!| |binaryTree| |leftDiscriminant| |dec| |myDegree| - |coordinates| |rquo| |iitanh| |palglimint| |univariate?| |OMgetAttr| - |printInfo!| |byte| |represents| |normDeriv2| |bounds| |exp| |lquo| - |eval| |iicoth| |palgRDE| |univariatePolynomials| |OMgetBind| - |startStats!| |close| |mergeFactors| |plenaryPower| |high| |numer| - |mindegTerm| |iisech| |palgLODE| |linear?| |OMgetBVar| |printStats!| - |isMult| |c02aff| |low| |denom| |product| |iicsch| |splitConstant| - |linearPolynomials| |OMgetError| |clearTable!| |display| |exprToXXP| - |c02agf| |sort| |subset?| |kind| |LiePolyIfCan| |iiasinh| - |pmComplexintegrate| |bivariate?| |OMgetObject| |usingTable?| - |exprToUPS| |c05adf| |symmetricDifference| |trunc| |op| |iiacosh| - |pmintegrate| |bivariatePolynomials| |OMgetEndApp| |printingInfo?| - |exprToGenUPS| |c05nbf| |difference| |degree| |iiatanh| |infieldint| - |removeRoughlyRedundantFactorsInPols| |OMgetEndAtp| |makingStats?| - |localAbs| |c05pbf| |intersect| |quasiRegular| |properties| |iiacoth| - |extendedint| |removeRoughlyRedundantFactorsInPol| |OMgetEndAttr| - |extractIfCan| |universe| |ptree| |c06eaf| |part?| |quasiRegular?| - |showSummary| |translate| |iiasech| |limitedint| |interReduce| - |OMgetEndBind| |insert!| |map| |replace| |input| |complement| |c06ebf| - |random| |latex| |constant?| |iiacsch| |integerIfCan| |roughBasicSet| - |OMgetEndBVar| |interpretString| |library| |cardinality| |c06ecf| - |member?| |mindeg| |specialTrigs| |showAttributes| |internalIntegrate| - |crushedSet| |OMgetEndError| |stripCommentsAndBlanks| - |internalIntegrate0| |c06ekf| |enumerate| |maxdeg| |localReal?| - |infieldIntegrate| |rewriteSetByReducingWithParticularGenerators| - |OMgetEndObject| |setPrologue!| |makeCos| |c06fpf| |setOfMinN| - |RemainderList| |rischNormalize| |limitedIntegrate| - |rewriteIdealWithQuasiMonicGenerators| |OMgetInteger| |setTex!| - |makeSin| |c06fqf| |elements| |unexpand| |realElementary| - |extendedIntegrate| |OMgetFloat| |squareFreeFactors| |setEpilogue!| - |convert| |set| |iiGamma| |c06frf| |replaceKthElement| |triangSolve| - |validExponential| |varselect| |univariatePolynomialsGcds| - |OMgetVariable| |prologue| |iiabs| |c06fuf| |incrementKthElement| - |univariateSolve| |rootNormalize| |interpret| |kmax| - |removeRoughlyRedundantFactorsInContents| |OMgetString| |epilogue| - |bringDown| |c06gbf| |float?| |realSolve| |tanQ| |ksec| |OMgetSymbol| - |removeRedundantFactorsInContents| |endOfFile?| |position| |newReduc| - |c06gcf| |integer?| |positiveSolve| |callForm?| |vark| - |removeRedundantFactorsInPols| |OMgetType| |readIfCan!| |logical?| - |c06gqf| |symbol?| |squareFree| |getIdentifier| |removeConstantTerm| - |irreducibleFactors| |OMencodingBinary| |readLineIfCan!| |character?| - |c06gsf| |substring?| |string?| |linearlyDependentOverZ?| |rightRank| - |getConstant| |mkPrim| |void| |lazyIrreducibleFactors| - |OMencodingSGML| |readLine!| |doubleComplex?| |d01ajf| |list?| - |linearDependenceOverZ| |doubleRank| |select!| |intPatternMatch| - |removeIrreducibleRedundantFactors| |OMencodingXML| |writeLine!| - |currentEnv| |complex?| |d01akf| |suffix?| |pair?| - |solveLinearlyOverQ| |delete!| |primintegrate| |normalForm| - |OMencodingUnknown| |sign| |double?| |d01alf| |atom?| |sn| - |expintegrate| |changeBase| |omError| |nonQsign| |ffactor| |d01amf| - |prefix?| |null?| |dn| |tree| |tanintegrate| |companionBlocks| - |errorInfo| |direction| |show| |qfactor| |d01anf| |startTable!| - |sncndn| |primextendedint| |xCoord| |errorKind| |createThreeSpace| - |UP2ifCan| |d01apf| |stopTable!| |expextendedint| |yCoord| - |OMReadError?| |cyclicParents| |trace| |anfactor| |d01aqf| - |supDimElseRittWu?| |leadingBasisTerm| |primlimitedint| |zCoord| - |OMUnknownSymbol?| |cyclicEqual?| |fortranCharacter| |d01asf| - |algebraicSort| |ignore?| |expr| |explimitedint| |rCoord| - |OMUnknownCD?| |cyclicEntries| |fortranDoubleComplex| |d01bbf| - |moreAlgebraic?| |computeInt| |primextintfrac| |thetaCoord| - |OMParseError?| |cyclicCopy| |d01fcf| |infix?| |subTriSet?| - |checkForZero| |primlimintfrac| |phiCoord| |OMwrite| |cyclic?| - |rightMinimalPolynomial| |mask| |d01gaf| |subPolSet?| - |doubleFloatFormat| |primintfldpoly| |color| |po| |complexNormalize| - |leftMinimalPolynomial| |d01gbf| |internalSubPolSet?| |logGamma| - |variable| |expintfldpoly| |hue| |OMread| |complexElementary| - |associatorDependence| |d02bbf| |internalInfRittWu?| - |hypergeometric0F1| |iterators| |OMreadFile| |trigs| |lieAlgebra?| - |d02bhf| |internalSubQuasiComponent?| |rotatez| |iterationVar| - |primitiveElement| |OMreadStr| |real?| |jordanAlgebra?| |d02cjf| - |subQuasiComponent?| |rotatey| |readBytes!| |nextPrime| |OMlistCDs| - |complexForm| |noncommutativeJordanAlgebra?| |d02ejf| - |removeSuperfluousQuasiComponents| |rotatex| |readByteIfCan!| - |prevPrime| |OMlistSymbols| |UpTriBddDenomInv| |jordanAdmissible?| - |identity| |setFieldInfo| |primes| |OMsupportsCD?| |LowTriBddDenomInv| - |reverse| |lieAdmissible?| |fractionFreeGauss!| |selectODEIVPRoutines| - |rules| |dictionary| |pol| |selectsecond| |OMsupportsSymbol?| - |simplify| |jacobiIdentity?| |invertIfCan| |selectPDERoutines| |/\\| - |dioSolve| |xn| |selectfirst| |OMunhandledSymbol| |htrigs| - |powerAssociative?| |copy!| |selectOptimizationRoutines| |\\/| - |loadNativeModule| |newLine| |dAndcExp| |makeprod| |alternative?| - |plus!| |selectIntegrationRoutines| |copies| |repSq| |equivOperands| - |rombergo| |extractPoint| |error| |flexible?| |minus!| |routines| - |plusInfinity| |sayLength| |expPot| |equiv?| |simpsono| |traverse| - |assert| |rightAlternative?| |leftScalarTimes!| |mainSquareFreePart| - |minusInfinity| |setnext!| |qPot| |impliesOperands| |trapezoidalo| - |defineProperty| |leftAlternative?| |rightScalarTimes!| - |mainPrimitivePart| |setprevious!| |lookup| |implies?| |sup| - |closeComponent| |antiAssociative?| |lambda| |times!| |mainContent| - |padicFraction| |makeViewport2D| |shanksDiscLogAlgorithm| |normal?| - |imagE| |orOperands| |leaves| |modifyPoint| |associative?| |power!| - |primitivePart!| |padicallyExpand| |viewport2D| |reflect| |basis| - |or?| |imagk| |addPointLast| |antiCommutative?| |gradient| - |nextsubResultant2| |numberOfFractionalTerms| |getPickedPoints| - |reify| |normalElement| |andOperands| |imagj| |addPoint2| - |commutative?| |divergence| |LazardQuotient2| |nthFractionalTerm| - |colorDef| |separant| |condition| |minimalPolynomial| |and?| |imagi| - |addPoint| |type| |rightCharacteristicPolynomial| |laplacian| - |LazardQuotient| |firstNumer| |intensity| |digit| |isobaric?| - |increment| |notOperand| |octon| |merge| - |leftCharacteristicPolynomial| |hessian| |subResultantChain| - |firstDenom| |lighting| |weights| |charpol| |variable?| |ODESolve| - |deepCopy| |alphanumeric?| |rightNorm| |bandedHessian| - |halfExtendedSubResultantGcd2| |compactFraction| |clipSurface| - |differentialVariables| |solve1| |term| |constDsolve| |shallowCopy| - |lowerCase?| |leftNorm| |jacobian| |halfExtendedSubResultantGcd1| - |partialFraction| |showClipRegion| |extractBottom!| - |innerEigenvectors| |term?| |showTheIFTable| |numberOfChildren| - |upperCase?| |rightTrace| |bandedJacobian| |extendedSubResultantGcd| - |gcdPrimitive| |showRegion| |extractTop!| |unparse| |equiv| - |clearTheIFTable| |children| |alphabetic?| |leftTrace| |duplicates| - |exactQuotient!| |symmetricGroup| |hitherPlane| |insertBottom!| - |binary| |merge!| |iFTable| |child| |someBasis| |removeDuplicates!| - |shift| |exactQuotient| |alternatingGroup| |eyeDistance| |insertTop!| - |packageCall| |showIntensityFunctions| |resultantEuclidean| |birth| - |cons| |sort!| |linears| |primPartElseUnitCanonical!| |abelianGroup| - |perspective| |bottom!| |innerSolve1| |semiResultantEuclidean2| - |expint| |internal?| |copyInto!| |ddFact| |primPartElseUnitCanonical| - |cyclicGroup| |zoom| |top!| |innerSolve| |diff| - |semiResultantEuclidean1| |root?| |mr| |sorted?| |separateFactors| - |lazyResidueClass| |dihedralGroup| |rotate| |dequeue| |makeEq| - |indiceSubResultant| |algDsolve| |leaf?| |LiePoly| |exptMod| - |monicModulo| |mathieu11| |drawStyle| |recolor| |modularGcdPrimitive| - |indiceSubResultantEuclidean| |denomLODE| |outputForm| |quickSort| - |meshPar2Var| |lazyPseudoDivide| |mathieu12| |outlineRender| - |drawComplex| |modularGcd| |semiIndiceSubResultantEuclidean| - |indicialEquations| |sample| |heapSort| |meshFun2Var| - |lazyPremWithDefault| |mathieu22| |diagonals| |drawComplexVectorField| - |reduction| |indicialEquation| |degreeSubResultant| |argscript| - |source| |shellSort| |meshPar1Var| |lazyPquo| |depth| |mathieu23| - |axes| |setRealSteps| |lp| |signAround| |degreeSubResultantEuclidean| - |denomRicDE| |superscript| |outputSpacing| |ptFunc| |lazyPrem| - |mathieu24| |controlPanel| |setImagSteps| |invmod| - |semiDegreeSubResultantEuclidean| |leadingCoefficientRicDE| - |subscript| |outputGeneral| |varList| |minimumExponent| |pquo| - |janko2| |viewpoint| |setClipValue| |powmod| - |lastSubResultantEuclidean| |constantCoefficientRicDE| |scripted?| - |outputFixed| |maximumExponent| |prem| |rubiksGroup| |dimensions| - |option?| |null| |mulmod| |semiLastSubResultantEuclidean| |changeVar| - |resetNew| |outputFloating| |sum| |rowEch| |youngGroup| |supRittWu?| - |max| |resize| |bright| |range| |case| |submod| - |subResultantGcdEuclidean| |ratDsolve| |symFunc| |exp1| |rowEchLocal| - |RittWuCompare| |lexGroebner| |move| |colorFunction| |addmod| |Zero| - |categories| |semiSubResultantGcdEuclidean2| - |indicialEquationAtInfinity| |symbolTableOf| |log2| |rowEchelonLocal| - |mainMonomials| |totalGroebner| |modifyPointData| |curveColor| |One| - |symmetricRemainder| |semiSubResultantGcdEuclidean1| |reduceLODE| - |argumentListOf| |rationalApproximation| |normalizedDivide| - |mainCoefficients| |expressIdealMember| |subspace| |pointColor| - |positiveRemainder| |discriminantEuclidean| |singRicDE| |returnTypeOf| - |relerror| |maxint| |leastMonomial| |principalIdeal| |makeViewport3D| - |clip| |bit?| |semiDiscriminantEuclidean| |polyRicDE| |printHeader| - |complexSolve| |binaryFunction| |mainMonomial| |LagrangeInterpolation| - |viewport3D| |clipBoolean| |algint| |chainSubResultants| |ricDsolve| - |returnType!| |complexRoots| |makeFloatFunction| |quasiMonic?| |key| - |psolve| |viewDeltaYDefault| |style| |algintegrate| |schema| - |triangulate| |argumentList!| |realRoots| |unaryFunction| |monic?| - |wrregime| |viewDeltaXDefault| |toScale| |palgintegrate| |elt| GE - |resultantReduit| |solveInField| |endSubProgram| |leadingTerm| - |filename| |compiledFunction| |deepestInitial| |rdregime| - |viewZoomDefault| |pointColorPalette| |palginfieldint| GT - |resultantReduitEuclidean| |wronskianMatrix| |currentSubProgram| - |writable?| |corrPoly| |iteratedInitials| |not?| |bsolve| - |viewPhiDefault| |curveColorPalette| |bitLength| - |semiResultantReduitEuclidean| LE |length| |variationOfParameters| - |newSubProgram| |readable?| |lifting| |parse| |deepestTail| |dmp2rfi| - |viewThetaDefault| |var1Steps| |bitCoef| |divide| |predicate| LT - |scripts| |factors| |clearTheSymbolTable| |exists?| |plus| |lifting1| - |head| |se2rfi| |pointColorDefault| |var2Steps| |bitTruth| |Lazard| - |nthFactor| |showTheSymbolTable| |extension| |label| |exprex| |mdeg| - |pr2dmp| |lineColorDefault| |space| |contains?| |Lazard2| |nthExpon| - |printTypes| |shallowExpand| |coerceL| |mvar| |hasoln| - |axesColorDefault| |tubePoints| |inf| |nextsousResultant2| |overlap| - |newTypeLists| |complex| |deepExpand| |coerceS| |relativeApprox| - |ParCondList| |unitsColorDefault| |tubeRadius| |qinterval| |search| - |resultantnaif| |hcrf| |typeLists| |derivative| - |clearFortranOutputStack| |times| |frobenius| |rootOf| |redpps| - |pointSizeDefault| |weight| |interval| |resultantEuclideannaif| |hclf| - |externalList| |constantOperator| |showFortranOutputStack| - |computePowers| |allRootsOf| |B1solve| |viewPosDefault| |arguments| - |makeVariable| |unit?| |semiResultantEuclideannaif| |lexico| - |typeList| |directory| |topFortranOutputStack| |debug| |pow| - |definingPolynomial| |factorset| |viewSizeDefault| |associates?| - |pdct| |OMmakeConn| |parametersOf| |call| |setFormula!| D |An| - |positive?| |maxrank| |viewDefaults| |modTree| |parameters| - |unitCanonical| |powers| |OMcloseConn| |fortranTypeOf| - |checkPrecision| |linkToFortran| |list| |monom| |UnVectorise| - |negative?| |minrank| |viewWriteDefault| |multiEuclideanTree| - |unitNormal| |partition| |OMconnInDevice| |empty| |zero| - |setLegalFortranSourceExtensions| |car| |Vectorise| |zero?| |minset| - |viewWriteAvailable| |complexZeros| |ratPoly| |lfextendedint| - |complete| |OMconnOutDevice| |compound?| |unravel| |declare| |setPoly| - |cdr| |index| |augment| |nextSublist| |var1StepsDefault| - |divisorCascade| |rootPower| |lflimitedint| |arg1| |pole?| - |OMconnectTCP| |getOperands| |And| |inverseIntegralMatrixAtInfinity| - |common| |setDifference| |exponent| |lastSubResultant| |overset?| - |var2StepsDefault| |graeffe| |rootProduct| |lfinfieldint| |arg2| - |listBranches| |OMbindTCP| |getOperator| |Or| |leviCivitaSymbol| - |integralMatrixAtInfinity| |option| |setIntersection| |exQuo| - |lastSubResultantElseSplit| |ParCond| |tubePointsDefault| |rootSimp| - |pleskenSplit| |reindex| |lfintegrate| |triangular?| |rightTrim| - |OMopenFile| |nil?| |generalizedContinuumHypothesisAssumed| |Not| - |kroneckerDelta| |inverseIntegralMatrix| |setUnion| |moebius| |pair| - |invertibleSet| |redmat| |tubeRadiusDefault| |reciprocalPolynomial| - |alphanumeric| |leftTrim| |OMopenString| |conditions| |buildSyntax| - |integralMatrix| |generalizedContinuumHypothesisAssumed?| |apply| - |rightRecip| |invertible?| |regime| |dimension| |rootRadius| |testDim| - |setMinPoints| |OMclose| |match| |solve| |reduceBasisAtInfinity| - |init| |leftRecip| |invertibleElseSplit?| |sqfree| |crest| - |schwerpunkt| |genericPosition| |minPoints| |function| |OMsetEncoding| - |triangularSystems| |normalizeAtInfinity| |stop| |size| |leftPower| - |purelyAlgebraicLeadingMonomial?| |inconsistent?| |cfirst| - |setErrorBound| |lfunc| |parametric?| |OMputApp| |rootDirectory| - |complementaryBasis| |numFunEvals| |sts2stst| |startPolynomial| - |inHallBasis?| |plotPolar| |OMputAtp| |hostPlatform| |integral?| - |mapExpon| |meatAxe| |setAdaptive| |clikeUniv| |cycleElt| |reorder| - |debug3D| |OMputAttr| |nativeModuleExtension| |integralAtInfinity?| - |commutativeEquality| |first| |scanOneDimSubspaces| |adaptive?| - |weierstrass| |computeCycleLength| |headAst| |numFunEvals3D| - |OMputBind| |bumprow| |brillhartIrreducible?| - |integralBasisAtInfinity| |leftMult| |rest| |expt| - |setScreenResolution| |qqq| |computeCycleEntry| |heap| |setAdaptive3D| - |brillhartTrials| |ramified?| |substitute| |rightMult| - |showArrayValues| |screenResolution| |integralBasis| |coerceP| - |gcdprim| |adaptive3D?| |s19abf| |extractSplittingLeaf| - |removeDuplicates| |ramifiedAtInfinity?| |makeUnit| |showScalarValues| - |countable?| |setMaxPoints| |localIntegralBasis| |powerSum| - |gcdcofact| |s19acf| |setScreenResolution3D| |squareMatrix| |log| - |singular?| |linear| |reverse!| |solveRetract| |Aleph| |maxPoints| - |changeWeightLevel| |elementary| |gcdcofactprim| |screenResolution3D| - |s19adf| |transpose| |singularAtInfinity?| |makeMulti| |mainVariable| - |alternating| |lintgcd| |id| |setMaxPoints3D| |s20acf| |trim| - |branchPoint?| |makeTerm| |polynomial| |pattern| |uniform01| - |generic?| |BumInSepFFE| |cyclic| |hex| |maxPoints3D| |box| |s20adf| - |split| |branchPointAtInfinity?| |listOfMonoms| |normal01| |quoted?| - |multiplyExponents| |dihedral| |every?| |setMinPoints3D| |table| - |s21baf| |upperCase!| |rationalPoint?| |symmetricSquare| - |exponential1| |inR?| |laurentIfCan| |cap| |any?| |minPoints3D| |new| - |s21bbf| |upperCase| |lcm| |absolutelyIrreducible?| |factor1| - |chiSquare1| |isList| |laurentRep| |cup| |host| |tValues| |s21bcf| - |lowerCase!| |genus| |symmetricProduct| |message| |exponential| |isOp| - |rationalPower| |wreath| |trueEqual| |tRange| |s21bdf| |lowerCase| - |append| |getZechTable| |symmetricPower| |chiSquare| |satisfy?| - |dominantTerm| |SFunction| |factorList| |plot| |fortranCompilerName| - |KrullNumber| |comp| |gcd| |createZechTable| |directSum| - |factorFraction| |addBadValue| |limitPlus| |skewSFunction| - |listConjugateBases| |inc| |pointPlot| |fortranLinkerArgs| - |numberOfVariables| |false| |createMultiplicationTable| - |solveLinearPolynomialEquationByFractions| |uniform| |badValues| - |split!| |cyclotomicDecomposition| |matrixGcd| |calcRanges| - |aspFilename| |algebraicDecompose| |createMultiplicationMatrix| - |hasSolution?| |binomial| |retractable?| |setlast!| - |cyclotomicFactorization| |divideIfCan!| |fixPredicate| |dimensionsOf| - |transcendentalDecompose| |createLowComplexityTable| |linSolve| - |poisson| |ListOfTerms| |setrest!| |makeSketch| |rangeIsFinite| - |leastPower| |patternMatch| |restorePrecision| |internalDecompose| - |createLowComplexityNormalBasis| |LyndonWordsList| |geometric| - |PDESolve| |setfirst!| |inrootof| |functionIsContinuousAtEndPoints| - |idealiser| |antiCommutator| |patternMatchTimes| |stack| |decompose| - |#| |representationType| |LyndonWordsList1| |ridHack1| |leftFactor| - |cycleSplit!| |functionIsOscillatory| |idealiserMatrix| |bernoulli| - |commutator| |upDateBranches| |alphabetic| |createPrimitiveElement| - |lyndonIfCan| |interpolate| |rightFactorCandidate| |concat!| - |changeName| |moduleSum| |chebyshevT| |left| |associator| |preprocess| - |hexDigit| |tableForDiscreteLogarithm| |lyndon| |nullSpace| |dim| - |measure| |cycleTail| |exprHasWeightCosWXorSinWX| |mapUnivariate| - |chebyshevU| |right| |complexEigenvalues| |internalZeroSetSplit| - |factorsOfCyclicGroupSize| |lyndon?| |nullity| |coerceImages| - |cycleLength| |exprHasAlgebraicWeight| |mapUnivariateIfCan| - |cyclotomic| |complexEigenvectors| |internalAugment| - |sizeMultiplication| |numberOfComputedEntries| |rowEchelon| - |fixedPoints| |cycleEntry| |weakBiRank| |exprHasLogarithmicWeights| - |mapMatrixIfCan| |normalizedAssociate| |euler| |remove| - |possiblyInfinite?| |getMultiplicationMatrix| |numeric| |rst| |column| - |odd?| |invmultisect| |biRank| |combineFeatureCompatibility| - |mapBivariate| |fixedDivisor| |normalize| |explicitlyFinite?| |ravel| - |getMultiplicationTable| |radical| |frst| |row| |even?| |multisect| - |sparsityIF| |fullDisplay| |outputArgs| |laguerre| |last| |nextItem| - |reshape| |primitive?| |lazyEvaluate| |maxColIndex| ~= - |numberOfCycles| |revert| |assoc| |stiffnessAndStabilityFactor| - |relationsIdeal| |legendre| |normInvertible?| |infiniteProduct| - |numberOfIrreduciblePoly| |parseString| |lazy?| |minColIndex| |coerce| - |cyclePartition| |generalLambert| |stiffnessAndStabilityOfODEIF| - |saturate| |dmpToHdmp| |normFactors| |evenInfiniteProduct| - |numberOfPrimitivePoly| |explicitlyEmpty?| |maxRowIndex| |construct| - |coerceListOfPairs| |evenlambert| |systemSizeIF| |groebner?| - |hdmpToDmp| |npcoef| |oddInfiniteProduct| |numberOfNormalPoly| - |explicitEntries?| |minRowIndex| |coercePreimagesImages| |oddlambert| - |expenseOfEvaluationIF| |groebnerIdeal| |pToHdmp| |listexp| - |generalInfiniteProduct| |createIrreduciblePoly| |matrixDimensions| - |antisymmetric?| |listRepresentation| |lambert| |accuracyIF| |ideal| - |hdmpToP| |characteristicPolynomial| |showAll?| |update| - |createPrimitivePoly| |matrixConcat3D| |symmetric?| |permanent| - |lagrange| |outputList| |intermediateResultsIF| |leadingIdeal| - |dmpToP| |realEigenvalues| |showAllElements| |createNormalPoly| - |script| |setelt!| |diagonal?| |cycles| |univariatePolynomial| - |subscriptedVariables| |backOldPos| |pToDmp| |symbol| - |realEigenvectors| |delay| |createNormalPrimitivePoly| - |identityMatrix| |square?| |cycle| |integrate| |central?| ** - |generalPosition| |halfExtendedResultant2| |sylvesterSequence| - |expression| |matrix| |findCycle| |createPrimitiveNormalPoly| - |zeroMatrix| |rectangularMatrix| |initializeGroupForWordProblem| - |multiplyCoefficients| |basisOfCommutingElements| |elliptic?| - |quotient| |flatten| |sturmSequence| |integer| - |halfExtendedResultant1| |repeating?| |nextIrreduciblePoly| |tex| - |mappingAst| |characteristic| |movedPoints| |quoByVar| - |basisOfLeftAnnihilator| |digit?| |doubleResultant| |zeroDim?| - |boundOfCauchy| |extendedResultant| |repeating| |result| EQ - |nextPrimitivePoly| |nullary| |round| |symbolTable| |wordInGenerators| - |coefficients| |distdfact| |subst| |inRadical?| |subResultantsChain| - |sturmVariationsOf| |signature| |recip| |nextNormalPoly| |fixedPoint| - |fractionPart| |wordInStrongGenerators| |stFunc1| |separateDegrees| - |in?| |isQuotient| |lazyVariations| |lazyPseudoQuotient| |integers| - |cn| |nextNormalPrimitivePoly| |pushFortranOutputStack| |recur| - |wholePart| |orbits| |double| |stFunc2| |trace2PowMod| |element?| - |content| |lazyPseudoRemainder| |oddintegers| - |nextPrimitiveNormalPoly| |popFortranOutputStack| |const| |floor| - |orbit| |stFuncN| |tracePowMod| |zeroDimPrime?| |totalDegree| - |bernoulliB| |int| |leastAffineMultiple| |curry| |ceiling| - |outputAsFortran| |qelt| |permutationGroup| |fixedPointExquo| - |irreducible?| |zeroDimPrimary?| |minimumDegree| |eulerE| |mapmult| - |systemCommand| |reducedQPowers| |diag| |norm| - |wordsForStrongGenerators| |ode1| |decimal| |primaryDecomp| - |monomials| |numericIfCan| |deriv| |rootOfIrreduciblePoly| - |curryRight| |mightHaveRoots| |xRange| |strongGenerators| |ode2| - |innerint| |contract| |height| |isPlus| |complexNumericIfCan| |gderiv| - |write!| |curryLeft| |hash| |refine| |yRange| |generators| |ode| - |exteriorDifferential| |leadingSupport| |isTimes| |FormatArabic| - |compose| |objects| |read!| |normal| |count| |constantRight| |middle| - |zRange| |bivariateSLPEBR| |mpsode| |totalDifferential| |shrinkable| - |outerProduct| |isExpt| |ScanArabic| |addiag| |base| |not| |iomode| - |map!| |constantLeft| |roman| - |solveLinearPolynomialEquationByRecursion| |declare!| UP2UTS - |homogeneous?| |physicalLength!| |isPower| |FormatRoman| - |lazyIntegrate| |qsetelt!| |close!| |twist| |recoverAfterFail| - |factorByRecursion| UTS2UP |physicalLength| |rroot| |ScanRoman| |nlde| - |reopen!| |setsubMatrix!| |showTheRoutinesTable| - |factorSquareFreeByRecursion| LODO2FUN |radPoly| |flexibleArray| - |qroot| |ScanFloatIgnoreSpaces| |powern| |rightUnit| |subMatrix| - |deleteRoutine!| |randomR| RF2UTS |rootPoly| |cond| |elseBranch| - |froot| |ScanFloatIgnoreSpacesIfCan| |mapdiv| |noLinearFactor?| - |leftUnit| |swapColumns!| |getExplanations| |factorSFBRlcUnit| - |magnitude| |goodPoint| |thenBranch| |numericalIntegration| |nthr| - |lazyGintegrate| |brace| |insertRoot!| |swapRows!| |getMeasure| - |charthRoot| |cross| |chvar| |generalizedInverse| |port| |rk4| |power| - |fi2df| |vertConcat| |acsch| |changeMeasure| |conditionP| |dot| |find| - |imports| |firstUncouplingMatrix| |rk4a| |sincos| |mat| |horizConcat| - |changeThreshhold| |vector| |solveLinearPolynomialEquation| |scan| - |clipParametric| |sequence| |keys| |integral| |rk4qc| |sinhcosh| - |neglist| |squareTop| |selectMultiDimensionalRoutines| |differentiate| - |factorSquareFreePolynomial| |graphCurves| |clipWithRanges| |rk4f| - |subresultantVector| |value| |multiEuclidean| |elRow1!| - |selectNonFiniteRoutines| |factorPolynomial| |drawCurves| - |numberOfHues| |redPo| |aromberg| |primitivePart| |extendedEuclidean| - |binarySearchTree| |elRow2!| |selectSumOfSquaresRoutines| - |squareFreePolynomial| |scale| |blue| |hMonic| |previous| |asimpson| - |pointData| |euclideanSize| |nor| |elColumn2!| |selectFiniteRoutines| - |gcdPolynomial| |connect| |green| |updatF| |atrapezoidal| |parent| - |sizeLess?| |objectOf| |torsion?| |region| |yellow| |sPol| |romberg| - |extractProperty| |simplifyPower| GF2FG |fractRagits| |domainOf| - |torsionIfCan| |segment| |points| |red| |updatD| |subtractIfCan| - |simpson| |output| |extractClosed| |number?| FG2F |wholeRagits| - |applyRules| |getGoodPrime| |getGraph| |iifact| |minGbasis| - |setPosition| |trapezoidal| |extractIndex| |failed| |seriesSolve| F2FG - |radix| |localUnquote| |badNum| |putGraph| |iibinom| |lepol| - |constantToUnaryFunction| |explogs2trigs| |randnum| |setColumn!| |mix| - |graphs| |iiperm| |prinshINFO| |f02aef| |aLinear| |tubePlot| - |trigs2explogs| |reseed| |setRow!| |doubleDisc| |graphStates| |iipow| - |prindINFO| |f02aff| |aQuadratic| |exponentialOrder| |swap!| |seed| - |oneDimensionalArray| |polyred| |graphState| |iidsum| |fprindINFO| - |f02agf| |aCubic| |completeEval| |fill!| |generator| |rational| - |associatedSystem| |formula| |iidprod| |prinpolINFO| |f02ajf| - |aQuartic| |or| |uncouplingMatrices| |lowerPolynomial| |minIndex| - |rational?| |assign| |cosSinInfo| |ipow| |prinb| |f02akf| - |radicalSolve| |associatedEquations| |raisePolynomial| |maxIndex| - |rationalIfCan| |slash| |loopPoints| |factorial| |critpOrder| |f02awf| - |radicalRoots| |arrayStack| |normalDeriv| |entry?| |setvalue!| |over| - |generalTwoFactor| |multinomial| |makeCrit| |f02axf| |contractSolve| - |setButtonValue| |ran| |indices| |setchildren!| |zag| |generalSqFr| - |nrows| |permutation| |virtualDegree| |f02bbf| |decomposeFunc| - |setAttributeButtonStep| |highCommonTerms| |index?| |node?| |postfix| - |twoFactor| |ncols| |stirling1| |conditionsForIdempotents| |f02bjf| - |unvectorise| |resetAttributeButtons| |mapCoef| |entries| |child?| - |infix| |setOrder| |stirling2| |genericRightDiscriminant| |f02fjf| - |bubbleSort!| |getButtonValue| |nthCoef| |key?| |distance| |vconcat| - |getOrder| |summation| |obj| |genericRightTraceForm| |f02wef| - |insertionSort!| |decrease| |binomThmExpt| |symbolIfCan| |nodes| |lo| - |hconcat| |less?| |factorials| |genericLeftDiscriminant| |f02xef| - |fortran| |cache| |check| |increase| |pomopo!| |argument| |rename| - |incr| |rspace| |userOrdered?| |mkcomm| |genericLeftTraceForm| - |f04adf| |lprop| |morphism| |mapExponents| |constantKernel| |rename!| - |hi| |vspace| |largest| |polarCoordinates| |genericRightNorm| |f04arf| - |llprop| |balancedFactorisation| |linearAssociatedLog| |constantIfCan| - |mainValue| |hspace| |more?| |imaginary| |genericRightTrace| |f04asf| - |lllp| |mapDown!| |linearAssociatedOrder| |kovacic| - |mainDefiningPolynomial| |superHeight| |setVariableOrder| |nand| - |solid| |genericRightMinimalPolynomial| |f04atf| |lllip| |mapUp!| - |comparison| |linearAssociatedExp| |laplace| |mainForm| |subHeight| - |getVariableOrder| |binaryTournament| |solid?| |rightRankPolynomial| - |nil| |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |mapUnivariate| |univariateSolve| |mapUp!| |comment| + |atoms| |primeFactor| |lo| |mesh| |listBranches| |increment| |mapdiv| + |obj| |rootNormalize| |chebyshevU| |comparison| |karatsuba| + |balancedBinaryTree| |totalfract| |incr| |OMbindTCP| |noLinearFactor?| + |notOperand| |dimensionOfIrreducibleRepresentation| |kmax| + |complexEigenvalues| |cache| |linearAssociatedExp| + |basisOfLeftNucloid| |setLabelValue| |hi| |integralLastSubResultant| + |getOperator| |leftUnit| |octon| |tanhIfCan| |f07fdf| + |removeRoughlyRedundantFactorsInContents| |internalZeroSetSplit| + |laplace| |bipolar| |leviCivitaSymbol| |iilog| |swapColumns!| |merge| + |goodnessOfFit| |factorsOfCyclicGroupSize| |enterPointData| + |OMgetString| |char| |mainForm| |integerBound| |shift| + |leftCharacteristicPolynomial| |getExplanations| |sech2cosh| |lyndon?| + |epilogue| |drawToScale| |subHeight| |pr2dmp| |nthRoot| |fortran| + |depth| |hessian| |factorSFBRlcUnit| |tryFunctionalDecomposition| + |bringDown| |nullity| |getVariableOrder| |s17aef| |bracket| + |lineColorDefault| |subResultantChain| |magnitude| |e01sef| |c06gbf| + |coerceImages| |binaryTournament| |besselJ| |space| |normalized?| ~ + |goodPoint| |firstDenom| |tail| |stoseInvertibleSetreg| |solid?| + |algSplitSimple| |critMonD1| |contains?| |thenBranch| |lighting| + |radicalOfLeftTraceForm| |host| |OMgetError| |rightRankPolynomial| + |float| |coord| |f01qdf| |Lazard2| |open| |weights| + |numericalIntegration| |partialNumerators| |polynomialZeros| |tValues| + |clearTable!| |normalise| |nthExpon| |completeSmith| |charpol| |nthr| + |compBound| |irreducibleRepresentation| |exprToXXP| |s21bcf| + |makeResult| |sumOfSquares| |printTypes| |cothIfCan| |c02agf| + |lowerCase!| |extract!| |separate| |shallowExpand| |iExquo| + |lieAdmissible?| |content| |genus| |whatInfinity| |linear| |numer| + |subset?| |whileLoop| |bipolarCylindrical| |coerceL| |fractRadix| + |fractionFreeGauss!| |lazyPseudoRemainder| |symmetricProduct| + |sin2csc| |denom| |LiePolyIfCan| |adaptive| |selectODEIVPRoutines| + |prod| |mvar| |oddintegers| |generate| |btwFact| |polynomial| + |iiasinh| |exponential| |dictionary| |s17aff| |hasoln| + |quasiComponent| |nextPrimitiveNormalPoly| F |pmComplexintegrate| + |e01sff| |isOp| |pi| |rowEchLocal| |over| |pol| |erf| |besselY| + |f01qef| |axesColorDefault| |incrementBy| |const| |stoseInvertible?| + |RittWuCompare| |infinity| |bivariate?| |rationalPower| |union| + |generalTwoFactor| |tubePoints| |hyperelliptic| |selectsecond| + |diophantineSystem| |script| |floor| |expand| |showTypeInOutput| + |wreath| |OMgetObject| |multinomial| |lexGroebner| |splitLinear| + |anticoord| |inf| |OMsupportsSymbol?| |orbit| |filterWhile| |mantissa| + |setright!| |trueEqual| |status| |usingTable?| |makeCrit| |move| + |getStream| |dilog| |gramschmidt| |simplify| |nextsousResultant2| + |stFuncN| |filterUntil| |tracePowMod| |f2df| |exprToUPS| |kernel| + |tRange| |colorFunction| |f02axf| |is?| |overlap| |wholeRadix| |tex| + |sin| |options| |jacobiIdentity?| |select| |draw| |checkRur| |c05adf| + |s21bdf| |level| |addmod| |contractSolve| |pseudoDivide| |result| + |overlabel| |newTypeLists| |cos| |zeroDimPrime?| |invertIfCan| + |sechIfCan| |symmetricDifference| |lowerCase| |setButtonValue| + |semiSubResultantGcdEuclidean2| |toroidal| |deepExpand| |tan| + |initials| |totalDegree| |selectPDERoutines| |getZechTable| + |infinite?| |optimize| |trunc| |ran| |indicialEquationAtInfinity| + |fracPart| |figureUnits| |coerceS| NOT |string| |cot| |dioSolve| + |bernoulliB| |dom| |sinh2csch| |iiacosh| |symmetricPower| |indices| + |symbolTableOf| |f01rcf| |s17agf| OR |relativeApprox| |sec| |xn| |int| + |makeObject| |beauzamyBound| |pmintegrate| |chiSquare| |log2| + |setchildren!| |besselI| AND |ParCondList| |csubst| |csc| + |leastAffineMultiple| |selectfirst| |e02adf| |satisfy?| + |bivariatePolynomials| |rowEchelonLocal| |zag| |simpleBounds?| + |elliptic| |curry| |asin| |unitsColorDefault| |makeRecord| + |OMunhandledSymbol| |stoseInvertibleSet| |OMgetEndApp| |dominantTerm| + |coef| |mainMonomials| |generalSqFr| |tubeRadius| |intcompBasis| + |getRef| |acos| |ceiling| |htrigs| |setleft!| |SFunction| + |printingInfo?| |permutation| |totalGroebner| |qinterval| + |orthonormalBasis| |cycleRagits| |atan| |powerAssociative?| + |permutationGroup| |ef2edf| |exprToGenUPS| |virtualDegree| + |factorList| |title| |modifyPointData| |Is| |overbar| |resultantnaif| + |acot| |copy!| |fixedPointExquo| |cAcsch| |c05nbf| |plot| |curveColor| + |f02bbf| |numerators| |pseudoQuotient| |hcrf| |asec| |basicSet| + |irreducible?| |selectOptimizationRoutines| |numeric| |finite?| + |fortranCompilerName| |difference| |symmetricRemainder| + |decomposeFunc| |rootsOf| |conical| |polyPart| |acsc| |typeLists| + |newLine| |zeroDimPrimary?| |setAttributeButtonStep| |radical| + |cschIfCan| |KrullNumber| |degree| |e| |semiSubResultantGcdEuclidean1| + |derivative| |putColorInfo| |f01rdf| |sinh| |dAndcExp| |minimumDegree| + |tan2trig| |iiatanh| |createZechTable| |highCommonTerms| |reduceLODE| + |clearFortranOutputStack| |s17ahf| |particularSolution| |cosh| + |eulerE| |makeprod| |bombieriNorm| |infieldint| |directSum| |index?| + |argumentListOf| |linearMatrix| |tree| |besselK| * |frobenius| |tanh| + |alternative?| |mapmult| |e02aef| + |removeRoughlyRedundantFactorsInPols| |factorFraction| + |rationalApproximation| |node?| |integralDerivationMatrix| + |makeSeries| |rootOf| |coth| |reducedQPowers| |plus!| + |stoseSquareFreePart| |OMgetEndAtp| |addBadValue| |normalizedDivide| + |postfix| |choosemon| |redpps| |prefixRagits| |sech| |diag| + |selectIntegrationRoutines| |ocf2ocdf| |debug| |makingStats?| + |limitPlus| |mainCoefficients| |twoFactor| |prime| + |antisymmetricTensors| |csch| |pointSizeDefault| |copies| |norm| + |cAsech| D |skewSFunction| |localAbs| |stirling1| |expressIdealMember| + |weight| |addMatchRestricted| |asinh| |infRittWu?| |repSq| + |wordsForStrongGenerators| |li| |asinhIfCan| |listConjugateBases| + |c05pbf| |conditionsForIdempotents| |subspace| |fullPartialFraction| + |composite| |interval| |acosh| |equivOperands| |ode1| |pureLex| + |pointPlot| |intersect| |pointColor| |f02bjf| |appendPoint| |f01ref| + |resultantEuclideannaif| |atanh| |decimal| |rombergo| |tanh2trigh| + |fortranLinkerArgs| |quasiRegular| |positiveRemainder| |unvectorise| + |genericLeftTrace| |s17ajf| |hclf| |mapSolve| |acoth| |primaryDecomp| + |extractPoint| |iiacoth| |rootBound| |unknown| |numberOfVariables| + |resetAttributeButtons| |discriminantEuclidean| |linearPart| + |flexible?| |airyAi| |asech| |externalList| |f04jgf| |monomials| + |e02agf| |createMultiplicationTable| |extendedint| |mapCoef| + |singRicDE| |nary?| |constantOperator| |quote| |minus!| |numericIfCan| + |coleman| |solveLinearPolynomialEquationByFractions| + |removeRoughlyRedundantFactorsInPol| |entries| |returnTypeOf| + |integralRepresents| |showFortranOutputStack| |multiple| |getCurve| + |routines| |deriv| |socf2socdf| |OMgetEndAttr| |uniform| |relerror| + |child?| |primeFrobenius| |transform| |applyQuote| |computePowers| + |sayLength| |rootOfIrreduciblePoly| |entry| |cAcoth| |badValues| + |extractIfCan| |maxint| |infix| |createGenericMatrix| |f02aaf| + |allRootsOf| |expPot| |curryRight| |universe| |true| |print| + |acoshIfCan| |split!| |qelt| |leastMonomial| |setOrder| |insertMatch| + |B1solve| |quadratic| |equiv?| |mightHaveRoots| |stirling2| |totalLex| + |cyclotomicDecomposition| |c06eaf| |principalIdeal| |and| + |nonLinearPart| |subResultantGcd| |ruleset| |viewPosDefault| + |simpsono| |strongGenerators| |matrixGcd| |tan2cot| |part?| |xRange| + |genericRightDiscriminant| |makeViewport3D| |component| |makeVariable| + |lfextlimint| |traverse| |ode2| |singleFactorBound| |calcRanges| + |quasiRegular?| |yRange| |clip| |f02fjf| |innerint| |s17akf| |unit?| + |rewriteIdealWithRemainder| |rightAlternative?| |objects| |iiasech| + |bit?| |e02ahf| |aspFilename| |zRange| |bubbleSort!| SEGMENT + |contract| |supersub| |airyBi| |semiResultantEuclideannaif| |suchThat| + |leftScalarTimes!| |base| |map!| |inverseColeman| |limitedint| + |algebraicDecompose| |getButtonValue| |semiDiscriminantEuclidean| + |unary?| |lexico| |listLoops| |isPlus| |mainSquareFreePart| |qsetelt!| + |df2fi| |createMultiplicationMatrix| |interReduce| |nthCoef| + |polyRicDE| |integralCoordinates| |discreteLog| |typeList| |setnext!| + |complexNumericIfCan| |cAtanh| |prefix| |hasSolution?| |OMgetEndBind| + |key?| |printHeader| |topFortranOutputStack| |f02abf| |qPot| |gderiv| + |dec| |atanhIfCan| |binomial| |insert!| |complexSolve| |distance| + |parabolic| |pow| |cubic| |write!| |impliesOperands| |complement| + |reverseLex| |binaryFunction| |retractable?| |f07aef| |vconcat| + |leadingIndex| |quadratic?| |definingPolynomial| |curryLeft| + |trapezoidalo| |c06ebf| |tanh2coth| |point?| |setlast!| |mainMonomial| + |getOrder| |s14abf| |condition| |BasicMethod| |factorset| |refine| + |defineProperty| |cyclotomicFactorization| |latex| |acsch| |summation| + |LagrangeInterpolation| |outputAsTex| |rewriteIdealWithHeadRemainder| + |viewSizeDefault| |leftAlternative?| |generators| |approxNthRoot| + |divideIfCan!| |constant?| |genericRightTraceForm| |viewport3D| + |finiteBasis| |associates?| |rightScalarTimes!| |presuper| |concat| + |ode| |acosIfCan| |iiacsch| |fixPredicate| |clipBoolean| |f02wef| |Ei| + |pdct| |closed?| |exteriorDifferential| |mainPrimitivePart| |opeval| + |integerIfCan| |dimensionsOf| |algint| |insertionSort!| |deref| + |setprevious!| |leadingSupport| |cos2sec| |decrease| |roughBasicSet| + |transcendentalDecompose| |inspect| |chainSubResultants| |conjugates| + |schema| |diagonalProduct| |previous| |tower| |lookup| |isTimes| + |modularFactor| |binomThmExpt| |createLowComplexityTable| + |OMgetEndBVar| |repeatUntilLoop| |ricDsolve| |iflist2Result| + |monicDecomposeIfCan| |inv| |triangulate| |FormatArabic| |implies?| + |e01bef| |linSolve| |property| |interpretString| |polygon| + |symbolIfCan| |returnType!| |basisOfLeftNucleus| |ground?| |cLog| + |argumentList!| |sup| |compose| |stosePrepareSubResAlgo| + |bezoutMatrix| |complexRoots| |nodes| |parabolicCylindrical| + |realRoots| |ground| |quatern| |reducedContinuedFraction| |read!| + |closeComponent| |operators| |OMputSymbol| |squareMatrix| |printCode| + |makeFloatFunction| |hconcat| |leadingExponent| |unaryFunction| + |writeByteIfCan!| |leadingMonomial| |antiAssociative?| |tablePow| + |constantRight| |singular?| |perfectSquare?| |tanAn| |units| + |distFact| |s14baf| |quasiMonic?| |less?| |exquo| |monic?| + |leadingCoefficient| |rewriteSetWithReduction| |complexNumeric| + |times!| |middle| |atanIfCan| |leftTraceMatrix| |reverse!| |rootSplit| + |baseRDE| |factorials| |psolve| |div| |abs| |wrregime| + |primitiveMonomials| |kernels| |evaluateInverse| |intChoose| + |solveRetract| |principal?| |root| |genericLeftDiscriminant| + |viewDeltaYDefault| |gbasis| |quo| |viewDeltaXDefault| |reductum| + |primlimintfrac| |cycle| |Aleph| |cosh2sech| |contours| |output| + |taylorIfCan| |style| |f02xef| |toScale| |linGenPos| |e04ycf| + |univariate| |phiCoord| |integrate| |approximants| |central?| + |useSingleFactorBound?| |maxPoints| |mirror| |formula| |compile| + |algintegrate| |check| |rem| |ref| |palgintegrate| |diagonal| + |OMwrite| |target| |iisinh| |e01bff| |code| |changeWeightLevel| + |hexDigit?| |shuffle| |pdf2ef| |resultantReduit| |generalPosition| + |cyclic?| |iiperm| |stoseInternalLastSubResultant| |elementary| + |palgint| |drawComplexVectorField| |leftRankPolynomial| + |rightMinimalPolynomial| |monicCompleteDecompose| |cExp| + |solveInField| |halfExtendedResultant2| |factor| BY |mainKernel| + |prinshINFO| |gcdcofactprim| |selectAndPolynomials| |reduction| + |f04mbf| |paraboloidal| |d01gaf| |imagK| |endSubProgram| |sqrt| + |sylvesterSequence| |perfectSqrt| |f02aef| |OMgetApp| + |screenResolution3D| |indicialEquation| |closedCurve?| |nrows| + |basisOfRightNucleus| |leadingTerm| |real| |blankSeparate| + |subPolSet?| |findCycle| |bezoutResultant| |acotIfCan| |s19adf| + |tanNa| |degreeSubResultant| |aLinear| |ncols| |doubleFloatFormat| + |GospersMethod| |compiledFunction| |autoReduced?| + |createPrimitiveNormalPoly| |imag| |tubePlot| |printStatement| + |evaluate| |rightDiscriminant| |transpose| |delete| |argscript| + |ratDenom| |s15adf| |directProduct| |deepestInitial| |primintfldpoly| + |zeroMatrix| |singularAtInfinity?| |cot2trig| |shellSort| |coefChoose| + |trigs2explogs| |identification| |Beta| |critT| |rdregime| |color| + |rectangularMatrix| |useSingleFactorBound| |makeMulti| |meshPar1Var| + |structuralConstants| |lhs| |reseed| |polyRDE| |divisor| |f01brf| + |destruct| |viewZoomDefault| |po| |initializeGroupForWordProblem| + |setRow!| |e01bgf| |mainVariable| |rhs| |monomial?| |lazyPquo| + |quotientByP| |groebgen| |pointColorPalette| |diagonalMatrix| + |complexNormalize| |multiplyCoefficients| |alternating| + |stoseIntegralLastSubResultant| |iicosh| |doubleDisc| |mathieu23| + |removeZeroes| |radicalEigenvectors| |pdf2df| |palginfieldint| + |basisOfCommutingElements| |leftMinimalPolynomial| |escape| + |distribute| |lintgcd| |palgextint| |graphStates| |axes| |shufflein| + |cRationalPower| |resultantReduitEuclidean| |elliptic?| |d01gbf| + |iipow| |approxSqrt| |setMaxPoints3D| |quasiMonicPolynomials| + |reducedForm| |setRealSteps| |node| |fglmIfCan| |quotient| + |divideIfCan| |wronskianMatrix| |imagJ| |monomial| + |internalSubPolSet?| |prindINFO| |generic| |s20acf| |asecIfCan| + |OMgetAtp| |factorSquareFree| |signAround| |setelt| + |basisOfMiddleNucleus| |rdHack1| |logGamma| |initial| + |semicolonSeparate| |currentSubProgram| |multivariate| |sturmSequence| + |partialDenominators| |f02aff| |conjug| |trim| |initTable!| |f04mcf| + |degreeSubResultantEuclidean| |ellipticCylindrical| |writable?| + |expintfldpoly| |initiallyReduced?| |halfExtendedResultant1| + |variables| |binaryTree| |branchPoint?| |coth2trigh| |denomRicDE| + |aQuadratic| |copy| |closedCurve| |nextSubsetGray| |critM| |corrPoly| + |hue| |repeating?| |bezoutDiscriminant| |exponentialOrder| + |useEisensteinCriterion?| |leftDiscriminant| |makeTerm| |substring?| + |superscript| |s15aef| |f01bsf| |iteratedInitials| + |nextIrreduciblePoly| |OMread| |block| |outputSpacing| |e01bhf| + |myDegree| |uniform01| |log10| |swap!| |mappingAst| |digamma| |bsolve| + |scalarMatrix| |match?| |complexElementary| |bitand| + |LyndonCoordinates| |ptFunc| |generic?| |coordinates| + |stoseLastSubResultant| |top| |seed| |suffix?| |autoCoerce| + |useNagFunctions| |rootKerSimp| |viewPhiDefault| + |associatorDependence| |characteristic| |oneDimensionalArray| |bitior| + |functionIsFracPolynomial?| |continue| |BumInSepFFE| |rquo| |lazyPrem| + |monomRDEsys| |curveColorPalette| |totolex| |df2ef| |d02bbf| |taylor| + |movedPoints| |width| |cyclic| |iitanh| |generateIrredPoly| |polyred| + |mathieu24| |prefix?| |moduloP| |bitLength| |radicalEigenvector| + |cPower| |laurent| |internalInfRittWu?| |quoByVar| |hex| |acscIfCan| + |palglimint| |graphState| |controlPanel| |taylorRep| + |basisOfLeftAnnihilator| |sequences| |semiResultantReduitEuclidean| + |imagI| |hypergeometric0F1| |puiseux| |iidsum| |adjoint| |maxPoints3D| + |univariate?| |partialQuotients| |setImagSteps| |noKaratsuba| + |variationOfParameters| |commaSeparate| |doubleResultant| |OMreadFile| + |ord| |csc2sin| |s20adf| |OMgetAttr| |fprindINFO| |invmod| + |prolateSpheroidal| |zeroDim?| = |newSubProgram| |headReduced?| + |equation| |trigs| |useEisensteinCriterion| |rightUnits| |split| + |printInfo!| |f02agf| |semiDegreeSubResultantEuclidean| + |basisOfNucleus| |readable?| |critB| |lieAlgebra?| |boundOfCauchy| + |byte| |e01daf| |branchPointAtInfinity?| |f04qaf| + |leadingCoefficientRicDE| |aCubic| |firstSubsetGray| |lifting| + |f01maf| < |d02bhf| |extendedResultant| |optional| |completeEval| + |stoseInvertible?sqfreg| |represents| |listOfMonoms| |infix?| + |subscript| |say| |s17acf| > |deepestTail| |hermite| + |internalSubQuasiComponent?| |repeating| |problemPoints| + |outputGeneral| |normDeriv2| |normal01| |mask| |fill!| |leftRank| + |polygamma| <= |dmp2rfi| |rotatez| |nextPrimitivePoly| |complexExpand| + |implies| |quoted?| |bounds| |minimumExponent| |rational| + |rationalPoints| |seriesToOutputForm| >= |viewThetaDefault| + |iterationVar| |nullary| |sinhIfCan| |multiplyExponents| |lquo| + |associatedSystem| |pquo| |minPol| |var1Steps| |conjugate| + |primitiveElement| |round| |xor| |getDatabase| |dihedral| |iicoth| + |iidprod| |janko2| |bitCoef| |OMreadStr| |radicalEigenvalues| + |wordInGenerators| |pile| |polygon?| |match| |prinpolINFO| |csch2sinh| + |every?| |palgRDE| |name| |viewpoint| |sylvesterMatrix| |permutations| + |divide| |stronglyReduced?| + |real?| |coefficients| |setClipValue| + |eisensteinIrreducible?| |setMinPoints3D| |univariatePolynomials| + |f02ajf| |body| |distdfact| |critBonD| |karatsubaOnce| |reset| + |factors| - |getCode| |jordanAlgebra?| |e01saf| |s21baf| |OMgetBind| + |powmod| |aQuartic| |basisOfCenter| |inRadical?| |polCase| |f01mcf| + |clearTheSymbolTable| / |d02cjf| |composites| |constructorName| + |stoseInvertibleSetsqfreg| |upperCase!| |startStats!| + |uncouplingMatrices| |lastSubResultantEuclidean| |constantOpIfCan| + |exists?| |zeroDimensional?| |write| |subResultantsChain| + |completeHermite| |subQuasiComponent?| |monomRDE| |zerosOf| + |rationalPoint?| |mergeFactors| |lowerPolynomial| + |constantCoefficientRicDE| |deleteProperty!| |oblateSpheroidal| + |rotatey| |save| |lifting1| |sturmVariationsOf| |weighted| |pade| + |complexIntegrate| |minIndex| |symmetricSquare| |plenaryPower| |lift| + |scripted?| |clipPointsDefault| |finiteBound| |head| |readBytes!| + |recip| |outputFixed| |coshIfCan| |exponential1| |high| |reduce| + |rational?| |s17adf| |iCompose| |se2rfi| |nextNormalPoly| |nextPrime| + |numericalOptimization| |inR?| |mindegTerm| |maximumExponent| |assign| + |Gamma| |queue| |pointColorDefault| |fixedPoint| |OMlistCDs| |sec2cos| + |iisech| |laurentIfCan| |prem| |cosSinInfo| |nonSingularModel| + |var2Steps| |paren| |fractionPart| |complexForm| |mkIntegral| |cap| + |tryFunctionalDecomposition?| |palgLODE| |constant| |ipow| + |rubiksGroup| |bitTruth| |reduced?| |noncommutativeJordanAlgebra?| + |wordInStrongGenerators| |leftUnits| |e01sbf| |center| |any?| + |linear?| |prinb| |dimensions| |critMTonD1| |Lazard| |d02ejf| + |stFunc1| |stoseInvertible?reg| |OMgetBVar| |minPoints3D| |option?| + |f02akf| |separateDegrees| |f01qcf| |nthFactor| |insert| + |removeSuperfluousQuasiComponents| |returns| |singularitiesOf| + |s21bbf| |printStats!| |mulmod| |radicalSolve| |rotatex| |nil| |smith| + |showTheSymbolTable| |in?| |rationalFunction| |LyndonBasis| |isMult| + |t| |clearCache| |upperCase| |associatedEquations| + |semiLastSubResultantEuclidean| |has?| |convergents| |extension| + |readByteIfCan!| |lazyVariations| |subCase?| |absolutelyIrreducible?| + |c02aff| |raisePolynomial| |changeVar| |sortConstraints| |exprex| + |lazyPseudoQuotient| |prevPrime| |factorAndSplit| |factor1| |eq| |low| + |maxIndex| |resetNew| |taylorQuoByVar| |OMlistSymbols| |delta| + |retract| |mdeg| |approximate| |integers| Y |elem?| |iter| + |chiSquare1| |product| |outputFloating| |rationalIfCan| + |nextNormalPrimitivePoly| |UpTriBddDenomInv| |sinIfCan| |iicsch| + |isList| |rowEch| |slash| |droot| |jordanAdmissible?| |recur| + |optional?| |close| |splitConstant| |laurentRep| |youngGroup| + |loopPoints| |eval| |sumSquares| |identity| |wholePart| |terms| |cup| + |linearPolynomials| |factorial| |supRittWu?| |e04dgf| |setFieldInfo| + |orbits| |fortranLiteral| |display| |critpOrder| |resize| + |SturmHabichtMultiple| |primes| |stFunc2| |d02gbf| + |unprotectedRemoveRedundantFactors| |sts2stst| |kind| |range| |f02awf| + |sdf2lst| |trace2PowMod| |OMsupportsCD?| |retractIfCan| + |removeSuperfluousCases| |startPolynomial| |OMputEndError| |submod| + |exp| |op| |radicalRoots| |cCsc| |element?| |lambda| + |LowTriBddDenomInv| |rightOne| |inHallBasis?| |dim| |slex| + |arrayStack| |subResultantGcdEuclidean| |quadraticForm| |notelem| + |randomLC| |plotPolar| |normalDeriv| |ratDsolve| |leftDivide| + |dmpToHdmp| |atom?| |input| |cosIfCan| |mergeDifference| |OMputAtp| + |entry?| |symFunc| |bag| |showSummary| |reduceByQuasiMonic| |sn| + |normFactors| |library| |multiple?| |create| |hostPlatform| |exp1| + |setvalue!| |iroot| |expintegrate| |evenInfiniteProduct| + |squareFreePart| |integral?| |transcendenceDegree| + |euclideanNormalForm| |showAttributes| |numberOfPrimitivePoly| + |changeBase| |fortranLiteralLine| |iiasin| |mapExpon| |asimpson| + |birth| |properties| |e04fdf| |explicitlyEmpty?| |omError| |jacobi| + |d02kef| |ptree| |meatAxe| |sort!| |pointData| |translate| + |countRealRootsMultiple| |maxRowIndex| |nonQsign| |set| + |prepareDecompose| |setAdaptive| |removeRedundantFactors| |lp| + |euclideanSize| |linears| |getlo| |ffactor| |coerceListOfPairs| |map| + |point| |leftOne| |OMputEndObject| |clikeUniv| |nor| + |primPartElseUnitCanonical!| |cSec| |d01amf| |evenlambert| |logpart| + |cycleElt| |inverse| |elColumn2!| |abelianGroup| |back| |systemSizeIF| + |null?| |tanIfCan| |minimize| |reorder| |selectFiniteRoutines| + |perspective| |rightDivide| |sum| |dn| |groebner?| |predicate| + |update| |series| |processTemplate| |squareFreePrim| |debug3D| + |second| |bottom!| |gcdPolynomial| |collectQuasiMonic| |tanintegrate| + |hdmpToDmp| |d02raf| |OMputAttr| |enterInCache| |third| |innerSolve1| + |connect| |size?| |npcoef| |companionBlocks| |convert| |branchIfCan| + |nativeModuleExtension| |extensionDegree| |green| + |semiResultantEuclidean2| |euclideanGroebner| |errorInfo| + |oddInfiniteProduct| |rightZero| |iiacos| |integralAtInfinity?| + |updatF| |expint| |numberOfNormalPoly| |e04gcf| |interpret| + |direction| |min| |ratpart| |moebiusMu| |commutativeEquality| + |atrapezoidal| |internal?| |pop!| |qfactor| |explicitEntries?| + |arguments| |genericLeftMinimalPolynomial| |cotIfCan| + |certainlySubVariety?| |scanOneDimSubspaces| |copyInto!| |parent| + |gethi| |d01anf| |minRowIndex| |f04maf| |position| |OMreceive| |show| + |OMputInteger| |digits| |adaptive?| |sizeLess?| |ddFact| |cCot| + |coercePreimagesImages| |startTable!| |simplifyExp| |maxrow| + |henselFact| |weierstrass| |objectOf| |primPartElseUnitCanonical| + |sncndn| |front| |oddlambert| |void| |parameters| |makeFR| |trace| + |computeCycleLength| |module| |torsion?| |cyclicGroup| |hermiteH| + |expenseOfEvaluationIF| |primextendedint| |d03edf| |headAst| + |compdegd| |region| |zoom| |removeZero| |groebnerIdeal| |xCoord| + |startTableGcd!| |numFunEvals3D| |currentCategoryFrame| |yellow| + |top!| |eq?| |errorKind| |pToHdmp| |leftZero| |OMputBind| + |inGroundField?| |sPol| |innerSolve| |factorGroebnerBasis| |listexp| + |createThreeSpace| |mkAnswer| |iiatan| |bumprow| |romberg| |diff| + |e04jaf| |UP2ifCan| |generalInfiniteProduct| |fmecg| |secIfCan| + |brillhartIrreducible?| |numberOfDivisors| |semiResultantEuclidean1| + |extractProperty| |push!| |createIrreduciblePoly| |d01apf| |push| + |OMsend| |integralBasisAtInfinity| |possiblyNewVariety?| + |simplifyPower| |root?| |outputMeasure| |matrixDimensions| + |stopTable!| |simplifyLog| |leftMult| |OMputFloat| |sorted?| GF2FG + |cTan| |expextendedint| |antisymmetric?| |musserTrials| |expt| + |tableau| |separateFactors| |fractRagits| |expr| |rotate!| + |listRepresentation| |yCoord| |d03eef| |rightRegularRepresentation| + |setScreenResolution| |domainOf| |lazyResidueClass| |laguerreL| + |OMReadError?| |lambert| |parts| |stopTableGcd!| |univcase| |qqq| + |torsionIfCan| |dihedralGroup| |initiallyReduce| |accuracyIF| + |cyclicParents| |swap| |computeCycleEntry| |currentScope| |points| + |rotate| |doublyTransitive?| |anfactor| |ideal| |perfectNthPower?| + |heap| |transcendent?| |red| |dequeue| |variable| |groebnerFactorize| + |d01aqf| |hdmpToP| |subst| |cscIfCan| |charClass| |setAdaptive3D| + |updatD| |makeEq| |loadNativeModule| |iterators| |e04mbf| + |characteristicPolynomial| |supDimElseRittWu?| |OMserve| + |brillhartTrials| |iiacot| |subtractIfCan| |indiceSubResultant| + |minordet| |leadingBasisTerm| |showAll?| |expandPower| |ramified?| + |sumOfDivisors| |simpson| |algDsolve| |measure2Result| + |createPrimitivePoly| |primlimitedint| |error| |next| + |stopMusserTrials| |rightMult| |plusInfinity| |probablyZeroDim?| + |extractClosed| |leaf?| |cCos| |matrixConcat3D| |zCoord| |assert| + |number?| |d03faf| |OMputVariable| |showArrayValues| |LiePoly| + |minusInfinity| |dequeue!| |init| |OMUnknownSymbol?| |symmetric?| + |reverse| |startTableInvSet!| |screenResolution| |listOfLists| FG2F + |exptMod| |legendreP| |permanent| |cyclicEqual?| |minPoly| + |leftRegularRepresentation| |integralBasis| |wholeRagits| + |monicModulo| |headReduce| |fortranCharacter| |lagrange| |datalist| + |perfectNthRoot| |coerceP| |consnewpol| |applyRules| |mathieu11| + |knownInfBasis| |intermediateResultsIF| |d01asf| |asinIfCan| |gcdprim| + |pushNewContour| |getGoodPrime| |drawStyle| |credPol| |leadingIdeal| + |algebraicSort| |makeop| |adaptive3D?| |algebraic?| |recolor| + |getGraph| |e04naf| |ignore?| |dmpToP| |iifact| |expandLog| |iiasec| + |s19abf| |type| |modularGcdPrimitive| |determinant| |explimitedint| + |realEigenvalues| |numberOfFactors| |sumOfKthPowerDivisors| + |extractSplittingLeaf| |minGbasis| |indiceSubResultantEuclidean| + |att2Result| |rCoord| |showAllElements| |rank| |forLoop| |e01baf| + |ramifiedAtInfinity?| |selectPolynomials| |setPosition| |denomLODE| + |segment| |cSin| |createNormalPoly| |OMUnknownCD?| |normalizeIfCan| + |lexTriangular| |stopTableInvSet!| |makeUnit| |OMputString| + |trapezoidal| |outputForm| |enqueue!| |setelt!| |cyclicEntries| + |freeOf?| |rischDEsys| |midpoints| |showScalarValues| |tanSum| + |quickSort| |extractIndex| |writeBytes!| |fortranDoubleComplex| + |diagonal?| |baseRDEsys| |countable?| |rightTraceMatrix| |pastel| + |seriesSolve| |meshPar2Var| |stronglyReduce| |d01bbf| |cycles| + |solveid| |modulus| |s18adf| |nsqfree| |setMaxPoints| F2FG + |lazyPseudoDivide| |redPol| |moreAlgebraic?| |cons| + |univariatePolynomial| |f07fef| |mainExpression| |findBinding| + |localIntegralBasis| |mathieu12| |radix| |createNormalElement| + |e04ucf| |subscriptedVariables| |computeInt| |lists| |empty?| + |powerSum| |sh| |localUnquote| |outlineRender| |trailingCoefficient| + |backOldPos| |primextintfrac| |getProperty| |iiacsc| |gcdcofact| + |sort| |drawComplex| |badNum| |pascalTriangle| |rischDE| |pToDmp| + |thetaCoord| |duplicates?| |HermiteIntegrate| |s19acf| |modularGcd| + |putGraph| |e02daf| |messagePrint| |realEigenvectors| |OMParseError?| + |areEquivalent?| |setScreenResolution3D| |selectOrPolynomials| + |iibinom| |semiIndiceSubResultantEuclidean| |commonDenominator| + |unrankImproperPartitions0| |resetVariableOrder| |delay| |cyclicCopy| + |topPredicate| |lepol| |indicialEquations| |bindings| |denominators| + |df2mf| |createNormalPrimitivePoly| |d01fcf| |source| + |divideExponents| |integralMatrixAtInfinity| |palgRDE0| + |constantToUnaryFunction| |sample| |testModulus| |cSinh| + |identityMatrix| |subTriSet?| |fortranLogical| |precision| |exQuo| + |f07adf| |collectUpper| |random| |heapSort| |explogs2trigs| |s01eaf| + |zeroOf| |definingInequation| |checkForZero| |mr| |square?| |s18aef| + |OMputObject| |lastSubResultantElseSplit| |curve| |meshFun2Var| + |randnum| |genericLeftNorm| |components| |null| |leftExtendedGcd| + |splitNodeOf!| |ParCond| |untab| |setColumn!| |lazyPremWithDefault| + |sin?| |case| |fintegrate| |float?| |cycleLength| |scopes| |nthFlag| + |tubePointsDefault| |bright| |symbolTable| |mix| |mathieu22| + |squareFreeLexTriangular| |rangePascalTriangle| |Zero| + |exprHasAlgebraicWeight| |realSolve| |mapGen| |rootSimp| |pushdterm| + |graphs| |diagonals| |realZeros| |e02dcf| |One| |tanQ| + |mapUnivariateIfCan| |isAbsolutelyIrreducible?| |pleskenSplit| + |toseLastSubResultant| |pushFortranOutputStack| |dark| + |unrankImproperPartitions1| |ksec| |cyclotomic| |binding| |reindex| + |setTopPredicate| |popFortranOutputStack| |varList| |variable?| + |lazyGintegrate| |clearDenominator| |ldf2vmf| |complexEigenvectors| + |OMgetSymbol| |insertRoot!| |unmakeSUP| |iisin| |lfintegrate| + |ODESolve| |outputAsFortran| |cartesian| |cAcsc| + |removeRedundantFactorsInContents| |internalAugment| |nullary?| + |palgLODE0| |curve?| |triangular?| |swapRows!| |deepCopy| |HenselLift| + |sizeMultiplication| |definingEquations| |categories| |endOfFile?| + |bfEntry| |alphanumeric?| |fortranInteger| |OMopenFile| |collect| + |getMeasure| |key| |s13aaf| |leftGcd| |elt| |newReduc| + |numberOfComputedEntries| |s18aff| |OMputEndApp| |nil?| |rightNorm| + |charthRoot| |numberOfComposites| |coefficient| |c06gcf| |rowEchelon| + |generalizedContinuumHypothesisAssumed| |remove!| |filename| |bat1| + |bandedHessian| |cross| |zeroVector| |sizePascalTriangle| + |fixedPoints| |integer?| GE |kroneckerDelta| |eigenvalues| |chvar| + |nthExponent| |not?| |halfExtendedSubResultantGcd2| |belong?| |e02ddf| + |cycleEntry| |positiveSolve| GT |any| |operation| + |inverseIntegralMatrix| |patternVariable| |generalizedInverse| + |pushucoef| |compactFraction| |parse| |mainCharacterization| + |subresultantSequence| |weakBiRank| |callForm?| LE |makeSUP| |moebius| + |toseInvertible?| |port| |clipSurface| |getSyntaxFormsFromFile| + |edf2ef| |exprHasLogarithmicWeights| |vark| LT |arity| |label| + |outputList| |invertibleSet| |characteristicSerie| + |differentialVariables| |rk4| |splitDenominator| |cAsec| + |mapMatrixIfCan| |removeRedundantFactorsInPols| |complex| + |fortranDouble| |position!| |redmat| |solve1| |power| |polar| + |setStatus| |normalizedAssociate| |OMgetType| |s18dcf| |iicos| + |tubeRadiusDefault| |fi2df| |term| |completeHensel| + |leftExactQuotient| |euler| |readIfCan!| |digit?| |subNodeOf?| + |reciprocalPolynomial| |chineseRemainder| |vertConcat| |constDsolve| + |s13acf| |coHeight| |logical?| |possiblyInfinite?| |alphanumeric| + |eigenvector| |plus| |collectUnder| |changeMeasure| |shallowCopy| + |vector| |numberOfComponents| |getMultiplicationMatrix| + |fillPascalTriangle| |c06gqf| |keys| |lowerCase?| |monomialIntegrate| + |OMopenString| |OMputEndAtp| |conditionP| |differentiate| + |zeroSquareMatrix| |e02def| |rst| |symbol?| |currentEnv| |shade| + |buildSyntax| |bat| |leftNorm| |dot| |operator| |SturmHabichtSequence| + |column| |squareFree| |withPredicates| |integralMatrix| + |irreducibleFactor| |find| |jacobian| |algebraicOf| |vedf2vef| + |getIdentifier| |odd?| |generalizedContinuumHypothesisAssumed?| + |vectorise| |pushuconst| |times| |imports| + |halfExtendedSubResultantGcd1| |surface| |cAcot| |removeConstantTerm| + |invmultisect| |search| |fortranReal| |index| |rightRecip| + |toseInvertibleSet| |partialFraction| |firstUncouplingMatrix| + |monicRightFactorIfCan| |quasiAlgebraicSet| |biRank| + |irreducibleFactors| |s18def| |invertible?| |characteristicSet| |rk4a| + |showClipRegion| |cylindrical| |leftRemainder| + |combineFeatureCompatibility| |OMencodingBinary| |option| |iitan| + |nodeOf?| |call| |regime| |extractBottom!| |sincos| |multMonom| + |extendIfCan| |mapBivariate| |readLineIfCan!| |generalizedEigenvector| + |mat| |divisors| |list| |dimension| |monom| |innerEigenvectors| |pair| + |s13adf| |safeCeiling| |box| |character?| |fixedDivisor| |rootRadius| + |monomialIntPoly| |mainVariable?| |car| |horizConcat| |term?| + |create3Space| |e02dff| |c06gsf| |normalize| |testDim| |declare| + |nthRootIfCan| |OMputEndAttr| |cdr| |showTheIFTable| + |changeThreshhold| |identitySquareMatrix| |SturmHabichtCoefficients| + |string?| |explicitlyFinite?| |arg1| |common| |setDifference| + |setPredicates| |setMinPoints| |tab1| |solveLinearPolynomialEquation| + |numberOfChildren| |Ci| |checkPrecision| |df2st| + |getMultiplicationTable| |linearlyDependentOverZ?| |arg2| |function| + |nilFactor| |extend| |setIntersection| |OMclose| |upperCase?| |scan| + |max| |ReduceOrder| |cAtan| |rightRank| |frst| |external?| |setUnion| + |numberOfMonomials| |solve| |clipParametric| |rightTrace| |coordinate| + |getConstant| |radicalSimplify| |rightTrim| |row| |leaves| + |conditions| |reduceBasisAtInfinity| |s19aaf| |apply| + |toseSquareFreePart| |sequence| |bandedJacobian| |rightFactorIfCan| + |leftQuotient| |mkPrim| |even?| |leftTrim| |updateStatus!| |leftRecip| + |medialSet| |integral| |extendedSubResultantGcd| |spherical| + |algebraicVariables| |lazyIrreducibleFactors| |multisect| |iicot| + |generalizedEigenvectors| |size| |invertibleElseSplit?| |rk4qc| + |gcdPrimitive| |build| |safeFloor| |sparsityIF| |OMencodingSGML| + |inverseLaplace| |eulerPhi| |sqfree| |sinhcosh| |showRegion| |s14aaf| + |fullDisplay| |e02gaf| |readLine!| |log| |extractTop!| |expIfCan| + |mainVariables| |crest| |neglist| |rules| |outputAsScript| + |SturmHabicht| |doubleComplex?| |outputArgs| |schwerpunkt| + |predicates| |OMputEndBind| |first| |unparse| |squareTop| + |lSpaceBasis| |f2st| |d01ajf| |laguerre| |genericPosition| |pattern| + |truncate| |tab| |rest| |equiv| |selectMultiDimensionalRoutines| |Si| + |cAcos| |rule| |list?| |nextItem| |regularRepresentation| + |scalarTypeOf| |substitute| |minPoints| |clearTheIFTable| + |factorSquareFreePolynomial| |setref| |denominator| |primitive?| + |linearDependenceOverZ| |padecf| |removeDuplicates| |eigenvectors| + |members| |OMsetEncoding| |children| |graphCurves| |partitions| + |monicLeftDivide| |doubleRank| |lazyEvaluate| |prime?| |iprint| + |quotedOperators| |triangularSystems| |alphabetic?| |clipWithRanges| + |leftFactorIfCan| |select!| |zeroSetSplitIntoTriangularSystems| |/\\| + |maxColIndex| |lcm| |normalizeAtInfinity| |logIfCan| |message| + |Hausdorff| |leftTrace| |rk4f| |basisOfRightAnnihilator| + |safetyMargin| |intPatternMatch| |numberOfCycles| |\\/| + |hasPredicate?| |iisec| |leftPower| |duplicates| |subresultantVector| + |id| |e02zaf| |removeIrreducibleRedundantFactors| |revert| |append| + |order| |fibonacci| |purelyAlgebraicLeadingMonomial?| |multiEuclidean| + |exactQuotient!| |countRealRoots| |stiffnessAndStabilityFactor| + |OMencodingXML| |gcd| |fortranCarriageReturn| |inconsistent?| + |removeSquaresIfCan| |elRow1!| |symmetricGroup| |ldf2lst| |table| + |relationsIdeal| |writeLine!| |false| |d02gaf| |OMputEndBVar| |cfirst| + |selectNonFiniteRoutines| |hitherPlane| |cAsin| |new| |complex?| + |legendre| |setErrorBound| |lex| |insertBottom!| |factorPolynomial| + |numerator| |d01akf| |normInvertible?| |pack!| |traceMatrix| |lfunc| + |binary| |drawCurves| |pair?| |monicRightDivide| |infiniteProduct| + |printInfo| |test| |symmetricTensors| |numberOfHues| |multiset| + |parametric?| |merge!| |zero| |numberOfIrreduciblePoly| |zeroSetSplit| + |groebner| |solveLinearlyOverQ| |comp| |#| |addMatch| |OMputApp| |rur| + |redPo| |iFTable| |delete!| |parseString| |inc| |resultant| + |rootDirectory| |Frobenius| |aromberg| |child| |And| |quadraticNorm| + |primintegrate| |lazy?| |midpoint| |ranges| |iicsc| + |complementaryBasis| |someBasis| |primitivePart| |Or| |e02ajf| + |normalForm| |minColIndex| |light| |s17dcf| |extendedEuclidean| + |harmonic| |numFunEvals| |removeDuplicates!| |Not| |listYoungTableaus| + |OMencodingUnknown| |cyclePartition| |remove| |stack| |subNode?| + |binarySearchTree| |exactQuotient| |edf2fi| |sign| |generalLambert| + |yCoordinates| |decreasePrecision| |OMmakeConn| |elRow2!| + |alternatingGroup| |cAcosh| |stiffnessAndStabilityOfODEIF| |double?| + |last| |complexLimit| |f02adf| |parametersOf| ~= + |selectSumOfSquaresRoutines| |eyeDistance| |acothIfCan| |assoc| |left| + |saturate| |d01alf| |tensorProduct| |setFormula!| |quartic| + |insertTop!| |squareFreePolynomial| |coerce| |leftLcm| |right| + |getMatch| |changeNameToObjf| |An| |packageCall| |construct| |scale| + |cot2tan| |cardinality| |poisson| |discriminant| |PollardSmallFactor| + |positive?| |blue| |showIntensityFunctions| |infinityNorm| |c06ecf| + |ListOfTerms| |pointLists| |maxrank| |remainder| |hMonic| + |resultantEuclidean| |e02akf| |member?| |setrest!| |ravel| |s17def| + |presub| |viewDefaults| |makeYoungTableau| |makeSketch| |mindeg| + |reshape| |infLex?| |modTree| |open?| |bivariateSLPEBR| |mainContent| + ** |edf2df| |rangeIsFinite| |specialTrigs| |setProperties| + |increasePrecision| |unitCanonical| |padicFraction| |mpsode| |cAsinh| + |leastPower| |internalIntegrate| |limit| |optAttributes| |powers| + |totalDifferential| |makeViewport2D| |asechIfCan| |patternMatch| + |crushedSet| |permutationRepresentation| EQ |showTheFTable| + |OMcloseConn| |shanksDiscLogAlgorithm| |shrinkable| |rightExtendedGcd| + |restorePrecision| |OMgetEndError| |increase| |failed?| + |headRemainder| |fortranTypeOf| |normal?| |isExpt| |coth2tanh| + |internalDecompose| |stripCommentsAndBlanks| |pomopo!| + |pseudoRemainder| |linkToFortran| |super| |ScanArabic| |imagE| + |scaleRoots| |createLowComplexityNormalBasis| |internalIntegrate0| + |argument| |basisOfRightNucloid| |UnVectorise| |setClosed| + |orOperands| |addiag| |flatten| |LyndonWordsList| |e02baf| |c06ekf| + |symbol| |matrix| |rename| |makeGraphImage| |bits| |negative?| + |iomode| |modifyPoint| |geometric| |nextColeman| |enumerate| + |expression| |rspace| |s17dgf| |rightPower| |minrank| |associative?| + |constantLeft| |expenseOfEvaluation| |PDESolve| |maxdeg| |integer| + |userOrdered?| |setEmpty!| |algebraicCoefficients?| |viewWriteDefault| + |power!| |roman| |cCsch| |localReal?| |setfirst!| |mkcomm| + |setProperty| |multiEuclideanTree| |Nul| + |solveLinearPolynomialEquationByRecursion| |primitivePart!| |inrootof| + |infieldIntegrate| |acschIfCan| |f04axf| |isQuotient| + |genericLeftTraceForm| |signature| |categoryFrame| |unitNormal| + |clearTheFTable| |hash| |padicallyExpand| UP2UTS |rightGcd| + |functionIsContinuousAtEndPoints| + |rewriteSetByReducingWithParticularGenerators| |f04adf| |homogeneous?| + |count| |linearlyDependent?| |partition| |roughUnitIdeal?| |cn| + |viewport2D| |idealiser| |removeCosSq| |OMgetEndObject| |mesh?| + |lprop| |not| |systemCommand| |completeEchelonBasis| |OMconnInDevice| + |sub| |reflect| |physicalLength!| |setleaves!| |shiftRoots| + |antiCommutator| |setPrologue!| |morphism| |optpair| |empty| |tube| + |basis| |isPower| |equality| |e02bbf| |makeCos| |patternMatchTimes| + |mapExponents| |double| |shiftLeft| |setLegalFortranSourceExtensions| + |unitNormalize| |FormatRoman| |or?| |continuedFraction| |c06fpf| + |nextLatticePermutation| |height| |decompose| |constantKernel| + |basisOfCentroid| |normal| |Vectorise| |derivationCoordinates| |imagk| + |lazyIntegrate| |hasHi| |numberOfOperations| |representationType| + |setOfMinN| |outerProduct| |rename!| |leader| |graphImage| |zero?| + |purelyTranscendental?| |close!| |addPointLast| |cSech| + |LyndonWordsList1| |RemainderList| |vspace| |s17dhf| |exponents| + |minset| |antiCommutative?| |twist| |pushdown| |rischNormalize| + |ridHack1| |largest| |directory| |setStatus!| |fTable| + |viewWriteAvailable| |gradient| |recoverAfterFail| + |rightExactQuotient| |limitedIntegrate| |leftFactor| + |polarCoordinates| |setProperties!| |complexZeros| |roughEqualIdeals?| + |factorByRecursion| |nextsubResultant2| |removeSinSq| + |rewriteIdealWithQuasiMonicGenerators| |cycleSplit!| + |genericRightNorm| |linearDependence| |ratPoly| |rarrow| + |numberOfFractionalTerms| UTS2UP |degreePartition| |nothing| + |functionIsOscillatory| |OMgetInteger| |f04arf| |declare!| + |createRandomElement| |lfextendedint| |unitVector| |physicalLength| + |getPickedPoints| |e02bcf| |idealiserMatrix| |setTex!| |cond| |llprop| + |getBadValues| |unit| |complete| |reify| |rroot| |nextPartition| + |makeSin| |bernoulli| |balancedFactorisation| |brace| |shiftRight| + |one?| |OMconnOutDevice| |normalElement| |ScanRoman| |replace| + |edf2efi| |c06fqf| |commutator| |linearAssociatedLog| |groebSolve| + |purelyAlgebraic?| |compound?| |andOperands| |nlde| |cCoth| |elements| + |upDateBranches| |constantIfCan| |s17dlf| |unravel| |iisqrt2| + |reopen!| |imagj| |pushup| |alphabetic| |unexpand| |stop| |mainValue| + |failed| |setCondition!| |palgint0| |setPoly| |setsubMatrix!| + |addPoint2| |rightRemainder| |realElementary| |createPrimitiveElement| + |hspace| |value| |getProperties| |roughSubIdeal?| |augment| + |commutative?| |showTheRoutinesTable| |removeCoshSq| + |extendedIntegrate| |lyndonIfCan| |more?| |solveLinear| |flagFactor| + |nextSublist| |divergence| |factorSquareFreeByRecursion| + |factorOfDegree| |OMgetFloat| |interpolate| |imaginary| + |cyclicSubmodule| |splitSquarefree| |var1StepsDefault| + |LazardQuotient2| LODO2FUN |e02bdf| |rightFactorCandidate| + |squareFreeFactors| |genericRightTrace| |resetBadValues| + |divisorCascade| |prepareSubResAlgo| |radPoly| |nthFractionalTerm| + |numberOfImproperPartitions| |setEpilogue!| |concat!| |f04asf| + |karatsubaDivide| |rootPower| |iisqrt3| |flexibleArray| |colorDef| + |dfRange| |changeName| |iiGamma| |or| |lllp| |lflimitedint| |s18acf| + |palgextint0| |length| |separant| |qroot| |cTanh| |moduleSum| |c06frf| + |mapDown!| |qualifier| |scripts| |pole?| |roughBase?| + |minimalPolynomial| |ScanFloatIgnoreSpaces| |reducedDiscriminant| + |chebyshevT| |replaceKthElement| |linearAssociatedOrder| |setValue!| + |OMconnectTCP| |OMputBVar| |and?| |powern| |rightQuotient| + |associator| |triangSolve| |kovacic| |setProperty!| |getOperands| + |bumptab| |rightUnit| |imagi| |removeSinhSq| |validExponential| + |preprocess| |mainDefiningPolynomial| + |inverseIntegralMatrixAtInfinity| |reducedSystem| |sqfrFactor| + |generator| |subMatrix| |addPoint| |factorsOfDegree| |hexDigit| + |varselect| |superHeight| |standardBasisOfCyclicSubmodule| |exponent| + |normalDenom| |rightCharacteristicPolynomial| |deleteRoutine!| + |e02bef| |tableForDiscreteLogarithm| |univariatePolynomialsGcds| + |bfKeys| |setVariableOrder| |hasTopPredicate?| |lastSubResultant| + |internalLastSubResultant| |laplacian| |randomR| |subSet| |lyndon| + |OMgetVariable| |nand| |goto| |monicDivide| |iiexp| |overset?| + |LazardQuotient| RF2UTS |dflist| |nullSpace| |prologue| |solid| + |fortranComplex| |palglimint0| |var2StepsDefault| |rootPoly| + |firstNumer| |cCosh| |iiabs| |measure| |genericRightMinimalPolynomial| + |graeffe| |trivialIdeal?| |elseBranch| |intensity| |idealSimplify| + |c06fuf| |cycleTail| |f04atf| |computeBasis| |rootProduct| + |OMputError| |digit| |froot| |rightLcm| |exprHasWeightCosWXorSinWX| + |incrementKthElement| |lllip| |eigenMatrix| |lfinfieldint| |f04faf| + |bumptab1| |isobaric?| |ScanFloatIgnoreSpacesIfCan| + |expandTrigProducts| |nil| |infinite| |arbitraryExponent| + |approximate| |complex| |shallowMutable| |canonical| |noetherian| + |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| + |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index e3c10a8d..3e20951d 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5112 +1,5113 @@ -(3159674 . 3430739805) -((-3001 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2980 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2089 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-1185 (-548)) |#2|) 34)) (-3499 (($ $) 59)) (-2061 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2621 (((-548) (-1 (-112) |#2|) $) 22) (((-548) |#2| $) NIL) (((-548) |#2| $ (-548)) 73)) (-1934 (((-619 |#2|) $) 13)) (-2913 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3960 (($ (-1 |#2| |#2|) $) 29)) (-2540 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2387 (($ |#2| $ (-548)) NIL) (($ $ $ (-548)) 50)) (-4030 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-3537 (((-112) (-1 (-112) |#2|) $) 21)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) NIL) (($ $ (-1185 (-548))) 49)) (-2008 (($ $ (-548)) 56) (($ $ (-1185 (-548))) 55)) (-3945 (((-745) (-1 (-112) |#2|) $) 26) (((-745) |#2| $) NIL)) (-2990 (($ $ $ (-548)) 52)) (-2113 (($ $) 51)) (-3754 (($ (-619 |#2|)) 53)) (-1831 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-619 $)) 62)) (-3743 (((-832) $) 69)) (-3548 (((-112) (-1 (-112) |#2|) $) 20)) (-2214 (((-112) $ $) 72)) (-2234 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3001 ((-112) |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) (-19 |#2|) (-1172)) (T -18)) +(3160531 . 3430960064) +((-2951 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-2765 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2238 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-1185 (-547)) |#2|) 34)) (-2034 (($ $) 59)) (-2542 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2867 (((-547) (-1 (-112) |#2|) $) 22) (((-547) |#2| $) NIL) (((-547) |#2| $ (-547)) 73)) (-2973 (((-619 |#2|) $) 13)) (-1294 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-1850 (($ (-1 |#2| |#2|) $) 29)) (-2781 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2599 (($ |#2| $ (-547)) NIL) (($ $ $ (-547)) 50)) (-3461 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2462 (((-112) (-1 (-112) |#2|) $) 21)) (-3329 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) NIL) (($ $ (-1185 (-547))) 49)) (-2151 (($ $ (-547)) 56) (($ $ (-1185 (-547))) 55)) (-3987 (((-745) (-1 (-112) |#2|) $) 26) (((-745) |#2| $) NIL)) (-2861 (($ $ $ (-547)) 52)) (-2265 (($ $) 51)) (-3841 (($ (-619 |#2|)) 53)) (-1935 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-619 $)) 62)) (-3834 (((-832) $) 69)) (-2583 (((-112) (-1 (-112) |#2|) $) 20)) (-2371 (((-112) $ $) 72)) (-2396 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2371 ((-112) |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2765 (|#1| |#1|)) (-15 -2765 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2861 (|#1| |#1| |#1| (-547))) (-15 -2951 ((-112) |#1|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2867 ((-547) |#2| |#1| (-547))) (-15 -2867 ((-547) |#2| |#1|)) (-15 -2867 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2951 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1294 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2238 (|#2| |#1| (-1185 (-547)) |#2|)) (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -2151 (|#1| |#1| (-1185 (-547)))) (-15 -2151 (|#1| |#1| (-547))) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1935 (|#1| (-619 |#1|))) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -3461 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3329 (|#2| |#1| (-547))) (-15 -3329 (|#2| |#1| (-547) |#2|)) (-15 -2238 (|#2| |#1| (-547) |#2|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -2973 ((-619 |#2|) |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2265 (|#1| |#1|))) (-19 |#2|) (-1172)) (T -18)) NIL -(-10 -8 (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3001 ((-112) |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(-10 -8 (-15 -2371 ((-112) |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2765 (|#1| |#1|)) (-15 -2765 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2861 (|#1| |#1| |#1| (-547))) (-15 -2951 ((-112) |#1|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2867 ((-547) |#2| |#1| (-547))) (-15 -2867 ((-547) |#2| |#1|)) (-15 -2867 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2951 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1294 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2238 (|#2| |#1| (-1185 (-547)) |#2|)) (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -2151 (|#1| |#1| (-1185 (-547)))) (-15 -2151 (|#1| |#1| (-547))) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1935 (|#1| (-619 |#1|))) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -3461 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3329 (|#2| |#1| (-547))) (-15 -3329 (|#2| |#1| (-547) |#2|)) (-15 -2238 (|#2| |#1| (-547) |#2|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -2973 ((-619 |#2|) |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2265 (|#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4329))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-2034 (($ $) 90 (|has| $ (-6 -4329)))) (-3048 (($ $) 100)) (-3664 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 51)) (-2867 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 87 (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 86 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 42 (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2418 (($ $ |#1|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1185 (-547))) 63)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 91 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 70)) (-1935 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2421 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-19 |#1|) (-138) (-1172)) (T -19)) NIL -(-13 (-365 |t#1|) (-10 -7 (-6 -4328))) -(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) -((-4104 (((-3 $ "failed") $ $) 12)) (-2299 (($ $) NIL) (($ $ $) 9)) (* (($ (-890) $) NIL) (($ (-745) $) 16) (($ (-548) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -4104 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-21)) (T -20)) +(-13 (-364 |t#1|) (-10 -7 (-6 -4329))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) +((-3013 (((-3 $ "failed") $ $) 12)) (-2484 (($ $) NIL) (($ $ $) 9)) (* (($ (-890) $) NIL) (($ (-745) $) 16) (($ (-547) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3013 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -4104 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20))) +(-10 -8 (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3013 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20))) (((-21) (-138)) (T -21)) -((-2299 (*1 *1 *1) (-4 *1 (-21))) (-2299 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-548))))) -(-13 (-130) (-10 -8 (-15 -2299 ($ $)) (-15 -2299 ($ $ $)) (-15 * ($ (-548) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3324 (((-112) $) 10)) (-3030 (($) 15)) (* (($ (-890) $) 14) (($ (-745) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 * (|#1| (-890) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15))) +((-2484 (*1 *1 *1) (-4 *1 (-21))) (-2484 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-547))))) +(-13 (-130) (-10 -8 (-15 -2484 ($ $)) (-15 -2484 ($ $ $)) (-15 * ($ (-547) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-4046 (((-112) $) 10)) (-3219 (($) 15)) (* (($ (-890) $) 14) (($ (-745) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -3219 (|#1|)) (-15 * (|#1| (-890) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-745) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -3219 (|#1|)) (-15 * (|#1| (-890) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15))) (((-23) (-138)) (T -23)) -((-3107 (*1 *1) (-4 *1 (-23))) (-3030 (*1 *1) (-4 *1 (-23))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745))))) -(-13 (-25) (-10 -8 (-15 (-3107) ($) -2325) (-15 -3030 ($) -2325) (-15 -3324 ((-112) $)) (-15 * ($ (-745) $)))) -(((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) +((-3267 (*1 *1) (-4 *1 (-23))) (-3219 (*1 *1) (-4 *1 (-23))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745))))) +(-13 (-25) (-10 -8 (-15 (-3267) ($) -2573) (-15 -3219 ($) -2573) (-15 -4046 ((-112) $)) (-15 * ($ (-745) $)))) +(((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) ((* (($ (-890) $) 10))) (((-24 |#1|) (-10 -8 (-15 * (|#1| (-890) |#1|))) (-25)) (T -24)) NIL (-10 -8 (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13))) +((-3821 (((-112) $ $) 7)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13))) (((-25) (-138)) (T -25)) -((-2290 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890))))) -(-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ (-890) $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-1786 (((-619 $) (-921 $)) 29) (((-619 $) (-1131 $)) 16) (((-619 $) (-1131 $) (-1135)) 20)) (-1262 (($ (-921 $)) 27) (($ (-1131 $)) 11) (($ (-1131 $) (-1135)) 54)) (-1274 (((-619 $) (-921 $)) 30) (((-619 $) (-1131 $)) 18) (((-619 $) (-1131 $) (-1135)) 19)) (-3263 (($ (-921 $)) 28) (($ (-1131 $)) 13) (($ (-1131 $) (-1135)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) -((-3730 (((-112) $ $) 7)) (-1786 (((-619 $) (-921 $)) 77) (((-619 $) (-1131 $)) 76) (((-619 $) (-1131 $) (-1135)) 75)) (-1262 (($ (-921 $)) 80) (($ (-1131 $)) 79) (($ (-1131 $) (-1135)) 78)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 89)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1274 (((-619 $) (-921 $)) 83) (((-619 $) (-1131 $)) 82) (((-619 $) (-1131 $) (-1135)) 81)) (-3263 (($ (-921 $)) 86) (($ (-1131 $)) 85) (($ (-1131 $) (-1135)) 84)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +((-2470 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890))))) +(-13 (-1063) (-10 -8 (-15 -2470 ($ $ $)) (-15 * ($ (-890) $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-2514 (((-619 $) (-921 $)) 29) (((-619 $) (-1131 $)) 16) (((-619 $) (-1131 $) (-1135)) 20)) (-3233 (($ (-921 $)) 27) (($ (-1131 $)) 11) (($ (-1131 $) (-1135)) 54)) (-1607 (((-619 $) (-921 $)) 30) (((-619 $) (-1131 $)) 18) (((-619 $) (-1131 $) (-1135)) 19)) (-1658 (($ (-921 $)) 28) (($ (-1131 $)) 13) (($ (-1131 $) (-1135)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2514 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -2514 ((-619 |#1|) (-1131 |#1|))) (-15 -2514 ((-619 |#1|) (-921 |#1|))) (-15 -3233 (|#1| (-1131 |#1|) (-1135))) (-15 -3233 (|#1| (-1131 |#1|))) (-15 -3233 (|#1| (-921 |#1|))) (-15 -1607 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1607 ((-619 |#1|) (-1131 |#1|))) (-15 -1607 ((-619 |#1|) (-921 |#1|))) (-15 -1658 (|#1| (-1131 |#1|) (-1135))) (-15 -1658 (|#1| (-1131 |#1|))) (-15 -1658 (|#1| (-921 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2514 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -2514 ((-619 |#1|) (-1131 |#1|))) (-15 -2514 ((-619 |#1|) (-921 |#1|))) (-15 -3233 (|#1| (-1131 |#1|) (-1135))) (-15 -3233 (|#1| (-1131 |#1|))) (-15 -3233 (|#1| (-921 |#1|))) (-15 -1607 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1607 ((-619 |#1|) (-1131 |#1|))) (-15 -1607 ((-619 |#1|) (-921 |#1|))) (-15 -1658 (|#1| (-1131 |#1|) (-1135))) (-15 -1658 (|#1| (-1131 |#1|))) (-15 -1658 (|#1| (-921 |#1|)))) +((-3821 (((-112) $ $) 7)) (-2514 (((-619 $) (-921 $)) 77) (((-619 $) (-1131 $)) 76) (((-619 $) (-1131 $) (-1135)) 75)) (-3233 (($ (-921 $)) 80) (($ (-1131 $)) 79) (($ (-1131 $) (-1135)) 78)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2118 (($ $) 89)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-1607 (((-619 $) (-921 $)) 83) (((-619 $) (-1131 $)) 82) (((-619 $) (-1131 $) (-1135)) 81)) (-1658 (($ (-921 $)) 86) (($ (-1131 $)) 85) (($ (-1131 $) (-1135)) 84)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3674 (((-112) $) 68)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 88)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 62)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64))) (((-27) (-138)) (T -27)) -((-3263 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) (-3263 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1274 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-1262 (*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) (-1262 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) (-5 *2 (-619 *1))))) -(-13 (-355) (-971) (-10 -8 (-15 -3263 ($ (-921 $))) (-15 -3263 ($ (-1131 $))) (-15 -3263 ($ (-1131 $) (-1135))) (-15 -1274 ((-619 $) (-921 $))) (-15 -1274 ((-619 $) (-1131 $))) (-15 -1274 ((-619 $) (-1131 $) (-1135))) (-15 -1262 ($ (-921 $))) (-15 -1262 ($ (-1131 $))) (-15 -1262 ($ (-1131 $) (-1135))) (-15 -1786 ((-619 $) (-921 $))) (-15 -1786 ((-619 $) (-1131 $))) (-15 -1786 ((-619 $) (-1131 $) (-1135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-971) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-1786 (((-619 $) (-921 $)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 $) (-1135)) 50) (((-619 $) $) 19) (((-619 $) $ (-1135)) 41)) (-1262 (($ (-921 $)) NIL) (($ (-1131 $)) NIL) (($ (-1131 $) (-1135)) 52) (($ $) 17) (($ $ (-1135)) 37)) (-1274 (((-619 $) (-921 $)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 $) (-1135)) 48) (((-619 $) $) 15) (((-619 $) $ (-1135)) 43)) (-3263 (($ (-921 $)) NIL) (($ (-1131 $)) NIL) (($ (-1131 $) (-1135)) NIL) (($ $) 12) (($ $ (-1135)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1786 ((-619 |#1|) |#1| (-1135))) (-15 -1262 (|#1| |#1| (-1135))) (-15 -1786 ((-619 |#1|) |#1|)) (-15 -1262 (|#1| |#1|)) (-15 -1274 ((-619 |#1|) |#1| (-1135))) (-15 -3263 (|#1| |#1| (-1135))) (-15 -1274 ((-619 |#1|) |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) (-29 |#2|) (-13 (-821) (-540))) (T -28)) -NIL -(-10 -8 (-15 -1786 ((-619 |#1|) |#1| (-1135))) (-15 -1262 (|#1| |#1| (-1135))) (-15 -1786 ((-619 |#1|) |#1|)) (-15 -1262 (|#1| |#1|)) (-15 -1274 ((-619 |#1|) |#1| (-1135))) (-15 -3263 (|#1| |#1| (-1135))) (-15 -1274 ((-619 |#1|) |#1|)) (-15 -3263 (|#1| |#1|)) (-15 -1786 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1786 ((-619 |#1|) (-1131 |#1|))) (-15 -1786 ((-619 |#1|) (-921 |#1|))) (-15 -1262 (|#1| (-1131 |#1|) (-1135))) (-15 -1262 (|#1| (-1131 |#1|))) (-15 -1262 (|#1| (-921 |#1|))) (-15 -1274 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1274 ((-619 |#1|) (-1131 |#1|))) (-15 -1274 ((-619 |#1|) (-921 |#1|))) (-15 -3263 (|#1| (-1131 |#1|) (-1135))) (-15 -3263 (|#1| (-1131 |#1|))) (-15 -3263 (|#1| (-921 |#1|)))) -((-3730 (((-112) $ $) 7)) (-1786 (((-619 $) (-921 $)) 77) (((-619 $) (-1131 $)) 76) (((-619 $) (-1131 $) (-1135)) 75) (((-619 $) $) 123) (((-619 $) $ (-1135)) 121)) (-1262 (($ (-921 $)) 80) (($ (-1131 $)) 79) (($ (-1131 $) (-1135)) 78) (($ $) 124) (($ $ (-1135)) 122)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1135)) $) 198)) (-1884 (((-399 (-1131 $)) $ (-591 $)) 230 (|has| |#1| (-540)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-1806 (((-619 (-591 $)) $) 161)) (-4104 (((-3 $ "failed") $ $) 19)) (-3854 (($ $ (-619 (-591 $)) (-619 $)) 151) (($ $ (-619 (-286 $))) 150) (($ $ (-286 $)) 149)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 89)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1274 (((-619 $) (-921 $)) 83) (((-619 $) (-1131 $)) 82) (((-619 $) (-1131 $) (-1135)) 81) (((-619 $) $) 127) (((-619 $) $ (-1135)) 125)) (-3263 (($ (-921 $)) 86) (($ (-1131 $)) 85) (($ (-1131 $) (-1135)) 84) (($ $) 128) (($ $ (-1135)) 126)) (-2441 (((-3 (-921 |#1|) "failed") $) 248 (|has| |#1| (-1016))) (((-3 (-399 (-921 |#1|)) "failed") $) 232 (|has| |#1| (-540))) (((-3 |#1| "failed") $) 194) (((-3 (-548) "failed") $) 192 (|has| |#1| (-1007 (-548)))) (((-3 (-1135) "failed") $) 185) (((-3 (-591 $) "failed") $) 136) (((-3 (-399 (-548)) "failed") $) 120 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 (((-921 |#1|) $) 249 (|has| |#1| (-1016))) (((-399 (-921 |#1|)) $) 233 (|has| |#1| (-540))) ((|#1| $) 195) (((-548) $) 191 (|has| |#1| (-1007 (-548)))) (((-1135) $) 186) (((-591 $) $) 137) (((-399 (-548)) $) 119 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-1945 (($ $ $) 53)) (-1608 (((-663 |#1|) (-663 $)) 238 (|has| |#1| (-1016))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 237 (|has| |#1| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 118 (-1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (((-663 (-548)) (-663 $)) 117 (-1524 (-1723 (|has| |#1| (-1016)) (|has| |#1| (-615 (-548)))) (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 190 (|has| |#1| (-855 (-371)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 189 (|has| |#1| (-855 (-548))))) (-2142 (($ (-619 $)) 155) (($ $) 154)) (-1744 (((-619 (-114)) $) 162)) (-1402 (((-114) (-114)) 163)) (-2266 (((-112) $) 30)) (-3705 (((-112) $) 183 (|has| $ (-1007 (-548))))) (-2002 (($ $) 215 (|has| |#1| (-1016)))) (-2470 (((-1087 |#1| (-591 $)) $) 214 (|has| |#1| (-1016)))) (-2154 (($ $ (-548)) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1724 (((-1131 $) (-591 $)) 180 (|has| $ (-1016)))) (-1795 (($ $ $) 134)) (-3091 (($ $ $) 133)) (-2540 (($ (-1 $ $) (-591 $)) 169)) (-1753 (((-3 (-591 $) "failed") $) 159)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-1870 (((-619 (-591 $)) $) 160)) (-1409 (($ (-114) (-619 $)) 168) (($ (-114) $) 167)) (-3939 (((-3 (-619 $) "failed") $) 209 (|has| |#1| (-1075)))) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) 218 (|has| |#1| (-1016)))) (-3927 (((-3 (-619 $) "failed") $) 211 (|has| |#1| (-25)))) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) 217 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) 216 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) 210 (|has| |#1| (-1075)))) (-1518 (((-112) $ (-1135)) 166) (((-112) $ (-114)) 165)) (-2153 (($ $) 67)) (-3926 (((-745) $) 158)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 196)) (-2175 ((|#1| $) 197)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1734 (((-112) $ (-1135)) 171) (((-112) $ $) 170)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3718 (((-112) $) 182 (|has| $ (-1007 (-548))))) (-2460 (($ $ (-1135) (-745) (-1 $ $)) 222 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) 221 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 220 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 219 (|has| |#1| (-1016))) (($ $ (-619 (-114)) (-619 $) (-1135)) 208 (|has| |#1| (-593 (-524)))) (($ $ (-114) $ (-1135)) 207 (|has| |#1| (-593 (-524)))) (($ $) 206 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135))) 205 (|has| |#1| (-593 (-524)))) (($ $ (-1135)) 204 (|has| |#1| (-593 (-524)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-619 $))) 178) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 177) (($ $ (-619 (-114)) (-619 (-1 $ $))) 176) (($ $ (-1135) (-1 $ $)) 175) (($ $ (-1135) (-1 $ (-619 $))) 174) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 173) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 172) (($ $ (-619 $) (-619 $)) 143) (($ $ $ $) 142) (($ $ (-286 $)) 141) (($ $ (-619 (-286 $))) 140) (($ $ (-619 (-591 $)) (-619 $)) 139) (($ $ (-591 $) $) 138)) (-4077 (((-745) $) 56)) (-3171 (($ (-114) (-619 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-1762 (($ $ $) 157) (($ $) 156)) (-4050 (($ $ (-1135)) 246 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 245 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 244 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) 243 (|has| |#1| (-1016)))) (-1993 (($ $) 225 (|has| |#1| (-540)))) (-2480 (((-1087 |#1| (-591 $)) $) 224 (|has| |#1| (-540)))) (-3287 (($ $) 181 (|has| $ (-1016)))) (-2591 (((-524) $) 252 (|has| |#1| (-593 (-524)))) (($ (-410 $)) 223 (|has| |#1| (-540))) (((-861 (-371)) $) 188 (|has| |#1| (-593 (-861 (-371))))) (((-861 (-548)) $) 187 (|has| |#1| (-593 (-861 (-548)))))) (-2128 (($ $ $) 251 (|has| |#1| (-464)))) (-3652 (($ $ $) 250 (|has| |#1| (-464)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ (-921 |#1|)) 247 (|has| |#1| (-1016))) (($ (-399 (-921 |#1|))) 231 (|has| |#1| (-540))) (($ (-399 (-921 (-399 |#1|)))) 229 (|has| |#1| (-540))) (($ (-921 (-399 |#1|))) 228 (|has| |#1| (-540))) (($ (-399 |#1|)) 227 (|has| |#1| (-540))) (($ (-1087 |#1| (-591 $))) 213 (|has| |#1| (-1016))) (($ |#1|) 193) (($ (-1135)) 184) (($ (-591 $)) 135)) (-4017 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-3528 (($ (-619 $)) 153) (($ $) 152)) (-1392 (((-112) (-114)) 164)) (-3290 (((-112) $ $) 37)) (-2201 (($ (-1135) (-619 $)) 203) (($ (-1135) $ $ $ $) 202) (($ (-1135) $ $ $) 201) (($ (-1135) $ $) 200) (($ (-1135) $) 199)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1135)) 242 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 241 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 240 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) 239 (|has| |#1| (-1016)))) (-2262 (((-112) $ $) 131)) (-2241 (((-112) $ $) 130)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 132)) (-2234 (((-112) $ $) 129)) (-2309 (($ $ $) 62) (($ (-1087 |#1| (-591 $)) (-1087 |#1| (-591 $))) 226 (|has| |#1| (-540)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169))))) -(((-29 |#1|) (-138) (-13 (-821) (-540))) (T -29)) -((-3263 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540))))) (-1274 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-3263 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) (-1274 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4)))) (-1262 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540))))) (-1786 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-1262 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-422 |t#1|) (-10 -8 (-15 -3263 ($ $)) (-15 -1274 ((-619 $) $)) (-15 -3263 ($ $ (-1135))) (-15 -1274 ((-619 $) $ (-1135))) (-15 -1262 ($ $)) (-15 -1786 ((-619 $) $)) (-15 -1262 ($ $ (-1135))) (-15 -1786 ((-619 $) $ (-1135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-236) . T) ((-282) . T) ((-299) . T) ((-301 $) . T) ((-294) . T) ((-355) . T) ((-369 |#1|) |has| |#1| (-1016)) ((-392 |#1|) . T) ((-403 |#1|) . T) ((-422 |#1|) . T) ((-443) . T) ((-464) |has| |#1| (-464)) ((-504 (-591 $) $) . T) ((-504 $ $) . T) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) . T) ((-615 (-548)) -12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) . T) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-869 (-1135)) |has| |#1| (-1016)) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-889) . T) ((-971) . T) ((-1007 (-399 (-548))) -1524 (|has| |#1| (-1007 (-399 (-548)))) (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) ((-1007 (-399 (-921 |#1|))) |has| |#1| (-540)) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 (-591 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1135)) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1172) . T) ((-1176) . T)) -((-3934 (((-1058 (-218)) $) NIL)) (-3921 (((-1058 (-218)) $) NIL)) (-3933 (($ $ (-218)) 125)) (-3625 (($ (-921 (-548)) (-1135) (-1135) (-1058 (-399 (-548))) (-1058 (-399 (-548)))) 83)) (-3360 (((-619 (-619 (-912 (-218)))) $) 137)) (-3743 (((-832) $) 149))) -(((-30) (-13 (-924) (-10 -8 (-15 -3625 ($ (-921 (-548)) (-1135) (-1135) (-1058 (-399 (-548))) (-1058 (-399 (-548))))) (-15 -3933 ($ $ (-218)))))) (T -30)) -((-3625 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-921 (-548))) (-5 *3 (-1135)) (-5 *4 (-1058 (-399 (-548)))) (-5 *1 (-30)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-30))))) -(-13 (-924) (-10 -8 (-15 -3625 ($ (-921 (-548)) (-1135) (-1135) (-1058 (-399 (-548))) (-1058 (-399 (-548))))) (-15 -3933 ($ $ (-218))))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 11)) (-3957 (((-1140) $) 9)) (-2214 (((-112) $ $) NIL))) -(((-31) (-13 (-1047) (-10 -8 (-15 -3957 ((-1140) $)) (-15 -2286 ((-1140) $))))) (T -31)) -((-3957 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31))))) -(-13 (-1047) (-10 -8 (-15 -3957 ((-1140) $)) (-15 -2286 ((-1140) $)))) -((-3263 ((|#2| (-1131 |#2|) (-1135)) 43)) (-1402 (((-114) (-114)) 56)) (-1724 (((-1131 |#2|) (-591 |#2|)) 133 (|has| |#1| (-1007 (-548))))) (-2016 ((|#2| |#1| (-548)) 122 (|has| |#1| (-1007 (-548))))) (-3636 ((|#2| (-1131 |#2|) |#2|) 30)) (-2005 (((-832) (-619 |#2|)) 85)) (-3287 ((|#2| |#2|) 129 (|has| |#1| (-1007 (-548))))) (-1392 (((-112) (-114)) 18)) (** ((|#2| |#2| (-399 (-548))) 96 (|has| |#1| (-1007 (-548)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3263 (|#2| (-1131 |#2|) (-1135))) (-15 -1402 ((-114) (-114))) (-15 -1392 ((-112) (-114))) (-15 -3636 (|#2| (-1131 |#2|) |#2|)) (-15 -2005 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-548))) (PROGN (-15 ** (|#2| |#2| (-399 (-548)))) (-15 -1724 ((-1131 |#2|) (-591 |#2|))) (-15 -3287 (|#2| |#2|)) (-15 -2016 (|#2| |#1| (-548)))) |%noBranch|)) (-13 (-821) (-540)) (-422 |#1|)) (T -32)) -((-2016 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-4 *2 (-422 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-540))))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-1007 (-548))) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-32 *3 *2)) (-4 *2 (-422 *3)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-422 *4)) (-4 *4 (-1007 (-548))) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-1131 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-1007 (-548))) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-32 *4 *2)) (-4 *2 (-422 *4)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-832)) (-5 *1 (-32 *4 *5)))) (-3636 (*1 *2 *3 *2) (-12 (-5 *3 (-1131 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-32 *4 *2)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-422 *4)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-32 *3 *4)) (-4 *4 (-422 *3)))) (-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *2)) (-5 *4 (-1135)) (-4 *2 (-422 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-540)))))) -(-10 -7 (-15 -3263 (|#2| (-1131 |#2|) (-1135))) (-15 -1402 ((-114) (-114))) (-15 -1392 ((-112) (-114))) (-15 -3636 (|#2| (-1131 |#2|) |#2|)) (-15 -2005 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-548))) (PROGN (-15 ** (|#2| |#2| (-399 (-548)))) (-15 -1724 ((-1131 |#2|) (-591 |#2|))) (-15 -3287 (|#2| |#2|)) (-15 -2016 (|#2| |#1| (-548)))) |%noBranch|)) -((-2028 (((-112) $ (-745)) 16)) (-3030 (($) 10)) (-4282 (((-112) $ (-745)) 15)) (-4248 (((-112) $ (-745)) 14)) (-2039 (((-112) $ $) 8)) (-1616 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3030 (|#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -1616 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3030 (|#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -1616 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|))) -((-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-4282 (((-112) $ (-745)) 9)) (-4248 (((-112) $ (-745)) 10)) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2113 (($ $) 13)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-1658 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) (-1658 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) (-3233 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) (-5 *2 (-619 *1))))) +(-13 (-354) (-971) (-10 -8 (-15 -1658 ($ (-921 $))) (-15 -1658 ($ (-1131 $))) (-15 -1658 ($ (-1131 $) (-1135))) (-15 -1607 ((-619 $) (-921 $))) (-15 -1607 ((-619 $) (-1131 $))) (-15 -1607 ((-619 $) (-1131 $) (-1135))) (-15 -3233 ($ (-921 $))) (-15 -3233 ($ (-1131 $))) (-15 -3233 ($ (-1131 $) (-1135))) (-15 -2514 ((-619 $) (-921 $))) (-15 -2514 ((-619 $) (-1131 $))) (-15 -2514 ((-619 $) (-1131 $) (-1135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-971) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-2514 (((-619 $) (-921 $)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 $) (-1135)) 50) (((-619 $) $) 19) (((-619 $) $ (-1135)) 41)) (-3233 (($ (-921 $)) NIL) (($ (-1131 $)) NIL) (($ (-1131 $) (-1135)) 52) (($ $) 17) (($ $ (-1135)) 37)) (-1607 (((-619 $) (-921 $)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 $) (-1135)) 48) (((-619 $) $) 15) (((-619 $) $ (-1135)) 43)) (-1658 (($ (-921 $)) NIL) (($ (-1131 $)) NIL) (($ (-1131 $) (-1135)) NIL) (($ $) 12) (($ $ (-1135)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2514 ((-619 |#1|) |#1| (-1135))) (-15 -3233 (|#1| |#1| (-1135))) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -1607 ((-619 |#1|) |#1| (-1135))) (-15 -1658 (|#1| |#1| (-1135))) (-15 -1607 ((-619 |#1|) |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2514 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -2514 ((-619 |#1|) (-1131 |#1|))) (-15 -2514 ((-619 |#1|) (-921 |#1|))) (-15 -3233 (|#1| (-1131 |#1|) (-1135))) (-15 -3233 (|#1| (-1131 |#1|))) (-15 -3233 (|#1| (-921 |#1|))) (-15 -1607 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1607 ((-619 |#1|) (-1131 |#1|))) (-15 -1607 ((-619 |#1|) (-921 |#1|))) (-15 -1658 (|#1| (-1131 |#1|) (-1135))) (-15 -1658 (|#1| (-1131 |#1|))) (-15 -1658 (|#1| (-921 |#1|)))) (-29 |#2|) (-13 (-821) (-539))) (T -28)) +NIL +(-10 -8 (-15 -2514 ((-619 |#1|) |#1| (-1135))) (-15 -3233 (|#1| |#1| (-1135))) (-15 -2514 ((-619 |#1|) |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -1607 ((-619 |#1|) |#1| (-1135))) (-15 -1658 (|#1| |#1| (-1135))) (-15 -1607 ((-619 |#1|) |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2514 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -2514 ((-619 |#1|) (-1131 |#1|))) (-15 -2514 ((-619 |#1|) (-921 |#1|))) (-15 -3233 (|#1| (-1131 |#1|) (-1135))) (-15 -3233 (|#1| (-1131 |#1|))) (-15 -3233 (|#1| (-921 |#1|))) (-15 -1607 ((-619 |#1|) (-1131 |#1|) (-1135))) (-15 -1607 ((-619 |#1|) (-1131 |#1|))) (-15 -1607 ((-619 |#1|) (-921 |#1|))) (-15 -1658 (|#1| (-1131 |#1|) (-1135))) (-15 -1658 (|#1| (-1131 |#1|))) (-15 -1658 (|#1| (-921 |#1|)))) +((-3821 (((-112) $ $) 7)) (-2514 (((-619 $) (-921 $)) 77) (((-619 $) (-1131 $)) 76) (((-619 $) (-1131 $) (-1135)) 75) (((-619 $) $) 123) (((-619 $) $ (-1135)) 121)) (-3233 (($ (-921 $)) 80) (($ (-1131 $)) 79) (($ (-1131 $) (-1135)) 78) (($ $) 124) (($ $ (-1135)) 122)) (-4046 (((-112) $) 16)) (-2259 (((-619 (-1135)) $) 198)) (-2067 (((-398 (-1131 $)) $ (-590 $)) 230 (|has| |#1| (-539)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-1965 (((-619 (-590 $)) $) 161)) (-3013 (((-3 $ "failed") $ $) 19)) (-2999 (($ $ (-619 (-590 $)) (-619 $)) 151) (($ $ (-619 (-285 $))) 150) (($ $ (-285 $)) 149)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2118 (($ $) 89)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-1607 (((-619 $) (-921 $)) 83) (((-619 $) (-1131 $)) 82) (((-619 $) (-1131 $) (-1135)) 81) (((-619 $) $) 127) (((-619 $) $ (-1135)) 125)) (-1658 (($ (-921 $)) 86) (($ (-1131 $)) 85) (($ (-1131 $) (-1135)) 84) (($ $) 128) (($ $ (-1135)) 126)) (-2698 (((-3 (-921 |#1|) "failed") $) 248 (|has| |#1| (-1016))) (((-3 (-398 (-921 |#1|)) "failed") $) 232 (|has| |#1| (-539))) (((-3 |#1| "failed") $) 194) (((-3 (-547) "failed") $) 192 (|has| |#1| (-1007 (-547)))) (((-3 (-1135) "failed") $) 185) (((-3 (-590 $) "failed") $) 136) (((-3 (-398 (-547)) "failed") $) 120 (-1524 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2643 (((-921 |#1|) $) 249 (|has| |#1| (-1016))) (((-398 (-921 |#1|)) $) 233 (|has| |#1| (-539))) ((|#1| $) 195) (((-547) $) 191 (|has| |#1| (-1007 (-547)))) (((-1135) $) 186) (((-590 $) $) 137) (((-398 (-547)) $) 119 (-1524 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2079 (($ $ $) 53)) (-4238 (((-663 |#1|) (-663 $)) 238 (|has| |#1| (-1016))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 237 (|has| |#1| (-1016))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 118 (-1524 (-1806 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (-1806 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (((-663 (-547)) (-663 $)) 117 (-1524 (-1806 (|has| |#1| (-1016)) (|has| |#1| (-615 (-547)))) (-1806 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3674 (((-112) $) 68)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 190 (|has| |#1| (-855 (-370)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 189 (|has| |#1| (-855 (-547))))) (-2566 (($ (-619 $)) 155) (($ $) 154)) (-2004 (((-619 (-114)) $) 162)) (-3454 (((-114) (-114)) 163)) (-4114 (((-112) $) 30)) (-3466 (((-112) $) 183 (|has| $ (-1007 (-547))))) (-3739 (($ $) 215 (|has| |#1| (-1016)))) (-1382 (((-1087 |#1| (-590 $)) $) 214 (|has| |#1| (-1016)))) (-1311 (($ $ (-547)) 88)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3057 (((-1131 $) (-590 $)) 180 (|has| $ (-1016)))) (-2847 (($ $ $) 134)) (-3563 (($ $ $) 133)) (-2781 (($ (-1 $ $) (-590 $)) 169)) (-2108 (((-3 (-590 $) "failed") $) 159)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-2043 (((-619 (-590 $)) $) 160)) (-1465 (($ (-114) (-619 $)) 168) (($ (-114) $) 167)) (-1967 (((-3 (-619 $) "failed") $) 209 (|has| |#1| (-1075)))) (-4014 (((-3 (-2 (|:| |val| $) (|:| -4248 (-547))) "failed") $) 218 (|has| |#1| (-1016)))) (-1859 (((-3 (-619 $) "failed") $) 211 (|has| |#1| (-25)))) (-2614 (((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3909 (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-1135)) 217 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-114)) 216 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $) 210 (|has| |#1| (-1075)))) (-1469 (((-112) $ (-1135)) 166) (((-112) $ (-114)) 165)) (-1976 (($ $) 67)) (-4029 (((-745) $) 158)) (-3979 (((-1082) $) 10)) (-1988 (((-112) $) 196)) (-1999 ((|#1| $) 197)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-3128 (((-112) $ (-1135)) 171) (((-112) $ $) 170)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3590 (((-112) $) 182 (|has| $ (-1007 (-547))))) (-2670 (($ $ (-1135) (-745) (-1 $ $)) 222 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) 221 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 220 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 219 (|has| |#1| (-1016))) (($ $ (-619 (-114)) (-619 $) (-1135)) 208 (|has| |#1| (-592 (-523)))) (($ $ (-114) $ (-1135)) 207 (|has| |#1| (-592 (-523)))) (($ $) 206 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1135))) 205 (|has| |#1| (-592 (-523)))) (($ $ (-1135)) 204 (|has| |#1| (-592 (-523)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-619 $))) 178) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 177) (($ $ (-619 (-114)) (-619 (-1 $ $))) 176) (($ $ (-1135) (-1 $ $)) 175) (($ $ (-1135) (-1 $ (-619 $))) 174) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 173) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 172) (($ $ (-619 $) (-619 $)) 143) (($ $ $ $) 142) (($ $ (-285 $)) 141) (($ $ (-619 (-285 $))) 140) (($ $ (-619 (-590 $)) (-619 $)) 139) (($ $ (-590 $) $) 138)) (-2776 (((-745) $) 56)) (-3329 (($ (-114) (-619 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-2207 (($ $ $) 157) (($ $) 156)) (-3443 (($ $ (-1135)) 246 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 245 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 244 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) 243 (|has| |#1| (-1016)))) (-3660 (($ $) 225 (|has| |#1| (-539)))) (-1392 (((-1087 |#1| (-590 $)) $) 224 (|has| |#1| (-539)))) (-1901 (($ $) 181 (|has| $ (-1016)))) (-2829 (((-523) $) 252 (|has| |#1| (-592 (-523)))) (($ (-409 $)) 223 (|has| |#1| (-539))) (((-861 (-370)) $) 188 (|has| |#1| (-592 (-861 (-370))))) (((-861 (-547)) $) 187 (|has| |#1| (-592 (-861 (-547)))))) (-2444 (($ $ $) 251 (|has| |#1| (-463)))) (-4121 (($ $ $) 250 (|has| |#1| (-463)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ (-921 |#1|)) 247 (|has| |#1| (-1016))) (($ (-398 (-921 |#1|))) 231 (|has| |#1| (-539))) (($ (-398 (-921 (-398 |#1|)))) 229 (|has| |#1| (-539))) (($ (-921 (-398 |#1|))) 228 (|has| |#1| (-539))) (($ (-398 |#1|)) 227 (|has| |#1| (-539))) (($ (-1087 |#1| (-590 $))) 213 (|has| |#1| (-1016))) (($ |#1|) 193) (($ (-1135)) 184) (($ (-590 $)) 135)) (-3336 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-3518 (($ (-619 $)) 153) (($ $) 152)) (-3358 (((-112) (-114)) 164)) (-1932 (((-112) $ $) 37)) (-1773 (($ (-1135) (-619 $)) 203) (($ (-1135) $ $ $ $) 202) (($ (-1135) $ $ $) 201) (($ (-1135) $ $) 200) (($ (-1135) $) 199)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1135)) 242 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 241 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 240 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) 239 (|has| |#1| (-1016)))) (-2433 (((-112) $ $) 131)) (-2408 (((-112) $ $) 130)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 132)) (-2396 (((-112) $ $) 129)) (-2497 (($ $ $) 62) (($ (-1087 |#1| (-590 $)) (-1087 |#1| (-590 $))) 226 (|has| |#1| (-539)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 87)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169))))) +(((-29 |#1|) (-138) (-13 (-821) (-539))) (T -29)) +((-1658 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539))))) (-1607 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-1658 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539))))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4)))) (-3233 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539))))) (-2514 (*1 *2 *1) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539))))) (-2514 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-421 |t#1|) (-10 -8 (-15 -1658 ($ $)) (-15 -1607 ((-619 $) $)) (-15 -1658 ($ $ (-1135))) (-15 -1607 ((-619 $) $ (-1135))) (-15 -3233 ($ $)) (-15 -2514 ((-619 $) $)) (-15 -3233 ($ $ (-1135))) (-15 -2514 ((-619 $) $ (-1135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-235) . T) ((-281) . T) ((-298) . T) ((-300 $) . T) ((-293) . T) ((-354) . T) ((-368 |#1|) |has| |#1| (-1016)) ((-391 |#1|) . T) ((-402 |#1|) . T) ((-421 |#1|) . T) ((-442) . T) ((-463) |has| |#1| (-463)) ((-503 (-590 $) $) . T) ((-503 $ $) . T) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) . T) ((-615 (-547)) -12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) . T) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-869 (-1135)) |has| |#1| (-1016)) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-889) . T) ((-971) . T) ((-1007 (-398 (-547))) -1524 (|has| |#1| (-1007 (-398 (-547)))) (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) ((-1007 (-398 (-921 |#1|))) |has| |#1| (-539)) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 (-590 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1135)) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1172) . T) ((-1176) . T)) +((-1827 (((-1058 (-217)) $) NIL)) (-1816 (((-1058 (-217)) $) NIL)) (-1914 (($ $ (-217)) 125)) (-3867 (($ (-921 (-547)) (-1135) (-1135) (-1058 (-398 (-547))) (-1058 (-398 (-547)))) 83)) (-1259 (((-619 (-619 (-912 (-217)))) $) 137)) (-3834 (((-832) $) 149))) +(((-30) (-13 (-924) (-10 -8 (-15 -3867 ($ (-921 (-547)) (-1135) (-1135) (-1058 (-398 (-547))) (-1058 (-398 (-547))))) (-15 -1914 ($ $ (-217)))))) (T -30)) +((-3867 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-921 (-547))) (-5 *3 (-1135)) (-5 *4 (-1058 (-398 (-547)))) (-5 *1 (-30)))) (-1914 (*1 *1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-30))))) +(-13 (-924) (-10 -8 (-15 -3867 ($ (-921 (-547)) (-1135) (-1135) (-1058 (-398 (-547))) (-1058 (-398 (-547))))) (-15 -1914 ($ $ (-217))))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-1140) $) 11)) (-1849 (((-1140) $) 9)) (-2371 (((-112) $ $) NIL))) +(((-31) (-13 (-1047) (-10 -8 (-15 -1849 ((-1140) $)) (-15 -2478 ((-1140) $))))) (T -31)) +((-1849 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31))))) +(-13 (-1047) (-10 -8 (-15 -1849 ((-1140) $)) (-15 -2478 ((-1140) $)))) +((-1658 ((|#2| (-1131 |#2|) (-1135)) 43)) (-3454 (((-114) (-114)) 56)) (-3057 (((-1131 |#2|) (-590 |#2|)) 133 (|has| |#1| (-1007 (-547))))) (-2742 ((|#2| |#1| (-547)) 122 (|has| |#1| (-1007 (-547))))) (-3969 ((|#2| (-1131 |#2|) |#2|) 30)) (-2661 (((-832) (-619 |#2|)) 85)) (-1901 ((|#2| |#2|) 129 (|has| |#1| (-1007 (-547))))) (-3358 (((-112) (-114)) 18)) (** ((|#2| |#2| (-398 (-547))) 96 (|has| |#1| (-1007 (-547)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1658 (|#2| (-1131 |#2|) (-1135))) (-15 -3454 ((-114) (-114))) (-15 -3358 ((-112) (-114))) (-15 -3969 (|#2| (-1131 |#2|) |#2|)) (-15 -2661 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-547))) (PROGN (-15 ** (|#2| |#2| (-398 (-547)))) (-15 -3057 ((-1131 |#2|) (-590 |#2|))) (-15 -1901 (|#2| |#2|)) (-15 -2742 (|#2| |#1| (-547)))) |%noBranch|)) (-13 (-821) (-539)) (-421 |#1|)) (T -32)) +((-2742 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-4 *2 (-421 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-539))))) (-1901 (*1 *2 *2) (-12 (-4 *3 (-1007 (-547))) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-32 *3 *2)) (-4 *2 (-421 *3)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-590 *5)) (-4 *5 (-421 *4)) (-4 *4 (-1007 (-547))) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-1131 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-1007 (-547))) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-32 *4 *2)) (-4 *2 (-421 *4)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-832)) (-5 *1 (-32 *4 *5)))) (-3969 (*1 *2 *3 *2) (-12 (-5 *3 (-1131 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-32 *4 *2)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-421 *4)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-32 *3 *4)) (-4 *4 (-421 *3)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *2)) (-5 *4 (-1135)) (-4 *2 (-421 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-539)))))) +(-10 -7 (-15 -1658 (|#2| (-1131 |#2|) (-1135))) (-15 -3454 ((-114) (-114))) (-15 -3358 ((-112) (-114))) (-15 -3969 (|#2| (-1131 |#2|) |#2|)) (-15 -2661 ((-832) (-619 |#2|))) (IF (|has| |#1| (-1007 (-547))) (PROGN (-15 ** (|#2| |#2| (-398 (-547)))) (-15 -3057 ((-1131 |#2|) (-590 |#2|))) (-15 -1901 (|#2| |#2|)) (-15 -2742 (|#2| |#1| (-547)))) |%noBranch|)) +((-2826 (((-112) $ (-745)) 16)) (-3219 (($) 10)) (-4161 (((-112) $ (-745)) 15)) (-2024 (((-112) $ (-745)) 14)) (-2911 (((-112) $ $) 8)) (-3169 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -3219 (|#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745))) (-15 -3169 ((-112) |#1|)) (-15 -2911 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3219 (|#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745))) (-15 -3169 ((-112) |#1|)) (-15 -2911 ((-112) |#1| |#1|))) +((-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-4161 (((-112) $ (-745)) 9)) (-2024 (((-112) $ (-745)) 10)) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-2265 (($ $) 13)) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-34) (-138)) (T -34)) -((-2039 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2113 (*1 *1 *1) (-4 *1 (-34))) (-3319 (*1 *1) (-4 *1 (-34))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4248 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-4282 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-2028 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-3030 (*1 *1) (-4 *1 (-34))) (-3643 (*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-34)) (-5 *2 (-745))))) -(-13 (-1172) (-10 -8 (-15 -2039 ((-112) $ $)) (-15 -2113 ($ $)) (-15 -3319 ($)) (-15 -1616 ((-112) $)) (-15 -4248 ((-112) $ (-745))) (-15 -4282 ((-112) $ (-745))) (-15 -2028 ((-112) $ (-745))) (-15 -3030 ($) -2325) (IF (|has| $ (-6 -4327)) (-15 -3643 ((-745) $)) |%noBranch|))) +((-2911 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2265 (*1 *1 *1) (-4 *1 (-34))) (-4011 (*1 *1) (-4 *1 (-34))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2024 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-4161 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-2826 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) (-3219 (*1 *1) (-4 *1 (-34))) (-3763 (*1 *2 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-34)) (-5 *2 (-745))))) +(-13 (-1172) (-10 -8 (-15 -2911 ((-112) $ $)) (-15 -2265 ($ $)) (-15 -4011 ($)) (-15 -3169 ((-112) $)) (-15 -2024 ((-112) $ (-745))) (-15 -4161 ((-112) $ (-745))) (-15 -2826 ((-112) $ (-745))) (-15 -3219 ($) -2573) (IF (|has| $ (-6 -4328)) (-15 -3763 ((-745) $)) |%noBranch|))) (((-1172) . T)) -((-2145 (($ $) 11)) (-2122 (($ $) 10)) (-2170 (($ $) 9)) (-4026 (($ $) 8)) (-2158 (($ $) 7)) (-2132 (($ $) 6))) +((-1717 (($ $) 11)) (-1693 (($ $) 10)) (-1741 (($ $) 9)) (-1918 (($ $) 8)) (-1729 (($ $) 7)) (-1706 (($ $) 6))) (((-35) (-138)) (T -35)) -((-2145 (*1 *1 *1) (-4 *1 (-35))) (-2122 (*1 *1 *1) (-4 *1 (-35))) (-2170 (*1 *1 *1) (-4 *1 (-35))) (-4026 (*1 *1 *1) (-4 *1 (-35))) (-2158 (*1 *1 *1) (-4 *1 (-35))) (-2132 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2132 ($ $)) (-15 -2158 ($ $)) (-15 -4026 ($ $)) (-15 -2170 ($ $)) (-15 -2122 ($ $)) (-15 -2145 ($ $)))) -((-3730 (((-112) $ $) 19 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4056 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 125)) (-1988 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 148)) (-1272 (($ $) 146)) (-3539 (($) 72) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 71)) (-4149 (((-1223) $ |#1| |#1|) 99 (|has| $ (-6 -4328))) (((-1223) $ (-548) (-548)) 178 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 159 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2980 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 200 (|has| $ (-6 -4328))) (($ $) 199 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2028 (((-112) $ (-745)) 8)) (-4192 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 134 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 155 (|has| $ (-6 -4328)))) (-3614 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 157 (|has| $ (-6 -4328)))) (-3635 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 153 (|has| $ (-6 -4328)))) (-2089 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 189 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-1185 (-548)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 160 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 158 (|has| $ (-6 -4328))) (($ $ "rest" $) 156 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 154 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 133 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 132 (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 45 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 216)) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 55 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 175 (|has| $ (-6 -4327)))) (-1975 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 147)) (-3255 (((-3 |#2| "failed") |#1| $) 61)) (-3030 (($) 7 T CONST)) (-3499 (($ $) 201 (|has| $ (-6 -4328)))) (-2796 (($ $) 211)) (-3465 (($ $ (-745)) 142) (($ $) 140)) (-2969 (($ $) 214 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3484 (($ $) 58 (-1524 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))) (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 46 (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 220) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 215 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 54 (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 174 (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 56 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 53 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 52 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 176 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 173 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 172 (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 190 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 88) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 188)) (-3700 (((-112) $) 192)) (-2621 (((-548) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 208) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 207 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 206 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 30 (|has| $ (-6 -4327))) (((-619 |#2|) $) 79 (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 114 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 123)) (-4213 (((-112) $ $) 131 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3550 (($ (-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 169)) (-4282 (((-112) $ (-745)) 9)) (-4171 ((|#1| $) 96 (|has| |#1| (-821))) (((-548) $) 180 (|has| (-548) (-821)))) (-1795 (($ $ $) 198 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2965 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2913 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 29 (|has| $ (-6 -4327))) (((-619 |#2|) $) 80 (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 115 (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-4181 ((|#1| $) 95 (|has| |#1| (-821))) (((-548) $) 181 (|has| (-548) (-821)))) (-3091 (($ $ $) 197 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 34 (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4328))) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 110 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 109)) (-3309 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 225)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 128)) (-3010 (((-112) $) 124)) (-2546 (((-1118) $) 22 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3724 (($ $ (-745)) 145) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 143)) (-4043 (((-619 |#1|) $) 63)) (-4233 (((-112) |#1| $) 64)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 39)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 40) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 219) (($ $ $ (-548)) 218)) (-2387 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 162) (($ $ $ (-548)) 161)) (-4201 (((-619 |#1|) $) 93) (((-619 (-548)) $) 183)) (-4212 (((-112) |#1| $) 92) (((-112) (-548) $) 184)) (-3932 (((-1082) $) 21 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3453 ((|#2| $) 97 (|has| |#1| (-821))) (($ $ (-745)) 139) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 137)) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 51) (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 171)) (-4159 (($ $ |#2|) 98 (|has| $ (-6 -4328))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 179 (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 41)) (-3712 (((-112) $) 191)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 32 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 112 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 26 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 25 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 24 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 23 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) 83 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 121 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 120 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 119 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 118 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 182 (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4223 (((-619 |#2|) $) 91) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 185)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 187) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) 186) (($ $ (-1185 (-548))) 165) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first") 138) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value") 126)) (-4234 (((-548) $ $) 129)) (-2801 (($) 49) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 48)) (-2668 (($ $ (-548)) 222) (($ $ (-1185 (-548))) 221)) (-2008 (($ $ (-548)) 164) (($ $ (-1185 (-548))) 163)) (-2740 (((-112) $) 127)) (-3672 (($ $) 151)) (-3648 (($ $) 152 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 150)) (-3693 (($ $) 149)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 31 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 113 (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) 202 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524)))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 50) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 170)) (-3659 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 224) (($ $ $) 223)) (-1831 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 168) (($ (-619 $)) 167) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 136) (($ $ $) 135)) (-3743 (((-832) $) 18 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))))) (-2956 (((-619 $) $) 122)) (-4224 (((-112) $ $) 130 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 42)) (-3733 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") |#1| $) 108)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 33 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 111 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 195 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2241 (((-112) $ $) 194 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2214 (((-112) $ $) 20 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2252 (((-112) $ $) 196 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2234 (((-112) $ $) 193 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-1717 (*1 *1 *1) (-4 *1 (-35))) (-1693 (*1 *1 *1) (-4 *1 (-35))) (-1741 (*1 *1 *1) (-4 *1 (-35))) (-1918 (*1 *1 *1) (-4 *1 (-35))) (-1729 (*1 *1 *1) (-4 *1 (-35))) (-1706 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -1706 ($ $)) (-15 -1729 ($ $)) (-15 -1918 ($ $)) (-15 -1741 ($ $)) (-15 -1693 ($ $)) (-15 -1717 ($ $)))) +((-3821 (((-112) $ $) 19 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-4152 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 125)) (-2823 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 148)) (-1335 (($ $) 146)) (-3722 (($) 72) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 71)) (-2290 (((-1223) $ |#1| |#1|) 99 (|has| $ (-6 -4329))) (((-1223) $ (-547) (-547)) 178 (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) 159 (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2765 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 200 (|has| $ (-6 -4329))) (($ $) 199 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2741 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 134 (|has| $ (-6 -4329)))) (-3861 (($ $ $) 155 (|has| $ (-6 -4329)))) (-1907 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 157 (|has| $ (-6 -4329)))) (-3962 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 153 (|has| $ (-6 -4329)))) (-2238 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 189 (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-1185 (-547)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 160 (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "last" (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 158 (|has| $ (-6 -4329))) (($ $ "rest" $) 156 (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "first" (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 154 (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "value" (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 133 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 132 (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 45 (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 216)) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 55 (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 175 (|has| $ (-6 -4328)))) (-2814 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 147)) (-3477 (((-3 |#2| "failed") |#1| $) 61)) (-3219 (($) 7 T CONST)) (-2034 (($ $) 201 (|has| $ (-6 -4329)))) (-3048 (($ $) 211)) (-3645 (($ $ (-745)) 142) (($ $) 140)) (-3796 (($ $) 214 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3664 (($ $) 58 (-1524 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328))) (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 46 (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 220) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 215 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 54 (|has| $ (-6 -4328))) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 174 (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 56 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 53 (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 52 (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 176 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 173 (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 172 (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 190 (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) 88) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) 188)) (-3425 (((-112) $) 192)) (-2867 (((-547) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 208) (((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 207 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) (((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) 206 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 30 (|has| $ (-6 -4328))) (((-619 |#2|) $) 79 (|has| $ (-6 -4328))) (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 114 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 123)) (-1655 (((-112) $ $) 131 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3732 (($ (-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 169)) (-4161 (((-112) $ (-745)) 9)) (-2528 ((|#1| $) 96 (|has| |#1| (-821))) (((-547) $) 180 (|has| (-547) (-821)))) (-2847 (($ $ $) 198 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-3756 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-1294 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 29 (|has| $ (-6 -4328))) (((-619 |#2|) $) 80 (|has| $ (-6 -4328))) (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 115 (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328)))) (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328))))) (-2638 ((|#1| $) 95 (|has| |#1| (-821))) (((-547) $) 181 (|has| (-547) (-821)))) (-3563 (($ $ $) 197 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 34 (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4329))) (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 110 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 109)) (-3511 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 225)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 128)) (-3033 (((-112) $) 124)) (-1917 (((-1118) $) 22 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3817 (($ $ (-745)) 145) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 143)) (-3437 (((-619 |#1|) $) 63)) (-1876 (((-112) |#1| $) 64)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 39)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 40) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) 219) (($ $ $ (-547)) 218)) (-2599 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) 162) (($ $ $ (-547)) 161)) (-1520 (((-619 |#1|) $) 93) (((-619 (-547)) $) 183)) (-1641 (((-112) |#1| $) 92) (((-112) (-547) $) 184)) (-3979 (((-1082) $) 21 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3634 ((|#2| $) 97 (|has| |#1| (-821))) (($ $ (-745)) 139) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 137)) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 51) (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 171)) (-2418 (($ $ |#2|) 98 (|has| $ (-6 -4329))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 179 (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 41)) (-3541 (((-112) $) 191)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 32 (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 112 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) 26 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 25 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 24 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 23 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 84 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) 83 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 121 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 120 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 119 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) 118 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 182 (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-1758 (((-619 |#2|) $) 91) (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 185)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 187) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) 186) (($ $ (-1185 (-547))) 165) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "first") 138) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "value") 126)) (-1887 (((-547) $ $) 129)) (-1404 (($) 49) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 48)) (-3769 (($ $ (-547)) 222) (($ $ (-1185 (-547))) 221)) (-2151 (($ $ (-547)) 164) (($ $ (-1185 (-547))) 163)) (-2094 (((-112) $) 127)) (-4291 (($ $) 151)) (-4080 (($ $) 152 (|has| $ (-6 -4329)))) (-3257 (((-745) $) 150)) (-3360 (($ $) 149)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 31 (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 113 (|has| $ (-6 -4328)))) (-2861 (($ $ $ (-547)) 202 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523)))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 50) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 170)) (-4187 (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 224) (($ $ $) 223)) (-1935 (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 168) (($ (-619 $)) 167) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 136) (($ $ $) 135)) (-3834 (((-832) $) 18 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832)))))) (-3668 (((-619 $) $) 122)) (-1770 (((-112) $ $) 130 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 42)) (-3825 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") |#1| $) 108)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 33 (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 111 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 195 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2408 (((-112) $ $) 194 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2371 (((-112) $ $) 20 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-2421 (((-112) $ $) 196 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2396 (((-112) $ $) 193 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-36 |#1| |#2|) (-138) (-1063) (-1063)) (T -36)) -((-3733 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| -3156 *3) (|:| -1657 *4)))))) -(-13 (-1148 |t#1| |t#2|) (-640 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|))) (-10 -8 (-15 -3733 ((-3 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-101) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821))) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))) ((-149 #1=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-593 (-524)) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) ((-222 #0#) . T) ((-228 #0#) . T) ((-278 #2=(-548) #1#) . T) ((-278 |#1| |#2|) . T) ((-280 #2# #1#) . T) ((-280 |#1| |#2|) . T) ((-301 #1#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-274 #1#) . T) ((-365 #1#) . T) ((-480 #1#) . T) ((-480 |#2|) . T) ((-583 #2# #1#) . T) ((-583 |#1| |#2|) . T) ((-504 #1# #1#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-589 |#1| |#2|) . T) ((-625 #1#) . T) ((-640 #1#) . T) ((-821) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)) ((-979 #1#) . T) ((-1063) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821))) ((-1109 #1#) . T) ((-1148 |#1| |#2|) . T) ((-1172) . T) ((-1206 #1#) . T)) -((-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-38 |#2|) (-169)) (T -37)) -NIL -(-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +((-3825 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| -3326 *3) (|:| -1777 *4)))))) +(-13 (-1148 |t#1| |t#2|) (-640 (-2 (|:| -3326 |t#1|) (|:| -1777 |t#2|))) (-10 -8 (-15 -3825 ((-3 (-2 (|:| -3326 |t#1|) (|:| -1777 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((-101) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821))) ((-591 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832)))) ((-149 #1=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((-592 (-523)) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))) ((-221 #0#) . T) ((-227 #0#) . T) ((-277 #2=(-547) #1#) . T) ((-277 |#1| |#2|) . T) ((-279 #2# #1#) . T) ((-279 |#1| |#2|) . T) ((-300 #1#) -12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-273 #1#) . T) ((-364 #1#) . T) ((-479 #1#) . T) ((-479 |#2|) . T) ((-582 #2# #1#) . T) ((-582 |#1| |#2|) . T) ((-503 #1# #1#) -12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-588 |#1| |#2|) . T) ((-625 #1#) . T) ((-640 #1#) . T) ((-821) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)) ((-979 #1#) . T) ((-1063) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821))) ((-1109 #1#) . T) ((-1148 |#1| |#2|) . T) ((-1172) . T) ((-1206 #1#) . T)) +((-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-38 |#2|) (-169)) (T -37)) +NIL +(-10 -8 (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-38 |#1|) (-138) (-169)) (T -38)) -((-3743 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))) -(-13 (-1016) (-692 |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3530 (((-410 |#1|) |#1|) 41)) (-1915 (((-410 |#1|) |#1|) 30) (((-410 |#1|) |#1| (-619 (-48))) 33)) (-2053 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1| (-619 (-48)))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3530 ((-410 |#1|) |#1|)) (-15 -2053 ((-112) |#1|))) (-1194 (-48))) (T -39)) -((-2053 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-3530 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48)))))) -(-10 -7 (-15 -1915 ((-410 |#1|) |#1| (-619 (-48)))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3530 ((-410 |#1|) |#1|)) (-15 -2053 ((-112) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1562 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| (-399 |#2|) (-355)))) (-3303 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-3279 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-2350 (((-663 (-399 |#2|)) (-1218 $)) NIL) (((-663 (-399 |#2|))) NIL)) (-2707 (((-399 |#2|) $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-399 |#2|) (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-2634 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4087 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-3423 (((-745)) NIL (|has| (-399 |#2|) (-360)))) (-3509 (((-112)) NIL)) (-3497 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-3 (-399 |#2|) "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-399 |#2|) $) NIL)) (-2455 (($ (-1218 (-399 |#2|)) (-1218 $)) NIL) (($ (-1218 (-399 |#2|))) 57) (($ (-1218 |#2|) |#2|) 125)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-399 |#2|) (-341)))) (-1945 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2341 (((-663 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-399 |#2|))) (|:| |vec| (-1218 (-399 |#2|)))) (-663 $) (-1218 $)) NIL) (((-663 (-399 |#2|)) (-663 $)) NIL)) (-3409 (((-1218 $) (-1218 $)) NIL)) (-2061 (($ |#3|) NIL) (((-3 $ "failed") (-399 |#3|)) NIL (|has| (-399 |#2|) (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1479 (((-619 (-619 |#1|))) NIL (|has| |#1| (-360)))) (-3542 (((-112) |#1| |#1|) NIL)) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| (-399 |#2|) (-360)))) (-3485 (((-112)) NIL)) (-3473 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1922 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| (-399 |#2|) (-355)))) (-4065 (($ $) NIL)) (-2771 (($) NIL (|has| (-399 |#2|) (-341)))) (-3727 (((-112) $) NIL (|has| (-399 |#2|) (-341)))) (-2208 (($ $ (-745)) NIL (|has| (-399 |#2|) (-341))) (($ $) NIL (|has| (-399 |#2|) (-341)))) (-1271 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-1672 (((-890) $) NIL (|has| (-399 |#2|) (-341))) (((-807 (-890)) $) NIL (|has| (-399 |#2|) (-341)))) (-2266 (((-112) $) NIL)) (-1400 (((-745)) NIL)) (-3421 (((-1218 $) (-1218 $)) 102)) (-3910 (((-399 |#2|) $) NIL)) (-1492 (((-619 (-921 |#1|)) (-1135)) NIL (|has| |#1| (-355)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-2898 ((|#3| $) NIL (|has| (-399 |#2|) (-355)))) (-2855 (((-890) $) NIL (|has| (-399 |#2|) (-360)))) (-2050 ((|#3| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2546 (((-1118) $) NIL)) (-2064 (((-1223) (-745)) 79)) (-3349 (((-663 (-399 |#2|))) 51)) (-3383 (((-663 (-399 |#2|))) 44)) (-2153 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-1544 (($ (-1218 |#2|) |#2|) 126)) (-3365 (((-663 (-399 |#2|))) 45)) (-3396 (((-663 (-399 |#2|))) 43)) (-1535 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1553 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 64)) (-3463 (((-1218 $)) 42)) (-3478 (((-1218 $)) 41)) (-3451 (((-112) $) NIL)) (-3441 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3410 (($) NIL (|has| (-399 |#2|) (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| (-399 |#2|) (-360)))) (-1515 (((-3 |#2| "failed")) NIL)) (-3932 (((-1082) $) NIL)) (-3564 (((-745)) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-399 |#2|) (-355)))) (-3587 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-399 |#2|) (-341)))) (-1915 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-399 |#2|) (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| (-399 |#2|) (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4077 (((-745) $) NIL (|has| (-399 |#2|) (-355)))) (-3171 ((|#1| $ |#1| |#1|) NIL)) (-1525 (((-3 |#2| "failed")) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1566 (((-399 |#2|) (-1218 $)) NIL) (((-399 |#2|)) 39)) (-2217 (((-745) $) NIL (|has| (-399 |#2|) (-341))) (((-3 (-745) "failed") $ $) NIL (|has| (-399 |#2|) (-341)))) (-4050 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2257 (((-663 (-399 |#2|)) (-1218 $) (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355)))) (-3287 ((|#3|) 50)) (-3655 (($) NIL (|has| (-399 |#2|) (-341)))) (-2447 (((-1218 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) (-1218 $) (-1218 $)) NIL) (((-1218 (-399 |#2|)) $) 58) (((-663 (-399 |#2|)) (-1218 $)) 103)) (-2591 (((-1218 (-399 |#2|)) $) NIL) (($ (-1218 (-399 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-399 |#2|) (-341)))) (-3433 (((-1218 $) (-1218 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 |#2|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| (-399 |#2|) (-1007 (-399 (-548)))) (|has| (-399 |#2|) (-355)))) (($ $) NIL (|has| (-399 |#2|) (-355)))) (-4017 (($ $) NIL (|has| (-399 |#2|) (-341))) (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-143)))) (-3780 ((|#3| $) NIL)) (-3835 (((-745)) NIL)) (-3531 (((-112)) 37)) (-3518 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2877 (((-1218 $)) 93)) (-3290 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1503 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3554 (((-112)) NIL)) (-3107 (($) 16 T CONST)) (-3118 (($) 26 T CONST)) (-3296 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| (-399 |#2|) (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 |#2|)) NIL) (($ (-399 |#2|) $) NIL) (($ (-399 (-548)) $) NIL (|has| (-399 |#2|) (-355))) (($ $ (-399 (-548))) NIL (|has| (-399 |#2|) (-355))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3|) (-10 -7 (-15 -2064 ((-1223) (-745))))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) |#3|) (T -40)) -((-2064 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *2 (-1223)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1194 (-399 *5))) (-14 *7 *6)))) -(-13 (-334 |#1| |#2| |#3|) (-10 -7 (-15 -2064 ((-1223) (-745))))) -((-2083 ((|#2| |#2|) 48)) (-3372 ((|#2| |#2|) 120 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-3357 ((|#2| |#2|) 87 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-3342 ((|#2| |#2|) 88 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-2115 ((|#2| (-114) |#2| (-745)) 116 (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-443)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-548)))))) (-3328 (((-1131 |#2|) |#2|) 45)) (-2097 ((|#2| |#2| (-619 (-591 |#2|))) 18) ((|#2| |#2| (-619 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2083 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2097 (|#2| |#2| |#2|)) (-15 -2097 (|#2| |#2| (-619 |#2|))) (-15 -2097 (|#2| |#2| (-619 (-591 |#2|)))) (-15 -3328 ((-1131 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-1007 (-548))) (IF (|has| |#2| (-422 |#1|)) (PROGN (-15 -3342 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -2115 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-540) (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 |#1| (-591 $)) $)) (-15 -2480 ((-1087 |#1| (-591 $)) $)) (-15 -3743 ($ (-1087 |#1| (-591 $))))))) (T -41)) -((-2115 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-443)) (-4 *5 (-821)) (-4 *5 (-1007 (-548))) (-4 *5 (-540)) (-5 *1 (-41 *5 *2)) (-4 *2 (-422 *5)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *5 (-591 $)) $)) (-15 -2480 ((-1087 *5 (-591 $)) $)) (-15 -3743 ($ (-1087 *5 (-591 $))))))))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-3342 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-1131 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) (-15 -2480 ((-1087 *4 (-591 $)) $)) (-15 -3743 ($ (-1087 *4 (-591 $))))))))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-591 *2))) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) (-15 -2480 ((-1087 *4 (-591 $)) $)) (-15 -3743 ($ (-1087 *4 (-591 $))))))) (-4 *4 (-540)) (-5 *1 (-41 *4 *2)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) (-15 -2480 ((-1087 *4 (-591 $)) $)) (-15 -3743 ($ (-1087 *4 (-591 $))))))) (-4 *4 (-540)) (-5 *1 (-41 *4 *2)))) (-2097 (*1 *2 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $))))))))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-355) (-294) (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) (-15 -2480 ((-1087 *3 (-591 $)) $)) (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) -(-10 -7 (-15 -2083 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2097 (|#2| |#2| |#2|)) (-15 -2097 (|#2| |#2| (-619 |#2|))) (-15 -2097 (|#2| |#2| (-619 (-591 |#2|)))) (-15 -3328 ((-1131 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-1007 (-548))) (IF (|has| |#2| (-422 |#1|)) (PROGN (-15 -3342 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -2115 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1915 (((-410 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))) 23) (((-410 |#3|) |#3| (-619 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-410 |#3|) |#3| (-619 (-48)))) (-15 -1915 ((-410 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))))) (-821) (-767) (-918 (-48) |#2| |#1|)) (T -42)) -((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-410 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5))))) -(-10 -7 (-15 -1915 ((-410 |#3|) |#3| (-619 (-48)))) (-15 -1915 ((-410 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))))) -((-3694 (((-745) |#2|) 65)) (-2645 (((-745) |#2|) 68)) (-1804 (((-619 |#2|)) 33)) (-2126 (((-745) |#2|) 67)) (-2656 (((-745) |#2|) 64)) (-3707 (((-745) |#2|) 66)) (-1575 (((-619 (-663 |#1|))) 60)) (-1453 (((-619 |#2|)) 55)) (-1429 (((-619 |#2|) |#2|) 43)) (-1475 (((-619 |#2|)) 57)) (-1462 (((-619 |#2|)) 56)) (-1497 (((-619 (-663 |#1|))) 48)) (-1441 (((-619 |#2|)) 54)) (-3838 (((-619 |#2|) |#2|) 42)) (-3824 (((-619 |#2|)) 50)) (-1585 (((-619 (-663 |#1|))) 61)) (-1485 (((-619 |#2|)) 59)) (-2877 (((-1218 |#2|) (-1218 |#2|)) 84 (|has| |#1| (-299))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2126 ((-745) |#2|)) (-15 -2645 ((-745) |#2|)) (-15 -2656 ((-745) |#2|)) (-15 -3694 ((-745) |#2|)) (-15 -3707 ((-745) |#2|)) (-15 -3824 ((-619 |#2|))) (-15 -3838 ((-619 |#2|) |#2|)) (-15 -1429 ((-619 |#2|) |#2|)) (-15 -1441 ((-619 |#2|))) (-15 -1453 ((-619 |#2|))) (-15 -1462 ((-619 |#2|))) (-15 -1475 ((-619 |#2|))) (-15 -1485 ((-619 |#2|))) (-15 -1497 ((-619 (-663 |#1|)))) (-15 -1575 ((-619 (-663 |#1|)))) (-15 -1585 ((-619 (-663 |#1|)))) (-15 -1804 ((-619 |#2|))) (IF (|has| |#1| (-299)) (-15 -2877 ((-1218 |#2|) (-1218 |#2|))) |%noBranch|)) (-540) (-409 |#1|)) (T -43)) -((-2877 (*1 *2 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-409 *3)) (-4 *3 (-299)) (-4 *3 (-540)) (-5 *1 (-43 *3 *4)))) (-1804 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1585 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1575 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1497 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1485 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1475 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1462 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1453 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1441 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-1429 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-3824 (*1 *2) (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-409 *3)))) (-3707 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-2656 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-2645 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4)))) (-2126 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-409 *4))))) -(-10 -7 (-15 -2126 ((-745) |#2|)) (-15 -2645 ((-745) |#2|)) (-15 -2656 ((-745) |#2|)) (-15 -3694 ((-745) |#2|)) (-15 -3707 ((-745) |#2|)) (-15 -3824 ((-619 |#2|))) (-15 -3838 ((-619 |#2|) |#2|)) (-15 -1429 ((-619 |#2|) |#2|)) (-15 -1441 ((-619 |#2|))) (-15 -1453 ((-619 |#2|))) (-15 -1462 ((-619 |#2|))) (-15 -1475 ((-619 |#2|))) (-15 -1485 ((-619 |#2|))) (-15 -1497 ((-619 (-663 |#1|)))) (-15 -1575 ((-619 (-663 |#1|)))) (-15 -1585 ((-619 (-663 |#1|)))) (-15 -1804 ((-619 |#2|))) (IF (|has| |#1| (-299)) (-15 -2877 ((-1218 |#2|) (-1218 |#2|))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#1|)) (-1218 $)) NIL) (((-1218 (-663 |#1|))) 24)) (-2968 (((-1218 $)) 51)) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#1| (-540)))) (-3991 (((-3 $ "failed")) NIL (|has| |#1| (-540)))) (-2413 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2947 ((|#1| $) NIL)) (-2391 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-3399 (((-3 $ "failed") $) NIL (|has| |#1| (-540)))) (-4307 (((-1131 (-921 |#1|))) NIL (|has| |#1| (-355)))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#1| $) NIL)) (-2741 (((-1131 |#1|) $) NIL (|has| |#1| (-540)))) (-2432 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-2903 (((-1131 |#1|) $) NIL)) (-2842 (((-112)) 87)) (-2455 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) NIL)) (-3859 (((-3 $ "failed") $) 14 (|has| |#1| (-540)))) (-2103 (((-890)) 52)) (-2815 (((-112)) NIL)) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL)) (-2766 (((-112)) NIL)) (-2797 (((-112)) 89)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#1| (-540)))) (-4003 (((-3 $ "failed")) NIL (|has| |#1| (-540)))) (-2422 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2958 ((|#1| $) NIL)) (-2402 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-3411 (((-3 $ "failed") $) NIL (|has| |#1| (-540)))) (-1298 (((-1131 (-921 |#1|))) NIL (|has| |#1| (-355)))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#1| $) NIL)) (-2750 (((-1131 |#1|) $) NIL (|has| |#1| (-540)))) (-2444 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-2914 (((-1131 |#1|) $) NIL)) (-2851 (((-112)) 86)) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) 93)) (-2790 (((-112)) 92)) (-2806 (((-112)) 94)) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) 88)) (-3171 ((|#1| $ (-548)) 54)) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) 28) (((-663 |#1|) (-1218 $)) NIL)) (-2591 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL)) (-4218 (((-619 (-921 |#1|)) (-1218 $)) NIL) (((-619 (-921 |#1|))) NIL)) (-3652 (($ $ $) NIL)) (-2891 (((-112)) 84)) (-3743 (((-832) $) 69) (($ (-1218 |#1|)) 22)) (-2877 (((-1218 $)) 45)) (-2759 (((-619 (-1218 |#1|))) NIL (|has| |#1| (-540)))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) 82)) (-3398 (($ (-663 |#1|) $) 18)) (-3639 (($ $ $) NIL)) (-2881 (((-112)) 85)) (-2859 (((-112)) 83)) (-2823 (((-112)) 81)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1102 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-409 |#1|) (-622 (-1102 |#2| |#1|)) (-10 -8 (-15 -3743 ($ (-1218 |#1|))))) (-355) (-890) (-619 (-1135)) (-1218 (-663 |#1|))) (T -44)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135)))))) -(-13 (-409 |#1|) (-622 (-1102 |#2| |#1|)) (-10 -8 (-15 -3743 ($ (-1218 |#1|))))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4056 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-1988 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-1272 (($ $) NIL)) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328))) (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2980 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821))))) (-2490 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-4192 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) 27 (|has| $ (-6 -4328)))) (-3614 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-3635 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 29 (|has| $ (-6 -4328)))) (-2089 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-1185 (-548)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (($ $ "rest" $) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value" (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1975 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3255 (((-3 |#2| "failed") |#1| $) 37)) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3465 (($ $ (-745)) NIL) (($ $) 24)) (-2969 (($ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) (((-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 18 (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 18 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3550 (($ (-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821))) (((-548) $) 32 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2965 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2913 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821))) (((-548) $) 34 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-3309 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) 42 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3724 (($ $ (-745)) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4043 (((-619 |#1|) $) 20)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-2387 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 |#1|) $) NIL) (((-619 (-548)) $) NIL)) (-4212 (((-112) |#1| $) NIL) (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821))) (($ $ (-745)) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 23)) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4223 (((-619 |#2|) $) NIL) (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 17)) (-1616 (((-112) $) 16)) (-3319 (($) 13)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "first") NIL) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $ "value") NIL)) (-4234 (((-548) $ $) NIL)) (-2801 (($) 12) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-2668 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2740 (((-112) $) NIL)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3659 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL) (($ $ $) NIL)) (-1831 (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL) (($ (-619 $)) NIL) (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 25) (($ $ $) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3733 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") |#1| $) 44)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-2252 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-821)))) (-3643 (((-745) $) 22 (|has| $ (-6 -4327))))) +((-3834 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))) +(-13 (-1016) (-692 |t#1|) (-10 -8 (-15 -3834 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2378 (((-409 |#1|) |#1|) 41)) (-2106 (((-409 |#1|) |#1|) 30) (((-409 |#1|) |#1| (-619 (-48))) 33)) (-2987 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -2106 ((-409 |#1|) |#1| (-619 (-48)))) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2378 ((-409 |#1|) |#1|)) (-15 -2987 ((-112) |#1|))) (-1194 (-48))) (T -39)) +((-2987 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-2378 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48)))))) +(-10 -7 (-15 -2106 ((-409 |#1|) |#1| (-619 (-48)))) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2378 ((-409 |#1|) |#1|)) (-15 -2987 ((-112) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3809 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| (-398 |#2|) (-354)))) (-3881 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-1832 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3743 (((-663 (-398 |#2|)) (-1218 $)) NIL) (((-663 (-398 |#2|))) NIL)) (-2890 (((-398 |#2|) $) NIL)) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-398 |#2|) (-340)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3457 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-2873 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-3603 (((-745)) NIL (|has| (-398 |#2|) (-359)))) (-2159 (((-112)) NIL)) (-2017 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-3 (-398 |#2|) "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-398 |#2|) $) NIL)) (-2402 (($ (-1218 (-398 |#2|)) (-1218 $)) NIL) (($ (-1218 (-398 |#2|))) 57) (($ (-1218 |#2|) |#2|) 125)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-398 |#2|) (-340)))) (-2079 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-3653 (((-663 (-398 |#2|)) $ (-1218 $)) NIL) (((-663 (-398 |#2|)) $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-398 |#2|))) (|:| |vec| (-1218 (-398 |#2|)))) (-663 $) (-1218 $)) NIL) (((-663 (-398 |#2|)) (-663 $)) NIL)) (-3581 (((-1218 $) (-1218 $)) NIL)) (-2542 (($ |#3|) NIL) (((-3 $ "failed") (-398 |#3|)) NIL (|has| (-398 |#2|) (-354)))) (-2537 (((-3 $ "failed") $) NIL)) (-2431 (((-619 (-619 |#1|))) NIL (|has| |#1| (-359)))) (-2515 (((-112) |#1| |#1|) NIL)) (-3107 (((-890)) NIL)) (-3229 (($) NIL (|has| (-398 |#2|) (-359)))) (-3110 (((-112)) NIL)) (-3019 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2052 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| (-398 |#2|) (-354)))) (-3786 (($ $) NIL)) (-2445 (($) NIL (|has| (-398 |#2|) (-340)))) (-3661 (((-112) $) NIL (|has| (-398 |#2|) (-340)))) (-1771 (($ $ (-745)) NIL (|has| (-398 |#2|) (-340))) (($ $) NIL (|has| (-398 |#2|) (-340)))) (-3674 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3707 (((-890) $) NIL (|has| (-398 |#2|) (-340))) (((-807 (-890)) $) NIL (|has| (-398 |#2|) (-340)))) (-4114 (((-112) $) NIL)) (-3433 (((-745)) NIL)) (-3686 (((-1218 $) (-1218 $)) 102)) (-1684 (((-398 |#2|) $) NIL)) (-2564 (((-619 (-921 |#1|)) (-1135)) NIL (|has| |#1| (-354)))) (-3652 (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-4213 ((|#3| $) NIL (|has| (-398 |#2|) (-354)))) (-1966 (((-890) $) NIL (|has| (-398 |#2|) (-359)))) (-2531 ((|#3| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1917 (((-1118) $) NIL)) (-3071 (((-1223) (-745)) 79)) (-4237 (((-663 (-398 |#2|))) 51)) (-3365 (((-663 (-398 |#2|))) 44)) (-1976 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-1760 (($ (-1218 |#2|) |#2|) 126)) (-3216 (((-663 (-398 |#2|))) 45)) (-3459 (((-663 (-398 |#2|))) 43)) (-1656 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1867 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 64)) (-2941 (((-1218 $)) 42)) (-3059 (((-1218 $)) 41)) (-2840 (((-112) $) NIL)) (-2746 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3045 (($) NIL (|has| (-398 |#2|) (-340)) CONST)) (-3479 (($ (-890)) NIL (|has| (-398 |#2|) (-359)))) (-1431 (((-3 |#2| "failed")) NIL)) (-3979 (((-1082) $) NIL)) (-1379 (((-745)) NIL)) (-4240 (($) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-398 |#2|) (-354)))) (-3715 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-398 |#2|) (-340)))) (-2106 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-398 |#2|) (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-2025 (((-3 $ "failed") $ $) NIL (|has| (-398 |#2|) (-354)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-2776 (((-745) $) NIL (|has| (-398 |#2|) (-354)))) (-3329 ((|#1| $ |#1| |#1|) NIL)) (-1548 (((-3 |#2| "failed")) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-3846 (((-398 |#2|) (-1218 $)) NIL) (((-398 |#2|)) 39)) (-1868 (((-745) $) NIL (|has| (-398 |#2|) (-340))) (((-3 (-745) "failed") $ $) NIL (|has| (-398 |#2|) (-340)))) (-3443 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-4035 (((-663 (-398 |#2|)) (-1218 $) (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354)))) (-1901 ((|#3|) 50)) (-4150 (($) NIL (|has| (-398 |#2|) (-340)))) (-2301 (((-1218 (-398 |#2|)) $ (-1218 $)) NIL) (((-663 (-398 |#2|)) (-1218 $) (-1218 $)) NIL) (((-1218 (-398 |#2|)) $) 58) (((-663 (-398 |#2|)) (-1218 $)) 103)) (-2829 (((-1218 (-398 |#2|)) $) NIL) (($ (-1218 (-398 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-398 |#2|) (-340)))) (-3784 (((-1218 $) (-1218 $)) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 |#2|)) NIL) (($ (-398 (-547))) NIL (-1524 (|has| (-398 |#2|) (-1007 (-398 (-547)))) (|has| (-398 |#2|) (-354)))) (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3336 (($ $) NIL (|has| (-398 |#2|) (-340))) (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-143)))) (-3008 ((|#3| $) NIL)) (-2311 (((-745)) NIL)) (-2389 (((-112)) 37)) (-2261 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-4013 (((-1218 $)) 93)) (-1932 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-1338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2626 (((-112)) NIL)) (-3267 (($) 16 T CONST)) (-3277 (($) 26 T CONST)) (-1686 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| (-398 |#2|) (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 |#2|)) NIL) (($ (-398 |#2|) $) NIL) (($ (-398 (-547)) $) NIL (|has| (-398 |#2|) (-354))) (($ $ (-398 (-547))) NIL (|has| (-398 |#2|) (-354))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-333 |#1| |#2| |#3|) (-10 -7 (-15 -3071 ((-1223) (-745))))) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) |#3|) (T -40)) +((-3071 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-4 *5 (-1194 *4)) (-5 *2 (-1223)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1194 (-398 *5))) (-14 *7 *6)))) +(-13 (-333 |#1| |#2| |#3|) (-10 -7 (-15 -3071 ((-1223) (-745))))) +((-2035 ((|#2| |#2|) 48)) (-3271 ((|#2| |#2|) 120 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-4294 ((|#2| |#2|) 87 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-4190 ((|#2| |#2|) 88 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-2308 ((|#2| (-114) |#2| (-745)) 116 (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-442)) (|has| |#1| (-821)) (|has| |#1| (-1007 (-547)))))) (-4083 (((-1131 |#2|) |#2|) 45)) (-2153 ((|#2| |#2| (-619 (-590 |#2|))) 18) ((|#2| |#2| (-619 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2035 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -2153 (|#2| |#2| |#2|)) (-15 -2153 (|#2| |#2| (-619 |#2|))) (-15 -2153 (|#2| |#2| (-619 (-590 |#2|)))) (-15 -4083 ((-1131 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-1007 (-547))) (IF (|has| |#2| (-421 |#1|)) (PROGN (-15 -4190 (|#2| |#2|)) (-15 -4294 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -2308 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-539) (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 |#1| (-590 $)) $)) (-15 -1392 ((-1087 |#1| (-590 $)) $)) (-15 -3834 ($ (-1087 |#1| (-590 $))))))) (T -41)) +((-2308 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-442)) (-4 *5 (-821)) (-4 *5 (-1007 (-547))) (-4 *5 (-539)) (-5 *1 (-41 *5 *2)) (-4 *2 (-421 *5)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *5 (-590 $)) $)) (-15 -1392 ((-1087 *5 (-590 $)) $)) (-15 -3834 ($ (-1087 *5 (-590 $))))))))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) (-15 -1392 ((-1087 *3 (-590 $)) $)) (-15 -3834 ($ (-1087 *3 (-590 $))))))))) (-4294 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) (-15 -1392 ((-1087 *3 (-590 $)) $)) (-15 -3834 ($ (-1087 *3 (-590 $))))))))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) (-15 -1392 ((-1087 *3 (-590 $)) $)) (-15 -3834 ($ (-1087 *3 (-590 $))))))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-1131 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *4 (-590 $)) $)) (-15 -1392 ((-1087 *4 (-590 $)) $)) (-15 -3834 ($ (-1087 *4 (-590 $))))))))) (-2153 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-590 *2))) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *4 (-590 $)) $)) (-15 -1392 ((-1087 *4 (-590 $)) $)) (-15 -3834 ($ (-1087 *4 (-590 $))))))) (-4 *4 (-539)) (-5 *1 (-41 *4 *2)))) (-2153 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *4 (-590 $)) $)) (-15 -1392 ((-1087 *4 (-590 $)) $)) (-15 -3834 ($ (-1087 *4 (-590 $))))))) (-4 *4 (-539)) (-5 *1 (-41 *4 *2)))) (-2153 (*1 *2 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) (-15 -1392 ((-1087 *3 (-590 $)) $)) (-15 -3834 ($ (-1087 *3 (-590 $))))))))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) (-15 -1392 ((-1087 *3 (-590 $)) $)) (-15 -3834 ($ (-1087 *3 (-590 $))))))))) (-2035 (*1 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-354) (-293) (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) (-15 -1392 ((-1087 *3 (-590 $)) $)) (-15 -3834 ($ (-1087 *3 (-590 $)))))))))) +(-10 -7 (-15 -2035 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -2153 (|#2| |#2| |#2|)) (-15 -2153 (|#2| |#2| (-619 |#2|))) (-15 -2153 (|#2| |#2| (-619 (-590 |#2|)))) (-15 -4083 ((-1131 |#2|) |#2|)) (IF (|has| |#1| (-821)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-1007 (-547))) (IF (|has| |#2| (-421 |#1|)) (PROGN (-15 -4190 (|#2| |#2|)) (-15 -4294 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -2308 (|#2| (-114) |#2| (-745)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2106 (((-409 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))) 23) (((-409 |#3|) |#3| (-619 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2106 ((-409 |#3|) |#3| (-619 (-48)))) (-15 -2106 ((-409 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))))) (-821) (-767) (-918 (-48) |#2| |#1|)) (T -42)) +((-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-409 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5))))) +(-10 -7 (-15 -2106 ((-409 |#3|) |#3| (-619 (-48)))) (-15 -2106 ((-409 (-1131 |#3|)) (-1131 |#3|) (-619 (-48))))) +((-3373 (((-745) |#2|) 65)) (-3566 (((-745) |#2|) 68)) (-1343 (((-619 |#2|)) 33)) (-2419 (((-745) |#2|) 67)) (-3672 (((-745) |#2|) 64)) (-3486 (((-745) |#2|) 66)) (-3923 (((-619 (-663 |#1|))) 60)) (-2127 (((-619 |#2|)) 55)) (-3692 (((-619 |#2|) |#2|) 43)) (-2382 (((-619 |#2|)) 57)) (-2239 (((-619 |#2|)) 56)) (-1278 (((-619 (-663 |#1|))) 48)) (-1987 (((-619 |#2|)) 54)) (-2346 (((-619 |#2|) |#2|) 42)) (-2204 (((-619 |#2|)) 50)) (-4032 (((-619 (-663 |#1|))) 61)) (-2492 (((-619 |#2|)) 59)) (-4013 (((-1218 |#2|) (-1218 |#2|)) 84 (|has| |#1| (-298))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2419 ((-745) |#2|)) (-15 -3566 ((-745) |#2|)) (-15 -3672 ((-745) |#2|)) (-15 -3373 ((-745) |#2|)) (-15 -3486 ((-745) |#2|)) (-15 -2204 ((-619 |#2|))) (-15 -2346 ((-619 |#2|) |#2|)) (-15 -3692 ((-619 |#2|) |#2|)) (-15 -1987 ((-619 |#2|))) (-15 -2127 ((-619 |#2|))) (-15 -2239 ((-619 |#2|))) (-15 -2382 ((-619 |#2|))) (-15 -2492 ((-619 |#2|))) (-15 -1278 ((-619 (-663 |#1|)))) (-15 -3923 ((-619 (-663 |#1|)))) (-15 -4032 ((-619 (-663 |#1|)))) (-15 -1343 ((-619 |#2|))) (IF (|has| |#1| (-298)) (-15 -4013 ((-1218 |#2|) (-1218 |#2|))) |%noBranch|)) (-539) (-408 |#1|)) (T -43)) +((-4013 (*1 *2 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-408 *3)) (-4 *3 (-298)) (-4 *3 (-539)) (-5 *1 (-43 *3 *4)))) (-1343 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-4032 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3923 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-1278 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2492 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2382 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2239 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-2127 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-1987 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-2204 (*1 *2) (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-408 *3)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3373 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3672 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-3566 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4)))) (-2419 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) (-4 *3 (-408 *4))))) +(-10 -7 (-15 -2419 ((-745) |#2|)) (-15 -3566 ((-745) |#2|)) (-15 -3672 ((-745) |#2|)) (-15 -3373 ((-745) |#2|)) (-15 -3486 ((-745) |#2|)) (-15 -2204 ((-619 |#2|))) (-15 -2346 ((-619 |#2|) |#2|)) (-15 -3692 ((-619 |#2|) |#2|)) (-15 -1987 ((-619 |#2|))) (-15 -2127 ((-619 |#2|))) (-15 -2239 ((-619 |#2|))) (-15 -2382 ((-619 |#2|))) (-15 -2492 ((-619 |#2|))) (-15 -1278 ((-619 (-663 |#1|)))) (-15 -3923 ((-619 (-663 |#1|)))) (-15 -4032 ((-619 (-663 |#1|)))) (-15 -1343 ((-619 |#2|))) (IF (|has| |#1| (-298)) (-15 -4013 ((-1218 |#2|) (-1218 |#2|))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4104 (((-3 $ "failed")) NIL (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2173 (((-1218 (-663 |#1|)) (-1218 $)) NIL) (((-1218 (-663 |#1|))) 24)) (-3785 (((-1218 $)) 51)) (-3219 (($) NIL T CONST)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (|has| |#1| (-539)))) (-4231 (((-3 $ "failed")) NIL (|has| |#1| (-539)))) (-3140 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-3573 ((|#1| $) NIL)) (-2966 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-3480 (((-3 $ "failed") $) NIL (|has| |#1| (-539)))) (-1346 (((-1131 (-921 |#1|))) NIL (|has| |#1| (-354)))) (-3946 (($ $ (-890)) NIL)) (-3335 ((|#1| $) NIL)) (-2101 (((-1131 |#1|) $) NIL (|has| |#1| (-539)))) (-2149 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-4250 (((-1131 |#1|) $) NIL)) (-1834 (((-112)) 87)) (-2402 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) NIL)) (-2537 (((-3 $ "failed") $) 14 (|has| |#1| (-539)))) (-3107 (((-890)) 52)) (-1575 (((-112)) NIL)) (-2530 (($ $ (-890)) NIL)) (-2578 (((-112)) NIL)) (-2385 (((-112)) NIL)) (-1377 (((-112)) 89)) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (|has| |#1| (-539)))) (-1283 (((-3 $ "failed")) NIL (|has| |#1| (-539)))) (-2033 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-3690 ((|#1| $) NIL)) (-3058 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| |#1| (-539)))) (-2100 (((-1131 (-921 |#1|))) NIL (|has| |#1| (-354)))) (-3699 (($ $ (-890)) NIL)) (-3452 ((|#1| $) NIL)) (-2205 (((-1131 |#1|) $) NIL (|has| |#1| (-539)))) (-2275 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-1303 (((-1131 |#1|) $) NIL)) (-1924 (((-112)) 86)) (-1917 (((-1118) $) NIL)) (-2486 (((-112)) 93)) (-2662 (((-112)) 92)) (-1475 (((-112)) 94)) (-3979 (((-1082) $) NIL)) (-1739 (((-112)) 88)) (-3329 ((|#1| $ (-547)) 54)) (-2301 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) 28) (((-663 |#1|) (-1218 $)) NIL)) (-2829 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL)) (-1701 (((-619 (-921 |#1|)) (-1218 $)) NIL) (((-619 (-921 |#1|))) NIL)) (-4121 (($ $ $) NIL)) (-4156 (((-112)) 84)) (-3834 (((-832) $) 69) (($ (-1218 |#1|)) 22)) (-4013 (((-1218 $)) 45)) (-2310 (((-619 (-1218 |#1|))) NIL (|has| |#1| (-539)))) (-4225 (($ $ $ $) NIL)) (-3948 (((-112)) 82)) (-3583 (($ (-663 |#1|) $) 18)) (-4007 (($ $ $) NIL)) (-4057 (((-112)) 85)) (-2014 (((-112)) 83)) (-1649 (((-112)) 81)) (-3267 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1102 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-408 |#1|) (-622 (-1102 |#2| |#1|)) (-10 -8 (-15 -3834 ($ (-1218 |#1|))))) (-354) (-890) (-619 (-1135)) (-1218 (-663 |#1|))) (T -44)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-354)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135)))))) +(-13 (-408 |#1|) (-622 (-1102 |#2| |#1|)) (-10 -8 (-15 -3834 ($ (-1218 |#1|))))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4152 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2823 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1335 (($ $) NIL)) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329))) (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2765 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821))))) (-3180 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2741 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329)))) (-3861 (($ $ $) 27 (|has| $ (-6 -4329)))) (-1907 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329)))) (-3962 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 29 (|has| $ (-6 -4329)))) (-2238 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-1185 (-547)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "last" (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329))) (($ $ "rest" $) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "first" (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "value" (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2814 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-3477 (((-3 |#2| "failed") |#1| $) 37)) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3645 (($ $ (-745)) NIL) (($ $) 24)) (-3796 (($ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) NIL)) (-3425 (((-112) $) NIL)) (-2867 (((-547) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) (((-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 18 (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328))) (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 18 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3732 (($ (-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821))) (((-547) $) 32 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-3756 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-1294 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328))) (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821))) (((-547) $) 34 (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-3511 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3579 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-3033 (((-112) $) NIL)) (-1917 (((-1118) $) 42 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3817 (($ $ (-745)) NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-3437 (((-619 |#1|) $) 20)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-2599 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 |#1|) $) NIL) (((-619 (-547)) $) NIL)) (-1641 (((-112) |#1| $) NIL) (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821))) (($ $ (-745)) NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 23)) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-3541 (((-112) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-1758 (((-619 |#2|) $) NIL) (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 17)) (-3169 (((-112) $) 16)) (-4011 (($) 13)) (-3329 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ (-547)) NIL) (($ $ (-1185 (-547))) NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "first") NIL) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $ "value") NIL)) (-1887 (((-547) $ $) NIL)) (-1404 (($) 12) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3769 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-2094 (((-112) $) NIL)) (-4291 (($ $) NIL)) (-4080 (($ $) NIL (|has| $ (-6 -4329)))) (-3257 (((-745) $) NIL)) (-3360 (($ $) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-4187 (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL) (($ $ $) NIL)) (-1935 (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL) (($ (-619 $)) NIL) (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 25) (($ $ $) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3825 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") |#1| $) 44)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-2421 (((-112) $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-821)))) (-3763 (((-745) $) 22 (|has| $ (-6 -4328))))) (((-45 |#1| |#2|) (-36 |#1| |#2|) (-1063) (-1063)) (T -45)) NIL (-36 |#1| |#2|) -((-2435 (((-112) $) 12)) (-2540 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-399 (-548)) $) 25) (($ $ (-399 (-548))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2435 ((-112) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-47 |#2| |#3|) (-1016) (-766)) (T -46)) +((-2187 (((-112) $) 12)) (-2781 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-398 (-547)) $) 25) (($ $ (-398 (-547))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2187 ((-112) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-47 |#2| |#3|) (-1016) (-766)) (T -46)) NIL -(-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2435 ((-112) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2512 ((|#2| $) 62)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +(-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2187 ((-112) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-2187 (((-112) $) 60)) (-2229 (($ |#1| |#2|) 59)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-1618 ((|#2| $) 62)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-3338 ((|#1| $ |#2|) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-47 |#1| |#2|) (-138) (-1016) (-766)) (T -47)) -((-2197 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2185 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2024 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1951 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-355))))) -(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -2197 (|t#1| $)) (-15 -2185 ($ $)) (-15 -2512 (|t#2| $)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -2435 ((-112) $)) (-15 -2024 ($ |t#1| |t#2|)) (-15 -1872 ($ $)) (-15 -1951 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-355)) (-15 -2309 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-540)) (-6 (-540)) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (-6 (-38 (-399 (-548)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-282) |has| |#1| (-540)) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-1786 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1262 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-3324 (((-112) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1806 (((-619 (-591 $)) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1274 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-3263 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-591 $) $) NIL) (((-548) $) NIL) (((-399 (-548)) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-399 (-548)))) (|:| |vec| (-1218 (-399 (-548))))) (-663 $) (-1218 $)) NIL) (((-663 (-399 (-548))) (-663 $)) NIL)) (-2061 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) NIL)) (-2266 (((-112) $) 14)) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2470 (((-1087 (-548) (-591 $)) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3910 (((-1131 $) (-1131 $) (-591 $)) NIL) (((-1131 $) (-1131 $) (-619 (-591 $))) NIL) (($ $ (-591 $)) NIL) (($ $ (-619 (-591 $))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1724 (((-1131 $) (-591 $)) NIL (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) NIL)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) NIL)) (-1409 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-2153 (($ $) NIL)) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4077 (((-745) $) NIL)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1762 (($ $) NIL) (($ $ $) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2480 (((-1087 (-548) (-591 $)) $) NIL)) (-3287 (($ $) NIL (|has| $ (-1016)))) (-2591 (((-371) $) NIL) (((-218) $) NIL) (((-166 (-371)) $) NIL)) (-3743 (((-832) $) NIL) (($ (-591 $)) NIL) (($ (-399 (-548))) NIL) (($ $) NIL) (($ (-548)) NIL) (($ (-1087 (-548) (-591 $))) NIL)) (-3835 (((-745)) NIL)) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-1392 (((-112) (-114)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 7 T CONST)) (-3118 (($) 12 T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 16)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $ $) 15) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-399 (-548))) NIL) (($ $ (-548)) NIL) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ $ $) NIL) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) -(((-48) (-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $))))))) (T -48)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) (-2061 (*1 *1 *1) (-5 *1 (-48))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-619 (-591 (-48)))) (-5 *1 (-48)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-48)))) (-5 *1 (-48))))) -(-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $)))))) -((-3730 (((-112) $ $) NIL)) (-3302 (((-619 (-1135)) $) 17)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2286 (((-1140) $) 18)) (-2214 (((-112) $ $) NIL))) -(((-49) (-13 (-1063) (-10 -8 (-15 -3302 ((-619 (-1135)) $)) (-15 -2286 ((-1140) $))))) (T -49)) -((-3302 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-49)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-49))))) -(-13 (-1063) (-10 -8 (-15 -3302 ((-619 (-1135)) $)) (-15 -2286 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 61)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3613 (((-112) $) 20)) (-2441 (((-3 |#1| "failed") $) 23)) (-2375 ((|#1| $) 24)) (-1872 (($ $) 28)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2197 ((|#1| $) 21)) (-2711 (($ $) 50)) (-2546 (((-1118) $) NIL)) (-3966 (((-112) $) 30)) (-3932 (((-1082) $) NIL)) (-4160 (($ (-745)) 48)) (-2458 (($ (-619 (-548))) 49)) (-2512 (((-745) $) 31)) (-3743 (((-832) $) 64) (($ (-548)) 45) (($ |#1|) 43)) (-1951 ((|#1| $ $) 19)) (-3835 (((-745)) 47)) (-3107 (($) 32 T CONST)) (-3118 (($) 14 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2197 (|#1| $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 (|#1| $ $)) (-15 -4160 ($ (-745))) (-15 -2458 ($ (-619 (-548)))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-745) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)))) (-1016) (-619 (-1135))) (T -50)) -((-2197 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) (-2711 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) (-1951 (*1 *2 *1 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-50 *3 *4)) (-14 *4 (-619 (-1135)))))) -(-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2197 (|#1| $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 (|#1| $ $)) (-15 -4160 ($ (-745))) (-15 -2458 ($ (-619 (-548)))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-745) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)))) -((-3613 (((-112) (-52)) 13)) (-2441 (((-3 |#1| "failed") (-52)) 21)) (-2375 ((|#1| (-52)) 22)) (-3743 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -3743 ((-52) |#1|)) (-15 -2441 ((-3 |#1| "failed") (-52))) (-15 -3613 ((-112) (-52))) (-15 -2375 (|#1| (-52)))) (-1172)) (T -51)) -((-2375 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1172)))) (-2441 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1172))))) -(-10 -7 (-15 -3743 ((-52) |#1|)) (-15 -2441 ((-3 |#1| "failed") (-52))) (-15 -3613 ((-112) (-52))) (-15 -2375 (|#1| (-52)))) -((-3730 (((-112) $ $) NIL)) (-1815 (((-1118) (-112)) 25)) (-4088 (((-832) $) 24)) (-4238 (((-748) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4098 (((-832) $) 16)) (-1510 (((-1067) $) 14)) (-3743 (((-832) $) 32)) (-2355 (($ (-1067) (-748)) 33)) (-2214 (((-112) $ $) 18))) -(((-52) (-13 (-1063) (-10 -8 (-15 -2355 ($ (-1067) (-748))) (-15 -4098 ((-832) $)) (-15 -4088 ((-832) $)) (-15 -1510 ((-1067) $)) (-15 -4238 ((-748) $)) (-15 -1815 ((-1118) (-112)))))) (T -52)) -((-2355 (*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1118)) (-5 *1 (-52))))) -(-13 (-1063) (-10 -8 (-15 -2355 ($ (-1067) (-748))) (-15 -4098 ((-832) $)) (-15 -4088 ((-832) $)) (-15 -1510 ((-1067) $)) (-15 -4238 ((-748) $)) (-15 -1815 ((-1118) (-112))))) -((-3398 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3398 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1016) (-622 |#1|) (-823 |#1|)) (T -53)) -((-3398 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5))))) -(-10 -7 (-15 -3398 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-4123 ((|#3| |#3| (-619 (-1135))) 35)) (-4111 ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890)) 22) ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -4123 (|#3| |#3| (-619 (-1135))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-593 (-861 |#1|))) (-13 (-422 |#2|) (-855 |#1|) (-593 (-861 |#1|)))) (T -54)) -((-4123 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) (-4111 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) (-4 *6 (-13 (-1016) (-855 *5) (-821) (-593 (-861 *5)))) (-4 *2 (-13 (-422 *6) (-855 *5) (-593 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4111 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -4111 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -4123 (|#3| |#3| (-619 (-1135))))) -((-2028 (((-112) $ (-745)) 23)) (-4141 (($ $ (-548) |#3|) 46)) (-4131 (($ $ (-548) |#4|) 50)) (-3717 ((|#3| $ (-548)) 59)) (-1934 (((-619 |#2|) $) 30)) (-4282 (((-112) $ (-745)) 25)) (-2556 (((-112) |#2| $) 54)) (-3960 (($ (-1 |#2| |#2|) $) 37)) (-2540 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-4248 (((-112) $ (-745)) 24)) (-4159 (($ $ |#2|) 34)) (-3537 (((-112) (-1 (-112) |#2|) $) 19)) (-3171 ((|#2| $ (-548) (-548)) NIL) ((|#2| $ (-548) (-548) |#2|) 27)) (-3945 (((-745) (-1 (-112) |#2|) $) 28) (((-745) |#2| $) 56)) (-2113 (($ $) 33)) (-3704 ((|#4| $ (-548)) 62)) (-3743 (((-832) $) 68)) (-3548 (((-112) (-1 (-112) |#2|) $) 18)) (-2214 (((-112) $ $) 53)) (-3643 (((-745) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4131 (|#1| |#1| (-548) |#4|)) (-15 -4141 (|#1| |#1| (-548) |#3|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3704 (|#4| |#1| (-548))) (-15 -3717 (|#3| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -2113 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1172) (-365 |#2|) (-365 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4131 (|#1| |#1| (-548) |#4|)) (-15 -4141 (|#1| |#1| (-548) |#3|)) (-15 -1934 ((-619 |#2|) |#1|)) (-15 -3704 (|#4| |#1| (-548))) (-15 -3717 (|#3| |#1| (-548))) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745))) (-15 -2113 (|#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) (-548) |#1|) 44)) (-4141 (($ $ (-548) |#2|) 42)) (-4131 (($ $ (-548) |#3|) 41)) (-3030 (($) 7 T CONST)) (-3717 ((|#2| $ (-548)) 46)) (-3971 ((|#1| $ (-548) (-548) |#1|) 43)) (-3899 ((|#1| $ (-548) (-548)) 48)) (-1934 (((-619 |#1|) $) 30)) (-4205 (((-745) $) 51)) (-3550 (($ (-745) (-745) |#1|) 57)) (-4216 (((-745) $) 50)) (-4282 (((-112) $ (-745)) 9)) (-3764 (((-548) $) 55)) (-3742 (((-548) $) 53)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 54)) (-3729 (((-548) $) 52)) (-3960 (($ (-1 |#1| |#1|) $) 34)) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) 56)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) (-548)) 49) ((|#1| $ (-548) (-548) |#1|) 47)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3704 ((|#3| $ (-548)) 45)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-56 |#1| |#2| |#3|) (-138) (-1172) (-365 |t#1|) (-365 |t#1|)) (T -56)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3550 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1172)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4159 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1172)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-548)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-745)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-745)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1172)))) (-3899 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1172)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-3704 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1172)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-619 *3)))) (-2089 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3971 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-4141 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1172)) (-4 *3 (-365 *4)) (-4 *5 (-365 *4)))) (-4131 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1172)) (-4 *5 (-365 *4)) (-4 *3 (-365 *4)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2540 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(-13 (-480 |t#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3550 ($ (-745) (-745) |t#1|)) (-15 -4159 ($ $ |t#1|)) (-15 -3764 ((-548) $)) (-15 -3753 ((-548) $)) (-15 -3742 ((-548) $)) (-15 -3729 ((-548) $)) (-15 -4205 ((-745) $)) (-15 -4216 ((-745) $)) (-15 -3171 (|t#1| $ (-548) (-548))) (-15 -3899 (|t#1| $ (-548) (-548))) (-15 -3171 (|t#1| $ (-548) (-548) |t#1|)) (-15 -3717 (|t#2| $ (-548))) (-15 -3704 (|t#3| $ (-548))) (-15 -1934 ((-619 |t#1|) $)) (-15 -2089 (|t#1| $ (-548) (-548) |t#1|)) (-15 -3971 (|t#1| $ (-548) (-548) |t#1|)) (-15 -4141 ($ $ (-548) |t#2|)) (-15 -4131 ($ $ (-548) |t#3|)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -2540 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2540 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-4040 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2540 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -4040 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2540 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1172) (-1172)) (T -57)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-57 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -4040 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2540 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 11 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4151 (($ (-619 |#1|)) 13) (($ (-745) |#1|) 14)) (-3550 (($ (-745) |#1|) 9)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 7)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4151 ($ (-619 |#1|))) (-15 -4151 ($ (-745) |#1|)))) (-1172)) (T -58)) -((-4151 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-58 *3)))) (-4151 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1172))))) -(-13 (-19 |#1|) (-10 -8 (-15 -4151 ($ (-619 |#1|))) (-15 -4151 ($ (-745) |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL)) (-4141 (($ $ (-548) (-58 |#1|)) NIL)) (-4131 (($ $ (-548) (-58 |#1|)) NIL)) (-3030 (($) NIL T CONST)) (-3717 (((-58 |#1|) $ (-548)) NIL)) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-58 |#1|) $ (-548)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4328))) (-1172)) (T -59)) -NIL -(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4328))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 74) (((-3 $ "failed") (-1218 (-308 (-548)))) 63) (((-3 $ "failed") (-1218 (-921 (-371)))) 94) (((-3 $ "failed") (-1218 (-921 (-548)))) 84) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 52) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 39)) (-2375 (($ (-1218 (-308 (-371)))) 70) (($ (-1218 (-308 (-548)))) 59) (($ (-1218 (-921 (-371)))) 90) (($ (-1218 (-921 (-548)))) 80) (($ (-1218 (-399 (-921 (-371))))) 48) (($ (-1218 (-399 (-921 (-548))))) 32)) (-3898 (((-1223) $) 120)) (-3743 (((-832) $) 113) (($ (-619 (-322))) 103) (($ (-322)) 97) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 101) (($ (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673)))) 31))) -(((-60 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673))))))) (-1135)) (T -60)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673)))) (-5 *1 (-60 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3754) (-673))))))) -((-3898 (((-1223) $) 53) (((-1223)) 54)) (-3743 (((-832) $) 50))) -(((-61 |#1|) (-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) (-1135)) (T -61)) -((-3898 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-61 *3)) (-14 *3 (-1135))))) -(-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 144) (((-3 $ "failed") (-1218 (-308 (-548)))) 134) (((-3 $ "failed") (-1218 (-921 (-371)))) 164) (((-3 $ "failed") (-1218 (-921 (-548)))) 154) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 123) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 111)) (-2375 (($ (-1218 (-308 (-371)))) 140) (($ (-1218 (-308 (-548)))) 130) (($ (-1218 (-921 (-371)))) 160) (($ (-1218 (-921 (-548)))) 150) (($ (-1218 (-399 (-921 (-371))))) 119) (($ (-1218 (-399 (-921 (-548))))) 104)) (-3898 (((-1223) $) 97)) (-3743 (((-832) $) 91) (($ (-619 (-322))) 29) (($ (-322)) 34) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 32) (($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) 89))) -(((-62 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) (-1135)) (T -62)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) (-5 *1 (-62 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) -((-2441 (((-3 $ "failed") (-308 (-371))) 41) (((-3 $ "failed") (-308 (-548))) 46) (((-3 $ "failed") (-921 (-371))) 50) (((-3 $ "failed") (-921 (-548))) 54) (((-3 $ "failed") (-399 (-921 (-371)))) 36) (((-3 $ "failed") (-399 (-921 (-548)))) 29)) (-2375 (($ (-308 (-371))) 39) (($ (-308 (-548))) 44) (($ (-921 (-371))) 48) (($ (-921 (-548))) 52) (($ (-399 (-921 (-371)))) 34) (($ (-399 (-921 (-548)))) 26)) (-3898 (((-1223) $) 76)) (-3743 (((-832) $) 69) (($ (-619 (-322))) 61) (($ (-322)) 66) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 64) (($ (-331 (-3754 (QUOTE X)) (-3754) (-673))) 25))) -(((-63 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754) (-673)))))) (-1135)) (T -63)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754 (QUOTE X)) (-3754) (-673))) (-5 *1 (-63 *3)) (-14 *3 (-1135))))) -(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754) (-673)))))) -((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 109) (((-3 $ "failed") (-663 (-308 (-548)))) 97) (((-3 $ "failed") (-663 (-921 (-371)))) 131) (((-3 $ "failed") (-663 (-921 (-548)))) 120) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 85) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 71)) (-2375 (($ (-663 (-308 (-371)))) 105) (($ (-663 (-308 (-548)))) 93) (($ (-663 (-921 (-371)))) 127) (($ (-663 (-921 (-548)))) 116) (($ (-663 (-399 (-921 (-371))))) 81) (($ (-663 (-399 (-921 (-548))))) 64)) (-3898 (((-1223) $) 139)) (-3743 (((-832) $) 133) (($ (-619 (-322))) 28) (($ (-322)) 33) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 31) (($ (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673)))) 54))) -(((-64 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673))))))) (-1135)) (T -64)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673)))) (-5 *1 (-64 *3)) (-14 *3 (-1135))))) -(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754) (-3754 (QUOTE X) (QUOTE HESS)) (-673))))))) -((-2441 (((-3 $ "failed") (-308 (-371))) 59) (((-3 $ "failed") (-308 (-548))) 64) (((-3 $ "failed") (-921 (-371))) 68) (((-3 $ "failed") (-921 (-548))) 72) (((-3 $ "failed") (-399 (-921 (-371)))) 54) (((-3 $ "failed") (-399 (-921 (-548)))) 47)) (-2375 (($ (-308 (-371))) 57) (($ (-308 (-548))) 62) (($ (-921 (-371))) 66) (($ (-921 (-548))) 70) (($ (-399 (-921 (-371)))) 52) (($ (-399 (-921 (-548)))) 44)) (-3898 (((-1223) $) 81)) (-3743 (((-832) $) 75) (($ (-619 (-322))) 28) (($ (-322)) 33) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 31) (($ (-331 (-3754) (-3754 (QUOTE XC)) (-673))) 39))) -(((-65 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE XC)) (-673)))))) (-1135)) (T -65)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754) (-3754 (QUOTE XC)) (-673))) (-5 *1 (-65 *3)) (-14 *3 (-1135))))) -(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE XC)) (-673)))))) -((-3898 (((-1223) $) 63)) (-3743 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-322))) 48) (($ (-322)) 55) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 53))) -(((-66 |#1|) (-375) (-1135)) (T -66)) -NIL -(-375) -((-3898 (((-1223) $) 64)) (-3743 (((-832) $) 58) (($ (-663 (-673))) 50) (($ (-619 (-322))) 49) (($ (-322)) 52) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 55))) -(((-67 |#1|) (-375) (-1135)) (T -67)) -NIL -(-375) -((-3898 (((-1223) $) NIL) (((-1223)) 32)) (-3743 (((-832) $) NIL))) -(((-68 |#1|) (-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) (-1135)) (T -68)) -((-3898 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-68 *3)) (-14 *3 (-1135))))) -(-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) -((-3898 (((-1223) $) 73)) (-3743 (((-832) $) 67) (($ (-663 (-673))) 59) (($ (-619 (-322))) 61) (($ (-322)) 64) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 58))) -(((-69 |#1|) (-375) (-1135)) (T -69)) -NIL -(-375) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 103) (((-3 $ "failed") (-1218 (-308 (-548)))) 92) (((-3 $ "failed") (-1218 (-921 (-371)))) 123) (((-3 $ "failed") (-1218 (-921 (-548)))) 113) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 81) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 68)) (-2375 (($ (-1218 (-308 (-371)))) 99) (($ (-1218 (-308 (-548)))) 88) (($ (-1218 (-921 (-371)))) 119) (($ (-1218 (-921 (-548)))) 109) (($ (-1218 (-399 (-921 (-371))))) 77) (($ (-1218 (-399 (-921 (-548))))) 61)) (-3898 (((-1223) $) 136)) (-3743 (((-832) $) 130) (($ (-619 (-322))) 125) (($ (-322)) 128) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 53) (($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) 54))) -(((-70 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) (-1135)) (T -70)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) (-5 *1 (-70 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) -((-3898 (((-1223) $) 32) (((-1223)) 31)) (-3743 (((-832) $) 35))) -(((-71 |#1|) (-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) (-1135)) (T -71)) -((-3898 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-71 *3)) (-14 *3 (-1135))))) -(-13 (-387) (-10 -7 (-15 -3898 ((-1223))))) -((-3898 (((-1223) $) 63)) (-3743 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-322))) 51) (($ (-322)) 54) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 48))) -(((-72 |#1|) (-375) (-1135)) (T -72)) -NIL -(-375) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 125) (((-3 $ "failed") (-1218 (-308 (-548)))) 115) (((-3 $ "failed") (-1218 (-921 (-371)))) 145) (((-3 $ "failed") (-1218 (-921 (-548)))) 135) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 105) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 93)) (-2375 (($ (-1218 (-308 (-371)))) 121) (($ (-1218 (-308 (-548)))) 111) (($ (-1218 (-921 (-371)))) 141) (($ (-1218 (-921 (-548)))) 131) (($ (-1218 (-399 (-921 (-371))))) 101) (($ (-1218 (-399 (-921 (-548))))) 86)) (-3898 (((-1223) $) 78)) (-3743 (((-832) $) 27) (($ (-619 (-322))) 68) (($ (-322)) 64) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 71) (($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) 65))) -(((-73 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) (-1135)) (T -73)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) (-5 *1 (-73 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 130) (((-3 $ "failed") (-1218 (-308 (-548)))) 119) (((-3 $ "failed") (-1218 (-921 (-371)))) 150) (((-3 $ "failed") (-1218 (-921 (-548)))) 140) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 108) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 95)) (-2375 (($ (-1218 (-308 (-371)))) 126) (($ (-1218 (-308 (-548)))) 115) (($ (-1218 (-921 (-371)))) 146) (($ (-1218 (-921 (-548)))) 136) (($ (-1218 (-399 (-921 (-371))))) 104) (($ (-1218 (-399 (-921 (-548))))) 88)) (-3898 (((-1223) $) 79)) (-3743 (((-832) $) 71) (($ (-619 (-322))) NIL) (($ (-322)) NIL) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) NIL) (($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673)))) 66))) -(((-74 |#1| |#2| |#3|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673))))))) (-1135) (-1135) (-1135)) (T -74)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE EPS)) (-3754 (QUOTE -2428)) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 134) (((-3 $ "failed") (-1218 (-308 (-548)))) 123) (((-3 $ "failed") (-1218 (-921 (-371)))) 154) (((-3 $ "failed") (-1218 (-921 (-548)))) 144) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 112) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 99)) (-2375 (($ (-1218 (-308 (-371)))) 130) (($ (-1218 (-308 (-548)))) 119) (($ (-1218 (-921 (-371)))) 150) (($ (-1218 (-921 (-548)))) 140) (($ (-1218 (-399 (-921 (-371))))) 108) (($ (-1218 (-399 (-921 (-548))))) 92)) (-3898 (((-1223) $) 83)) (-3743 (((-832) $) 75) (($ (-619 (-322))) NIL) (($ (-322)) NIL) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) NIL) (($ (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673)))) 70))) -(((-75 |#1| |#2| |#3|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673))))))) (-1135) (-1135) (-1135)) (T -75)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE EPS)) (-3754 (QUOTE YA) (QUOTE YB)) (-673))))))) -((-2441 (((-3 $ "failed") (-308 (-371))) 82) (((-3 $ "failed") (-308 (-548))) 87) (((-3 $ "failed") (-921 (-371))) 91) (((-3 $ "failed") (-921 (-548))) 95) (((-3 $ "failed") (-399 (-921 (-371)))) 77) (((-3 $ "failed") (-399 (-921 (-548)))) 70)) (-2375 (($ (-308 (-371))) 80) (($ (-308 (-548))) 85) (($ (-921 (-371))) 89) (($ (-921 (-548))) 93) (($ (-399 (-921 (-371)))) 75) (($ (-399 (-921 (-548)))) 67)) (-3898 (((-1223) $) 62)) (-3743 (((-832) $) 50) (($ (-619 (-322))) 46) (($ (-322)) 56) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 54) (($ (-331 (-3754) (-3754 (QUOTE X)) (-673))) 47))) -(((-76 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) (-1135)) (T -76)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754) (-3754 (QUOTE X)) (-673))) (-5 *1 (-76 *3)) (-14 *3 (-1135))))) -(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) -((-2441 (((-3 $ "failed") (-308 (-371))) 46) (((-3 $ "failed") (-308 (-548))) 51) (((-3 $ "failed") (-921 (-371))) 55) (((-3 $ "failed") (-921 (-548))) 59) (((-3 $ "failed") (-399 (-921 (-371)))) 41) (((-3 $ "failed") (-399 (-921 (-548)))) 34)) (-2375 (($ (-308 (-371))) 44) (($ (-308 (-548))) 49) (($ (-921 (-371))) 53) (($ (-921 (-548))) 57) (($ (-399 (-921 (-371)))) 39) (($ (-399 (-921 (-548)))) 31)) (-3898 (((-1223) $) 80)) (-3743 (((-832) $) 74) (($ (-619 (-322))) 66) (($ (-322)) 71) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 69) (($ (-331 (-3754) (-3754 (QUOTE X)) (-673))) 30))) -(((-77 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) (-1135)) (T -77)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754) (-3754 (QUOTE X)) (-673))) (-5 *1 (-77 *3)) (-14 *3 (-1135))))) -(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754) (-3754 (QUOTE X)) (-673)))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 89) (((-3 $ "failed") (-1218 (-308 (-548)))) 78) (((-3 $ "failed") (-1218 (-921 (-371)))) 109) (((-3 $ "failed") (-1218 (-921 (-548)))) 99) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 67) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 54)) (-2375 (($ (-1218 (-308 (-371)))) 85) (($ (-1218 (-308 (-548)))) 74) (($ (-1218 (-921 (-371)))) 105) (($ (-1218 (-921 (-548)))) 95) (($ (-1218 (-399 (-921 (-371))))) 63) (($ (-1218 (-399 (-921 (-548))))) 47)) (-3898 (((-1223) $) 125)) (-3743 (((-832) $) 119) (($ (-619 (-322))) 112) (($ (-322)) 37) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 115) (($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) 38))) -(((-78 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) (-1135)) (T -78)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673)))) (-5 *1 (-78 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE XC)) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 142) (((-3 $ "failed") (-1218 (-308 (-548)))) 132) (((-3 $ "failed") (-1218 (-921 (-371)))) 162) (((-3 $ "failed") (-1218 (-921 (-548)))) 152) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 122) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 110)) (-2375 (($ (-1218 (-308 (-371)))) 138) (($ (-1218 (-308 (-548)))) 128) (($ (-1218 (-921 (-371)))) 158) (($ (-1218 (-921 (-548)))) 148) (($ (-1218 (-399 (-921 (-371))))) 118) (($ (-1218 (-399 (-921 (-548))))) 103)) (-3898 (((-1223) $) 96)) (-3743 (((-832) $) 90) (($ (-619 (-322))) 81) (($ (-322)) 88) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 86) (($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) 82))) -(((-79 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) (-1135)) (T -79)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) (-5 *1 (-79 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 78) (((-3 $ "failed") (-1218 (-308 (-548)))) 67) (((-3 $ "failed") (-1218 (-921 (-371)))) 98) (((-3 $ "failed") (-1218 (-921 (-548)))) 88) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 56) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 43)) (-2375 (($ (-1218 (-308 (-371)))) 74) (($ (-1218 (-308 (-548)))) 63) (($ (-1218 (-921 (-371)))) 94) (($ (-1218 (-921 (-548)))) 84) (($ (-1218 (-399 (-921 (-371))))) 52) (($ (-1218 (-399 (-921 (-548))))) 36)) (-3898 (((-1223) $) 124)) (-3743 (((-832) $) 118) (($ (-619 (-322))) 109) (($ (-322)) 115) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 113) (($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) 35))) -(((-80 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) (-1135)) (T -80)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673)))) (-5 *1 (-80 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754) (-3754 (QUOTE X)) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 95) (((-3 $ "failed") (-1218 (-308 (-548)))) 84) (((-3 $ "failed") (-1218 (-921 (-371)))) 115) (((-3 $ "failed") (-1218 (-921 (-548)))) 105) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 73) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 60)) (-2375 (($ (-1218 (-308 (-371)))) 91) (($ (-1218 (-308 (-548)))) 80) (($ (-1218 (-921 (-371)))) 111) (($ (-1218 (-921 (-548)))) 101) (($ (-1218 (-399 (-921 (-371))))) 69) (($ (-1218 (-399 (-921 (-548))))) 53)) (-3898 (((-1223) $) 45)) (-3743 (((-832) $) 39) (($ (-619 (-322))) 29) (($ (-322)) 32) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 35) (($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) 30))) -(((-81 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) (-1135)) (T -81)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) (-5 *1 (-81 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) -((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 115) (((-3 $ "failed") (-663 (-308 (-548)))) 104) (((-3 $ "failed") (-663 (-921 (-371)))) 137) (((-3 $ "failed") (-663 (-921 (-548)))) 126) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 93) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 80)) (-2375 (($ (-663 (-308 (-371)))) 111) (($ (-663 (-308 (-548)))) 100) (($ (-663 (-921 (-371)))) 133) (($ (-663 (-921 (-548)))) 122) (($ (-663 (-399 (-921 (-371))))) 89) (($ (-663 (-399 (-921 (-548))))) 73)) (-3898 (((-1223) $) 63)) (-3743 (((-832) $) 50) (($ (-619 (-322))) 57) (($ (-322)) 46) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 55) (($ (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) 47))) -(((-82 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) (-1135)) (T -82)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673)))) (-5 *1 (-82 *3)) (-14 *3 (-1135))))) -(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X) (QUOTE -2428)) (-3754) (-673))))))) -((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 112) (((-3 $ "failed") (-663 (-308 (-548)))) 100) (((-3 $ "failed") (-663 (-921 (-371)))) 134) (((-3 $ "failed") (-663 (-921 (-548)))) 123) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 88) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 74)) (-2375 (($ (-663 (-308 (-371)))) 108) (($ (-663 (-308 (-548)))) 96) (($ (-663 (-921 (-371)))) 130) (($ (-663 (-921 (-548)))) 119) (($ (-663 (-399 (-921 (-371))))) 84) (($ (-663 (-399 (-921 (-548))))) 67)) (-3898 (((-1223) $) 59)) (-3743 (((-832) $) 53) (($ (-619 (-322))) 47) (($ (-322)) 50) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 44) (($ (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) 45))) -(((-83 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) (-1135)) (T -83)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) (-5 *1 (-83 *3)) (-14 *3 (-1135))))) -(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 104) (((-3 $ "failed") (-1218 (-308 (-548)))) 93) (((-3 $ "failed") (-1218 (-921 (-371)))) 124) (((-3 $ "failed") (-1218 (-921 (-548)))) 114) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 82) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 69)) (-2375 (($ (-1218 (-308 (-371)))) 100) (($ (-1218 (-308 (-548)))) 89) (($ (-1218 (-921 (-371)))) 120) (($ (-1218 (-921 (-548)))) 110) (($ (-1218 (-399 (-921 (-371))))) 78) (($ (-1218 (-399 (-921 (-548))))) 62)) (-3898 (((-1223) $) 46)) (-3743 (((-832) $) 40) (($ (-619 (-322))) 49) (($ (-322)) 36) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 52) (($ (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) 37))) -(((-84 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) (-1135)) (T -84)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673)))) (-5 *1 (-84 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754) (-673))))))) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 79) (((-3 $ "failed") (-1218 (-308 (-548)))) 68) (((-3 $ "failed") (-1218 (-921 (-371)))) 99) (((-3 $ "failed") (-1218 (-921 (-548)))) 89) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 57) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 44)) (-2375 (($ (-1218 (-308 (-371)))) 75) (($ (-1218 (-308 (-548)))) 64) (($ (-1218 (-921 (-371)))) 95) (($ (-1218 (-921 (-548)))) 85) (($ (-1218 (-399 (-921 (-371))))) 53) (($ (-1218 (-399 (-921 (-548))))) 37)) (-3898 (((-1223) $) 125)) (-3743 (((-832) $) 119) (($ (-619 (-322))) 110) (($ (-322)) 116) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 114) (($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) 36))) -(((-85 |#1|) (-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) (-1135)) (T -85)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))) (-5 *1 (-85 *3)) (-14 *3 (-1135))))) -(-13 (-432) (-10 -8 (-15 -3743 ($ (-1218 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))))))) -((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 113) (((-3 $ "failed") (-663 (-308 (-548)))) 101) (((-3 $ "failed") (-663 (-921 (-371)))) 135) (((-3 $ "failed") (-663 (-921 (-548)))) 124) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 89) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 75)) (-2375 (($ (-663 (-308 (-371)))) 109) (($ (-663 (-308 (-548)))) 97) (($ (-663 (-921 (-371)))) 131) (($ (-663 (-921 (-548)))) 120) (($ (-663 (-399 (-921 (-371))))) 85) (($ (-663 (-399 (-921 (-548))))) 68)) (-3898 (((-1223) $) 59)) (-3743 (((-832) $) 53) (($ (-619 (-322))) 43) (($ (-322)) 50) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 48) (($ (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673)))) 44))) -(((-86 |#1|) (-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673))))))) (-1135)) (T -86)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673)))) (-5 *1 (-86 *3)) (-14 *3 (-1135))))) -(-13 (-376) (-10 -8 (-15 -3743 ($ (-663 (-331 (-3754 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3754) (-673))))))) -((-3898 (((-1223) $) 44)) (-3743 (((-832) $) 38) (($ (-1218 (-673))) 92) (($ (-619 (-322))) 30) (($ (-322)) 35) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 33))) -(((-87 |#1|) (-431) (-1135)) (T -87)) -NIL -(-431) -((-2441 (((-3 $ "failed") (-308 (-371))) 47) (((-3 $ "failed") (-308 (-548))) 52) (((-3 $ "failed") (-921 (-371))) 56) (((-3 $ "failed") (-921 (-548))) 60) (((-3 $ "failed") (-399 (-921 (-371)))) 42) (((-3 $ "failed") (-399 (-921 (-548)))) 35)) (-2375 (($ (-308 (-371))) 45) (($ (-308 (-548))) 50) (($ (-921 (-371))) 54) (($ (-921 (-548))) 58) (($ (-399 (-921 (-371)))) 40) (($ (-399 (-921 (-548)))) 32)) (-3898 (((-1223) $) 90)) (-3743 (((-832) $) 84) (($ (-619 (-322))) 78) (($ (-322)) 81) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 76) (($ (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))) 31))) -(((-88 |#1|) (-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))))) (-1135)) (T -88)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673))) (-5 *1 (-88 *3)) (-14 *3 (-1135))))) -(-13 (-388) (-10 -8 (-15 -3743 ($ (-331 (-3754 (QUOTE X)) (-3754 (QUOTE -2428)) (-673)))))) -((-4169 (((-1218 (-663 |#1|)) (-663 |#1|)) 54)) (-4162 (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890)) 44)) (-4179 (((-2 (|:| |minor| (-619 (-890))) (|:| -2383 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890)) 65 (|has| |#1| (-355))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -4162 ((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890))) (-15 -4169 ((-1218 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-355)) (-15 -4179 ((-2 (|:| |minor| (-619 (-890))) (|:| -2383 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) (-540) (-630 |#1|)) (T -89)) -((-4179 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |minor| (-619 (-890))) (|:| -2383 *3) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-663 *4)) (-4 *5 (-630 *4)))) (-4162 (*1 *2 *3 *4) (-12 (-4 *5 (-540)) (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 (-619 (-890)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) -(-10 -7 (-15 -4162 ((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890))) (-15 -4169 ((-1218 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-355)) (-15 -4179 ((-2 (|:| |minor| (-619 (-890))) (|:| -2383 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2088 ((|#1| $) 35)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2043 ((|#1| |#1| $) 30)) (-2032 ((|#1| $) 28)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) NIL)) (-2539 (($ |#1| $) 31)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1357 ((|#1| $) 29)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 16)) (-3319 (($) 39)) (-3045 (((-745) $) 26)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 15)) (-3743 (((-832) $) 25 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) NIL)) (-4189 (($ (-619 |#1|)) 37)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 13 (|has| |#1| (-1063)))) (-3643 (((-745) $) 10 (|has| $ (-6 -4327))))) -(((-90 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -4189 ($ (-619 |#1|))))) (-1063)) (T -90)) -((-4189 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3))))) -(-13 (-1083 |#1|) (-10 -8 (-15 -4189 ($ (-619 |#1|))))) -((-3743 (((-832) $) 12) (((-1140) $) 8))) -(((-91 |#1|) (-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (((-1140) $) 14)) (-2214 (((-112) $ $) 6))) +((-2027 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2229 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-2054 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-3338 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2497 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-354))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -2027 (|t#1| $)) (-15 -2013 ($ $)) (-15 -1618 (|t#2| $)) (-15 -2781 ($ (-1 |t#1| |t#1|) $)) (-15 -2187 ((-112) $)) (-15 -2229 ($ |t#1| |t#2|)) (-15 -2054 ($ $)) (-15 -3338 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-354)) (-15 -2497 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-539)) (-6 (-539)) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (-6 (-38 (-398 (-547)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-281) |has| |#1| (-539)) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-2514 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-3233 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-4046 (((-112) $) 11)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1965 (((-619 (-590 $)) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2999 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2118 (($ $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-1607 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1658 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-2698 (((-3 (-590 $) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL)) (-2643 (((-590 $) $) NIL) (((-547) $) NIL) (((-398 (-547)) $) NIL)) (-2079 (($ $ $) NIL)) (-4238 (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-398 (-547)))) (|:| |vec| (-1218 (-398 (-547))))) (-663 $) (-1218 $)) NIL) (((-663 (-398 (-547))) (-663 $)) NIL)) (-2542 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2566 (($ $) NIL) (($ (-619 $)) NIL)) (-2004 (((-619 (-114)) $) NIL)) (-3454 (((-114) (-114)) NIL)) (-4114 (((-112) $) 14)) (-3466 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-1382 (((-1087 (-547) (-590 $)) $) NIL)) (-1311 (($ $ (-547)) NIL)) (-1684 (((-1131 $) (-1131 $) (-590 $)) NIL) (((-1131 $) (-1131 $) (-619 (-590 $))) NIL) (($ $ (-590 $)) NIL) (($ $ (-619 (-590 $))) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3057 (((-1131 $) (-590 $)) NIL (|has| $ (-1016)))) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 $ $) (-590 $)) NIL)) (-2108 (((-3 (-590 $) "failed") $) NIL)) (-3685 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-2043 (((-619 (-590 $)) $) NIL)) (-1465 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1469 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-1976 (($ $) NIL)) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ (-619 $)) NIL) (($ $ $) NIL)) (-3128 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3590 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2670 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2776 (((-745) $) NIL)) (-3329 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2207 (($ $) NIL) (($ $ $) NIL)) (-3443 (($ $ (-745)) NIL) (($ $) NIL)) (-1392 (((-1087 (-547) (-590 $)) $) NIL)) (-1901 (($ $) NIL (|has| $ (-1016)))) (-2829 (((-370) $) NIL) (((-217) $) NIL) (((-166 (-370)) $) NIL)) (-3834 (((-832) $) NIL) (($ (-590 $)) NIL) (($ (-398 (-547))) NIL) (($ $) NIL) (($ (-547)) NIL) (($ (-1087 (-547) (-590 $))) NIL)) (-2311 (((-745)) NIL)) (-3518 (($ $) NIL) (($ (-619 $)) NIL)) (-3358 (((-112) (-114)) NIL)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 7 T CONST)) (-3277 (($) 12 T CONST)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 16)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL)) (-2484 (($ $ $) 15) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-398 (-547))) NIL) (($ $ (-547)) NIL) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ $ $) NIL) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-48) (-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3834 ($ (-1087 (-547) (-590 $)))) (-15 -1382 ((-1087 (-547) (-590 $)) $)) (-15 -1392 ((-1087 (-547) (-590 $)) $)) (-15 -2542 ($ $)) (-15 -1684 ((-1131 $) (-1131 $) (-590 $))) (-15 -1684 ((-1131 $) (-1131 $) (-619 (-590 $)))) (-15 -1684 ($ $ (-590 $))) (-15 -1684 ($ $ (-619 (-590 $))))))) (T -48)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) (-2542 (*1 *1 *1) (-5 *1 (-48))) (-1684 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-590 (-48))) (-5 *1 (-48)))) (-1684 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-619 (-590 (-48)))) (-5 *1 (-48)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-590 (-48))) (-5 *1 (-48)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-48)))) (-5 *1 (-48))))) +(-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3834 ($ (-1087 (-547) (-590 $)))) (-15 -1382 ((-1087 (-547) (-590 $)) $)) (-15 -1392 ((-1087 (-547) (-590 $)) $)) (-15 -2542 ($ $)) (-15 -1684 ((-1131 $) (-1131 $) (-590 $))) (-15 -1684 ((-1131 $) (-1131 $) (-619 (-590 $)))) (-15 -1684 ($ $ (-590 $))) (-15 -1684 ($ $ (-619 (-590 $)))))) +((-3821 (((-112) $ $) NIL)) (-2888 (((-619 (-1135)) $) 17)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 7)) (-2478 (((-1140) $) 18)) (-2371 (((-112) $ $) NIL))) +(((-49) (-13 (-1063) (-10 -8 (-15 -2888 ((-619 (-1135)) $)) (-15 -2478 ((-1140) $))))) (T -49)) +((-2888 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-49)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-49))))) +(-13 (-1063) (-10 -8 (-15 -2888 ((-619 (-1135)) $)) (-15 -2478 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 61)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-1896 (((-112) $) 20)) (-2698 (((-3 |#1| "failed") $) 23)) (-2643 ((|#1| $) 24)) (-2054 (($ $) 28)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2027 ((|#1| $) 21)) (-3016 (($ $) 50)) (-1917 (((-1118) $) NIL)) (-3986 (((-112) $) 30)) (-3979 (((-1082) $) NIL)) (-4240 (($ (-745)) 48)) (-2703 (($ (-619 (-547))) 49)) (-1618 (((-745) $) 31)) (-3834 (((-832) $) 64) (($ (-547)) 45) (($ |#1|) 43)) (-3338 ((|#1| $ $) 19)) (-2311 (((-745)) 47)) (-3267 (($) 32 T CONST)) (-3277 (($) 14 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2027 (|#1| $)) (-15 -3016 ($ $)) (-15 -2054 ($ $)) (-15 -3338 (|#1| $ $)) (-15 -4240 ($ (-745))) (-15 -2703 ($ (-619 (-547)))) (-15 -3986 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -1618 ((-745) $)) (-15 -2781 ($ (-1 |#1| |#1|) $)))) (-1016) (-619 (-1135))) (T -50)) +((-2027 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) (-3338 (*1 *2 *1 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) (-4240 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-50 *3 *4)) (-14 *4 (-619 (-1135)))))) +(-13 (-596 |#1|) (-1007 |#1|) (-10 -8 (-15 -2027 (|#1| $)) (-15 -3016 ($ $)) (-15 -2054 ($ $)) (-15 -3338 (|#1| $ $)) (-15 -4240 ($ (-745))) (-15 -2703 ($ (-619 (-547)))) (-15 -3986 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -1618 ((-745) $)) (-15 -2781 ($ (-1 |#1| |#1|) $)))) +((-1896 (((-112) (-52)) 13)) (-2698 (((-3 |#1| "failed") (-52)) 21)) (-2643 ((|#1| (-52)) 22)) (-3834 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -3834 ((-52) |#1|)) (-15 -2698 ((-3 |#1| "failed") (-52))) (-15 -1896 ((-112) (-52))) (-15 -2643 (|#1| (-52)))) (-1172)) (T -51)) +((-2643 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1172)))) (-2698 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1172))))) +(-10 -7 (-15 -3834 ((-52) |#1|)) (-15 -2698 ((-3 |#1| "failed") (-52))) (-15 -1896 ((-112) (-52))) (-15 -2643 (|#1| (-52)))) +((-3821 (((-112) $ $) NIL)) (-1437 (((-1118) (-112)) 25)) (-2882 (((-832) $) 24)) (-1262 (((-748) $) 12)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2968 (((-832) $) 16)) (-1516 (((-1067) $) 14)) (-3834 (((-832) $) 32)) (-3363 (($ (-1067) (-748)) 33)) (-2371 (((-112) $ $) 18))) +(((-52) (-13 (-1063) (-10 -8 (-15 -3363 ($ (-1067) (-748))) (-15 -2968 ((-832) $)) (-15 -2882 ((-832) $)) (-15 -1516 ((-1067) $)) (-15 -1262 ((-748) $)) (-15 -1437 ((-1118) (-112)))))) (T -52)) +((-3363 (*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52)))) (-1262 (*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1118)) (-5 *1 (-52))))) +(-13 (-1063) (-10 -8 (-15 -3363 ($ (-1067) (-748))) (-15 -2968 ((-832) $)) (-15 -2882 ((-832) $)) (-15 -1516 ((-1067) $)) (-15 -1262 ((-748) $)) (-15 -1437 ((-1118) (-112))))) +((-3583 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3583 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1016) (-622 |#1|) (-823 |#1|)) (T -53)) +((-3583 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5))))) +(-10 -7 (-15 -3583 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3172 ((|#3| |#3| (-619 (-1135))) 35)) (-3069 ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890)) 22) ((|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3069 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -3069 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -3172 (|#3| |#3| (-619 (-1135))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-592 (-861 |#1|))) (-13 (-421 |#2|) (-855 |#1|) (-592 (-861 |#1|)))) (T -54)) +((-3172 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) (-3069 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) (-4 *6 (-13 (-1016) (-855 *5) (-821) (-592 (-861 *5)))) (-4 *2 (-13 (-421 *6) (-855 *5) (-592 (-861 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3069 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3|)) (-15 -3069 (|#3| (-619 (-1039 |#1| |#2| |#3|)) |#3| (-890))) (-15 -3172 (|#3| |#3| (-619 (-1135))))) +((-2826 (((-112) $ (-745)) 23)) (-2183 (($ $ (-547) |#3|) 46)) (-3251 (($ $ (-547) |#4|) 50)) (-3578 ((|#3| $ (-547)) 59)) (-2973 (((-619 |#2|) $) 30)) (-4161 (((-112) $ (-745)) 25)) (-3860 (((-112) |#2| $) 54)) (-1850 (($ (-1 |#2| |#2|) $) 37)) (-2781 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2024 (((-112) $ (-745)) 24)) (-2418 (($ $ |#2|) 34)) (-2462 (((-112) (-1 (-112) |#2|) $) 19)) (-3329 ((|#2| $ (-547) (-547)) NIL) ((|#2| $ (-547) (-547) |#2|) 27)) (-3987 (((-745) (-1 (-112) |#2|) $) 28) (((-745) |#2| $) 56)) (-2265 (($ $) 33)) (-3456 ((|#4| $ (-547)) 62)) (-3834 (((-832) $) 68)) (-2583 (((-112) (-1 (-112) |#2|) $) 18)) (-2371 (((-112) $ $) 53)) (-3763 (((-745) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3251 (|#1| |#1| (-547) |#4|)) (-15 -2183 (|#1| |#1| (-547) |#3|)) (-15 -2973 ((-619 |#2|) |#1|)) (-15 -3456 (|#4| |#1| (-547))) (-15 -3578 (|#3| |#1| (-547))) (-15 -3329 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) (-547))) (-15 -2418 (|#1| |#1| |#2|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3860 ((-112) |#2| |#1|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745))) (-15 -2265 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1172) (-364 |#2|) (-364 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3251 (|#1| |#1| (-547) |#4|)) (-15 -2183 (|#1| |#1| (-547) |#3|)) (-15 -2973 ((-619 |#2|) |#1|)) (-15 -3456 (|#4| |#1| (-547))) (-15 -3578 (|#3| |#1| (-547))) (-15 -3329 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) (-547))) (-15 -2418 (|#1| |#1| |#2|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3860 ((-112) |#2| |#1|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745))) (-15 -2265 (|#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) (-547) |#1|) 44)) (-2183 (($ $ (-547) |#2|) 42)) (-3251 (($ $ (-547) |#3|) 41)) (-3219 (($) 7 T CONST)) (-3578 ((|#2| $ (-547)) 46)) (-1861 ((|#1| $ (-547) (-547) |#1|) 43)) (-1793 ((|#1| $ (-547) (-547)) 48)) (-2973 (((-619 |#1|) $) 30)) (-2126 (((-745) $) 51)) (-3732 (($ (-745) (-745) |#1|) 57)) (-2139 (((-745) $) 50)) (-4161 (((-112) $ (-745)) 9)) (-2865 (((-547) $) 55)) (-3790 (((-547) $) 53)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2769 (((-547) $) 54)) (-3684 (((-547) $) 52)) (-1850 (($ (-1 |#1| |#1|) $) 34)) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) 56)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) (-547)) 49) ((|#1| $ (-547) (-547) |#1|) 47)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3456 ((|#3| $ (-547)) 45)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-56 |#1| |#2| |#3|) (-138) (-1172) (-364 |t#1|) (-364 |t#1|)) (T -56)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3732 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1172)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2418 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1172)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-547)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-745)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-745)))) (-3329 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-1172)))) (-1793 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-1172)))) (-3329 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1172)) (-4 *5 (-364 *4)) (-4 *2 (-364 *4)))) (-3456 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1172)) (-4 *5 (-364 *4)) (-4 *2 (-364 *4)))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-619 *3)))) (-2238 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) (-1861 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) (-2183 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1172)) (-4 *3 (-364 *4)) (-4 *5 (-364 *4)))) (-3251 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1172)) (-4 *5 (-364 *4)) (-4 *3 (-364 *4)))) (-1850 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2781 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2781 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))) +(-13 (-479 |t#1|) (-10 -8 (-6 -4329) (-6 -4328) (-15 -3732 ($ (-745) (-745) |t#1|)) (-15 -2418 ($ $ |t#1|)) (-15 -2865 ((-547) $)) (-15 -2769 ((-547) $)) (-15 -3790 ((-547) $)) (-15 -3684 ((-547) $)) (-15 -2126 ((-745) $)) (-15 -2139 ((-745) $)) (-15 -3329 (|t#1| $ (-547) (-547))) (-15 -1793 (|t#1| $ (-547) (-547))) (-15 -3329 (|t#1| $ (-547) (-547) |t#1|)) (-15 -3578 (|t#2| $ (-547))) (-15 -3456 (|t#3| $ (-547))) (-15 -2973 ((-619 |t#1|) $)) (-15 -2238 (|t#1| $ (-547) (-547) |t#1|)) (-15 -1861 (|t#1| $ (-547) (-547) |t#1|)) (-15 -2183 ($ $ (-547) |t#2|)) (-15 -3251 ($ $ (-547) |t#3|)) (-15 -2781 ($ (-1 |t#1| |t#1|) $)) (-15 -1850 ($ (-1 |t#1| |t#1|) $)) (-15 -2781 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2781 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3562 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2542 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-2781 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-57 |#1| |#2|) (-10 -7 (-15 -3562 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2781 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1172) (-1172)) (T -57)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-57 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) +(-10 -7 (-15 -3562 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2781 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) |#1|) 11 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-2312 (($ (-619 |#1|)) 13) (($ (-745) |#1|) 14)) (-3732 (($ (-745) |#1|) 9)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 7)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2312 ($ (-619 |#1|))) (-15 -2312 ($ (-745) |#1|)))) (-1172)) (T -58)) +((-2312 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-58 *3)))) (-2312 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1172))))) +(-13 (-19 |#1|) (-10 -8 (-15 -2312 ($ (-619 |#1|))) (-15 -2312 ($ (-745) |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) (-547) |#1|) NIL)) (-2183 (($ $ (-547) (-58 |#1|)) NIL)) (-3251 (($ $ (-547) (-58 |#1|)) NIL)) (-3219 (($) NIL T CONST)) (-3578 (((-58 |#1|) $ (-547)) NIL)) (-1861 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1793 ((|#1| $ (-547) (-547)) NIL)) (-2973 (((-619 |#1|) $) NIL)) (-2126 (((-745) $) NIL)) (-3732 (($ (-745) (-745) |#1|) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2865 (((-547) $) NIL)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2769 (((-547) $) NIL)) (-3684 (((-547) $) NIL)) (-1850 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3456 (((-58 |#1|) $ (-547)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4329))) (-1172)) (T -59)) +NIL +(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4329))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 74) (((-3 $ "failed") (-1218 (-307 (-547)))) 63) (((-3 $ "failed") (-1218 (-921 (-370)))) 94) (((-3 $ "failed") (-1218 (-921 (-547)))) 84) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 52) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 39)) (-2643 (($ (-1218 (-307 (-370)))) 70) (($ (-1218 (-307 (-547)))) 59) (($ (-1218 (-921 (-370)))) 90) (($ (-1218 (-921 (-547)))) 80) (($ (-1218 (-398 (-921 (-370))))) 48) (($ (-1218 (-398 (-921 (-547))))) 32)) (-3304 (((-1223) $) 120)) (-3834 (((-832) $) 113) (($ (-619 (-321))) 103) (($ (-321)) 97) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 101) (($ (-1218 (-330 (-3841 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3841) (-673)))) 31))) +(((-60 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3841) (-673))))))) (-1135)) (T -60)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3841) (-673)))) (-5 *1 (-60 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3841) (-673))))))) +((-3304 (((-1223) $) 53) (((-1223)) 54)) (-3834 (((-832) $) 50))) +(((-61 |#1|) (-13 (-386) (-10 -7 (-15 -3304 ((-1223))))) (-1135)) (T -61)) +((-3304 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-61 *3)) (-14 *3 (-1135))))) +(-13 (-386) (-10 -7 (-15 -3304 ((-1223))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 144) (((-3 $ "failed") (-1218 (-307 (-547)))) 134) (((-3 $ "failed") (-1218 (-921 (-370)))) 164) (((-3 $ "failed") (-1218 (-921 (-547)))) 154) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 123) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 111)) (-2643 (($ (-1218 (-307 (-370)))) 140) (($ (-1218 (-307 (-547)))) 130) (($ (-1218 (-921 (-370)))) 160) (($ (-1218 (-921 (-547)))) 150) (($ (-1218 (-398 (-921 (-370))))) 119) (($ (-1218 (-398 (-921 (-547))))) 104)) (-3304 (((-1223) $) 97)) (-3834 (((-832) $) 91) (($ (-619 (-321))) 29) (($ (-321)) 34) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 32) (($ (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673)))) 89))) +(((-62 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673))))))) (-1135)) (T -62)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673)))) (-5 *1 (-62 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673))))))) +((-2698 (((-3 $ "failed") (-307 (-370))) 41) (((-3 $ "failed") (-307 (-547))) 46) (((-3 $ "failed") (-921 (-370))) 50) (((-3 $ "failed") (-921 (-547))) 54) (((-3 $ "failed") (-398 (-921 (-370)))) 36) (((-3 $ "failed") (-398 (-921 (-547)))) 29)) (-2643 (($ (-307 (-370))) 39) (($ (-307 (-547))) 44) (($ (-921 (-370))) 48) (($ (-921 (-547))) 52) (($ (-398 (-921 (-370)))) 34) (($ (-398 (-921 (-547)))) 26)) (-3304 (((-1223) $) 76)) (-3834 (((-832) $) 69) (($ (-619 (-321))) 61) (($ (-321)) 66) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 64) (($ (-330 (-3841 (QUOTE X)) (-3841) (-673))) 25))) +(((-63 |#1|) (-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841 (QUOTE X)) (-3841) (-673)))))) (-1135)) (T -63)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-330 (-3841 (QUOTE X)) (-3841) (-673))) (-5 *1 (-63 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841 (QUOTE X)) (-3841) (-673)))))) +((-2698 (((-3 $ "failed") (-663 (-307 (-370)))) 109) (((-3 $ "failed") (-663 (-307 (-547)))) 97) (((-3 $ "failed") (-663 (-921 (-370)))) 131) (((-3 $ "failed") (-663 (-921 (-547)))) 120) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 85) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 71)) (-2643 (($ (-663 (-307 (-370)))) 105) (($ (-663 (-307 (-547)))) 93) (($ (-663 (-921 (-370)))) 127) (($ (-663 (-921 (-547)))) 116) (($ (-663 (-398 (-921 (-370))))) 81) (($ (-663 (-398 (-921 (-547))))) 64)) (-3304 (((-1223) $) 139)) (-3834 (((-832) $) 133) (($ (-619 (-321))) 28) (($ (-321)) 33) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 31) (($ (-663 (-330 (-3841) (-3841 (QUOTE X) (QUOTE HESS)) (-673)))) 54))) +(((-64 |#1|) (-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841) (-3841 (QUOTE X) (QUOTE HESS)) (-673))))))) (-1135)) (T -64)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3841) (-3841 (QUOTE X) (QUOTE HESS)) (-673)))) (-5 *1 (-64 *3)) (-14 *3 (-1135))))) +(-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841) (-3841 (QUOTE X) (QUOTE HESS)) (-673))))))) +((-2698 (((-3 $ "failed") (-307 (-370))) 59) (((-3 $ "failed") (-307 (-547))) 64) (((-3 $ "failed") (-921 (-370))) 68) (((-3 $ "failed") (-921 (-547))) 72) (((-3 $ "failed") (-398 (-921 (-370)))) 54) (((-3 $ "failed") (-398 (-921 (-547)))) 47)) (-2643 (($ (-307 (-370))) 57) (($ (-307 (-547))) 62) (($ (-921 (-370))) 66) (($ (-921 (-547))) 70) (($ (-398 (-921 (-370)))) 52) (($ (-398 (-921 (-547)))) 44)) (-3304 (((-1223) $) 81)) (-3834 (((-832) $) 75) (($ (-619 (-321))) 28) (($ (-321)) 33) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 31) (($ (-330 (-3841) (-3841 (QUOTE XC)) (-673))) 39))) +(((-65 |#1|) (-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841) (-3841 (QUOTE XC)) (-673)))))) (-1135)) (T -65)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-330 (-3841) (-3841 (QUOTE XC)) (-673))) (-5 *1 (-65 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841) (-3841 (QUOTE XC)) (-673)))))) +((-3304 (((-1223) $) 63)) (-3834 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-321))) 48) (($ (-321)) 55) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 53))) +(((-66 |#1|) (-374) (-1135)) (T -66)) +NIL +(-374) +((-3304 (((-1223) $) 64)) (-3834 (((-832) $) 58) (($ (-663 (-673))) 50) (($ (-619 (-321))) 49) (($ (-321)) 52) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 55))) +(((-67 |#1|) (-374) (-1135)) (T -67)) +NIL +(-374) +((-3304 (((-1223) $) NIL) (((-1223)) 32)) (-3834 (((-832) $) NIL))) +(((-68 |#1|) (-13 (-386) (-10 -7 (-15 -3304 ((-1223))))) (-1135)) (T -68)) +((-3304 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-68 *3)) (-14 *3 (-1135))))) +(-13 (-386) (-10 -7 (-15 -3304 ((-1223))))) +((-3304 (((-1223) $) 73)) (-3834 (((-832) $) 67) (($ (-663 (-673))) 59) (($ (-619 (-321))) 61) (($ (-321)) 64) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 58))) +(((-69 |#1|) (-374) (-1135)) (T -69)) +NIL +(-374) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 103) (((-3 $ "failed") (-1218 (-307 (-547)))) 92) (((-3 $ "failed") (-1218 (-921 (-370)))) 123) (((-3 $ "failed") (-1218 (-921 (-547)))) 113) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 81) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 68)) (-2643 (($ (-1218 (-307 (-370)))) 99) (($ (-1218 (-307 (-547)))) 88) (($ (-1218 (-921 (-370)))) 119) (($ (-1218 (-921 (-547)))) 109) (($ (-1218 (-398 (-921 (-370))))) 77) (($ (-1218 (-398 (-921 (-547))))) 61)) (-3304 (((-1223) $) 136)) (-3834 (((-832) $) 130) (($ (-619 (-321))) 125) (($ (-321)) 128) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 53) (($ (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673)))) 54))) +(((-70 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673))))))) (-1135)) (T -70)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673)))) (-5 *1 (-70 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673))))))) +((-3304 (((-1223) $) 32) (((-1223)) 31)) (-3834 (((-832) $) 35))) +(((-71 |#1|) (-13 (-386) (-10 -7 (-15 -3304 ((-1223))))) (-1135)) (T -71)) +((-3304 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-71 *3)) (-14 *3 (-1135))))) +(-13 (-386) (-10 -7 (-15 -3304 ((-1223))))) +((-3304 (((-1223) $) 63)) (-3834 (((-832) $) 57) (($ (-663 (-673))) 49) (($ (-619 (-321))) 51) (($ (-321)) 54) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 48))) +(((-72 |#1|) (-374) (-1135)) (T -72)) +NIL +(-374) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 125) (((-3 $ "failed") (-1218 (-307 (-547)))) 115) (((-3 $ "failed") (-1218 (-921 (-370)))) 145) (((-3 $ "failed") (-1218 (-921 (-547)))) 135) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 105) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 93)) (-2643 (($ (-1218 (-307 (-370)))) 121) (($ (-1218 (-307 (-547)))) 111) (($ (-1218 (-921 (-370)))) 141) (($ (-1218 (-921 (-547)))) 131) (($ (-1218 (-398 (-921 (-370))))) 101) (($ (-1218 (-398 (-921 (-547))))) 86)) (-3304 (((-1223) $) 78)) (-3834 (((-832) $) 27) (($ (-619 (-321))) 68) (($ (-321)) 64) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 71) (($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673)))) 65))) +(((-73 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673))))))) (-1135)) (T -73)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673)))) (-5 *1 (-73 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 130) (((-3 $ "failed") (-1218 (-307 (-547)))) 119) (((-3 $ "failed") (-1218 (-921 (-370)))) 150) (((-3 $ "failed") (-1218 (-921 (-547)))) 140) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 108) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 95)) (-2643 (($ (-1218 (-307 (-370)))) 126) (($ (-1218 (-307 (-547)))) 115) (($ (-1218 (-921 (-370)))) 146) (($ (-1218 (-921 (-547)))) 136) (($ (-1218 (-398 (-921 (-370))))) 104) (($ (-1218 (-398 (-921 (-547))))) 88)) (-3304 (((-1223) $) 79)) (-3834 (((-832) $) 71) (($ (-619 (-321))) NIL) (($ (-321)) NIL) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) NIL) (($ (-1218 (-330 (-3841 (QUOTE X) (QUOTE EPS)) (-3841 (QUOTE -2647)) (-673)))) 66))) +(((-74 |#1| |#2| |#3|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X) (QUOTE EPS)) (-3841 (QUOTE -2647)) (-673))))))) (-1135) (-1135) (-1135)) (T -74)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE X) (QUOTE EPS)) (-3841 (QUOTE -2647)) (-673)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X) (QUOTE EPS)) (-3841 (QUOTE -2647)) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 134) (((-3 $ "failed") (-1218 (-307 (-547)))) 123) (((-3 $ "failed") (-1218 (-921 (-370)))) 154) (((-3 $ "failed") (-1218 (-921 (-547)))) 144) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 112) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 99)) (-2643 (($ (-1218 (-307 (-370)))) 130) (($ (-1218 (-307 (-547)))) 119) (($ (-1218 (-921 (-370)))) 150) (($ (-1218 (-921 (-547)))) 140) (($ (-1218 (-398 (-921 (-370))))) 108) (($ (-1218 (-398 (-921 (-547))))) 92)) (-3304 (((-1223) $) 83)) (-3834 (((-832) $) 75) (($ (-619 (-321))) NIL) (($ (-321)) NIL) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) NIL) (($ (-1218 (-330 (-3841 (QUOTE EPS)) (-3841 (QUOTE YA) (QUOTE YB)) (-673)))) 70))) +(((-75 |#1| |#2| |#3|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE EPS)) (-3841 (QUOTE YA) (QUOTE YB)) (-673))))))) (-1135) (-1135) (-1135)) (T -75)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE EPS)) (-3841 (QUOTE YA) (QUOTE YB)) (-673)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE EPS)) (-3841 (QUOTE YA) (QUOTE YB)) (-673))))))) +((-2698 (((-3 $ "failed") (-307 (-370))) 82) (((-3 $ "failed") (-307 (-547))) 87) (((-3 $ "failed") (-921 (-370))) 91) (((-3 $ "failed") (-921 (-547))) 95) (((-3 $ "failed") (-398 (-921 (-370)))) 77) (((-3 $ "failed") (-398 (-921 (-547)))) 70)) (-2643 (($ (-307 (-370))) 80) (($ (-307 (-547))) 85) (($ (-921 (-370))) 89) (($ (-921 (-547))) 93) (($ (-398 (-921 (-370)))) 75) (($ (-398 (-921 (-547)))) 67)) (-3304 (((-1223) $) 62)) (-3834 (((-832) $) 50) (($ (-619 (-321))) 46) (($ (-321)) 56) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 54) (($ (-330 (-3841) (-3841 (QUOTE X)) (-673))) 47))) +(((-76 |#1|) (-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841) (-3841 (QUOTE X)) (-673)))))) (-1135)) (T -76)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-330 (-3841) (-3841 (QUOTE X)) (-673))) (-5 *1 (-76 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841) (-3841 (QUOTE X)) (-673)))))) +((-2698 (((-3 $ "failed") (-307 (-370))) 46) (((-3 $ "failed") (-307 (-547))) 51) (((-3 $ "failed") (-921 (-370))) 55) (((-3 $ "failed") (-921 (-547))) 59) (((-3 $ "failed") (-398 (-921 (-370)))) 41) (((-3 $ "failed") (-398 (-921 (-547)))) 34)) (-2643 (($ (-307 (-370))) 44) (($ (-307 (-547))) 49) (($ (-921 (-370))) 53) (($ (-921 (-547))) 57) (($ (-398 (-921 (-370)))) 39) (($ (-398 (-921 (-547)))) 31)) (-3304 (((-1223) $) 80)) (-3834 (((-832) $) 74) (($ (-619 (-321))) 66) (($ (-321)) 71) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 69) (($ (-330 (-3841) (-3841 (QUOTE X)) (-673))) 30))) +(((-77 |#1|) (-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841) (-3841 (QUOTE X)) (-673)))))) (-1135)) (T -77)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-330 (-3841) (-3841 (QUOTE X)) (-673))) (-5 *1 (-77 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841) (-3841 (QUOTE X)) (-673)))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 89) (((-3 $ "failed") (-1218 (-307 (-547)))) 78) (((-3 $ "failed") (-1218 (-921 (-370)))) 109) (((-3 $ "failed") (-1218 (-921 (-547)))) 99) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 67) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 54)) (-2643 (($ (-1218 (-307 (-370)))) 85) (($ (-1218 (-307 (-547)))) 74) (($ (-1218 (-921 (-370)))) 105) (($ (-1218 (-921 (-547)))) 95) (($ (-1218 (-398 (-921 (-370))))) 63) (($ (-1218 (-398 (-921 (-547))))) 47)) (-3304 (((-1223) $) 125)) (-3834 (((-832) $) 119) (($ (-619 (-321))) 112) (($ (-321)) 37) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 115) (($ (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673)))) 38))) +(((-78 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673))))))) (-1135)) (T -78)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673)))) (-5 *1 (-78 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE XC)) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 142) (((-3 $ "failed") (-1218 (-307 (-547)))) 132) (((-3 $ "failed") (-1218 (-921 (-370)))) 162) (((-3 $ "failed") (-1218 (-921 (-547)))) 152) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 122) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 110)) (-2643 (($ (-1218 (-307 (-370)))) 138) (($ (-1218 (-307 (-547)))) 128) (($ (-1218 (-921 (-370)))) 158) (($ (-1218 (-921 (-547)))) 148) (($ (-1218 (-398 (-921 (-370))))) 118) (($ (-1218 (-398 (-921 (-547))))) 103)) (-3304 (((-1223) $) 96)) (-3834 (((-832) $) 90) (($ (-619 (-321))) 81) (($ (-321)) 88) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 86) (($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673)))) 82))) +(((-79 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673))))))) (-1135)) (T -79)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673)))) (-5 *1 (-79 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 78) (((-3 $ "failed") (-1218 (-307 (-547)))) 67) (((-3 $ "failed") (-1218 (-921 (-370)))) 98) (((-3 $ "failed") (-1218 (-921 (-547)))) 88) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 56) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 43)) (-2643 (($ (-1218 (-307 (-370)))) 74) (($ (-1218 (-307 (-547)))) 63) (($ (-1218 (-921 (-370)))) 94) (($ (-1218 (-921 (-547)))) 84) (($ (-1218 (-398 (-921 (-370))))) 52) (($ (-1218 (-398 (-921 (-547))))) 36)) (-3304 (((-1223) $) 124)) (-3834 (((-832) $) 118) (($ (-619 (-321))) 109) (($ (-321)) 115) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 113) (($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673)))) 35))) +(((-80 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673))))))) (-1135)) (T -80)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673)))) (-5 *1 (-80 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841) (-3841 (QUOTE X)) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 95) (((-3 $ "failed") (-1218 (-307 (-547)))) 84) (((-3 $ "failed") (-1218 (-921 (-370)))) 115) (((-3 $ "failed") (-1218 (-921 (-547)))) 105) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 73) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 60)) (-2643 (($ (-1218 (-307 (-370)))) 91) (($ (-1218 (-307 (-547)))) 80) (($ (-1218 (-921 (-370)))) 111) (($ (-1218 (-921 (-547)))) 101) (($ (-1218 (-398 (-921 (-370))))) 69) (($ (-1218 (-398 (-921 (-547))))) 53)) (-3304 (((-1223) $) 45)) (-3834 (((-832) $) 39) (($ (-619 (-321))) 29) (($ (-321)) 32) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 35) (($ (-1218 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673)))) 30))) +(((-81 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673))))))) (-1135)) (T -81)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673)))) (-5 *1 (-81 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673))))))) +((-2698 (((-3 $ "failed") (-663 (-307 (-370)))) 115) (((-3 $ "failed") (-663 (-307 (-547)))) 104) (((-3 $ "failed") (-663 (-921 (-370)))) 137) (((-3 $ "failed") (-663 (-921 (-547)))) 126) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 93) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 80)) (-2643 (($ (-663 (-307 (-370)))) 111) (($ (-663 (-307 (-547)))) 100) (($ (-663 (-921 (-370)))) 133) (($ (-663 (-921 (-547)))) 122) (($ (-663 (-398 (-921 (-370))))) 89) (($ (-663 (-398 (-921 (-547))))) 73)) (-3304 (((-1223) $) 63)) (-3834 (((-832) $) 50) (($ (-619 (-321))) 57) (($ (-321)) 46) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 55) (($ (-663 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673)))) 47))) +(((-82 |#1|) (-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673))))))) (-1135)) (T -82)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673)))) (-5 *1 (-82 *3)) (-14 *3 (-1135))))) +(-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841 (QUOTE X) (QUOTE -2647)) (-3841) (-673))))))) +((-2698 (((-3 $ "failed") (-663 (-307 (-370)))) 112) (((-3 $ "failed") (-663 (-307 (-547)))) 100) (((-3 $ "failed") (-663 (-921 (-370)))) 134) (((-3 $ "failed") (-663 (-921 (-547)))) 123) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 88) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 74)) (-2643 (($ (-663 (-307 (-370)))) 108) (($ (-663 (-307 (-547)))) 96) (($ (-663 (-921 (-370)))) 130) (($ (-663 (-921 (-547)))) 119) (($ (-663 (-398 (-921 (-370))))) 84) (($ (-663 (-398 (-921 (-547))))) 67)) (-3304 (((-1223) $) 59)) (-3834 (((-832) $) 53) (($ (-619 (-321))) 47) (($ (-321)) 50) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 44) (($ (-663 (-330 (-3841 (QUOTE X)) (-3841) (-673)))) 45))) +(((-83 |#1|) (-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841 (QUOTE X)) (-3841) (-673))))))) (-1135)) (T -83)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3841 (QUOTE X)) (-3841) (-673)))) (-5 *1 (-83 *3)) (-14 *3 (-1135))))) +(-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841 (QUOTE X)) (-3841) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 104) (((-3 $ "failed") (-1218 (-307 (-547)))) 93) (((-3 $ "failed") (-1218 (-921 (-370)))) 124) (((-3 $ "failed") (-1218 (-921 (-547)))) 114) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 82) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 69)) (-2643 (($ (-1218 (-307 (-370)))) 100) (($ (-1218 (-307 (-547)))) 89) (($ (-1218 (-921 (-370)))) 120) (($ (-1218 (-921 (-547)))) 110) (($ (-1218 (-398 (-921 (-370))))) 78) (($ (-1218 (-398 (-921 (-547))))) 62)) (-3304 (((-1223) $) 46)) (-3834 (((-832) $) 40) (($ (-619 (-321))) 49) (($ (-321)) 36) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 52) (($ (-1218 (-330 (-3841 (QUOTE X)) (-3841) (-673)))) 37))) +(((-84 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X)) (-3841) (-673))))))) (-1135)) (T -84)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE X)) (-3841) (-673)))) (-5 *1 (-84 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X)) (-3841) (-673))))))) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 79) (((-3 $ "failed") (-1218 (-307 (-547)))) 68) (((-3 $ "failed") (-1218 (-921 (-370)))) 99) (((-3 $ "failed") (-1218 (-921 (-547)))) 89) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 57) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 44)) (-2643 (($ (-1218 (-307 (-370)))) 75) (($ (-1218 (-307 (-547)))) 64) (($ (-1218 (-921 (-370)))) 95) (($ (-1218 (-921 (-547)))) 85) (($ (-1218 (-398 (-921 (-370))))) 53) (($ (-1218 (-398 (-921 (-547))))) 37)) (-3304 (((-1223) $) 125)) (-3834 (((-832) $) 119) (($ (-619 (-321))) 110) (($ (-321)) 116) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 114) (($ (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673)))) 36))) +(((-85 |#1|) (-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673))))))) (-1135)) (T -85)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673)))) (-5 *1 (-85 *3)) (-14 *3 (-1135))))) +(-13 (-431) (-10 -8 (-15 -3834 ($ (-1218 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673))))))) +((-2698 (((-3 $ "failed") (-663 (-307 (-370)))) 113) (((-3 $ "failed") (-663 (-307 (-547)))) 101) (((-3 $ "failed") (-663 (-921 (-370)))) 135) (((-3 $ "failed") (-663 (-921 (-547)))) 124) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 89) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 75)) (-2643 (($ (-663 (-307 (-370)))) 109) (($ (-663 (-307 (-547)))) 97) (($ (-663 (-921 (-370)))) 131) (($ (-663 (-921 (-547)))) 120) (($ (-663 (-398 (-921 (-370))))) 85) (($ (-663 (-398 (-921 (-547))))) 68)) (-3304 (((-1223) $) 59)) (-3834 (((-832) $) 53) (($ (-619 (-321))) 43) (($ (-321)) 50) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 48) (($ (-663 (-330 (-3841 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3841) (-673)))) 44))) +(((-86 |#1|) (-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3841) (-673))))))) (-1135)) (T -86)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-663 (-330 (-3841 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3841) (-673)))) (-5 *1 (-86 *3)) (-14 *3 (-1135))))) +(-13 (-375) (-10 -8 (-15 -3834 ($ (-663 (-330 (-3841 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3841) (-673))))))) +((-3304 (((-1223) $) 44)) (-3834 (((-832) $) 38) (($ (-1218 (-673))) 92) (($ (-619 (-321))) 30) (($ (-321)) 35) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 33))) +(((-87 |#1|) (-430) (-1135)) (T -87)) +NIL +(-430) +((-2698 (((-3 $ "failed") (-307 (-370))) 47) (((-3 $ "failed") (-307 (-547))) 52) (((-3 $ "failed") (-921 (-370))) 56) (((-3 $ "failed") (-921 (-547))) 60) (((-3 $ "failed") (-398 (-921 (-370)))) 42) (((-3 $ "failed") (-398 (-921 (-547)))) 35)) (-2643 (($ (-307 (-370))) 45) (($ (-307 (-547))) 50) (($ (-921 (-370))) 54) (($ (-921 (-547))) 58) (($ (-398 (-921 (-370)))) 40) (($ (-398 (-921 (-547)))) 32)) (-3304 (((-1223) $) 90)) (-3834 (((-832) $) 84) (($ (-619 (-321))) 78) (($ (-321)) 81) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 76) (($ (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673))) 31))) +(((-88 |#1|) (-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673)))))) (-1135)) (T -88)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673))) (-5 *1 (-88 *3)) (-14 *3 (-1135))))) +(-13 (-387) (-10 -8 (-15 -3834 ($ (-330 (-3841 (QUOTE X)) (-3841 (QUOTE -2647)) (-673)))))) +((-2504 (((-1218 (-663 |#1|)) (-663 |#1|)) 54)) (-2440 (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890)) 44)) (-2618 (((-2 (|:| |minor| (-619 (-890))) (|:| -2636 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890)) 65 (|has| |#1| (-354))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -2440 ((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890))) (-15 -2504 ((-1218 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-354)) (-15 -2618 ((-2 (|:| |minor| (-619 (-890))) (|:| -2636 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) (-539) (-630 |#1|)) (T -89)) +((-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |minor| (-619 (-890))) (|:| -2636 *3) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5)))) (-2504 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-663 *4)) (-4 *5 (-630 *4)))) (-2440 (*1 *2 *3 *4) (-12 (-4 *5 (-539)) (-5 *2 (-2 (|:| -3509 (-663 *5)) (|:| |vec| (-1218 (-619 (-890)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) +(-10 -7 (-15 -2440 ((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 (-619 (-890))))) |#2| (-890))) (-15 -2504 ((-1218 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-354)) (-15 -2618 ((-2 (|:| |minor| (-619 (-890))) (|:| -2636 |#2|) (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 |#2|))) |#2| (-890))) |%noBranch|)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2303 ((|#1| $) 35)) (-2826 (((-112) $ (-745)) NIL)) (-3219 (($) NIL T CONST)) (-2936 ((|#1| |#1| $) 30)) (-2853 ((|#1| $) 28)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1959 ((|#1| $) NIL)) (-1885 (($ |#1| $) 31)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1373 ((|#1| $) 29)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 16)) (-4011 (($) 39)) (-1313 (((-745) $) 26)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 15)) (-3834 (((-832) $) 25 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) NIL)) (-2714 (($ (-619 |#1|)) 37)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 13 (|has| |#1| (-1063)))) (-3763 (((-745) $) 10 (|has| $ (-6 -4328))))) +(((-90 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -2714 ($ (-619 |#1|))))) (-1063)) (T -90)) +((-2714 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3))))) +(-13 (-1083 |#1|) (-10 -8 (-15 -2714 ($ (-619 |#1|))))) +((-3834 (((-832) $) 12) (((-1140) $) 8))) +(((-91 |#1|) (-10 -8 (-15 -3834 ((-1140) |#1|)) (-15 -3834 ((-832) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -3834 ((-1140) |#1|)) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (((-1140) $) 14)) (-2371 (((-112) $ $) 6))) (((-92) (-138)) (T -92)) NIL -(-13 (-1063) (-592 (-1140))) -(((-101) . T) ((-592 (-832)) . T) ((-592 (-1140)) . T) ((-1063) . T)) -((-2029 (($ $) 10)) (-2040 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|))) (-94)) (T -93)) +(-13 (-1063) (-591 (-1140))) +(((-101) . T) ((-591 (-832)) . T) ((-591 (-1140)) . T) ((-1063) . T)) +((-1597 (($ $) 10)) (-1610 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -1610 (|#1| |#1|)) (-15 -1597 (|#1| |#1|))) (-94)) (T -93)) NIL -(-10 -8 (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|))) -((-2006 (($ $) 11)) (-1986 (($ $) 10)) (-2029 (($ $) 9)) (-2040 (($ $) 8)) (-2017 (($ $) 7)) (-1996 (($ $) 6))) +(-10 -8 (-15 -1610 (|#1| |#1|)) (-15 -1597 (|#1| |#1|))) +((-1574 (($ $) 11)) (-1550 (($ $) 10)) (-1597 (($ $) 9)) (-1610 (($ $) 8)) (-1586 (($ $) 7)) (-1563 (($ $) 6))) (((-94) (-138)) (T -94)) -((-2006 (*1 *1 *1) (-4 *1 (-94))) (-1986 (*1 *1 *1) (-4 *1 (-94))) (-2029 (*1 *1 *1) (-4 *1 (-94))) (-2040 (*1 *1 *1) (-4 *1 (-94))) (-2017 (*1 *1 *1) (-4 *1 (-94))) (-1996 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -1996 ($ $)) (-15 -2017 ($ $)) (-15 -2040 ($ $)) (-15 -2029 ($ $)) (-15 -1986 ($ $)) (-15 -2006 ($ $)))) -((-3730 (((-112) $ $) NIL)) (-2275 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-95) (-13 (-1047) (-10 -8 (-15 -2275 ((-1140) $))))) (T -95)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-95))))) -(-13 (-1047) (-10 -8 (-15 -2275 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-4199 (((-371) (-1118) (-371)) 42) (((-371) (-1118) (-1118) (-371)) 41)) (-4210 (((-371) (-371)) 33)) (-4221 (((-1223)) 36)) (-2546 (((-1118) $) NIL)) (-4255 (((-371) (-1118) (-1118)) 46) (((-371) (-1118)) 48)) (-3932 (((-1082) $) NIL)) (-4231 (((-371) (-1118) (-1118)) 47)) (-4242 (((-371) (-1118) (-1118)) 49) (((-371) (-1118)) 50)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-96) (-13 (-1063) (-10 -7 (-15 -4255 ((-371) (-1118) (-1118))) (-15 -4255 ((-371) (-1118))) (-15 -4242 ((-371) (-1118) (-1118))) (-15 -4242 ((-371) (-1118))) (-15 -4231 ((-371) (-1118) (-1118))) (-15 -4221 ((-1223))) (-15 -4210 ((-371) (-371))) (-15 -4199 ((-371) (-1118) (-371))) (-15 -4199 ((-371) (-1118) (-1118) (-371))) (-6 -4327)))) (T -96)) -((-4255 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4242 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4231 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) (-4221 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-96)))) (-4210 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))) (-4199 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96)))) (-4199 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96))))) -(-13 (-1063) (-10 -7 (-15 -4255 ((-371) (-1118) (-1118))) (-15 -4255 ((-371) (-1118))) (-15 -4242 ((-371) (-1118) (-1118))) (-15 -4242 ((-371) (-1118))) (-15 -4231 ((-371) (-1118) (-1118))) (-15 -4221 ((-1223))) (-15 -4210 ((-371) (-371))) (-15 -4199 ((-371) (-1118) (-371))) (-15 -4199 ((-371) (-1118) (-1118) (-371))) (-6 -4327))) +((-1574 (*1 *1 *1) (-4 *1 (-94))) (-1550 (*1 *1 *1) (-4 *1 (-94))) (-1597 (*1 *1 *1) (-4 *1 (-94))) (-1610 (*1 *1 *1) (-4 *1 (-94))) (-1586 (*1 *1 *1) (-4 *1 (-94))) (-1563 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -1563 ($ $)) (-15 -1586 ($ $)) (-15 -1610 ($ $)) (-15 -1597 ($ $)) (-15 -1550 ($ $)) (-15 -1574 ($ $)))) +((-3821 (((-112) $ $) NIL)) (-2464 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-95) (-13 (-1047) (-10 -8 (-15 -2464 ((-1140) $))))) (T -95)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-95))))) +(-13 (-1047) (-10 -8 (-15 -2464 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-1494 (((-370) (-1118) (-370)) 42) (((-370) (-1118) (-1118) (-370)) 41)) (-1614 (((-370) (-370)) 33)) (-1736 (((-1223)) 36)) (-1917 (((-1118) $) NIL)) (-3904 (((-370) (-1118) (-1118)) 46) (((-370) (-1118)) 48)) (-3979 (((-1082) $) NIL)) (-1854 (((-370) (-1118) (-1118)) 47)) (-1956 (((-370) (-1118) (-1118)) 49) (((-370) (-1118)) 50)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-96) (-13 (-1063) (-10 -7 (-15 -3904 ((-370) (-1118) (-1118))) (-15 -3904 ((-370) (-1118))) (-15 -1956 ((-370) (-1118) (-1118))) (-15 -1956 ((-370) (-1118))) (-15 -1854 ((-370) (-1118) (-1118))) (-15 -1736 ((-1223))) (-15 -1614 ((-370) (-370))) (-15 -1494 ((-370) (-1118) (-370))) (-15 -1494 ((-370) (-1118) (-1118) (-370))) (-6 -4328)))) (T -96)) +((-3904 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) (-1956 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) (-1854 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) (-1736 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-96)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-96)))) (-1494 (*1 *2 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1118)) (-5 *1 (-96)))) (-1494 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1118)) (-5 *1 (-96))))) +(-13 (-1063) (-10 -7 (-15 -3904 ((-370) (-1118) (-1118))) (-15 -3904 ((-370) (-1118))) (-15 -1956 ((-370) (-1118) (-1118))) (-15 -1956 ((-370) (-1118))) (-15 -1854 ((-370) (-1118) (-1118))) (-15 -1736 ((-1223))) (-15 -1614 ((-370) (-370))) (-15 -1494 ((-370) (-1118) (-370))) (-15 -1494 ((-370) (-1118) (-1118) (-370))) (-6 -4328))) NIL (((-97) (-138)) (T -97)) NIL -(-13 (-10 -7 (-6 -4327) (-6 (-4329 "*")) (-6 -4328) (-6 -4324) (-6 -4322) (-6 -4321) (-6 -4320) (-6 -4325) (-6 -4319) (-6 -4318) (-6 -4317) (-6 -4316) (-6 -4315) (-6 -4323) (-6 -4326) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4314))) -((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-4266 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-548))) 22)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 14)) (-3932 (((-1082) $) NIL)) (-3171 ((|#1| $ |#1|) 11)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 20)) (-3118 (($) 8 T CONST)) (-2214 (((-112) $ $) 10)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) 27) (($ $ (-745)) NIL) (($ $ (-548)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-464) (-278 |#1| |#1|) (-10 -8 (-15 -4266 ($ (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1| (-548)))))) (-1016)) (T -98)) -((-4266 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-4266 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) -(-13 (-464) (-278 |#1| |#1|) (-10 -8 (-15 -4266 ($ (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4266 ($ (-1 |#1| |#1| (-548)))))) -((-4277 (((-410 |#2|) |#2| (-619 |#2|)) 10) (((-410 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -4277 ((-410 |#2|) |#2| |#2|)) (-15 -4277 ((-410 |#2|) |#2| (-619 |#2|)))) (-13 (-443) (-145)) (-1194 |#1|)) (T -99)) -((-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-13 (-443) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-99 *5 *3)))) (-4277 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-443) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -4277 ((-410 |#2|) |#2| |#2|)) (-15 -4277 ((-410 |#2|) |#2| (-619 |#2|)))) -((-3730 (((-112) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -3730 ((-112) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -3730 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-2214 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4328) (-6 (-4330 "*")) (-6 -4329) (-6 -4325) (-6 -4323) (-6 -4322) (-6 -4321) (-6 -4326) (-6 -4320) (-6 -4319) (-6 -4318) (-6 -4317) (-6 -4316) (-6 -4324) (-6 -4327) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4315))) +((-3821 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-4009 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-547))) 22)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 14)) (-3979 (((-1082) $) NIL)) (-3329 ((|#1| $ |#1|) 11)) (-2444 (($ $ $) NIL)) (-4121 (($ $ $) NIL)) (-3834 (((-832) $) 20)) (-3277 (($) 8 T CONST)) (-2371 (((-112) $ $) 10)) (-2497 (($ $ $) NIL)) (** (($ $ (-890)) 27) (($ $ (-745)) NIL) (($ $ (-547)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-463) (-277 |#1| |#1|) (-10 -8 (-15 -4009 ($ (-1 |#1| |#1|))) (-15 -4009 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4009 ($ (-1 |#1| |#1| (-547)))))) (-1016)) (T -98)) +((-4009 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-4009 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) (-4009 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) +(-13 (-463) (-277 |#1| |#1|) (-10 -8 (-15 -4009 ($ (-1 |#1| |#1|))) (-15 -4009 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4009 ($ (-1 |#1| |#1| (-547)))))) +((-4111 (((-409 |#2|) |#2| (-619 |#2|)) 10) (((-409 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -4111 ((-409 |#2|) |#2| |#2|)) (-15 -4111 ((-409 |#2|) |#2| (-619 |#2|)))) (-13 (-442) (-145)) (-1194 |#1|)) (T -99)) +((-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-13 (-442) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-99 *5 *3)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-442) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -4111 ((-409 |#2|) |#2| |#2|)) (-15 -4111 ((-409 |#2|) |#2| (-619 |#2|)))) +((-3821 (((-112) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -3821 ((-112) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -3821 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-2371 (((-112) $ $) 6))) (((-101) (-138)) (T -101)) -((-3730 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2214 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2214 ((-112) $ $)) (-15 -3730 ((-112) $ $)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) 13 (|has| $ (-6 -4328)))) (-1816 (($ $ $) NIL (|has| $ (-6 -4328)))) (-1825 (($ $ $) NIL (|has| $ (-6 -4328)))) (-1253 (($ $ (-619 |#1|)) 15)) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 11)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 17)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4298 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4287 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|)) 35)) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 10)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) 12)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 9)) (-3319 (($) 16)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1266 (($ (-745) |#1|) 19)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -1266 ($ (-745) |#1|)) (-15 -1253 ($ $ (-619 |#1|))) (-15 -4298 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4298 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) (-1063)) (T -102)) -((-1266 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063)))) (-1253 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063)))) (-4298 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-4287 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2)))) (-4287 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -1266 ($ (-745) |#1|)) (-15 -1253 ($ $ (-619 |#1|))) (-15 -4298 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4298 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4287 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) -((-1278 ((|#3| |#2| |#2|) 29)) (-1301 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4329 "*"))))) (-1290 ((|#3| |#2| |#2|) 30)) (-1313 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4329 "*")))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1278 (|#3| |#2| |#2|)) (-15 -1290 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4329 "*"))) (PROGN (-15 -1301 (|#1| |#2| |#2|)) (-15 -1313 (|#1| |#2|))) |%noBranch|)) (-1016) (-1194 |#1|) (-661 |#1| |#4| |#5|) (-365 |#1|) (-365 |#1|)) (T -103)) -((-1313 (*1 *2 *3) (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) (-4 *4 (-661 *2 *5 *6)))) (-1301 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) (-4 *4 (-661 *2 *5 *6)))) (-1290 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))) (-1278 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) -(-10 -7 (-15 -1278 (|#3| |#2| |#2|)) (-15 -1290 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4329 "*"))) (PROGN (-15 -1301 (|#1| |#2| |#2|)) (-15 -1313 (|#1| |#2|))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-1336 (((-619 (-1135))) 33)) (-1324 (((-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218)))) (-1135)) 35)) (-2214 (((-112) $ $) NIL))) -(((-104) (-13 (-1063) (-10 -7 (-15 -1336 ((-619 (-1135)))) (-15 -1324 ((-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218)))) (-1135))) (-6 -4327)))) (T -104)) -((-1336 (*1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-104)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218))))) (-5 *1 (-104))))) -(-13 (-1063) (-10 -7 (-15 -1336 ((-619 (-1135)))) (-15 -1324 ((-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) (|:| |singularities| (-1116 (-218)))) (-1135))) (-6 -4327))) -((-1368 (($ (-619 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -1368 (|#1| (-619 |#2|)))) (-106 |#2|) (-1172)) (T -105)) -NIL -(-10 -8 (-15 -1368 (|#1| (-619 |#2|)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3821 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2371 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2371 ((-112) $ $)) (-15 -3821 ((-112) $ $)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) 13 (|has| $ (-6 -4329)))) (-1449 (($ $ $) NIL (|has| $ (-6 -4329)))) (-1566 (($ $ $) NIL (|has| $ (-6 -4329)))) (-4005 (($ $ (-619 |#1|)) 15)) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "left" $) NIL (|has| $ (-6 -4329))) (($ $ "right" $) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-3836 (($ $) 11)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2223 (($ $ |#1| $) 17)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1253 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4208 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|)) 35)) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3826 (($ $) 10)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) 12)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 9)) (-4011 (($) 16)) (-3329 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1887 (((-547) $ $) NIL)) (-2094 (((-112) $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1267 (($ (-745) |#1|) 19)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -1267 ($ (-745) |#1|)) (-15 -4005 ($ $ (-619 |#1|))) (-15 -1253 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1253 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4208 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4208 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) (-1063)) (T -102)) +((-1267 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063)))) (-4005 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-1253 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063)))) (-1253 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) (-4208 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2)))) (-4208 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -1267 ($ (-745) |#1|)) (-15 -4005 ($ $ (-619 |#1|))) (-15 -1253 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1253 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4208 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4208 ($ $ |#1| (-1 (-619 |#1|) |#1| |#1| |#1|))))) +((-2466 ((|#3| |#2| |#2|) 29)) (-2133 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4330 "*"))))) (-1994 ((|#3| |#2| |#2|) 30)) (-2272 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4330 "*")))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2466 (|#3| |#2| |#2|)) (-15 -1994 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4330 "*"))) (PROGN (-15 -2133 (|#1| |#2| |#2|)) (-15 -2272 (|#1| |#2|))) |%noBranch|)) (-1016) (-1194 |#1|) (-661 |#1| |#4| |#5|) (-364 |#1|) (-364 |#1|)) (T -103)) +((-2272 (*1 *2 *3) (-12 (|has| *2 (-6 (-4330 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) (-4 *4 (-661 *2 *5 *6)))) (-2133 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4330 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2)) (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) (-4 *4 (-661 *2 *5 *6)))) (-1994 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)))) (-2466 (*1 *2 *3 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4))))) +(-10 -7 (-15 -2466 (|#3| |#2| |#2|)) (-15 -1994 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4330 "*"))) (PROGN (-15 -2133 (|#1| |#2| |#2|)) (-15 -2272 (|#1| |#2|))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-4255 (((-619 (-1135))) 33)) (-3320 (((-2 (|:| |zeros| (-1116 (-217))) (|:| |ones| (-1116 (-217))) (|:| |singularities| (-1116 (-217)))) (-1135)) 35)) (-2371 (((-112) $ $) NIL))) +(((-104) (-13 (-1063) (-10 -7 (-15 -4255 ((-619 (-1135)))) (-15 -3320 ((-2 (|:| |zeros| (-1116 (-217))) (|:| |ones| (-1116 (-217))) (|:| |singularities| (-1116 (-217)))) (-1135))) (-6 -4328)))) (T -104)) +((-4255 (*1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-104)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-2 (|:| |zeros| (-1116 (-217))) (|:| |ones| (-1116 (-217))) (|:| |singularities| (-1116 (-217))))) (-5 *1 (-104))))) +(-13 (-1063) (-10 -7 (-15 -4255 ((-619 (-1135)))) (-15 -3320 ((-2 (|:| |zeros| (-1116 (-217))) (|:| |ones| (-1116 (-217))) (|:| |singularities| (-1116 (-217)))) (-1135))) (-6 -4328))) +((-2731 (($ (-619 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| (-619 |#2|)))) (-106 |#2|) (-1172)) (T -105)) +NIL +(-10 -8 (-15 -2731 (|#1| (-619 |#2|)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-106 |#1|) (-138) (-1172)) (T -106)) -((-1368 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-106 *3)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) (-2539 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) -(-13 (-480 |t#1|) (-10 -8 (-6 -4328) (-15 -1368 ($ (-619 |t#1|))) (-15 -1357 (|t#1| $)) (-15 -2539 ($ |t#1| $)) (-15 -1346 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-548) $) NIL (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) NIL)) (-3887 (((-548) $) NIL (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 8) (($ (-548)) NIL) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL) (((-973 2) $) 10)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-548) $) NIL (|has| (-548) (-533)))) (-2964 (($ (-399 (-548))) 9)) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2309 (($ $ $) NIL) (($ (-548) (-548)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL))) -(((-107) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 2) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -2964 ($ (-399 (-548))))))) (T -107)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107))))) -(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 2) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -2964 ($ (-399 (-548)))))) -((-2522 (((-619 (-934)) $) 14)) (-2275 (((-1135) $) 10)) (-3743 (((-832) $) 23)) (-2305 (($ (-1135) (-619 (-934))) 15))) -(((-108) (-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-619 (-934)) $)) (-15 -2305 ($ (-1135) (-619 (-934))))))) (T -108)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-108)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108)))) (-2305 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-108))))) -(-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-619 (-934)) $)) (-15 -2305 ($ (-1135) (-619 (-934)))))) -((-3730 (((-112) $ $) NIL)) (-3930 (((-1082) $ (-1082)) 24)) (-3981 (($ $ (-1118)) 17)) (-2630 (((-3 (-1082) "failed") $) 23)) (-3943 (((-1082) $) 21)) (-2316 (((-1082) $ (-1082)) 26)) (-2621 (((-1082) $) 25)) (-1280 (($ (-380)) NIL) (($ (-380) (-1118)) 16)) (-2275 (((-380) $) NIL)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3972 (($ $) 18)) (-2214 (((-112) $ $) NIL))) -(((-109) (-13 (-356 (-380) (-1082)) (-10 -8 (-15 -2630 ((-3 (-1082) "failed") $)) (-15 -2621 ((-1082) $)) (-15 -2316 ((-1082) $ (-1082)))))) (T -109)) -((-2630 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2316 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))) -(-13 (-356 (-380) (-1082)) (-10 -8 (-15 -2630 ((-3 (-1082) "failed") $)) (-15 -2621 ((-1082) $)) (-15 -2316 ((-1082) $ (-1082))))) -((-3730 (((-112) $ $) NIL)) (-1258 (($ $) NIL)) (-2218 (($ $ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-112) $ (-1185 (-548)) (-112)) NIL (|has| $ (-6 -4328))) (((-112) $ (-548) (-112)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3699 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-2061 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3971 (((-112) $ (-548) (-112)) NIL (|has| $ (-6 -4328)))) (-3899 (((-112) $ (-548)) NIL)) (-2621 (((-548) (-112) $ (-548)) NIL (|has| (-112) (-1063))) (((-548) (-112) $) NIL (|has| (-112) (-1063))) (((-548) (-1 (-112) (-112)) $) NIL)) (-1934 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-4168 (($ $ $) NIL)) (-3958 (($ $) NIL)) (-4078 (($ $ $) NIL)) (-3550 (($ (-745) (-112)) 8)) (-4293 (($ $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL)) (-2913 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2342 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL)) (-3960 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ (-112) $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-112) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4159 (($ $ (-112)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-286 (-112)))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4223 (((-619 (-112)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (($ $ (-1185 (-548))) NIL) (((-112) $ (-548)) NIL) (((-112) $ (-548) (-112)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-3945 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-112) (-593 (-524))))) (-3754 (($ (-619 (-112))) NIL)) (-1831 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3743 (((-832) $) NIL)) (-2245 (($ (-745) (-112)) 9)) (-3548 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-1723 (($ $ $) NIL)) (-2818 (($ $ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2809 (($ $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-110) (-13 (-123) (-10 -8 (-15 -2245 ($ (-745) (-112)))))) (T -110)) -((-2245 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -2245 ($ (-745) (-112))))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +((-2731 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-106 *3)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) (-1885 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) +(-13 (-479 |t#1|) (-10 -8 (-6 -4329) (-15 -2731 ($ (-619 |t#1|))) (-15 -1373 (|t#1| $)) (-15 -1885 ($ |t#1| $)) (-15 -1959 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-547) $) NIL (|has| (-547) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-547) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-547) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-547) (-1007 (-547))))) (-2643 (((-547) $) NIL) (((-1135) $) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-547) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| (-547) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-547) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| (-547) (-1111)))) (-3937 (((-112) $) NIL (|has| (-547) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-547) (-821)))) (-2781 (($ (-1 (-547) (-547)) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-547) (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) NIL)) (-1435 (((-547) $) NIL (|has| (-547) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1135)) (-619 (-547))) NIL (|has| (-547) (-503 (-1135) (-547)))) (($ $ (-1135) (-547)) NIL (|has| (-547) (-503 (-1135) (-547))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-547) $) NIL)) (-2829 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 8) (($ (-547)) NIL) (($ (-1135)) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL) (((-973 2) $) 10)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2311 (((-745)) NIL)) (-1564 (((-547) $) NIL (|has| (-547) (-532)))) (-3745 (($ (-398 (-547))) 9)) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL (|has| (-547) (-794)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2497 (($ $ $) NIL) (($ (-547) (-547)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL))) +(((-107) (-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -3834 ((-973 2) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -3745 ($ (-398 (-547))))))) (T -107)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) (-3745 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107))))) +(-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -3834 ((-973 2) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -3745 ($ (-398 (-547)))))) +((-2757 (((-619 (-934)) $) 14)) (-2464 (((-1135) $) 10)) (-3834 (((-832) $) 23)) (-3288 (($ (-1135) (-619 (-934))) 15))) +(((-108) (-13 (-591 (-832)) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -2757 ((-619 (-934)) $)) (-15 -3288 ($ (-1135) (-619 (-934))))))) (T -108)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-108)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108)))) (-3288 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-108))))) +(-13 (-591 (-832)) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -2757 ((-619 (-934)) $)) (-15 -3288 ($ (-1135) (-619 (-934)))))) +((-3821 (((-112) $ $) NIL)) (-1891 (((-1082) $ (-1082)) 24)) (-4135 (($ $ (-1118)) 17)) (-3415 (((-3 (-1082) "failed") $) 23)) (-2002 (((-1082) $) 21)) (-3399 (((-1082) $ (-1082)) 26)) (-2867 (((-1082) $) 25)) (-1351 (($ (-379)) NIL) (($ (-379) (-1118)) 16)) (-2464 (((-379) $) NIL)) (-1917 (((-1118) $) NIL)) (-3938 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-4048 (($ $) 18)) (-2371 (((-112) $ $) NIL))) +(((-109) (-13 (-355 (-379) (-1082)) (-10 -8 (-15 -3415 ((-3 (-1082) "failed") $)) (-15 -2867 ((-1082) $)) (-15 -3399 ((-1082) $ (-1082)))))) (T -109)) +((-3415 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))) (-3399 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))) +(-13 (-355 (-379) (-1082)) (-10 -8 (-15 -3415 ((-3 (-1082) "failed") $)) (-15 -2867 ((-1082) $)) (-15 -3399 ((-1082) $ (-1082))))) +((-3821 (((-112) $ $) NIL)) (-1332 (($ $) NIL)) (-2447 (($ $ $) NIL)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2765 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-3180 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2238 (((-112) $ (-1185 (-547)) (-112)) NIL (|has| $ (-6 -4329))) (((-112) $ (-547) (-112)) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-3801 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-2542 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-1861 (((-112) $ (-547) (-112)) NIL (|has| $ (-6 -4329)))) (-1793 (((-112) $ (-547)) NIL)) (-2867 (((-547) (-112) $ (-547)) NIL (|has| (-112) (-1063))) (((-547) (-112) $) NIL (|has| (-112) (-1063))) (((-547) (-1 (-112) (-112)) $) NIL)) (-2973 (((-619 (-112)) $) NIL (|has| $ (-6 -4328)))) (-4197 (($ $ $) NIL)) (-3998 (($ $) NIL)) (-2786 (($ $ $) NIL)) (-3732 (($ (-745) (-112)) 8)) (-4265 (($ $ $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL)) (-1294 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3666 (((-619 (-112)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL)) (-1850 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-2599 (($ $ $ (-547)) NIL) (($ (-112) $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-112) $) NIL (|has| (-547) (-821)))) (-3461 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2418 (($ $ (-112)) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-285 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-285 (-112)))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-1758 (((-619 (-112)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 (($ $ (-1185 (-547))) NIL) (((-112) $ (-547)) NIL) (((-112) $ (-547) (-112)) NIL)) (-2151 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-3987 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-112) (-592 (-523))))) (-3841 (($ (-619 (-112))) NIL)) (-1935 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3834 (((-832) $) NIL)) (-3936 (($ (-745) (-112)) 9)) (-2583 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-1806 (($ $ $) NIL)) (-3696 (($ $ $) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-3683 (($ $ $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-110) (-13 (-123) (-10 -8 (-15 -3936 ($ (-745) (-112)))))) (T -110)) +((-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -3936 ($ (-745) (-112))))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) (((-111 |#1| |#2|) (-138) (-1016) (-1016)) (T -111)) NIL -(-13 (-622 |t#1|) (-1022 |t#2|) (-10 -7 (-6 -4322) (-6 -4321))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#2|) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-1258 (($ $) 10)) (-2218 (($ $ $) 15)) (-1714 (($) 7 T CONST)) (-1752 (($ $) 6)) (-3423 (((-745)) 24)) (-2545 (($) 30)) (-4168 (($ $ $) 13)) (-3958 (($ $) 9)) (-4078 (($ $ $) 16)) (-4293 (($ $ $) 17)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2855 (((-890) $) 29)) (-2546 (((-1118) $) NIL)) (-3337 (($ (-890)) 28)) (-2202 (($ $ $) 20)) (-3932 (((-1082) $) NIL)) (-3599 (($) 8 T CONST)) (-2954 (($ $ $) 21)) (-2591 (((-524) $) 36)) (-3743 (((-832) $) 39)) (-1723 (($ $ $) 11)) (-2818 (($ $ $) 14)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 19)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 22)) (-2809 (($ $ $) 12))) -(((-112) (-13 (-821) (-360) (-635) (-936) (-593 (-524)) (-10 -8 (-15 -1714 ($) -2325) (-15 -3599 ($) -2325) (-15 -2218 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1752 ($ $))))) (T -112)) -((-1714 (*1 *1) (-5 *1 (-112))) (-3599 (*1 *1) (-5 *1 (-112))) (-2218 (*1 *1 *1 *1) (-5 *1 (-112))) (-4293 (*1 *1 *1 *1) (-5 *1 (-112))) (-4078 (*1 *1 *1 *1) (-5 *1 (-112))) (-1752 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-821) (-360) (-635) (-936) (-593 (-524)) (-10 -8 (-15 -1714 ($) -2325) (-15 -3599 ($) -2325) (-15 -2218 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1752 ($ $)))) -((-1756 (((-3 (-1 |#1| (-619 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-619 |#1|))) 11) (((-3 |#1| "failed") (-114) (-619 |#1|)) 21)) (-3259 (((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-619 (-1 |#1| (-619 |#1|)))) 26)) (-3271 (((-114) |#1|) 56 (|has| |#1| (-821)))) (-1486 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-821))))) -(((-113 |#1|) (-10 -7 (-15 -1756 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -1756 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -1756 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1756 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -3259 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -3259 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3259 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -3271 ((-114) |#1|)) (-15 -1486 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1063)) (T -113)) -((-1486 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-113 *2)))) (-3271 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-3259 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-3259 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-3259 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1756 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-1756 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1756 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1063))))) -(-10 -7 (-15 -1756 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -1756 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -1756 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1756 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -3259 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -3259 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3259 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -3271 ((-114) |#1|)) (-15 -1486 ((-3 |#1| "failed") (-114)))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-3266 (((-745) $) 72) (($ $ (-745)) 30)) (-1552 (((-112) $) 32)) (-1579 (($ $ (-1118) (-748)) 26)) (-1570 (($ $ (-45 (-1118) (-748))) 15)) (-1812 (((-3 (-748) "failed") $ (-1118)) 25)) (-2522 (((-45 (-1118) (-748)) $) 14)) (-1402 (($ (-1135)) 17) (($ (-1135) (-745)) 22)) (-1633 (((-112) $) 31)) (-1543 (((-112) $) 33)) (-2275 (((-1135) $) 8)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1518 (((-112) $ (-1135)) 10)) (-2542 (($ $ (-1 (-524) (-619 (-524)))) 52) (((-3 (-1 (-524) (-619 (-524))) "failed") $) 56)) (-3932 (((-1082) $) NIL)) (-2150 (((-112) $ (-1118)) 29)) (-1254 (($ $ (-1 (-112) $ $)) 35)) (-2487 (((-3 (-1 (-832) (-619 (-832))) "failed") $) 54) (($ $ (-1 (-832) (-619 (-832)))) 41) (($ $ (-1 (-832) (-832))) 43)) (-2137 (($ $ (-1118)) 45)) (-2113 (($ $) 63)) (-4299 (($ $ (-1 (-112) $ $)) 36)) (-3743 (((-832) $) 48)) (-2841 (($ $ (-1118)) 27)) (-1640 (((-3 (-745) "failed") $) 58)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 71)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 79))) -(((-114) (-13 (-821) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-45 (-1118) (-748)) $)) (-15 -2113 ($ $)) (-15 -1402 ($ (-1135))) (-15 -1402 ($ (-1135) (-745))) (-15 -1640 ((-3 (-745) "failed") $)) (-15 -1633 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -1543 ((-112) $)) (-15 -3266 ((-745) $)) (-15 -3266 ($ $ (-745))) (-15 -1254 ($ $ (-1 (-112) $ $))) (-15 -4299 ($ $ (-1 (-112) $ $))) (-15 -2487 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2487 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2487 ($ $ (-1 (-832) (-832)))) (-15 -2542 ($ $ (-1 (-524) (-619 (-524))))) (-15 -2542 ((-3 (-1 (-524) (-619 (-524))) "failed") $)) (-15 -1518 ((-112) $ (-1135))) (-15 -2150 ((-112) $ (-1118))) (-15 -2841 ($ $ (-1118))) (-15 -2137 ($ $ (-1118))) (-15 -1812 ((-3 (-748) "failed") $ (-1118))) (-15 -1579 ($ $ (-1118) (-748))) (-15 -1570 ($ $ (-45 (-1118) (-748))))))) (T -114)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114)))) (-2113 (*1 *1 *1) (-5 *1 (-114))) (-1402 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) (-1402 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *1 (-114)))) (-1640 (*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2487 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2487 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2487 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) (-2542 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114)))) (-2542 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114)))) (-1518 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2150 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) (-1812 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-748)) (-5 *1 (-114)))) (-1579 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-748)) (-5 *1 (-114)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) -(-13 (-821) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -2522 ((-45 (-1118) (-748)) $)) (-15 -2113 ($ $)) (-15 -1402 ($ (-1135))) (-15 -1402 ($ (-1135) (-745))) (-15 -1640 ((-3 (-745) "failed") $)) (-15 -1633 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -1543 ((-112) $)) (-15 -3266 ((-745) $)) (-15 -3266 ($ $ (-745))) (-15 -1254 ($ $ (-1 (-112) $ $))) (-15 -4299 ($ $ (-1 (-112) $ $))) (-15 -2487 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2487 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2487 ($ $ (-1 (-832) (-832)))) (-15 -2542 ($ $ (-1 (-524) (-619 (-524))))) (-15 -2542 ((-3 (-1 (-524) (-619 (-524))) "failed") $)) (-15 -1518 ((-112) $ (-1135))) (-15 -2150 ((-112) $ (-1118))) (-15 -2841 ($ $ (-1118))) (-15 -2137 ($ $ (-1118))) (-15 -1812 ((-3 (-748) "failed") $ (-1118))) (-15 -1579 ($ $ (-1118) (-748))) (-15 -1570 ($ $ (-45 (-1118) (-748)))))) -((-1499 (((-548) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -1499 ((-548) |#2|))) (-13 (-355) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -115)) -((-1499 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-1007 (-399 *2)))) (-5 *2 (-548)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -1499 ((-548) |#2|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $ (-548)) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1294 (($ (-1131 (-548)) (-548)) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1305 (($ $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1672 (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 (((-548)) NIL)) (-1317 (((-548) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1656 (($ $ (-548)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-1116 (-548)) $) NIL)) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-2439 (((-548) $ (-548)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-838 |#1|) (-548)) (T -116)) +(-13 (-622 |t#1|) (-1022 |t#2|) (-10 -7 (-6 -4323) (-6 -4322))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#2|) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-1332 (($ $) 10)) (-2447 (($ $ $) 15)) (-1789 (($) 7 T CONST)) (-3751 (($ $) 6)) (-3603 (((-745)) 24)) (-3229 (($) 30)) (-4197 (($ $ $) 13)) (-3998 (($ $) 9)) (-2786 (($ $ $) 16)) (-4265 (($ $ $) 17)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1966 (((-890) $) 29)) (-1917 (((-1118) $) NIL)) (-3479 (($ (-890)) 28)) (-2426 (($ $ $) 20)) (-3979 (((-1082) $) NIL)) (-3725 (($) 8 T CONST)) (-3646 (($ $ $) 21)) (-2829 (((-523) $) 36)) (-3834 (((-832) $) 39)) (-1806 (($ $ $) 11)) (-3696 (($ $ $) 14)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 19)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 22)) (-3683 (($ $ $) 12))) +(((-112) (-13 (-821) (-359) (-635) (-936) (-592 (-523)) (-10 -8 (-15 -1789 ($) -2573) (-15 -3725 ($) -2573) (-15 -2447 ($ $ $)) (-15 -4265 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -3751 ($ $))))) (T -112)) +((-1789 (*1 *1) (-5 *1 (-112))) (-3725 (*1 *1) (-5 *1 (-112))) (-2447 (*1 *1 *1 *1) (-5 *1 (-112))) (-4265 (*1 *1 *1 *1) (-5 *1 (-112))) (-2786 (*1 *1 *1 *1) (-5 *1 (-112))) (-3751 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-821) (-359) (-635) (-936) (-592 (-523)) (-10 -8 (-15 -1789 ($) -2573) (-15 -3725 ($) -2573) (-15 -2447 ($ $ $)) (-15 -4265 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -3751 ($ $)))) +((-2148 (((-3 (-1 |#1| (-619 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-619 |#1|))) 11) (((-3 |#1| "failed") (-114) (-619 |#1|)) 21)) (-1621 (((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-619 (-1 |#1| (-619 |#1|)))) 26)) (-1751 (((-114) |#1|) 56 (|has| |#1| (-821)))) (-2506 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-821))))) +(((-113 |#1|) (-10 -7 (-15 -2148 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -2148 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -2148 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2148 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -1621 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -1621 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1621 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -1751 ((-114) |#1|)) (-15 -2506 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1063)) (T -113)) +((-2506 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-113 *2)))) (-1751 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-1621 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-1621 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-1621 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-2148 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1063)))) (-2148 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-2148 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) (-5 *1 (-113 *4)))) (-2148 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1063))))) +(-10 -7 (-15 -2148 ((-3 |#1| "failed") (-114) (-619 |#1|))) (-15 -2148 ((-114) (-114) (-1 |#1| (-619 |#1|)))) (-15 -2148 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2148 ((-3 (-1 |#1| (-619 |#1|)) "failed") (-114))) (-15 -1621 ((-114) (-114) (-619 (-1 |#1| (-619 |#1|))))) (-15 -1621 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1621 ((-3 (-619 (-1 |#1| (-619 |#1|))) "failed") (-114))) (IF (|has| |#1| (-821)) (PROGN (-15 -1751 ((-114) |#1|)) (-15 -2506 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-1691 (((-745) $) 72) (($ $ (-745)) 30)) (-1856 (((-112) $) 32)) (-3964 (($ $ (-1118) (-748)) 26)) (-3879 (($ $ (-45 (-1118) (-748))) 15)) (-1982 (((-3 (-748) "failed") $ (-1118)) 25)) (-2757 (((-45 (-1118) (-748)) $) 14)) (-3454 (($ (-1135)) 17) (($ (-1135) (-745)) 22)) (-3309 (((-112) $) 31)) (-1750 (((-112) $) 33)) (-2464 (((-1135) $) 8)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-1469 (((-112) $ (-1135)) 10)) (-2725 (($ $ (-1 (-523) (-619 (-523)))) 52) (((-3 (-1 (-523) (-619 (-523))) "failed") $) 56)) (-3979 (((-1082) $) NIL)) (-2620 (((-112) $ (-1118)) 29)) (-4015 (($ $ (-1 (-112) $ $)) 35)) (-2683 (((-3 (-1 (-832) (-619 (-832))) "failed") $) 54) (($ $ (-1 (-832) (-619 (-832)))) 41) (($ $ (-1 (-832) (-832))) 43)) (-2519 (($ $ (-1118)) 45)) (-2265 (($ $) 63)) (-1265 (($ $ (-1 (-112) $ $)) 36)) (-3834 (((-832) $) 48)) (-3037 (($ $ (-1118)) 27)) (-3386 (((-3 (-745) "failed") $) 58)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 71)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 79))) +(((-114) (-13 (-821) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -2757 ((-45 (-1118) (-748)) $)) (-15 -2265 ($ $)) (-15 -3454 ($ (-1135))) (-15 -3454 ($ (-1135) (-745))) (-15 -3386 ((-3 (-745) "failed") $)) (-15 -3309 ((-112) $)) (-15 -1856 ((-112) $)) (-15 -1750 ((-112) $)) (-15 -1691 ((-745) $)) (-15 -1691 ($ $ (-745))) (-15 -4015 ($ $ (-1 (-112) $ $))) (-15 -1265 ($ $ (-1 (-112) $ $))) (-15 -2683 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2683 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2683 ($ $ (-1 (-832) (-832)))) (-15 -2725 ($ $ (-1 (-523) (-619 (-523))))) (-15 -2725 ((-3 (-1 (-523) (-619 (-523))) "failed") $)) (-15 -1469 ((-112) $ (-1135))) (-15 -2620 ((-112) $ (-1118))) (-15 -3037 ($ $ (-1118))) (-15 -2519 ($ $ (-1118))) (-15 -1982 ((-3 (-748) "failed") $ (-1118))) (-15 -3964 ($ $ (-1118) (-748))) (-15 -3879 ($ $ (-45 (-1118) (-748))))))) (T -114)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114)))) (-2265 (*1 *1 *1) (-5 *1 (-114))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) (-3454 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *1 (-114)))) (-3386 (*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-1691 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1265 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2683 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114)))) (-2725 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114)))) (-1469 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2620 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3037 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) (-1982 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-748)) (-5 *1 (-114)))) (-3964 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-748)) (-5 *1 (-114)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) +(-13 (-821) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -2757 ((-45 (-1118) (-748)) $)) (-15 -2265 ($ $)) (-15 -3454 ($ (-1135))) (-15 -3454 ($ (-1135) (-745))) (-15 -3386 ((-3 (-745) "failed") $)) (-15 -3309 ((-112) $)) (-15 -1856 ((-112) $)) (-15 -1750 ((-112) $)) (-15 -1691 ((-745) $)) (-15 -1691 ($ $ (-745))) (-15 -4015 ($ $ (-1 (-112) $ $))) (-15 -1265 ($ $ (-1 (-112) $ $))) (-15 -2683 ((-3 (-1 (-832) (-619 (-832))) "failed") $)) (-15 -2683 ($ $ (-1 (-832) (-619 (-832))))) (-15 -2683 ($ $ (-1 (-832) (-832)))) (-15 -2725 ($ $ (-1 (-523) (-619 (-523))))) (-15 -2725 ((-3 (-1 (-523) (-619 (-523))) "failed") $)) (-15 -1469 ((-112) $ (-1135))) (-15 -2620 ((-112) $ (-1118))) (-15 -3037 ($ $ (-1118))) (-15 -2519 ($ $ (-1118))) (-15 -1982 ((-3 (-748) "failed") $ (-1118))) (-15 -3964 ($ $ (-1118) (-748))) (-15 -3879 ($ $ (-45 (-1118) (-748)))))) +((-1301 (((-547) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1301 ((-547) |#2|))) (-13 (-354) (-1007 (-398 (-547)))) (-1194 |#1|)) (T -115)) +((-1301 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-1007 (-398 *2)))) (-5 *2 (-547)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -1301 ((-547) |#2|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $ (-547)) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2048 (($ (-1131 (-547)) (-547)) NIL)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2189 (($ $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3707 (((-745) $) NIL)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3148 (((-547)) NIL)) (-2333 (((-547) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3558 (($ $ (-547)) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2871 (((-1116 (-547)) $) NIL)) (-4105 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL)) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL)) (-2645 (((-547) $ (-547)) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-838 |#1|) (-547)) (T -116)) NIL (-838 |#1|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-116 |#1|) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-548))))) (-2375 (((-116 |#1|) $) NIL) (((-1135) $) NIL (|has| (-116 |#1|) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-116 |#1|) (-1007 (-548)))) (((-548) $) NIL (|has| (-116 |#1|) (-1007 (-548))))) (-1306 (($ $) NIL) (($ (-548) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-116 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-116 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-116 |#1|))) (|:| |vec| (-1218 (-116 |#1|)))) (-663 $) (-1218 $)) NIL) (((-663 (-116 |#1|)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-116 |#1|) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-116 |#1|) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-116 |#1|) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-116 |#1|) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1111)))) (-3312 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-3091 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-2540 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-116 |#1|) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-116 |#1|) (-299)))) (-3887 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-116 |#1|)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-286 (-116 |#1|))) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-619 (-286 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-301 (-116 |#1|)))) (($ $ (-619 (-1135)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-504 (-1135) (-116 |#1|)))) (($ $ (-1135) (-116 |#1|)) NIL (|has| (-116 |#1|) (-504 (-1135) (-116 |#1|))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-278 (-116 |#1|) (-116 |#1|))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-116 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-116 |#1|) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-116 |#1|) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-116 |#1|) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-116 |#1|) (-593 (-524)))) (((-371) $) NIL (|has| (-116 |#1|) (-991))) (((-218) $) NIL (|has| (-116 |#1|) (-991)))) (-1351 (((-171 (-399 (-548))) $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-116 |#1|)) NIL) (($ (-1135)) NIL (|has| (-116 |#1|) (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))) (|has| (-116 |#1|) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-533)))) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ (-548)) NIL)) (-1446 (($ $) NIL (|has| (-116 |#1|) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-116 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2309 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) (-548)) (T -117)) -((-2439 (*1 *2 *1 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-548)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-117 *3)) (-14 *3 (-548)))) (-1306 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-548)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) -((-2089 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-4245 (((-619 $) $) 27)) (-4213 (((-112) $ $) 32)) (-2556 (((-112) |#2| $) 36)) (-2869 (((-619 |#2|) $) 22)) (-3010 (((-112) $) 16)) (-3171 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2740 (((-112) $) 45)) (-3743 (((-832) $) 41)) (-2956 (((-619 $) $) 28)) (-2214 (((-112) $ $) 34)) (-3643 (((-745) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2089 (|#1| |#1| "right" |#1|)) (-15 -2089 (|#1| |#1| "left" |#1|)) (-15 -3171 (|#1| |#1| "right")) (-15 -3171 (|#1| |#1| "left")) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2869 ((-619 |#2|) |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3643 ((-745) |#1|))) (-119 |#2|) (-1172)) (T -118)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2089 (|#1| |#1| "right" |#1|)) (-15 -2089 (|#1| |#1| "left" |#1|)) (-15 -3171 (|#1| |#1| "right")) (-15 -3171 (|#1| |#1| "left")) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2869 ((-619 |#2|) |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3643 ((-745) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 52 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 54 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) (($ $ "left" $) 55 (|has| $ (-6 -4328))) (($ $ "right" $) 53 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-3676 (($ $) 57)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3663 (($ $) 59)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-116 |#1|) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-116 |#1|) (-1007 (-547))))) (-2643 (((-116 |#1|) $) NIL) (((-1135) $) NIL (|has| (-116 |#1|) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-116 |#1|) (-1007 (-547)))) (((-547) $) NIL (|has| (-116 |#1|) (-1007 (-547))))) (-2200 (($ $) NIL) (($ (-547) $) NIL)) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-116 |#1|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-116 |#1|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-116 |#1|))) (|:| |vec| (-1218 (-116 |#1|)))) (-663 $) (-1218 $)) NIL) (((-663 (-116 |#1|)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-116 |#1|) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-116 |#1|) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-116 |#1|) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-116 |#1|) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1111)))) (-3937 (((-112) $) NIL (|has| (-116 |#1|) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-3563 (($ $ $) NIL (|has| (-116 |#1|) (-821)))) (-2781 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-116 |#1|) (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-116 |#1|) (-298)))) (-1435 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-116 |#1|) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-116 |#1|)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-285 (-116 |#1|))) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-619 (-285 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-300 (-116 |#1|)))) (($ $ (-619 (-1135)) (-619 (-116 |#1|))) NIL (|has| (-116 |#1|) (-503 (-1135) (-116 |#1|)))) (($ $ (-1135) (-116 |#1|)) NIL (|has| (-116 |#1|) (-503 (-1135) (-116 |#1|))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-277 (-116 |#1|) (-116 |#1|))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| (-116 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-225))) (($ $ (-1135)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-116 |#1|) $) NIL)) (-2829 (((-861 (-547)) $) NIL (|has| (-116 |#1|) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-116 |#1|) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-116 |#1|) (-592 (-523)))) (((-370) $) NIL (|has| (-116 |#1|) (-991))) (((-217) $) NIL (|has| (-116 |#1|) (-991)))) (-4026 (((-171 (-398 (-547))) $) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-116 |#1|)) NIL) (($ (-1135)) NIL (|has| (-116 |#1|) (-1007 (-1135))))) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-878))) (|has| (-116 |#1|) (-143))))) (-2311 (((-745)) NIL)) (-1564 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-532)))) (-1932 (((-112) $ $) NIL)) (-2645 (((-398 (-547)) $ (-547)) NIL)) (-2040 (($ $) NIL (|has| (-116 |#1|) (-794)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL (|has| (-116 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-116 |#1|) (-225))) (($ $ (-1135)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-116 |#1|) (-869 (-1135)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-745)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-116 |#1|) (-821)))) (-2497 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2645 ((-398 (-547)) $ (-547))) (-15 -4026 ((-171 (-398 (-547))) $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)))) (-547)) (T -117)) +((-2645 (*1 *2 *1 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-547)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-117 *3)) (-14 *3 (-547)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-547)))) (-2200 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-961 (-116 |#1|)) (-10 -8 (-15 -2645 ((-398 (-547)) $ (-547))) (-15 -4026 ((-171 (-398 (-547))) $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)))) +((-2238 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1996 (((-619 $) $) 27)) (-1655 (((-112) $ $) 32)) (-3860 (((-112) |#2| $) 36)) (-3579 (((-619 |#2|) $) 22)) (-3033 (((-112) $) 16)) (-3329 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2094 (((-112) $) 45)) (-3834 (((-832) $) 41)) (-3668 (((-619 $) $) 28)) (-2371 (((-112) $ $) 34)) (-3763 (((-745) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2238 (|#1| |#1| "right" |#1|)) (-15 -2238 (|#1| |#1| "left" |#1|)) (-15 -3329 (|#1| |#1| "right")) (-15 -3329 (|#1| |#1| "left")) (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -1655 ((-112) |#1| |#1|)) (-15 -3579 ((-619 |#2|) |#1|)) (-15 -2094 ((-112) |#1|)) (-15 -3329 (|#2| |#1| "value")) (-15 -3033 ((-112) |#1|)) (-15 -1996 ((-619 |#1|) |#1|)) (-15 -3668 ((-619 |#1|) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3860 ((-112) |#2| |#1|)) (-15 -3763 ((-745) |#1|))) (-119 |#2|) (-1172)) (T -118)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2238 (|#1| |#1| "right" |#1|)) (-15 -2238 (|#1| |#1| "left" |#1|)) (-15 -3329 (|#1| |#1| "right")) (-15 -3329 (|#1| |#1| "left")) (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -1655 ((-112) |#1| |#1|)) (-15 -3579 ((-619 |#2|) |#1|)) (-15 -2094 ((-112) |#1|)) (-15 -3329 (|#2| |#1| "value")) (-15 -3033 ((-112) |#1|)) (-15 -1996 ((-619 |#1|) |#1|)) (-15 -3668 ((-619 |#1|) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3860 ((-112) |#2| |#1|)) (-15 -3763 ((-745) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-1449 (($ $ $) 52 (|has| $ (-6 -4329)))) (-1566 (($ $ $) 54 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329))) (($ $ "left" $) 55 (|has| $ (-6 -4329))) (($ $ "right" $) 53 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-3219 (($) 7 T CONST)) (-3836 (($ $) 57)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-3826 (($ $) 59)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1887 (((-547) $ $) 44)) (-2094 (((-112) $) 46)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-119 |#1|) (-138) (-1172)) (T -119)) -((-3663 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-1825 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-1816 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) -(-13 (-979 |t#1|) (-10 -8 (-15 -3663 ($ $)) (-15 -3171 ($ $ "left")) (-15 -3676 ($ $)) (-15 -3171 ($ $ "right")) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2089 ($ $ "left" $)) (-15 -1825 ($ $ $)) (-15 -2089 ($ $ "right" $)) (-15 -1816 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-4002 (((-112) |#1|) 24)) (-3472 (((-745) (-745)) 23) (((-745)) 22)) (-3462 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -3462 ((-112) |#1|)) (-15 -3462 ((-112) |#1| (-112))) (-15 -3472 ((-745))) (-15 -3472 ((-745) (-745))) (-15 -4002 ((-112) |#1|))) (-1194 (-548))) (T -120)) -((-4002 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3472 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3462 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) -(-10 -7 (-15 -3462 ((-112) |#1|)) (-15 -3462 ((-112) |#1| (-112))) (-15 -3472 ((-745))) (-15 -3472 ((-745) (-745))) (-15 -4002 ((-112) |#1|))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 15)) (-3530 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-1816 (($ $ $) 18 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 20 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 17)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 23)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 19)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-4014 (($ |#1| $) 24)) (-2539 (($ |#1| $) 10)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 8)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4067 (($ (-619 |#1|)) 12)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -4067 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)) (-15 -4014 ($ |#1| $)) (-15 -3530 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-821)) (T -121)) -((-4067 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-4014 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-3530 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-821))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -4067 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)) (-15 -4014 ($ |#1| $)) (-15 -3530 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1258 (($ $) 13)) (-3958 (($ $) 11)) (-4078 (($ $ $) 23)) (-4293 (($ $ $) 21)) (-2818 (($ $ $) 19)) (-2809 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -4078 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -4078 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -2809 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-1258 (($ $) 103)) (-2218 (($ $ $) 25)) (-4149 (((-1223) $ (-548) (-548)) 66 (|has| $ (-6 -4328)))) (-3001 (((-112) $) 98 (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2980 (($ $) 102 (-12 (|has| (-112) (-821)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4328)))) (-2490 (($ $) 97 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2028 (((-112) $ (-745)) 37)) (-2089 (((-112) $ (-1185 (-548)) (-112)) 88 (|has| $ (-6 -4328))) (((-112) $ (-548) (-112)) 54 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4327)))) (-3030 (($) 38 T CONST)) (-3499 (($ $) 100 (|has| $ (-6 -4328)))) (-2796 (($ $) 90)) (-3484 (($ $) 68 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4327))) (($ (-112) $) 69 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-2061 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-3971 (((-112) $ (-548) (-112)) 53 (|has| $ (-6 -4328)))) (-3899 (((-112) $ (-548)) 55)) (-2621 (((-548) (-112) $ (-548)) 95 (|has| (-112) (-1063))) (((-548) (-112) $) 94 (|has| (-112) (-1063))) (((-548) (-1 (-112) (-112)) $) 93)) (-1934 (((-619 (-112)) $) 45 (|has| $ (-6 -4327)))) (-4168 (($ $ $) 26)) (-3958 (($ $) 30)) (-4078 (($ $ $) 28)) (-3550 (($ (-745) (-112)) 77)) (-4293 (($ $ $) 29)) (-4282 (((-112) $ (-745)) 36)) (-4171 (((-548) $) 63 (|has| (-548) (-821)))) (-1795 (($ $ $) 13)) (-2913 (($ $ $) 96 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2342 (((-619 (-112)) $) 46 (|has| $ (-6 -4327)))) (-2556 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 62 (|has| (-548) (-821)))) (-3091 (($ $ $) 14)) (-3960 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4248 (((-112) $ (-745)) 35)) (-2546 (((-1118) $) 9)) (-2387 (($ $ $ (-548)) 87) (($ (-112) $ (-548)) 86)) (-4201 (((-619 (-548)) $) 60)) (-4212 (((-112) (-548) $) 59)) (-3932 (((-1082) $) 10)) (-3453 (((-112) $) 64 (|has| (-548) (-821)))) (-4030 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4159 (($ $ (-112)) 65 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-112)) (-619 (-112))) 52 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-286 (-112))) 50 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-286 (-112)))) 49 (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))))) (-2039 (((-112) $ $) 31)) (-4191 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4223 (((-619 (-112)) $) 58)) (-1616 (((-112) $) 34)) (-3319 (($) 33)) (-3171 (($ $ (-1185 (-548))) 83) (((-112) $ (-548)) 57) (((-112) $ (-548) (-112)) 56)) (-2008 (($ $ (-1185 (-548))) 85) (($ $ (-548)) 84)) (-3945 (((-745) (-112) $) 47 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) 99 (|has| $ (-6 -4328)))) (-2113 (($ $) 32)) (-2591 (((-524) $) 67 (|has| (-112) (-593 (-524))))) (-3754 (($ (-619 (-112))) 76)) (-1831 (($ (-619 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3743 (((-832) $) 11)) (-3548 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4327)))) (-1723 (($ $ $) 27)) (-2818 (($ $ $) 105)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2809 (($ $ $) 104)) (-3643 (((-745) $) 39 (|has| $ (-6 -4327))))) +((-3826 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-2238 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4329)) (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-1566 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-119 *2)) (-4 *2 (-1172)))) (-2238 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4329)) (-4 *1 (-119 *3)) (-4 *3 (-1172)))) (-1449 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) +(-13 (-979 |t#1|) (-10 -8 (-15 -3826 ($ $)) (-15 -3329 ($ $ "left")) (-15 -3836 ($ $)) (-15 -3329 ($ $ "right")) (IF (|has| $ (-6 -4329)) (PROGN (-15 -2238 ($ $ "left" $)) (-15 -1566 ($ $ $)) (-15 -2238 ($ $ "right" $)) (-15 -1449 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-1271 (((-112) |#1|) 24)) (-3011 (((-745) (-745)) 23) (((-745)) 22)) (-2932 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -2932 ((-112) |#1|)) (-15 -2932 ((-112) |#1| (-112))) (-15 -3011 ((-745))) (-15 -3011 ((-745) (-745))) (-15 -1271 ((-112) |#1|))) (-1194 (-547))) (T -120)) +((-1271 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547))))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547))))) (-3011 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547))))) (-2932 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547))))) (-2932 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547)))))) +(-10 -7 (-15 -2932 ((-112) |#1|)) (-15 -2932 ((-112) |#1| (-112))) (-15 -3011 ((-745))) (-15 -3011 ((-745) (-745))) (-15 -1271 ((-112) |#1|))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) 15)) (-2378 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-1449 (($ $ $) 18 (|has| $ (-6 -4329)))) (-1566 (($ $ $) 20 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "left" $) NIL (|has| $ (-6 -4329))) (($ $ "right" $) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-3836 (($ $) 17)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2223 (($ $ |#1| $) 23)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3826 (($ $) 19)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3299 (($ |#1| $) 24)) (-1885 (($ |#1| $) 10)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 14)) (-4011 (($) 8)) (-3329 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1887 (((-547) $ $) NIL)) (-2094 (((-112) $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3804 (($ (-619 |#1|)) 12)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4329) (-6 -4328) (-15 -3804 ($ (-619 |#1|))) (-15 -1885 ($ |#1| $)) (-15 -3299 ($ |#1| $)) (-15 -2378 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-821)) (T -121)) +((-3804 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3)))) (-1885 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-3299 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) (-2378 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-821))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4329) (-6 -4328) (-15 -3804 ($ (-619 |#1|))) (-15 -1885 ($ |#1| $)) (-15 -3299 ($ |#1| $)) (-15 -2378 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1332 (($ $) 13)) (-3998 (($ $) 11)) (-2786 (($ $ $) 23)) (-4265 (($ $ $) 21)) (-3696 (($ $ $) 19)) (-3683 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -2786 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -2786 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3696 (|#1| |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-1332 (($ $) 103)) (-2447 (($ $ $) 25)) (-2290 (((-1223) $ (-547) (-547)) 66 (|has| $ (-6 -4329)))) (-2951 (((-112) $) 98 (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2765 (($ $) 102 (-12 (|has| (-112) (-821)) (|has| $ (-6 -4329)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4329)))) (-3180 (($ $) 97 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2826 (((-112) $ (-745)) 37)) (-2238 (((-112) $ (-1185 (-547)) (-112)) 88 (|has| $ (-6 -4329))) (((-112) $ (-547) (-112)) 54 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4328)))) (-3219 (($) 38 T CONST)) (-2034 (($ $) 100 (|has| $ (-6 -4329)))) (-3048 (($ $) 90)) (-3664 (($ $) 68 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4328))) (($ (-112) $) 69 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4328))))) (-2542 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4328))))) (-1861 (((-112) $ (-547) (-112)) 53 (|has| $ (-6 -4329)))) (-1793 (((-112) $ (-547)) 55)) (-2867 (((-547) (-112) $ (-547)) 95 (|has| (-112) (-1063))) (((-547) (-112) $) 94 (|has| (-112) (-1063))) (((-547) (-1 (-112) (-112)) $) 93)) (-2973 (((-619 (-112)) $) 45 (|has| $ (-6 -4328)))) (-4197 (($ $ $) 26)) (-3998 (($ $) 30)) (-2786 (($ $ $) 28)) (-3732 (($ (-745) (-112)) 77)) (-4265 (($ $ $) 29)) (-4161 (((-112) $ (-745)) 36)) (-2528 (((-547) $) 63 (|has| (-547) (-821)))) (-2847 (($ $ $) 13)) (-1294 (($ $ $) 96 (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3666 (((-619 (-112)) $) 46 (|has| $ (-6 -4328)))) (-3860 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 62 (|has| (-547) (-821)))) (-3563 (($ $ $) 14)) (-1850 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2024 (((-112) $ (-745)) 35)) (-1917 (((-1118) $) 9)) (-2599 (($ $ $ (-547)) 87) (($ (-112) $ (-547)) 86)) (-1520 (((-619 (-547)) $) 60)) (-1641 (((-112) (-547) $) 59)) (-3979 (((-1082) $) 10)) (-3634 (((-112) $) 64 (|has| (-547) (-821)))) (-3461 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2418 (($ $ (-112)) 65 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-112)) (-619 (-112))) 52 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-285 (-112))) 50 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-285 (-112)))) 49 (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))))) (-2911 (((-112) $ $) 31)) (-2729 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-1758 (((-619 (-112)) $) 58)) (-3169 (((-112) $) 34)) (-4011 (($) 33)) (-3329 (($ $ (-1185 (-547))) 83) (((-112) $ (-547)) 57) (((-112) $ (-547) (-112)) 56)) (-2151 (($ $ (-1185 (-547))) 85) (($ $ (-547)) 84)) (-3987 (((-745) (-112) $) 47 (-12 (|has| (-112) (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4328)))) (-2861 (($ $ $ (-547)) 99 (|has| $ (-6 -4329)))) (-2265 (($ $) 32)) (-2829 (((-523) $) 67 (|has| (-112) (-592 (-523))))) (-3841 (($ (-619 (-112))) 76)) (-1935 (($ (-619 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3834 (((-832) $) 11)) (-2583 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4328)))) (-1806 (($ $ $) 27)) (-3696 (($ $ $) 105)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-3683 (($ $ $) 104)) (-3763 (((-745) $) 39 (|has| $ (-6 -4328))))) (((-123) (-138)) (T -123)) -((-3958 (*1 *1 *1) (-4 *1 (-123))) (-4293 (*1 *1 *1 *1) (-4 *1 (-123))) (-4078 (*1 *1 *1 *1) (-4 *1 (-123))) (-1723 (*1 *1 *1 *1) (-4 *1 (-123))) (-4168 (*1 *1 *1 *1) (-4 *1 (-123))) (-2218 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-821) (-635) (-19 (-112)) (-10 -8 (-15 -3958 ($ $)) (-15 -4293 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -2218 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 #0=(-112)) . T) ((-593 (-524)) |has| (-112) (-593 (-524))) ((-278 #1=(-548) #0#) . T) ((-280 #1# #0#) . T) ((-301 #0#) -12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))) ((-365 #0#) . T) ((-480 #0#) . T) ((-583 #1# #0#) . T) ((-504 #0# #0#) -12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))) ((-625 #0#) . T) ((-635) . T) ((-19 #0#) . T) ((-821) . T) ((-1063) . T) ((-1172) . T)) -((-3960 (($ (-1 |#2| |#2|) $) 22)) (-2113 (($ $) 16)) (-3643 (((-745) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2113 (|#1| |#1|))) (-125 |#2|) (-1063)) (T -124)) -NIL -(-10 -8 (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2113 (|#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 52 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 54 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) (($ $ "left" $) 55 (|has| $ (-6 -4328))) (($ $ "right" $) 53 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-3676 (($ $) 57)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 60)) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3663 (($ $) 59)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3998 (*1 *1 *1) (-4 *1 (-123))) (-4265 (*1 *1 *1 *1) (-4 *1 (-123))) (-2786 (*1 *1 *1 *1) (-4 *1 (-123))) (-1806 (*1 *1 *1 *1) (-4 *1 (-123))) (-4197 (*1 *1 *1 *1) (-4 *1 (-123))) (-2447 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-821) (-635) (-19 (-112)) (-10 -8 (-15 -3998 ($ $)) (-15 -4265 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -1806 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -2447 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 #0=(-112)) . T) ((-592 (-523)) |has| (-112) (-592 (-523))) ((-277 #1=(-547) #0#) . T) ((-279 #1# #0#) . T) ((-300 #0#) -12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))) ((-364 #0#) . T) ((-479 #0#) . T) ((-582 #1# #0#) . T) ((-503 #0# #0#) -12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))) ((-625 #0#) . T) ((-635) . T) ((-19 #0#) . T) ((-821) . T) ((-1063) . T) ((-1172) . T)) +((-1850 (($ (-1 |#2| |#2|) $) 22)) (-2265 (($ $) 16)) (-3763 (((-745) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2265 (|#1| |#1|))) (-125 |#2|) (-1063)) (T -124)) +NIL +(-10 -8 (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2265 (|#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-1449 (($ $ $) 52 (|has| $ (-6 -4329)))) (-1566 (($ $ $) 54 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329))) (($ $ "left" $) 55 (|has| $ (-6 -4329))) (($ $ "right" $) 53 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-3219 (($) 7 T CONST)) (-3836 (($ $) 57)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-2223 (($ $ |#1| $) 60)) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-3826 (($ $) 59)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1887 (((-547) $ $) 44)) (-2094 (((-112) $) 46)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-125 |#1|) (-138) (-1063)) (T -125)) -((-2021 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -2021 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-119 |#1|) . T) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 15)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) 19 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 20 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 18 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 21)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2539 (($ |#1| $) 10)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 8)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 17)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4305 (($ (-619 |#1|)) 12)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4328) (-15 -4305 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)))) (-821)) (T -126)) -((-4305 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3)))) (-2539 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4328) (-15 -4305 ($ (-619 |#1|))) (-15 -2539 ($ |#1| $)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 24)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) 26 (|has| $ (-6 -4328)))) (-1816 (($ $ $) 30 (|has| $ (-6 -4328)))) (-1825 (($ $ $) 28 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 20)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2021 (($ $ |#1| $) 15)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 19)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) 21)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 18)) (-3319 (($) 11)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2443 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 10 (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2443 ($ |#1|)) (-15 -2443 ($ $ |#1| $)))) (-1063)) (T -127)) -((-2443 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) (-2443 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))) -(-13 (-125 |#1|) (-10 -8 (-15 -2443 ($ |#1|)) (-15 -2443 ($ $ |#1| $)))) -((-3730 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-821)))) (-2980 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-821))))) (-2490 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-129) $ (-548) (-129)) NIL (|has| $ (-6 -4328))) (((-129) $ (-1185 (-548)) (-129)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-3699 (($ (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4327))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-129) $ (-548) (-129)) NIL (|has| $ (-6 -4328)))) (-3899 (((-129) $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) (-129)) $) NIL) (((-548) (-129) $) NIL (|has| (-129) (-1063))) (((-548) (-129) $ (-548)) NIL (|has| (-129) (-1063)))) (-1934 (((-619 (-129)) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-129)) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-129) (-821)))) (-2913 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-821)))) (-2342 (((-619 (-129)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-129) (-821)))) (-3960 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| (-129) (-1063)))) (-2387 (($ (-129) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| (-129) (-1063)))) (-3453 (((-129) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4159 (($ $ (-129)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-129)))) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063)))) (($ $ (-286 (-129))) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063)))) (($ $ (-619 (-129)) (-619 (-129))) NIL (-12 (|has| (-129) (-301 (-129))) (|has| (-129) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-4223 (((-619 (-129)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-129) $ (-548) (-129)) NIL) (((-129) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327))) (((-745) (-129) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-129) (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-129) (-593 (-524))))) (-3754 (($ (-619 (-129))) NIL)) (-1831 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| (-129) (-592 (-832))))) (-3548 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2214 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-2252 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-129) (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +((-2223 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4329) (-6 -4328) (-15 -2223 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-119 |#1|) . T) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) 15)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) 19 (|has| $ (-6 -4329)))) (-1449 (($ $ $) 20 (|has| $ (-6 -4329)))) (-1566 (($ $ $) 18 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "left" $) NIL (|has| $ (-6 -4329))) (($ $ "right" $) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-3836 (($ $) 21)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2223 (($ $ |#1| $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3826 (($ $) NIL)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1885 (($ |#1| $) 10)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 14)) (-4011 (($) 8)) (-3329 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1887 (((-547) $ $) NIL)) (-2094 (((-112) $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 17)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1328 (($ (-619 |#1|)) 12)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4329) (-15 -1328 ($ (-619 |#1|))) (-15 -1885 ($ |#1| $)))) (-821)) (T -126)) +((-1328 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3)))) (-1885 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4329) (-15 -1328 ($ (-619 |#1|))) (-15 -1885 ($ |#1| $)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) 24)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) 26 (|has| $ (-6 -4329)))) (-1449 (($ $ $) 30 (|has| $ (-6 -4329)))) (-1566 (($ $ $) 28 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "left" $) NIL (|has| $ (-6 -4329))) (($ $ "right" $) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-3836 (($ $) 20)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2223 (($ $ |#1| $) 15)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3826 (($ $) 19)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) 21)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 18)) (-4011 (($) 11)) (-3329 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1887 (((-547) $ $) NIL)) (-2094 (((-112) $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2260 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 10 (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2260 ($ |#1|)) (-15 -2260 ($ $ |#1| $)))) (-1063)) (T -127)) +((-2260 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) (-2260 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))) +(-13 (-125 |#1|) (-10 -8 (-15 -2260 ($ |#1|)) (-15 -2260 ($ $ |#1| $)))) +((-3821 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-821)))) (-2765 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-129) (-821))))) (-3180 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 (((-129) $ (-547) (-129)) NIL (|has| $ (-6 -4329))) (((-129) $ (-1185 (-547)) (-129)) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-1063))))) (-3801 (($ (-129) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-1063)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-1063)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4328))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4328)))) (-1861 (((-129) $ (-547) (-129)) NIL (|has| $ (-6 -4329)))) (-1793 (((-129) $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) (-129)) $) NIL) (((-547) (-129) $) NIL (|has| (-129) (-1063))) (((-547) (-129) $ (-547)) NIL (|has| (-129) (-1063)))) (-2973 (((-619 (-129)) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) (-129)) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| (-129) (-821)))) (-1294 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-821)))) (-3666 (((-619 (-129)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-129) (-821)))) (-1850 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| (-129) (-1063)))) (-2599 (($ (-129) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| (-129) (-1063)))) (-3634 (((-129) $) NIL (|has| (-547) (-821)))) (-3461 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2418 (($ $ (-129)) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-129)))) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063)))) (($ $ (-285 (-129))) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063)))) (($ $ (-619 (-129)) (-619 (-129))) NIL (-12 (|has| (-129) (-300 (-129))) (|has| (-129) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-1063))))) (-1758 (((-619 (-129)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 (((-129) $ (-547) (-129)) NIL) (((-129) $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4328))) (((-745) (-129) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-129) (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-129) (-592 (-523))))) (-3841 (($ (-619 (-129))) NIL)) (-1935 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| (-129) (-591 (-832))))) (-2583 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2371 (((-112) $ $) NIL (|has| (-129) (-1063)))) (-2421 (((-112) $ $) NIL (|has| (-129) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-129) (-821)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) (((-128) (-19 (-129))) (T -128)) NIL (-19 (-129)) -((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 12) (((-745) $) 9) (($ (-745)) 8)) (-2454 (($ (-745)) 7)) (-2159 (($ $ $) 16)) (-2144 (($ $ $) 15)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 14))) -(((-129) (-13 (-821) (-592 (-745)) (-10 -8 (-15 -2454 ($ (-745))) (-15 -3743 ($ (-745))) (-15 -2144 ($ $ $)) (-15 -2159 ($ $ $))))) (T -129)) -((-2454 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-2144 (*1 *1 *1 *1) (-5 *1 (-129))) (-2159 (*1 *1 *1 *1) (-5 *1 (-129)))) -(-13 (-821) (-592 (-745)) (-10 -8 (-15 -2454 ($ (-745))) (-15 -3743 ($ (-745))) (-15 -2144 ($ $ $)) (-15 -2159 ($ $ $)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15))) +((-3821 (((-112) $ $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 12) (((-745) $) 9) (($ (-745)) 8)) (-2387 (($ (-745)) 7)) (-2313 (($ $ $) 17)) (-2297 (($ $ $) 16)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 14)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 15))) +(((-129) (-13 (-821) (-591 (-745)) (-10 -8 (-15 -2387 ($ (-745))) (-15 -3834 ($ (-745))) (-15 -2297 ($ $ $)) (-15 -2313 ($ $ $))))) (T -129)) +((-2387 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) (-2297 (*1 *1 *1 *1) (-5 *1 (-129))) (-2313 (*1 *1 *1 *1) (-5 *1 (-129)))) +(-13 (-821) (-591 (-745)) (-10 -8 (-15 -2387 ($ (-745))) (-15 -3834 ($ (-745))) (-15 -2297 ($ $ $)) (-15 -2313 ($ $ $)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15))) (((-130) (-138)) (T -130)) -((-4104 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -4104 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-4116 (((-1223) $ (-745)) 19)) (-2621 (((-745) $) 20)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +((-3013 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -3013 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-3112 (((-1223) $ (-745)) 19)) (-2867 (((-745) $) 20)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18))) (((-131) (-138)) (T -131)) -((-2621 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745)))) (-4116 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1223))))) -(-13 (-821) (-10 -8 (-15 -2621 ((-745) $)) (-15 -4116 ((-1223) $ (-745))))) -(((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-619 (-1140)) $) 10)) (-2214 (((-112) $ $) NIL))) -(((-132) (-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $))))) (T -132)) -((-2286 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-132))))) -(-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $)))) -((-3730 (((-112) $ $) 34)) (-3324 (((-112) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-745) "failed") $) 40)) (-2375 (((-745) $) 38)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3397 (((-112)) 41)) (-3380 (((-112) (-112)) 43)) (-1828 (((-112) $) 24)) (-3488 (((-112) $) 37)) (-3743 (((-832) $) 22) (($ (-745)) 14)) (-3107 (($) 11 T CONST)) (-3118 (($) 12 T CONST)) (-3501 (($ (-745)) 15)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 25)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 26)) (-2299 (((-3 $ "failed") $ $) 30)) (-2290 (($ $ $) 28)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ $) 36)) (* (($ (-745) $) 33) (($ (-890) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4329 "*")) (-15 -2299 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3501 ($ (-745))) (-15 -1828 ((-112) $)) (-15 -3488 ((-112) $)) (-15 -3397 ((-112))) (-15 -3380 ((-112) (-112)))))) (T -133)) -((-2299 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3397 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4329 "*")) (-15 -2299 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3501 ($ (-745))) (-15 -1828 ((-112) $)) (-15 -3488 ((-112) $)) (-15 -3397 ((-112))) (-15 -3380 ((-112) (-112))))) -((-3726 (((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2540 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) -(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2540 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-548) (-745) (-169) (-169)) (T -134)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) -(-10 -7 (-15 -3726 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2540 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) -((-3730 (((-112) $ $) NIL)) (-3333 (($ (-619 |#3|)) 40)) (-3508 (($ $) 99) (($ $ (-548) (-548)) 98)) (-3030 (($) 17)) (-2441 (((-3 |#3| "failed") $) 60)) (-2375 ((|#3| $) NIL)) (-3374 (($ $ (-619 (-548))) 100)) (-3713 (((-619 |#3|) $) 36)) (-2103 (((-745) $) 44)) (-2481 (($ $ $) 93)) (-3364 (($) 43)) (-2546 (((-1118) $) NIL)) (-3382 (($) 16)) (-3932 (((-1082) $) NIL)) (-3171 ((|#3| $) 46) ((|#3| $ (-548)) 47) ((|#3| $ (-548) (-548)) 48) ((|#3| $ (-548) (-548) (-548)) 49) ((|#3| $ (-548) (-548) (-548) (-548)) 50) ((|#3| $ (-619 (-548))) 52)) (-2512 (((-745) $) 45)) (-3925 (($ $ (-548) $ (-548)) 94) (($ $ (-548) (-548)) 96)) (-3743 (((-832) $) 67) (($ |#3|) 68) (($ (-233 |#2| |#3|)) 75) (($ (-1102 |#2| |#3|)) 78) (($ (-619 |#3|)) 53) (($ (-619 $)) 58)) (-3107 (($) 69 T CONST)) (-3118 (($) 70 T CONST)) (-2214 (((-112) $ $) 80)) (-2299 (($ $) 86) (($ $ $) 84)) (-2290 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-548)) 89) (($ (-548) $) 88) (($ $ $) 95))) -(((-135 |#1| |#2| |#3|) (-13 (-456 |#3| (-745)) (-461 (-548) (-745)) (-10 -8 (-15 -3743 ($ (-233 |#2| |#3|))) (-15 -3743 ($ (-1102 |#2| |#3|))) (-15 -3743 ($ (-619 |#3|))) (-15 -3743 ($ (-619 $))) (-15 -2103 ((-745) $)) (-15 -3171 (|#3| $)) (-15 -3171 (|#3| $ (-548))) (-15 -3171 (|#3| $ (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-619 (-548)))) (-15 -2481 ($ $ $)) (-15 * ($ $ $)) (-15 -3925 ($ $ (-548) $ (-548))) (-15 -3925 ($ $ (-548) (-548))) (-15 -3508 ($ $)) (-15 -3508 ($ $ (-548) (-548))) (-15 -3374 ($ $ (-619 (-548)))) (-15 -3382 ($)) (-15 -3364 ($)) (-15 -3713 ((-619 |#3|) $)) (-15 -3333 ($ (-619 |#3|))) (-15 -3030 ($)))) (-548) (-745) (-169)) (T -135)) -((-2481 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1102 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 *2) (-4 *5 (-169)))) (-3171 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-548)) (-14 *4 (-745)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-548))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-548)) (-14 *5 (-745)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3925 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3925 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3508 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3382 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3364 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) (-14 *4 (-745)))) (-3030 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) (-4 *4 (-169))))) -(-13 (-456 |#3| (-745)) (-461 (-548) (-745)) (-10 -8 (-15 -3743 ($ (-233 |#2| |#3|))) (-15 -3743 ($ (-1102 |#2| |#3|))) (-15 -3743 ($ (-619 |#3|))) (-15 -3743 ($ (-619 $))) (-15 -2103 ((-745) $)) (-15 -3171 (|#3| $)) (-15 -3171 (|#3| $ (-548))) (-15 -3171 (|#3| $ (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-548) (-548) (-548) (-548))) (-15 -3171 (|#3| $ (-619 (-548)))) (-15 -2481 ($ $ $)) (-15 * ($ $ $)) (-15 -3925 ($ $ (-548) $ (-548))) (-15 -3925 ($ $ (-548) (-548))) (-15 -3508 ($ $)) (-15 -3508 ($ $ (-548) (-548))) (-15 -3374 ($ $ (-619 (-548)))) (-15 -3382 ($)) (-15 -3364 ($)) (-15 -3713 ((-619 |#3|) $)) (-15 -3333 ($ (-619 |#3|))) (-15 -3030 ($)))) -((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-136) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -136)) -((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136))))) -(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2492 (((-1135) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-619 (-1140)) $) 13)) (-2214 (((-112) $ $) NIL))) -(((-137) (-13 (-1047) (-10 -8 (-15 -2492 ((-1135) $)) (-15 -2286 ((-619 (-1140)) $))))) (T -137)) -((-2492 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-137))))) -(-13 (-1047) (-10 -8 (-15 -2492 ((-1135) $)) (-15 -2286 ((-619 (-1140)) $)))) -((-3743 (((-832) $) 7))) -(((-138) (-592 (-832))) (T -138)) -NIL -(-592 (-832)) -((-3730 (((-112) $ $) NIL)) (-3552 (($) 15 T CONST)) (-2528 (($) NIL (|has| (-142) (-360)))) (-1434 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-2501 (($ $ $) NIL)) (-2491 (((-112) $ $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| (-142) (-360)))) (-2592 (($) NIL) (($ (-619 (-142))) NIL)) (-2657 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-1636 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (($ (-142) $) 51 (|has| $ (-6 -4327)))) (-3699 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2545 (($) NIL (|has| (-142) (-360)))) (-1934 (((-619 (-142)) $) 60 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-1795 (((-142) $) NIL (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-3091 (((-142) $) NIL (|has| (-142) (-821)))) (-3960 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) 55)) (-3574 (($) 16 T CONST)) (-2855 (((-890) $) NIL (|has| (-142) (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 29)) (-1346 (((-142) $) 52)) (-2539 (($ (-142) $) 50)) (-3337 (($ (-890)) NIL (|has| (-142) (-360)))) (-3666 (($) 14 T CONST)) (-3932 (((-1082) $) NIL)) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1357 (((-142) $) 53)) (-3537 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-286 (-142)))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 48)) (-2908 (($) 13 T CONST)) (-2511 (($ $ $) 31) (($ $ (-142)) NIL)) (-2801 (($ (-619 (-142))) NIL) (($) NIL)) (-3945 (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-1118) $) 36) (((-524) $) NIL (|has| (-142) (-593 (-524)))) (((-619 (-142)) $) 34)) (-3754 (($ (-619 (-142))) NIL)) (-2543 (($ $) 32 (|has| (-142) (-360)))) (-3743 (((-832) $) 46)) (-2396 (($ (-1118)) 12) (($ (-619 (-142))) 43)) (-2554 (((-745) $) NIL)) (-4013 (($) 49) (($ (-619 (-142))) NIL)) (-1368 (($ (-619 (-142))) NIL)) (-3548 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3391 (($) 19 T CONST)) (-3654 (($) 18 T CONST)) (-2214 (((-112) $ $) 22)) (-3643 (((-745) $) 47 (|has| $ (-6 -4327))))) -(((-139) (-13 (-1063) (-593 (-1118)) (-417 (-142)) (-593 (-619 (-142))) (-10 -8 (-15 -2396 ($ (-1118))) (-15 -2396 ($ (-619 (-142)))) (-15 -2908 ($) -2325) (-15 -3666 ($) -2325) (-15 -3552 ($) -2325) (-15 -3574 ($) -2325) (-15 -3654 ($) -2325) (-15 -3391 ($) -2325)))) (T -139)) -((-2396 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-139)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) (-2908 (*1 *1) (-5 *1 (-139))) (-3666 (*1 *1) (-5 *1 (-139))) (-3552 (*1 *1) (-5 *1 (-139))) (-3574 (*1 *1) (-5 *1 (-139))) (-3654 (*1 *1) (-5 *1 (-139))) (-3391 (*1 *1) (-5 *1 (-139)))) -(-13 (-1063) (-593 (-1118)) (-417 (-142)) (-593 (-619 (-142))) (-10 -8 (-15 -2396 ($ (-1118))) (-15 -2396 ($ (-619 (-142)))) (-15 -2908 ($) -2325) (-15 -3666 ($) -2325) (-15 -3552 ($) -2325) (-15 -3574 ($) -2325) (-15 -3654 ($) -2325) (-15 -3391 ($) -2325))) -((-1396 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1374 ((|#1| |#3|) 9)) (-1386 ((|#3| |#3|) 15))) -(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-540) (-961 |#1|) (-365 |#2|)) (T -140)) -((-1396 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-365 *5)))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-365 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-365 *4))))) -(-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4206 (($ $ $) 8)) (-4185 (($ $) 7)) (-3612 (($ $ $) 6))) +((-2867 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745)))) (-3112 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1223))))) +(-13 (-821) (-10 -8 (-15 -2867 ((-745) $)) (-15 -3112 ((-1223) $ (-745))))) +(((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-619 (-1140)) $) 10)) (-2371 (((-112) $ $) NIL))) +(((-132) (-13 (-1047) (-10 -8 (-15 -2478 ((-619 (-1140)) $))))) (T -132)) +((-2478 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-132))))) +(-13 (-1047) (-10 -8 (-15 -2478 ((-619 (-1140)) $)))) +((-3821 (((-112) $ $) 34)) (-4046 (((-112) $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-745) "failed") $) 40)) (-2643 (((-745) $) 38)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) 27)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3467 (((-112)) 41)) (-3341 (((-112) (-112)) 43)) (-1602 (((-112) $) 24)) (-3139 (((-112) $) 37)) (-3834 (((-832) $) 22) (($ (-745)) 14)) (-3267 (($) 11 T CONST)) (-3277 (($) 12 T CONST)) (-2057 (($ (-745)) 15)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 25)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 26)) (-2484 (((-3 $ "failed") $ $) 30)) (-2470 (($ $ $) 28)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ $) 36)) (* (($ (-745) $) 33) (($ (-890) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4330 "*")) (-15 -2484 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2057 ($ (-745))) (-15 -1602 ((-112) $)) (-15 -3139 ((-112) $)) (-15 -3467 ((-112))) (-15 -3341 ((-112) (-112)))))) (T -133)) +((-2484 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3467 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-3341 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-821) (-23) (-701) (-1007 (-745)) (-10 -8 (-6 (-4330 "*")) (-15 -2484 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2057 ($ (-745))) (-15 -1602 ((-112) $)) (-15 -3139 ((-112) $)) (-15 -3467 ((-112))) (-15 -3341 ((-112) (-112))))) +((-3869 (((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-2781 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3869 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2781 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-547) (-745) (-169) (-169)) (T -134)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) +(-10 -7 (-15 -3869 ((-135 |#1| |#2| |#4|) (-619 |#4|) (-135 |#1| |#2| |#3|))) (-15 -2781 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-3821 (((-112) $ $) NIL)) (-4133 (($ (-619 |#3|)) 40)) (-2150 (($ $) 99) (($ $ (-547) (-547)) 98)) (-3219 (($) 17)) (-2698 (((-3 |#3| "failed") $) 60)) (-2643 ((|#3| $) NIL)) (-3289 (($ $ (-619 (-547))) 100)) (-3862 (((-619 |#3|) $) 36)) (-3107 (((-745) $) 44)) (-2651 (($ $ $) 93)) (-1291 (($) 43)) (-1917 (((-1118) $) NIL)) (-3352 (($) 16)) (-3979 (((-1082) $) NIL)) (-3329 ((|#3| $) 46) ((|#3| $ (-547)) 47) ((|#3| $ (-547) (-547)) 48) ((|#3| $ (-547) (-547) (-547)) 49) ((|#3| $ (-547) (-547) (-547) (-547)) 50) ((|#3| $ (-619 (-547))) 52)) (-1618 (((-745) $) 45)) (-1843 (($ $ (-547) $ (-547)) 94) (($ $ (-547) (-547)) 96)) (-3834 (((-832) $) 67) (($ |#3|) 68) (($ (-232 |#2| |#3|)) 75) (($ (-1102 |#2| |#3|)) 78) (($ (-619 |#3|)) 53) (($ (-619 $)) 58)) (-3267 (($) 69 T CONST)) (-3277 (($) 70 T CONST)) (-2371 (((-112) $ $) 80)) (-2484 (($ $) 86) (($ $ $) 84)) (-2470 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-547)) 89) (($ (-547) $) 88) (($ $ $) 95))) +(((-135 |#1| |#2| |#3|) (-13 (-455 |#3| (-745)) (-460 (-547) (-745)) (-10 -8 (-15 -3834 ($ (-232 |#2| |#3|))) (-15 -3834 ($ (-1102 |#2| |#3|))) (-15 -3834 ($ (-619 |#3|))) (-15 -3834 ($ (-619 $))) (-15 -3107 ((-745) $)) (-15 -3329 (|#3| $)) (-15 -3329 (|#3| $ (-547))) (-15 -3329 (|#3| $ (-547) (-547))) (-15 -3329 (|#3| $ (-547) (-547) (-547))) (-15 -3329 (|#3| $ (-547) (-547) (-547) (-547))) (-15 -3329 (|#3| $ (-619 (-547)))) (-15 -2651 ($ $ $)) (-15 * ($ $ $)) (-15 -1843 ($ $ (-547) $ (-547))) (-15 -1843 ($ $ (-547) (-547))) (-15 -2150 ($ $)) (-15 -2150 ($ $ (-547) (-547))) (-15 -3289 ($ $ (-619 (-547)))) (-15 -3352 ($)) (-15 -1291 ($)) (-15 -3862 ((-619 |#3|) $)) (-15 -4133 ($ (-619 |#3|))) (-15 -3219 ($)))) (-547) (-745) (-169)) (T -135)) +((-2651 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-232 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1102 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 *2) (-4 *5 (-169)))) (-3329 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-547)) (-14 *4 (-745)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3329 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3329 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3329 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-547))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-547)) (-14 *5 (-745)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-1843 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-1843 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-2150 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-745)) (-4 *5 (-169)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3352 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-1291 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) (-4133 (*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) (-14 *4 (-745)))) (-3219 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169))))) +(-13 (-455 |#3| (-745)) (-460 (-547) (-745)) (-10 -8 (-15 -3834 ($ (-232 |#2| |#3|))) (-15 -3834 ($ (-1102 |#2| |#3|))) (-15 -3834 ($ (-619 |#3|))) (-15 -3834 ($ (-619 $))) (-15 -3107 ((-745) $)) (-15 -3329 (|#3| $)) (-15 -3329 (|#3| $ (-547))) (-15 -3329 (|#3| $ (-547) (-547))) (-15 -3329 (|#3| $ (-547) (-547) (-547))) (-15 -3329 (|#3| $ (-547) (-547) (-547) (-547))) (-15 -3329 (|#3| $ (-619 (-547)))) (-15 -2651 ($ $ $)) (-15 * ($ $ $)) (-15 -1843 ($ $ (-547) $ (-547))) (-15 -1843 ($ $ (-547) (-547))) (-15 -2150 ($ $)) (-15 -2150 ($ $ (-547) (-547))) (-15 -3289 ($ $ (-619 (-547)))) (-15 -3352 ($)) (-15 -1291 ($)) (-15 -3862 ((-619 |#3|) $)) (-15 -4133 ($ (-619 |#3|))) (-15 -3219 ($)))) +((-3821 (((-112) $ $) NIL)) (-2186 (((-1140) $) 11)) (-2174 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-136) (-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $))))) (T -136)) +((-2174 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136))))) +(-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-2692 (((-1135) $) 11)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-619 (-1140)) $) 13)) (-2371 (((-112) $ $) NIL))) +(((-137) (-13 (-1047) (-10 -8 (-15 -2692 ((-1135) $)) (-15 -2478 ((-619 (-1140)) $))))) (T -137)) +((-2692 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-137))))) +(-13 (-1047) (-10 -8 (-15 -2692 ((-1135) $)) (-15 -2478 ((-619 (-1140)) $)))) +((-3834 (((-832) $) 7))) +(((-138) (-591 (-832))) (T -138)) +NIL +(-591 (-832)) +((-3821 (((-112) $ $) NIL)) (-2617 (($) 15 T CONST)) (-1788 (($) NIL (|has| (-142) (-359)))) (-1428 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-1492 (($ $ $) NIL)) (-1383 (((-112) $ $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| (-142) (-359)))) (-2771 (($) NIL) (($ (-619 (-142))) NIL)) (-3681 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-3342 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328))) (($ (-142) $) 51 (|has| $ (-6 -4328)))) (-3801 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-2542 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4328))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4328))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-3229 (($) NIL (|has| (-142) (-359)))) (-2973 (((-619 (-142)) $) 60 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2847 (((-142) $) NIL (|has| (-142) (-821)))) (-3666 (((-619 (-142)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-3563 (((-142) $) NIL (|has| (-142) (-821)))) (-1850 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-142) (-142)) $) 55)) (-1493 (($) 16 T CONST)) (-1966 (((-890) $) NIL (|has| (-142) (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-1711 (($ $ $) 29)) (-1959 (((-142) $) 52)) (-1885 (($ (-142) $) 50)) (-3479 (($ (-890)) NIL (|has| (-142) (-359)))) (-4244 (($) 14 T CONST)) (-3979 (((-1082) $) NIL)) (-3461 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1373 (((-142) $) 53)) (-2462 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-285 (-142)))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 48)) (-4296 (($) 13 T CONST)) (-1604 (($ $ $) 31) (($ $ (-142)) NIL)) (-1404 (($ (-619 (-142))) NIL) (($) NIL)) (-3987 (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063)))) (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-1118) $) 36) (((-523) $) NIL (|has| (-142) (-592 (-523)))) (((-619 (-142)) $) 34)) (-3841 (($ (-619 (-142))) NIL)) (-1893 (($ $) 32 (|has| (-142) (-359)))) (-3834 (((-832) $) 46)) (-3001 (($ (-1118)) 12) (($ (-619 (-142))) 43)) (-3844 (((-745) $) NIL)) (-4112 (($) 49) (($ (-619 (-142))) NIL)) (-2731 (($ (-619 (-142))) NIL)) (-2583 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-3426 (($) 19 T CONST)) (-4138 (($) 18 T CONST)) (-2371 (((-112) $ $) 22)) (-3763 (((-745) $) 47 (|has| $ (-6 -4328))))) +(((-139) (-13 (-1063) (-592 (-1118)) (-416 (-142)) (-592 (-619 (-142))) (-10 -8 (-15 -3001 ($ (-1118))) (-15 -3001 ($ (-619 (-142)))) (-15 -4296 ($) -2573) (-15 -4244 ($) -2573) (-15 -2617 ($) -2573) (-15 -1493 ($) -2573) (-15 -4138 ($) -2573) (-15 -3426 ($) -2573)))) (T -139)) +((-3001 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-139)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) (-4296 (*1 *1) (-5 *1 (-139))) (-4244 (*1 *1) (-5 *1 (-139))) (-2617 (*1 *1) (-5 *1 (-139))) (-1493 (*1 *1) (-5 *1 (-139))) (-4138 (*1 *1) (-5 *1 (-139))) (-3426 (*1 *1) (-5 *1 (-139)))) +(-13 (-1063) (-592 (-1118)) (-416 (-142)) (-592 (-619 (-142))) (-10 -8 (-15 -3001 ($ (-1118))) (-15 -3001 ($ (-619 (-142)))) (-15 -4296 ($) -2573) (-15 -4244 ($) -2573) (-15 -2617 ($) -2573) (-15 -1493 ($) -2573) (-15 -4138 ($) -2573) (-15 -3426 ($) -2573))) +((-3393 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3201 ((|#1| |#3|) 9)) (-3295 ((|#3| |#3|) 15))) +(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -3201 (|#1| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3393 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-539) (-961 |#1|) (-364 |#2|)) (T -140)) +((-3393 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-364 *5)))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-364 *4)))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-364 *4))))) +(-10 -7 (-15 -3201 (|#1| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3393 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1569 (($ $ $) 8)) (-2677 (($ $) 7)) (-1884 (($ $ $) 6))) (((-141) (-138)) (T -141)) -((-4206 (*1 *1 *1 *1) (-4 *1 (-141))) (-4185 (*1 *1 *1) (-4 *1 (-141))) (-3612 (*1 *1 *1 *1) (-4 *1 (-141)))) -(-13 (-10 -8 (-15 -3612 ($ $ $)) (-15 -4185 ($ $)) (-15 -4206 ($ $ $)))) -((-3730 (((-112) $ $) NIL)) (-2946 (((-112) $) 30)) (-3552 (($ $) 43)) (-3232 (($) 17)) (-3423 (((-745)) 10)) (-2545 (($) 16)) (-2206 (($) 18)) (-1320 (((-745) $) 14)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2935 (((-112) $) 32)) (-3574 (($ $) 44)) (-2855 (((-890) $) 15)) (-2546 (((-1118) $) 38)) (-3337 (($ (-890)) 13)) (-1297 (((-112) $) 28)) (-3932 (((-1082) $) NIL)) (-1307 (($) 19)) (-3839 (((-112) $) 26)) (-3743 (((-832) $) 21)) (-1289 (($ (-745)) 11) (($ (-1118)) 42)) (-2924 (((-112) $) 36)) (-2957 (((-112) $) 34)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 7)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 8))) -(((-142) (-13 (-815) (-10 -8 (-15 -1320 ((-745) $)) (-15 -1289 ($ (-745))) (-15 -1289 ($ (-1118))) (-15 -3232 ($)) (-15 -2206 ($)) (-15 -1307 ($)) (-15 -3552 ($ $)) (-15 -3574 ($ $)) (-15 -3839 ((-112) $)) (-15 -1297 ((-112) $)) (-15 -2957 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2924 ((-112) $))))) (T -142)) -((-1320 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1289 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1289 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-142)))) (-3232 (*1 *1) (-5 *1 (-142))) (-2206 (*1 *1) (-5 *1 (-142))) (-1307 (*1 *1) (-5 *1 (-142))) (-3552 (*1 *1 *1) (-5 *1 (-142))) (-3574 (*1 *1 *1) (-5 *1 (-142))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(-13 (-815) (-10 -8 (-15 -1320 ((-745) $)) (-15 -1289 ($ (-745))) (-15 -1289 ($ (-1118))) (-15 -3232 ($)) (-15 -2206 ($)) (-15 -1307 ($)) (-15 -3552 ($ $)) (-15 -3574 ($ $)) (-15 -3839 ((-112) $)) (-15 -1297 ((-112) $)) (-15 -2957 ((-112) $)) (-15 -2946 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2924 ((-112) $)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-4017 (((-3 $ "failed") $) 33)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-1569 (*1 *1 *1 *1) (-4 *1 (-141))) (-2677 (*1 *1 *1) (-4 *1 (-141))) (-1884 (*1 *1 *1 *1) (-4 *1 (-141)))) +(-13 (-10 -8 (-15 -1884 ($ $ $)) (-15 -2677 ($ $)) (-15 -1569 ($ $ $)))) +((-3821 (((-112) $ $) NIL)) (-3561 (((-112) $) 30)) (-2617 (($ $) 43)) (-1330 (($) 17)) (-3603 (((-745)) 10)) (-3229 (($) 16)) (-1752 (($) 18)) (-2363 (((-745) $) 14)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-3438 (((-112) $) 32)) (-1493 (($ $) 44)) (-1966 (((-890) $) 15)) (-1917 (((-1118) $) 38)) (-3479 (($ (-890)) 13)) (-2089 (((-112) $) 28)) (-3979 (((-1082) $) NIL)) (-2206 (($) 19)) (-3416 (((-112) $) 26)) (-3834 (((-832) $) 21)) (-1299 (($ (-745)) 11) (($ (-1118)) 42)) (-3321 (((-112) $) 36)) (-3678 (((-112) $) 34)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 7)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 8))) +(((-142) (-13 (-815) (-10 -8 (-15 -2363 ((-745) $)) (-15 -1299 ($ (-745))) (-15 -1299 ($ (-1118))) (-15 -1330 ($)) (-15 -1752 ($)) (-15 -2206 ($)) (-15 -2617 ($ $)) (-15 -1493 ($ $)) (-15 -3416 ((-112) $)) (-15 -2089 ((-112) $)) (-15 -3678 ((-112) $)) (-15 -3561 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -3321 ((-112) $))))) (T -142)) +((-2363 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1299 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142)))) (-1299 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-142)))) (-1330 (*1 *1) (-5 *1 (-142))) (-1752 (*1 *1) (-5 *1 (-142))) (-2206 (*1 *1) (-5 *1 (-142))) (-2617 (*1 *1 *1) (-5 *1 (-142))) (-1493 (*1 *1 *1) (-5 *1 (-142))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(-13 (-815) (-10 -8 (-15 -2363 ((-745) $)) (-15 -1299 ($ (-745))) (-15 -1299 ($ (-1118))) (-15 -1330 ($)) (-15 -1752 ($)) (-15 -2206 ($)) (-15 -2617 ($ $)) (-15 -1493 ($ $)) (-15 -3416 ((-112) $)) (-15 -2089 ((-112) $)) (-15 -3678 ((-112) $)) (-15 -3561 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -3321 ((-112) $)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-3336 (((-3 $ "failed") $) 33)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-143) (-138)) (T -143)) -((-4017 (*1 *1 *1) (|partial| -4 *1 (-143)))) -(-13 (-1016) (-10 -8 (-15 -4017 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3780 ((|#1| (-663 |#1|) |#1|) 19))) -(((-144 |#1|) (-10 -7 (-15 -3780 (|#1| (-663 |#1|) |#1|))) (-169)) (T -144)) -((-3780 (*1 *2 *3 *2) (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2))))) -(-10 -7 (-15 -3780 (|#1| (-663 |#1|) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-3336 (*1 *1 *1) (|partial| -4 *1 (-143)))) +(-13 (-1016) (-10 -8 (-15 -3336 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3008 ((|#1| (-663 |#1|) |#1|) 19))) +(((-144 |#1|) (-10 -7 (-15 -3008 (|#1| (-663 |#1|) |#1|))) (-169)) (T -144)) +((-3008 (*1 *2 *3 *2) (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2))))) +(-10 -7 (-15 -3008 (|#1| (-663 |#1|) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-145) (-138)) (T -145)) NIL (-13 (-1016)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3996 (((-2 (|:| -3352 (-745)) (|:| -1489 (-399 |#2|)) (|:| |radicand| |#2|)) (-399 |#2|) (-745)) 70)) (-3986 (((-3 (-2 (|:| |radicand| (-399 |#2|)) (|:| |deg| (-745))) "failed") |#3|) 52)) (-1331 (((-2 (|:| -1489 (-399 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4008 ((|#1| |#3| |#3|) 40)) (-2460 ((|#3| |#3| (-399 |#2|) (-399 |#2|)) 19)) (-4019 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| |deg| (-745))) |#3| |#3|) 49))) -(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1331 ((-2 (|:| -1489 (-399 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3986 ((-3 (-2 (|:| |radicand| (-399 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -3996 ((-2 (|:| -3352 (-745)) (|:| -1489 (-399 |#2|)) (|:| |radicand| |#2|)) (-399 |#2|) (-745))) (-15 -4008 (|#1| |#3| |#3|)) (-15 -2460 (|#3| |#3| (-399 |#2|) (-399 |#2|))) (-15 -4019 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) (-1176) (-1194 |#1|) (-1194 (-399 |#2|))) (T -146)) -((-4019 (*1 *2 *3 *3) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-399 *5)) (|:| |c2| (-399 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5))))) (-2460 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-399 *5)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1194 *3)))) (-4008 (*1 *2 *3 *3) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-1176)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1194 (-399 *4))))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *6)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1194 *3)))) (-3986 (*1 *2 *3) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |radicand| (-399 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5))))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -1489 (-399 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) -(-10 -7 (-15 -1331 ((-2 (|:| -1489 (-399 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3986 ((-3 (-2 (|:| |radicand| (-399 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -3996 ((-2 (|:| -3352 (-745)) (|:| -1489 (-399 |#2|)) (|:| |radicand| |#2|)) (-399 |#2|) (-745))) (-15 -4008 (|#1| |#3| |#3|)) (-15 -2460 (|#3| |#3| (-399 |#2|) (-399 |#2|))) (-15 -4019 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) -((-4039 (((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)) 32))) -(((-147 |#1| |#2|) (-10 -7 (-15 -4039 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)))) (-533) (-163 |#1|)) (T -147)) -((-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-163 *4)) (-4 *4 (-533)) (-5 *1 (-147 *4 *5))))) -(-10 -7 (-15 -4039 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)))) -((-1415 (($ (-1 (-112) |#2|) $) 29)) (-3484 (($ $) 36)) (-3699 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2061 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4030 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-3537 (((-112) (-1 (-112) |#2|) $) 16)) (-3945 (((-745) (-1 (-112) |#2|) $) 14) (((-745) |#2| $) NIL)) (-3548 (((-112) (-1 (-112) |#2|) $) 15)) (-3643 (((-745) $) 11))) -(((-148 |#1| |#2|) (-10 -8 (-15 -3484 (|#1| |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) (-149 |#2|) (-1172)) (T -148)) -NIL -(-10 -8 (-15 -3484 (|#1| |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-1415 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 41 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327))) (($ |#1| $) 42 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 40 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 49)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4279 (((-2 (|:| -4248 (-745)) (|:| -1557 (-398 |#2|)) (|:| |radicand| |#2|)) (-398 |#2|) (-745)) 70)) (-4183 (((-3 (-2 (|:| |radicand| (-398 |#2|)) (|:| |deg| (-745))) "failed") |#3|) 52)) (-2569 (((-2 (|:| -1557 (-398 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1333 ((|#1| |#3| |#3|) 40)) (-2670 ((|#3| |#3| (-398 |#2|) (-398 |#2|)) 19)) (-3354 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| |deg| (-745))) |#3| |#3|) 49))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -2569 ((-2 (|:| -1557 (-398 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4183 ((-3 (-2 (|:| |radicand| (-398 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -4279 ((-2 (|:| -4248 (-745)) (|:| -1557 (-398 |#2|)) (|:| |radicand| |#2|)) (-398 |#2|) (-745))) (-15 -1333 (|#1| |#3| |#3|)) (-15 -2670 (|#3| |#3| (-398 |#2|) (-398 |#2|))) (-15 -3354 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) (-1176) (-1194 |#1|) (-1194 (-398 |#2|))) (T -146)) +((-3354 (*1 *2 *3 *3) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-398 *5)) (|:| |c2| (-398 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-398 *5))))) (-2670 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-398 *5)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1194 *3)))) (-1333 (*1 *2 *3 *3) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-1176)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1194 (-398 *4))))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *6)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1194 *3)))) (-4183 (*1 *2 *3) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |radicand| (-398 *5)) (|:| |deg| (-745)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-398 *5))))) (-2569 (*1 *2 *3) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -1557 (-398 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-398 *5)))))) +(-10 -7 (-15 -2569 ((-2 (|:| -1557 (-398 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4183 ((-3 (-2 (|:| |radicand| (-398 |#2|)) (|:| |deg| (-745))) "failed") |#3|)) (-15 -4279 ((-2 (|:| -4248 (-745)) (|:| -1557 (-398 |#2|)) (|:| |radicand| |#2|)) (-398 |#2|) (-745))) (-15 -1333 (|#1| |#3| |#3|)) (-15 -2670 (|#3| |#3| (-398 |#2|) (-398 |#2|))) (-15 -3354 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| |deg| (-745))) |#3| |#3|))) +((-3548 (((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)) 32))) +(((-147 |#1| |#2|) (-10 -7 (-15 -3548 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)))) (-532) (-163 |#1|)) (T -147)) +((-3548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-163 *4)) (-4 *4 (-532)) (-5 *1 (-147 *4 *5))))) +(-10 -7 (-15 -3548 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)))) +((-1476 (($ (-1 (-112) |#2|) $) 29)) (-3664 (($ $) 36)) (-3801 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2542 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3461 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2462 (((-112) (-1 (-112) |#2|) $) 16)) (-3987 (((-745) (-1 (-112) |#2|) $) 14) (((-745) |#2| $) NIL)) (-2583 (((-112) (-1 (-112) |#2|) $) 15)) (-3763 (((-745) $) 11))) +(((-148 |#1| |#2|) (-10 -8 (-15 -3664 (|#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1476 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3801 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3461 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3763 ((-745) |#1|))) (-149 |#2|) (-1172)) (T -148)) +NIL +(-10 -8 (-15 -3664 (|#1| |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1476 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3801 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3461 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3763 ((-745) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-1476 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3664 (($ $) 41 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328))) (($ |#1| $) 42 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 40 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 49)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-149 |#1|) (-138) (-1172)) (T -149)) -((-3754 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-149 *3)))) (-4030 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-2061 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-2061 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) (-2061 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-3699 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-3484 (*1 *1 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063))))) -(-13 (-480 |t#1|) (-10 -8 (-15 -3754 ($ (-619 |t#1|))) (-15 -4030 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4327)) (PROGN (-15 -2061 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2061 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3699 ($ (-1 (-112) |t#1|) $)) (-15 -1415 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2061 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3699 ($ |t#1| $)) (-15 -3484 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) 86)) (-2266 (((-112) $) NIL)) (-2024 (($ |#2| (-619 (-890))) 56)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1586 (($ (-890)) 47)) (-3402 (((-133)) 23)) (-3743 (((-832) $) 69) (($ (-548)) 45) (($ |#2|) 46)) (-1951 ((|#2| $ (-619 (-890))) 59)) (-3835 (((-745)) 20)) (-3107 (($) 40 T CONST)) (-3118 (($) 43 T CONST)) (-2214 (((-112) $ $) 26)) (-2309 (($ $ |#2|) NIL)) (-2299 (($ $) 34) (($ $ $) 32)) (-2290 (($ $ $) 30)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-150 |#1| |#2| |#3|) (-13 (-1016) (-38 |#2|) (-1225 |#2|) (-10 -8 (-15 -1586 ($ (-890))) (-15 -2024 ($ |#2| (-619 (-890)))) (-15 -1951 (|#2| $ (-619 (-890)))) (-15 -3859 ((-3 $ "failed") $)))) (-890) (-355) (-962 |#1| |#2|)) (T -150)) -((-3859 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-355)) (-14 *4 (-962 *2 *3)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-355)) (-14 *5 (-962 *3 *4)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-4 *2 (-355)) (-14 *5 (-962 *4 *2)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-890))) (-4 *2 (-355)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-14 *5 (-962 *4 *2))))) -(-13 (-1016) (-38 |#2|) (-1225 |#2|) (-10 -8 (-15 -1586 ($ (-890))) (-15 -2024 ($ |#2| (-619 (-890)))) (-15 -1951 (|#2| $ (-619 (-890)))) (-15 -3859 ((-3 $ "failed") $)))) -((-4053 (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))) (-218) (-218) (-218) (-218)) 38)) (-4041 (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548))) 63) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896)) 64)) (-3138 (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218))))) 67) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-912 (-218)))) 66) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548))) 58) (((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896)) 59))) -(((-151) (-10 -7 (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4053 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))) (-218) (-218) (-218) (-218))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-912 (-218))))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))))))) (T -151)) -((-3138 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-218))))))) (-3138 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)) (-5 *3 (-619 (-912 (-218)))))) (-4053 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-218)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 *4)))) (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4)))))) (-4041 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)))) (-3138 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) (-5 *1 (-151))))) -(-10 -7 (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896))) (-15 -4041 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-896) (-399 (-548)) (-399 (-548)))) (-15 -4053 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218)))) (-218) (-218) (-218) (-218))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-912 (-218))))) (-15 -3138 ((-2 (|:| |brans| (-619 (-619 (-912 (-218))))) (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218)))) (-619 (-619 (-912 (-218))))))) -((-3327 (((-619 (-166 |#2|)) |#1| |#2|) 45))) -(((-152 |#1| |#2|) (-10 -7 (-15 -3327 ((-619 (-166 |#2|)) |#1| |#2|))) (-1194 (-166 (-548))) (-13 (-355) (-819))) (T -152)) -((-3327 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1194 (-166 (-548)))) (-4 *4 (-13 (-355) (-819)))))) -(-10 -7 (-15 -3327 ((-619 (-166 |#2|)) |#1| |#2|))) -((-3730 (((-112) $ $) NIL)) (-1987 (((-1171) $) 12)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-153) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1171) $))))) (T -153)) -((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-153)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-153))))) -(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1171) $)))) -((-3730 (((-112) $ $) NIL)) (-4091 (($) 15)) (-4102 (($) 14)) (-4062 (((-890)) 22)) (-2546 (((-1118) $) NIL)) (-2756 (((-548) $) 19)) (-3932 (((-1082) $) NIL)) (-4083 (($) 16)) (-2747 (($ (-548)) 23)) (-3743 (((-832) $) 29)) (-4072 (($) 17)) (-2214 (((-112) $ $) 13)) (-2290 (($ $ $) 11)) (* (($ (-890) $) 21) (($ (-218) $) 8))) -(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-218) $)) (-15 -2290 ($ $ $)) (-15 -4102 ($)) (-15 -4091 ($)) (-15 -4083 ($)) (-15 -4072 ($)) (-15 -2756 ((-548) $)) (-15 -4062 ((-890))) (-15 -2747 ($ (-548)))))) (T -154)) -((-2290 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-154)))) (-4102 (*1 *1) (-5 *1 (-154))) (-4091 (*1 *1) (-5 *1 (-154))) (-4083 (*1 *1) (-5 *1 (-154))) (-4072 (*1 *1) (-5 *1 (-154))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-154)))) (-4062 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-154))))) -(-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-218) $)) (-15 -2290 ($ $ $)) (-15 -4102 ($)) (-15 -4091 ($)) (-15 -4083 ($)) (-15 -4072 ($)) (-15 -2756 ((-548) $)) (-15 -4062 ((-890))) (-15 -2747 ($ (-548))))) -((-4237 ((|#2| |#2| (-1056 |#2|)) 88) ((|#2| |#2| (-1135)) 68)) (-2481 ((|#2| |#2| (-1056 |#2|)) 87) ((|#2| |#2| (-1135)) 67)) (-4206 ((|#2| |#2| |#2|) 27)) (-1402 (((-114) (-114)) 99)) (-4175 ((|#2| (-619 |#2|)) 117)) (-4144 ((|#2| (-619 |#2|)) 135)) (-4134 ((|#2| (-619 |#2|)) 125)) (-4114 ((|#2| |#2|) 123)) (-4154 ((|#2| (-619 |#2|)) 111)) (-4164 ((|#2| (-619 |#2|)) 112)) (-4126 ((|#2| (-619 |#2|)) 133)) (-4249 ((|#2| |#2| (-1135)) 56) ((|#2| |#2|) 55)) (-4185 ((|#2| |#2|) 23)) (-3612 ((|#2| |#2| |#2|) 26)) (-1392 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3612 (|#2| |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -4249 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1056 |#2|))) (-15 -2481 (|#2| |#2| (-1135))) (-15 -2481 (|#2| |#2| (-1056 |#2|))) (-15 -4114 (|#2| |#2|)) (-15 -4126 (|#2| (-619 |#2|))) (-15 -4134 (|#2| (-619 |#2|))) (-15 -4144 (|#2| (-619 |#2|))) (-15 -4154 (|#2| (-619 |#2|))) (-15 -4164 (|#2| (-619 |#2|))) (-15 -4175 (|#2| (-619 |#2|)))) (-13 (-821) (-540)) (-422 |#1|)) (T -155)) -((-4175 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-540))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) (-4 *2 (-422 *4)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) (-4 *2 (-422 *4)))) (-4249 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) (-4 *2 (-422 *4)))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-4206 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-3612 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) (-4 *2 (-422 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *4)) (-4 *4 (-422 *3)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-155 *4 *5)) (-4 *5 (-422 *4))))) -(-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3612 (|#2| |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2|)) (-15 -4185 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -4249 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1135))) (-15 -4237 (|#2| |#2| (-1056 |#2|))) (-15 -2481 (|#2| |#2| (-1135))) (-15 -2481 (|#2| |#2| (-1056 |#2|))) (-15 -4114 (|#2| |#2|)) (-15 -4126 (|#2| (-619 |#2|))) (-15 -4134 (|#2| (-619 |#2|))) (-15 -4144 (|#2| (-619 |#2|))) (-15 -4154 (|#2| (-619 |#2|))) (-15 -4164 (|#2| (-619 |#2|))) (-15 -4175 (|#2| (-619 |#2|)))) -((-4227 ((|#1| |#1| |#1|) 53)) (-4217 ((|#1| |#1| |#1|) 50)) (-4206 ((|#1| |#1| |#1|) 44)) (-3317 ((|#1| |#1|) 35)) (-4195 ((|#1| |#1| (-619 |#1|)) 43)) (-4185 ((|#1| |#1|) 37)) (-3612 ((|#1| |#1| |#1|) 40))) -(((-156 |#1|) (-10 -7 (-15 -3612 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -4195 (|#1| |#1| (-619 |#1|))) (-15 -3317 (|#1| |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| |#1|)) (-15 -4227 (|#1| |#1| |#1|))) (-533)) (T -156)) -((-4227 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-4217 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-4206 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-3317 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-4195 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-533)) (-5 *1 (-156 *2)))) (-4185 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) (-3612 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) -(-10 -7 (-15 -3612 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -4195 (|#1| |#1| (-619 |#1|))) (-15 -3317 (|#1| |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4217 (|#1| |#1| |#1|)) (-15 -4227 (|#1| |#1| |#1|))) -((-4237 (($ $ (-1135)) 12) (($ $ (-1056 $)) 11)) (-2481 (($ $ (-1135)) 10) (($ $ (-1056 $)) 9)) (-4206 (($ $ $) 8)) (-4249 (($ $) 14) (($ $ (-1135)) 13)) (-4185 (($ $) 7)) (-3612 (($ $ $) 6))) +((-3841 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-149 *3)))) (-3461 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-2542 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-2542 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-3801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) (-1476 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) (-2542 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)))) (-3801 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-3664 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063))))) +(-13 (-479 |t#1|) (-10 -8 (-15 -3841 ($ (-619 |t#1|))) (-15 -3461 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2542 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2542 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3801 ($ (-1 (-112) |t#1|) $)) (-15 -1476 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2542 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3801 ($ |t#1| $)) (-15 -3664 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) 86)) (-4114 (((-112) $) NIL)) (-2229 (($ |#2| (-619 (-890))) 56)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1619 (($ (-890)) 47)) (-3512 (((-133)) 23)) (-3834 (((-832) $) 69) (($ (-547)) 45) (($ |#2|) 46)) (-3338 ((|#2| $ (-619 (-890))) 59)) (-2311 (((-745)) 20)) (-3267 (($) 40 T CONST)) (-3277 (($) 43 T CONST)) (-2371 (((-112) $ $) 26)) (-2497 (($ $ |#2|) NIL)) (-2484 (($ $) 34) (($ $ $) 32)) (-2470 (($ $ $) 30)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-150 |#1| |#2| |#3|) (-13 (-1016) (-38 |#2|) (-1225 |#2|) (-10 -8 (-15 -1619 ($ (-890))) (-15 -2229 ($ |#2| (-619 (-890)))) (-15 -3338 (|#2| $ (-619 (-890)))) (-15 -2537 ((-3 $ "failed") $)))) (-890) (-354) (-962 |#1| |#2|)) (T -150)) +((-2537 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-354)) (-14 *4 (-962 *2 *3)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-354)) (-14 *5 (-962 *3 *4)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-4 *2 (-354)) (-14 *5 (-962 *4 *2)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-890))) (-4 *2 (-354)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) (-14 *5 (-962 *4 *2))))) +(-13 (-1016) (-38 |#2|) (-1225 |#2|) (-10 -8 (-15 -1619 ($ (-890))) (-15 -2229 ($ |#2| (-619 (-890)))) (-15 -3338 (|#2| $ (-619 (-890)))) (-15 -2537 ((-3 $ "failed") $)))) +((-3679 (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))) (-217) (-217) (-217) (-217)) 38)) (-3572 (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547))) 63) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896)) 64)) (-1828 (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217))))) 67) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-912 (-217)))) 66) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547))) 58) (((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896)) 59))) +(((-151) (-10 -7 (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -3572 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -3572 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -3679 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))) (-217) (-217) (-217) (-217))) (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-912 (-217))))) (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))))))) (T -151)) +((-1828 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-217))))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)) (-5 *3 (-619 (-912 (-217)))))) (-3679 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-217)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 *4)))) (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4)))))) (-3572 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))) (-1828 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547))) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) (-5 *1 (-151))))) +(-10 -7 (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -3572 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896))) (-15 -3572 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-896) (-398 (-547)) (-398 (-547)))) (-15 -3679 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217)))) (-217) (-217) (-217) (-217))) (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-912 (-217))))) (-15 -1828 ((-2 (|:| |brans| (-619 (-619 (-912 (-217))))) (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217)))) (-619 (-619 (-912 (-217))))))) +((-4074 (((-619 (-166 |#2|)) |#1| |#2|) 45))) +(((-152 |#1| |#2|) (-10 -7 (-15 -4074 ((-619 (-166 |#2|)) |#1| |#2|))) (-1194 (-166 (-547))) (-13 (-354) (-819))) (T -152)) +((-4074 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1194 (-166 (-547)))) (-4 *4 (-13 (-354) (-819)))))) +(-10 -7 (-15 -4074 ((-619 (-166 |#2|)) |#1| |#2|))) +((-3821 (((-112) $ $) NIL)) (-2186 (((-1171) $) 12)) (-2174 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-153) (-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1171) $))))) (T -153)) +((-2174 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-153)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-153))))) +(-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1171) $)))) +((-3821 (((-112) $ $) NIL)) (-2909 (($) 15)) (-2993 (($) 14)) (-3753 (((-890)) 22)) (-1917 (((-1118) $) NIL)) (-2270 (((-547) $) 19)) (-3979 (((-1082) $) NIL)) (-2833 (($) 16)) (-2168 (($ (-547)) 23)) (-3834 (((-832) $) 29)) (-3849 (($) 17)) (-2371 (((-112) $ $) 13)) (-2470 (($ $ $) 11)) (* (($ (-890) $) 21) (($ (-217) $) 8))) +(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-217) $)) (-15 -2470 ($ $ $)) (-15 -2993 ($)) (-15 -2909 ($)) (-15 -2833 ($)) (-15 -3849 ($)) (-15 -2270 ((-547) $)) (-15 -3753 ((-890))) (-15 -2168 ($ (-547)))))) (T -154)) +((-2470 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-154)))) (-2993 (*1 *1) (-5 *1 (-154))) (-2909 (*1 *1) (-5 *1 (-154))) (-2833 (*1 *1) (-5 *1 (-154))) (-3849 (*1 *1) (-5 *1 (-154))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-154)))) (-3753 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-154))))) +(-13 (-25) (-10 -8 (-15 * ($ (-890) $)) (-15 * ($ (-217) $)) (-15 -2470 ($ $ $)) (-15 -2993 ($)) (-15 -2909 ($)) (-15 -2833 ($)) (-15 -3849 ($)) (-15 -2270 ((-547) $)) (-15 -3753 ((-890))) (-15 -2168 ($ (-547))))) +((-1919 ((|#2| |#2| (-1056 |#2|)) 88) ((|#2| |#2| (-1135)) 68)) (-2651 ((|#2| |#2| (-1056 |#2|)) 87) ((|#2| |#2| (-1135)) 67)) (-1569 ((|#2| |#2| |#2|) 27)) (-3454 (((-114) (-114)) 99)) (-2574 ((|#2| (-619 |#2|)) 117)) (-2217 ((|#2| (-619 |#2|)) 135)) (-2095 ((|#2| (-619 |#2|)) 125)) (-3090 ((|#2| |#2|) 123)) (-2352 ((|#2| (-619 |#2|)) 111)) (-2451 ((|#2| (-619 |#2|)) 112)) (-3199 ((|#2| (-619 |#2|)) 133)) (-2037 ((|#2| |#2| (-1135)) 56) ((|#2| |#2|) 55)) (-2677 ((|#2| |#2|) 23)) (-1884 ((|#2| |#2| |#2|) 26)) (-3358 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-155 |#1| |#2|) (-10 -7 (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1884 (|#2| |#2| |#2|)) (-15 -1569 (|#2| |#2| |#2|)) (-15 -2677 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2037 (|#2| |#2| (-1135))) (-15 -1919 (|#2| |#2| (-1135))) (-15 -1919 (|#2| |#2| (-1056 |#2|))) (-15 -2651 (|#2| |#2| (-1135))) (-15 -2651 (|#2| |#2| (-1056 |#2|))) (-15 -3090 (|#2| |#2|)) (-15 -3199 (|#2| (-619 |#2|))) (-15 -2095 (|#2| (-619 |#2|))) (-15 -2217 (|#2| (-619 |#2|))) (-15 -2352 (|#2| (-619 |#2|))) (-15 -2451 (|#2| (-619 |#2|))) (-15 -2574 (|#2| (-619 |#2|)))) (-13 (-821) (-539)) (-421 |#1|)) (T -155)) +((-2574 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-821) (-539))))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) (-4 *2 (-421 *4)))) (-1919 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)))) (-1919 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) (-4 *2 (-421 *4)))) (-2037 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) (-4 *2 (-421 *4)))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-1569 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-1884 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) (-4 *2 (-421 *3)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *4)) (-4 *4 (-421 *3)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-155 *4 *5)) (-4 *5 (-421 *4))))) +(-10 -7 (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1884 (|#2| |#2| |#2|)) (-15 -1569 (|#2| |#2| |#2|)) (-15 -2677 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2037 (|#2| |#2| (-1135))) (-15 -1919 (|#2| |#2| (-1135))) (-15 -1919 (|#2| |#2| (-1056 |#2|))) (-15 -2651 (|#2| |#2| (-1135))) (-15 -2651 (|#2| |#2| (-1056 |#2|))) (-15 -3090 (|#2| |#2|)) (-15 -3199 (|#2| (-619 |#2|))) (-15 -2095 (|#2| (-619 |#2|))) (-15 -2217 (|#2| (-619 |#2|))) (-15 -2352 (|#2| (-619 |#2|))) (-15 -2451 (|#2| (-619 |#2|))) (-15 -2574 (|#2| (-619 |#2|)))) +((-1801 ((|#1| |#1| |#1|) 53)) (-1689 ((|#1| |#1| |#1|) 50)) (-1569 ((|#1| |#1| |#1|) 44)) (-3989 ((|#1| |#1|) 35)) (-1440 ((|#1| |#1| (-619 |#1|)) 43)) (-2677 ((|#1| |#1|) 37)) (-1884 ((|#1| |#1| |#1|) 40))) +(((-156 |#1|) (-10 -7 (-15 -1884 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -1440 (|#1| |#1| (-619 |#1|))) (-15 -3989 (|#1| |#1|)) (-15 -1569 (|#1| |#1| |#1|)) (-15 -1689 (|#1| |#1| |#1|)) (-15 -1801 (|#1| |#1| |#1|))) (-532)) (T -156)) +((-1801 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-1689 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-1569 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-3989 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-532)) (-5 *1 (-156 *2)))) (-2677 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) (-1884 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))) +(-10 -7 (-15 -1884 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -1440 (|#1| |#1| (-619 |#1|))) (-15 -3989 (|#1| |#1|)) (-15 -1569 (|#1| |#1| |#1|)) (-15 -1689 (|#1| |#1| |#1|)) (-15 -1801 (|#1| |#1| |#1|))) +((-1919 (($ $ (-1135)) 12) (($ $ (-1056 $)) 11)) (-2651 (($ $ (-1135)) 10) (($ $ (-1056 $)) 9)) (-1569 (($ $ $) 8)) (-2037 (($ $) 14) (($ $ (-1135)) 13)) (-2677 (($ $) 7)) (-1884 (($ $ $) 6))) (((-157) (-138)) (T -157)) -((-4249 (*1 *1 *1) (-4 *1 (-157))) (-4249 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-4237 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) (-2481 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157))))) -(-13 (-141) (-10 -8 (-15 -4249 ($ $)) (-15 -4249 ($ $ (-1135))) (-15 -4237 ($ $ (-1135))) (-15 -4237 ($ $ (-1056 $))) (-15 -2481 ($ $ (-1135))) (-15 -2481 ($ $ (-1056 $))))) +((-2037 (*1 *1 *1) (-4 *1 (-157))) (-2037 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-1919 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-1919 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157))))) +(-13 (-141) (-10 -8 (-15 -2037 ($ $)) (-15 -2037 ($ $ (-1135))) (-15 -1919 ($ $ (-1135))) (-15 -1919 ($ $ (-1056 $))) (-15 -2651 ($ $ (-1135))) (-15 -2651 ($ $ (-1056 $))))) (((-141) . T)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-619 (-1140)) $) 9)) (-2214 (((-112) $ $) NIL))) -(((-158) (-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $))))) (T -158)) -((-2286 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-158))))) -(-13 (-1047) (-10 -8 (-15 -2286 ((-619 (-1140)) $)))) -((-3730 (((-112) $ $) NIL)) (-4262 (($ (-548)) 13) (($ $ $) 14)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 17)) (-2214 (((-112) $ $) 9))) -(((-159) (-13 (-1063) (-10 -8 (-15 -4262 ($ (-548))) (-15 -4262 ($ $ $))))) (T -159)) -((-4262 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-159)))) (-4262 (*1 *1 *1 *1) (-5 *1 (-159)))) -(-13 (-1063) (-10 -8 (-15 -4262 ($ (-548))) (-15 -4262 ($ $ $)))) -((-1402 (((-114) (-1135)) 97))) -(((-160) (-10 -7 (-15 -1402 ((-114) (-1135))))) (T -160)) -((-1402 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-114)) (-5 *1 (-160))))) -(-10 -7 (-15 -1402 ((-114) (-1135)))) -((-1715 ((|#3| |#3|) 19))) -(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -1715 (|#3| |#3|))) (-1016) (-1194 |#1|) (-1194 |#2|)) (T -161)) -((-1715 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-1194 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1194 *4))))) -(-10 -7 (-15 -1715 (|#3| |#3|))) -((-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 217)) (-2707 ((|#2| $) 96)) (-2074 (($ $) 247)) (-1940 (($ $) 241)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 40)) (-2054 (($ $) 245)) (-1918 (($ $) 239)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 139)) (-1945 (($ $ $) 222)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 155) (((-663 |#2|) (-663 $)) 149)) (-2061 (($ (-1131 |#2|)) 119) (((-3 $ "failed") (-399 (-1131 |#2|))) NIL)) (-3859 (((-3 $ "failed") $) 209)) (-4182 (((-3 (-399 (-548)) "failed") $) 199)) (-4172 (((-112) $) 194)) (-4161 (((-399 (-548)) $) 197)) (-2103 (((-890)) 89)) (-1922 (($ $ $) 224)) (-4273 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1365 (($) 236)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 186) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 191)) (-3910 ((|#2| $) 94)) (-2898 (((-1131 |#2|) $) 121)) (-2540 (($ (-1 |#2| |#2|) $) 102)) (-3496 (($ $) 238)) (-2050 (((-1131 |#2|) $) 120)) (-2153 (($ $) 202)) (-4283 (($) 97)) (-4051 (((-410 (-1131 $)) (-1131 $)) 88)) (-4060 (((-410 (-1131 $)) (-1131 $)) 57)) (-1900 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2458 (($ $) 237)) (-4077 (((-745) $) 219)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 229)) (-1566 ((|#2| (-1218 $)) NIL) ((|#2|) 91)) (-4050 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3287 (((-1131 |#2|)) 114)) (-2065 (($ $) 246)) (-1929 (($ $) 240)) (-2447 (((-1218 |#2|) $ (-1218 $)) 128) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 110) (((-663 |#2|) (-1218 $)) NIL)) (-2591 (((-1218 |#2|) $) NIL) (($ (-1218 |#2|)) NIL) (((-1131 |#2|) $) NIL) (($ (-1131 |#2|)) NIL) (((-861 (-548)) $) 177) (((-861 (-371)) $) 181) (((-166 (-371)) $) 167) (((-166 (-218)) $) 162) (((-524) $) 173)) (-2128 (($ $) 98)) (-3743 (((-832) $) 138) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-399 (-548))) NIL) (($ $) NIL)) (-3780 (((-1131 |#2|) $) 23)) (-3835 (((-745)) 100)) (-2145 (($ $) 250)) (-2006 (($ $) 244)) (-2122 (($ $) 248)) (-1986 (($ $) 242)) (-4257 ((|#2| $) 233)) (-2132 (($ $) 249)) (-1996 (($ $) 243)) (-1446 (($ $) 157)) (-2214 (((-112) $ $) 104)) (-2234 (((-112) $ $) 193)) (-2299 (($ $) 106) (($ $ $) NIL)) (-2290 (($ $ $) 105)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-399 (-548))) 267) (($ $ $) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL))) -(((-162 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3743 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-166 (-218)) |#1|)) (-15 -2591 ((-166 (-371)) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1365 (|#1|)) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4273 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2128 (|#1| |#1|)) (-15 -4283 (|#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2061 ((-3 |#1| "failed") (-399 (-1131 |#2|)))) (-15 -2050 ((-1131 |#2|) |#1|)) (-15 -2591 (|#1| (-1131 |#2|))) (-15 -2061 (|#1| (-1131 |#2|))) (-15 -3287 ((-1131 |#2|))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -3780 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3910 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2103 ((-890))) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) -((-3835 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-2103 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-1566 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-3287 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) -(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3743 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-166 (-218)) |#1|)) (-15 -2591 ((-166 (-371)) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1365 (|#1|)) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4273 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2128 (|#1| |#1|)) (-15 -4283 (|#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2061 ((-3 |#1| "failed") (-399 (-1131 |#2|)))) (-15 -2050 ((-1131 |#2|) |#1|)) (-15 -2591 (|#1| (-1131 |#2|))) (-15 -2061 (|#1| (-1131 |#2|))) (-15 -3287 ((-1131 |#2|))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -3780 ((-1131 |#2|) |#1|)) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3910 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2103 ((-890))) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 91 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3303 (($ $) 92 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3279 (((-112) $) 94 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-2350 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2707 ((|#1| $) 50)) (-2074 (($ $) 225 (|has| |#1| (-1157)))) (-1940 (($ $) 208 (|has| |#1| (-1157)))) (-3667 (((-1145 (-890) (-745)) (-548)) 144 (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 239 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1688 (($ $) 111 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-2634 (((-410 $) $) 112 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-1926 (($ $) 238 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 242 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4087 (((-112) $ $) 102 (|has| |#1| (-299)))) (-3423 (((-745)) 85 (|has| |#1| (-360)))) (-2054 (($ $) 224 (|has| |#1| (-1157)))) (-1918 (($ $) 209 (|has| |#1| (-1157)))) (-2098 (($ $) 223 (|has| |#1| (-1157)))) (-1963 (($ $) 210 (|has| |#1| (-1157)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 166 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 164 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 163)) (-2375 (((-548) $) 167 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 165 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 162)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-341)))) (-1945 (($ $ $) 106 (|has| |#1| (-299)))) (-2341 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-1608 (((-663 (-548)) (-663 $)) 161 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 160 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2061 (($ (-1131 |#1|)) 155) (((-3 $ "failed") (-399 (-1131 |#1|))) 152 (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) 32)) (-1937 ((|#1| $) 250)) (-4182 (((-3 (-399 (-548)) "failed") $) 243 (|has| |#1| (-533)))) (-4172 (((-112) $) 245 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 244 (|has| |#1| (-533)))) (-2103 (((-890)) 52)) (-2545 (($) 88 (|has| |#1| (-360)))) (-1922 (($ $ $) 105 (|has| |#1| (-299)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 100 (|has| |#1| (-299)))) (-2771 (($) 146 (|has| |#1| (-341)))) (-3727 (((-112) $) 147 (|has| |#1| (-341)))) (-2208 (($ $ (-745)) 138 (|has| |#1| (-341))) (($ $) 137 (|has| |#1| (-341)))) (-1271 (((-112) $) 113 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4273 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1025)) (|has| |#1| (-1157))))) (-1365 (($) 235 (|has| |#1| (-1157)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 258 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 257 (|has| |#1| (-855 (-371))))) (-1672 (((-890) $) 149 (|has| |#1| (-341))) (((-807 (-890)) $) 135 (|has| |#1| (-341)))) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 237 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-3910 ((|#1| $) 49)) (-3725 (((-3 $ "failed") $) 139 (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-299)))) (-2898 (((-1131 |#1|) $) 42 (|has| |#1| (-355)))) (-1795 (($ $ $) 204 (|has| |#1| (-821)))) (-3091 (($ $ $) 203 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 259)) (-2855 (((-890) $) 87 (|has| |#1| (-360)))) (-3496 (($ $) 232 (|has| |#1| (-1157)))) (-2050 (((-1131 |#1|) $) 153)) (-3553 (($ (-619 $)) 98 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (($ $ $) 97 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 114 (|has| |#1| (-355)))) (-3410 (($) 140 (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) 86 (|has| |#1| (-360)))) (-4283 (($) 254)) (-1948 ((|#1| $) 251)) (-3932 (((-1082) $) 10)) (-4160 (($) 157)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 99 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3587 (($ (-619 $)) 96 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (($ $ $) 95 (-1524 (|has| |#1| (-299)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 143 (|has| |#1| (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 241 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4060 (((-410 (-1131 $)) (-1131 $)) 240 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1915 (((-410 $) $) 110 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-299))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 107 (|has| |#1| (-299)))) (-1900 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 90 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-299)))) (-2458 (($ $) 233 (|has| |#1| (-1157)))) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 265 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 263 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 262 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 261 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 260 (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) 103 (|has| |#1| (-299)))) (-3171 (($ $ |#1|) 266 (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 104 (|has| |#1| (-299)))) (-1566 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2217 (((-745) $) 148 (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-341)))) (-4050 (($ $ (-1 |#1| |#1|) (-745)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-619 (-1135)) (-619 (-745))) 127 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 128 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 129 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 130 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 132 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))))) (($ $) 134 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355)))))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-355)))) (-3287 (((-1131 |#1|)) 156)) (-2110 (($ $) 222 (|has| |#1| (-1157)))) (-1973 (($ $) 211 (|has| |#1| (-1157)))) (-3655 (($) 145 (|has| |#1| (-341)))) (-2086 (($ $) 221 (|has| |#1| (-1157)))) (-1952 (($ $) 212 (|has| |#1| (-1157)))) (-2065 (($ $) 220 (|has| |#1| (-1157)))) (-1929 (($ $) 213 (|has| |#1| (-1157)))) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2591 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60) (((-1131 |#1|) $) 168) (($ (-1131 |#1|)) 154) (((-861 (-548)) $) 256 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 255 (|has| |#1| (-593 (-861 (-371))))) (((-166 (-371)) $) 207 (|has| |#1| (-991))) (((-166 (-218)) $) 206 (|has| |#1| (-991))) (((-524) $) 205 (|has| |#1| (-593 (-524))))) (-2128 (($ $) 253)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 142 (-1524 (-1723 (|has| $ (-143)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (|has| |#1| (-341))))) (-3247 (($ |#1| |#1|) 252)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ (-399 (-548))) 84 (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) 89 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-4017 (($ $) 141 (|has| |#1| (-341))) (((-3 $ "failed") $) 41 (-1524 (-1723 (|has| $ (-143)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))) (|has| |#1| (-143))))) (-3780 (((-1131 |#1|) $) 43)) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 65)) (-2145 (($ $) 231 (|has| |#1| (-1157)))) (-2006 (($ $) 219 (|has| |#1| (-1157)))) (-3290 (((-112) $ $) 93 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878)))))) (-2122 (($ $) 230 (|has| |#1| (-1157)))) (-1986 (($ $) 218 (|has| |#1| (-1157)))) (-2170 (($ $) 229 (|has| |#1| (-1157)))) (-2029 (($ $) 217 (|has| |#1| (-1157)))) (-4257 ((|#1| $) 247 (|has| |#1| (-1157)))) (-4026 (($ $) 228 (|has| |#1| (-1157)))) (-2040 (($ $) 216 (|has| |#1| (-1157)))) (-2158 (($ $) 227 (|has| |#1| (-1157)))) (-2017 (($ $) 215 (|has| |#1| (-1157)))) (-2132 (($ $) 226 (|has| |#1| (-1157)))) (-1996 (($ $) 214 (|has| |#1| (-1157)))) (-1446 (($ $) 248 (|has| |#1| (-1025)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#1| |#1|) (-745)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-619 (-1135)) (-619 (-745))) 123 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 124 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 125 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 126 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 131 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))))) (($ $) 133 (-1524 (-1723 (|has| |#1| (-355)) (|has| |#1| (-226))) (|has| |#1| (-226)) (-1723 (|has| |#1| (-226)) (|has| |#1| (-355)))))) (-2262 (((-112) $ $) 201 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 200 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 202 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 199 (|has| |#1| (-821)))) (-2309 (($ $ $) 118 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-399 (-548))) 236 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157)))) (($ $ $) 234 (|has| |#1| (-1157))) (($ $ (-548)) 115 (|has| |#1| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-399 (-548)) $) 117 (|has| |#1| (-355))) (($ $ (-399 (-548))) 116 (|has| |#1| (-355))))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-619 (-1140)) $) 9)) (-2371 (((-112) $ $) NIL))) +(((-158) (-13 (-1047) (-10 -8 (-15 -2478 ((-619 (-1140)) $))))) (T -158)) +((-2478 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-158))))) +(-13 (-1047) (-10 -8 (-15 -2478 ((-619 (-1140)) $)))) +((-3821 (((-112) $ $) NIL)) (-3963 (($ (-547)) 13) (($ $ $) 14)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 17)) (-2371 (((-112) $ $) 9))) +(((-159) (-13 (-1063) (-10 -8 (-15 -3963 ($ (-547))) (-15 -3963 ($ $ $))))) (T -159)) +((-3963 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-159)))) (-3963 (*1 *1 *1 *1) (-5 *1 (-159)))) +(-13 (-1063) (-10 -8 (-15 -3963 ($ (-547))) (-15 -3963 ($ $ $)))) +((-3454 (((-114) (-1135)) 97))) +(((-160) (-10 -7 (-15 -3454 ((-114) (-1135))))) (T -160)) +((-3454 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-114)) (-5 *1 (-160))))) +(-10 -7 (-15 -3454 ((-114) (-1135)))) +((-2982 ((|#3| |#3|) 19))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2982 (|#3| |#3|))) (-1016) (-1194 |#1|) (-1194 |#2|)) (T -161)) +((-2982 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-1194 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1194 *4))))) +(-10 -7 (-15 -2982 (|#3| |#3|))) +((-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 217)) (-2890 ((|#2| $) 96)) (-1648 (($ $) 247)) (-1498 (($ $) 241)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 40)) (-1624 (($ $) 245)) (-1473 (($ $) 239)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2643 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 139)) (-2079 (($ $ $) 222)) (-4238 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 155) (((-663 |#2|) (-663 $)) 149)) (-2542 (($ (-1131 |#2|)) 119) (((-3 $ "failed") (-398 (-1131 |#2|))) NIL)) (-2537 (((-3 $ "failed") $) 209)) (-2653 (((-3 (-398 (-547)) "failed") $) 199)) (-2543 (((-112) $) 194)) (-2430 (((-398 (-547)) $) 197)) (-3107 (((-890)) 89)) (-2052 (($ $ $) 224)) (-4072 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1413 (($) 236)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 186) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 191)) (-1684 ((|#2| $) 94)) (-4213 (((-1131 |#2|) $) 121)) (-2781 (($ (-1 |#2| |#2|) $) 102)) (-3620 (($ $) 238)) (-2531 (((-1131 |#2|) $) 120)) (-1976 (($ $) 202)) (-4170 (($) 97)) (-3658 (((-409 (-1131 $)) (-1131 $)) 88)) (-3738 (((-409 (-1131 $)) (-1131 $)) 57)) (-2025 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2703 (($ $) 237)) (-2776 (((-745) $) 219)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 229)) (-3846 ((|#2| (-1218 $)) NIL) ((|#2|) 91)) (-3443 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-1901 (((-1131 |#2|)) 114)) (-1635 (($ $) 246)) (-1488 (($ $) 240)) (-2301 (((-1218 |#2|) $ (-1218 $)) 128) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 110) (((-663 |#2|) (-1218 $)) NIL)) (-2829 (((-1218 |#2|) $) NIL) (($ (-1218 |#2|)) NIL) (((-1131 |#2|) $) NIL) (($ (-1131 |#2|)) NIL) (((-861 (-547)) $) 177) (((-861 (-370)) $) 181) (((-166 (-370)) $) 167) (((-166 (-217)) $) 162) (((-523) $) 173)) (-2444 (($ $) 98)) (-3834 (((-832) $) 138) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-398 (-547))) NIL) (($ $) NIL)) (-3008 (((-1131 |#2|) $) 23)) (-2311 (((-745)) 100)) (-1717 (($ $) 250)) (-1574 (($ $) 244)) (-1693 (($ $) 248)) (-1550 (($ $) 242)) (-3922 ((|#2| $) 233)) (-1706 (($ $) 249)) (-1563 (($ $) 243)) (-2040 (($ $) 157)) (-2371 (((-112) $ $) 104)) (-2396 (((-112) $ $) 193)) (-2484 (($ $) 106) (($ $ $) NIL)) (-2470 (($ $ $) 105)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-398 (-547))) 267) (($ $ $) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL))) +(((-162 |#1| |#2|) (-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3834 (|#1| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3977 ((-2 (|:| -4104 |#1|) (|:| -4315 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2776 ((-745) |#1|)) (-15 -2468 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2829 ((-166 (-217)) |#1|)) (-15 -2829 ((-166 (-370)) |#1|)) (-15 -1498 (|#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1413 (|#1|)) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -3738 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3658 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -4072 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3922 (|#2| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2444 (|#1| |#1|)) (-15 -4170 (|#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2542 ((-3 |#1| "failed") (-398 (-1131 |#2|)))) (-15 -2531 ((-1131 |#2|) |#1|)) (-15 -2829 (|#1| (-1131 |#2|))) (-15 -2542 (|#1| (-1131 |#2|))) (-15 -1901 ((-1131 |#2|))) (-15 -4238 ((-663 |#2|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2829 ((-1131 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -4213 ((-1131 |#2|) |#1|)) (-15 -3008 ((-1131 |#2|) |#1|)) (-15 -3846 (|#2| (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -1684 (|#2| |#1|)) (-15 -2890 (|#2| |#1|)) (-15 -3107 ((-890))) (-15 -3834 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) +((-2311 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-3846 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-1901 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) +(-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3834 (|#1| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3977 ((-2 (|:| -4104 |#1|) (|:| -4315 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2776 ((-745) |#1|)) (-15 -2468 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2829 ((-166 (-217)) |#1|)) (-15 -2829 ((-166 (-370)) |#1|)) (-15 -1498 (|#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1413 (|#1|)) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -3738 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3658 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -4072 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3922 (|#2| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2444 (|#1| |#1|)) (-15 -4170 (|#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2542 ((-3 |#1| "failed") (-398 (-1131 |#2|)))) (-15 -2531 ((-1131 |#2|) |#1|)) (-15 -2829 (|#1| (-1131 |#2|))) (-15 -2542 (|#1| (-1131 |#2|))) (-15 -1901 ((-1131 |#2|))) (-15 -4238 ((-663 |#2|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2829 ((-1131 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -4213 ((-1131 |#2|) |#1|)) (-15 -3008 ((-1131 |#2|) |#1|)) (-15 -3846 (|#2| (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -1684 (|#2| |#1|)) (-15 -2890 (|#2| |#1|)) (-15 -3107 ((-890))) (-15 -3834 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 91 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3881 (($ $) 92 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1832 (((-112) $) 94 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3743 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2890 ((|#1| $) 50)) (-1648 (($ $) 225 (|has| |#1| (-1157)))) (-1498 (($ $) 208 (|has| |#1| (-1157)))) (-4253 (((-1145 (-890) (-745)) (-547)) 144 (|has| |#1| (-340)))) (-3013 (((-3 $ "failed") $ $) 19)) (-3833 (((-409 (-1131 $)) (-1131 $)) 239 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2745 (($ $) 111 (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3457 (((-409 $) $) 112 (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-2118 (($ $) 238 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 242 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2873 (((-112) $ $) 102 (|has| |#1| (-298)))) (-3603 (((-745)) 85 (|has| |#1| (-359)))) (-1624 (($ $) 224 (|has| |#1| (-1157)))) (-1473 (($ $) 209 (|has| |#1| (-1157)))) (-1670 (($ $) 223 (|has| |#1| (-1157)))) (-1526 (($ $) 210 (|has| |#1| (-1157)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 166 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 164 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 163)) (-2643 (((-547) $) 167 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 165 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 162)) (-2402 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-340)))) (-2079 (($ $ $) 106 (|has| |#1| (-298)))) (-3653 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-4238 (((-663 (-547)) (-663 $)) 161 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 160 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2542 (($ (-1131 |#1|)) 155) (((-3 $ "failed") (-398 (-1131 |#1|))) 152 (|has| |#1| (-354)))) (-2537 (((-3 $ "failed") $) 32)) (-2129 ((|#1| $) 250)) (-2653 (((-3 (-398 (-547)) "failed") $) 243 (|has| |#1| (-532)))) (-2543 (((-112) $) 245 (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) 244 (|has| |#1| (-532)))) (-3107 (((-890)) 52)) (-3229 (($) 88 (|has| |#1| (-359)))) (-2052 (($ $ $) 105 (|has| |#1| (-298)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 100 (|has| |#1| (-298)))) (-2445 (($) 146 (|has| |#1| (-340)))) (-3661 (((-112) $) 147 (|has| |#1| (-340)))) (-1771 (($ $ (-745)) 138 (|has| |#1| (-340))) (($ $) 137 (|has| |#1| (-340)))) (-3674 (((-112) $) 113 (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-4072 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1025)) (|has| |#1| (-1157))))) (-1413 (($) 235 (|has| |#1| (-1157)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 258 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 257 (|has| |#1| (-855 (-370))))) (-3707 (((-890) $) 149 (|has| |#1| (-340))) (((-807 (-890)) $) 135 (|has| |#1| (-340)))) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 237 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-1684 ((|#1| $) 49)) (-3652 (((-3 $ "failed") $) 139 (|has| |#1| (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-298)))) (-4213 (((-1131 |#1|) $) 42 (|has| |#1| (-354)))) (-2847 (($ $ $) 204 (|has| |#1| (-821)))) (-3563 (($ $ $) 203 (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) 259)) (-1966 (((-890) $) 87 (|has| |#1| (-359)))) (-3620 (($ $) 232 (|has| |#1| (-1157)))) (-2531 (((-1131 |#1|) $) 153)) (-3685 (($ (-619 $)) 98 (-1524 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (($ $ $) 97 (-1524 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1917 (((-1118) $) 9)) (-1976 (($ $) 114 (|has| |#1| (-354)))) (-3045 (($) 140 (|has| |#1| (-340)) CONST)) (-3479 (($ (-890)) 86 (|has| |#1| (-359)))) (-4170 (($) 254)) (-2145 ((|#1| $) 251)) (-3979 (((-1082) $) 10)) (-4240 (($) 157)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 99 (-1524 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3715 (($ (-619 $)) 96 (-1524 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (($ $ $) 95 (-1524 (|has| |#1| (-298)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 143 (|has| |#1| (-340)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 241 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-3738 (((-409 (-1131 $)) (-1131 $)) 240 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2106 (((-409 $) $) 110 (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-298))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 107 (|has| |#1| (-298)))) (-2025 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 90 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-298)))) (-2703 (($ $) 233 (|has| |#1| (-1157)))) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) 265 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 263 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 262 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 261 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) 260 (|has| |#1| (-503 (-1135) |#1|)))) (-2776 (((-745) $) 103 (|has| |#1| (-298)))) (-3329 (($ $ |#1|) 266 (|has| |#1| (-277 |#1| |#1|)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 104 (|has| |#1| (-298)))) (-3846 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-1868 (((-745) $) 148 (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-340)))) (-3443 (($ $ (-1 |#1| |#1|) (-745)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-619 (-1135)) (-619 (-745))) 127 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 128 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 129 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 130 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 132 (-1524 (-1806 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1806 (|has| |#1| (-225)) (|has| |#1| (-354))))) (($ $) 134 (-1524 (-1806 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1806 (|has| |#1| (-225)) (|has| |#1| (-354)))))) (-4035 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-354)))) (-1901 (((-1131 |#1|)) 156)) (-1681 (($ $) 222 (|has| |#1| (-1157)))) (-1539 (($ $) 211 (|has| |#1| (-1157)))) (-4150 (($) 145 (|has| |#1| (-340)))) (-1659 (($ $) 221 (|has| |#1| (-1157)))) (-1513 (($ $) 212 (|has| |#1| (-1157)))) (-1635 (($ $) 220 (|has| |#1| (-1157)))) (-1488 (($ $) 213 (|has| |#1| (-1157)))) (-2301 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2829 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60) (((-1131 |#1|) $) 168) (($ (-1131 |#1|)) 154) (((-861 (-547)) $) 256 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 255 (|has| |#1| (-592 (-861 (-370))))) (((-166 (-370)) $) 207 (|has| |#1| (-991))) (((-166 (-217)) $) 206 (|has| |#1| (-991))) (((-523) $) 205 (|has| |#1| (-592 (-523))))) (-2444 (($ $) 253)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 142 (-1524 (-1806 (|has| $ (-143)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (|has| |#1| (-340))))) (-3397 (($ |#1| |#1|) 252)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ (-398 (-547))) 84 (-1524 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) 89 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-3336 (($ $) 141 (|has| |#1| (-340))) (((-3 $ "failed") $) 41 (-1524 (-1806 (|has| $ (-143)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))) (|has| |#1| (-143))))) (-3008 (((-1131 |#1|) $) 43)) (-2311 (((-745)) 28)) (-4013 (((-1218 $)) 65)) (-1717 (($ $) 231 (|has| |#1| (-1157)))) (-1574 (($ $) 219 (|has| |#1| (-1157)))) (-1932 (((-112) $ $) 93 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878)))))) (-1693 (($ $) 230 (|has| |#1| (-1157)))) (-1550 (($ $) 218 (|has| |#1| (-1157)))) (-1741 (($ $) 229 (|has| |#1| (-1157)))) (-1597 (($ $) 217 (|has| |#1| (-1157)))) (-3922 ((|#1| $) 247 (|has| |#1| (-1157)))) (-1918 (($ $) 228 (|has| |#1| (-1157)))) (-1610 (($ $) 216 (|has| |#1| (-1157)))) (-1729 (($ $) 227 (|has| |#1| (-1157)))) (-1586 (($ $) 215 (|has| |#1| (-1157)))) (-1706 (($ $) 226 (|has| |#1| (-1157)))) (-1563 (($ $) 214 (|has| |#1| (-1157)))) (-2040 (($ $) 248 (|has| |#1| (-1025)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1 |#1| |#1|) (-745)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-619 (-1135)) (-619 (-745))) 123 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 124 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 125 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 126 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 131 (-1524 (-1806 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1806 (|has| |#1| (-225)) (|has| |#1| (-354))))) (($ $) 133 (-1524 (-1806 (|has| |#1| (-354)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-1806 (|has| |#1| (-225)) (|has| |#1| (-354)))))) (-2433 (((-112) $ $) 201 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 200 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 202 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 199 (|has| |#1| (-821)))) (-2497 (($ $ $) 118 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-398 (-547))) 236 (-12 (|has| |#1| (-971)) (|has| |#1| (-1157)))) (($ $ $) 234 (|has| |#1| (-1157))) (($ $ (-547)) 115 (|has| |#1| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-398 (-547)) $) 117 (|has| |#1| (-354))) (($ $ (-398 (-547))) 116 (|has| |#1| (-354))))) (((-163 |#1|) (-138) (-169)) (T -163)) -((-3910 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-4283 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2128 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3247 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-1446 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-4257 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1157)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1157)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548)))))) -(-13 (-699 |t#1| (-1131 |t#1|)) (-403 |t#1|) (-224 |t#1|) (-330 |t#1|) (-392 |t#1|) (-853 |t#1|) (-369 |t#1|) (-169) (-10 -8 (-6 -3247) (-15 -4283 ($)) (-15 -2128 ($ $)) (-15 -3247 ($ |t#1| |t#1|)) (-15 -1948 (|t#1| $)) (-15 -1937 (|t#1| $)) (-15 -3910 (|t#1| $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-6 (-540)) (-15 -1900 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|) (IF (|has| |t#1| (-6 -4326)) (-6 -4326) |%noBranch|) (IF (|has| |t#1| (-6 -4323)) (-6 -4323) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-355)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-991)) (PROGN (-6 (-593 (-166 (-218)))) (-6 (-593 (-166 (-371))))) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -1446 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1157)) (PROGN (-6 (-1157)) (-15 -4257 (|t#1| $)) (IF (|has| |t#1| (-971)) (-6 (-971)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -4273 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-878)) (IF (|has| |t#1| (-299)) (-6 (-878)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-38 |#1|) . T) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-35) |has| |#1| (-1157)) ((-94) |has| |#1| (-1157)) ((-101) . T) ((-111 #0# #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-341)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 (-166 (-218))) |has| |#1| (-991)) ((-593 (-166 (-371))) |has| |#1| (-991)) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-593 #1=(-1131 |#1|)) . T) ((-224 |#1|) . T) ((-226) -1524 (|has| |#1| (-341)) (|has| |#1| (-226))) ((-236) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-276) |has| |#1| (-1157)) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-299) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-355) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-394) |has| |#1| (-341)) ((-360) -1524 (|has| |#1| (-360)) (|has| |#1| (-341))) ((-341) |has| |#1| (-341)) ((-362 |#1| #1#) . T) ((-401 |#1| #1#) . T) ((-330 |#1|) . T) ((-369 |#1|) . T) ((-392 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-483) |has| |#1| (-1157)) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-622 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-692 |#1|) . T) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-699 |#1| #1#) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-878) -12 (|has| |#1| (-299)) (|has| |#1| (-878))) ((-889) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (|has| |#1| (-299))) ((-971) -12 (|has| |#1| (-971)) (|has| |#1| (-1157))) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-341)) ((-1157) |has| |#1| (-1157)) ((-1160) |has| |#1| (-1157)) ((-1172) . T) ((-1176) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)) (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) -((-1915 (((-410 |#2|) |#2|) 63))) -(((-164 |#1| |#2|) (-10 -7 (-15 -1915 ((-410 |#2|) |#2|))) (-299) (-1194 (-166 |#1|))) (T -164)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) -(-10 -7 (-15 -1915 ((-410 |#2|) |#2|))) -((-2540 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) -(((-165 |#1| |#2|) (-10 -7 (-15 -2540 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) -(-10 -7 (-15 -2540 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 33)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-3303 (($ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-3279 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-2350 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2707 ((|#1| $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-1157)))) (-1940 (($ $) NIL (|has| |#1| (-1157)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1688 (($ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-2634 (((-410 $) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-1926 (($ $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-299)))) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-2054 (($ $) NIL (|has| |#1| (-1157)))) (-1918 (($ $) NIL (|has| |#1| (-1157)))) (-2098 (($ $) NIL (|has| |#1| (-1157)))) (-1963 (($ $) NIL (|has| |#1| (-1157)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-1945 (($ $ $) NIL (|has| |#1| (-299)))) (-2341 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2061 (($ (-1131 |#1|)) NIL) (((-3 $ "failed") (-399 (-1131 |#1|))) NIL (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 13)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-533)))) (-4172 (((-112) $) NIL (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| |#1| (-533)))) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL (|has| |#1| (-299)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-299)))) (-2771 (($) NIL (|has| |#1| (-341)))) (-3727 (((-112) $) NIL (|has| |#1| (-341)))) (-2208 (($ $ (-745)) NIL (|has| |#1| (-341))) (($ $) NIL (|has| |#1| (-341)))) (-1271 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4273 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1025)) (|has| |#1| (-1157))))) (-1365 (($) NIL (|has| |#1| (-1157)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| |#1| (-855 (-371))))) (-1672 (((-890) $) NIL (|has| |#1| (-341))) (((-807 (-890)) $) NIL (|has| |#1| (-341)))) (-2266 (((-112) $) 35)) (-2154 (($ $ (-548)) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-3910 ((|#1| $) 46)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-299)))) (-2898 (((-1131 |#1|) $) NIL (|has| |#1| (-355)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-3496 (($ $) NIL (|has| |#1| (-1157)))) (-2050 (((-1131 |#1|) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-299))) (($ $ $) NIL (|has| |#1| (-299)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3410 (($) NIL (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-4283 (($) NIL)) (-1948 ((|#1| $) 15)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-299)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-299))) (($ $ $) NIL (|has| |#1| (-299)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-299)) (|has| |#1| (-878))))) (-1915 (((-410 $) $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-355))))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-299))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-299)))) (-1900 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 47 (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-299)))) (-2458 (($ $) NIL (|has| |#1| (-1157)))) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) NIL (|has| |#1| (-299)))) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-299)))) (-1566 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-341)))) (-4050 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-3287 (((-1131 |#1|)) NIL)) (-2110 (($ $) NIL (|has| |#1| (-1157)))) (-1973 (($ $) NIL (|has| |#1| (-1157)))) (-3655 (($) NIL (|has| |#1| (-341)))) (-2086 (($ $) NIL (|has| |#1| (-1157)))) (-1952 (($ $) NIL (|has| |#1| (-1157)))) (-2065 (($ $) NIL (|has| |#1| (-1157)))) (-1929 (($ $) NIL (|has| |#1| (-1157)))) (-2447 (((-1218 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-2591 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL) (((-1131 |#1|) $) NIL) (($ (-1131 |#1|)) NIL) (((-861 (-548)) $) NIL (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#1| (-593 (-861 (-371))))) (((-166 (-371)) $) NIL (|has| |#1| (-991))) (((-166 (-218)) $) NIL (|has| |#1| (-991))) (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-2128 (($ $) 45)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-341))))) (-3247 (($ |#1| |#1|) 37)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) 36) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-4017 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3780 (((-1131 |#1|) $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL)) (-2145 (($ $) NIL (|has| |#1| (-1157)))) (-2006 (($ $) NIL (|has| |#1| (-1157)))) (-3290 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-299)) (|has| |#1| (-878))) (|has| |#1| (-540))))) (-2122 (($ $) NIL (|has| |#1| (-1157)))) (-1986 (($ $) NIL (|has| |#1| (-1157)))) (-2170 (($ $) NIL (|has| |#1| (-1157)))) (-2029 (($ $) NIL (|has| |#1| (-1157)))) (-4257 ((|#1| $) NIL (|has| |#1| (-1157)))) (-4026 (($ $) NIL (|has| |#1| (-1157)))) (-2040 (($ $) NIL (|has| |#1| (-1157)))) (-2158 (($ $) NIL (|has| |#1| (-1157)))) (-2017 (($ $) NIL (|has| |#1| (-1157)))) (-2132 (($ $) NIL (|has| |#1| (-1157)))) (-1996 (($ $) NIL (|has| |#1| (-1157)))) (-1446 (($ $) NIL (|has| |#1| (-1025)))) (-3107 (($) 28 T CONST)) (-3118 (($) 30 T CONST)) (-2739 (((-1118) $) 23 (|has| |#1| (-802))) (((-1118) $ (-112)) 25 (|has| |#1| (-802))) (((-1223) (-796) $) 26 (|has| |#1| (-802))) (((-1223) (-796) $ (-112)) 27 (|has| |#1| (-802)))) (-3296 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 39)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-399 (-548))) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157)))) (($ $ $) NIL (|has| |#1| (-1157))) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-355))) (($ $ (-399 (-548))) NIL (|has| |#1| (-355))))) +((-1684 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-4170 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3397 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1157)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1157)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-2653 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547)))))) +(-13 (-699 |t#1| (-1131 |t#1|)) (-402 |t#1|) (-223 |t#1|) (-329 |t#1|) (-391 |t#1|) (-853 |t#1|) (-368 |t#1|) (-169) (-10 -8 (-6 -3397) (-15 -4170 ($)) (-15 -2444 ($ $)) (-15 -3397 ($ |t#1| |t#1|)) (-15 -2145 (|t#1| $)) (-15 -2129 (|t#1| $)) (-15 -1684 (|t#1| $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-6 (-539)) (-15 -2025 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-6 -4327)) (-6 -4327) |%noBranch|) (IF (|has| |t#1| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-991)) (PROGN (-6 (-592 (-166 (-217)))) (-6 (-592 (-166 (-370))))) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2040 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1157)) (PROGN (-6 (-1157)) (-15 -3922 (|t#1| $)) (IF (|has| |t#1| (-971)) (-6 (-971)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -4072 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-878)) (IF (|has| |t#1| (-298)) (-6 (-878)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-38 |#1|) . T) ((-38 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-35) |has| |#1| (-1157)) ((-94) |has| |#1| (-1157)) ((-101) . T) ((-111 #0# #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-340)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 (-166 (-217))) |has| |#1| (-991)) ((-592 (-166 (-370))) |has| |#1| (-991)) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-592 #1=(-1131 |#1|)) . T) ((-223 |#1|) . T) ((-225) -1524 (|has| |#1| (-340)) (|has| |#1| (-225))) ((-235) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-275) |has| |#1| (-1157)) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-281) -1524 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-298) -1524 (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-354) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-393) |has| |#1| (-340)) ((-359) -1524 (|has| |#1| (-359)) (|has| |#1| (-340))) ((-340) |has| |#1| (-340)) ((-361 |#1| #1#) . T) ((-400 |#1| #1#) . T) ((-329 |#1|) . T) ((-368 |#1|) . T) ((-391 |#1|) . T) ((-402 |#1|) . T) ((-442) -1524 (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-482) |has| |#1| (-1157)) ((-503 (-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-539) -1524 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-622 #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-692 |#1|) . T) ((-692 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-699 |#1| #1#) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-878) -12 (|has| |#1| (-298)) (|has| |#1| (-878))) ((-889) -1524 (|has| |#1| (-340)) (|has| |#1| (-354)) (|has| |#1| (-298))) ((-971) -12 (|has| |#1| (-971)) (|has| |#1| (-1157))) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-340)) ((-1157) |has| |#1| (-1157)) ((-1160) |has| |#1| (-1157)) ((-1172) . T) ((-1176) -1524 (|has| |#1| (-340)) (|has| |#1| (-354)) (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) +((-2106 (((-409 |#2|) |#2|) 63))) +(((-164 |#1| |#2|) (-10 -7 (-15 -2106 ((-409 |#2|) |#2|))) (-298) (-1194 (-166 |#1|))) (T -164)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(-10 -7 (-15 -2106 ((-409 |#2|) |#2|))) +((-2781 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) +(((-165 |#1| |#2|) (-10 -7 (-15 -2781 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) +(-10 -7 (-15 -2781 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 33)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-3881 (($ $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-1832 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-3743 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) NIL)) (-2890 ((|#1| $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-1157)))) (-1498 (($ $) NIL (|has| |#1| (-1157)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| |#1| (-340)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2745 (($ $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3457 (((-409 $) $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-2118 (($ $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-298)))) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-1624 (($ $) NIL (|has| |#1| (-1157)))) (-1473 (($ $) NIL (|has| |#1| (-1157)))) (-1670 (($ $) NIL (|has| |#1| (-1157)))) (-1526 (($ $) NIL (|has| |#1| (-1157)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2402 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2079 (($ $ $) NIL (|has| |#1| (-298)))) (-3653 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2542 (($ (-1131 |#1|)) NIL) (((-3 $ "failed") (-398 (-1131 |#1|))) NIL (|has| |#1| (-354)))) (-2537 (((-3 $ "failed") $) NIL)) (-2129 ((|#1| $) 13)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-532)))) (-2543 (((-112) $) NIL (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) NIL (|has| |#1| (-532)))) (-3107 (((-890)) NIL)) (-3229 (($) NIL (|has| |#1| (-359)))) (-2052 (($ $ $) NIL (|has| |#1| (-298)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-298)))) (-2445 (($) NIL (|has| |#1| (-340)))) (-3661 (((-112) $) NIL (|has| |#1| (-340)))) (-1771 (($ $ (-745)) NIL (|has| |#1| (-340))) (($ $) NIL (|has| |#1| (-340)))) (-3674 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-4072 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1025)) (|has| |#1| (-1157))))) (-1413 (($) NIL (|has| |#1| (-1157)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| |#1| (-855 (-370))))) (-3707 (((-890) $) NIL (|has| |#1| (-340))) (((-807 (-890)) $) NIL (|has| |#1| (-340)))) (-4114 (((-112) $) 35)) (-1311 (($ $ (-547)) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157))))) (-1684 ((|#1| $) 46)) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-298)))) (-4213 (((-1131 |#1|) $) NIL (|has| |#1| (-354)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-3620 (($ $) NIL (|has| |#1| (-1157)))) (-2531 (((-1131 |#1|) $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-298))) (($ $ $) NIL (|has| |#1| (-298)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-3045 (($) NIL (|has| |#1| (-340)) CONST)) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-4170 (($) NIL)) (-2145 ((|#1| $) 15)) (-3979 (((-1082) $) NIL)) (-4240 (($) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-298)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-298))) (($ $ $) NIL (|has| |#1| (-298)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| |#1| (-340)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#1| (-298)) (|has| |#1| (-878))))) (-2106 (((-409 $) $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-354))))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-298))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-298)))) (-2025 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 47 (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-298)))) (-2703 (($ $) NIL (|has| |#1| (-1157)))) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-503 (-1135) |#1|)))) (-2776 (((-745) $) NIL (|has| |#1| (-298)))) (-3329 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-298)))) (-3846 ((|#1| (-1218 $)) NIL) ((|#1|) NIL)) (-1868 (((-745) $) NIL (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-340)))) (-3443 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-4035 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-1901 (((-1131 |#1|)) NIL)) (-1681 (($ $) NIL (|has| |#1| (-1157)))) (-1539 (($ $) NIL (|has| |#1| (-1157)))) (-4150 (($) NIL (|has| |#1| (-340)))) (-1659 (($ $) NIL (|has| |#1| (-1157)))) (-1513 (($ $) NIL (|has| |#1| (-1157)))) (-1635 (($ $) NIL (|has| |#1| (-1157)))) (-1488 (($ $) NIL (|has| |#1| (-1157)))) (-2301 (((-1218 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-2829 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL) (((-1131 |#1|) $) NIL) (($ (-1131 |#1|)) NIL) (((-861 (-547)) $) NIL (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#1| (-592 (-861 (-370))))) (((-166 (-370)) $) NIL (|has| |#1| (-991))) (((-166 (-217)) $) NIL (|has| |#1| (-991))) (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-2444 (($ $) 45)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-340))))) (-3397 (($ |#1| |#1|) 37)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) 36) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-3336 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3008 (((-1131 |#1|) $) NIL)) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL)) (-1717 (($ $) NIL (|has| |#1| (-1157)))) (-1574 (($ $) NIL (|has| |#1| (-1157)))) (-1932 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-298)) (|has| |#1| (-878))) (|has| |#1| (-539))))) (-1693 (($ $) NIL (|has| |#1| (-1157)))) (-1550 (($ $) NIL (|has| |#1| (-1157)))) (-1741 (($ $) NIL (|has| |#1| (-1157)))) (-1597 (($ $) NIL (|has| |#1| (-1157)))) (-3922 ((|#1| $) NIL (|has| |#1| (-1157)))) (-1918 (($ $) NIL (|has| |#1| (-1157)))) (-1610 (($ $) NIL (|has| |#1| (-1157)))) (-1729 (($ $) NIL (|has| |#1| (-1157)))) (-1586 (($ $) NIL (|has| |#1| (-1157)))) (-1706 (($ $) NIL (|has| |#1| (-1157)))) (-1563 (($ $) NIL (|has| |#1| (-1157)))) (-2040 (($ $) NIL (|has| |#1| (-1025)))) (-3267 (($) 28 T CONST)) (-3277 (($) 30 T CONST)) (-2083 (((-1118) $) 23 (|has| |#1| (-802))) (((-1118) $ (-112)) 25 (|has| |#1| (-802))) (((-1223) (-796) $) 26 (|has| |#1| (-802))) (((-1223) (-796) $ (-112)) 27 (|has| |#1| (-802)))) (-1686 (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 39)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-398 (-547))) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1157)))) (($ $ $) NIL (|has| |#1| (-1157))) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-354))) (($ $ (-398 (-547))) NIL (|has| |#1| (-354))))) (((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-169)) (T -166)) NIL (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) -((-2591 (((-861 |#1|) |#3|) 22))) -(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -2591 ((-861 |#1|) |#3|))) (-1063) (-13 (-593 (-861 |#1|)) (-169)) (-163 |#2|)) (T -167)) -((-2591 (*1 *2 *3) (-12 (-4 *5 (-13 (-593 *2) (-169))) (-5 *2 (-861 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5))))) -(-10 -7 (-15 -2591 ((-861 |#1|) |#3|))) -((-3730 (((-112) $ $) NIL)) (-4306 (((-112) $) 9)) (-4294 (((-112) $ (-112)) 11)) (-3550 (($) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2113 (($ $) 13)) (-3743 (((-832) $) 17)) (-2225 (((-112) $) 8)) (-2466 (((-112) $ (-112)) 10)) (-2214 (((-112) $ $) NIL))) -(((-168) (-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -2225 ((-112) $)) (-15 -4306 ((-112) $)) (-15 -2466 ((-112) $ (-112))) (-15 -4294 ((-112) $ (-112))) (-15 -2113 ($ $))))) (T -168)) -((-3550 (*1 *1) (-5 *1 (-168))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2466 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2113 (*1 *1 *1) (-5 *1 (-168)))) -(-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -2225 ((-112) $)) (-15 -4306 ((-112) $)) (-15 -2466 ((-112) $ (-112))) (-15 -4294 ((-112) $ (-112))) (-15 -2113 ($ $)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-2829 (((-861 |#1|) |#3|) 22))) +(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -2829 ((-861 |#1|) |#3|))) (-1063) (-13 (-592 (-861 |#1|)) (-169)) (-163 |#2|)) (T -167)) +((-2829 (*1 *2 *3) (-12 (-4 *5 (-13 (-592 *2) (-169))) (-5 *2 (-861 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5))))) +(-10 -7 (-15 -2829 ((-861 |#1|) |#3|))) +((-3821 (((-112) $ $) NIL)) (-1337 (((-112) $) 9)) (-4275 (((-112) $ (-112)) 11)) (-3732 (($) 12)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2265 (($ $) 13)) (-3834 (((-832) $) 17)) (-1944 (((-112) $) 8)) (-2665 (((-112) $ (-112)) 10)) (-2371 (((-112) $ $) NIL))) +(((-168) (-13 (-1063) (-10 -8 (-15 -3732 ($)) (-15 -1944 ((-112) $)) (-15 -1337 ((-112) $)) (-15 -2665 ((-112) $ (-112))) (-15 -4275 ((-112) $ (-112))) (-15 -2265 ($ $))))) (T -168)) +((-3732 (*1 *1) (-5 *1 (-168))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2665 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-4275 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) (-2265 (*1 *1 *1) (-5 *1 (-168)))) +(-13 (-1063) (-10 -8 (-15 -3732 ($)) (-15 -1944 ((-112) $)) (-15 -1337 ((-112) $)) (-15 -2665 ((-112) $ (-112))) (-15 -4275 ((-112) $ (-112))) (-15 -2265 ($ $)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-169) (-138)) (T -169)) NIL -(-13 (-1016) (-111 $ $) (-10 -7 (-6 (-4329 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3972 (($ $) 6))) +(-13 (-1016) (-111 $ $) (-10 -7 (-6 (-4330 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4048 (($ $) 6))) (((-170) (-138)) (T -170)) -((-3972 (*1 *1 *1) (-4 *1 (-170)))) -(-13 (-10 -8 (-15 -3972 ($ $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 ((|#1| $) 75)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-1308 (($ $) 19)) (-1353 (($ |#1| (-1116 |#1|)) 48)) (-3859 (((-3 $ "failed") $) 117)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-1319 (((-1116 |#1|) $) 82)) (-1342 (((-1116 |#1|) $) 79)) (-1330 (((-1116 |#1|) $) 80)) (-2266 (((-112) $) NIL)) (-1273 (((-1116 |#1|) $) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1656 (($ $ (-548)) 91)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1261 (((-1116 |#1|) $) 89)) (-1285 (((-1116 (-399 |#1|)) $) 14)) (-1351 (($ (-399 |#1|)) 17) (($ |#1| (-1116 |#1|) (-1116 |#1|)) 38)) (-3330 (($ $) 93)) (-3743 (((-832) $) 127) (($ (-548)) 51) (($ |#1|) 52) (($ (-399 |#1|)) 36) (($ (-399 (-548))) NIL) (($ $) NIL)) (-3835 (((-745)) 64)) (-3290 (((-112) $ $) NIL)) (-1296 (((-1116 (-399 |#1|)) $) 18)) (-3107 (($) 25 T CONST)) (-3118 (($) 28 T CONST)) (-2214 (((-112) $ $) 35)) (-2309 (($ $ $) 115)) (-2299 (($ $) 106) (($ $ $) 103)) (-2290 (($ $ $) 101)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-399 |#1|) $) 111) (($ $ (-399 |#1|)) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL))) -(((-171 |#1|) (-13 (-38 |#1|) (-38 (-399 |#1|)) (-355) (-10 -8 (-15 -1351 ($ (-399 |#1|))) (-15 -1351 ($ |#1| (-1116 |#1|) (-1116 |#1|))) (-15 -1353 ($ |#1| (-1116 |#1|))) (-15 -1342 ((-1116 |#1|) $)) (-15 -1330 ((-1116 |#1|) $)) (-15 -1319 ((-1116 |#1|) $)) (-15 -3875 (|#1| $)) (-15 -1308 ($ $)) (-15 -1296 ((-1116 (-399 |#1|)) $)) (-15 -1285 ((-1116 (-399 |#1|)) $)) (-15 -1273 ((-1116 |#1|) $)) (-15 -1261 ((-1116 |#1|) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)))) (-299)) (T -171)) -((-1351 (*1 *1 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-299)) (-5 *1 (-171 *3)))) (-1351 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2)))) (-1353 (*1 *1 *2 *3) (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-3875 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) (-3330 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299))))) -(-13 (-38 |#1|) (-38 (-399 |#1|)) (-355) (-10 -8 (-15 -1351 ($ (-399 |#1|))) (-15 -1351 ($ |#1| (-1116 |#1|) (-1116 |#1|))) (-15 -1353 ($ |#1| (-1116 |#1|))) (-15 -1342 ((-1116 |#1|) $)) (-15 -1330 ((-1116 |#1|) $)) (-15 -1319 ((-1116 |#1|) $)) (-15 -3875 (|#1| $)) (-15 -1308 ($ $)) (-15 -1296 ((-1116 (-399 |#1|)) $)) (-15 -1285 ((-1116 (-399 |#1|)) $)) (-15 -1273 ((-1116 |#1|) $)) (-15 -1261 ((-1116 |#1|) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)))) -((-1363 (($ (-108) $) 13)) (-2415 (((-3 (-108) "failed") (-1135) $) 12)) (-3743 (((-832) $) 16)) (-1375 (((-619 (-108)) $) 8))) -(((-172) (-13 (-592 (-832)) (-10 -8 (-15 -1375 ((-619 (-108)) $)) (-15 -1363 ($ (-108) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $))))) (T -172)) -((-1375 (*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172)))) (-1363 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-2415 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-172))))) -(-13 (-592 (-832)) (-10 -8 (-15 -1375 ((-619 (-108)) $)) (-15 -1363 ($ (-108) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $)))) -((-1520 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 40)) (-1418 (((-912 |#1|) (-912 |#1|)) 19)) (-1474 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 36)) (-1397 (((-912 |#1|) (-912 |#1|)) 17)) (-1452 (((-912 |#1|) (-912 |#1|)) 25)) (-1442 (((-912 |#1|) (-912 |#1|)) 24)) (-1430 (((-912 |#1|) (-912 |#1|)) 23)) (-1487 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 37)) (-1463 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 35)) (-1525 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 34)) (-1407 (((-912 |#1|) (-912 |#1|)) 18)) (-1530 (((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|) 43)) (-1387 (((-912 |#1|) (-912 |#1|)) 8)) (-1509 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 39)) (-1498 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 38))) -(((-173 |#1|) (-10 -7 (-15 -1387 ((-912 |#1|) (-912 |#1|))) (-15 -1397 ((-912 |#1|) (-912 |#1|))) (-15 -1407 ((-912 |#1|) (-912 |#1|))) (-15 -1418 ((-912 |#1|) (-912 |#1|))) (-15 -1430 ((-912 |#1|) (-912 |#1|))) (-15 -1442 ((-912 |#1|) (-912 |#1|))) (-15 -1452 ((-912 |#1|) (-912 |#1|))) (-15 -1525 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1463 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1474 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1487 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1498 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1509 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1520 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1530 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) (-13 (-355) (-1157) (-971))) (T -173)) -((-1530 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1520 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1498 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1463 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-355) (-1157) (-971))))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) (-5 *1 (-173 *3))))) -(-10 -7 (-15 -1387 ((-912 |#1|) (-912 |#1|))) (-15 -1397 ((-912 |#1|) (-912 |#1|))) (-15 -1407 ((-912 |#1|) (-912 |#1|))) (-15 -1418 ((-912 |#1|) (-912 |#1|))) (-15 -1430 ((-912 |#1|) (-912 |#1|))) (-15 -1442 ((-912 |#1|) (-912 |#1|))) (-15 -1452 ((-912 |#1|) (-912 |#1|))) (-15 -1525 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1463 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1474 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1487 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1498 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1509 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1520 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1530 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) -((-3780 ((|#2| |#3|) 27))) -(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -3780 (|#2| |#3|))) (-169) (-1194 |#1|) (-699 |#1| |#2|)) (T -174)) -((-3780 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1194 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-699 *4 *2))))) -(-10 -7 (-15 -3780 (|#2| |#3|))) -((-3628 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 47 (|has| (-921 |#2|) (-855 |#1|))))) -(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) (-1063) (-13 (-855 |#1|) (-169)) (-163 |#2|)) (T -175)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) -(-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) -((-3315 (((-619 |#1|) (-619 |#1|) |#1|) 38)) (-3301 (((-619 |#1|) |#1| (-619 |#1|)) 19)) (-2318 (((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|)) 33) ((|#1| (-619 |#1|) (-619 |#1|)) 31))) -(((-176 |#1|) (-10 -7 (-15 -3301 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -2318 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -2318 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -3315 ((-619 |#1|) (-619 |#1|) |#1|))) (-299)) (T -176)) -((-3315 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-299)) (-5 *1 (-176 *4)))) (-2318 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-299)))) (-3301 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -3301 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -2318 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -2318 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -3315 ((-619 |#1|) (-619 |#1|) |#1|))) -((-3730 (((-112) $ $) NIL)) (-1949 (((-1171) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-177) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $))))) (T -177)) -((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-177)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-177))))) -(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $)))) -((-3436 (((-2 (|:| |start| |#2|) (|:| -3213 (-410 |#2|))) |#2|) 61)) (-3428 ((|#1| |#1|) 54)) (-3415 (((-166 |#1|) |#2|) 84)) (-3403 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3390 ((|#2| |#2|) 83)) (-3373 (((-410 |#2|) |#2| |#1|) 113) (((-410 |#2|) |#2| |#1| (-112)) 81)) (-3910 ((|#1| |#2|) 112)) (-3356 ((|#2| |#2|) 119)) (-1915 (((-410 |#2|) |#2|) 134) (((-410 |#2|) |#2| |#1|) 32) (((-410 |#2|) |#2| |#1| (-112)) 133)) (-3341 (((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2|) 132) (((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2| (-112)) 76)) (-3327 (((-619 (-166 |#1|)) |#2| |#1|) 40) (((-619 (-166 |#1|)) |#2|) 41))) -(((-178 |#1| |#2|) (-10 -7 (-15 -3327 ((-619 (-166 |#1|)) |#2|)) (-15 -3327 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2| (-112))) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2|)) (-15 -1915 ((-410 |#2|) |#2| |#1| (-112))) (-15 -1915 ((-410 |#2|) |#2| |#1|)) (-15 -1915 ((-410 |#2|) |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3910 (|#1| |#2|)) (-15 -3373 ((-410 |#2|) |#2| |#1| (-112))) (-15 -3373 ((-410 |#2|) |#2| |#1|)) (-15 -3390 (|#2| |#2|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3403 (|#1| |#2|)) (-15 -3415 ((-166 |#1|) |#2|)) (-15 -3428 (|#1| |#1|)) (-15 -3436 ((-2 (|:| |start| |#2|) (|:| -3213 (-410 |#2|))) |#2|))) (-13 (-355) (-819)) (-1194 (-166 |#1|))) (T -178)) -((-3436 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-2 (|:| |start| *3) (|:| -3213 (-410 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3428 (*1 *2 *2) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-355) (-819))) (-4 *3 (-1194 *2)))) (-3403 (*1 *2 *3) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3403 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1194 (-166 *3))))) (-3373 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3373 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3910 (*1 *2 *3) (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1194 (-166 *3))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-1915 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3341 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-355) (-819))) (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1194 (-166 *5))))) (-3327 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) -(-10 -7 (-15 -3327 ((-619 (-166 |#1|)) |#2|)) (-15 -3327 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2| (-112))) (-15 -3341 ((-619 (-2 (|:| -3213 (-619 |#2|)) (|:| -2831 |#1|))) |#2| |#2|)) (-15 -1915 ((-410 |#2|) |#2| |#1| (-112))) (-15 -1915 ((-410 |#2|) |#2| |#1|)) (-15 -1915 ((-410 |#2|) |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -3910 (|#1| |#2|)) (-15 -3373 ((-410 |#2|) |#2| |#1| (-112))) (-15 -3373 ((-410 |#2|) |#2| |#1|)) (-15 -3390 (|#2| |#2|)) (-15 -3403 (|#1| |#2| |#1|)) (-15 -3403 (|#1| |#2|)) (-15 -3415 ((-166 |#1|) |#2|)) (-15 -3428 (|#1| |#1|)) (-15 -3436 ((-2 (|:| |start| |#2|) (|:| -3213 (-410 |#2|))) |#2|))) -((-3446 (((-3 |#2| "failed") |#2|) 14)) (-3457 (((-745) |#2|) 16)) (-3469 ((|#2| |#2| |#2|) 18))) -(((-179 |#1| |#2|) (-10 -7 (-15 -3446 ((-3 |#2| "failed") |#2|)) (-15 -3457 ((-745) |#2|)) (-15 -3469 (|#2| |#2| |#2|))) (-1172) (-648 |#1|)) (T -179)) -((-3469 (*1 *2 *2 *2) (-12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) (-4 *2 (-648 *3)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-1172)) (-5 *2 (-745)) (-5 *1 (-179 *4 *3)) (-4 *3 (-648 *4)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) (-4 *2 (-648 *3))))) -(-10 -7 (-15 -3446 ((-3 |#2| "failed") |#2|)) (-15 -3457 ((-745) |#2|)) (-15 -3469 (|#2| |#2| |#2|))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2244 (((-1135) $) 10)) (-3743 (((-832) $) 17)) (-3277 (((-619 (-1140)) $) 12)) (-2214 (((-112) $ $) 15))) -(((-180) (-13 (-1063) (-10 -8 (-15 -2244 ((-1135) $)) (-15 -3277 ((-619 (-1140)) $))))) (T -180)) -((-2244 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-180)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-180))))) -(-13 (-1063) (-10 -8 (-15 -2244 ((-1135) $)) (-15 -3277 ((-619 (-1140)) $)))) -((-2765 ((|#2| |#2|) 28)) (-2773 (((-112) |#2|) 19)) (-1937 (((-308 |#1|) |#2|) 12)) (-1948 (((-308 |#1|) |#2|) 14)) (-2749 ((|#2| |#2| (-1135)) 68) ((|#2| |#2|) 69)) (-2781 (((-166 (-308 |#1|)) |#2|) 10)) (-2758 ((|#2| |#2| (-1135)) 65) ((|#2| |#2|) 59))) -(((-181 |#1| |#2|) (-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -1937 ((-308 |#1|) |#2|)) (-15 -1948 ((-308 |#1|) |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2781 ((-166 (-308 |#1|)) |#2|))) (-13 (-540) (-821) (-1007 (-548))) (-13 (-27) (-1157) (-422 (-166 |#1|)))) (T -181)) -((-2781 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-166 (-308 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-112)) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) (-2749 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3))))))) -(-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -1937 ((-308 |#1|) |#2|)) (-15 -1948 ((-308 |#1|) |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -2781 ((-166 (-308 |#1|)) |#2|))) -((-3479 (((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|))) 24)) (-3743 (((-1218 (-663 (-399 (-921 |#1|)))) (-1218 (-663 |#1|))) 33))) -(((-182 |#1|) (-10 -7 (-15 -3479 ((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|)))) (-15 -3743 ((-1218 (-663 (-399 (-921 |#1|)))) (-1218 (-663 |#1|))))) (-169)) (T -182)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1218 (-663 (-399 (-921 *4))))) (-5 *1 (-182 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1218 (-663 (-921 *4)))) (-5 *1 (-182 *4))))) -(-10 -7 (-15 -3479 ((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|)))) (-15 -3743 ((-1218 (-663 (-399 (-921 |#1|)))) (-1218 (-663 |#1|))))) -((-3570 (((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548)))) 66)) (-3593 (((-1137 (-399 (-548))) (-619 (-548)) (-619 (-548))) 75)) (-3491 (((-1137 (-399 (-548))) (-548)) 40)) (-4133 (((-1137 (-399 (-548))) (-548)) 52)) (-2460 (((-399 (-548)) (-1137 (-399 (-548)))) 62)) (-3504 (((-1137 (-399 (-548))) (-548)) 32)) (-3536 (((-1137 (-399 (-548))) (-548)) 48)) (-3525 (((-1137 (-399 (-548))) (-548)) 46)) (-3559 (((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548)))) 60)) (-3330 (((-1137 (-399 (-548))) (-548)) 25)) (-3547 (((-399 (-548)) (-1137 (-399 (-548))) (-1137 (-399 (-548)))) 64)) (-3512 (((-1137 (-399 (-548))) (-548)) 30)) (-3581 (((-1137 (-399 (-548))) (-619 (-548))) 72))) -(((-183) (-10 -7 (-15 -3330 ((-1137 (-399 (-548))) (-548))) (-15 -3491 ((-1137 (-399 (-548))) (-548))) (-15 -3504 ((-1137 (-399 (-548))) (-548))) (-15 -3512 ((-1137 (-399 (-548))) (-548))) (-15 -3525 ((-1137 (-399 (-548))) (-548))) (-15 -3536 ((-1137 (-399 (-548))) (-548))) (-15 -4133 ((-1137 (-399 (-548))) (-548))) (-15 -3547 ((-399 (-548)) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3559 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -2460 ((-399 (-548)) (-1137 (-399 (-548))))) (-15 -3570 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3581 ((-1137 (-399 (-548))) (-619 (-548)))) (-15 -3593 ((-1137 (-399 (-548))) (-619 (-548)) (-619 (-548)))))) (T -183)) -((-3593 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-3570 (*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) (-5 *1 (-183)))) (-3559 (*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)))) (-3547 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) (-5 *1 (-183)))) (-4133 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3536 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3525 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3512 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) (-3330 (*1 *2 *3) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) -(-10 -7 (-15 -3330 ((-1137 (-399 (-548))) (-548))) (-15 -3491 ((-1137 (-399 (-548))) (-548))) (-15 -3504 ((-1137 (-399 (-548))) (-548))) (-15 -3512 ((-1137 (-399 (-548))) (-548))) (-15 -3525 ((-1137 (-399 (-548))) (-548))) (-15 -3536 ((-1137 (-399 (-548))) (-548))) (-15 -4133 ((-1137 (-399 (-548))) (-548))) (-15 -3547 ((-399 (-548)) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3559 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -2460 ((-399 (-548)) (-1137 (-399 (-548))))) (-15 -3570 ((-1137 (-399 (-548))) (-1137 (-399 (-548))) (-1137 (-399 (-548))))) (-15 -3581 ((-1137 (-399 (-548))) (-619 (-548)))) (-15 -3593 ((-1137 (-399 (-548))) (-619 (-548)) (-619 (-548))))) -((-3615 (((-410 (-1131 (-548))) (-548)) 28)) (-3605 (((-619 (-1131 (-548))) (-548)) 23)) (-3686 (((-1131 (-548)) (-548)) 21))) -(((-184) (-10 -7 (-15 -3605 ((-619 (-1131 (-548))) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3615 ((-410 (-1131 (-548))) (-548))))) (T -184)) -((-3615 (*1 *2 *3) (-12 (-5 *2 (-410 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548)))) (-3686 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-184)) (-5 *3 (-548)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-619 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548))))) -(-10 -7 (-15 -3605 ((-619 (-1131 (-548))) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3615 ((-410 (-1131 (-548))) (-548)))) -((-1796 (((-1116 (-218)) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 105)) (-2011 (((-619 (-1118)) (-1116 (-218))) NIL)) (-3626 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 81)) (-1778 (((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218)))) NIL)) (-2000 (((-619 (-1118)) (-619 (-218))) NIL)) (-2022 (((-218) (-1058 (-814 (-218)))) 24)) (-2033 (((-218) (-1058 (-814 (-218)))) 25)) (-3649 (((-371) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 98)) (-3637 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 42)) (-1978 (((-1118) (-218)) NIL)) (-2120 (((-1118) (-619 (-1118))) 20)) (-3660 (((-1004) (-1135) (-1135) (-1004)) 13))) -(((-185) (-10 -7 (-15 -3626 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3637 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -3649 ((-371) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2120 ((-1118) (-619 (-1118)))) (-15 -3660 ((-1004) (-1135) (-1135) (-1004))))) (T -185)) -((-3660 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-185)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-185)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-185)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-185)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-185)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-185)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-185)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-185))))) -(-10 -7 (-15 -3626 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3637 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -3649 ((-371) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2120 ((-1118) (-619 (-1118)))) (-15 -3660 ((-1004) (-1135) (-1135) (-1004)))) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 55) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 32) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-4048 (*1 *1 *1) (-4 *1 (-170)))) +(-13 (-10 -8 (-15 -4048 ($ $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 ((|#1| $) 75)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL)) (-2221 (($ $) 19)) (-2001 (($ |#1| (-1116 |#1|)) 48)) (-2537 (((-3 $ "failed") $) 117)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2356 (((-1116 |#1|) $) 82)) (-1354 (((-1116 |#1|) $) 79)) (-2247 (((-1116 |#1|) $) 80)) (-4114 (((-112) $) NIL)) (-1594 (((-1116 |#1|) $) 88)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3685 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-3558 (($ $ (-547)) 91)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3210 (((-1116 |#1|) $) 89)) (-2621 (((-1116 (-398 |#1|)) $) 14)) (-4026 (($ (-398 |#1|)) 17) (($ |#1| (-1116 |#1|) (-1116 |#1|)) 38)) (-4105 (($ $) 93)) (-3834 (((-832) $) 127) (($ (-547)) 51) (($ |#1|) 52) (($ (-398 |#1|)) 36) (($ (-398 (-547))) NIL) (($ $) NIL)) (-2311 (((-745)) 64)) (-1932 (((-112) $ $) NIL)) (-2070 (((-1116 (-398 |#1|)) $) 18)) (-3267 (($) 25 T CONST)) (-3277 (($) 28 T CONST)) (-2371 (((-112) $ $) 35)) (-2497 (($ $ $) 115)) (-2484 (($ $) 106) (($ $ $) 103)) (-2470 (($ $ $) 101)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-398 |#1|) $) 111) (($ $ (-398 |#1|)) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL))) +(((-171 |#1|) (-13 (-38 |#1|) (-38 (-398 |#1|)) (-354) (-10 -8 (-15 -4026 ($ (-398 |#1|))) (-15 -4026 ($ |#1| (-1116 |#1|) (-1116 |#1|))) (-15 -2001 ($ |#1| (-1116 |#1|))) (-15 -1354 ((-1116 |#1|) $)) (-15 -2247 ((-1116 |#1|) $)) (-15 -2356 ((-1116 |#1|) $)) (-15 -2673 (|#1| $)) (-15 -2221 ($ $)) (-15 -2070 ((-1116 (-398 |#1|)) $)) (-15 -2621 ((-1116 (-398 |#1|)) $)) (-15 -1594 ((-1116 |#1|) $)) (-15 -3210 ((-1116 |#1|) $)) (-15 -3558 ($ $ (-547))) (-15 -4105 ($ $)))) (-298)) (T -171)) +((-4026 (*1 *1 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-298)) (-5 *1 (-171 *3)))) (-4026 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1116 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2)))) (-2001 (*1 *1 *2 *3) (-12 (-5 *3 (-1116 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2673 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))) (-2221 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-1116 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1116 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-3558 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) (-4105 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298))))) +(-13 (-38 |#1|) (-38 (-398 |#1|)) (-354) (-10 -8 (-15 -4026 ($ (-398 |#1|))) (-15 -4026 ($ |#1| (-1116 |#1|) (-1116 |#1|))) (-15 -2001 ($ |#1| (-1116 |#1|))) (-15 -1354 ((-1116 |#1|) $)) (-15 -2247 ((-1116 |#1|) $)) (-15 -2356 ((-1116 |#1|) $)) (-15 -2673 (|#1| $)) (-15 -2221 ($ $)) (-15 -2070 ((-1116 (-398 |#1|)) $)) (-15 -2621 ((-1116 (-398 |#1|)) $)) (-15 -1594 ((-1116 |#1|) $)) (-15 -3210 ((-1116 |#1|) $)) (-15 -3558 ($ $ (-547))) (-15 -4105 ($ $)))) +((-2939 (($ (-108) $) 13)) (-3160 (((-3 (-108) "failed") (-1135) $) 12)) (-3834 (((-832) $) 16)) (-3209 (((-619 (-108)) $) 8))) +(((-172) (-13 (-591 (-832)) (-10 -8 (-15 -3209 ((-619 (-108)) $)) (-15 -2939 ($ (-108) $)) (-15 -3160 ((-3 (-108) "failed") (-1135) $))))) (T -172)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172)))) (-2939 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-3160 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-172))))) +(-13 (-591 (-832)) (-10 -8 (-15 -3209 ((-619 (-108)) $)) (-15 -2939 ($ (-108) $)) (-15 -3160 ((-3 (-108) "failed") (-1135) $)))) +((-1496 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 40)) (-3597 (((-912 |#1|) (-912 |#1|)) 19)) (-2369 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 36)) (-3403 (((-912 |#1|) (-912 |#1|)) 17)) (-2114 (((-912 |#1|) (-912 |#1|)) 25)) (-1997 (((-912 |#1|) (-912 |#1|)) 24)) (-1888 (((-912 |#1|) (-912 |#1|)) 23)) (-2520 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 37)) (-2254 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 35)) (-1548 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 34)) (-3493 (((-912 |#1|) (-912 |#1|)) 18)) (-1608 (((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|) 43)) (-3305 (((-912 |#1|) (-912 |#1|)) 8)) (-1385 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 39)) (-1290 (((-1 (-912 |#1|) (-912 |#1|)) |#1|) 38))) +(((-173 |#1|) (-10 -7 (-15 -3305 ((-912 |#1|) (-912 |#1|))) (-15 -3403 ((-912 |#1|) (-912 |#1|))) (-15 -3493 ((-912 |#1|) (-912 |#1|))) (-15 -3597 ((-912 |#1|) (-912 |#1|))) (-15 -1888 ((-912 |#1|) (-912 |#1|))) (-15 -1997 ((-912 |#1|) (-912 |#1|))) (-15 -2114 ((-912 |#1|) (-912 |#1|))) (-15 -1548 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2254 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2369 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2520 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1290 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1385 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1496 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1608 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) (-13 (-354) (-1157) (-971))) (T -173)) +((-1608 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-1496 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-1290 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-2520 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-2369 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-1548 (*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-354) (-1157) (-971))))) (-2114 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3)))) (-3403 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) (-5 *1 (-173 *3))))) +(-10 -7 (-15 -3305 ((-912 |#1|) (-912 |#1|))) (-15 -3403 ((-912 |#1|) (-912 |#1|))) (-15 -3493 ((-912 |#1|) (-912 |#1|))) (-15 -3597 ((-912 |#1|) (-912 |#1|))) (-15 -1888 ((-912 |#1|) (-912 |#1|))) (-15 -1997 ((-912 |#1|) (-912 |#1|))) (-15 -2114 ((-912 |#1|) (-912 |#1|))) (-15 -1548 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2254 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2369 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -2520 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1290 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1385 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1496 ((-1 (-912 |#1|) (-912 |#1|)) |#1|)) (-15 -1608 ((-1 (-912 |#1|) (-912 |#1|)) |#1| |#1|))) +((-3008 ((|#2| |#3|) 27))) +(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -3008 (|#2| |#3|))) (-169) (-1194 |#1|) (-699 |#1| |#2|)) (T -174)) +((-3008 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1194 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-699 *4 *2))))) +(-10 -7 (-15 -3008 (|#2| |#3|))) +((-3893 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 47 (|has| (-921 |#2|) (-855 |#1|))))) +(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3893 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) (-1063) (-13 (-855 |#1|) (-169)) (-163 |#2|)) (T -175)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) +(-10 -7 (IF (|has| (-921 |#2|) (-855 |#1|)) (-15 -3893 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) |%noBranch|)) +((-3965 (((-619 |#1|) (-619 |#1|) |#1|) 38)) (-3871 (((-619 |#1|) |#1| (-619 |#1|)) 19)) (-3419 (((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|)) 33) ((|#1| (-619 |#1|) (-619 |#1|)) 31))) +(((-176 |#1|) (-10 -7 (-15 -3871 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -3419 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -3419 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -3965 ((-619 |#1|) (-619 |#1|) |#1|))) (-298)) (T -176)) +((-3965 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3)))) (-3419 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-298)) (-5 *1 (-176 *4)))) (-3419 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-298)))) (-3871 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -3871 ((-619 |#1|) |#1| (-619 |#1|))) (-15 -3419 (|#1| (-619 |#1|) (-619 |#1|))) (-15 -3419 ((-619 |#1|) (-619 (-619 |#1|)) (-619 |#1|))) (-15 -3965 ((-619 |#1|) (-619 |#1|) |#1|))) +((-2700 (((-2 (|:| |start| |#2|) (|:| -2483 (-409 |#2|))) |#2|) 61)) (-3735 ((|#1| |#1|) 54)) (-3631 (((-166 |#1|) |#2|) 84)) (-3521 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3418 ((|#2| |#2|) 83)) (-3281 (((-409 |#2|) |#2| |#1|) 113) (((-409 |#2|) |#2| |#1| (-112)) 81)) (-1684 ((|#1| |#2|) 112)) (-4285 ((|#2| |#2|) 119)) (-2106 (((-409 |#2|) |#2|) 134) (((-409 |#2|) |#2| |#1|) 32) (((-409 |#2|) |#2| |#1| (-112)) 133)) (-4181 (((-619 (-2 (|:| -2483 (-619 |#2|)) (|:| -3026 |#1|))) |#2| |#2|) 132) (((-619 (-2 (|:| -2483 (-619 |#2|)) (|:| -3026 |#1|))) |#2| |#2| (-112)) 76)) (-4074 (((-619 (-166 |#1|)) |#2| |#1|) 40) (((-619 (-166 |#1|)) |#2|) 41))) +(((-177 |#1| |#2|) (-10 -7 (-15 -4074 ((-619 (-166 |#1|)) |#2|)) (-15 -4074 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -4181 ((-619 (-2 (|:| -2483 (-619 |#2|)) (|:| -3026 |#1|))) |#2| |#2| (-112))) (-15 -4181 ((-619 (-2 (|:| -2483 (-619 |#2|)) (|:| -3026 |#1|))) |#2| |#2|)) (-15 -2106 ((-409 |#2|) |#2| |#1| (-112))) (-15 -2106 ((-409 |#2|) |#2| |#1|)) (-15 -2106 ((-409 |#2|) |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -1684 (|#1| |#2|)) (-15 -3281 ((-409 |#2|) |#2| |#1| (-112))) (-15 -3281 ((-409 |#2|) |#2| |#1|)) (-15 -3418 (|#2| |#2|)) (-15 -3521 (|#1| |#2| |#1|)) (-15 -3521 (|#1| |#2|)) (-15 -3631 ((-166 |#1|) |#2|)) (-15 -3735 (|#1| |#1|)) (-15 -2700 ((-2 (|:| |start| |#2|) (|:| -2483 (-409 |#2|))) |#2|))) (-13 (-354) (-819)) (-1194 (-166 |#1|))) (T -177)) +((-2700 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-2 (|:| |start| *3) (|:| -2483 (-409 *3)))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3735 (*1 *2 *2) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3631 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-177 *4 *3)) (-4 *4 (-13 (-354) (-819))) (-4 *3 (-1194 *2)))) (-3521 (*1 *2 *3) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3521 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-3418 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2)) (-4 *2 (-1194 (-166 *3))))) (-3281 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-3281 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-1684 (*1 *2 *3) (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1194 (-166 *2))))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2)) (-4 *2 (-1194 (-166 *3))))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-2106 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-2106 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-2 (|:| -2483 (-619 *3)) (|:| -3026 *4)))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-4181 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-354) (-819))) (-5 *2 (-619 (-2 (|:| -2483 (-619 *3)) (|:| -3026 *5)))) (-5 *1 (-177 *5 *3)) (-4 *3 (-1194 (-166 *5))))) (-4074 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(-10 -7 (-15 -4074 ((-619 (-166 |#1|)) |#2|)) (-15 -4074 ((-619 (-166 |#1|)) |#2| |#1|)) (-15 -4181 ((-619 (-2 (|:| -2483 (-619 |#2|)) (|:| -3026 |#1|))) |#2| |#2| (-112))) (-15 -4181 ((-619 (-2 (|:| -2483 (-619 |#2|)) (|:| -3026 |#1|))) |#2| |#2|)) (-15 -2106 ((-409 |#2|) |#2| |#1| (-112))) (-15 -2106 ((-409 |#2|) |#2| |#1|)) (-15 -2106 ((-409 |#2|) |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -1684 (|#1| |#2|)) (-15 -3281 ((-409 |#2|) |#2| |#1| (-112))) (-15 -3281 ((-409 |#2|) |#2| |#1|)) (-15 -3418 (|#2| |#2|)) (-15 -3521 (|#1| |#2| |#1|)) (-15 -3521 (|#1| |#2|)) (-15 -3631 ((-166 |#1|) |#2|)) (-15 -3735 (|#1| |#1|)) (-15 -2700 ((-2 (|:| |start| |#2|) (|:| -2483 (-409 |#2|))) |#2|))) +((-2792 (((-3 |#2| "failed") |#2|) 14)) (-2891 (((-745) |#2|) 16)) (-2983 ((|#2| |#2| |#2|) 18))) +(((-178 |#1| |#2|) (-10 -7 (-15 -2792 ((-3 |#2| "failed") |#2|)) (-15 -2891 ((-745) |#2|)) (-15 -2983 (|#2| |#2| |#2|))) (-1172) (-648 |#1|)) (T -178)) +((-2983 (*1 *2 *2 *2) (-12 (-4 *3 (-1172)) (-5 *1 (-178 *3 *2)) (-4 *2 (-648 *3)))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-1172)) (-5 *2 (-745)) (-5 *1 (-178 *4 *3)) (-4 *3 (-648 *4)))) (-2792 (*1 *2 *2) (|partial| -12 (-4 *3 (-1172)) (-5 *1 (-178 *3 *2)) (-4 *2 (-648 *3))))) +(-10 -7 (-15 -2792 ((-3 |#2| "failed") |#2|)) (-15 -2891 ((-745) |#2|)) (-15 -2983 (|#2| |#2| |#2|))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2500 (((-1135) $) 10)) (-3834 (((-832) $) 17)) (-2856 (((-619 (-1140)) $) 12)) (-2371 (((-112) $ $) 15))) +(((-179) (-13 (-1063) (-10 -8 (-15 -2500 ((-1135) $)) (-15 -2856 ((-619 (-1140)) $))))) (T -179)) +((-2500 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-179)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-179))))) +(-13 (-1063) (-10 -8 (-15 -2500 ((-1135) $)) (-15 -2856 ((-619 (-1140)) $)))) +((-2375 ((|#2| |#2|) 28)) (-2471 (((-112) |#2|) 19)) (-2129 (((-307 |#1|) |#2|) 12)) (-2145 (((-307 |#1|) |#2|) 14)) (-2193 ((|#2| |#2| (-1135)) 68) ((|#2| |#2|) 69)) (-2568 (((-166 (-307 |#1|)) |#2|) 10)) (-2296 ((|#2| |#2| (-1135)) 65) ((|#2| |#2|) 59))) +(((-180 |#1| |#2|) (-10 -7 (-15 -2193 (|#2| |#2|)) (-15 -2193 (|#2| |#2| (-1135))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1135))) (-15 -2129 ((-307 |#1|) |#2|)) (-15 -2145 ((-307 |#1|) |#2|)) (-15 -2471 ((-112) |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2568 ((-166 (-307 |#1|)) |#2|))) (-13 (-539) (-821) (-1007 (-547))) (-13 (-27) (-1157) (-421 (-166 |#1|)))) (T -180)) +((-2568 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-166 (-307 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *3)))))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-112)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) (-2129 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) (-2296 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *4)))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *3)))))) (-2193 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *4)))))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *3))))))) +(-10 -7 (-15 -2193 (|#2| |#2|)) (-15 -2193 (|#2| |#2| (-1135))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1135))) (-15 -2129 ((-307 |#1|) |#2|)) (-15 -2145 ((-307 |#1|) |#2|)) (-15 -2471 ((-112) |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2568 ((-166 (-307 |#1|)) |#2|))) +((-3067 (((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|))) 24)) (-3834 (((-1218 (-663 (-398 (-921 |#1|)))) (-1218 (-663 |#1|))) 33))) +(((-181 |#1|) (-10 -7 (-15 -3067 ((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|)))) (-15 -3834 ((-1218 (-663 (-398 (-921 |#1|)))) (-1218 (-663 |#1|))))) (-169)) (T -181)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1218 (-663 (-398 (-921 *4))))) (-5 *1 (-181 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) (-5 *2 (-1218 (-663 (-921 *4)))) (-5 *1 (-181 *4))))) +(-10 -7 (-15 -3067 ((-1218 (-663 (-921 |#1|))) (-1218 (-663 |#1|)))) (-15 -3834 ((-1218 (-663 (-398 (-921 |#1|)))) (-1218 (-663 |#1|))))) +((-1438 (((-1137 (-398 (-547))) (-1137 (-398 (-547))) (-1137 (-398 (-547)))) 66)) (-1687 (((-1137 (-398 (-547))) (-619 (-547)) (-619 (-547))) 75)) (-3170 (((-1137 (-398 (-547))) (-547)) 40)) (-3273 (((-1137 (-398 (-547))) (-547)) 52)) (-2670 (((-398 (-547)) (-1137 (-398 (-547)))) 62)) (-2097 (((-1137 (-398 (-547))) (-547)) 32)) (-2449 (((-1137 (-398 (-547))) (-547)) 48)) (-2327 (((-1137 (-398 (-547))) (-547)) 46)) (-2675 (((-1137 (-398 (-547))) (-1137 (-398 (-547))) (-1137 (-398 (-547)))) 60)) (-4105 (((-1137 (-398 (-547))) (-547)) 25)) (-2570 (((-398 (-547)) (-1137 (-398 (-547))) (-1137 (-398 (-547)))) 64)) (-2195 (((-1137 (-398 (-547))) (-547)) 30)) (-1567 (((-1137 (-398 (-547))) (-619 (-547))) 72))) +(((-182) (-10 -7 (-15 -4105 ((-1137 (-398 (-547))) (-547))) (-15 -3170 ((-1137 (-398 (-547))) (-547))) (-15 -2097 ((-1137 (-398 (-547))) (-547))) (-15 -2195 ((-1137 (-398 (-547))) (-547))) (-15 -2327 ((-1137 (-398 (-547))) (-547))) (-15 -2449 ((-1137 (-398 (-547))) (-547))) (-15 -3273 ((-1137 (-398 (-547))) (-547))) (-15 -2570 ((-398 (-547)) (-1137 (-398 (-547))) (-1137 (-398 (-547))))) (-15 -2675 ((-1137 (-398 (-547))) (-1137 (-398 (-547))) (-1137 (-398 (-547))))) (-15 -2670 ((-398 (-547)) (-1137 (-398 (-547))))) (-15 -1438 ((-1137 (-398 (-547))) (-1137 (-398 (-547))) (-1137 (-398 (-547))))) (-15 -1567 ((-1137 (-398 (-547))) (-619 (-547)))) (-15 -1687 ((-1137 (-398 (-547))) (-619 (-547)) (-619 (-547)))))) (T -182)) +((-1687 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-1137 (-398 (-547)))) (-5 *2 (-398 (-547))) (-5 *1 (-182)))) (-2675 (*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)))) (-2570 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 (-398 (-547)))) (-5 *2 (-398 (-547))) (-5 *1 (-182)))) (-3273 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2449 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2327 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-2097 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-3170 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) (-4105 (*1 *2 *3) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))) +(-10 -7 (-15 -4105 ((-1137 (-398 (-547))) (-547))) (-15 -3170 ((-1137 (-398 (-547))) (-547))) (-15 -2097 ((-1137 (-398 (-547))) (-547))) (-15 -2195 ((-1137 (-398 (-547))) (-547))) (-15 -2327 ((-1137 (-398 (-547))) (-547))) (-15 -2449 ((-1137 (-398 (-547))) (-547))) (-15 -3273 ((-1137 (-398 (-547))) (-547))) (-15 -2570 ((-398 (-547)) (-1137 (-398 (-547))) (-1137 (-398 (-547))))) (-15 -2675 ((-1137 (-398 (-547))) (-1137 (-398 (-547))) (-1137 (-398 (-547))))) (-15 -2670 ((-398 (-547)) (-1137 (-398 (-547))))) (-15 -1438 ((-1137 (-398 (-547))) (-1137 (-398 (-547))) (-1137 (-398 (-547))))) (-15 -1567 ((-1137 (-398 (-547))) (-619 (-547)))) (-15 -1687 ((-1137 (-398 (-547))) (-619 (-547)) (-619 (-547))))) +((-1916 (((-409 (-1131 (-547))) (-547)) 28)) (-1803 (((-619 (-1131 (-547))) (-547)) 23)) (-3287 (((-1131 (-547)) (-547)) 21))) +(((-183) (-10 -7 (-15 -1803 ((-619 (-1131 (-547))) (-547))) (-15 -3287 ((-1131 (-547)) (-547))) (-15 -1916 ((-409 (-1131 (-547))) (-547))))) (T -183)) +((-1916 (*1 *2 *3) (-12 (-5 *2 (-409 (-1131 (-547)))) (-5 *1 (-183)) (-5 *3 (-547)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-183)) (-5 *3 (-547)))) (-1803 (*1 *2 *3) (-12 (-5 *2 (-619 (-1131 (-547)))) (-5 *1 (-183)) (-5 *3 (-547))))) +(-10 -7 (-15 -1803 ((-619 (-1131 (-547))) (-547))) (-15 -3287 ((-1131 (-547)) (-547))) (-15 -1916 ((-409 (-1131 (-547))) (-547)))) +((-2602 (((-1116 (-217)) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 105)) (-2695 (((-619 (-1118)) (-1116 (-217))) NIL)) (-3877 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 81)) (-2413 (((-619 (-217)) (-307 (-217)) (-1135) (-1058 (-814 (-217)))) NIL)) (-3721 (((-619 (-1118)) (-619 (-217))) NIL)) (-2778 (((-217) (-1058 (-814 (-217)))) 24)) (-2863 (((-217) (-1058 (-814 (-217)))) 25)) (-4089 (((-370) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 98)) (-3983 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 42)) (-3552 (((-1118) (-217)) NIL)) (-2360 (((-1118) (-619 (-1118))) 20)) (-4195 (((-1004) (-1135) (-1135) (-1004)) 13))) +(((-184) (-10 -7 (-15 -3877 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3983 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2778 ((-217) (-1058 (-814 (-217))))) (-15 -2863 ((-217) (-1058 (-814 (-217))))) (-15 -4089 ((-370) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2413 ((-619 (-217)) (-307 (-217)) (-1135) (-1058 (-814 (-217))))) (-15 -2602 ((-1116 (-217)) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3552 ((-1118) (-217))) (-15 -3721 ((-619 (-1118)) (-619 (-217)))) (-15 -2695 ((-619 (-1118)) (-1116 (-217)))) (-15 -2360 ((-1118) (-619 (-1118)))) (-15 -4195 ((-1004) (-1135) (-1135) (-1004))))) (T -184)) +((-4195 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-184)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-184)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-1116 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-184)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-184)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1118)) (-5 *1 (-184)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-184)))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-184)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-184)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-184)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-184))))) +(-10 -7 (-15 -3877 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3983 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2778 ((-217) (-1058 (-814 (-217))))) (-15 -2863 ((-217) (-1058 (-814 (-217))))) (-15 -4089 ((-370) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2413 ((-619 (-217)) (-307 (-217)) (-1135) (-1058 (-814 (-217))))) (-15 -2602 ((-1116 (-217)) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3552 ((-1118) (-217))) (-15 -3721 ((-619 (-1118)) (-619 (-217)))) (-15 -2695 ((-619 (-1118)) (-1116 (-217)))) (-15 -2360 ((-1118) (-619 (-1118)))) (-15 -4195 ((-1004) (-1135) (-1135) (-1004)))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 55) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 32) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-185) (-761)) (T -185)) +NIL +(-761) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 60) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 41) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-186) (-761)) (T -186)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 60) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 41) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 69) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 40) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-187) (-761)) (T -187)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 69) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 40) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 56) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 34) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-188) (-761)) (T -188)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 56) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 34) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 67) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 38) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-189) (-761)) (T -189)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 67) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 38) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 73) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 36) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-190) (-761)) (T -190)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 73) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 36) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 80) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 44) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-191) (-761)) (T -191)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 80) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 44) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 70) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 40) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-192) (-761)) (T -192)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 70) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 40) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 66)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 32)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-193) (-761)) (T -193)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 66)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 32)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 63)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 34)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-194) (-761)) (T -194)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 63)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 34)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 90) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 78) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-195) (-761)) (T -195)) NIL (-761) -((-3730 (((-112) $ $) NIL)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 90) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 78) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-196) (-761)) (T -196)) +((-4299 (((-3 (-2 (|:| -2704 (-114)) (|:| |w| (-217))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 85)) (-3383 (((-547) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 42)) (-3268 (((-3 (-619 (-217)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 73))) +(((-196) (-10 -7 (-15 -4299 ((-3 (-2 (|:| -2704 (-114)) (|:| |w| (-217))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3268 ((-3 (-619 (-217)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3383 ((-547) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -196)) +((-3383 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-547)) (-5 *1 (-196)))) (-3268 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-196)))) (-4299 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -2704 (-114)) (|:| |w| (-217)))) (-5 *1 (-196))))) +(-10 -7 (-15 -4299 ((-3 (-2 (|:| -2704 (-114)) (|:| |w| (-217))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3268 ((-3 (-619 (-217)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3383 ((-547) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) +((-2797 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 39)) (-3815 (((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 130)) (-3713 (((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-663 (-307 (-217)))) 89)) (-3609 (((-370) (-663 (-307 (-217)))) 113)) (-3462 (((-663 (-307 (-217))) (-1218 (-307 (-217))) (-619 (-1135))) 110)) (-3072 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 30)) (-2896 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 43)) (-2670 (((-663 (-307 (-217))) (-663 (-307 (-217))) (-619 (-1135)) (-1218 (-307 (-217)))) 102)) (-3495 (((-370) (-370) (-619 (-370))) 107) (((-370) (-370) (-370)) 105)) (-2980 (((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 36))) +(((-197) (-10 -7 (-15 -3495 ((-370) (-370) (-370))) (-15 -3495 ((-370) (-370) (-619 (-370)))) (-15 -3609 ((-370) (-663 (-307 (-217))))) (-15 -3462 ((-663 (-307 (-217))) (-1218 (-307 (-217))) (-619 (-1135)))) (-15 -2670 ((-663 (-307 (-217))) (-663 (-307 (-217))) (-619 (-1135)) (-1218 (-307 (-217))))) (-15 -3713 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-663 (-307 (-217))))) (-15 -3815 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2797 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2896 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2980 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3072 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -197)) +((-3072 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370)))) (-5 *1 (-197)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370)))) (-5 *1 (-197)))) (-2670 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-307 (-217)))) (-5 *3 (-619 (-1135))) (-5 *4 (-1218 (-307 (-217)))) (-5 *1 (-197)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *4 (-619 (-1135))) (-5 *2 (-663 (-307 (-217)))) (-5 *1 (-197)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-197)))) (-3495 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-370))) (-5 *2 (-370)) (-5 *1 (-197)))) (-3495 (*1 *2 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-197))))) +(-10 -7 (-15 -3495 ((-370) (-370) (-370))) (-15 -3495 ((-370) (-370) (-619 (-370)))) (-15 -3609 ((-370) (-663 (-307 (-217))))) (-15 -3462 ((-663 (-307 (-217))) (-1218 (-307 (-217))) (-619 (-1135)))) (-15 -2670 ((-663 (-307 (-217))) (-663 (-307 (-217))) (-619 (-1135)) (-1218 (-307 (-217))))) (-15 -3713 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-663 (-307 (-217))))) (-15 -3815 ((-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370))) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2797 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2896 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2980 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3072 ((-370) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) +((-3821 (((-112) $ $) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 41)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3303 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 64)) (-2371 (((-112) $ $) NIL))) +(((-198) (-774)) (T -198)) NIL -(-761) -((-3673 (((-3 (-2 (|:| -2503 (-114)) (|:| |w| (-218))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 85)) (-3695 (((-548) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 42)) (-3684 (((-3 (-619 (-218)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 73))) -(((-197) (-10 -7 (-15 -3673 ((-3 (-2 (|:| -2503 (-114)) (|:| |w| (-218))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3684 ((-3 (-619 (-218)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3695 ((-548) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -197)) -((-3695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-548)) (-5 *1 (-197)))) (-3684 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-197)))) (-3673 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -2503 (-114)) (|:| |w| (-218)))) (-5 *1 (-197))))) -(-10 -7 (-15 -3673 ((-3 (-2 (|:| -2503 (-114)) (|:| |w| (-218))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3684 ((-3 (-619 (-218)) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3695 ((-548) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) -((-3757 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 39)) (-3746 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 130)) (-3734 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-663 (-308 (-218)))) 89)) (-3720 (((-371) (-663 (-308 (-218)))) 113)) (-2937 (((-663 (-308 (-218))) (-1218 (-308 (-218))) (-619 (-1135))) 110)) (-3789 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 30)) (-3767 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 43)) (-2460 (((-663 (-308 (-218))) (-663 (-308 (-218))) (-619 (-1135)) (-1218 (-308 (-218)))) 102)) (-3708 (((-371) (-371) (-619 (-371))) 107) (((-371) (-371) (-371)) 105)) (-3777 (((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 36))) -(((-198) (-10 -7 (-15 -3708 ((-371) (-371) (-371))) (-15 -3708 ((-371) (-371) (-619 (-371)))) (-15 -3720 ((-371) (-663 (-308 (-218))))) (-15 -2937 ((-663 (-308 (-218))) (-1218 (-308 (-218))) (-619 (-1135)))) (-15 -2460 ((-663 (-308 (-218))) (-663 (-308 (-218))) (-619 (-1135)) (-1218 (-308 (-218))))) (-15 -3734 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-663 (-308 (-218))))) (-15 -3746 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3757 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3767 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3777 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3789 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -198)) -((-3789 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-198)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-663 (-308 (-218)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-198)))) (-2460 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-308 (-218)))) (-5 *3 (-619 (-1135))) (-5 *4 (-1218 (-308 (-218)))) (-5 *1 (-198)))) (-2937 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) (-5 *2 (-663 (-308 (-218)))) (-5 *1 (-198)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-663 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3708 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-371))) (-5 *2 (-371)) (-5 *1 (-198)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-198))))) -(-10 -7 (-15 -3708 ((-371) (-371) (-371))) (-15 -3708 ((-371) (-371) (-619 (-371)))) (-15 -3720 ((-371) (-663 (-308 (-218))))) (-15 -2937 ((-663 (-308 (-218))) (-1218 (-308 (-218))) (-619 (-1135)))) (-15 -2460 ((-663 (-308 (-218))) (-663 (-308 (-218))) (-619 (-1135)) (-1218 (-308 (-218))))) (-15 -3734 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-663 (-308 (-218))))) (-15 -3746 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3757 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3767 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3777 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3789 ((-371) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) -((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 41)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 64)) (-2214 (((-112) $ $) NIL))) +(-774) +((-3821 (((-112) $ $) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 41)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3303 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 62)) (-2371 (((-112) $ $) NIL))) (((-199) (-774)) (T -199)) NIL (-774) -((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 41)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 62)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 40)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3303 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 66)) (-2371 (((-112) $ $) NIL))) (((-200) (-774)) (T -200)) NIL (-774) -((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 40)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 66)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 46)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3303 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 75)) (-2371 (((-112) $ $) NIL))) (((-201) (-774)) (T -201)) NIL (-774) -((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 46)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 75)) (-2214 (((-112) $ $) NIL))) -(((-202) (-774)) (T -202)) +((-3292 (((-619 (-1135)) (-1135) (-745)) 23)) (-3166 (((-307 (-217)) (-307 (-217))) 31)) (-2215 (((-112) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 74)) (-2071 (((-112) (-217) (-217) (-619 (-307 (-217)))) 45))) +(((-202) (-10 -7 (-15 -3292 ((-619 (-1135)) (-1135) (-745))) (-15 -3166 ((-307 (-217)) (-307 (-217)))) (-15 -2071 ((-112) (-217) (-217) (-619 (-307 (-217))))) (-15 -2215 ((-112) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))))))) (T -202)) +((-2215 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) (-5 *2 (-112)) (-5 *1 (-202)))) (-2071 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-619 (-307 (-217)))) (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-202)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-202)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-202)) (-5 *3 (-1135))))) +(-10 -7 (-15 -3292 ((-619 (-1135)) (-1135) (-745))) (-15 -3166 ((-307 (-217)) (-307 (-217)))) (-15 -2071 ((-112) (-217) (-217) (-619 (-307 (-217))))) (-15 -2215 ((-112) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))))) +((-3821 (((-112) $ $) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 26)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3951 (((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 57)) (-2371 (((-112) $ $) NIL))) +(((-203) (-864)) (T -203)) NIL -(-774) -((-3065 (((-619 (-1135)) (-1135) (-745)) 23)) (-3800 (((-308 (-218)) (-308 (-218))) 31)) (-3825 (((-112) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 74)) (-3811 (((-112) (-218) (-218) (-619 (-308 (-218)))) 45))) -(((-203) (-10 -7 (-15 -3065 ((-619 (-1135)) (-1135) (-745))) (-15 -3800 ((-308 (-218)) (-308 (-218)))) (-15 -3811 ((-112) (-218) (-218) (-619 (-308 (-218))))) (-15 -3825 ((-112) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))))) (T -203)) -((-3825 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *2 (-112)) (-5 *1 (-203)))) (-3811 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-619 (-308 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-203)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-203)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-203)) (-5 *3 (-1135))))) -(-10 -7 (-15 -3065 ((-619 (-1135)) (-1135) (-745))) (-15 -3800 ((-308 (-218)) (-308 (-218)))) (-15 -3811 ((-112) (-218) (-218) (-619 (-308 (-218))))) (-15 -3825 ((-112) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))))) -((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 26)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3634 (((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 57)) (-2214 (((-112) $ $) NIL))) +(-864) +((-3821 (((-112) $ $) NIL)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 21)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3951 (((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) NIL)) (-2371 (((-112) $ $) NIL))) (((-204) (-864)) (T -204)) NIL (-864) -((-3730 (((-112) $ $) NIL)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3634 (((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) NIL)) (-2214 (((-112) $ $) NIL))) -(((-205) (-864)) (T -205)) +((-3821 (((-112) $ $) NIL)) (-2238 ((|#2| $ (-745) |#2|) 11)) (-3732 (($) 8)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3329 ((|#2| $ (-745)) 10)) (-3834 (((-832) $) 18)) (-2371 (((-112) $ $) 13))) +(((-205 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3732 ($)) (-15 -3329 (|#2| $ (-745))) (-15 -2238 (|#2| $ (-745) |#2|)))) (-890) (-1063)) (T -205)) +((-3732 (*1 *1) (-12 (-5 *1 (-205 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890)))) (-2238 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3732 ($)) (-15 -3329 (|#2| $ (-745))) (-15 -2238 (|#2| $ (-745) |#2|)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3617 (((-1223) $) 36) (((-1223) $ (-890) (-890)) 38)) (-3329 (($ $ (-958)) 19) (((-237 (-1118)) $ (-1135)) 15)) (-2683 (((-1223) $) 34)) (-3834 (((-832) $) 31) (($ (-619 |#1|)) 8)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $ $) 27)) (-2470 (($ $ $) 22))) +(((-206 |#1|) (-13 (-1063) (-10 -8 (-15 -3329 ($ $ (-958))) (-15 -3329 ((-237 (-1118)) $ (-1135))) (-15 -2470 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -3834 ($ (-619 |#1|))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $)) (-15 -3617 ((-1223) $ (-890) (-890))))) (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $))))) (T -206)) +((-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-958)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $))))))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-237 (-1118))) (-5 *1 (-206 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ *3)) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $))))))) (-2470 (*1 *1 *1 *1) (-12 (-5 *1 (-206 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $))))))) (-2484 (*1 *1 *1 *1) (-12 (-5 *1 (-206 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $))))))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $))))) (-5 *1 (-206 *3)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 (*2 $)) (-15 -3617 (*2 $))))))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 (*2 $)) (-15 -3617 (*2 $))))))) (-3617 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-206 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 (*2 $)) (-15 -3617 (*2 $)))))))) +(-13 (-1063) (-10 -8 (-15 -3329 ($ $ (-958))) (-15 -3329 ((-237 (-1118)) $ (-1135))) (-15 -2470 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -3834 ($ (-619 |#1|))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $)) (-15 -3617 ((-1223) $ (-890) (-890))))) +((-2361 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-207 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2361 (|#2| |#4| (-1 |#2| |#2|)))) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -207)) +((-2361 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-354)) (-4 *6 (-1194 (-398 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-207 *5 *2 *6 *3)) (-4 *3 (-333 *5 *2 *6))))) +(-10 -7 (-15 -2361 (|#2| |#4| (-1 |#2| |#2|)))) +((-1462 ((|#2| |#2| (-745) |#2|) 42)) (-2696 ((|#2| |#2| (-745) |#2|) 38)) (-2959 (((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -1396 |#2|)))) 57)) (-2596 (((-619 (-2 (|:| |deg| (-745)) (|:| -1396 |#2|))) |#2|) 53)) (-1599 (((-112) |#2|) 50)) (-2236 (((-409 |#2|) |#2|) 77)) (-2106 (((-409 |#2|) |#2|) 76)) (-3053 ((|#2| |#2| (-745) |#2|) 36)) (-2479 (((-2 (|:| |cont| |#1|) (|:| -2483 (-619 (-2 (|:| |irr| |#2|) (|:| -1889 (-547)))))) |#2| (-112)) 69))) +(((-208 |#1| |#2|) (-10 -7 (-15 -2106 ((-409 |#2|) |#2|)) (-15 -2236 ((-409 |#2|) |#2|)) (-15 -2479 ((-2 (|:| |cont| |#1|) (|:| -2483 (-619 (-2 (|:| |irr| |#2|) (|:| -1889 (-547)))))) |#2| (-112))) (-15 -2596 ((-619 (-2 (|:| |deg| (-745)) (|:| -1396 |#2|))) |#2|)) (-15 -2959 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -1396 |#2|))))) (-15 -3053 (|#2| |#2| (-745) |#2|)) (-15 -2696 (|#2| |#2| (-745) |#2|)) (-15 -1462 (|#2| |#2| (-745) |#2|)) (-15 -1599 ((-112) |#2|))) (-340) (-1194 |#1|)) (T -208)) +((-1599 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1194 *4)))) (-1462 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) (-4 *2 (-1194 *4)))) (-2696 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) (-4 *2 (-1194 *4)))) (-3053 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) (-4 *2 (-1194 *4)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -1396 *5)))) (-4 *5 (-1194 *4)) (-4 *4 (-340)) (-5 *2 (-619 *5)) (-5 *1 (-208 *4 *5)))) (-2596 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -1396 *3)))) (-5 *1 (-208 *4 *3)) (-4 *3 (-1194 *4)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-340)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) (-5 *1 (-208 *5 *3)) (-4 *3 (-1194 *5)))) (-2236 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1194 *4)))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -2106 ((-409 |#2|) |#2|)) (-15 -2236 ((-409 |#2|) |#2|)) (-15 -2479 ((-2 (|:| |cont| |#1|) (|:| -2483 (-619 (-2 (|:| |irr| |#2|) (|:| -1889 (-547)))))) |#2| (-112))) (-15 -2596 ((-619 (-2 (|:| |deg| (-745)) (|:| -1396 |#2|))) |#2|)) (-15 -2959 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -1396 |#2|))))) (-15 -3053 (|#2| |#2| (-745) |#2|)) (-15 -2696 (|#2| |#2| (-745) |#2|)) (-15 -1462 (|#2| |#2| (-745) |#2|)) (-15 -1599 ((-112) |#2|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-547) $) NIL (|has| (-547) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-547) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-547) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-547) (-1007 (-547))))) (-2643 (((-547) $) NIL) (((-1135) $) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-547) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| (-547) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-547) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| (-547) (-1111)))) (-3937 (((-112) $) NIL (|has| (-547) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-547) (-821)))) (-2781 (($ (-1 (-547) (-547)) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-547) (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) NIL)) (-1435 (((-547) $) NIL (|has| (-547) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1135)) (-619 (-547))) NIL (|has| (-547) (-503 (-1135) (-547)))) (($ $ (-1135) (-547)) NIL (|has| (-547) (-503 (-1135) (-547))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-547) $) NIL)) (-1718 (($ (-398 (-547))) 9)) (-2829 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 8) (($ (-547)) NIL) (($ (-1135)) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL) (((-973 10) $) 10)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2311 (((-745)) NIL)) (-1564 (((-547) $) NIL (|has| (-547) (-532)))) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL (|has| (-547) (-794)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2497 (($ $ $) NIL) (($ (-547) (-547)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL))) +(((-209) (-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -3834 ((-973 10) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -1718 ($ (-398 (-547))))))) (T -209)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-209)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209))))) +(-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -3834 ((-973 10) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -1718 ($ (-398 (-547)))))) +((-3821 (((-112) $ $) NIL)) (-3975 (((-1080) $) 14)) (-1917 (((-1118) $) NIL)) (-2535 (((-619 (-495)) $) 11)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-1140) $) 16)) (-2371 (((-112) $ $) NIL))) +(((-210) (-13 (-1047) (-10 -8 (-15 -2535 ((-619 (-495)) $)) (-15 -3975 ((-1080) $)) (-15 -2478 ((-1140) $))))) (T -210)) +((-2535 (*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-210)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-210)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-210))))) +(-13 (-1047) (-10 -8 (-15 -2535 ((-619 (-495)) $)) (-15 -3975 ((-1080) $)) (-15 -2478 ((-1140) $)))) +((-2069 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118)) 28) (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|))) 24)) (-1830 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)) 17))) +(((-211 |#1| |#2|) (-10 -7 (-15 -2069 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -2069 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118))) (-15 -1830 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-928) (-29 |#1|))) (T -211)) +((-1830 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1135)) (-5 *6 (-112)) (-4 *7 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-4 *3 (-13 (-1157) (-928) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-211 *7 *3)) (-5 *5 (-814 *3)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1118)) (-4 *3 (-13 (-1157) (-928) (-29 *6))) (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-211 *6 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1157) (-928) (-29 *5))) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-211 *5 *3))))) +(-10 -7 (-15 -2069 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -2069 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118))) (-15 -1830 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)))) +((-2069 (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))) (-1118)) 46) (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|))))) 43) (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))) (-1118)) 47) (((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|)))) 20))) +(((-212 |#1|) (-10 -7 (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))))) (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))) (-1118))) (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))))) (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))) (-1118)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (T -212)) +((-2069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 (-398 (-921 *6))))) (-5 *5 (-1118)) (-5 *3 (-398 (-921 *6))) (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *6)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 (-398 (-921 *5))))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *5)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1056 (-814 (-307 *6)))) (-5 *5 (-1118)) (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *6)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1056 (-814 (-307 *5)))) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *5))))) +(-10 -7 (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))))) (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-307 |#1|))) (-1118))) (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))))) (-15 -2069 ((-3 (|:| |f1| (-814 (-307 |#1|))) (|:| |f2| (-619 (-814 (-307 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-398 (-921 |#1|)) (-1056 (-814 (-398 (-921 |#1|)))) (-1118)))) +((-2542 (((-2 (|:| -1416 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|)) 21)) (-1436 (((-619 (-307 |#2|)) (-307 |#2|) (-890)) 42))) +(((-213 |#1| |#2|) (-10 -7 (-15 -2542 ((-2 (|:| -1416 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|))) (-15 -1436 ((-619 (-307 |#2|)) (-307 |#2|) (-890)))) (-1016) (-13 (-539) (-821))) (T -213)) +((-1436 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *6 (-13 (-539) (-821))) (-5 *2 (-619 (-307 *6))) (-5 *1 (-213 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1016)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-2 (|:| -1416 (-1131 *4)) (|:| |deg| (-890)))) (-5 *1 (-213 *4 *5)) (-5 *3 (-1131 *4)) (-4 *5 (-13 (-539) (-821)))))) +(-10 -7 (-15 -2542 ((-2 (|:| -1416 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|))) (-15 -1436 ((-619 (-307 |#2|)) (-307 |#2|) (-890)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2910 ((|#1| $) NIL)) (-2303 ((|#1| $) 25)) (-2826 (((-112) $ (-745)) NIL)) (-3219 (($) NIL T CONST)) (-2962 (($ $) NIL)) (-2034 (($ $) 31)) (-2936 ((|#1| |#1| $) NIL)) (-2853 ((|#1| $) NIL)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-4202 (((-745) $) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1959 ((|#1| $) NIL)) (-3832 ((|#1| |#1| $) 28)) (-3737 ((|#1| |#1| $) 30)) (-1885 (($ |#1| $) NIL)) (-4029 (((-745) $) 27)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2885 ((|#1| $) NIL)) (-3621 ((|#1| $) 26)) (-3502 ((|#1| $) 24)) (-1373 ((|#1| $) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3125 ((|#1| |#1| $) NIL)) (-3169 (((-112) $) 9)) (-4011 (($) NIL)) (-3044 ((|#1| $) NIL)) (-2994 (($) NIL) (($ (-619 |#1|)) 16)) (-1313 (((-745) $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2815 ((|#1| $) 13)) (-2731 (($ (-619 |#1|)) NIL)) (-2796 ((|#1| $) NIL)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-214 |#1|) (-13 (-245 |#1|) (-10 -8 (-15 -2994 ($ (-619 |#1|))))) (-1063)) (T -214)) +((-2994 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-214 *3))))) +(-13 (-245 |#1|) (-10 -8 (-15 -2994 ($ (-619 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3890 (($ (-307 |#1|)) 23)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-1896 (((-112) $) NIL)) (-2698 (((-3 (-307 |#1|) "failed") $) NIL)) (-2643 (((-307 |#1|) $) NIL)) (-2054 (($ $) 31)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-2781 (($ (-1 (-307 |#1|) (-307 |#1|)) $) NIL)) (-2027 (((-307 |#1|) $) NIL)) (-3016 (($ $) 30)) (-1917 (((-1118) $) NIL)) (-3986 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4240 (($ (-745)) NIL)) (-1945 (($ $) 32)) (-1618 (((-547) $) NIL)) (-3834 (((-832) $) 57) (($ (-547)) NIL) (($ (-307 |#1|)) NIL)) (-3338 (((-307 |#1|) $ $) NIL)) (-2311 (((-745)) NIL)) (-3267 (($) 25 T CONST)) (-3277 (($) 50 T CONST)) (-2371 (((-112) $ $) 28)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 24) (($ (-307 |#1|) $) 18))) +(((-215 |#1| |#2|) (-13 (-596 (-307 |#1|)) (-1007 (-307 |#1|)) (-10 -8 (-15 -2027 ((-307 |#1|) $)) (-15 -3016 ($ $)) (-15 -2054 ($ $)) (-15 -3338 ((-307 |#1|) $ $)) (-15 -4240 ($ (-745))) (-15 -3986 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -1618 ((-547) $)) (-15 -2781 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -3890 ($ (-307 |#1|))) (-15 -1945 ($ $)))) (-13 (-1016) (-821)) (-619 (-1135))) (T -215)) +((-2027 (*1 *2 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) (-3338 (*1 *2 *1 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-4240 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1135))))) (-3890 (*1 *1 *2) (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1135))))) (-1945 (*1 *1 *1) (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135)))))) +(-13 (-596 (-307 |#1|)) (-1007 (-307 |#1|)) (-10 -8 (-15 -2027 ((-307 |#1|) $)) (-15 -3016 ($ $)) (-15 -2054 ($ $)) (-15 -3338 ((-307 |#1|) $ $)) (-15 -4240 ($ (-745))) (-15 -3986 ((-112) $)) (-15 -1896 ((-112) $)) (-15 -1618 ((-547) $)) (-15 -2781 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -3890 ($ (-307 |#1|))) (-15 -1945 ($ $)))) +((-3088 (((-112) (-1118)) 22)) (-3167 (((-3 (-814 |#2|) "failed") (-590 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112)) 32)) (-3235 (((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)) 73) (((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112)) 74))) +(((-216 |#1| |#2|) (-10 -7 (-15 -3088 ((-112) (-1118))) (-15 -3167 ((-3 (-814 |#2|) "failed") (-590 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -3235 ((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112))) (-15 -3235 ((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-29 |#1|))) (T -216)) +((-3235 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1131 *6)) (-5 *4 (-814 *6)) (-4 *6 (-13 (-1157) (-29 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-216 *5 *6)))) (-3235 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1135)) (-5 *5 (-814 *7)) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *7 (-13 (-1157) (-29 *6))) (-5 *1 (-216 *6 *7)))) (-3167 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-590 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1157) (-29 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-216 *6 *4)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-112)) (-5 *1 (-216 *4 *5)) (-4 *5 (-13 (-1157) (-29 *4)))))) +(-10 -7 (-15 -3088 ((-112) (-1118))) (-15 -3167 ((-3 (-814 |#2|) "failed") (-590 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -3235 ((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112))) (-15 -3235 ((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 89)) (-2673 (((-547) $) 100)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3643 (($ $) NIL)) (-1648 (($ $) 77)) (-1498 (($ $) 65)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2118 (($ $) 56)) (-2873 (((-112) $ $) NIL)) (-1624 (($ $) 75)) (-1473 (($ $) 63)) (-3807 (((-547) $) 117)) (-1670 (($ $) 80)) (-1526 (($ $) 67)) (-3219 (($) NIL T CONST)) (-2446 (($ $) NIL)) (-2698 (((-3 (-547) "failed") $) 116) (((-3 (-398 (-547)) "failed") $) 113)) (-2643 (((-547) $) 114) (((-398 (-547)) $) 111)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) 93)) (-1654 (((-398 (-547)) $ (-745)) 109) (((-398 (-547)) $ (-745) (-745)) 108)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3225 (((-890)) 29) (((-890) (-890)) NIL (|has| $ (-6 -4319)))) (-3848 (((-112) $) NIL)) (-1413 (($) 39)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL)) (-3707 (((-547) $) 35)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL)) (-1684 (($ $) NIL)) (-3937 (((-112) $) 88)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) 53) (($) 34 (-12 (-3998 (|has| $ (-6 -4311))) (-3998 (|has| $ (-6 -4319)))))) (-3563 (($ $ $) 52) (($) 33 (-12 (-3998 (|has| $ (-6 -4311))) (-3998 (|has| $ (-6 -4319)))))) (-1448 (((-547) $) 27)) (-1533 (($ $) 30)) (-2289 (($ $) 57)) (-3620 (($ $) 62)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3880 (((-890) (-547)) NIL (|has| $ (-6 -4319)))) (-3979 (((-1082) $) 91)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL)) (-1435 (($ $) NIL)) (-1347 (($ (-547) (-547)) NIL) (($ (-547) (-547) (-890)) 101)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4248 (((-547) $) 28)) (-2740 (($) 38)) (-2703 (($ $) 61)) (-2776 (((-745) $) NIL)) (-2140 (((-1118) (-1118)) 8)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2871 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4319)))) (-3443 (($ $ (-745)) NIL) (($ $) 94)) (-3810 (((-890) (-547)) NIL (|has| $ (-6 -4319)))) (-1681 (($ $) 78)) (-1539 (($ $) 68)) (-1659 (($ $) 79)) (-1513 (($ $) 66)) (-1635 (($ $) 76)) (-1488 (($ $) 64)) (-2829 (((-370) $) 105) (((-217) $) 102) (((-861 (-370)) $) NIL) (((-523) $) 45)) (-3834 (((-832) $) 42) (($ (-547)) 60) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-547)) 60) (($ (-398 (-547))) NIL)) (-2311 (((-745)) NIL)) (-1564 (($ $) NIL)) (-3936 (((-890)) 32) (((-890) (-890)) NIL (|has| $ (-6 -4319)))) (-1849 (((-890)) 25)) (-1717 (($ $) 83)) (-1574 (($ $) 71) (($ $ $) 110)) (-1932 (((-112) $ $) NIL)) (-1693 (($ $) 81)) (-1550 (($ $) 69)) (-1741 (($ $) 86)) (-1597 (($ $) 74)) (-1918 (($ $) 84)) (-1610 (($ $) 72)) (-1729 (($ $) 85)) (-1586 (($ $) 73)) (-1706 (($ $) 82)) (-1563 (($ $) 70)) (-2040 (($ $) 118)) (-3267 (($) 36 T CONST)) (-3277 (($) 37 T CONST)) (-2083 (((-1118) $) 19) (((-1118) $ (-112)) 21) (((-1223) (-796) $) 22) (((-1223) (-796) $ (-112)) 23)) (-2554 (($ $) 97)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2165 (($ $ $) 99)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 54)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 46)) (-2497 (($ $ $) 87) (($ $ (-547)) 55)) (-2484 (($ $) 47) (($ $ $) 49)) (-2470 (($ $ $) 48)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 58) (($ $ (-398 (-547))) 130) (($ $ $) 59)) (* (($ (-890) $) 31) (($ (-745) $) NIL) (($ (-547) $) 51) (($ $ $) 50) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-217) (-13 (-395) (-225) (-802) (-1157) (-592 (-523)) (-10 -8 (-15 -2497 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -2740 ($)) (-15 -1533 ($ $)) (-15 -2289 ($ $)) (-15 -1574 ($ $ $)) (-15 -2554 ($ $)) (-15 -2165 ($ $ $)) (-15 -2140 ((-1118) (-1118))) (-15 -1654 ((-398 (-547)) $ (-745))) (-15 -1654 ((-398 (-547)) $ (-745) (-745)))))) (T -217)) +((** (*1 *1 *1 *1) (-5 *1 (-217))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-217)))) (-2740 (*1 *1) (-5 *1 (-217))) (-1533 (*1 *1 *1) (-5 *1 (-217))) (-2289 (*1 *1 *1) (-5 *1 (-217))) (-1574 (*1 *1 *1 *1) (-5 *1 (-217))) (-2554 (*1 *1 *1) (-5 *1 (-217))) (-2165 (*1 *1 *1 *1) (-5 *1 (-217))) (-2140 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-217)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217)))) (-1654 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217))))) +(-13 (-395) (-225) (-802) (-1157) (-592 (-523)) (-10 -8 (-15 -2497 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -2740 ($)) (-15 -1533 ($ $)) (-15 -2289 ($ $)) (-15 -1574 ($ $ $)) (-15 -2554 ($ $)) (-15 -2165 ($ $ $)) (-15 -2140 ((-1118) (-1118))) (-15 -1654 ((-398 (-547)) $ (-745))) (-15 -1654 ((-398 (-547)) $ (-745) (-745))))) +((-2420 (((-166 (-217)) (-745) (-166 (-217))) 11) (((-217) (-745) (-217)) 12)) (-2241 (((-166 (-217)) (-166 (-217))) 13) (((-217) (-217)) 14)) (-2350 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 19) (((-217) (-217) (-217)) 22)) (-2292 (((-166 (-217)) (-166 (-217))) 25) (((-217) (-217)) 24)) (-1418 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 43) (((-217) (-217) (-217)) 35)) (-1645 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 48) (((-217) (-217) (-217)) 45)) (-1329 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 15) (((-217) (-217) (-217)) 16)) (-1535 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 17) (((-217) (-217) (-217)) 18)) (-1845 (((-166 (-217)) (-166 (-217))) 60) (((-217) (-217)) 59)) (-1740 (((-217) (-217)) 54) (((-166 (-217)) (-166 (-217))) 58)) (-2554 (((-166 (-217)) (-166 (-217))) 8) (((-217) (-217)) 9)) (-2165 (((-166 (-217)) (-166 (-217)) (-166 (-217))) 30) (((-217) (-217) (-217)) 26))) +(((-218) (-10 -7 (-15 -2554 ((-217) (-217))) (-15 -2554 ((-166 (-217)) (-166 (-217)))) (-15 -2165 ((-217) (-217) (-217))) (-15 -2165 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -2241 ((-217) (-217))) (-15 -2241 ((-166 (-217)) (-166 (-217)))) (-15 -2292 ((-217) (-217))) (-15 -2292 ((-166 (-217)) (-166 (-217)))) (-15 -2420 ((-217) (-745) (-217))) (-15 -2420 ((-166 (-217)) (-745) (-166 (-217)))) (-15 -1329 ((-217) (-217) (-217))) (-15 -1329 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1418 ((-217) (-217) (-217))) (-15 -1418 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1535 ((-217) (-217) (-217))) (-15 -1535 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1645 ((-217) (-217) (-217))) (-15 -1645 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1740 ((-166 (-217)) (-166 (-217)))) (-15 -1740 ((-217) (-217))) (-15 -1845 ((-217) (-217))) (-15 -1845 ((-166 (-217)) (-166 (-217)))) (-15 -2350 ((-217) (-217) (-217))) (-15 -2350 ((-166 (-217)) (-166 (-217)) (-166 (-217)))))) (T -218)) +((-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1740 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1740 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1535 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1535 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1418 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1418 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-1329 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-1329 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2420 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-217))) (-5 *3 (-745)) (-5 *1 (-218)))) (-2420 (*1 *2 *3 *2) (-12 (-5 *2 (-217)) (-5 *3 (-745)) (-5 *1 (-218)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218))))) +(-10 -7 (-15 -2554 ((-217) (-217))) (-15 -2554 ((-166 (-217)) (-166 (-217)))) (-15 -2165 ((-217) (-217) (-217))) (-15 -2165 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -2241 ((-217) (-217))) (-15 -2241 ((-166 (-217)) (-166 (-217)))) (-15 -2292 ((-217) (-217))) (-15 -2292 ((-166 (-217)) (-166 (-217)))) (-15 -2420 ((-217) (-745) (-217))) (-15 -2420 ((-166 (-217)) (-745) (-166 (-217)))) (-15 -1329 ((-217) (-217) (-217))) (-15 -1329 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1418 ((-217) (-217) (-217))) (-15 -1418 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1535 ((-217) (-217) (-217))) (-15 -1535 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1645 ((-217) (-217) (-217))) (-15 -1645 ((-166 (-217)) (-166 (-217)) (-166 (-217)))) (-15 -1740 ((-166 (-217)) (-166 (-217)))) (-15 -1740 ((-217) (-217))) (-15 -1845 ((-217) (-217))) (-15 -1845 ((-166 (-217)) (-166 (-217)))) (-15 -2350 ((-217) (-217) (-217))) (-15 -2350 ((-166 (-217)) (-166 (-217)) (-166 (-217))))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3757 (($ (-745) (-745)) NIL)) (-3420 (($ $ $) NIL)) (-2150 (($ (-1218 |#1|)) NIL) (($ $) NIL)) (-2767 (($ |#1| |#1| |#1|) 32)) (-3047 (((-112) $) NIL)) (-3313 (($ $ (-547) (-547)) NIL)) (-1293 (($ $ (-547) (-547)) NIL)) (-4241 (($ $ (-547) (-547) (-547) (-547)) NIL)) (-3636 (($ $) NIL)) (-3237 (((-112) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-4146 (($ $ (-547) (-547) $) NIL)) (-2238 ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) NIL)) (-2183 (($ $ (-547) (-1218 |#1|)) NIL)) (-3251 (($ $ (-547) (-1218 |#1|)) NIL)) (-3842 (($ |#1| |#1| |#1|) 31)) (-2294 (($ (-745) |#1|) NIL)) (-3219 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| |#1| (-298)))) (-3578 (((-1218 |#1|) $ (-547)) NIL)) (-2423 (($ |#1|) 30)) (-2521 (($ |#1|) 29)) (-2607 (($ |#1|) 28)) (-3107 (((-745) $) NIL (|has| |#1| (-539)))) (-1861 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1793 ((|#1| $ (-547) (-547)) NIL)) (-2973 (((-619 |#1|) $) NIL)) (-1318 (((-745) $) NIL (|has| |#1| (-539)))) (-4273 (((-619 (-1218 |#1|)) $) NIL (|has| |#1| (-539)))) (-2126 (((-745) $) NIL)) (-3732 (($ (-745) (-745) |#1|) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-3015 ((|#1| $) NIL (|has| |#1| (-6 (-4330 "*"))))) (-2865 (((-547) $) NIL)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2769 (((-547) $) NIL)) (-3684 (((-547) $) NIL)) (-3933 (($ (-619 (-619 |#1|))) 11)) (-1850 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3051 (((-619 (-619 |#1|)) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2793 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-2672 (($) 12)) (-3525 (($ $ $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547))) NIL)) (-2192 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3137 (((-112) $) NIL)) (-3096 ((|#1| $) NIL (|has| |#1| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3456 (((-1218 |#1|) $ (-547)) NIL)) (-3834 (($ (-1218 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2955 (((-112) $) NIL)) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-547) $) NIL) (((-1218 |#1|) $ (-1218 |#1|)) 15) (((-1218 |#1|) (-1218 |#1|) $) NIL) (((-912 |#1|) $ (-912 |#1|)) 20)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-219 |#1|) (-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -2672 ($)) (-15 -2607 ($ |#1|)) (-15 -2521 ($ |#1|)) (-15 -2423 ($ |#1|)) (-15 -3842 ($ |#1| |#1| |#1|)) (-15 -2767 ($ |#1| |#1| |#1|)))) (-13 (-354) (-1157))) (T -219)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157))) (-5 *1 (-219 *3)))) (-2672 (*1 *1) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) (-2607 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) (-2521 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) (-2423 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) (-3842 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) (-2767 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157)))))) +(-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -2672 ($)) (-15 -2607 ($ |#1|)) (-15 -2521 ($ |#1|)) (-15 -2423 ($ |#1|)) (-15 -3842 ($ |#1| |#1| |#1|)) (-15 -2767 ($ |#1| |#1| |#1|)))) +((-3681 (($ (-1 (-112) |#2|) $) 16)) (-3342 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1404 (($) NIL) (($ (-619 |#2|)) 11)) (-2371 (((-112) $ $) 23))) +(((-220 |#1| |#2|) (-10 -8 (-15 -3681 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| |#2| |#1|)) (-15 -1404 (|#1| (-619 |#2|))) (-15 -1404 (|#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-221 |#2|) (-1063)) (T -220)) +NIL +(-10 -8 (-15 -3681 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| |#2| |#1|)) (-15 -1404 (|#1| (-619 |#2|))) (-15 -1404 (|#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3681 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3664 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-1404 (($) 49) (($ (-619 |#1|)) 48)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 50)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-221 |#1|) (-138) (-1063)) (T -221)) +NIL +(-13 (-227 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3443 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) 11) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) 19) (($ $ (-745)) NIL) (($ $) 16)) (-1686 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-745)) 14) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL))) +(((-222 |#1| |#2|) (-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -1686 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1686 (|#1| |#1| (-1135))) (-15 -1686 (|#1| |#1| (-619 (-1135)))) (-15 -1686 (|#1| |#1| (-1135) (-745))) (-15 -1686 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1686 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -1686 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|)))) (-223 |#2|) (-1016)) (T -222)) +NIL +(-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -1686 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1686 (|#1| |#1| (-1135))) (-15 -1686 (|#1| |#1| (-619 (-1135)))) (-15 -1686 (|#1| |#1| (-1135) (-745))) (-15 -1686 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1686 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -1686 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3443 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-745)) 49) (($ $ (-619 (-1135)) (-619 (-745))) 42 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 41 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 40 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 39 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 37 (|has| |#1| (-225))) (($ $) 35 (|has| |#1| (-225)))) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-745)) 47) (($ $ (-619 (-1135)) (-619 (-745))) 46 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 45 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 44 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 43 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 38 (|has| |#1| (-225))) (($ $) 36 (|has| |#1| (-225)))) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-223 |#1|) (-138) (-1016)) (T -223)) +((-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016)))) (-3443 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4)) (-4 *4 (-1016)))) (-1686 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016)))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4)) (-4 *4 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -3443 ($ $ (-1 |t#1| |t#1|))) (-15 -3443 ($ $ (-1 |t#1| |t#1|) (-745))) (-15 -1686 ($ $ (-1 |t#1| |t#1|))) (-15 -1686 ($ $ (-1 |t#1| |t#1|) (-745))) (IF (|has| |t#1| (-225)) (-6 (-225)) |%noBranch|) (IF (|has| |t#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-225) |has| |#1| (-225)) ((-622 $) . T) ((-701) . T) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3443 (($ $) NIL) (($ $ (-745)) 10)) (-1686 (($ $) 8) (($ $ (-745)) 12))) +(((-224 |#1|) (-10 -8 (-15 -1686 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-745))) (-15 -1686 (|#1| |#1|)) (-15 -3443 (|#1| |#1|))) (-225)) (T -224)) +NIL +(-10 -8 (-15 -1686 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-745))) (-15 -1686 (|#1| |#1|)) (-15 -3443 (|#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3443 (($ $) 36) (($ $ (-745)) 34)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $) 35) (($ $ (-745)) 33)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-225) (-138)) (T -225)) +((-3443 (*1 *1 *1) (-4 *1 (-225))) (-1686 (*1 *1 *1) (-4 *1 (-225))) (-3443 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745)))) (-1686 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745))))) +(-13 (-1016) (-10 -8 (-15 -3443 ($ $)) (-15 -1686 ($ $)) (-15 -3443 ($ $ (-745))) (-15 -1686 ($ $ (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-1404 (($) 12) (($ (-619 |#2|)) NIL)) (-2265 (($ $) 14)) (-3841 (($ (-619 |#2|)) 10)) (-3834 (((-832) $) 21))) +(((-226 |#1| |#2|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -1404 (|#1| (-619 |#2|))) (-15 -1404 (|#1|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -2265 (|#1| |#1|))) (-227 |#2|) (-1063)) (T -226)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -1404 (|#1| (-619 |#2|))) (-15 -1404 (|#1|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -2265 (|#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3681 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3664 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-1404 (($) 49) (($ (-619 |#1|)) 48)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 50)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-227 |#1|) (-138) (-1063)) (T -227)) +((-1404 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1063)))) (-1404 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-227 *3)))) (-3342 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-227 *2)) (-4 *2 (-1063)))) (-3342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-227 *3)) (-4 *3 (-1063)))) (-3681 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-227 *3)) (-4 *3 (-1063))))) +(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1404 ($)) (-15 -1404 ($ (-619 |t#1|))) (IF (|has| $ (-6 -4328)) (PROGN (-15 -3342 ($ |t#1| $)) (-15 -3342 ($ (-1 (-112) |t#1|) $)) (-15 -3681 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-1514 (((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-285 (-921 (-547)))) 27))) +(((-228) (-10 -7 (-15 -1514 ((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-285 (-921 (-547))))))) (T -228)) +((-1514 (*1 *2 *3) (-12 (-5 *3 (-285 (-921 (-547)))) (-5 *2 (-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745)))))) (-5 *1 (-228))))) +(-10 -7 (-15 -1514 ((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-285 (-921 (-547)))))) +((-3603 (((-745)) 51)) (-4238 (((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) 49) (((-663 |#3|) (-663 $)) 41) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-3512 (((-133)) 57)) (-3443 (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3834 (((-1218 |#3|) $) NIL) (($ |#3|) NIL) (((-832) $) NIL) (($ (-547)) 12) (($ (-398 (-547))) NIL)) (-2311 (((-745)) 15)) (-2497 (($ $ |#3|) 54))) +(((-229 |#1| |#2| |#3|) (-10 -8 (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|)) (-15 -2311 ((-745))) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -3834 (|#1| |#3|)) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -4238 ((-663 |#3|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -3603 ((-745))) (-15 -2497 (|#1| |#1| |#3|)) (-15 -3512 ((-133))) (-15 -3834 ((-1218 |#3|) |#1|))) (-230 |#2| |#3|) (-745) (-1172)) (T -229)) +((-3512 (*1 *2) (-12 (-14 *4 (-745)) (-4 *5 (-1172)) (-5 *2 (-133)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) (-3603 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) (-2311 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5))))) +(-10 -8 (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|)) (-15 -2311 ((-745))) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -3834 (|#1| |#3|)) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -4238 ((-663 |#3|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -3603 ((-745))) (-15 -2497 (|#1| |#1| |#3|)) (-15 -3512 ((-133))) (-15 -3834 ((-1218 |#3|) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-4046 (((-112) $) 72 (|has| |#2| (-130)))) (-4095 (($ (-890)) 125 (|has| |#2| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-1991 (($ $ $) 121 (|has| |#2| (-767)))) (-3013 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-2826 (((-112) $ (-745)) 8)) (-3603 (((-745)) 107 (|has| |#2| (-359)))) (-3807 (((-547) $) 119 (|has| |#2| (-819)))) (-2238 ((|#2| $ (-547) |#2|) 52 (|has| $ (-6 -4329)))) (-3219 (($) 7 T CONST)) (-2698 (((-3 (-547) "failed") $) 67 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) 64 (-1806 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1063)))) (-2643 (((-547) $) 68 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) 65 (-1806 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) 60 (|has| |#2| (-1063)))) (-4238 (((-663 (-547)) (-663 $)) 106 (-1806 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 105 (-1806 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 104 (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) 103 (|has| |#2| (-1016)))) (-2537 (((-3 $ "failed") $) 79 (|has| |#2| (-701)))) (-3229 (($) 110 (|has| |#2| (-359)))) (-1861 ((|#2| $ (-547) |#2|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#2| $ (-547)) 51)) (-3848 (((-112) $) 117 (|has| |#2| (-819)))) (-2973 (((-619 |#2|) $) 30 (|has| $ (-6 -4328)))) (-4114 (((-112) $) 81 (|has| |#2| (-701)))) (-3937 (((-112) $) 118 (|has| |#2| (-819)))) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 116 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-3666 (((-619 |#2|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 115 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-1850 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2|) $) 35)) (-1966 (((-890) $) 109 (|has| |#2| (-359)))) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#2| (-1063)))) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3479 (($ (-890)) 108 (|has| |#2| (-359)))) (-3979 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3634 ((|#2| $) 42 (|has| (-547) (-821)))) (-2418 (($ $ |#2|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) 26 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 25 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#2| $ (-547) |#2|) 50) ((|#2| $ (-547)) 49)) (-3453 ((|#2| $ $) 124 (|has| |#2| (-1016)))) (-2155 (($ (-1218 |#2|)) 126)) (-3512 (((-133)) 123 (|has| |#2| (-354)))) (-3443 (($ $) 98 (-1806 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) 96 (-1806 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) 94 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) 93 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) 92 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) 91 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 84 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1016)))) (-3987 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4328))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-1218 |#2|) $) 127) (($ (-547)) 66 (-1524 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) 63 (-1806 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) 62 (|has| |#2| (-1063))) (((-832) $) 18 (|has| |#2| (-591 (-832))))) (-2311 (((-745)) 102 (|has| |#2| (-1016)))) (-2583 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4328)))) (-2040 (($ $) 120 (|has| |#2| (-819)))) (-3267 (($) 71 (|has| |#2| (-130)) CONST)) (-3277 (($) 82 (|has| |#2| (-701)) CONST)) (-1686 (($ $) 97 (-1806 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) 95 (-1806 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) 90 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) 89 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) 88 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) 87 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 86 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1016)))) (-2433 (((-112) $ $) 113 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2408 (((-112) $ $) 112 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2371 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-2421 (((-112) $ $) 114 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2396 (((-112) $ $) 111 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2497 (($ $ |#2|) 122 (|has| |#2| (-354)))) (-2484 (($ $ $) 100 (|has| |#2| (-1016))) (($ $) 99 (|has| |#2| (-1016)))) (-2470 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-745)) 80 (|has| |#2| (-701))) (($ $ (-890)) 77 (|has| |#2| (-701)))) (* (($ (-547) $) 101 (|has| |#2| (-1016))) (($ $ $) 78 (|has| |#2| (-701))) (($ $ |#2|) 76 (|has| |#2| (-701))) (($ |#2| $) 75 (|has| |#2| (-701))) (($ (-745) $) 73 (|has| |#2| (-130))) (($ (-890) $) 70 (|has| |#2| (-25)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-230 |#1| |#2|) (-138) (-745) (-1172)) (T -230)) +((-2155 (*1 *1 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1172)) (-4 *1 (-230 *3 *4)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-230 *3 *4)) (-4 *4 (-1016)) (-4 *4 (-1172)))) (-3453 (*1 *2 *1 *1) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701))))) +(-13 (-582 (-547) |t#2|) (-591 (-1218 |t#2|)) (-10 -8 (-6 -4328) (-15 -2155 ($ (-1218 |t#2|))) (IF (|has| |t#2| (-1063)) (-6 (-402 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1016)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-223 |t#2|)) (-6 (-368 |t#2|)) (-15 -4095 ($ (-890))) (-15 -3453 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-701)) (PROGN (-6 (-701)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-359)) (-6 (-359)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4325)) (-6 -4325) |%noBranch|) (IF (|has| |t#2| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |t#2| (-767)) (-6 (-767)) |%noBranch|) (IF (|has| |t#2| (-354)) (-6 (-1225 |t#2|)) |%noBranch|))) +(((-21) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-23) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-25) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-359)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-111 $ $) |has| |#2| (-169)) ((-130) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-591 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-359)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-591 (-832))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-591 (-1218 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-223 |#2|) |has| |#2| (-1016)) ((-225) -12 (|has| |#2| (-225)) (|has| |#2| (-1016))) ((-277 #0=(-547) |#2|) . T) ((-279 #0# |#2|) . T) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-359) |has| |#2| (-359)) ((-368 |#2|) |has| |#2| (-1016)) ((-402 |#2|) |has| |#2| (-1063)) ((-479 |#2|) . T) ((-582 #0# |#2|) . T) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-622 $) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-615 (-547)) -12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016))) ((-615 |#2|) |has| |#2| (-1016)) ((-692 |#2|) -1524 (|has| |#2| (-354)) (|has| |#2| (-169))) ((-701) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-765) |has| |#2| (-819)) ((-766) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-767) |has| |#2| (-767)) ((-768) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-769) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-819) |has| |#2| (-819)) ((-821) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-869 (-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016))) ((-1007 (-398 (-547))) -12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063))) ((-1007 (-547)) -12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) ((-1007 |#2|) |has| |#2| (-1063)) ((-1022 |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-354)) (|has| |#2| (-169))) ((-1022 $) |has| |#2| (-169)) ((-1016) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1023) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1075) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-1063) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-359)) (|has| |#2| (-354)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1172) . T) ((-1225 |#2|) |has| |#2| (-354))) +((-3562 (((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|) 21)) (-2542 ((|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|) 23)) (-2781 (((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)) 18))) +(((-231 |#1| |#2| |#3|) (-10 -7 (-15 -3562 ((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2542 (|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2781 ((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)))) (-745) (-1172) (-1172)) (T -231)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-5 *2 (-232 *5 *7)) (-5 *1 (-231 *5 *6 *7)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1172)) (-4 *2 (-1172)) (-5 *1 (-231 *5 *6 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-232 *6 *7)) (-14 *6 (-745)) (-4 *7 (-1172)) (-4 *5 (-1172)) (-5 *2 (-232 *6 *5)) (-5 *1 (-231 *6 *7 *5))))) +(-10 -7 (-15 -3562 ((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2542 (|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2781 ((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)))) +((-3821 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-4046 (((-112) $) NIL (|has| |#2| (-130)))) (-4095 (($ (-890)) 56 (|has| |#2| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1991 (($ $ $) 60 (|has| |#2| (-767)))) (-3013 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-2826 (((-112) $ (-745)) 17)) (-3603 (((-745)) NIL (|has| |#2| (-359)))) (-3807 (((-547) $) NIL (|has| |#2| (-819)))) (-2238 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1063)))) (-2643 (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) 27 (|has| |#2| (-1063)))) (-4238 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-2537 (((-3 $ "failed") $) 53 (|has| |#2| (-701)))) (-3229 (($) NIL (|has| |#2| (-359)))) (-1861 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ (-547)) 51)) (-3848 (((-112) $) NIL (|has| |#2| (-819)))) (-2973 (((-619 |#2|) $) 15 (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL (|has| |#2| (-701)))) (-3937 (((-112) $) NIL (|has| |#2| (-819)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 20 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3666 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 (((-547) $) 50 (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-1850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2|) $) 41)) (-1966 (((-890) $) NIL (|has| |#2| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#2| (-1063)))) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3479 (($ (-890)) NIL (|has| |#2| (-359)))) (-3979 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3634 ((|#2| $) NIL (|has| (-547) (-821)))) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) 21)) (-3453 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-2155 (($ (-1218 |#2|)) 18)) (-3512 (((-133)) NIL (|has| |#2| (-354)))) (-3443 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3987 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1218 |#2|) $) 10) (($ (-547)) NIL (-1524 (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) 13 (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-591 (-832))))) (-2311 (((-745)) NIL (|has| |#2| (-1016)))) (-2583 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2040 (($ $) NIL (|has| |#2| (-819)))) (-3267 (($) 35 (|has| |#2| (-130)) CONST)) (-3277 (($) 38 (|has| |#2| (-701)) CONST)) (-1686 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2433 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2371 (((-112) $ $) 26 (|has| |#2| (-1063)))) (-2421 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2396 (((-112) $ $) 58 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2470 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-547) $) NIL (|has| |#2| (-1016))) (($ $ $) 44 (|has| |#2| (-701))) (($ $ |#2|) 42 (|has| |#2| (-701))) (($ |#2| $) 43 (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-232 |#1| |#2|) (-230 |#1| |#2|) (-745) (-1172)) (T -232)) +NIL +(-230 |#1| |#2|) +((-1775 (((-547) (-619 (-1118))) 24) (((-547) (-1118)) 19)) (-2406 (((-1223) (-619 (-1118))) 29) (((-1223) (-1118)) 28)) (-1612 (((-1118)) 14)) (-1683 (((-1118) (-547) (-1118)) 16)) (-2582 (((-619 (-1118)) (-619 (-1118)) (-547) (-1118)) 25) (((-1118) (-1118) (-547) (-1118)) 23)) (-3261 (((-619 (-1118)) (-619 (-1118))) 13) (((-619 (-1118)) (-1118)) 11))) +(((-233) (-10 -7 (-15 -3261 ((-619 (-1118)) (-1118))) (-15 -3261 ((-619 (-1118)) (-619 (-1118)))) (-15 -1612 ((-1118))) (-15 -1683 ((-1118) (-547) (-1118))) (-15 -2582 ((-1118) (-1118) (-547) (-1118))) (-15 -2582 ((-619 (-1118)) (-619 (-1118)) (-547) (-1118))) (-15 -2406 ((-1223) (-1118))) (-15 -2406 ((-1223) (-619 (-1118)))) (-15 -1775 ((-547) (-1118))) (-15 -1775 ((-547) (-619 (-1118)))))) (T -233)) +((-1775 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-547)) (-5 *1 (-233)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-547)) (-5 *1 (-233)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1223)) (-5 *1 (-233)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-233)))) (-2582 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 (-1118))) (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *1 (-233)))) (-2582 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-547)) (-5 *1 (-233)))) (-1683 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-547)) (-5 *1 (-233)))) (-1612 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-233)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-233)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-233)) (-5 *3 (-1118))))) +(-10 -7 (-15 -3261 ((-619 (-1118)) (-1118))) (-15 -3261 ((-619 (-1118)) (-619 (-1118)))) (-15 -1612 ((-1118))) (-15 -1683 ((-1118) (-547) (-1118))) (-15 -2582 ((-1118) (-1118) (-547) (-1118))) (-15 -2582 ((-619 (-1118)) (-619 (-1118)) (-547) (-1118))) (-15 -2406 ((-1223) (-1118))) (-15 -2406 ((-1223) (-619 (-1118)))) (-15 -1775 ((-547) (-1118))) (-15 -1775 ((-547) (-619 (-1118))))) +((** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 16)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ (-398 (-547)) $) 23) (($ $ (-398 (-547))) NIL))) +(((-234 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-235)) (T -234)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 37)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 41)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 38)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ (-398 (-547)) $) 40) (($ $ (-398 (-547))) 39))) +(((-235) (-138)) (T -235)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-547)))) (-1976 (*1 *1 *1) (-4 *1 (-235)))) +(-13 (-281) (-38 (-398 (-547))) (-10 -8 (-15 ** ($ $ (-547))) (-15 -1976 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-281) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-701) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-1335 (($ $) 57)) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-1953 (($ $ $) 53 (|has| $ (-6 -4329)))) (-1870 (($ $ $) 52 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-3219 (($) 7 T CONST)) (-1964 (($ $) 56)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3027 (($ $) 55)) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3817 ((|#1| $) 59)) (-2535 (($ $) 58)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47)) (-1887 (((-547) $ $) 44)) (-2094 (((-112) $) 46)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-4187 (($ $ $) 54 (|has| $ (-6 -4329)))) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-236 |#1|) (-138) (-1172)) (T -236)) +((-3817 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-1335 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-1964 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-3027 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-4187 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-1953 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-236 *2)) (-4 *2 (-1172)))) (-1870 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-236 *2)) (-4 *2 (-1172))))) +(-13 (-979 |t#1|) (-10 -8 (-15 -3817 (|t#1| $)) (-15 -2535 ($ $)) (-15 -1335 ($ $)) (-15 -1964 ($ $)) (-15 -3027 ($ $)) (IF (|has| $ (-6 -4329)) (PROGN (-15 -4187 ($ $ $)) (-15 -1953 ($ $ $)) (-15 -1870 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) NIL)) (-2823 ((|#1| $) NIL)) (-1335 (($ $) NIL)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2765 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-3180 (($ $) 10 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3861 (($ $ $) NIL (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "rest" $) NIL (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) |#1|) $) NIL)) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2814 ((|#1| $) NIL)) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3645 (($ $) NIL) (($ $ (-745)) NIL)) (-3796 (($ $) NIL (|has| |#1| (-1063)))) (-3664 (($ $) 7 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3801 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-3425 (((-112) $) NIL)) (-2867 (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063))) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) NIL)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3756 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1294 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3511 (($ |#1|) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3817 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-1885 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2599 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-3541 (((-112) $) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-547))) NIL) ((|#1| $ (-547)) NIL) ((|#1| $ (-547) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-745) $ "count") 16)) (-1887 (((-547) $ $) NIL)) (-3769 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-2151 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-3065 (($ (-619 |#1|)) 22)) (-2094 (((-112) $) NIL)) (-4291 (($ $) NIL)) (-4080 (($ $) NIL (|has| $ (-6 -4329)))) (-3257 (((-745) $) NIL)) (-3360 (($ $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-4187 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1935 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3834 (($ (-619 |#1|)) 17) (((-619 |#1|) $) 18) (((-832) $) 21 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) 14 (|has| $ (-6 -4328))))) +(((-237 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -3834 ($ (-619 |#1|))) (-15 -3834 ((-619 |#1|) $)) (-15 -3065 ($ (-619 |#1|))) (-15 -3329 ($ $ "unique")) (-15 -3329 ($ $ "sort")) (-15 -3329 ((-745) $ "count")))) (-821)) (T -237)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-237 *3)) (-4 *3 (-821)))) (-3065 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-237 *3)) (-4 *3 (-821)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-237 *3)) (-4 *3 (-821)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-237 *4)) (-4 *4 (-821))))) +(-13 (-640 |#1|) (-10 -8 (-15 -3834 ($ (-619 |#1|))) (-15 -3834 ((-619 |#1|) $)) (-15 -3065 ($ (-619 |#1|))) (-15 -3329 ($ $ "unique")) (-15 -3329 ($ $ "sort")) (-15 -3329 ((-745) $ "count")))) +((-3899 (((-3 (-745) "failed") |#1| |#1| (-745)) 27))) +(((-238 |#1|) (-10 -7 (-15 -3899 ((-3 (-745) "failed") |#1| |#1| (-745)))) (-13 (-701) (-359) (-10 -7 (-15 ** (|#1| |#1| (-547)))))) (T -238)) +((-3899 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-745)) (-4 *3 (-13 (-701) (-359) (-10 -7 (-15 ** (*3 *3 (-547)))))) (-5 *1 (-238 *3))))) +(-10 -7 (-15 -3899 ((-3 (-745) "failed") |#1| |#1| (-745)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-834 |#1|)) $) NIL)) (-2067 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3881 (($ $) NIL (|has| |#2| (-539)))) (-1832 (((-112) $) NIL (|has| |#2| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2745 (($ $) NIL (|has| |#2| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#2| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-3772 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-2801 (($ $ (-619 (-547))) NIL)) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#2| (-878)))) (-3913 (($ $ |#2| (-232 (-3763 |#1|) (-745)) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#2| (-232 (-3763 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-834 |#1|)) NIL)) (-1626 (((-232 (-3763 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2847 (($ $ $) NIL (|has| |#2| (-821)))) (-3563 (($ $ $) NIL (|has| |#2| (-821)))) (-4019 (($ (-1 (-232 (-3763 |#1|) (-745)) (-232 (-3763 |#1|) (-745))) $) NIL)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2185 (((-3 (-834 |#1|) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#2| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -4248 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#2| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-3846 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3443 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1618 (((-232 (-3763 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-1378 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-232 (-3763 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-239 |#1| |#2|) (-13 (-918 |#2| (-232 (-3763 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -2801 ($ $ (-619 (-547)))))) (-619 (-1135)) (-1016)) (T -239)) +((-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-239 *3 *4)) (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) +(-13 (-918 |#2| (-232 (-3763 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -2801 ($ $ (-619 (-547)))))) +((-3821 (((-112) $ $) NIL)) (-2732 (((-1223) $) 15)) (-4106 (((-179) $) 9)) (-4003 (($ (-179)) 10)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 7)) (-2371 (((-112) $ $) 13))) +(((-240) (-13 (-1063) (-10 -8 (-15 -4106 ((-179) $)) (-15 -4003 ($ (-179))) (-15 -2732 ((-1223) $))))) (T -240)) +((-4106 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-240)))) (-4003 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-240)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-240))))) +(-13 (-1063) (-10 -8 (-15 -4106 ((-179) $)) (-15 -4003 ($ (-179))) (-15 -2732 ((-1223) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4095 (($ (-890)) NIL (|has| |#4| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1991 (($ $ $) NIL (|has| |#4| (-767)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| |#4| (-359)))) (-3807 (((-547) $) NIL (|has| |#4| (-819)))) (-2238 ((|#4| $ (-547) |#4|) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1063))) (((-3 (-547) "failed") $) NIL (-12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))) (-2643 ((|#4| $) NIL (|has| |#4| (-1063))) (((-547) $) NIL (-12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))) (-4238 (((-2 (|:| -3509 (-663 |#4|)) (|:| |vec| (-1218 |#4|))) (-663 $) (-1218 $)) NIL (|has| |#4| (-1016))) (((-663 |#4|) (-663 $)) NIL (|has| |#4| (-1016))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))))) (-2537 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3229 (($) NIL (|has| |#4| (-359)))) (-1861 ((|#4| $ (-547) |#4|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#4| $ (-547)) NIL)) (-3848 (((-112) $) NIL (|has| |#4| (-819)))) (-2973 (((-619 |#4|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL (-1524 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3937 (((-112) $) NIL (|has| |#4| (-819)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-3666 (((-619 |#4|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-1850 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#4| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3479 (($ (-890)) NIL (|has| |#4| (-359)))) (-3979 (((-1082) $) NIL)) (-3634 ((|#4| $) NIL (|has| (-547) (-821)))) (-2418 (($ $ |#4|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-1758 (((-619 |#4|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#4| $ (-547) |#4|) NIL) ((|#4| $ (-547)) 12)) (-3453 ((|#4| $ $) NIL (|has| |#4| (-1016)))) (-2155 (($ (-1218 |#4|)) NIL)) (-3512 (((-133)) NIL (|has| |#4| (-354)))) (-3443 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))))) (-3987 (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328))) (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1218 |#4|) $) NIL) (((-832) $) NIL) (($ |#4|) NIL (|has| |#4| (-1063))) (($ (-547)) NIL (-1524 (-12 (|has| |#4| (-1007 (-547))) (|has| |#4| (-1063))) (|has| |#4| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#4| (-1007 (-398 (-547)))) (|has| |#4| (-1063))))) (-2311 (((-745)) NIL (|has| |#4| (-1016)))) (-2583 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2040 (($ $) NIL (|has| |#4| (-819)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL (-1524 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) CONST)) (-1686 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))))) (-2433 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2396 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2497 (($ $ |#4|) NIL (|has| |#4| (-354)))) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1524 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (* (($ |#2| $) 14) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-701))) (($ |#4| $) NIL (|has| |#4| (-701))) (($ $ $) NIL (-1524 (-12 (|has| |#4| (-225)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-547))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-241 |#1| |#2| |#3| |#4|) (-13 (-230 |#1| |#4|) (-622 |#2|) (-622 |#3|)) (-890) (-1016) (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-622 |#2|)) (T -241)) +NIL +(-13 (-230 |#1| |#4|) (-622 |#2|) (-622 |#3|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4095 (($ (-890)) NIL (|has| |#3| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1991 (($ $ $) NIL (|has| |#3| (-767)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| |#3| (-359)))) (-3807 (((-547) $) NIL (|has| |#3| (-819)))) (-2238 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063))) (((-3 (-547) "failed") $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))) (-2643 ((|#3| $) NIL (|has| |#3| (-1063))) (((-547) $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))) (-4238 (((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))))) (-2537 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3229 (($) NIL (|has| |#3| (-359)))) (-1861 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#3| $ (-547)) NIL)) (-3848 (((-112) $) NIL (|has| |#3| (-819)))) (-2973 (((-619 |#3|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL (-1524 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3937 (((-112) $) NIL (|has| |#3| (-819)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-3666 (((-619 |#3|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-1850 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#3| |#3|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#3| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3479 (($ (-890)) NIL (|has| |#3| (-359)))) (-3979 (((-1082) $) NIL)) (-3634 ((|#3| $) NIL (|has| (-547) (-821)))) (-2418 (($ $ |#3|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#3|))) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-1758 (((-619 |#3|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#3| $ (-547) |#3|) NIL) ((|#3| $ (-547)) 11)) (-3453 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-2155 (($ (-1218 |#3|)) NIL)) (-3512 (((-133)) NIL (|has| |#3| (-354)))) (-3443 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))))) (-3987 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1218 |#3|) $) NIL) (((-832) $) NIL) (($ |#3|) NIL (|has| |#3| (-1063))) (($ (-547)) NIL (-1524 (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063))))) (-2311 (((-745)) NIL (|has| |#3| (-1016)))) (-2583 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2040 (($ $) NIL (|has| |#3| (-819)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL (-1524 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) CONST)) (-1686 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))))) (-2433 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2396 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2497 (($ $ |#3|) NIL (|has| |#3| (-354)))) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1524 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (* (($ |#2| $) 13) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ $ $) NIL (-1524 (-12 (|has| |#3| (-225)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-242 |#1| |#2| |#3|) (-13 (-230 |#1| |#3|) (-622 |#2|)) (-745) (-1016) (-622 |#2|)) (T -242)) +NIL +(-13 (-230 |#1| |#3|) (-622 |#2|)) +((-1352 (((-619 (-745)) $) 47) (((-619 (-745)) $ |#3|) 50)) (-1691 (((-745) $) 49) (((-745) $ |#3|) 52)) (-4203 (($ $) 65)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3707 (((-745) $ |#3|) 39) (((-745) $) 36)) (-1820 (((-1 $ (-745)) |#3|) 15) (((-1 $ (-745)) $) 77)) (-4044 ((|#4| $) 58)) (-4306 (((-112) $) 56)) (-2242 (($ $) 64)) (-2670 (($ $ (-619 (-285 $))) 97) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-619 |#3|) (-619 |#2|)) 84)) (-3443 (($ $ |#4|) NIL) (($ $ (-619 |#4|)) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) NIL) (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3391 (((-619 |#3|) $) 75)) (-1618 ((|#5| $) NIL) (((-745) $ |#4|) NIL) (((-619 (-745)) $ (-619 |#4|)) NIL) (((-745) $ |#3|) 44)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-398 (-547))) NIL) (($ $) NIL))) +(((-243 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2670 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#3| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#3| |#1|)) (-15 -1820 ((-1 |#1| (-745)) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -4044 (|#4| |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -1691 ((-745) |#1| |#3|)) (-15 -1352 ((-619 (-745)) |#1| |#3|)) (-15 -1691 ((-745) |#1|)) (-15 -1352 ((-619 (-745)) |#1|)) (-15 -1618 ((-745) |#1| |#3|)) (-15 -3707 ((-745) |#1|)) (-15 -3707 ((-745) |#1| |#3|)) (-15 -3391 ((-619 |#3|) |#1|)) (-15 -1820 ((-1 |#1| (-745)) |#3|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -3834 (|#1| |#3|)) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -1618 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -1618 ((-745) |#1| |#4|)) (-15 -2698 ((-3 |#4| "failed") |#1|)) (-15 -3834 (|#1| |#4|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#4| |#1|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#4| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -1618 (|#5| |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3443 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -3443 (|#1| |#1| |#4| (-745))) (-15 -3443 (|#1| |#1| (-619 |#4|))) (-15 -3443 (|#1| |#1| |#4|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-244 |#2| |#3| |#4| |#5|) (-1016) (-821) (-257 |#3|) (-767)) (T -243)) +NIL +(-10 -8 (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2670 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#3| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#3| |#1|)) (-15 -1820 ((-1 |#1| (-745)) |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -4044 (|#4| |#1|)) (-15 -4306 ((-112) |#1|)) (-15 -1691 ((-745) |#1| |#3|)) (-15 -1352 ((-619 (-745)) |#1| |#3|)) (-15 -1691 ((-745) |#1|)) (-15 -1352 ((-619 (-745)) |#1|)) (-15 -1618 ((-745) |#1| |#3|)) (-15 -3707 ((-745) |#1|)) (-15 -3707 ((-745) |#1| |#3|)) (-15 -3391 ((-619 |#3|) |#1|)) (-15 -1820 ((-1 |#1| (-745)) |#3|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -3834 (|#1| |#3|)) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -1618 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -1618 ((-745) |#1| |#4|)) (-15 -2698 ((-3 |#4| "failed") |#1|)) (-15 -3834 (|#1| |#4|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#4| |#1|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#4| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -1618 (|#5| |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3443 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -3443 (|#1| |#1| |#4| (-745))) (-15 -3443 (|#1| |#1| (-619 |#4|))) (-15 -3443 (|#1| |#1| |#4|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-1352 (((-619 (-745)) $) 212) (((-619 (-745)) $ |#2|) 210)) (-1691 (((-745) $) 211) (((-745) $ |#2|) 209)) (-2259 (((-619 |#3|) $) 108)) (-2067 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3881 (($ $) 86 (|has| |#1| (-539)))) (-1832 (((-112) $) 88 (|has| |#1| (-539)))) (-1500 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-3013 (((-3 $ "failed") $ $) 19)) (-3833 (((-409 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-2745 (($ $) 96 (|has| |#1| (-442)))) (-3457 (((-409 $) $) 95 (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-4203 (($ $) 205)) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2643 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) ((|#3| $) 133) ((|#2| $) 218)) (-3772 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2054 (($ $) 152)) (-4238 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2537 (((-3 $ "failed") $) 32)) (-3786 (($ $) 174 (|has| |#1| (-442))) (($ $ |#3|) 103 (|has| |#1| (-442)))) (-2042 (((-619 $) $) 107)) (-3674 (((-112) $) 94 (|has| |#1| (-878)))) (-3913 (($ $ |#1| |#4| $) 170)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| |#3| (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| |#3| (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3707 (((-745) $ |#2|) 215) (((-745) $) 214)) (-4114 (((-112) $) 30)) (-3570 (((-745) $) 167)) (-2245 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-1744 (((-619 $) $) 124)) (-2187 (((-112) $) 150)) (-2229 (($ |#1| |#4|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#3|) 118)) (-1626 ((|#4| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-2847 (($ $ $) 77 (|has| |#1| (-821)))) (-3563 (($ $ $) 76 (|has| |#1| (-821)))) (-4019 (($ (-1 |#4| |#4|) $) 169)) (-2781 (($ (-1 |#1| |#1|) $) 149)) (-1820 (((-1 $ (-745)) |#2|) 217) (((-1 $ (-745)) $) 204 (|has| |#1| (-225)))) (-2185 (((-3 |#3| "failed") $) 121)) (-2013 (($ $) 147)) (-2027 ((|#1| $) 146)) (-4044 ((|#3| $) 207)) (-3685 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-1917 (((-1118) $) 9)) (-4306 (((-112) $) 208)) (-1967 (((-3 (-619 $) "failed") $) 112)) (-1859 (((-3 (-619 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -4248 (-745))) "failed") $) 111)) (-2242 (($ $) 206)) (-3979 (((-1082) $) 10)) (-1988 (((-112) $) 164)) (-1999 ((|#1| $) 165)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-442)))) (-3715 (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-2106 (((-409 $) $) 97 (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 $)) 202 (|has| |#1| (-225))) (($ $ |#2| |#1|) 201 (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 |#1|)) 200 (|has| |#1| (-225)))) (-3846 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3443 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37) (($ $) 236 (|has| |#1| (-225))) (($ $ (-745)) 234 (|has| |#1| (-225))) (($ $ (-1135)) 232 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 231 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 230 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 229 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3391 (((-619 |#2|) $) 216)) (-1618 ((|#4| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127) (((-745) $ |#2|) 213)) (-2829 (((-861 (-370)) $) 80 (-12 (|has| |#3| (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| |#3| (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| |#3| (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ |#3|) 104 (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1806 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-398 (-547))) 70 (-1524 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547)))))) (($ $) 83 (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) 166)) (-3338 ((|#1| $ |#4|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-3336 (((-3 $ "failed") $) 71 (-1524 (-1806 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) 28)) (-1969 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-1932 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33) (($ $) 235 (|has| |#1| (-225))) (($ $ (-745)) 233 (|has| |#1| (-225))) (($ $ (-1135)) 228 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 227 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 226 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 225 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2433 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2497 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-244 |#1| |#2| |#3| |#4|) (-138) (-1016) (-821) (-257 |t#2|) (-767)) (T -244)) +((-1820 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *4 *3 *5 *6)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4)))) (-3707 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-1618 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-1352 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-1691 (*1 *2 *1 *3) (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-112)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-244 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-4 *2 (-257 *4)))) (-2242 (*1 *1 *1) (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-257 *3)) (-4 *5 (-767)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-257 *3)) (-4 *5 (-767)))) (-1820 (*1 *2 *1) (-12 (-4 *3 (-225)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *3 *4 *5 *6))))) +(-13 (-918 |t#1| |t#4| |t#3|) (-223 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -1820 ((-1 $ (-745)) |t#2|)) (-15 -3391 ((-619 |t#2|) $)) (-15 -3707 ((-745) $ |t#2|)) (-15 -3707 ((-745) $)) (-15 -1618 ((-745) $ |t#2|)) (-15 -1352 ((-619 (-745)) $)) (-15 -1691 ((-745) $)) (-15 -1352 ((-619 (-745)) $ |t#2|)) (-15 -1691 ((-745) $ |t#2|)) (-15 -4306 ((-112) $)) (-15 -4044 (|t#3| $)) (-15 -2242 ($ $)) (-15 -4203 ($ $)) (IF (|has| |t#1| (-225)) (PROGN (-6 (-503 |t#2| |t#1|)) (-6 (-503 |t#2| $)) (-6 (-300 $)) (-15 -1820 ((-1 $ (-745)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-281) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-300 $) . T) ((-317 |#1| |#4|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1524 (|has| |#1| (-878)) (|has| |#1| (-442))) ((-503 |#2| |#1|) |has| |#1| (-225)) ((-503 |#2| $) |has| |#1| (-225)) ((-503 |#3| |#1|) . T) ((-503 |#3| $) . T) ((-503 $ $) . T) ((-539) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-869 |#3|) . T) ((-855 (-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) ((-918 |#1| |#4| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1007 |#2|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2910 ((|#1| $) 54)) (-2303 ((|#1| $) 44)) (-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-2962 (($ $) 60)) (-2034 (($ $) 48)) (-2936 ((|#1| |#1| $) 46)) (-2853 ((|#1| $) 45)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-4202 (((-745) $) 61)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-3832 ((|#1| |#1| $) 52)) (-3737 ((|#1| |#1| $) 51)) (-1885 (($ |#1| $) 40)) (-4029 (((-745) $) 55)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2885 ((|#1| $) 62)) (-3621 ((|#1| $) 50)) (-3502 ((|#1| $) 49)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3125 ((|#1| |#1| $) 58)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3044 ((|#1| $) 59)) (-2994 (($) 57) (($ (-619 |#1|)) 56)) (-1313 (((-745) $) 43)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2815 ((|#1| $) 53)) (-2731 (($ (-619 |#1|)) 42)) (-2796 ((|#1| $) 63)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-245 |#1|) (-138) (-1172)) (T -245)) +((-2994 (*1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-2994 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-245 *3)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-3832 (*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-3737 (*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) (-2034 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) +(-13 (-1083 |t#1|) (-964 |t#1|) (-10 -8 (-15 -2994 ($)) (-15 -2994 ($ (-619 |t#1|))) (-15 -4029 ((-745) $)) (-15 -2910 (|t#1| $)) (-15 -2815 (|t#1| $)) (-15 -3832 (|t#1| |t#1| $)) (-15 -3737 (|t#1| |t#1| $)) (-15 -3621 (|t#1| $)) (-15 -3502 (|t#1| $)) (-15 -2034 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-964 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1083 |#1|) . T) ((-1172) . T)) +((-3085 (((-1 (-912 (-217)) (-217) (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217) (-217))) 139)) (-1529 (((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370))) 160) (((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 158) (((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 163) (((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 159) (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 150) (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 149) (((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370))) 129) (((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254))) 127) (((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370))) 128) (((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254))) 125)) (-1477 (((-1220) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370))) 162) (((-1220) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 161) (((-1220) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 165) (((-1220) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 164) (((-1220) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370))) 152) (((-1220) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254))) 151) (((-1220) (-1 (-912 (-217)) (-217)) (-1058 (-370))) 135) (((-1220) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254))) 134) (((-1220) (-848 (-1 (-217) (-217))) (-1058 (-370))) 133) (((-1220) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254))) 132) (((-1219) (-846 (-1 (-217) (-217))) (-1058 (-370))) 100) (((-1219) (-846 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254))) 99) (((-1219) (-1 (-217) (-217)) (-1058 (-370))) 96) (((-1219) (-1 (-217) (-217)) (-1058 (-370)) (-619 (-254))) 95))) +(((-246) (-10 -7 (-15 -1477 ((-1219) (-1 (-217) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) (-1 (-217) (-217)) (-1058 (-370)))) (-15 -1477 ((-1219) (-846 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) (-846 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1477 ((-1220) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1477 ((-1220) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1477 ((-1220) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -3085 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217) (-217)))))) (T -246)) +((-3085 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217) (-217))) (-5 *3 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1529 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *2 (-1219)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *2 (-1219)) (-5 *1 (-246)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-246))))) +(-10 -7 (-15 -1477 ((-1219) (-1 (-217) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) (-1 (-217) (-217)) (-1058 (-370)))) (-15 -1477 ((-1219) (-846 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) (-846 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1477 ((-1220) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-848 (-1 (-217) (-217))) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217)) (-1058 (-370)))) (-15 -1477 ((-1220) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-370)) (-1058 (-370)))) (-15 -1477 ((-1220) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -1529 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-851 (-1 (-217) (-217) (-217))) (-1058 (-370)) (-1058 (-370)))) (-15 -3085 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217) (-217))))) +((-1477 (((-1219) (-285 |#2|) (-1135) (-1135) (-619 (-254))) 96))) +(((-247 |#1| |#2|) (-10 -7 (-15 -1477 ((-1219) (-285 |#2|) (-1135) (-1135) (-619 (-254))))) (-13 (-539) (-821) (-1007 (-547))) (-421 |#1|)) (T -247)) +((-1477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-285 *7)) (-5 *4 (-1135)) (-5 *5 (-619 (-254))) (-4 *7 (-421 *6)) (-4 *6 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-1219)) (-5 *1 (-247 *6 *7))))) +(-10 -7 (-15 -1477 ((-1219) (-285 |#2|) (-1135) (-1135) (-619 (-254))))) +((-2222 (((-547) (-547)) 50)) (-2357 (((-547) (-547)) 51)) (-2473 (((-217) (-217)) 52)) (-2099 (((-1220) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217))) 49)) (-3181 (((-1220) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)) (-112)) 47))) +(((-248) (-10 -7 (-15 -3181 ((-1220) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)) (-112))) (-15 -2099 ((-1220) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -2222 ((-547) (-547))) (-15 -2357 ((-547) (-547))) (-15 -2473 ((-217) (-217))))) (T -248)) +((-2473 (*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-248)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248)))) (-2099 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217))) (-5 *2 (-1220)) (-5 *1 (-248)))) (-3181 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217))) (-5 *5 (-112)) (-5 *2 (-1220)) (-5 *1 (-248))))) +(-10 -7 (-15 -3181 ((-1220) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)) (-112))) (-15 -2099 ((-1220) (-1 (-166 (-217)) (-166 (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -2222 ((-547) (-547))) (-15 -2357 ((-547) (-547))) (-15 -2473 ((-217) (-217)))) +((-3834 (((-1056 (-370)) (-1056 (-307 |#1|))) 16))) +(((-249 |#1|) (-10 -7 (-15 -3834 ((-1056 (-370)) (-1056 (-307 |#1|))))) (-13 (-821) (-539) (-592 (-370)))) (T -249)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-1056 (-307 *4))) (-4 *4 (-13 (-821) (-539) (-592 (-370)))) (-5 *2 (-1056 (-370))) (-5 *1 (-249 *4))))) +(-10 -7 (-15 -3834 ((-1056 (-370)) (-1056 (-307 |#1|))))) +((-1529 (((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370))) 71) (((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 70) (((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370))) 61) (((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 60) (((-1095 (-217)) (-848 |#1|) (-1056 (-370))) 52) (((-1095 (-217)) (-848 |#1|) (-1056 (-370)) (-619 (-254))) 51)) (-1477 (((-1220) (-851 |#1|) (-1056 (-370)) (-1056 (-370))) 74) (((-1220) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 73) (((-1220) |#1| (-1056 (-370)) (-1056 (-370))) 64) (((-1220) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254))) 63) (((-1220) (-848 |#1|) (-1056 (-370))) 56) (((-1220) (-848 |#1|) (-1056 (-370)) (-619 (-254))) 55) (((-1219) (-846 |#1|) (-1056 (-370))) 43) (((-1219) (-846 |#1|) (-1056 (-370)) (-619 (-254))) 42) (((-1219) |#1| (-1056 (-370))) 35) (((-1219) |#1| (-1056 (-370)) (-619 (-254))) 34))) +(((-250 |#1|) (-10 -7 (-15 -1477 ((-1219) |#1| (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) |#1| (-1056 (-370)))) (-15 -1477 ((-1219) (-846 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) (-846 |#1|) (-1056 (-370)))) (-15 -1477 ((-1220) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-848 |#1|) (-1056 (-370)))) (-15 -1529 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)))) (-15 -1477 ((-1220) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1529 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1477 ((-1220) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-851 |#1|) (-1056 (-370)) (-1056 (-370)))) (-15 -1529 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370))))) (-13 (-592 (-523)) (-1063))) (T -250)) +((-1529 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *5)))) (-1529 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *6)))) (-1477 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-250 *5)))) (-1477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-250 *6)))) (-1529 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1529 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1477 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1220)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1477 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *5)))) (-1529 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-250 *5)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-250 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-370))) (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1219)) (-5 *1 (-250 *5)))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1219)) (-5 *1 (-250 *6)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1219)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) (-1477 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063)))))) +(-10 -7 (-15 -1477 ((-1219) |#1| (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) |#1| (-1056 (-370)))) (-15 -1477 ((-1219) (-846 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1219) (-846 |#1|) (-1056 (-370)))) (-15 -1477 ((-1220) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-848 |#1|) (-1056 (-370)))) (-15 -1529 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-848 |#1|) (-1056 (-370)))) (-15 -1477 ((-1220) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1529 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) |#1| (-1056 (-370)) (-1056 (-370)))) (-15 -1477 ((-1220) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1477 ((-1220) (-851 |#1|) (-1056 (-370)) (-1056 (-370)))) (-15 -1529 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370)) (-619 (-254)))) (-15 -1529 ((-1095 (-217)) (-851 |#1|) (-1056 (-370)) (-1056 (-370))))) +((-1477 (((-1220) (-619 (-217)) (-619 (-217)) (-619 (-217)) (-619 (-254))) 23) (((-1220) (-619 (-217)) (-619 (-217)) (-619 (-217))) 24) (((-1219) (-619 (-912 (-217))) (-619 (-254))) 16) (((-1219) (-619 (-912 (-217)))) 17) (((-1219) (-619 (-217)) (-619 (-217)) (-619 (-254))) 20) (((-1219) (-619 (-217)) (-619 (-217))) 21))) +(((-251) (-10 -7 (-15 -1477 ((-1219) (-619 (-217)) (-619 (-217)))) (-15 -1477 ((-1219) (-619 (-217)) (-619 (-217)) (-619 (-254)))) (-15 -1477 ((-1219) (-619 (-912 (-217))))) (-15 -1477 ((-1219) (-619 (-912 (-217))) (-619 (-254)))) (-15 -1477 ((-1220) (-619 (-217)) (-619 (-217)) (-619 (-217)))) (-15 -1477 ((-1220) (-619 (-217)) (-619 (-217)) (-619 (-217)) (-619 (-254)))))) (T -251)) +((-1477 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-251)))) (-1477 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1220)) (-5 *1 (-251)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-251)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *2 (-1219)) (-5 *1 (-251)))) (-1477 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-251)))) (-1477 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1219)) (-5 *1 (-251))))) +(-10 -7 (-15 -1477 ((-1219) (-619 (-217)) (-619 (-217)))) (-15 -1477 ((-1219) (-619 (-217)) (-619 (-217)) (-619 (-254)))) (-15 -1477 ((-1219) (-619 (-912 (-217))))) (-15 -1477 ((-1219) (-619 (-912 (-217))) (-619 (-254)))) (-15 -1477 ((-1220) (-619 (-217)) (-619 (-217)) (-619 (-217)))) (-15 -1477 ((-1220) (-619 (-217)) (-619 (-217)) (-619 (-217)) (-619 (-254))))) +((-2465 (((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) (-619 (-254)) (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) 26)) (-2565 (((-890) (-619 (-254)) (-890)) 53)) (-2443 (((-890) (-619 (-254)) (-890)) 52)) (-2020 (((-619 (-370)) (-619 (-254)) (-619 (-370))) 69)) (-1560 (((-370) (-619 (-254)) (-370)) 58)) (-1430 (((-890) (-619 (-254)) (-890)) 54)) (-2064 (((-112) (-619 (-254)) (-112)) 28)) (-1581 (((-1118) (-619 (-254)) (-1118)) 20)) (-2062 (((-1118) (-619 (-254)) (-1118)) 27)) (-1330 (((-1095 (-217)) (-619 (-254))) 47)) (-3782 (((-619 (-1058 (-370))) (-619 (-254)) (-619 (-1058 (-370)))) 41)) (-2191 (((-843) (-619 (-254)) (-843)) 33)) (-2320 (((-843) (-619 (-254)) (-843)) 34)) (-1348 (((-1 (-912 (-217)) (-912 (-217))) (-619 (-254)) (-1 (-912 (-217)) (-912 (-217)))) 64)) (-1940 (((-112) (-619 (-254)) (-112)) 16)) (-1394 (((-112) (-619 (-254)) (-112)) 15))) +(((-252) (-10 -7 (-15 -1394 ((-112) (-619 (-254)) (-112))) (-15 -1940 ((-112) (-619 (-254)) (-112))) (-15 -2465 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) (-619 (-254)) (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1581 ((-1118) (-619 (-254)) (-1118))) (-15 -2062 ((-1118) (-619 (-254)) (-1118))) (-15 -2064 ((-112) (-619 (-254)) (-112))) (-15 -2191 ((-843) (-619 (-254)) (-843))) (-15 -2320 ((-843) (-619 (-254)) (-843))) (-15 -3782 ((-619 (-1058 (-370))) (-619 (-254)) (-619 (-1058 (-370))))) (-15 -2443 ((-890) (-619 (-254)) (-890))) (-15 -2565 ((-890) (-619 (-254)) (-890))) (-15 -1330 ((-1095 (-217)) (-619 (-254)))) (-15 -1430 ((-890) (-619 (-254)) (-890))) (-15 -1560 ((-370) (-619 (-254)) (-370))) (-15 -1348 ((-1 (-912 (-217)) (-912 (-217))) (-619 (-254)) (-1 (-912 (-217)) (-912 (-217))))) (-15 -2020 ((-619 (-370)) (-619 (-254)) (-619 (-370)))))) (T -252)) +((-2020 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-370))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1348 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1560 (*1 *2 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1430 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-252)))) (-2565 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2443 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2320 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2191 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2064 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2062 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1581 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-2465 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1940 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))) +(-10 -7 (-15 -1394 ((-112) (-619 (-254)) (-112))) (-15 -1940 ((-112) (-619 (-254)) (-112))) (-15 -2465 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) (-619 (-254)) (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1581 ((-1118) (-619 (-254)) (-1118))) (-15 -2062 ((-1118) (-619 (-254)) (-1118))) (-15 -2064 ((-112) (-619 (-254)) (-112))) (-15 -2191 ((-843) (-619 (-254)) (-843))) (-15 -2320 ((-843) (-619 (-254)) (-843))) (-15 -3782 ((-619 (-1058 (-370))) (-619 (-254)) (-619 (-1058 (-370))))) (-15 -2443 ((-890) (-619 (-254)) (-890))) (-15 -2565 ((-890) (-619 (-254)) (-890))) (-15 -1330 ((-1095 (-217)) (-619 (-254)))) (-15 -1430 ((-890) (-619 (-254)) (-890))) (-15 -1560 ((-370) (-619 (-254)) (-370))) (-15 -1348 ((-1 (-912 (-217)) (-912 (-217))) (-619 (-254)) (-1 (-912 (-217)) (-912 (-217))))) (-15 -2020 ((-619 (-370)) (-619 (-254)) (-619 (-370))))) +((-3497 (((-3 |#1| "failed") (-619 (-254)) (-1135)) 17))) +(((-253 |#1|) (-10 -7 (-15 -3497 ((-3 |#1| "failed") (-619 (-254)) (-1135)))) (-1172)) (T -253)) +((-3497 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1135)) (-5 *1 (-253 *2)) (-4 *2 (-1172))))) +(-10 -7 (-15 -3497 ((-3 |#1| "failed") (-619 (-254)) (-1135)))) +((-3821 (((-112) $ $) NIL)) (-2465 (($ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) 15)) (-2565 (($ (-890)) 76)) (-2443 (($ (-890)) 75)) (-4104 (($ (-619 (-370))) 82)) (-1560 (($ (-370)) 58)) (-1430 (($ (-890)) 77)) (-2064 (($ (-112)) 23)) (-1581 (($ (-1118)) 18)) (-2062 (($ (-1118)) 19)) (-1330 (($ (-1095 (-217))) 71)) (-3782 (($ (-619 (-1058 (-370)))) 67)) (-2693 (($ (-619 (-1058 (-370)))) 59) (($ (-619 (-1058 (-398 (-547))))) 66)) (-1712 (($ (-370)) 29) (($ (-843)) 33)) (-2594 (((-112) (-619 $) (-1135)) 91)) (-3497 (((-3 (-52) "failed") (-619 $) (-1135)) 93)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1592 (($ (-370)) 34) (($ (-843)) 35)) (-2301 (($ (-1 (-912 (-217)) (-912 (-217)))) 57)) (-1348 (($ (-1 (-912 (-217)) (-912 (-217)))) 78)) (-1467 (($ (-1 (-217) (-217))) 39) (($ (-1 (-217) (-217) (-217))) 43) (($ (-1 (-217) (-217) (-217) (-217))) 47)) (-3834 (((-832) $) 87)) (-1828 (($ (-112)) 24) (($ (-619 (-1058 (-370)))) 52)) (-1394 (($ (-112)) 25)) (-2371 (((-112) $ $) 89))) +(((-254) (-13 (-1063) (-10 -8 (-15 -1394 ($ (-112))) (-15 -1828 ($ (-112))) (-15 -2465 ($ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1581 ($ (-1118))) (-15 -2062 ($ (-1118))) (-15 -2064 ($ (-112))) (-15 -1828 ($ (-619 (-1058 (-370))))) (-15 -2301 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -1712 ($ (-370))) (-15 -1712 ($ (-843))) (-15 -1592 ($ (-370))) (-15 -1592 ($ (-843))) (-15 -1467 ($ (-1 (-217) (-217)))) (-15 -1467 ($ (-1 (-217) (-217) (-217)))) (-15 -1467 ($ (-1 (-217) (-217) (-217) (-217)))) (-15 -1560 ($ (-370))) (-15 -2693 ($ (-619 (-1058 (-370))))) (-15 -2693 ($ (-619 (-1058 (-398 (-547)))))) (-15 -3782 ($ (-619 (-1058 (-370))))) (-15 -1330 ($ (-1095 (-217)))) (-15 -2443 ($ (-890))) (-15 -2565 ($ (-890))) (-15 -1430 ($ (-890))) (-15 -1348 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -4104 ($ (-619 (-370)))) (-15 -3497 ((-3 (-52) "failed") (-619 $) (-1135))) (-15 -2594 ((-112) (-619 $) (-1135)))))) (T -254)) +((-1394 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *1 (-254)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-254)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-254)))) (-2064 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))) (-1712 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-254)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217) (-217))) (-5 *1 (-254)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-398 (-547))))) (-5 *1 (-254)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-254)))) (-2443 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254)))) (-4104 (*1 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-254)))) (-3497 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1135)) (-5 *2 (-52)) (-5 *1 (-254)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-254))) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-254))))) +(-13 (-1063) (-10 -8 (-15 -1394 ($ (-112))) (-15 -1828 ($ (-112))) (-15 -2465 ($ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -1581 ($ (-1118))) (-15 -2062 ($ (-1118))) (-15 -2064 ($ (-112))) (-15 -1828 ($ (-619 (-1058 (-370))))) (-15 -2301 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -1712 ($ (-370))) (-15 -1712 ($ (-843))) (-15 -1592 ($ (-370))) (-15 -1592 ($ (-843))) (-15 -1467 ($ (-1 (-217) (-217)))) (-15 -1467 ($ (-1 (-217) (-217) (-217)))) (-15 -1467 ($ (-1 (-217) (-217) (-217) (-217)))) (-15 -1560 ($ (-370))) (-15 -2693 ($ (-619 (-1058 (-370))))) (-15 -2693 ($ (-619 (-1058 (-398 (-547)))))) (-15 -3782 ($ (-619 (-1058 (-370))))) (-15 -1330 ($ (-1095 (-217)))) (-15 -2443 ($ (-890))) (-15 -2565 ($ (-890))) (-15 -1430 ($ (-890))) (-15 -1348 ($ (-1 (-912 (-217)) (-912 (-217))))) (-15 -4104 ($ (-619 (-370)))) (-15 -3497 ((-3 (-52) "failed") (-619 $) (-1135))) (-15 -2594 ((-112) (-619 $) (-1135))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-1352 (((-619 (-745)) $) NIL) (((-619 (-745)) $ |#2|) NIL)) (-1691 (((-745) $) NIL) (((-745) $ |#2|) NIL)) (-2259 (((-619 |#3|) $) NIL)) (-2067 (((-1131 $) $ |#3|) NIL) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 |#3|)) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4203 (($ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1087 |#1| |#2|) "failed") $) 21)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1087 |#1| |#2|) $) NIL)) (-3772 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ |#3|) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-519 |#3|) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))))) (-3707 (((-745) $ |#2|) NIL) (((-745) $) 10)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#1|) |#3|) NIL) (($ (-1131 $) |#3|) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-519 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#3|) NIL)) (-1626 (((-519 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-519 |#3|) (-519 |#3|)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (((-1 $ (-745)) |#2|) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-225)))) (-2185 (((-3 |#3| "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-4044 ((|#3| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-4306 (((-112) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -4248 (-745))) "failed") $) NIL)) (-2242 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-619 |#3|) (-619 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 $)) NIL (|has| |#1| (-225))) (($ $ |#2| |#1|) NIL (|has| |#1| (-225))) (($ $ (-619 |#2|) (-619 |#1|)) NIL (|has| |#1| (-225)))) (-3846 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-3443 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3391 (((-619 |#2|) $) NIL)) (-1618 (((-519 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL) (((-745) $ |#2|) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))))) (-1378 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ |#3|) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1087 |#1| |#2|)) 30) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-519 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-255 |#1| |#2| |#3|) (-13 (-244 |#1| |#2| |#3| (-519 |#3|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821) (-257 |#2|)) (T -255)) +NIL +(-13 (-244 |#1| |#2| |#3| (-519 |#3|)) (-1007 (-1087 |#1| |#2|))) +((-1691 (((-745) $) 30)) (-2698 (((-3 |#2| "failed") $) 17)) (-2643 ((|#2| $) 27)) (-3443 (($ $) 12) (($ $ (-745)) 15)) (-3834 (((-832) $) 26) (($ |#2|) 10)) (-2371 (((-112) $ $) 20)) (-2396 (((-112) $ $) 29))) +(((-256 |#1| |#2|) (-10 -8 (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -1691 ((-745) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-257 |#2|) (-821)) (T -256)) +NIL +(-10 -8 (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -1691 ((-745) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-1691 (((-745) $) 22)) (-2995 ((|#1| $) 23)) (-2698 (((-3 |#1| "failed") $) 27)) (-2643 ((|#1| $) 26)) (-3707 (((-745) $) 24)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1820 (($ |#1| (-745)) 25)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3443 (($ $) 21) (($ $ (-745)) 20)) (-3834 (((-832) $) 11) (($ |#1|) 28)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18))) +(((-257 |#1|) (-138) (-821)) (T -257)) +((-3834 (*1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-1820 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-1691 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-257 *3)) (-4 *3 (-821))))) +(-13 (-821) (-1007 |t#1|) (-10 -8 (-15 -1820 ($ |t#1| (-745))) (-15 -3707 ((-745) $)) (-15 -2995 (|t#1| $)) (-15 -1691 ((-745) $)) (-15 -3443 ($ $)) (-15 -3443 ($ $ (-745))) (-15 -3834 ($ |t#1|)))) +(((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1007 |#1|) . T) ((-1063) . T)) +((-2259 (((-619 (-1135)) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 41)) (-3292 (((-619 (-1135)) (-307 (-217)) (-745)) 80)) (-1368 (((-3 (-307 (-217)) "failed") (-307 (-217))) 51)) (-1442 (((-307 (-217)) (-307 (-217))) 67)) (-2630 (((-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 26)) (-1547 (((-112) (-619 (-307 (-217)))) 84)) (-1900 (((-112) (-307 (-217))) 24)) (-3888 (((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))))) 106)) (-1807 (((-619 (-307 (-217))) (-619 (-307 (-217)))) 88)) (-1738 (((-619 (-307 (-217))) (-619 (-307 (-217)))) 86)) (-1643 (((-663 (-217)) (-619 (-307 (-217))) (-745)) 95)) (-2584 (((-112) (-307 (-217))) 20) (((-112) (-619 (-307 (-217)))) 85)) (-2534 (((-619 (-217)) (-619 (-814 (-217))) (-217)) 14)) (-3950 (((-370) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 101)) (-3838 (((-1004) (-1135) (-1004)) 34))) +(((-258) (-10 -7 (-15 -2534 ((-619 (-217)) (-619 (-814 (-217))) (-217))) (-15 -2630 ((-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -1368 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -1442 ((-307 (-217)) (-307 (-217)))) (-15 -1547 ((-112) (-619 (-307 (-217))))) (-15 -2584 ((-112) (-619 (-307 (-217))))) (-15 -2584 ((-112) (-307 (-217)))) (-15 -1643 ((-663 (-217)) (-619 (-307 (-217))) (-745))) (-15 -1738 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -1807 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -1900 ((-112) (-307 (-217)))) (-15 -2259 ((-619 (-1135)) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -3292 ((-619 (-1135)) (-307 (-217)) (-745))) (-15 -3838 ((-1004) (-1135) (-1004))) (-15 -3950 ((-370) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -3888 ((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))))))) (T -258)) +((-3888 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))))) (-5 *2 (-619 (-1118))) (-5 *1 (-258)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) (-5 *2 (-370)) (-5 *1 (-258)))) (-3838 (*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-258)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-258)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) (-5 *2 (-619 (-1135))) (-5 *1 (-258)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258)))) (-1807 (*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *4 (-745)) (-5 *2 (-663 (-217))) (-5 *1 (-258)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258)))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-258)))) (-1368 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-258)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *1 (-258)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-814 (-217)))) (-5 *4 (-217)) (-5 *2 (-619 *4)) (-5 *1 (-258))))) +(-10 -7 (-15 -2534 ((-619 (-217)) (-619 (-814 (-217))) (-217))) (-15 -2630 ((-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -1368 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -1442 ((-307 (-217)) (-307 (-217)))) (-15 -1547 ((-112) (-619 (-307 (-217))))) (-15 -2584 ((-112) (-619 (-307 (-217))))) (-15 -2584 ((-112) (-307 (-217)))) (-15 -1643 ((-663 (-217)) (-619 (-307 (-217))) (-745))) (-15 -1738 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -1807 ((-619 (-307 (-217))) (-619 (-307 (-217))))) (-15 -1900 ((-112) (-307 (-217)))) (-15 -2259 ((-619 (-1135)) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -3292 ((-619 (-1135)) (-307 (-217)) (-745))) (-15 -3838 ((-1004) (-1135) (-1004))) (-15 -3950 ((-370) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -3888 ((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))))))) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 44)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 26) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-259) (-810)) (T -259)) NIL -(-864) -((-3730 (((-112) $ $) NIL)) (-2089 ((|#2| $ (-745) |#2|) 11)) (-3550 (($) 8)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#2| $ (-745)) 10)) (-3743 (((-832) $) 18)) (-2214 (((-112) $ $) 13))) -(((-206 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -3171 (|#2| $ (-745))) (-15 -2089 (|#2| $ (-745) |#2|)))) (-890) (-1063)) (T -206)) -((-3550 (*1 *1) (-12 (-5 *1 (-206 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-206 *4 *2)) (-14 *4 (-890)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-206 *4 *2)) (-14 *4 (-890)) (-4 *2 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -3550 ($)) (-15 -3171 (|#2| $ (-745))) (-15 -2089 (|#2| $ (-745) |#2|)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3721 (((-1223) $) 36) (((-1223) $ (-890) (-890)) 38)) (-3171 (($ $ (-958)) 19) (((-238 (-1118)) $ (-1135)) 15)) (-2487 (((-1223) $) 34)) (-3743 (((-832) $) 31) (($ (-619 |#1|)) 8)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $ $) 27)) (-2290 (($ $ $) 22))) -(((-207 |#1|) (-13 (-1063) (-10 -8 (-15 -3171 ($ $ (-958))) (-15 -3171 ((-238 (-1118)) $ (-1135))) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -3743 ($ (-619 |#1|))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3721 ((-1223) $ (-890) (-890))))) (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))) (T -207)) -((-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-958)) (-5 *1 (-207 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-238 (-1118))) (-5 *1 (-207 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ *3)) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-2299 (*1 *1 *1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $))))) (-5 *1 (-207 *3)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) (-15 -3721 (*2 $))))))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) (-4 *3 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) (-15 -3721 (*2 $))))))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-207 *4)) (-4 *4 (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) (-15 -3721 (*2 $)))))))) -(-13 (-1063) (-10 -8 (-15 -3171 ($ $ (-958))) (-15 -3171 ((-238 (-1118)) $ (-1135))) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -3743 ($ (-619 |#1|))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3721 ((-1223) $ (-890) (-890))))) -((-3840 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3840 (|#2| |#4| (-1 |#2| |#2|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -208)) -((-3840 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-355)) (-4 *6 (-1194 (-399 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-208 *5 *2 *6 *3)) (-4 *3 (-334 *5 *2 *6))))) -(-10 -7 (-15 -3840 (|#2| |#4| (-1 |#2| |#2|)))) -((-3890 ((|#2| |#2| (-745) |#2|) 42)) (-3879 ((|#2| |#2| (-745) |#2|) 38)) (-3002 (((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|)))) 57)) (-3865 (((-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))) |#2|) 53)) (-3902 (((-112) |#2|) 50)) (-1329 (((-410 |#2|) |#2|) 77)) (-1915 (((-410 |#2|) |#2|) 76)) (-3012 ((|#2| |#2| (-745) |#2|) 36)) (-3853 (((-2 (|:| |cont| |#1|) (|:| -3213 (-619 (-2 (|:| |irr| |#2|) (|:| -3286 (-548)))))) |#2| (-112)) 69))) -(((-209 |#1| |#2|) (-10 -7 (-15 -1915 ((-410 |#2|) |#2|)) (-15 -1329 ((-410 |#2|) |#2|)) (-15 -3853 ((-2 (|:| |cont| |#1|) (|:| -3213 (-619 (-2 (|:| |irr| |#2|) (|:| -3286 (-548)))))) |#2| (-112))) (-15 -3865 ((-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))) |#2|)) (-15 -3002 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))))) (-15 -3012 (|#2| |#2| (-745) |#2|)) (-15 -3879 (|#2| |#2| (-745) |#2|)) (-15 -3890 (|#2| |#2| (-745) |#2|)) (-15 -3902 ((-112) |#2|))) (-341) (-1194 |#1|)) (T -209)) -((-3902 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4)))) (-3890 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) (-4 *2 (-1194 *4)))) (-3879 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) (-4 *2 (-1194 *4)))) (-3012 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) (-4 *2 (-1194 *4)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *5)))) (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *2 (-619 *5)) (-5 *1 (-209 *4 *5)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *3)))) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-209 *5 *3)) (-4 *3 (-1194 *5)))) (-1329 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -1915 ((-410 |#2|) |#2|)) (-15 -1329 ((-410 |#2|) |#2|)) (-15 -3853 ((-2 (|:| |cont| |#1|) (|:| -3213 (-619 (-2 (|:| |irr| |#2|) (|:| -3286 (-548)))))) |#2| (-112))) (-15 -3865 ((-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))) |#2|)) (-15 -3002 ((-619 |#2|) (-619 (-2 (|:| |deg| (-745)) (|:| -2168 |#2|))))) (-15 -3012 (|#2| |#2| (-745) |#2|)) (-15 -3879 (|#2| |#2| (-745) |#2|)) (-15 -3890 (|#2| |#2| (-745) |#2|)) (-15 -3902 ((-112) |#2|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-548) $) NIL (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) NIL)) (-3887 (((-548) $) NIL (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) NIL)) (-3913 (($ (-399 (-548))) 9)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 8) (($ (-548)) NIL) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL) (((-973 10) $) 10)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-548) $) NIL (|has| (-548) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2309 (($ $ $) NIL) (($ (-548) (-548)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL))) -(((-210) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 10) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3913 ($ (-399 (-548))))))) (T -210)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-210)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210))))) -(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 10) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3913 ($ (-399 (-548)))))) -((-3730 (((-112) $ $) NIL)) (-3858 (((-1080) $) 14)) (-2546 (((-1118) $) NIL)) (-3218 (((-619 (-496)) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 16)) (-2214 (((-112) $ $) NIL))) -(((-211) (-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -3858 ((-1080) $)) (-15 -2286 ((-1140) $))))) (T -211)) -((-3218 (*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-211)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-211)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-211))))) -(-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -3858 ((-1080) $)) (-15 -2286 ((-1140) $)))) -((-3810 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118)) 28) (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|))) 24)) (-3924 (((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)) 17))) -(((-212 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118))) (-15 -3924 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-29 |#1|))) (T -212)) -((-3924 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1135)) (-5 *6 (-112)) (-4 *7 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-4 *3 (-13 (-1157) (-928) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *7 *3)) (-5 *5 (-814 *3)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1118)) (-4 *3 (-13 (-1157) (-928) (-29 *6))) (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *6 *3)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1157) (-928) (-29 *5))) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-212 *5 *3))))) -(-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)))) (-15 -3810 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1056 (-814 |#2|)) (-1118))) (-15 -3924 ((-3 (|:| |f1| (-814 |#2|)) (|:| |f2| (-619 (-814 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1135) (-814 |#2|) (-814 |#2|) (-112)))) -((-3810 (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))) (-1118)) 46) (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|))))) 43) (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))) (-1118)) 47) (((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|)))) 20))) -(((-213 |#1|) (-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))) (-1118))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))) (-1118)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (T -213)) -((-3810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-814 (-399 (-921 *6))))) (-5 *5 (-1118)) (-5 *3 (-399 (-921 *6))) (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-814 (-399 (-921 *5))))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1056 (-814 (-308 *6)))) (-5 *5 (-1118)) (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *6)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1056 (-814 (-308 *5)))) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-213 *5))))) -(-10 -7 (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-308 |#1|))) (-1118))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))))) (-15 -3810 ((-3 (|:| |f1| (-814 (-308 |#1|))) (|:| |f2| (-619 (-814 (-308 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-399 (-921 |#1|)) (-1056 (-814 (-399 (-921 |#1|)))) (-1118)))) -((-2061 (((-2 (|:| -2802 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|)) 21)) (-1384 (((-619 (-308 |#2|)) (-308 |#2|) (-890)) 42))) -(((-214 |#1| |#2|) (-10 -7 (-15 -2061 ((-2 (|:| -2802 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|))) (-15 -1384 ((-619 (-308 |#2|)) (-308 |#2|) (-890)))) (-1016) (-13 (-540) (-821))) (T -214)) -((-1384 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *6 (-13 (-540) (-821))) (-5 *2 (-619 (-308 *6))) (-5 *1 (-214 *5 *6)) (-5 *3 (-308 *6)) (-4 *5 (-1016)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-2 (|:| -2802 (-1131 *4)) (|:| |deg| (-890)))) (-5 *1 (-214 *4 *5)) (-5 *3 (-1131 *4)) (-4 *5 (-13 (-540) (-821)))))) -(-10 -7 (-15 -2061 ((-2 (|:| -2802 (-1131 |#1|)) (|:| |deg| (-890))) (-1131 |#1|))) (-15 -1384 ((-619 (-308 |#2|)) (-308 |#2|) (-890)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2995 ((|#1| $) NIL)) (-2088 ((|#1| $) 25)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2048 (($ $) NIL)) (-3499 (($ $) 31)) (-2043 ((|#1| |#1| $) NIL)) (-2032 ((|#1| $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3198 (((-745) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) NIL)) (-2974 ((|#1| |#1| $) 28)) (-2963 ((|#1| |#1| $) 30)) (-2539 (($ |#1| $) NIL)) (-3926 (((-745) $) 27)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2035 ((|#1| $) NIL)) (-2952 ((|#1| $) 26)) (-2941 ((|#1| $) 24)) (-1357 ((|#1| $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-2071 ((|#1| |#1| $) NIL)) (-1616 (((-112) $) 9)) (-3319 (($) NIL)) (-2060 ((|#1| $) NIL)) (-3006 (($) NIL) (($ (-619 |#1|)) 16)) (-3045 (((-745) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2985 ((|#1| $) 13)) (-1368 (($ (-619 |#1|)) NIL)) (-2025 ((|#1| $) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-215 |#1|) (-13 (-246 |#1|) (-10 -8 (-15 -3006 ($ (-619 |#1|))))) (-1063)) (T -215)) -((-3006 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-215 *3))))) -(-13 (-246 |#1|) (-10 -8 (-15 -3006 ($ (-619 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3951 (($ (-308 |#1|)) 23)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3613 (((-112) $) NIL)) (-2441 (((-3 (-308 |#1|) "failed") $) NIL)) (-2375 (((-308 |#1|) $) NIL)) (-1872 (($ $) 31)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2540 (($ (-1 (-308 |#1|) (-308 |#1|)) $) NIL)) (-2197 (((-308 |#1|) $) NIL)) (-2711 (($ $) 30)) (-2546 (((-1118) $) NIL)) (-3966 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($ (-745)) NIL)) (-3937 (($ $) 32)) (-2512 (((-548) $) NIL)) (-3743 (((-832) $) 57) (($ (-548)) NIL) (($ (-308 |#1|)) NIL)) (-1951 (((-308 |#1|) $ $) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) 25 T CONST)) (-3118 (($) 50 T CONST)) (-2214 (((-112) $ $) 28)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 24) (($ (-308 |#1|) $) 18))) -(((-216 |#1| |#2|) (-13 (-596 (-308 |#1|)) (-1007 (-308 |#1|)) (-10 -8 (-15 -2197 ((-308 |#1|) $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 ((-308 |#1|) $ $)) (-15 -4160 ($ (-745))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -2540 ($ (-1 (-308 |#1|) (-308 |#1|)) $)) (-15 -3951 ($ (-308 |#1|))) (-15 -3937 ($ $)))) (-13 (-1016) (-821)) (-619 (-1135))) (T -216)) -((-2197 (*1 *2 *1) (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2711 (*1 *1 *1) (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-308 *3) (-308 *3))) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135))))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-308 *3)) (-4 *3 (-13 (-1016) (-821))) (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135))))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135)))))) -(-13 (-596 (-308 |#1|)) (-1007 (-308 |#1|)) (-10 -8 (-15 -2197 ((-308 |#1|) $)) (-15 -2711 ($ $)) (-15 -1872 ($ $)) (-15 -1951 ((-308 |#1|) $ $)) (-15 -4160 ($ (-745))) (-15 -3966 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -2540 ($ (-1 (-308 |#1|) (-308 |#1|)) $)) (-15 -3951 ($ (-308 |#1|))) (-15 -3937 ($ $)))) -((-2719 (((-112) (-1118)) 22)) (-2728 (((-3 (-814 |#2|) "failed") (-591 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112)) 32)) (-2736 (((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)) 73) (((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112)) 74))) -(((-217 |#1| |#2|) (-10 -7 (-15 -2719 ((-112) (-1118))) (-15 -2728 ((-3 (-814 |#2|) "failed") (-591 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-29 |#1|))) (T -217)) -((-2736 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1131 *6)) (-5 *4 (-814 *6)) (-4 *6 (-13 (-1157) (-29 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-217 *5 *6)))) (-2736 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1135)) (-5 *5 (-814 *7)) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *7 (-13 (-1157) (-29 *6))) (-5 *1 (-217 *6 *7)))) (-2728 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1157) (-29 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-217 *6 *4)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-112)) (-5 *1 (-217 *4 *5)) (-4 *5 (-13 (-1157) (-29 *4)))))) -(-10 -7 (-15 -2719 ((-112) (-1118))) (-15 -2728 ((-3 (-814 |#2|) "failed") (-591 |#2|) |#2| (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-921 |#1|) (-1135) (-814 |#2|) (-814 |#2|) (-112))) (-15 -2736 ((-3 (-112) "failed") (-1131 |#2|) (-814 |#2|) (-814 |#2|) (-112)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 89)) (-3875 (((-548) $) 100)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1665 (($ $) NIL)) (-2074 (($ $) 77)) (-1940 (($ $) 65)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) 56)) (-4087 (((-112) $ $) NIL)) (-2054 (($ $) 75)) (-1918 (($ $) 63)) (-2672 (((-548) $) 117)) (-2098 (($ $) 80)) (-1963 (($ $) 67)) (-3030 (($) NIL T CONST)) (-3849 (($ $) NIL)) (-2441 (((-3 (-548) "failed") $) 116) (((-3 (-399 (-548)) "failed") $) 113)) (-2375 (((-548) $) 114) (((-399 (-548)) $) 111)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 93)) (-3123 (((-399 (-548)) $ (-745)) 109) (((-399 (-548)) $ (-745) (-745)) 108)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2232 (((-890)) 29) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-3298 (((-112) $) NIL)) (-1365 (($) 39)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL)) (-1672 (((-548) $) 35)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3910 (($ $) NIL)) (-3312 (((-112) $) 88)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) 53) (($) 34 (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-3091 (($ $ $) 52) (($) 33 (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-1382 (((-548) $) 27)) (-3112 (($ $) 30)) (-2133 (($ $) 57)) (-3496 (($ $) 62)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-2237 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-3932 (((-1082) $) 91)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL)) (-3887 (($ $) NIL)) (-1335 (($ (-548) (-548)) NIL) (($ (-548) (-548) (-890)) 101)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3352 (((-548) $) 28)) (-3100 (($) 38)) (-2458 (($ $) 61)) (-4077 (((-745) $) NIL)) (-2745 (((-1118) (-1118)) 8)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-4050 (($ $ (-745)) NIL) (($ $) 94)) (-2226 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-2110 (($ $) 78)) (-1973 (($ $) 68)) (-2086 (($ $) 79)) (-1952 (($ $) 66)) (-2065 (($ $) 76)) (-1929 (($ $) 64)) (-2591 (((-371) $) 105) (((-218) $) 102) (((-861 (-371)) $) NIL) (((-524) $) 45)) (-3743 (((-832) $) 42) (($ (-548)) 60) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-548)) 60) (($ (-399 (-548))) NIL)) (-3835 (((-745)) NIL)) (-3897 (($ $) NIL)) (-2245 (((-890)) 32) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-3957 (((-890)) 25)) (-2145 (($ $) 83)) (-2006 (($ $) 71) (($ $ $) 110)) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) 81)) (-1986 (($ $) 69)) (-2170 (($ $) 86)) (-2029 (($ $) 74)) (-4026 (($ $) 84)) (-2040 (($ $) 72)) (-2158 (($ $) 85)) (-2017 (($ $) 73)) (-2132 (($ $) 82)) (-1996 (($ $) 70)) (-1446 (($ $) 118)) (-3107 (($) 36 T CONST)) (-3118 (($) 37 T CONST)) (-2739 (((-1118) $) 19) (((-1118) $ (-112)) 21) (((-1223) (-796) $) 22) (((-1223) (-796) $ (-112)) 23)) (-1491 (($ $) 97)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-1456 (($ $ $) 99)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 54)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 46)) (-2309 (($ $ $) 87) (($ $ (-548)) 55)) (-2299 (($ $) 47) (($ $ $) 49)) (-2290 (($ $ $) 48)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 58) (($ $ (-399 (-548))) 130) (($ $ $) 59)) (* (($ (-890) $) 31) (($ (-745) $) NIL) (($ (-548) $) 51) (($ $ $) 50) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-218) (-13 (-396) (-226) (-802) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3100 ($)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2006 ($ $ $)) (-15 -1491 ($ $)) (-15 -1456 ($ $ $)) (-15 -2745 ((-1118) (-1118))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745)))))) (T -218)) -((** (*1 *1 *1 *1) (-5 *1 (-218))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-218)))) (-3100 (*1 *1) (-5 *1 (-218))) (-3112 (*1 *1 *1) (-5 *1 (-218))) (-2133 (*1 *1 *1) (-5 *1 (-218))) (-2006 (*1 *1 *1 *1) (-5 *1 (-218))) (-1491 (*1 *1 *1) (-5 *1 (-218))) (-1456 (*1 *1 *1 *1) (-5 *1 (-218))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) (-3123 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218)))) (-3123 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218))))) -(-13 (-396) (-226) (-802) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3100 ($)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2006 ($ $ $)) (-15 -1491 ($ $)) (-15 -1456 ($ $ $)) (-15 -2745 ((-1118) (-1118))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745))))) -((-1478 (((-166 (-218)) (-745) (-166 (-218))) 11) (((-218) (-745) (-218)) 12)) (-2753 (((-166 (-218)) (-166 (-218))) 13) (((-218) (-218)) 14)) (-2762 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 19) (((-218) (-218) (-218)) 22)) (-1467 (((-166 (-218)) (-166 (-218))) 25) (((-218) (-218)) 24)) (-1513 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 43) (((-218) (-218) (-218)) 35)) (-1533 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 48) (((-218) (-218) (-218)) 45)) (-1502 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 15) (((-218) (-218) (-218)) 16)) (-1523 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 17) (((-218) (-218) (-218)) 18)) (-1551 (((-166 (-218)) (-166 (-218))) 60) (((-218) (-218)) 59)) (-1542 (((-218) (-218)) 54) (((-166 (-218)) (-166 (-218))) 58)) (-1491 (((-166 (-218)) (-166 (-218))) 8) (((-218) (-218)) 9)) (-1456 (((-166 (-218)) (-166 (-218)) (-166 (-218))) 30) (((-218) (-218) (-218)) 26))) -(((-219) (-10 -7 (-15 -1491 ((-218) (-218))) (-15 -1491 ((-166 (-218)) (-166 (-218)))) (-15 -1456 ((-218) (-218) (-218))) (-15 -1456 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -2753 ((-218) (-218))) (-15 -2753 ((-166 (-218)) (-166 (-218)))) (-15 -1467 ((-218) (-218))) (-15 -1467 ((-166 (-218)) (-166 (-218)))) (-15 -1478 ((-218) (-745) (-218))) (-15 -1478 ((-166 (-218)) (-745) (-166 (-218)))) (-15 -1502 ((-218) (-218) (-218))) (-15 -1502 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1513 ((-218) (-218) (-218))) (-15 -1513 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1523 ((-218) (-218) (-218))) (-15 -1523 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1533 ((-218) (-218) (-218))) (-15 -1533 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1542 ((-166 (-218)) (-166 (-218)))) (-15 -1542 ((-218) (-218))) (-15 -1551 ((-218) (-218))) (-15 -1551 ((-166 (-218)) (-166 (-218)))) (-15 -2762 ((-218) (-218) (-218))) (-15 -2762 ((-166 (-218)) (-166 (-218)) (-166 (-218)))))) (T -219)) -((-2762 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-2762 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1533 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1533 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1523 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1523 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1478 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-218))) (-5 *3 (-745)) (-5 *1 (-219)))) (-1478 (*1 *2 *3 *2) (-12 (-5 *2 (-218)) (-5 *3 (-745)) (-5 *1 (-219)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1456 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1456 (*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219))))) -(-10 -7 (-15 -1491 ((-218) (-218))) (-15 -1491 ((-166 (-218)) (-166 (-218)))) (-15 -1456 ((-218) (-218) (-218))) (-15 -1456 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -2753 ((-218) (-218))) (-15 -2753 ((-166 (-218)) (-166 (-218)))) (-15 -1467 ((-218) (-218))) (-15 -1467 ((-166 (-218)) (-166 (-218)))) (-15 -1478 ((-218) (-745) (-218))) (-15 -1478 ((-166 (-218)) (-745) (-166 (-218)))) (-15 -1502 ((-218) (-218) (-218))) (-15 -1502 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1513 ((-218) (-218) (-218))) (-15 -1513 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1523 ((-218) (-218) (-218))) (-15 -1523 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1533 ((-218) (-218) (-218))) (-15 -1533 ((-166 (-218)) (-166 (-218)) (-166 (-218)))) (-15 -1542 ((-166 (-218)) (-166 (-218)))) (-15 -1542 ((-218) (-218))) (-15 -1551 ((-218) (-218))) (-15 -1551 ((-166 (-218)) (-166 (-218)))) (-15 -2762 ((-218) (-218) (-218))) (-15 -2762 ((-166 (-218)) (-166 (-218)) (-166 (-218))))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) NIL)) (-4025 (($ $ $) NIL)) (-3508 (($ (-1218 |#1|)) NIL) (($ $) NIL)) (-2534 (($ |#1| |#1| |#1|) 32)) (-3785 (((-112) $) NIL)) (-4015 (($ $ (-548) (-548)) NIL)) (-4004 (($ $ (-548) (-548)) NIL)) (-3992 (($ $ (-548) (-548) (-548) (-548)) NIL)) (-4048 (($ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3982 (($ $ (-548) (-548) $) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) NIL)) (-4141 (($ $ (-548) (-1218 |#1|)) NIL)) (-4131 (($ $ (-548) (-1218 |#1|)) NIL)) (-4071 (($ |#1| |#1| |#1|) 31)) (-2114 (($ (-745) |#1|) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) NIL (|has| |#1| (-299)))) (-3717 (((-1218 |#1|) $ (-548)) NIL)) (-2769 (($ |#1|) 30)) (-2777 (($ |#1|) 29)) (-2785 (($ |#1|) 28)) (-2103 (((-745) $) NIL (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-3681 (((-745) $) NIL (|has| |#1| (-540)))) (-3669 (((-619 (-1218 |#1|)) $) NIL (|has| |#1| (-540)))) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#1| $) NIL (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#1|))) 11)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2401 (((-619 (-619 |#1|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) NIL (|has| |#1| (-355)))) (-2791 (($) 12)) (-4036 (($ $ $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548))) NIL)) (-2102 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3797 (((-112) $) NIL)) (-2068 ((|#1| $) NIL (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-1218 |#1|) $ (-548)) NIL)) (-3743 (($ (-1218 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-548) $) NIL) (((-1218 |#1|) $ (-1218 |#1|)) 15) (((-1218 |#1|) (-1218 |#1|) $) NIL) (((-912 |#1|) $ (-912 |#1|)) 20)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-220 |#1|) (-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -2791 ($)) (-15 -2785 ($ |#1|)) (-15 -2777 ($ |#1|)) (-15 -2769 ($ |#1|)) (-15 -4071 ($ |#1| |#1| |#1|)) (-15 -2534 ($ |#1| |#1| |#1|)))) (-13 (-355) (-1157))) (T -220)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157))) (-5 *1 (-220 *3)))) (-2791 (*1 *1) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2785 (*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2777 (*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2769 (*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-4071 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) (-2534 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) -(-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 * ((-912 |#1|) $ (-912 |#1|))) (-15 -2791 ($)) (-15 -2785 ($ |#1|)) (-15 -2777 ($ |#1|)) (-15 -2769 ($ |#1|)) (-15 -4071 ($ |#1| |#1| |#1|)) (-15 -2534 ($ |#1| |#1| |#1|)))) -((-2657 (($ (-1 (-112) |#2|) $) 16)) (-1636 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-2801 (($) NIL) (($ (-619 |#2|)) 11)) (-2214 (((-112) $ $) 23))) -(((-221 |#1| |#2|) (-10 -8 (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-222 |#2|) (-1063)) (T -221)) -NIL -(-10 -8 (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-222 |#1|) (-138) (-1063)) (T -222)) -NIL -(-13 (-228 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-4050 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) 11) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) 19) (($ $ (-745)) NIL) (($ $) 16)) (-3296 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-745)) 14) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL))) -(((-223 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1135))) (-15 -3296 (|#1| |#1| (-619 (-1135)))) (-15 -3296 (|#1| |#1| (-1135) (-745))) (-15 -3296 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|)))) (-224 |#2|) (-1016)) (T -223)) -NIL -(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1135))) (-15 -3296 (|#1| |#1| (-619 (-1135)))) (-15 -3296 (|#1| |#1| (-1135) (-745))) (-15 -3296 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3296 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-745)) 49) (($ $ (-619 (-1135)) (-619 (-745))) 42 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 41 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 40 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 39 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 37 (|has| |#1| (-226))) (($ $) 35 (|has| |#1| (-226)))) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-745)) 47) (($ $ (-619 (-1135)) (-619 (-745))) 46 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 45 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 44 (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 43 (|has| |#1| (-869 (-1135)))) (($ $ (-745)) 38 (|has| |#1| (-226))) (($ $) 36 (|has| |#1| (-226)))) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-224 |#1|) (-138) (-1016)) (T -224)) -((-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) (-4050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) (-4 *4 (-1016)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) (-4 *4 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -4050 ($ $ (-1 |t#1| |t#1|))) (-15 -4050 ($ $ (-1 |t#1| |t#1|) (-745))) (-15 -3296 ($ $ (-1 |t#1| |t#1|))) (-15 -3296 ($ $ (-1 |t#1| |t#1|) (-745))) (IF (|has| |t#1| (-226)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-226) |has| |#1| (-226)) ((-622 $) . T) ((-701) . T) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-4050 (($ $) NIL) (($ $ (-745)) 10)) (-3296 (($ $) 8) (($ $ (-745)) 12))) -(((-225 |#1|) (-10 -8 (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1|))) (-226)) (T -225)) -NIL -(-10 -8 (-15 -3296 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-745))) (-15 -3296 (|#1| |#1|)) (-15 -4050 (|#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $) 36) (($ $ (-745)) 34)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 35) (($ $ (-745)) 33)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-226) (-138)) (T -226)) -((-4050 (*1 *1 *1) (-4 *1 (-226))) (-3296 (*1 *1 *1) (-4 *1 (-226))) (-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745))))) -(-13 (-1016) (-10 -8 (-15 -4050 ($ $)) (-15 -3296 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3296 ($ $ (-745))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2801 (($) 12) (($ (-619 |#2|)) NIL)) (-2113 (($ $) 14)) (-3754 (($ (-619 |#2|)) 10)) (-3743 (((-832) $) 21))) -(((-227 |#1| |#2|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -2113 (|#1| |#1|))) (-228 |#2|) (-1063)) (T -227)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2801 (|#1| (-619 |#2|))) (-15 -2801 (|#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -2113 (|#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-228 |#1|) (-138) (-1063)) (T -228)) -((-2801 (*1 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-1063)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-228 *3)))) (-1636 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-228 *2)) (-4 *2 (-1063)))) (-1636 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) (-4 *3 (-1063)))) (-2657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) (-4 *3 (-1063))))) -(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -2801 ($)) (-15 -2801 ($ (-619 |t#1|))) (IF (|has| $ (-6 -4327)) (PROGN (-15 -1636 ($ |t#1| $)) (-15 -1636 ($ (-1 (-112) |t#1|) $)) (-15 -2657 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-2810 (((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-286 (-921 (-548)))) 27))) -(((-229) (-10 -7 (-15 -2810 ((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-286 (-921 (-548))))))) (T -229)) -((-2810 (*1 *2 *3) (-12 (-5 *3 (-286 (-921 (-548)))) (-5 *2 (-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745)))))) (-5 *1 (-229))))) -(-10 -7 (-15 -2810 ((-2 (|:| |varOrder| (-619 (-1135))) (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) (|:| |hom| (-619 (-1218 (-745))))) (-286 (-921 (-548)))))) -((-3423 (((-745)) 51)) (-1608 (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) 49) (((-663 |#3|) (-663 $)) 41) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3402 (((-133)) 57)) (-4050 (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3743 (((-1218 |#3|) $) NIL) (($ |#3|) NIL) (((-832) $) NIL) (($ (-548)) 12) (($ (-399 (-548))) NIL)) (-3835 (((-745)) 15)) (-2309 (($ $ |#3|) 54))) -(((-230 |#1| |#2| |#3|) (-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|)) (-15 -3835 ((-745))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -3423 ((-745))) (-15 -2309 (|#1| |#1| |#3|)) (-15 -3402 ((-133))) (-15 -3743 ((-1218 |#3|) |#1|))) (-231 |#2| |#3|) (-745) (-1172)) (T -230)) -((-3402 (*1 *2) (-12 (-14 *4 (-745)) (-4 *5 (-1172)) (-5 *2 (-133)) (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) (-3423 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) (-3835 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5))))) -(-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|)) (-15 -3835 ((-745))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -3423 ((-745))) (-15 -2309 (|#1| |#1| |#3|)) (-15 -3402 ((-133))) (-15 -3743 ((-1218 |#3|) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-3324 (((-112) $) 72 (|has| |#2| (-130)))) (-2264 (($ (-890)) 125 (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2857 (($ $ $) 121 (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) 8)) (-3423 (((-745)) 107 (|has| |#2| (-360)))) (-2672 (((-548) $) 119 (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) 52 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-2441 (((-3 (-548) "failed") $) 67 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) 64 (-1723 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1063)))) (-2375 (((-548) $) 68 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) 65 (-1723 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) 60 (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) 106 (-1723 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 105 (-1723 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 104 (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) 103 (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) 79 (|has| |#2| (-701)))) (-2545 (($) 110 (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) 51)) (-3298 (((-112) $) 117 (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) 30 (|has| $ (-6 -4327)))) (-2266 (((-112) $) 81 (|has| |#2| (-701)))) (-3312 (((-112) $) 118 (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 116 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2342 (((-619 |#2|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 115 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-3960 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) 35)) (-2855 (((-890) $) 109 (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3337 (($ (-890)) 108 (|has| |#2| (-360)))) (-3932 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3453 ((|#2| $) 42 (|has| (-548) (-821)))) (-4159 (($ $ |#2|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) 26 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ (-548) |#2|) 50) ((|#2| $ (-548)) 49)) (-4029 ((|#2| $ $) 124 (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) 126)) (-3402 (((-133)) 123 (|has| |#2| (-355)))) (-4050 (($ $) 98 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) 96 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) 94 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) 93 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) 92 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) 91 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 84 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4327))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-1218 |#2|) $) 127) (($ (-548)) 66 (-1524 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) 63 (-1723 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) 62 (|has| |#2| (-1063))) (((-832) $) 18 (|has| |#2| (-592 (-832))))) (-3835 (((-745)) 102 (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4327)))) (-1446 (($ $) 120 (|has| |#2| (-819)))) (-3107 (($) 71 (|has| |#2| (-130)) CONST)) (-3118 (($) 82 (|has| |#2| (-701)) CONST)) (-3296 (($ $) 97 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) 95 (-1723 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) 90 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) 89 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) 88 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) 87 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) 86 (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1016)))) (-2262 (((-112) $ $) 113 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2241 (((-112) $ $) 112 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2214 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-2252 (((-112) $ $) 114 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2234 (((-112) $ $) 111 (-1524 (|has| |#2| (-819)) (|has| |#2| (-767))))) (-2309 (($ $ |#2|) 122 (|has| |#2| (-355)))) (-2299 (($ $ $) 100 (|has| |#2| (-1016))) (($ $) 99 (|has| |#2| (-1016)))) (-2290 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-745)) 80 (|has| |#2| (-701))) (($ $ (-890)) 77 (|has| |#2| (-701)))) (* (($ (-548) $) 101 (|has| |#2| (-1016))) (($ $ $) 78 (|has| |#2| (-701))) (($ $ |#2|) 76 (|has| |#2| (-701))) (($ |#2| $) 75 (|has| |#2| (-701))) (($ (-745) $) 73 (|has| |#2| (-130))) (($ (-890) $) 70 (|has| |#2| (-25)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-231 |#1| |#2|) (-138) (-745) (-1172)) (T -231)) -((-1957 (*1 *1 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1172)) (-4 *1 (-231 *3 *4)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-231 *3 *4)) (-4 *4 (-1016)) (-4 *4 (-1172)))) (-4029 (*1 *2 *1 *1) (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701))))) -(-13 (-583 (-548) |t#2|) (-592 (-1218 |t#2|)) (-10 -8 (-6 -4327) (-15 -1957 ($ (-1218 |t#2|))) (IF (|has| |t#2| (-1063)) (-6 (-403 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1016)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-224 |t#2|)) (-6 (-369 |t#2|)) (-15 -2264 ($ (-890))) (-15 -4029 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-701)) (PROGN (-6 (-701)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-360)) (-6 (-360)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |t#2| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |t#2| (-767)) (-6 (-767)) |%noBranch|) (IF (|has| |t#2| (-355)) (-6 (-1225 |t#2|)) |%noBranch|))) -(((-21) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-23) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-25) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-360)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-111 $ $) |has| |#2| (-169)) ((-130) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130))) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-360)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-592 (-832))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-592 (-1218 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-224 |#2|) |has| |#2| (-1016)) ((-226) -12 (|has| |#2| (-226)) (|has| |#2| (-1016))) ((-278 #0=(-548) |#2|) . T) ((-280 #0# |#2|) . T) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-360) |has| |#2| (-360)) ((-369 |#2|) |has| |#2| (-1016)) ((-403 |#2|) |has| |#2| (-1063)) ((-480 |#2|) . T) ((-583 #0# |#2|) . T) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-622 $) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-615 (-548)) -12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016))) ((-615 |#2|) |has| |#2| (-1016)) ((-692 |#2|) -1524 (|has| |#2| (-355)) (|has| |#2| (-169))) ((-701) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-765) |has| |#2| (-819)) ((-766) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-767) |has| |#2| (-767)) ((-768) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-769) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-819) |has| |#2| (-819)) ((-821) -1524 (|has| |#2| (-819)) (|has| |#2| (-767))) ((-869 (-1135)) -12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016))) ((-1007 (-399 (-548))) -12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063))) ((-1007 (-548)) -12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) ((-1007 |#2|) |has| |#2| (-1063)) ((-1022 |#2|) -1524 (|has| |#2| (-1016)) (|has| |#2| (-355)) (|has| |#2| (-169))) ((-1022 $) |has| |#2| (-169)) ((-1016) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1023) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-169))) ((-1075) -1524 (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-701)) (|has| |#2| (-169))) ((-1063) -1524 (|has| |#2| (-1063)) (|has| |#2| (-1016)) (|has| |#2| (-819)) (|has| |#2| (-767)) (|has| |#2| (-701)) (|has| |#2| (-360)) (|has| |#2| (-355)) (|has| |#2| (-169)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1172) . T) ((-1225 |#2|) |has| |#2| (-355))) -((-4040 (((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 21)) (-2061 ((|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 23)) (-2540 (((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)) 18))) -(((-232 |#1| |#2| |#3|) (-10 -7 (-15 -4040 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2061 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2540 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) (-745) (-1172) (-1172)) (T -232)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-5 *2 (-233 *5 *7)) (-5 *1 (-232 *5 *6 *7)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) (-4 *6 (-1172)) (-4 *2 (-1172)) (-5 *1 (-232 *5 *6 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-745)) (-4 *7 (-1172)) (-4 *5 (-1172)) (-5 *2 (-233 *6 *5)) (-5 *1 (-232 *6 *7 *5))))) -(-10 -7 (-15 -4040 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2061 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -2540 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) -((-3730 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-3324 (((-112) $) NIL (|has| |#2| (-130)))) (-2264 (($ (-890)) 56 (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) 60 (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) 17)) (-3423 (((-745)) NIL (|has| |#2| (-360)))) (-2672 (((-548) $) NIL (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) 27 (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) 53 (|has| |#2| (-701)))) (-2545 (($) NIL (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) 51)) (-3298 (((-112) $) NIL (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) 15 (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#2| (-701)))) (-3312 (((-112) $) NIL (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 20 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 (((-548) $) 50 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) 41)) (-2855 (((-890) $) NIL (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#2| (-360)))) (-3932 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3453 ((|#2| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) 21)) (-4029 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) 18)) (-3402 (((-133)) NIL (|has| |#2| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#2|) $) 10) (($ (-548)) NIL (-1524 (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) 13 (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#2| (-819)))) (-3107 (($) 35 (|has| |#2| (-130)) CONST)) (-3118 (($) 38 (|has| |#2| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2214 (((-112) $ $) 26 (|has| |#2| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2234 (((-112) $ $) 58 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2290 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-548) $) NIL (|has| |#2| (-1016))) (($ $ $) 44 (|has| |#2| (-701))) (($ $ |#2|) 42 (|has| |#2| (-701))) (($ |#2| $) 43 (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-233 |#1| |#2|) (-231 |#1| |#2|) (-745) (-1172)) (T -233)) -NIL -(-231 |#1| |#2|) -((-2836 (((-548) (-619 (-1118))) 24) (((-548) (-1118)) 19)) (-2194 (((-1223) (-619 (-1118))) 29) (((-1223) (-1118)) 28)) (-2820 (((-1118)) 14)) (-2826 (((-1118) (-548) (-1118)) 16)) (-2278 (((-619 (-1118)) (-619 (-1118)) (-548) (-1118)) 25) (((-1118) (-1118) (-548) (-1118)) 23)) (-3093 (((-619 (-1118)) (-619 (-1118))) 13) (((-619 (-1118)) (-1118)) 11))) -(((-234) (-10 -7 (-15 -3093 ((-619 (-1118)) (-1118))) (-15 -3093 ((-619 (-1118)) (-619 (-1118)))) (-15 -2820 ((-1118))) (-15 -2826 ((-1118) (-548) (-1118))) (-15 -2278 ((-1118) (-1118) (-548) (-1118))) (-15 -2278 ((-619 (-1118)) (-619 (-1118)) (-548) (-1118))) (-15 -2194 ((-1223) (-1118))) (-15 -2194 ((-1223) (-619 (-1118)))) (-15 -2836 ((-548) (-1118))) (-15 -2836 ((-548) (-619 (-1118)))))) (T -234)) -((-2836 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-548)) (-5 *1 (-234)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-234)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1223)) (-5 *1 (-234)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-234)))) (-2278 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 (-1118))) (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *1 (-234)))) (-2278 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234)))) (-2826 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234)))) (-2820 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-234)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)) (-5 *3 (-1118))))) -(-10 -7 (-15 -3093 ((-619 (-1118)) (-1118))) (-15 -3093 ((-619 (-1118)) (-619 (-1118)))) (-15 -2820 ((-1118))) (-15 -2826 ((-1118) (-548) (-1118))) (-15 -2278 ((-1118) (-1118) (-548) (-1118))) (-15 -2278 ((-619 (-1118)) (-619 (-1118)) (-548) (-1118))) (-15 -2194 ((-1223) (-1118))) (-15 -2194 ((-1223) (-619 (-1118)))) (-15 -2836 ((-548) (-1118))) (-15 -2836 ((-548) (-619 (-1118))))) -((** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 16)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ (-399 (-548)) $) 23) (($ $ (-399 (-548))) NIL))) -(((-235 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-236)) (T -235)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 37)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 41)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 38)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ (-399 (-548)) $) 40) (($ $ (-399 (-548))) 39))) -(((-236) (-138)) (T -236)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-236)) (-5 *2 (-548)))) (-2153 (*1 *1 *1) (-4 *1 (-236)))) -(-13 (-282) (-38 (-399 (-548))) (-10 -8 (-15 ** ($ $ (-548))) (-15 -2153 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-282) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-701) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1272 (($ $) 57)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-2854 (($ $ $) 53 (|has| $ (-6 -4328)))) (-2846 (($ $ $) 52 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-4074 (($ $) 56)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-1619 (($ $) 55)) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 59)) (-3218 (($ $) 58)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3659 (($ $ $) 54 (|has| $ (-6 -4328)))) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-237 |#1|) (-138) (-1172)) (T -237)) -((-3724 (*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-4074 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-1619 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-2854 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172)))) (-2846 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172))))) -(-13 (-979 |t#1|) (-10 -8 (-15 -3724 (|t#1| $)) (-15 -3218 ($ $)) (-15 -1272 ($ $)) (-15 -4074 ($ $)) (-15 -1619 ($ $)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -3659 ($ $ $)) (-15 -2854 ($ $ $)) (-15 -2846 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) 10 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) NIL (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "rest" $) NIL (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3465 (($ $) NIL) (($ $ (-745)) NIL)) (-2969 (($ $) NIL (|has| |#1| (-1063)))) (-3484 (($ $) 7 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063))) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (($ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) NIL) ((|#1| $ (-548) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-745) $ "count") 16)) (-4234 (((-548) $ $) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2044 (($ (-619 |#1|)) 22)) (-2740 (((-112) $) NIL)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3659 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1831 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3743 (($ (-619 |#1|)) 17) (((-619 |#1|) $) 18) (((-832) $) 21 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 14 (|has| $ (-6 -4327))))) -(((-238 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -3743 ($ (-619 |#1|))) (-15 -3743 ((-619 |#1|) $)) (-15 -2044 ($ (-619 |#1|))) (-15 -3171 ($ $ "unique")) (-15 -3171 ($ $ "sort")) (-15 -3171 ((-745) $ "count")))) (-821)) (T -238)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-238 *3)) (-4 *3 (-821)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-238 *3)) (-4 *3 (-821)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-238 *3)) (-4 *3 (-821)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-238 *4)) (-4 *4 (-821))))) -(-13 (-640 |#1|) (-10 -8 (-15 -3743 ($ (-619 |#1|))) (-15 -3743 ((-619 |#1|) $)) (-15 -2044 ($ (-619 |#1|))) (-15 -3171 ($ $ "unique")) (-15 -3171 ($ $ "sort")) (-15 -3171 ((-745) $ "count")))) -((-2865 (((-3 (-745) "failed") |#1| |#1| (-745)) 27))) -(((-239 |#1|) (-10 -7 (-15 -2865 ((-3 (-745) "failed") |#1| |#1| (-745)))) (-13 (-701) (-360) (-10 -7 (-15 ** (|#1| |#1| (-548)))))) (T -239)) -((-2865 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-745)) (-4 *3 (-13 (-701) (-360) (-10 -7 (-15 ** (*3 *3 (-548)))))) (-5 *1 (-239 *3))))) -(-10 -7 (-15 -2865 ((-3 (-745) "failed") |#1| |#1| (-745)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-834 |#1|)) $) NIL)) (-1884 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3447 (($ $ (-619 (-548))) NIL)) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-233 (-3643 |#1|) (-745)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-233 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 (((-233 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-233 (-3643 |#1|) (-745)) (-233 (-3643 |#1|) (-745))) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 (((-233 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-233 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-240 |#1| |#2|) (-13 (-918 |#2| (-233 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) (-619 (-1135)) (-1016)) (T -240)) -((-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-240 *3 *4)) (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) -(-13 (-918 |#2| (-233 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) -((-3730 (((-112) $ $) NIL)) (-2533 (((-1223) $) 15)) (-2886 (((-180) $) 9)) (-2876 (($ (-180)) 10)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2214 (((-112) $ $) 13))) -(((-241) (-13 (-1063) (-10 -8 (-15 -2886 ((-180) $)) (-15 -2876 ($ (-180))) (-15 -2533 ((-1223) $))))) (T -241)) -((-2886 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-241)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-241)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-241))))) -(-13 (-1063) (-10 -8 (-15 -2886 ((-180) $)) (-15 -2876 ($ (-180))) (-15 -2533 ((-1223) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2264 (($ (-890)) NIL (|has| |#4| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#4| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#4| (-360)))) (-2672 (((-548) $) NIL (|has| |#4| (-819)))) (-2089 ((|#4| $ (-548) |#4|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1063))) (((-3 (-548) "failed") $) NIL (-12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063))))) (-2375 ((|#4| $) NIL (|has| |#4| (-1063))) (((-548) $) NIL (-12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063))))) (-1608 (((-2 (|:| -4035 (-663 |#4|)) (|:| |vec| (-1218 |#4|))) (-663 $) (-1218 $)) NIL (|has| |#4| (-1016))) (((-663 |#4|) (-663 $)) NIL (|has| |#4| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-2545 (($) NIL (|has| |#4| (-360)))) (-3971 ((|#4| $ (-548) |#4|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#4| $ (-548)) NIL)) (-3298 (((-112) $) NIL (|has| |#4| (-819)))) (-1934 (((-619 |#4|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3312 (((-112) $) NIL (|has| |#4| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2342 (((-619 |#4|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-3960 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#4| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#4| (-360)))) (-3932 (((-1082) $) NIL)) (-3453 ((|#4| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#4|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-4223 (((-619 |#4|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#4| $ (-548) |#4|) NIL) ((|#4| $ (-548)) 12)) (-4029 ((|#4| $ $) NIL (|has| |#4| (-1016)))) (-1957 (($ (-1218 |#4|)) NIL)) (-3402 (((-133)) NIL (|has| |#4| (-355)))) (-4050 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))))) (-3945 (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#4|) $) NIL) (((-832) $) NIL) (($ |#4|) NIL (|has| |#4| (-1063))) (($ (-548)) NIL (-1524 (-12 (|has| |#4| (-1007 (-548))) (|has| |#4| (-1063))) (|has| |#4| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#4| (-1007 (-399 (-548)))) (|has| |#4| (-1063))))) (-3835 (((-745)) NIL (|has| |#4| (-1016)))) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#4| (-819)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) CONST)) (-3296 (($ $ (-1 |#4| |#4|) (-745)) NIL (|has| |#4| (-1016))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016)))) (($ $) NIL (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2234 (((-112) $ $) NIL (-1524 (|has| |#4| (-767)) (|has| |#4| (-819))))) (-2309 (($ $ |#4|) NIL (|has| |#4| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (* (($ |#2| $) 14) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-701))) (($ |#4| $) NIL (|has| |#4| (-701))) (($ $ $) NIL (-1524 (-12 (|has| |#4| (-226)) (|has| |#4| (-1016))) (-12 (|has| |#4| (-615 (-548))) (|has| |#4| (-1016))) (|has| |#4| (-701)) (-12 (|has| |#4| (-869 (-1135))) (|has| |#4| (-1016)))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-242 |#1| |#2| |#3| |#4|) (-13 (-231 |#1| |#4|) (-622 |#2|) (-622 |#3|)) (-890) (-1016) (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-622 |#2|)) (T -242)) -NIL -(-13 (-231 |#1| |#4|) (-622 |#2|) (-622 |#3|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2264 (($ (-890)) NIL (|has| |#3| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#3| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#3| (-360)))) (-2672 (((-548) $) NIL (|has| |#3| (-819)))) (-2089 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063))) (((-3 (-548) "failed") $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063))))) (-2375 ((|#3| $) NIL (|has| |#3| (-1063))) (((-548) $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063))))) (-1608 (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-2545 (($) NIL (|has| |#3| (-360)))) (-3971 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#3| $ (-548)) NIL)) (-3298 (((-112) $) NIL (|has| |#3| (-819)))) (-1934 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3312 (((-112) $) NIL (|has| |#3| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2342 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-3960 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#3| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#3| (-360)))) (-3932 (((-1082) $) NIL)) (-3453 ((|#3| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#3|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#3|))) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4223 (((-619 |#3|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#3| $ (-548) |#3|) NIL) ((|#3| $ (-548)) 11)) (-4029 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-1957 (($ (-1218 |#3|)) NIL)) (-3402 (((-133)) NIL (|has| |#3| (-355)))) (-4050 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))))) (-3945 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#3|) $) NIL) (((-832) $) NIL) (($ |#3|) NIL (|has| |#3| (-1063))) (($ (-548)) NIL (-1524 (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063))))) (-3835 (((-745)) NIL (|has| |#3| (-1016)))) (-3548 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#3| (-819)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) CONST)) (-3296 (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2234 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2309 (($ $ |#3|) NIL (|has| |#3| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (* (($ |#2| $) 13) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ $ $) NIL (-1524 (-12 (|has| |#3| (-226)) (|has| |#3| (-1016))) (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016))) (|has| |#3| (-701)) (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-243 |#1| |#2| |#3|) (-13 (-231 |#1| |#3|) (-622 |#2|)) (-745) (-1016) (-622 |#2|)) (T -243)) -NIL -(-13 (-231 |#1| |#3|) (-622 |#2|)) -((-2919 (((-619 (-745)) $) 47) (((-619 (-745)) $ |#3|) 50)) (-3266 (((-745) $) 49) (((-745) $ |#3|) 52)) (-2896 (($ $) 65)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1672 (((-745) $ |#3|) 39) (((-745) $) 36)) (-3278 (((-1 $ (-745)) |#3|) 15) (((-1 $ (-745)) $) 77)) (-1956 ((|#4| $) 58)) (-2909 (((-112) $) 56)) (-2045 (($ $) 64)) (-2460 (($ $ (-619 (-286 $))) 97) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-619 |#3|) (-619 |#2|)) 84)) (-4050 (($ $ |#4|) NIL) (($ $ (-619 |#4|)) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) NIL) (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2930 (((-619 |#3|) $) 75)) (-2512 ((|#5| $) NIL) (((-745) $ |#4|) NIL) (((-619 (-745)) $ (-619 |#4|)) NIL) (((-745) $ |#3|) 44)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-399 (-548))) NIL) (($ $) NIL))) -(((-244 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#3| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#3| |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -1956 (|#4| |#1|)) (-15 -2909 ((-112) |#1|)) (-15 -3266 ((-745) |#1| |#3|)) (-15 -2919 ((-619 (-745)) |#1| |#3|)) (-15 -3266 ((-745) |#1|)) (-15 -2919 ((-619 (-745)) |#1|)) (-15 -2512 ((-745) |#1| |#3|)) (-15 -1672 ((-745) |#1|)) (-15 -1672 ((-745) |#1| |#3|)) (-15 -2930 ((-619 |#3|) |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#3|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -2512 ((-745) |#1| |#4|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 (|#5| |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -4050 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#4| (-745))) (-15 -4050 (|#1| |#1| (-619 |#4|))) (-15 -4050 (|#1| |#1| |#4|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-245 |#2| |#3| |#4| |#5|) (-1016) (-821) (-258 |#3|) (-767)) (T -244)) -NIL -(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#3| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#3|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#3| |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -1956 (|#4| |#1|)) (-15 -2909 ((-112) |#1|)) (-15 -3266 ((-745) |#1| |#3|)) (-15 -2919 ((-619 (-745)) |#1| |#3|)) (-15 -3266 ((-745) |#1|)) (-15 -2919 ((-619 (-745)) |#1|)) (-15 -2512 ((-745) |#1| |#3|)) (-15 -1672 ((-745) |#1|)) (-15 -1672 ((-745) |#1| |#3|)) (-15 -2930 ((-619 |#3|) |#1|)) (-15 -3278 ((-1 |#1| (-745)) |#3|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 |#4|))) (-15 -2512 ((-745) |#1| |#4|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 (|#5| |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -4050 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#4| (-745))) (-15 -4050 (|#1| |#1| (-619 |#4|))) (-15 -4050 (|#1| |#1| |#4|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2919 (((-619 (-745)) $) 212) (((-619 (-745)) $ |#2|) 210)) (-3266 (((-745) $) 211) (((-745) $ |#2|) 209)) (-2049 (((-619 |#3|) $) 108)) (-1884 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-2896 (($ $) 205)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) ((|#3| $) 133) ((|#2| $) 218)) (-1557 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-1872 (($ $) 152)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ |#3|) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-4256 (($ $ |#1| |#4| $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| |#3| (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| |#3| (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ |#2|) 215) (((-745) $) 214)) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-2036 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| |#4|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 118)) (-3904 ((|#4| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 |#4| |#4|) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-3278 (((-1 $ (-745)) |#2|) 217) (((-1 $ (-745)) $) 204 (|has| |#1| (-226)))) (-3511 (((-3 |#3| "failed") $) 121)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146)) (-1956 ((|#3| $) 207)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-2546 (((-1118) $) 9)) (-2909 (((-112) $) 208)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) 111)) (-2045 (($ $) 206)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 $)) 202 (|has| |#1| (-226))) (($ $ |#2| |#1|) 201 (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 |#1|)) 200 (|has| |#1| (-226)))) (-1566 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-4050 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37) (($ $) 236 (|has| |#1| (-226))) (($ $ (-745)) 234 (|has| |#1| (-226))) (($ $ (-1135)) 232 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 231 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 230 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 229 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-2930 (((-619 |#2|) $) 216)) (-2512 ((|#4| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127) (((-745) $ |#2|) 213)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| |#3| (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| |#3| (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ |#3|) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548)))))) (($ $) 83 (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ |#4|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33) (($ $) 235 (|has| |#1| (-226))) (($ $ (-745)) 233 (|has| |#1| (-226))) (($ $ (-1135)) 228 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 227 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 226 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 225 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-245 |#1| |#2| |#3| |#4|) (-138) (-1016) (-821) (-258 |t#2|) (-767)) (T -245)) -((-3278 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *4 *3 *5 *6)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4)))) (-1672 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2512 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2919 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) (-3266 (*1 *2 *1 *3) (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-112)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-245 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-4 *2 (-258 *4)))) (-2045 (*1 *1 *1) (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-258 *3)) (-4 *5 (-767)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-258 *3)) (-4 *5 (-767)))) (-3278 (*1 *2 *1) (-12 (-4 *3 (-226)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *3 *4 *5 *6))))) -(-13 (-918 |t#1| |t#4| |t#3|) (-224 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -3278 ((-1 $ (-745)) |t#2|)) (-15 -2930 ((-619 |t#2|) $)) (-15 -1672 ((-745) $ |t#2|)) (-15 -1672 ((-745) $)) (-15 -2512 ((-745) $ |t#2|)) (-15 -2919 ((-619 (-745)) $)) (-15 -3266 ((-745) $)) (-15 -2919 ((-619 (-745)) $ |t#2|)) (-15 -3266 ((-745) $ |t#2|)) (-15 -2909 ((-112) $)) (-15 -1956 (|t#3| $)) (-15 -2045 ($ $)) (-15 -2896 ($ $)) (IF (|has| |t#1| (-226)) (PROGN (-6 (-504 |t#2| |t#1|)) (-6 (-504 |t#2| $)) (-6 (-301 $)) (-15 -3278 ((-1 $ (-745)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) ((-224 |#1|) . T) ((-226) |has| |#1| (-226)) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-301 $) . T) ((-318 |#1| |#4|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443))) ((-504 |#2| |#1|) |has| |#1| (-226)) ((-504 |#2| $) |has| |#1| (-226)) ((-504 |#3| |#1|) . T) ((-504 |#3| $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-869 |#3|) . T) ((-855 (-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) ((-918 |#1| |#4| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1007 |#2|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2995 ((|#1| $) 54)) (-2088 ((|#1| $) 44)) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-2048 (($ $) 60)) (-3499 (($ $) 48)) (-2043 ((|#1| |#1| $) 46)) (-2032 ((|#1| $) 45)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3198 (((-745) $) 61)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2974 ((|#1| |#1| $) 52)) (-2963 ((|#1| |#1| $) 51)) (-2539 (($ |#1| $) 40)) (-3926 (((-745) $) 55)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2035 ((|#1| $) 62)) (-2952 ((|#1| $) 50)) (-2941 ((|#1| $) 49)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-2071 ((|#1| |#1| $) 58)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2060 ((|#1| $) 59)) (-3006 (($) 57) (($ (-619 |#1|)) 56)) (-3045 (((-745) $) 43)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2985 ((|#1| $) 53)) (-1368 (($ (-619 |#1|)) 42)) (-2025 ((|#1| $) 63)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-246 |#1|) (-138) (-1172)) (T -246)) -((-3006 (*1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-246 *3)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-246 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2974 (*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2963 (*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(-13 (-1083 |t#1|) (-964 |t#1|) (-10 -8 (-15 -3006 ($)) (-15 -3006 ($ (-619 |t#1|))) (-15 -3926 ((-745) $)) (-15 -2995 (|t#1| $)) (-15 -2985 (|t#1| $)) (-15 -2974 (|t#1| |t#1| $)) (-15 -2963 (|t#1| |t#1| $)) (-15 -2952 (|t#1| $)) (-15 -2941 (|t#1| $)) (-15 -3499 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-964 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1083 |#1|) . T) ((-1172) . T)) -((-3016 (((-1 (-912 (-218)) (-218) (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))) 139)) (-1464 (((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371))) 160) (((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 158) (((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 163) (((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 159) (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 150) (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 149) (((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371))) 129) (((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255))) 127) (((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371))) 128) (((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255))) 125)) (-1419 (((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371))) 162) (((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 161) (((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 165) (((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 164) (((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371))) 152) (((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255))) 151) (((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371))) 135) (((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255))) 134) (((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371))) 133) (((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255))) 132) (((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371))) 100) (((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255))) 99) (((-1219) (-1 (-218) (-218)) (-1058 (-371))) 96) (((-1219) (-1 (-218) (-218)) (-1058 (-371)) (-619 (-255))) 95))) -(((-247) (-10 -7 (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -3016 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218) (-218)))))) (T -247)) -((-3016 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218) (-218))) (-5 *3 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *2 (-1219)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *2 (-1219)) (-5 *1 (-247)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247))))) -(-10 -7 (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-1 (-218) (-218)) (-1058 (-371)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 (-1 (-218) (-218))) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-371)) (-1058 (-371)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 (-1 (-218) (-218) (-218))) (-1058 (-371)) (-1058 (-371)))) (-15 -3016 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))))) -((-1419 (((-1219) (-286 |#2|) (-1135) (-1135) (-619 (-255))) 96))) -(((-248 |#1| |#2|) (-10 -7 (-15 -1419 ((-1219) (-286 |#2|) (-1135) (-1135) (-619 (-255))))) (-13 (-540) (-821) (-1007 (-548))) (-422 |#1|)) (T -248)) -((-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-1135)) (-5 *5 (-619 (-255))) (-4 *7 (-422 *6)) (-4 *6 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-1219)) (-5 *1 (-248 *6 *7))))) -(-10 -7 (-15 -1419 ((-1219) (-286 |#2|) (-1135) (-1135) (-619 (-255))))) -((-3048 (((-548) (-548)) 50)) (-3059 (((-548) (-548)) 51)) (-3070 (((-218) (-218)) 52)) (-3036 (((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218))) 49)) (-3026 (((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)) (-112)) 47))) -(((-249) (-10 -7 (-15 -3026 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)) (-112))) (-15 -3036 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3048 ((-548) (-548))) (-15 -3059 ((-548) (-548))) (-15 -3070 ((-218) (-218))))) (T -249)) -((-3070 (*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-249)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249)))) (-3048 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249)))) (-3036 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) (-5 *2 (-1220)) (-5 *1 (-249)))) (-3026 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) (-5 *5 (-112)) (-5 *2 (-1220)) (-5 *1 (-249))))) -(-10 -7 (-15 -3026 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)) (-112))) (-15 -3036 ((-1220) (-1 (-166 (-218)) (-166 (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3048 ((-548) (-548))) (-15 -3059 ((-548) (-548))) (-15 -3070 ((-218) (-218)))) -((-3743 (((-1056 (-371)) (-1056 (-308 |#1|))) 16))) -(((-250 |#1|) (-10 -7 (-15 -3743 ((-1056 (-371)) (-1056 (-308 |#1|))))) (-13 (-821) (-540) (-593 (-371)))) (T -250)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-1056 (-308 *4))) (-4 *4 (-13 (-821) (-540) (-593 (-371)))) (-5 *2 (-1056 (-371))) (-5 *1 (-250 *4))))) -(-10 -7 (-15 -3743 ((-1056 (-371)) (-1056 (-308 |#1|))))) -((-1464 (((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371))) 71) (((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 70) (((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371))) 61) (((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 60) (((-1095 (-218)) (-848 |#1|) (-1056 (-371))) 52) (((-1095 (-218)) (-848 |#1|) (-1056 (-371)) (-619 (-255))) 51)) (-1419 (((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371))) 74) (((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 73) (((-1220) |#1| (-1056 (-371)) (-1056 (-371))) 64) (((-1220) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255))) 63) (((-1220) (-848 |#1|) (-1056 (-371))) 56) (((-1220) (-848 |#1|) (-1056 (-371)) (-619 (-255))) 55) (((-1219) (-846 |#1|) (-1056 (-371))) 43) (((-1219) (-846 |#1|) (-1056 (-371)) (-619 (-255))) 42) (((-1219) |#1| (-1056 (-371))) 35) (((-1219) |#1| (-1056 (-371)) (-619 (-255))) 34))) -(((-251 |#1|) (-10 -7 (-15 -1419 ((-1219) |#1| (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) |#1| (-1056 (-371)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371))))) (-13 (-593 (-524)) (-1063))) (T -251)) -((-1464 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *5)))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *5)))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *6)))) (-1464 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1464 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1419 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1220)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *5)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *5)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-371))) (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) (-5 *1 (-251 *5)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) (-5 *1 (-251 *6)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1219)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063)))))) -(-10 -7 (-15 -1419 ((-1219) |#1| (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) |#1| (-1056 (-371)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1219) (-846 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-848 |#1|) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-848 |#1|) (-1056 (-371)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) |#1| (-1056 (-371)) (-1056 (-371)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1419 ((-1220) (-851 |#1|) (-1056 (-371)) (-1056 (-371)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371)) (-619 (-255)))) (-15 -1464 ((-1095 (-218)) (-851 |#1|) (-1056 (-371)) (-1056 (-371))))) -((-1419 (((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)) (-619 (-255))) 23) (((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218))) 24) (((-1219) (-619 (-912 (-218))) (-619 (-255))) 16) (((-1219) (-619 (-912 (-218)))) 17) (((-1219) (-619 (-218)) (-619 (-218)) (-619 (-255))) 20) (((-1219) (-619 (-218)) (-619 (-218))) 21))) -(((-252) (-10 -7 (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)) (-619 (-255)))) (-15 -1419 ((-1219) (-619 (-912 (-218))))) (-15 -1419 ((-1219) (-619 (-912 (-218))) (-619 (-255)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)) (-619 (-255)))))) (T -252)) -((-1419 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1220)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-252)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *2 (-1219)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-252)))) (-1419 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1219)) (-5 *1 (-252))))) -(-10 -7 (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1219) (-619 (-218)) (-619 (-218)) (-619 (-255)))) (-15 -1419 ((-1219) (-619 (-912 (-218))))) (-15 -1419 ((-1219) (-619 (-912 (-218))) (-619 (-255)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)))) (-15 -1419 ((-1220) (-619 (-218)) (-619 (-218)) (-619 (-218)) (-619 (-255))))) -((-3069 (((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) (-619 (-255)) (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) 26)) (-3221 (((-890) (-619 (-255)) (-890)) 53)) (-3207 (((-890) (-619 (-255)) (-890)) 52)) (-1841 (((-619 (-371)) (-619 (-255)) (-619 (-371))) 69)) (-3253 (((-371) (-619 (-255)) (-371)) 58)) (-3242 (((-890) (-619 (-255)) (-890)) 54)) (-3169 (((-112) (-619 (-255)) (-112)) 28)) (-1560 (((-1118) (-619 (-255)) (-1118)) 20)) (-3159 (((-1118) (-619 (-255)) (-1118)) 27)) (-3232 (((-1095 (-218)) (-619 (-255))) 47)) (-1558 (((-619 (-1058 (-371))) (-619 (-255)) (-619 (-1058 (-371)))) 41)) (-3182 (((-843) (-619 (-255)) (-843)) 33)) (-3194 (((-843) (-619 (-255)) (-843)) 34)) (-1505 (((-1 (-912 (-218)) (-912 (-218))) (-619 (-255)) (-1 (-912 (-218)) (-912 (-218)))) 64)) (-3148 (((-112) (-619 (-255)) (-112)) 16)) (-1511 (((-112) (-619 (-255)) (-112)) 15))) -(((-253) (-10 -7 (-15 -1511 ((-112) (-619 (-255)) (-112))) (-15 -3148 ((-112) (-619 (-255)) (-112))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) (-619 (-255)) (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ((-1118) (-619 (-255)) (-1118))) (-15 -3159 ((-1118) (-619 (-255)) (-1118))) (-15 -3169 ((-112) (-619 (-255)) (-112))) (-15 -3182 ((-843) (-619 (-255)) (-843))) (-15 -3194 ((-843) (-619 (-255)) (-843))) (-15 -1558 ((-619 (-1058 (-371))) (-619 (-255)) (-619 (-1058 (-371))))) (-15 -3207 ((-890) (-619 (-255)) (-890))) (-15 -3221 ((-890) (-619 (-255)) (-890))) (-15 -3232 ((-1095 (-218)) (-619 (-255)))) (-15 -3242 ((-890) (-619 (-255)) (-890))) (-15 -3253 ((-371) (-619 (-255)) (-371))) (-15 -1505 ((-1 (-912 (-218)) (-912 (-218))) (-619 (-255)) (-1 (-912 (-218)) (-912 (-218))))) (-15 -1841 ((-619 (-371)) (-619 (-255)) (-619 (-371)))))) (T -253)) -((-1841 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-371))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1505 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3253 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3242 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-253)))) (-3221 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3207 (*1 *2 *3 *2) (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1558 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3194 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3182 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3169 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3159 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1560 (*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-3148 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) -(-10 -7 (-15 -1511 ((-112) (-619 (-255)) (-112))) (-15 -3148 ((-112) (-619 (-255)) (-112))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) (-619 (-255)) (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ((-1118) (-619 (-255)) (-1118))) (-15 -3159 ((-1118) (-619 (-255)) (-1118))) (-15 -3169 ((-112) (-619 (-255)) (-112))) (-15 -3182 ((-843) (-619 (-255)) (-843))) (-15 -3194 ((-843) (-619 (-255)) (-843))) (-15 -1558 ((-619 (-1058 (-371))) (-619 (-255)) (-619 (-1058 (-371))))) (-15 -3207 ((-890) (-619 (-255)) (-890))) (-15 -3221 ((-890) (-619 (-255)) (-890))) (-15 -3232 ((-1095 (-218)) (-619 (-255)))) (-15 -3242 ((-890) (-619 (-255)) (-890))) (-15 -3253 ((-371) (-619 (-255)) (-371))) (-15 -1505 ((-1 (-912 (-218)) (-912 (-218))) (-619 (-255)) (-1 (-912 (-218)) (-912 (-218))))) (-15 -1841 ((-619 (-371)) (-619 (-255)) (-619 (-371))))) -((-3366 (((-3 |#1| "failed") (-619 (-255)) (-1135)) 17))) -(((-254 |#1|) (-10 -7 (-15 -3366 ((-3 |#1| "failed") (-619 (-255)) (-1135)))) (-1172)) (T -254)) -((-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *1 (-254 *2)) (-4 *2 (-1172))))) -(-10 -7 (-15 -3366 ((-3 |#1| "failed") (-619 (-255)) (-1135)))) -((-3730 (((-112) $ $) NIL)) (-3069 (($ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) 15)) (-3221 (($ (-890)) 76)) (-3207 (($ (-890)) 75)) (-2265 (($ (-619 (-371))) 82)) (-3253 (($ (-371)) 58)) (-3242 (($ (-890)) 77)) (-3169 (($ (-112)) 23)) (-1560 (($ (-1118)) 18)) (-3159 (($ (-1118)) 19)) (-3232 (($ (-1095 (-218))) 71)) (-1558 (($ (-619 (-1058 (-371)))) 67)) (-3094 (($ (-619 (-1058 (-371)))) 59) (($ (-619 (-1058 (-399 (-548))))) 66)) (-3128 (($ (-371)) 29) (($ (-843)) 33)) (-3080 (((-112) (-619 $) (-1135)) 91)) (-3366 (((-3 (-52) "failed") (-619 $) (-1135)) 93)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3117 (($ (-371)) 34) (($ (-843)) 35)) (-2447 (($ (-1 (-912 (-218)) (-912 (-218)))) 57)) (-1505 (($ (-1 (-912 (-218)) (-912 (-218)))) 78)) (-3105 (($ (-1 (-218) (-218))) 39) (($ (-1 (-218) (-218) (-218))) 43) (($ (-1 (-218) (-218) (-218) (-218))) 47)) (-3743 (((-832) $) 87)) (-3138 (($ (-112)) 24) (($ (-619 (-1058 (-371)))) 52)) (-1511 (($ (-112)) 25)) (-2214 (((-112) $ $) 89))) -(((-255) (-13 (-1063) (-10 -8 (-15 -1511 ($ (-112))) (-15 -3138 ($ (-112))) (-15 -3069 ($ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ($ (-1118))) (-15 -3159 ($ (-1118))) (-15 -3169 ($ (-112))) (-15 -3138 ($ (-619 (-1058 (-371))))) (-15 -2447 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -3128 ($ (-371))) (-15 -3128 ($ (-843))) (-15 -3117 ($ (-371))) (-15 -3117 ($ (-843))) (-15 -3105 ($ (-1 (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218) (-218)))) (-15 -3253 ($ (-371))) (-15 -3094 ($ (-619 (-1058 (-371))))) (-15 -3094 ($ (-619 (-1058 (-399 (-548)))))) (-15 -1558 ($ (-619 (-1058 (-371))))) (-15 -3232 ($ (-1095 (-218)))) (-15 -3207 ($ (-890))) (-15 -3221 ($ (-890))) (-15 -3242 ($ (-890))) (-15 -1505 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -2265 ($ (-619 (-371)))) (-15 -3366 ((-3 (-52) "failed") (-619 $) (-1135))) (-15 -3080 ((-112) (-619 $) (-1135)))))) (T -255)) -((-1511 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *1 (-255)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) (-2447 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) (-3117 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255)))) (-3117 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-255)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218) (-218))) (-5 *1 (-255)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-255)))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-399 (-548))))) (-5 *1 (-255)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-255)))) (-3207 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255)))) (-3221 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-255)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-52)) (-5 *1 (-255)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-112)) (-5 *1 (-255))))) -(-13 (-1063) (-10 -8 (-15 -1511 ($ (-112))) (-15 -3138 ($ (-112))) (-15 -3069 ($ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -1560 ($ (-1118))) (-15 -3159 ($ (-1118))) (-15 -3169 ($ (-112))) (-15 -3138 ($ (-619 (-1058 (-371))))) (-15 -2447 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -3128 ($ (-371))) (-15 -3128 ($ (-843))) (-15 -3117 ($ (-371))) (-15 -3117 ($ (-843))) (-15 -3105 ($ (-1 (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218)))) (-15 -3105 ($ (-1 (-218) (-218) (-218) (-218)))) (-15 -3253 ($ (-371))) (-15 -3094 ($ (-619 (-1058 (-371))))) (-15 -3094 ($ (-619 (-1058 (-399 (-548)))))) (-15 -1558 ($ (-619 (-1058 (-371))))) (-15 -3232 ($ (-1095 (-218)))) (-15 -3207 ($ (-890))) (-15 -3221 ($ (-890))) (-15 -3242 ($ (-890))) (-15 -1505 ($ (-1 (-912 (-218)) (-912 (-218))))) (-15 -2265 ($ (-619 (-371)))) (-15 -3366 ((-3 (-52) "failed") (-619 $) (-1135))) (-15 -3080 ((-112) (-619 $) (-1135))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2919 (((-619 (-745)) $) NIL) (((-619 (-745)) $ |#2|) NIL)) (-3266 (((-745) $) NIL) (((-745) $ |#2|) NIL)) (-2049 (((-619 |#3|) $) NIL)) (-1884 (((-1131 $) $ |#3|) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 |#3|)) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2896 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1087 |#1| |#2|) "failed") $) 21)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1087 |#1| |#2|) $) NIL)) (-1557 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ |#3|) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 |#3|) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))))) (-1672 (((-745) $ |#2|) NIL) (((-745) $) 10)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) |#3|) NIL) (($ (-1131 $) |#3|) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) NIL)) (-3904 (((-520 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 |#3|) (-520 |#3|)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (((-1 $ (-745)) |#2|) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-226)))) (-3511 (((-3 |#3| "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-1956 ((|#3| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2909 (((-112) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) NIL)) (-2045 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-619 |#3|) (-619 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-619 |#3|) (-619 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 $)) NIL (|has| |#1| (-226))) (($ $ |#2| |#1|) NIL (|has| |#1| (-226))) (($ $ (-619 |#2|) (-619 |#1|)) NIL (|has| |#1| (-226)))) (-1566 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-4050 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2930 (((-619 |#2|) $) NIL)) (-2512 (((-520 |#3|) $) NIL) (((-745) $ |#3|) NIL) (((-619 (-745)) $ (-619 |#3|)) NIL) (((-745) $ |#2|) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ |#3|) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1087 |#1| |#2|)) 30) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ |#3|) NIL) (($ $ (-619 |#3|)) NIL) (($ $ |#3| (-745)) NIL) (($ $ (-619 |#3|) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-256 |#1| |#2| |#3|) (-13 (-245 |#1| |#2| |#3| (-520 |#3|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821) (-258 |#2|)) (T -256)) -NIL -(-13 (-245 |#1| |#2| |#3| (-520 |#3|)) (-1007 (-1087 |#1| |#2|))) -((-3266 (((-745) $) 30)) (-2441 (((-3 |#2| "failed") $) 17)) (-2375 ((|#2| $) 27)) (-4050 (($ $) 12) (($ $ (-745)) 15)) (-3743 (((-832) $) 26) (($ |#2|) 10)) (-2214 (((-112) $ $) 20)) (-2234 (((-112) $ $) 29))) -(((-257 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -3266 ((-745) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-258 |#2|) (-821)) (T -257)) -NIL -(-10 -8 (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -3266 ((-745) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3266 (((-745) $) 22)) (-2754 ((|#1| $) 23)) (-2441 (((-3 |#1| "failed") $) 27)) (-2375 ((|#1| $) 26)) (-1672 (((-745) $) 24)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-3278 (($ |#1| (-745)) 25)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $) 21) (($ $ (-745)) 20)) (-3743 (((-832) $) 11) (($ |#1|) 28)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) -(((-258 |#1|) (-138) (-821)) (T -258)) -((-3743 (*1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-3278 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-258 *3)) (-4 *3 (-821))))) -(-13 (-821) (-1007 |t#1|) (-10 -8 (-15 -3278 ($ |t#1| (-745))) (-15 -1672 ((-745) $)) (-15 -2754 (|t#1| $)) (-15 -3266 ((-745) $)) (-15 -4050 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3743 ($ |t#1|)))) -(((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1007 |#1|) . T) ((-1063) . T)) -((-2049 (((-619 (-1135)) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 41)) (-3065 (((-619 (-1135)) (-308 (-218)) (-745)) 80)) (-2163 (((-3 (-308 (-218)) "failed") (-308 (-218))) 51)) (-2174 (((-308 (-218)) (-308 (-218))) 67)) (-2151 (((-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 26)) (-2183 (((-112) (-619 (-308 (-218)))) 84)) (-2221 (((-112) (-308 (-218))) 24)) (-2238 (((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) 106)) (-2211 (((-619 (-308 (-218))) (-619 (-308 (-218)))) 88)) (-2205 (((-619 (-308 (-218))) (-619 (-308 (-218)))) 86)) (-2193 (((-663 (-218)) (-619 (-308 (-218))) (-745)) 95)) (-2474 (((-112) (-308 (-218))) 20) (((-112) (-619 (-308 (-218)))) 85)) (-2138 (((-619 (-218)) (-619 (-814 (-218))) (-218)) 14)) (-1881 (((-371) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 101)) (-2230 (((-1004) (-1135) (-1004)) 34))) -(((-259) (-10 -7 (-15 -2138 ((-619 (-218)) (-619 (-814 (-218))) (-218))) (-15 -2151 ((-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -2163 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -2174 ((-308 (-218)) (-308 (-218)))) (-15 -2183 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-308 (-218)))) (-15 -2193 ((-663 (-218)) (-619 (-308 (-218))) (-745))) (-15 -2205 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2211 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2221 ((-112) (-308 (-218)))) (-15 -2049 ((-619 (-1135)) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3065 ((-619 (-1135)) (-308 (-218)) (-745))) (-15 -2230 ((-1004) (-1135) (-1004))) (-15 -1881 ((-371) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -2238 ((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))))))) (T -259)) -((-2238 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) (-5 *2 (-619 (-1118))) (-5 *1 (-259)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-371)) (-5 *1 (-259)))) (-2230 (*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-259)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-259)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-619 (-1135))) (-5 *1 (-259)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *4 (-745)) (-5 *2 (-663 (-218))) (-5 *1 (-259)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-259)))) (-2163 (*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-259)))) (-2151 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *1 (-259)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-814 (-218)))) (-5 *4 (-218)) (-5 *2 (-619 *4)) (-5 *1 (-259))))) -(-10 -7 (-15 -2138 ((-619 (-218)) (-619 (-814 (-218))) (-218))) (-15 -2151 ((-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -2163 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -2174 ((-308 (-218)) (-308 (-218)))) (-15 -2183 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-619 (-308 (-218))))) (-15 -2474 ((-112) (-308 (-218)))) (-15 -2193 ((-663 (-218)) (-619 (-308 (-218))) (-745))) (-15 -2205 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2211 ((-619 (-308 (-218))) (-619 (-308 (-218))))) (-15 -2221 ((-112) (-308 (-218)))) (-15 -2049 ((-619 (-1135)) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3065 ((-619 (-1135)) (-308 (-218)) (-745))) (-15 -2230 ((-1004) (-1135) (-1004))) (-15 -1881 ((-371) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -2238 ((-619 (-1118)) (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))))) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 44)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 26) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +(-810) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 58) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 54)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 34) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 36)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-260) (-810)) (T -260)) NIL (-810) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 58) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 54)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 34) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 36)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 76) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 73)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 44) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 55)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-261) (-810)) (T -261)) NIL (-810) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 76) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 73)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 44) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 55)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 50)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 31) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-262) (-810)) (T -262)) NIL (-810) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 50)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 31) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 50)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 28) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-263) (-810)) (T -263)) NIL (-810) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 50)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 28) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 73)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 28) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-264) (-810)) (T -264)) NIL (-810) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 73)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 28) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) +((-3821 (((-112) $ $) NIL)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 77)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 25) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-2371 (((-112) $ $) NIL))) (((-265) (-810)) (T -265)) NIL (-810) -((-3730 (((-112) $ $) NIL)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 77)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 25) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-266) (-810)) (T -266)) -NIL -(-810) -((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2259 (((-619 (-548)) $) 19)) (-2512 (((-745) $) 17)) (-3743 (((-832) $) 23) (($ (-619 (-548))) 15)) (-2248 (($ (-745)) 20)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 9)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 11))) -(((-267) (-13 (-821) (-10 -8 (-15 -3743 ($ (-619 (-548)))) (-15 -2512 ((-745) $)) (-15 -2259 ((-619 (-548)) $)) (-15 -2248 ($ (-745)))))) (T -267)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-267)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-267))))) -(-13 (-821) (-10 -8 (-15 -3743 ($ (-619 (-548)))) (-15 -2512 ((-745) $)) (-15 -2259 ((-619 (-548)) $)) (-15 -2248 ($ (-745))))) -((-2074 ((|#2| |#2|) 77)) (-1940 ((|#2| |#2|) 65)) (-2558 (((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-2054 ((|#2| |#2|) 75)) (-1918 ((|#2| |#2|) 63)) (-2098 ((|#2| |#2|) 79)) (-1963 ((|#2| |#2|) 67)) (-1365 ((|#2|) 46)) (-1402 (((-114) (-114)) 95)) (-3496 ((|#2| |#2|) 61)) (-2568 (((-112) |#2|) 134)) (-2449 ((|#2| |#2|) 181)) (-2327 ((|#2| |#2|) 157)) (-2276 ((|#2|) 59)) (-2268 ((|#2|) 58)) (-2426 ((|#2| |#2|) 177)) (-2306 ((|#2| |#2|) 153)) (-2472 ((|#2| |#2|) 185)) (-2345 ((|#2| |#2|) 161)) (-2296 ((|#2| |#2|) 149)) (-2287 ((|#2| |#2|) 151)) (-2482 ((|#2| |#2|) 187)) (-2356 ((|#2| |#2|) 163)) (-2461 ((|#2| |#2|) 183)) (-2336 ((|#2| |#2|) 159)) (-2436 ((|#2| |#2|) 179)) (-2317 ((|#2| |#2|) 155)) (-2513 ((|#2| |#2|) 193)) (-2385 ((|#2| |#2|) 169)) (-2494 ((|#2| |#2|) 189)) (-2365 ((|#2| |#2|) 165)) (-2535 ((|#2| |#2|) 197)) (-2407 ((|#2| |#2|) 173)) (-2548 ((|#2| |#2|) 199)) (-2417 ((|#2| |#2|) 175)) (-2523 ((|#2| |#2|) 195)) (-2397 ((|#2| |#2|) 171)) (-2504 ((|#2| |#2|) 191)) (-2374 ((|#2| |#2|) 167)) (-2458 ((|#2| |#2|) 62)) (-2110 ((|#2| |#2|) 80)) (-1973 ((|#2| |#2|) 68)) (-2086 ((|#2| |#2|) 78)) (-1952 ((|#2| |#2|) 66)) (-2065 ((|#2| |#2|) 76)) (-1929 ((|#2| |#2|) 64)) (-1392 (((-112) (-114)) 93)) (-2145 ((|#2| |#2|) 83)) (-2006 ((|#2| |#2|) 71)) (-2122 ((|#2| |#2|) 81)) (-1986 ((|#2| |#2|) 69)) (-2170 ((|#2| |#2|) 85)) (-2029 ((|#2| |#2|) 73)) (-4026 ((|#2| |#2|) 86)) (-2040 ((|#2| |#2|) 74)) (-2158 ((|#2| |#2|) 84)) (-2017 ((|#2| |#2|) 72)) (-2132 ((|#2| |#2|) 82)) (-1996 ((|#2| |#2|) 70))) -(((-268 |#1| |#2|) (-10 -7 (-15 -2458 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -1940 (|#2| |#2|)) (-15 -1952 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -1996 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2040 (|#2| |#2|)) (-15 -2054 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2074 (|#2| |#2|)) (-15 -2086 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2122 (|#2| |#2|)) (-15 -2132 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -1365 (|#2|)) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -2268 (|#2|)) (-15 -2276 (|#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2436 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2504 (|#2| |#2|)) (-15 -2513 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2558 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2568 ((-112) |#2|))) (-13 (-821) (-540)) (-13 (-422 |#1|) (-971))) (T -268)) -((-2568 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-268 *4 *3)) (-4 *3 (-13 (-422 *4) (-971))))) (-2558 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-422 *4) (-971))) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-268 *4 *2)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2513 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2494 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2482 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2449 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2436 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2276 (*1 *2) (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) (-4 *3 (-13 (-821) (-540))))) (-2268 (*1 *2) (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) (-4 *3 (-13 (-821) (-540))))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *4)) (-4 *4 (-13 (-422 *3) (-971))))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-268 *4 *5)) (-4 *5 (-13 (-422 *4) (-971))))) (-1365 (*1 *2) (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) (-4 *3 (-13 (-821) (-540))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2132 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-422 *3) (-971)))))) -(-10 -7 (-15 -2458 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -1940 (|#2| |#2|)) (-15 -1952 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)) (-15 -1973 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -1996 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2029 (|#2| |#2|)) (-15 -2040 (|#2| |#2|)) (-15 -2054 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2074 (|#2| |#2|)) (-15 -2086 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2122 (|#2| |#2|)) (-15 -2132 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -1365 (|#2|)) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -2268 (|#2|)) (-15 -2276 (|#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2436 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2482 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2504 (|#2| |#2|)) (-15 -2513 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -2558 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2568 ((-112) |#2|))) -((-2597 (((-3 |#2| "failed") (-619 (-591 |#2|)) |#2| (-1135)) 135)) (-2616 ((|#2| (-399 (-548)) |#2|) 51)) (-2606 ((|#2| |#2| (-591 |#2|)) 128)) (-2577 (((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-591 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135)) 127)) (-2586 ((|#2| |#2| (-1135)) 20) ((|#2| |#2|) 23)) (-3711 ((|#2| |#2| (-1135)) 141) ((|#2| |#2|) 139))) -(((-269 |#1| |#2|) (-10 -7 (-15 -3711 (|#2| |#2|)) (-15 -3711 (|#2| |#2| (-1135))) (-15 -2577 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-591 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1135))) (-15 -2597 ((-3 |#2| "failed") (-619 (-591 |#2|)) |#2| (-1135))) (-15 -2606 (|#2| |#2| (-591 |#2|))) (-15 -2616 (|#2| (-399 (-548)) |#2|))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -269)) -((-2616 (*1 *2 *3 *2) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2606 (*1 *2 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)))) (-2597 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-1135)) (-4 *2 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *5 *2)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-619 (-591 *3))) (|:| |vals| (-619 *3)))) (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-3711 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) -(-10 -7 (-15 -3711 (|#2| |#2|)) (-15 -3711 (|#2| |#2| (-1135))) (-15 -2577 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-591 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1135))) (-15 -2597 ((-3 |#2| "failed") (-619 (-591 |#2|)) |#2| (-1135))) (-15 -2606 (|#2| |#2| (-591 |#2|))) (-15 -2616 (|#2| (-399 (-548)) |#2|))) -((-1798 (((-3 |#3| "failed") |#3|) 110)) (-2074 ((|#3| |#3|) 131)) (-1694 (((-3 |#3| "failed") |#3|) 82)) (-1940 ((|#3| |#3|) 121)) (-1780 (((-3 |#3| "failed") |#3|) 58)) (-2054 ((|#3| |#3|) 129)) (-1678 (((-3 |#3| "failed") |#3|) 46)) (-1918 ((|#3| |#3|) 119)) (-1819 (((-3 |#3| "failed") |#3|) 112)) (-2098 ((|#3| |#3|) 133)) (-1708 (((-3 |#3| "failed") |#3|) 84)) (-1963 ((|#3| |#3|) 123)) (-1654 (((-3 |#3| "failed") |#3| (-745)) 36)) (-1670 (((-3 |#3| "failed") |#3|) 74)) (-3496 ((|#3| |#3|) 118)) (-1663 (((-3 |#3| "failed") |#3|) 44)) (-2458 ((|#3| |#3|) 117)) (-1829 (((-3 |#3| "failed") |#3|) 113)) (-2110 ((|#3| |#3|) 134)) (-1717 (((-3 |#3| "failed") |#3|) 85)) (-1973 ((|#3| |#3|) 124)) (-1808 (((-3 |#3| "failed") |#3|) 111)) (-2086 ((|#3| |#3|) 132)) (-1700 (((-3 |#3| "failed") |#3|) 83)) (-1952 ((|#3| |#3|) 122)) (-1788 (((-3 |#3| "failed") |#3|) 60)) (-2065 ((|#3| |#3|) 130)) (-1686 (((-3 |#3| "failed") |#3|) 48)) (-1929 ((|#3| |#3|) 120)) (-1855 (((-3 |#3| "failed") |#3|) 66)) (-2145 ((|#3| |#3|) 137)) (-1746 (((-3 |#3| "failed") |#3|) 104)) (-2006 ((|#3| |#3|) 142)) (-1837 (((-3 |#3| "failed") |#3|) 62)) (-2122 ((|#3| |#3|) 135)) (-1726 (((-3 |#3| "failed") |#3|) 50)) (-1986 ((|#3| |#3|) 125)) (-1874 (((-3 |#3| "failed") |#3|) 70)) (-2170 ((|#3| |#3|) 139)) (-1764 (((-3 |#3| "failed") |#3|) 54)) (-2029 ((|#3| |#3|) 127)) (-1883 (((-3 |#3| "failed") |#3|) 72)) (-4026 ((|#3| |#3|) 140)) (-1772 (((-3 |#3| "failed") |#3|) 56)) (-2040 ((|#3| |#3|) 128)) (-1864 (((-3 |#3| "failed") |#3|) 68)) (-2158 ((|#3| |#3|) 138)) (-1755 (((-3 |#3| "failed") |#3|) 107)) (-2017 ((|#3| |#3|) 143)) (-1846 (((-3 |#3| "failed") |#3|) 64)) (-2132 ((|#3| |#3|) 136)) (-1736 (((-3 |#3| "failed") |#3|) 52)) (-1996 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-399 (-548))) 40 (|has| |#1| (-355))))) -(((-270 |#1| |#2| |#3|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) (-38 (-399 (-548))) (-1209 |#1|) (-1180 |#1| |#2|)) (T -270)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) (-4 *5 (-1209 *4)) (-5 *1 (-270 *4 *5 *2)) (-4 *2 (-1180 *4 *5)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2132 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4))))) -(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) -((-1798 (((-3 |#3| "failed") |#3|) 66)) (-2074 ((|#3| |#3|) 129)) (-1694 (((-3 |#3| "failed") |#3|) 50)) (-1940 ((|#3| |#3|) 117)) (-1780 (((-3 |#3| "failed") |#3|) 62)) (-2054 ((|#3| |#3|) 127)) (-1678 (((-3 |#3| "failed") |#3|) 46)) (-1918 ((|#3| |#3|) 115)) (-1819 (((-3 |#3| "failed") |#3|) 70)) (-2098 ((|#3| |#3|) 131)) (-1708 (((-3 |#3| "failed") |#3|) 54)) (-1963 ((|#3| |#3|) 119)) (-1654 (((-3 |#3| "failed") |#3| (-745)) 35)) (-1670 (((-3 |#3| "failed") |#3|) 44)) (-3496 ((|#3| |#3|) 104)) (-1663 (((-3 |#3| "failed") |#3|) 42)) (-2458 ((|#3| |#3|) 114)) (-1829 (((-3 |#3| "failed") |#3|) 72)) (-2110 ((|#3| |#3|) 132)) (-1717 (((-3 |#3| "failed") |#3|) 56)) (-1973 ((|#3| |#3|) 120)) (-1808 (((-3 |#3| "failed") |#3|) 68)) (-2086 ((|#3| |#3|) 130)) (-1700 (((-3 |#3| "failed") |#3|) 52)) (-1952 ((|#3| |#3|) 118)) (-1788 (((-3 |#3| "failed") |#3|) 64)) (-2065 ((|#3| |#3|) 128)) (-1686 (((-3 |#3| "failed") |#3|) 48)) (-1929 ((|#3| |#3|) 116)) (-1855 (((-3 |#3| "failed") |#3|) 74)) (-2145 ((|#3| |#3|) 135)) (-1746 (((-3 |#3| "failed") |#3|) 58)) (-2006 ((|#3| |#3|) 123)) (-1837 (((-3 |#3| "failed") |#3|) 105)) (-2122 ((|#3| |#3|) 133)) (-1726 (((-3 |#3| "failed") |#3|) 94)) (-1986 ((|#3| |#3|) 121)) (-1874 (((-3 |#3| "failed") |#3|) 109)) (-2170 ((|#3| |#3|) 137)) (-1764 (((-3 |#3| "failed") |#3|) 101)) (-2029 ((|#3| |#3|) 125)) (-1883 (((-3 |#3| "failed") |#3|) 110)) (-4026 ((|#3| |#3|) 138)) (-1772 (((-3 |#3| "failed") |#3|) 103)) (-2040 ((|#3| |#3|) 126)) (-1864 (((-3 |#3| "failed") |#3|) 76)) (-2158 ((|#3| |#3|) 136)) (-1755 (((-3 |#3| "failed") |#3|) 60)) (-2017 ((|#3| |#3|) 124)) (-1846 (((-3 |#3| "failed") |#3|) 106)) (-2132 ((|#3| |#3|) 134)) (-1736 (((-3 |#3| "failed") |#3|) 97)) (-1996 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-399 (-548))) 40 (|has| |#1| (-355))))) -(((-271 |#1| |#2| |#3| |#4|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) (-38 (-399 (-548))) (-1178 |#1|) (-1201 |#1| |#2|) (-952 |#2|)) (T -271)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) (-4 *5 (-1178 *4)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *2 (-1201 *4 *5)) (-4 *6 (-952 *5)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1940 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1952 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1996 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2074 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2122 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2132 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4))))) -(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-355)) (-15 ** (|#3| |#3| (-399 (-548)))) |%noBranch|) (-15 -2458 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)) (-15 -1929 (|#3| |#3|)) (-15 -1940 (|#3| |#3|)) (-15 -1952 (|#3| |#3|)) (-15 -1963 (|#3| |#3|)) (-15 -1973 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1996 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2029 (|#3| |#3|)) (-15 -2040 (|#3| |#3|)) (-15 -2054 (|#3| |#3|)) (-15 -2065 (|#3| |#3|)) (-15 -2074 (|#3| |#3|)) (-15 -2086 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2110 (|#3| |#3|)) (-15 -2122 (|#3| |#3|)) (-15 -2132 (|#3| |#3|)) (-15 -2145 (|#3| |#3|)) (-15 -2158 (|#3| |#3|)) (-15 -2170 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)))) -((-2921 (((-112) $) 19)) (-2902 (((-180) $) 7)) (-3362 (((-3 (-1135) "failed") $) 14)) (-3347 (((-3 (-619 $) "failed") $) NIL)) (-2635 (((-3 (-1135) "failed") $) 21)) (-2646 (((-3 (-1067) "failed") $) 17)) (-2547 (((-112) $) 15)) (-3743 (((-832) $) NIL)) (-2626 (((-112) $) 9))) -(((-272) (-13 (-592 (-832)) (-10 -8 (-15 -2902 ((-180) $)) (-15 -2547 ((-112) $)) (-15 -2646 ((-3 (-1067) "failed") $)) (-15 -2921 ((-112) $)) (-15 -2635 ((-3 (-1135) "failed") $)) (-15 -2626 ((-112) $)) (-15 -3362 ((-3 (-1135) "failed") $)) (-15 -3347 ((-3 (-619 $) "failed") $))))) (T -272)) -((-2902 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-272)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-272)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-2635 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-3362 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272)))) (-3347 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-272))) (-5 *1 (-272))))) -(-13 (-592 (-832)) (-10 -8 (-15 -2902 ((-180) $)) (-15 -2547 ((-112) $)) (-15 -2646 ((-3 (-1067) "failed") $)) (-15 -2921 ((-112) $)) (-15 -2635 ((-3 (-1135) "failed") $)) (-15 -2626 ((-112) $)) (-15 -3362 ((-3 (-1135) "failed") $)) (-15 -3347 ((-3 (-619 $) "failed") $)))) -((-1415 (($ (-1 (-112) |#2|) $) 24)) (-3484 (($ $) 36)) (-1636 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3699 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-2965 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2387 (($ |#2| $ (-548)) 20) (($ $ $ (-548)) 22)) (-2008 (($ $ (-548)) 11) (($ $ (-1185 (-548))) 14)) (-3659 (($ $ |#2|) 30) (($ $ $) NIL)) (-1831 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-619 $)) NIL))) -(((-273 |#1| |#2|) (-10 -8 (-15 -2965 (|#1| |#1| |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -3484 (|#1| |#1|))) (-274 |#2|) (-1172)) (T -273)) -NIL -(-10 -8 (-15 -2965 (|#1| |#1| |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3699 (|#1| |#2| |#1|)) (-15 -3484 (|#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) 85)) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 83 (|has| |#1| (-1063)))) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1063)))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-2965 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2539 (($ |#1| $ (-548)) 88) (($ $ $ (-548)) 87)) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2668 (($ $ (-548)) 91) (($ $ (-1185 (-548))) 90)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-3659 (($ $ |#1|) 93) (($ $ $) 92)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-274 |#1|) (-138) (-1172)) (T -274)) -((-3659 (*1 *1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2668 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-1636 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-274 *2)) (-4 *2 (-1172)))) (-2539 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2965 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-2657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) (-1636 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-2969 (*1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-2965 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-821))))) -(-13 (-625 |t#1|) (-10 -8 (-6 -4328) (-15 -3659 ($ $ |t#1|)) (-15 -3659 ($ $ $)) (-15 -2668 ($ $ (-548))) (-15 -2668 ($ $ (-1185 (-548)))) (-15 -1636 ($ (-1 (-112) |t#1|) $)) (-15 -2539 ($ |t#1| $ (-548))) (-15 -2539 ($ $ $ (-548))) (-15 -2965 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2657 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -1636 ($ |t#1| $)) (-15 -2969 ($ $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-15 -2965 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-4055 (((-619 (-547)) $) 19)) (-1618 (((-745) $) 17)) (-3834 (((-832) $) 23) (($ (-619 (-547))) 15)) (-3966 (($ (-745)) 20)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 9)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 11))) +(((-266) (-13 (-821) (-10 -8 (-15 -3834 ($ (-619 (-547)))) (-15 -1618 ((-745) $)) (-15 -4055 ((-619 (-547)) $)) (-15 -3966 ($ (-745)))))) (T -266)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-266)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-266))))) +(-13 (-821) (-10 -8 (-15 -3834 ($ (-619 (-547)))) (-15 -1618 ((-745) $)) (-15 -4055 ((-619 (-547)) $)) (-15 -3966 ($ (-745))))) +((-1648 ((|#2| |#2|) 77)) (-1498 ((|#2| |#2|) 65)) (-3878 (((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-1624 ((|#2| |#2|) 75)) (-1473 ((|#2| |#2|) 63)) (-1670 ((|#2| |#2|) 79)) (-1526 ((|#2| |#2|) 67)) (-1413 ((|#2|) 46)) (-3454 (((-114) (-114)) 95)) (-3620 ((|#2| |#2|) 61)) (-3961 (((-112) |#2|) 134)) (-2328 ((|#2| |#2|) 181)) (-3498 ((|#2| |#2|) 157)) (-4191 ((|#2|) 59)) (-4134 ((|#2|) 58)) (-2085 ((|#2| |#2|) 177)) (-3301 ((|#2| |#2|) 153)) (-2560 ((|#2| |#2|) 185)) (-3698 ((|#2| |#2|) 161)) (-1292 ((|#2| |#2|) 149)) (-4268 ((|#2| |#2|) 151)) (-2657 ((|#2| |#2|) 187)) (-3783 ((|#2| |#2|) 163)) (-2450 ((|#2| |#2|) 183)) (-3601 ((|#2| |#2|) 159)) (-2197 ((|#2| |#2|) 179)) (-3408 ((|#2| |#2|) 155)) (-1628 ((|#2| |#2|) 193)) (-2923 ((|#2| |#2|) 169)) (-1402 ((|#2| |#2|) 189)) (-2753 ((|#2| |#2|) 165)) (-1836 ((|#2| |#2|) 197)) (-3092 ((|#2| |#2|) 173)) (-1938 ((|#2| |#2|) 199)) (-3178 ((|#2| |#2|) 175)) (-1732 ((|#2| |#2|) 195)) (-3012 ((|#2| |#2|) 171)) (-1518 ((|#2| |#2|) 191)) (-2839 ((|#2| |#2|) 167)) (-2703 ((|#2| |#2|) 62)) (-1681 ((|#2| |#2|) 80)) (-1539 ((|#2| |#2|) 68)) (-1659 ((|#2| |#2|) 78)) (-1513 ((|#2| |#2|) 66)) (-1635 ((|#2| |#2|) 76)) (-1488 ((|#2| |#2|) 64)) (-3358 (((-112) (-114)) 93)) (-1717 ((|#2| |#2|) 83)) (-1574 ((|#2| |#2|) 71)) (-1693 ((|#2| |#2|) 81)) (-1550 ((|#2| |#2|) 69)) (-1741 ((|#2| |#2|) 85)) (-1597 ((|#2| |#2|) 73)) (-1918 ((|#2| |#2|) 86)) (-1610 ((|#2| |#2|) 74)) (-1729 ((|#2| |#2|) 84)) (-1586 ((|#2| |#2|) 72)) (-1706 ((|#2| |#2|) 82)) (-1563 ((|#2| |#2|) 70))) +(((-267 |#1| |#2|) (-10 -7 (-15 -2703 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -1741 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1413 (|#2|)) (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -4134 (|#2|)) (-15 -4191 (|#2|)) (-15 -4268 (|#2| |#2|)) (-15 -1292 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -3408 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3601 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -2839 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3092 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2197 (|#2| |#2|)) (-15 -2328 (|#2| |#2|)) (-15 -2450 (|#2| |#2|)) (-15 -2560 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -1402 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -1938 (|#2| |#2|)) (-15 -3878 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3961 ((-112) |#2|))) (-13 (-821) (-539)) (-13 (-421 |#1|) (-971))) (T -267)) +((-3961 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-421 *4) (-971))))) (-3878 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-421 *4) (-971))) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-267 *4 *2)))) (-1938 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1836 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1518 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1402 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2560 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2450 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2197 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3178 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3092 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2923 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2839 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3408 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3301 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1292 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-4191 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-821) (-539))))) (-4134 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-821) (-539))))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *4)) (-4 *4 (-13 (-421 *3) (-971))))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-421 *4) (-971))))) (-1413 (*1 *2) (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-821) (-539))))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971))))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-421 *3) (-971)))))) +(-10 -7 (-15 -2703 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1574 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -1741 (|#2| |#2|)) (-15 -1918 (|#2| |#2|)) (-15 -1413 (|#2|)) (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -4134 (|#2|)) (-15 -4191 (|#2|)) (-15 -4268 (|#2| |#2|)) (-15 -1292 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -3408 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3601 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -2839 (|#2| |#2|)) (-15 -2923 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -3092 (|#2| |#2|)) (-15 -3178 (|#2| |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2197 (|#2| |#2|)) (-15 -2328 (|#2| |#2|)) (-15 -2450 (|#2| |#2|)) (-15 -2560 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -1402 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -1938 (|#2| |#2|)) (-15 -3878 ((-3 |#2| "failed") |#2| (-619 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3961 ((-112) |#2|))) +((-4234 (((-3 |#2| "failed") (-619 (-590 |#2|)) |#2| (-1135)) 135)) (-3278 ((|#2| (-398 (-547)) |#2|) 51)) (-1263 ((|#2| |#2| (-590 |#2|)) 128)) (-4060 (((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-590 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135)) 127)) (-4149 ((|#2| |#2| (-1135)) 20) ((|#2| |#2|) 23)) (-3530 ((|#2| |#2| (-1135)) 141) ((|#2| |#2|) 139))) +(((-268 |#1| |#2|) (-10 -7 (-15 -3530 (|#2| |#2|)) (-15 -3530 (|#2| |#2| (-1135))) (-15 -4060 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-590 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135))) (-15 -4149 (|#2| |#2|)) (-15 -4149 (|#2| |#2| (-1135))) (-15 -4234 ((-3 |#2| "failed") (-619 (-590 |#2|)) |#2| (-1135))) (-15 -1263 (|#2| |#2| (-590 |#2|))) (-15 -3278 (|#2| (-398 (-547)) |#2|))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -268)) +((-3278 (*1 *2 *3 *2) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) (-1263 (*1 *2 *2 *3) (-12 (-5 *3 (-590 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)))) (-4234 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-1135)) (-4 *2 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *5 *2)))) (-4149 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) (-4060 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-619 (-590 *3))) (|:| |vals| (-619 *3)))) (-5 *1 (-268 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-3530 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) (-3530 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3)))))) +(-10 -7 (-15 -3530 (|#2| |#2|)) (-15 -3530 (|#2| |#2| (-1135))) (-15 -4060 ((-2 (|:| |func| |#2|) (|:| |kers| (-619 (-590 |#2|))) (|:| |vals| (-619 |#2|))) |#2| (-1135))) (-15 -4149 (|#2| |#2|)) (-15 -4149 (|#2| |#2| (-1135))) (-15 -4234 ((-3 |#2| "failed") (-619 (-590 |#2|)) |#2| (-1135))) (-15 -1263 (|#2| |#2| (-590 |#2|))) (-15 -3278 (|#2| (-398 (-547)) |#2|))) +((-1285 (((-3 |#3| "failed") |#3|) 110)) (-1648 ((|#3| |#3|) 131)) (-2799 (((-3 |#3| "failed") |#3|) 82)) (-1498 ((|#3| |#3|) 121)) (-2437 (((-3 |#3| "failed") |#3|) 58)) (-1624 ((|#3| |#3|) 129)) (-2656 (((-3 |#3| "failed") |#3|) 46)) (-1473 ((|#3| |#3|) 119)) (-1491 (((-3 |#3| "failed") |#3|) 112)) (-1670 ((|#3| |#3|) 133)) (-2931 (((-3 |#3| "failed") |#3|) 84)) (-1526 ((|#3| |#3|) 123)) (-3533 (((-3 |#3| "failed") |#3| (-745)) 36)) (-3687 (((-3 |#3| "failed") |#3|) 74)) (-3620 ((|#3| |#3|) 118)) (-3622 (((-3 |#3| "failed") |#3|) 44)) (-2703 ((|#3| |#3|) 117)) (-1616 (((-3 |#3| "failed") |#3|) 113)) (-1681 ((|#3| |#3|) 134)) (-3000 (((-3 |#3| "failed") |#3|) 85)) (-1539 ((|#3| |#3|) 124)) (-1370 (((-3 |#3| "failed") |#3|) 111)) (-1659 ((|#3| |#3|) 132)) (-2858 (((-3 |#3| "failed") |#3|) 83)) (-1513 ((|#3| |#3|) 122)) (-2539 (((-3 |#3| "failed") |#3|) 60)) (-1635 ((|#3| |#3|) 130)) (-2726 (((-3 |#3| "failed") |#3|) 48)) (-1488 ((|#3| |#3|) 120)) (-1883 (((-3 |#3| "failed") |#3|) 66)) (-1717 ((|#3| |#3|) 137)) (-2032 (((-3 |#3| "failed") |#3|) 104)) (-1574 ((|#3| |#3|) 142)) (-1698 (((-3 |#3| "failed") |#3|) 62)) (-1693 ((|#3| |#3|) 135)) (-3074 (((-3 |#3| "failed") |#3|) 50)) (-1550 ((|#3| |#3|) 125)) (-3892 (((-3 |#3| "failed") |#3|) 70)) (-1741 ((|#3| |#3|) 139)) (-2234 (((-3 |#3| "failed") |#3|) 54)) (-1597 ((|#3| |#3|) 127)) (-3971 (((-3 |#3| "failed") |#3|) 72)) (-1918 ((|#3| |#3|) 140)) (-2341 (((-3 |#3| "failed") |#3|) 56)) (-1610 ((|#3| |#3|) 128)) (-3824 (((-3 |#3| "failed") |#3|) 68)) (-1729 ((|#3| |#3|) 138)) (-2134 (((-3 |#3| "failed") |#3|) 107)) (-1586 ((|#3| |#3|) 143)) (-1791 (((-3 |#3| "failed") |#3|) 64)) (-1706 ((|#3| |#3|) 136)) (-1937 (((-3 |#3| "failed") |#3|) 52)) (-1563 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-398 (-547))) 40 (|has| |#1| (-354))))) +(((-269 |#1| |#2| |#3|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2703 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -1473 (|#3| |#3|)) (-15 -1488 (|#3| |#3|)) (-15 -1498 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1563 (|#3| |#3|)) (-15 -1574 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1610 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1681 (|#3| |#3|)) (-15 -1693 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1717 (|#3| |#3|)) (-15 -1729 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)))) (-38 (-398 (-547))) (-1209 |#1|) (-1180 |#1| |#2|)) (T -269)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3)) (-4 *5 (-1209 *4)) (-5 *1 (-269 *4 *5 *2)) (-4 *2 (-1180 *4 *5)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4))))) +(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2703 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -1473 (|#3| |#3|)) (-15 -1488 (|#3| |#3|)) (-15 -1498 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1563 (|#3| |#3|)) (-15 -1574 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1610 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1681 (|#3| |#3|)) (-15 -1693 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1717 (|#3| |#3|)) (-15 -1729 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)))) +((-1285 (((-3 |#3| "failed") |#3|) 66)) (-1648 ((|#3| |#3|) 129)) (-2799 (((-3 |#3| "failed") |#3|) 50)) (-1498 ((|#3| |#3|) 117)) (-2437 (((-3 |#3| "failed") |#3|) 62)) (-1624 ((|#3| |#3|) 127)) (-2656 (((-3 |#3| "failed") |#3|) 46)) (-1473 ((|#3| |#3|) 115)) (-1491 (((-3 |#3| "failed") |#3|) 70)) (-1670 ((|#3| |#3|) 131)) (-2931 (((-3 |#3| "failed") |#3|) 54)) (-1526 ((|#3| |#3|) 119)) (-3533 (((-3 |#3| "failed") |#3| (-745)) 35)) (-3687 (((-3 |#3| "failed") |#3|) 44)) (-3620 ((|#3| |#3|) 104)) (-3622 (((-3 |#3| "failed") |#3|) 42)) (-2703 ((|#3| |#3|) 114)) (-1616 (((-3 |#3| "failed") |#3|) 72)) (-1681 ((|#3| |#3|) 132)) (-3000 (((-3 |#3| "failed") |#3|) 56)) (-1539 ((|#3| |#3|) 120)) (-1370 (((-3 |#3| "failed") |#3|) 68)) (-1659 ((|#3| |#3|) 130)) (-2858 (((-3 |#3| "failed") |#3|) 52)) (-1513 ((|#3| |#3|) 118)) (-2539 (((-3 |#3| "failed") |#3|) 64)) (-1635 ((|#3| |#3|) 128)) (-2726 (((-3 |#3| "failed") |#3|) 48)) (-1488 ((|#3| |#3|) 116)) (-1883 (((-3 |#3| "failed") |#3|) 74)) (-1717 ((|#3| |#3|) 135)) (-2032 (((-3 |#3| "failed") |#3|) 58)) (-1574 ((|#3| |#3|) 123)) (-1698 (((-3 |#3| "failed") |#3|) 105)) (-1693 ((|#3| |#3|) 133)) (-3074 (((-3 |#3| "failed") |#3|) 94)) (-1550 ((|#3| |#3|) 121)) (-3892 (((-3 |#3| "failed") |#3|) 109)) (-1741 ((|#3| |#3|) 137)) (-2234 (((-3 |#3| "failed") |#3|) 101)) (-1597 ((|#3| |#3|) 125)) (-3971 (((-3 |#3| "failed") |#3|) 110)) (-1918 ((|#3| |#3|) 138)) (-2341 (((-3 |#3| "failed") |#3|) 103)) (-1610 ((|#3| |#3|) 126)) (-3824 (((-3 |#3| "failed") |#3|) 76)) (-1729 ((|#3| |#3|) 136)) (-2134 (((-3 |#3| "failed") |#3|) 60)) (-1586 ((|#3| |#3|) 124)) (-1791 (((-3 |#3| "failed") |#3|) 106)) (-1706 ((|#3| |#3|) 134)) (-1937 (((-3 |#3| "failed") |#3|) 97)) (-1563 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-398 (-547))) 40 (|has| |#1| (-354))))) +(((-270 |#1| |#2| |#3| |#4|) (-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2703 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -1473 (|#3| |#3|)) (-15 -1488 (|#3| |#3|)) (-15 -1498 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1563 (|#3| |#3|)) (-15 -1574 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1610 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1681 (|#3| |#3|)) (-15 -1693 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1717 (|#3| |#3|)) (-15 -1729 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)))) (-38 (-398 (-547))) (-1178 |#1|) (-1201 |#1| |#2|) (-952 |#2|)) (T -270)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3)) (-4 *5 (-1178 *4)) (-5 *1 (-270 *4 *5 *2 *6)) (-4 *2 (-1201 *4 *5)) (-4 *6 (-952 *5)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1741 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4))))) +(-13 (-952 |#3|) (-10 -7 (IF (|has| |#1| (-354)) (-15 ** (|#3| |#3| (-398 (-547)))) |%noBranch|) (-15 -2703 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -1473 (|#3| |#3|)) (-15 -1488 (|#3| |#3|)) (-15 -1498 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1526 (|#3| |#3|)) (-15 -1539 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1563 (|#3| |#3|)) (-15 -1574 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -1610 (|#3| |#3|)) (-15 -1624 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1681 (|#3| |#3|)) (-15 -1693 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1717 (|#3| |#3|)) (-15 -1729 (|#3| |#3|)) (-15 -1741 (|#3| |#3|)) (-15 -1918 (|#3| |#3|)))) +((-3293 (((-112) $) 19)) (-3094 (((-179) $) 7)) (-1282 (((-3 (-1135) "failed") $) 14)) (-4229 (((-3 (-619 $) "failed") $) NIL)) (-3465 (((-3 (-1135) "failed") $) 21)) (-3575 (((-3 (-1067) "failed") $) 17)) (-1928 (((-112) $) 15)) (-3834 (((-832) $) NIL)) (-3374 (((-112) $) 9))) +(((-271) (-13 (-591 (-832)) (-10 -8 (-15 -3094 ((-179) $)) (-15 -1928 ((-112) $)) (-15 -3575 ((-3 (-1067) "failed") $)) (-15 -3293 ((-112) $)) (-15 -3465 ((-3 (-1135) "failed") $)) (-15 -3374 ((-112) $)) (-15 -1282 ((-3 (-1135) "failed") $)) (-15 -4229 ((-3 (-619 $) "failed") $))))) (T -271)) +((-3094 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-271)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-3575 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-271)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-3465 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-271)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1282 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-271)))) (-4229 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-271))) (-5 *1 (-271))))) +(-13 (-591 (-832)) (-10 -8 (-15 -3094 ((-179) $)) (-15 -1928 ((-112) $)) (-15 -3575 ((-3 (-1067) "failed") $)) (-15 -3293 ((-112) $)) (-15 -3465 ((-3 (-1135) "failed") $)) (-15 -3374 ((-112) $)) (-15 -1282 ((-3 (-1135) "failed") $)) (-15 -4229 ((-3 (-619 $) "failed") $)))) +((-1476 (($ (-1 (-112) |#2|) $) 24)) (-3664 (($ $) 36)) (-3342 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3801 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3756 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2599 (($ |#2| $ (-547)) 20) (($ $ $ (-547)) 22)) (-2151 (($ $ (-547)) 11) (($ $ (-1185 (-547))) 14)) (-4187 (($ $ |#2|) 30) (($ $ $) NIL)) (-1935 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-619 $)) NIL))) +(((-272 |#1| |#2|) (-10 -8 (-15 -3756 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#2| |#1|)) (-15 -3756 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3342 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4187 (|#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| |#2|)) (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -2151 (|#1| |#1| (-1185 (-547)))) (-15 -2151 (|#1| |#1| (-547))) (-15 -1935 (|#1| (-619 |#1|))) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -3801 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1476 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3664 (|#1| |#1|))) (-273 |#2|) (-1172)) (T -272)) +NIL +(-10 -8 (-15 -3756 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#2| |#1|)) (-15 -3756 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3342 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4187 (|#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| |#2|)) (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -2151 (|#1| |#1| (-1185 (-547)))) (-15 -2151 (|#1| |#1| (-547))) (-15 -1935 (|#1| (-619 |#1|))) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -3801 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1476 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3801 (|#1| |#2| |#1|)) (-15 -3664 (|#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 58 (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) |#1|) $) 85)) (-1476 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3796 (($ $) 83 (|has| |#1| (-1063)))) (-3664 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1063)))) (-3801 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 51)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-3756 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1885 (($ |#1| $ (-547)) 88) (($ $ $ (-547)) 87)) (-2599 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 42 (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2418 (($ $ |#1|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1185 (-547))) 63)) (-3769 (($ $ (-547)) 91) (($ $ (-1185 (-547))) 90)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 70)) (-4187 (($ $ |#1|) 93) (($ $ $) 92)) (-1935 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-273 |#1|) (-138) (-1172)) (T -273)) +((-4187 (*1 *1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-547))) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) (-3342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) (-1885 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-273 *2)) (-4 *2 (-1172)))) (-1885 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) (-3756 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) (-3681 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) (-3342 (*1 *1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)) (-4 *2 (-821))))) +(-13 (-625 |t#1|) (-10 -8 (-6 -4329) (-15 -4187 ($ $ |t#1|)) (-15 -4187 ($ $ $)) (-15 -3769 ($ $ (-547))) (-15 -3769 ($ $ (-1185 (-547)))) (-15 -3342 ($ (-1 (-112) |t#1|) $)) (-15 -1885 ($ |t#1| $ (-547))) (-15 -1885 ($ $ $ (-547))) (-15 -3756 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3681 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -3342 ($ |t#1| $)) (-15 -3796 ($ $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-15 -3756 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) ((** (($ $ $) 10))) -(((-275 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-276)) (T -275)) +(((-274 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-275)) (T -274)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3496 (($ $) 6)) (-2458 (($ $) 7)) (** (($ $ $) 8))) -(((-276) (-138)) (T -276)) -((** (*1 *1 *1 *1) (-4 *1 (-276))) (-2458 (*1 *1 *1) (-4 *1 (-276))) (-3496 (*1 *1 *1) (-4 *1 (-276)))) -(-13 (-10 -8 (-15 -3496 ($ $)) (-15 -2458 ($ $)) (-15 ** ($ $ $)))) -((-2695 (((-619 (-1116 |#1|)) (-1116 |#1|) |#1|) 35)) (-2676 ((|#2| |#2| |#1|) 38)) (-2685 ((|#2| |#2| |#1|) 40)) (-3871 ((|#2| |#2| |#1|) 39))) -(((-277 |#1| |#2|) (-10 -7 (-15 -2676 (|#2| |#2| |#1|)) (-15 -3871 (|#2| |#2| |#1|)) (-15 -2685 (|#2| |#2| |#1|)) (-15 -2695 ((-619 (-1116 |#1|)) (-1116 |#1|) |#1|))) (-355) (-1209 |#1|)) (T -277)) -((-2695 (*1 *2 *3 *4) (-12 (-4 *4 (-355)) (-5 *2 (-619 (-1116 *4))) (-5 *1 (-277 *4 *5)) (-5 *3 (-1116 *4)) (-4 *5 (-1209 *4)))) (-2685 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3)))) (-3871 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3)))) (-2676 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) -(-10 -7 (-15 -2676 (|#2| |#2| |#1|)) (-15 -3871 (|#2| |#2| |#1|)) (-15 -2685 (|#2| |#2| |#1|)) (-15 -2695 ((-619 (-1116 |#1|)) (-1116 |#1|) |#1|))) -((-3171 ((|#2| $ |#1|) 6))) -(((-278 |#1| |#2|) (-138) (-1063) (-1172)) (T -278)) -((-3171 (*1 *2 *1 *3) (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172))))) -(-13 (-10 -8 (-15 -3171 (|t#2| $ |t#1|)))) -((-3971 ((|#3| $ |#2| |#3|) 12)) (-3899 ((|#3| $ |#2|) 10))) -(((-279 |#1| |#2| |#3|) (-10 -8 (-15 -3971 (|#3| |#1| |#2| |#3|)) (-15 -3899 (|#3| |#1| |#2|))) (-280 |#2| |#3|) (-1063) (-1172)) (T -279)) -NIL -(-10 -8 (-15 -3971 (|#3| |#1| |#2| |#3|)) (-15 -3899 (|#3| |#1| |#2|))) -((-2089 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4328)))) (-3971 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 11)) (-3171 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-280 |#1| |#2|) (-138) (-1063) (-1172)) (T -280)) -((-3171 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-3899 (*1 *2 *1 *3) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-3971 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172))))) -(-13 (-278 |t#1| |t#2|) (-10 -8 (-15 -3171 (|t#2| $ |t#1| |t#2|)) (-15 -3899 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2089 (|t#2| $ |t#1| |t#2|)) (-15 -3971 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-278 |#1| |#2|) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 35)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 40)) (-3303 (($ $) 38)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) 33)) (-2061 (($ |#2| |#3|) 19)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 ((|#3| $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 20)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3368 (((-3 $ "failed") $ $) NIL)) (-4077 (((-745) $) 34)) (-3171 ((|#2| $ |#2|) 42)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 24)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 29 T CONST)) (-3118 (($) 36 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 37))) -(((-281 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-299) (-10 -8 (-15 -1328 (|#3| $)) (-15 -3743 (|#2| $)) (-15 -2061 ($ |#2| |#3|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)) (-15 -3171 (|#2| $ |#2|)))) (-169) (-1194 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -281)) -((-3859 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1328 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-281 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1194 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2061 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-281 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1194 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3368 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2153 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3171 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1194 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-299) (-10 -8 (-15 -1328 (|#3| $)) (-15 -3743 (|#2| $)) (-15 -2061 ($ |#2| |#3|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)) (-15 -3171 (|#2| $ |#2|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-282) (-138)) (T -282)) -NIL -(-13 (-1016) (-111 $ $) (-10 -7 (-6 -4320))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-1607 (($ (-1135) (-1135) (-1067) $) 17)) (-1590 (($ (-1135) (-619 (-934)) $) 22)) (-1627 (((-619 (-1049)) $) 10)) (-1617 (((-3 (-1067) "failed") (-1135) (-1135) $) 16)) (-1598 (((-3 (-619 (-934)) "failed") (-1135) $) 21)) (-3319 (($) 7)) (-2662 (($) 23)) (-3743 (((-832) $) 27)) (-1580 (($) 24))) -(((-283) (-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1627 ((-619 (-1049)) $)) (-15 -1617 ((-3 (-1067) "failed") (-1135) (-1135) $)) (-15 -1607 ($ (-1135) (-1135) (-1067) $)) (-15 -1598 ((-3 (-619 (-934)) "failed") (-1135) $)) (-15 -1590 ($ (-1135) (-619 (-934)) $)) (-15 -2662 ($)) (-15 -1580 ($))))) (T -283)) -((-3319 (*1 *1) (-5 *1 (-283))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-283)))) (-1617 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-283)))) (-1607 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-283)))) (-1598 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-619 (-934))) (-5 *1 (-283)))) (-1590 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-283)))) (-2662 (*1 *1) (-5 *1 (-283))) (-1580 (*1 *1) (-5 *1 (-283)))) -(-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1627 ((-619 (-1049)) $)) (-15 -1617 ((-3 (-1067) "failed") (-1135) (-1135) $)) (-15 -1607 ($ (-1135) (-1135) (-1067) $)) (-15 -1598 ((-3 (-619 (-934)) "failed") (-1135) $)) (-15 -1590 ($ (-1135) (-619 (-934)) $)) (-15 -2662 ($)) (-15 -1580 ($)))) -((-1661 (((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))) 85)) (-1652 (((-619 (-663 (-399 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|)))))) (-663 (-399 (-921 |#1|)))) 80) (((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))) (-745) (-745)) 38)) (-1668 (((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))) 82)) (-1644 (((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|)))) 62)) (-1637 (((-619 (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-399 (-921 |#1|)))) 61)) (-3780 (((-921 |#1|) (-663 (-399 (-921 |#1|)))) 50) (((-921 |#1|) (-663 (-399 (-921 |#1|))) (-1135)) 51))) -(((-284 |#1|) (-10 -7 (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))) (-1135))) (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))))) (-15 -1637 ((-619 (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-399 (-921 |#1|))))) (-15 -1644 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))) (-745) (-745))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|)))))) (-663 (-399 (-921 |#1|))))) (-15 -1661 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|))))) (-15 -1668 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))))) (-443)) (T -284)) -((-1668 (*1 *2 *3) (-12 (-4 *4 (-443)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 *4)))))))) (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4)))))) (-1661 (*1 *2 *3) (-12 (-4 *4 (-443)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 *4)))))))) (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4)))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5)))))) (-1652 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-399 (-921 *6)) (-1125 (-1135) (-921 *6)))) (-5 *5 (-745)) (-4 *6 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *6))))) (-5 *1 (-284 *6)) (-5 *4 (-663 (-399 (-921 *6)))))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5)))))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-4 *4 (-443)) (-5 *2 (-619 (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4))))) (-5 *1 (-284 *4)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-5 *2 (-921 *4)) (-5 *1 (-284 *4)) (-4 *4 (-443)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-921 *5)))) (-5 *4 (-1135)) (-5 *2 (-921 *5)) (-5 *1 (-284 *5)) (-4 *5 (-443))))) -(-10 -7 (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))) (-1135))) (-15 -3780 ((-921 |#1|) (-663 (-399 (-921 |#1|))))) (-15 -1637 ((-619 (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-399 (-921 |#1|))))) (-15 -1644 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-399 (-921 |#1|))) (-745) (-745))) (-15 -1652 ((-619 (-663 (-399 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|)))))) (-663 (-399 (-921 |#1|))))) (-15 -1661 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|))))) (-15 -1668 ((-619 (-2 (|:| |eigval| (-3 (-399 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-399 (-921 |#1|))))))) (-663 (-399 (-921 |#1|)))))) -((-2540 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 14))) -(((-285 |#1| |#2|) (-10 -7 (-15 -2540 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-1172) (-1172)) (T -285)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-286 *6)) (-5 *1 (-285 *5 *6))))) -(-10 -7 (-15 -2540 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3324 (((-112) $) NIL (|has| |#1| (-21)))) (-1715 (($ $) 12)) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3854 (($ $ $) 94 (|has| |#1| (-294)))) (-3030 (($) NIL (-1524 (|has| |#1| (-21)) (|has| |#1| (-701))) CONST)) (-1698 (($ $) 50 (|has| |#1| (-21)))) (-1684 (((-3 $ "failed") $) 61 (|has| |#1| (-701)))) (-1987 ((|#1| $) 11)) (-3859 (((-3 $ "failed") $) 59 (|has| |#1| (-701)))) (-2266 (((-112) $) NIL (|has| |#1| (-701)))) (-2540 (($ (-1 |#1| |#1|) $) 14)) (-1974 ((|#1| $) 10)) (-1706 (($ $) 49 (|has| |#1| (-21)))) (-1692 (((-3 $ "failed") $) 60 (|has| |#1| (-701)))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2153 (($ $) 63 (-1524 (|has| |#1| (-355)) (|has| |#1| (-464))))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1676 (((-619 $) $) 84 (|has| |#1| (-540)))) (-2460 (($ $ $) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 $)) 28 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-1135) |#1|) 17 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 21 (|has| |#1| (-504 (-1135) |#1|)))) (-2155 (($ |#1| |#1|) 9)) (-3402 (((-133)) 89 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 86 (|has| |#1| (-869 (-1135))))) (-2128 (($ $ $) NIL (|has| |#1| (-464)))) (-3652 (($ $ $) NIL (|has| |#1| (-464)))) (-3743 (($ (-548)) NIL (|has| |#1| (-1016))) (((-112) $) 36 (|has| |#1| (-1063))) (((-832) $) 35 (|has| |#1| (-1063)))) (-3835 (((-745)) 66 (|has| |#1| (-1016)))) (-3107 (($) 46 (|has| |#1| (-21)) CONST)) (-3118 (($) 56 (|has| |#1| (-701)) CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135))))) (-2214 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 91 (-1524 (|has| |#1| (-355)) (|has| |#1| (-464))))) (-2299 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2290 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-548)) NIL (|has| |#1| (-464))) (($ $ (-745)) NIL (|has| |#1| (-701))) (($ $ (-890)) NIL (|has| |#1| (-1075)))) (* (($ $ |#1|) 54 (|has| |#1| (-1075))) (($ |#1| $) 53 (|has| |#1| (-1075))) (($ $ $) 52 (|has| |#1| (-1075))) (($ (-548) $) 69 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-25))))) -(((-286 |#1|) (-13 (-1172) (-10 -8 (-15 -2214 ($ |#1| |#1|)) (-15 -2155 ($ |#1| |#1|)) (-15 -1715 ($ $)) (-15 -1974 (|#1| $)) (-15 -1987 (|#1| $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-504 (-1135) |#1|)) (-6 (-504 (-1135) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-592 (-112))) (IF (|has| |#1| (-301 |#1|)) (PROGN (-15 -2460 ($ $ $)) (-15 -2460 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2290 ($ |#1| $)) (-15 -2290 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1706 ($ $)) (-15 -1698 ($ $)) (-15 -2299 ($ |#1| $)) (-15 -2299 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-464)) (PROGN (-6 (-464)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-540)) (-15 -1676 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-1225 |#1|)) (-15 -2309 ($ $ $)) (-15 -2153 ($ $))) |%noBranch|) (IF (|has| |#1| (-294)) (-15 -3854 ($ $ $)) |%noBranch|))) (-1172)) (T -286)) -((-2214 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-2155 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-1715 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-1974 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-1987 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-286 *3)))) (-2460 (*1 *1 *1 *1) (-12 (-4 *2 (-301 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)) (-5 *1 (-286 *2)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *3))) (-4 *3 (-301 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)) (-5 *1 (-286 *3)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) (-2290 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) (-1706 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-1698 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2299 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2299 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-1692 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172)))) (-1684 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-619 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-540)) (-4 *3 (-1172)))) (-3854 (*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-294)) (-4 *2 (-1172)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) (-2309 (*1 *1 *1 *1) (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172))))) (-2153 (*1 *1 *1) (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172)))))) -(-13 (-1172) (-10 -8 (-15 -2214 ($ |#1| |#1|)) (-15 -2155 ($ |#1| |#1|)) (-15 -1715 ($ $)) (-15 -1974 (|#1| $)) (-15 -1987 (|#1| $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-504 (-1135) |#1|)) (-6 (-504 (-1135) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-592 (-112))) (IF (|has| |#1| (-301 |#1|)) (PROGN (-15 -2460 ($ $ $)) (-15 -2460 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2290 ($ |#1| $)) (-15 -2290 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1706 ($ $)) (-15 -1698 ($ $)) (-15 -2299 ($ |#1| $)) (-15 -2299 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-464)) (PROGN (-6 (-464)) (-15 -1692 ((-3 $ "failed") $)) (-15 -1684 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-540)) (-15 -1676 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-1225 |#1|)) (-15 -2309 ($ $ $)) (-15 -2153 ($ $))) |%noBranch|) (IF (|has| |#1| (-294)) (-15 -3854 ($ $ $)) |%noBranch|))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-287 |#1| |#2|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063)) (T -287)) -NIL -(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) -((-2831 (((-304) (-1118) (-619 (-1118))) 16) (((-304) (-1118) (-1118)) 15) (((-304) (-619 (-1118))) 14) (((-304) (-1118)) 12))) -(((-288) (-10 -7 (-15 -2831 ((-304) (-1118))) (-15 -2831 ((-304) (-619 (-1118)))) (-15 -2831 ((-304) (-1118) (-1118))) (-15 -2831 ((-304) (-1118) (-619 (-1118)))))) (T -288)) -((-2831 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1118))) (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-304)) (-5 *1 (-288)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288))))) -(-10 -7 (-15 -2831 ((-304) (-1118))) (-15 -2831 ((-304) (-619 (-1118)))) (-15 -2831 ((-304) (-1118) (-1118))) (-15 -2831 ((-304) (-1118) (-619 (-1118))))) -((-2540 ((|#2| (-1 |#2| |#1|) (-1118) (-591 |#1|)) 18))) -(((-289 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-1118) (-591 |#1|)))) (-294) (-1172)) (T -289)) -((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1118)) (-5 *5 (-591 *6)) (-4 *6 (-294)) (-4 *2 (-1172)) (-5 *1 (-289 *6 *2))))) -(-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-1118) (-591 |#1|)))) -((-2540 ((|#2| (-1 |#2| |#1|) (-591 |#1|)) 17))) -(((-290 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) (-294) (-294)) (T -290)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-294)) (-4 *2 (-294)) (-5 *1 (-290 *5 *2))))) -(-10 -7 (-15 -2540 (|#2| (-1 |#2| |#1|) (-591 |#1|)))) -((-3866 (((-112) (-218)) 10))) -(((-291 |#1| |#2|) (-10 -7 (-15 -3866 ((-112) (-218)))) (-218) (-218)) (T -291)) -((-3866 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-291 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3866 ((-112) (-218)))) -((-1786 (((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218)))) 93)) (-1796 (((-1116 (-218)) (-1218 (-308 (-218))) (-619 (-1135)) (-1058 (-814 (-218)))) 107) (((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218)))) 61)) (-2011 (((-619 (-1118)) (-1116 (-218))) NIL)) (-1778 (((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218)))) 58)) (-1805 (((-619 (-218)) (-921 (-399 (-548))) (-1135) (-1058 (-814 (-218)))) 49)) (-2000 (((-619 (-1118)) (-619 (-218))) NIL)) (-2022 (((-218) (-1058 (-814 (-218)))) 25)) (-2033 (((-218) (-1058 (-814 (-218)))) 26)) (-1770 (((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 54)) (-1978 (((-1118) (-218)) NIL))) -(((-292) (-10 -7 (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1770 ((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1786 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-1218 (-308 (-218))) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1805 ((-619 (-218)) (-921 (-399 (-548))) (-1135) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))))) (T -292)) -((-2011 (*1 *2 *3) (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-292)))) (-1805 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292)))) (-1796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) (-1796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) (-1786 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-112)) (-5 *1 (-292)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292))))) -(-10 -7 (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1770 ((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -1778 ((-619 (-218)) (-308 (-218)) (-1135) (-1058 (-814 (-218))))) (-15 -1786 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-308 (-218)) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1796 ((-1116 (-218)) (-1218 (-308 (-218))) (-619 (-1135)) (-1058 (-814 (-218))))) (-15 -1805 ((-619 (-218)) (-921 (-399 (-548))) (-1135) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218))))) -((-1806 (((-619 (-591 $)) $) 30)) (-3854 (($ $ (-286 $)) 81) (($ $ (-619 (-286 $))) 123) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-2441 (((-3 (-591 $) "failed") $) 113)) (-2375 (((-591 $) $) 112)) (-2142 (($ $) 19) (($ (-619 $)) 56)) (-1744 (((-619 (-114)) $) 38)) (-1402 (((-114) (-114)) 91)) (-3705 (((-112) $) 131)) (-2540 (($ (-1 $ $) (-591 $)) 89)) (-1753 (((-3 (-591 $) "failed") $) 93)) (-1409 (($ (-114) $) 61) (($ (-114) (-619 $)) 100)) (-1518 (((-112) $ (-114)) 117) (((-112) $ (-1135)) 116)) (-3926 (((-745) $) 46)) (-1734 (((-112) $ $) 59) (((-112) $ (-1135)) 51)) (-3718 (((-112) $) 129)) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) 121) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 84) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) 69) (($ $ (-1135) (-1 $ $)) 75) (($ $ (-619 (-114)) (-619 (-1 $ $))) 83) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 85) (($ $ (-114) (-1 $ (-619 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-3171 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-619 $)) 109)) (-1762 (($ $) 53) (($ $ $) 119)) (-3528 (($ $) 17) (($ (-619 $)) 55)) (-1392 (((-112) (-114)) 22))) -(((-293 |#1|) (-10 -8 (-15 -3705 ((-112) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1734 ((-112) |#1| (-1135))) (-15 -1734 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -1409 (|#1| (-114) (-619 |#1|))) (-15 -1409 (|#1| (-114) |#1|)) (-15 -1518 ((-112) |#1| (-1135))) (-15 -1518 ((-112) |#1| (-114))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1744 ((-619 (-114)) |#1|)) (-15 -1806 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3926 ((-745) |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -2142 (|#1| (-619 |#1|))) (-15 -2142 (|#1| |#1|)) (-15 -3528 (|#1| (-619 |#1|))) (-15 -3528 (|#1| |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|))) (-294)) (T -293)) -((-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-293 *3)) (-4 *3 (-294)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-293 *4)) (-4 *4 (-294))))) -(-10 -8 (-15 -3705 ((-112) |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1734 ((-112) |#1| (-1135))) (-15 -1734 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#1| |#1|) (-591 |#1|))) (-15 -1409 (|#1| (-114) (-619 |#1|))) (-15 -1409 (|#1| (-114) |#1|)) (-15 -1518 ((-112) |#1| (-1135))) (-15 -1518 ((-112) |#1| (-114))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1744 ((-619 (-114)) |#1|)) (-15 -1806 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3926 ((-745) |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1|)) (-15 -2142 (|#1| (-619 |#1|))) (-15 -2142 (|#1| |#1|)) (-15 -3528 (|#1| (-619 |#1|))) (-15 -3528 (|#1| |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|))) -((-3730 (((-112) $ $) 7)) (-1806 (((-619 (-591 $)) $) 44)) (-3854 (($ $ (-286 $)) 56) (($ $ (-619 (-286 $))) 55) (($ $ (-619 (-591 $)) (-619 $)) 54)) (-2441 (((-3 (-591 $) "failed") $) 69)) (-2375 (((-591 $) $) 68)) (-2142 (($ $) 51) (($ (-619 $)) 50)) (-1744 (((-619 (-114)) $) 43)) (-1402 (((-114) (-114)) 42)) (-3705 (((-112) $) 22 (|has| $ (-1007 (-548))))) (-1724 (((-1131 $) (-591 $)) 25 (|has| $ (-1016)))) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2540 (($ (-1 $ $) (-591 $)) 36)) (-1753 (((-3 (-591 $) "failed") $) 46)) (-2546 (((-1118) $) 9)) (-1870 (((-619 (-591 $)) $) 45)) (-1409 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-1518 (((-112) $ (-114)) 40) (((-112) $ (-1135)) 39)) (-3926 (((-745) $) 47)) (-3932 (((-1082) $) 10)) (-1734 (((-112) $ $) 35) (((-112) $ (-1135)) 34)) (-3718 (((-112) $) 23 (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) 67) (($ $ (-619 (-591 $)) (-619 $)) 66) (($ $ (-619 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1135) (-1 $ (-619 $))) 31) (($ $ (-1135) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3171 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-1762 (($ $) 49) (($ $ $) 48)) (-3287 (($ $) 24 (|has| $ (-1016)))) (-3743 (((-832) $) 11) (($ (-591 $)) 70)) (-3528 (($ $) 53) (($ (-619 $)) 52)) (-1392 (((-112) (-114)) 41)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) -(((-294) (-138)) (T -294)) -((-3171 (*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-294)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *1))) (-4 *1 (-294)))) (-3854 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-591 *1))) (-5 *3 (-619 *1)) (-4 *1 (-294)))) (-3528 (*1 *1 *1) (-4 *1 (-294))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) (-2142 (*1 *1 *1) (-4 *1 (-294))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) (-1762 (*1 *1 *1) (-4 *1 (-294))) (-1762 (*1 *1 *1 *1) (-4 *1 (-294))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-745)))) (-1753 (*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-294)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294)))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-619 (-114))))) (-1402 (*1 *2 *2) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-1392 (*1 *2 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1518 (*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1518 (*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) (-1409 (*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) (-1409 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) (-2540 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-294)))) (-1734 (*1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-112)))) (-1734 (*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-1016)) (-4 *1 (-294)) (-5 *2 (-1131 *1)))) (-3287 (*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-294)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112))))) -(-13 (-821) (-1007 (-591 $)) (-504 (-591 $) $) (-301 $) (-10 -8 (-15 -3171 ($ (-114) $)) (-15 -3171 ($ (-114) $ $)) (-15 -3171 ($ (-114) $ $ $)) (-15 -3171 ($ (-114) $ $ $ $)) (-15 -3171 ($ (-114) (-619 $))) (-15 -3854 ($ $ (-286 $))) (-15 -3854 ($ $ (-619 (-286 $)))) (-15 -3854 ($ $ (-619 (-591 $)) (-619 $))) (-15 -3528 ($ $)) (-15 -3528 ($ (-619 $))) (-15 -2142 ($ $)) (-15 -2142 ($ (-619 $))) (-15 -1762 ($ $)) (-15 -1762 ($ $ $)) (-15 -3926 ((-745) $)) (-15 -1753 ((-3 (-591 $) "failed") $)) (-15 -1870 ((-619 (-591 $)) $)) (-15 -1806 ((-619 (-591 $)) $)) (-15 -1744 ((-619 (-114)) $)) (-15 -1402 ((-114) (-114))) (-15 -1392 ((-112) (-114))) (-15 -1518 ((-112) $ (-114))) (-15 -1518 ((-112) $ (-1135))) (-15 -1409 ($ (-114) $)) (-15 -1409 ($ (-114) (-619 $))) (-15 -2540 ($ (-1 $ $) (-591 $))) (-15 -1734 ((-112) $ $)) (-15 -1734 ((-112) $ (-1135))) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-1 $ $)))) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-1 $ (-619 $))))) (-15 -2460 ($ $ (-1135) (-1 $ (-619 $)))) (-15 -2460 ($ $ (-1135) (-1 $ $))) (-15 -2460 ($ $ (-619 (-114)) (-619 (-1 $ $)))) (-15 -2460 ($ $ (-619 (-114)) (-619 (-1 $ (-619 $))))) (-15 -2460 ($ $ (-114) (-1 $ (-619 $)))) (-15 -2460 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1016)) (PROGN (-15 -1724 ((-1131 $) (-591 $))) (-15 -3287 ($ $))) |%noBranch|) (IF (|has| $ (-1007 (-548))) (PROGN (-15 -3718 ((-112) $)) (-15 -3705 ((-112) $))) |%noBranch|))) -(((-101) . T) ((-592 (-832)) . T) ((-301 $) . T) ((-504 (-591 $) $) . T) ((-504 $ $) . T) ((-821) . T) ((-1007 (-591 $)) . T) ((-1063) . T)) -((-4047 (((-619 |#1|) (-619 |#1|)) 10))) -(((-295 |#1|) (-10 -7 (-15 -4047 ((-619 |#1|) (-619 |#1|)))) (-819)) (T -295)) -((-4047 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-295 *3))))) -(-10 -7 (-15 -4047 ((-619 |#1|) (-619 |#1|)))) -((-2540 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 17))) -(((-296 |#1| |#2|) (-10 -7 (-15 -2540 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1016) (-1016)) (T -296)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-296 *5 *6))))) -(-10 -7 (-15 -2540 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) -((-1967 (((-1218 (-308 (-371))) (-1218 (-308 (-218)))) 105)) (-1844 (((-1058 (-814 (-218))) (-1058 (-814 (-371)))) 40)) (-2011 (((-619 (-1118)) (-1116 (-218))) 87)) (-2091 (((-308 (-371)) (-921 (-218))) 50)) (-2104 (((-218) (-921 (-218))) 46)) (-2046 (((-1118) (-371)) 169)) (-1835 (((-814 (-218)) (-814 (-371))) 34)) (-1891 (((-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548))) (-1218 (-308 (-218)))) 143)) (-2058 (((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) 181) (((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) 179)) (-4035 (((-663 (-218)) (-619 (-218)) (-745)) 14)) (-1944 (((-1218 (-673)) (-619 (-218))) 94)) (-2000 (((-619 (-1118)) (-619 (-218))) 75)) (-3867 (((-3 (-308 (-218)) "failed") (-308 (-218))) 120)) (-3866 (((-112) (-218) (-1058 (-814 (-218)))) 109)) (-2078 (((-1004) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) 198)) (-2022 (((-218) (-1058 (-814 (-218)))) 107)) (-2033 (((-218) (-1058 (-814 (-218)))) 108)) (-4024 (((-218) (-399 (-548))) 27)) (-1991 (((-1118) (-371)) 73)) (-1817 (((-218) (-371)) 17)) (-1881 (((-371) (-1218 (-308 (-218)))) 154)) (-1826 (((-308 (-218)) (-308 (-371))) 23)) (-1861 (((-399 (-548)) (-308 (-218))) 53)) (-1901 (((-308 (-399 (-548))) (-308 (-218))) 69)) (-1958 (((-308 (-371)) (-308 (-218))) 98)) (-1871 (((-218) (-308 (-218))) 54)) (-1923 (((-619 (-218)) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) 64)) (-1912 (((-1058 (-814 (-218))) (-1058 (-814 (-218)))) 61)) (-1978 (((-1118) (-218)) 72)) (-1933 (((-673) (-218)) 90)) (-1852 (((-399 (-548)) (-218)) 55)) (-2116 (((-308 (-371)) (-218)) 49)) (-2591 (((-619 (-1058 (-814 (-218)))) (-619 (-1058 (-814 (-371))))) 43)) (-1831 (((-1004) (-619 (-1004))) 165) (((-1004) (-1004) (-1004)) 162)) (-2069 (((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-297) (-10 -7 (-15 -1817 ((-218) (-371))) (-15 -1826 ((-308 (-218)) (-308 (-371)))) (-15 -1835 ((-814 (-218)) (-814 (-371)))) (-15 -1844 ((-1058 (-814 (-218))) (-1058 (-814 (-371))))) (-15 -2591 ((-619 (-1058 (-814 (-218)))) (-619 (-1058 (-814 (-371)))))) (-15 -1852 ((-399 (-548)) (-218))) (-15 -1861 ((-399 (-548)) (-308 (-218)))) (-15 -1871 ((-218) (-308 (-218)))) (-15 -3867 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -1881 ((-371) (-1218 (-308 (-218))))) (-15 -1891 ((-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548))) (-1218 (-308 (-218))))) (-15 -1901 ((-308 (-399 (-548))) (-308 (-218)))) (-15 -1912 ((-1058 (-814 (-218))) (-1058 (-814 (-218))))) (-15 -1923 ((-619 (-218)) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-15 -1933 ((-673) (-218))) (-15 -1944 ((-1218 (-673)) (-619 (-218)))) (-15 -1958 ((-308 (-371)) (-308 (-218)))) (-15 -1967 ((-1218 (-308 (-371))) (-1218 (-308 (-218))))) (-15 -3866 ((-112) (-218) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -1991 ((-1118) (-371))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1831 ((-1004) (-1004) (-1004))) (-15 -1831 ((-1004) (-619 (-1004)))) (-15 -2046 ((-1118) (-371))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))))) (-15 -2069 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2078 ((-1004) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -2091 ((-308 (-371)) (-921 (-218)))) (-15 -2104 ((-218) (-921 (-218)))) (-15 -2116 ((-308 (-371)) (-218))) (-15 -4024 ((-218) (-399 (-548)))) (-15 -4035 ((-663 (-218)) (-619 (-218)) (-745))))) (T -297)) -((-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-218))) (-5 *4 (-745)) (-5 *2 (-663 (-218))) (-5 *1 (-297)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-399 (-548))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-308 (-371))) (-5 *1 (-297)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-921 (-218))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-921 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-297)))) (-1831 (*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-297)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-297)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-814 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-297)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-1218 (-308 (-371)))) (-5 *1 (-297)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1218 (-673))) (-5 *1 (-297)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-673)) (-5 *1 (-297)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *2 (-619 (-218))) (-5 *1 (-297)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-218)))) (-5 *1 (-297)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-399 (-548)))) (-5 *1 (-297)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548)))) (-5 *1 (-297)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-297)))) (-3867 (*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-297)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-218)) (-5 *1 (-297)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-399 (-548))) (-5 *1 (-297)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-399 (-548))) (-5 *1 (-297)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-619 (-1058 (-814 (-371))))) (-5 *2 (-619 (-1058 (-814 (-218))))) (-5 *1 (-297)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-371)))) (-5 *2 (-1058 (-814 (-218)))) (-5 *1 (-297)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-814 (-371))) (-5 *2 (-814 (-218))) (-5 *1 (-297)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-308 (-371))) (-5 *2 (-308 (-218))) (-5 *1 (-297)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-297))))) -(-10 -7 (-15 -1817 ((-218) (-371))) (-15 -1826 ((-308 (-218)) (-308 (-371)))) (-15 -1835 ((-814 (-218)) (-814 (-371)))) (-15 -1844 ((-1058 (-814 (-218))) (-1058 (-814 (-371))))) (-15 -2591 ((-619 (-1058 (-814 (-218)))) (-619 (-1058 (-814 (-371)))))) (-15 -1852 ((-399 (-548)) (-218))) (-15 -1861 ((-399 (-548)) (-308 (-218)))) (-15 -1871 ((-218) (-308 (-218)))) (-15 -3867 ((-3 (-308 (-218)) "failed") (-308 (-218)))) (-15 -1881 ((-371) (-1218 (-308 (-218))))) (-15 -1891 ((-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548))) (-1218 (-308 (-218))))) (-15 -1901 ((-308 (-399 (-548))) (-308 (-218)))) (-15 -1912 ((-1058 (-814 (-218))) (-1058 (-814 (-218))))) (-15 -1923 ((-619 (-218)) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-15 -1933 ((-673) (-218))) (-15 -1944 ((-1218 (-673)) (-619 (-218)))) (-15 -1958 ((-308 (-371)) (-308 (-218)))) (-15 -1967 ((-1218 (-308 (-371))) (-1218 (-308 (-218))))) (-15 -3866 ((-112) (-218) (-1058 (-814 (-218))))) (-15 -1978 ((-1118) (-218))) (-15 -1991 ((-1118) (-371))) (-15 -2000 ((-619 (-1118)) (-619 (-218)))) (-15 -2011 ((-619 (-1118)) (-1116 (-218)))) (-15 -2022 ((-218) (-1058 (-814 (-218))))) (-15 -2033 ((-218) (-1058 (-814 (-218))))) (-15 -1831 ((-1004) (-1004) (-1004))) (-15 -1831 ((-1004) (-619 (-1004)))) (-15 -2046 ((-1118) (-371))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))))) (-15 -2058 ((-1004) (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))))) (-15 -2069 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2078 ((-1004) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -2091 ((-308 (-371)) (-921 (-218)))) (-15 -2104 ((-218) (-921 (-218)))) (-15 -2116 ((-308 (-371)) (-218))) (-15 -4024 ((-218) (-399 (-548)))) (-15 -4035 ((-663 (-218)) (-619 (-218)) (-745)))) -((-4087 (((-112) $ $) 11)) (-1945 (($ $ $) 15)) (-1922 (($ $ $) 14)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 44)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 53)) (-3587 (($ $ $) 21) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-1900 (((-3 $ "failed") $ $) 17)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 46))) -(((-298 |#1|) (-10 -8 (-15 -4057 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -4066 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4066 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -4087 ((-112) |#1| |#1|)) (-15 -3126 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3136 ((-2 (|:| -1489 (-619 |#1|)) (|:| -4160 |#1|)) (-619 |#1|))) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) (-299)) (T -298)) -NIL -(-10 -8 (-15 -4057 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -4066 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4066 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1945 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -4087 ((-112) |#1| |#1|)) (-15 -3126 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3136 ((-2 (|:| -1489 (-619 |#1|)) (|:| -4160 |#1|)) (-619 |#1|))) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-299) (-138)) (T -299)) -((-4087 (*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-745)))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-299)))) (-1922 (*1 *1 *1 *1) (-4 *1 (-299))) (-1945 (*1 *1 *1 *1) (-4 *1 (-299))) (-4066 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) (-4 *1 (-299)))) (-4066 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-299)))) (-4057 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-299))))) -(-13 (-889) (-10 -8 (-15 -4087 ((-112) $ $)) (-15 -4077 ((-745) $)) (-15 -3209 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1922 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -4066 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $)) (-15 -4066 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4057 ((-3 (-619 $) "failed") (-619 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2460 (($ $ (-619 |#2|) (-619 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-286 |#2|)) 11) (($ $ (-619 (-286 |#2|))) NIL))) -(((-300 |#1| |#2|) (-10 -8 (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) (-301 |#2|) (-1063)) (T -300)) -NIL -(-10 -8 (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) -((-2460 (($ $ (-619 |#1|) (-619 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-286 |#1|)) 11) (($ $ (-619 (-286 |#1|))) 10))) -(((-301 |#1|) (-138) (-1063)) (T -301)) -((-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-301 *3)) (-4 *3 (-1063)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *3))) (-4 *1 (-301 *3)) (-4 *3 (-1063))))) -(-13 (-504 |t#1| |t#1|) (-10 -8 (-15 -2460 ($ $ (-286 |t#1|))) (-15 -2460 ($ $ (-619 (-286 |t#1|)))))) -(((-504 |#1| |#1|) . T)) -((-2460 ((|#1| (-1 |#1| (-548)) (-1137 (-399 (-548)))) 25))) -(((-302 |#1|) (-10 -7 (-15 -2460 (|#1| (-1 |#1| (-548)) (-1137 (-399 (-548)))))) (-38 (-399 (-548)))) (T -302)) -((-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-548))) (-5 *4 (-1137 (-399 (-548)))) (-5 *1 (-302 *2)) (-4 *2 (-38 (-399 (-548))))))) -(-10 -7 (-15 -2460 (|#1| (-1 |#1| (-548)) (-1137 (-399 (-548)))))) -((-3730 (((-112) $ $) NIL)) (-1433 (((-548) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-303) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1433 ((-548) $))))) (T -303)) -((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-303)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-303))))) -(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1433 ((-548) $)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2214 (((-112) $ $) 9))) -(((-304) (-1063)) (T -304)) +((-3620 (($ $) 6)) (-2703 (($ $) 7)) (** (($ $ $) 8))) +(((-275) (-138)) (T -275)) +((** (*1 *1 *1 *1) (-4 *1 (-275))) (-2703 (*1 *1 *1) (-4 *1 (-275))) (-3620 (*1 *1 *1) (-4 *1 (-275)))) +(-13 (-10 -8 (-15 -3620 ($ $)) (-15 -2703 ($ $)) (-15 ** ($ $ $)))) +((-2884 (((-619 (-1116 |#1|)) (-1116 |#1|) |#1|) 35)) (-2734 ((|#2| |#2| |#1|) 38)) (-2806 ((|#2| |#2| |#1|) 40)) (-3991 ((|#2| |#2| |#1|) 39))) +(((-276 |#1| |#2|) (-10 -7 (-15 -2734 (|#2| |#2| |#1|)) (-15 -3991 (|#2| |#2| |#1|)) (-15 -2806 (|#2| |#2| |#1|)) (-15 -2884 ((-619 (-1116 |#1|)) (-1116 |#1|) |#1|))) (-354) (-1209 |#1|)) (T -276)) +((-2884 (*1 *2 *3 *4) (-12 (-4 *4 (-354)) (-5 *2 (-619 (-1116 *4))) (-5 *1 (-276 *4 *5)) (-5 *3 (-1116 *4)) (-4 *5 (-1209 *4)))) (-2806 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1209 *3)))) (-3991 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1209 *3)))) (-2734 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1209 *3))))) +(-10 -7 (-15 -2734 (|#2| |#2| |#1|)) (-15 -3991 (|#2| |#2| |#1|)) (-15 -2806 (|#2| |#2| |#1|)) (-15 -2884 ((-619 (-1116 |#1|)) (-1116 |#1|) |#1|))) +((-3329 ((|#2| $ |#1|) 6))) +(((-277 |#1| |#2|) (-138) (-1063) (-1172)) (T -277)) +((-3329 (*1 *2 *1 *3) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -3329 (|t#2| $ |t#1|)))) +((-1861 ((|#3| $ |#2| |#3|) 12)) (-1793 ((|#3| $ |#2|) 10))) +(((-278 |#1| |#2| |#3|) (-10 -8 (-15 -1861 (|#3| |#1| |#2| |#3|)) (-15 -1793 (|#3| |#1| |#2|))) (-279 |#2| |#3|) (-1063) (-1172)) (T -278)) +NIL +(-10 -8 (-15 -1861 (|#3| |#1| |#2| |#3|)) (-15 -1793 (|#3| |#1| |#2|))) +((-2238 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4329)))) (-1861 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) 11)) (-3329 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-279 |#1| |#2|) (-138) (-1063) (-1172)) (T -279)) +((-3329 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-1793 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-2238 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-1861 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172))))) +(-13 (-277 |t#1| |t#2|) (-10 -8 (-15 -3329 (|t#2| $ |t#1| |t#2|)) (-15 -1793 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4329)) (PROGN (-15 -2238 (|t#2| $ |t#1| |t#2|)) (-15 -1861 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-277 |#1| |#2|) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 35)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 40)) (-3881 (($ $) 38)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) 33)) (-2542 (($ |#2| |#3|) 19)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3148 ((|#3| $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 20)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3226 (((-3 $ "failed") $ $) NIL)) (-2776 (((-745) $) 34)) (-3329 ((|#2| $ |#2|) 42)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 24)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 29 T CONST)) (-3277 (($) 36 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 37))) +(((-280 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-298) (-10 -8 (-15 -3148 (|#3| $)) (-15 -3834 (|#2| $)) (-15 -2542 ($ |#2| |#3|)) (-15 -3226 ((-3 $ "failed") $ $)) (-15 -2537 ((-3 $ "failed") $)) (-15 -1976 ($ $)) (-15 -3329 (|#2| $ |#2|)))) (-169) (-1194 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -280)) +((-2537 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3148 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-280 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1194 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3834 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2542 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-280 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1194 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3226 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1976 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3329 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1194 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-298) (-10 -8 (-15 -3148 (|#3| $)) (-15 -3834 (|#2| $)) (-15 -2542 ($ |#2| |#3|)) (-15 -3226 ((-3 $ "failed") $ $)) (-15 -2537 ((-3 $ "failed") $)) (-15 -1976 ($ $)) (-15 -3329 (|#2| $ |#2|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-281) (-138)) (T -281)) +NIL +(-13 (-1016) (-111 $ $) (-10 -7 (-6 -4321))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4228 (($ (-1135) (-1135) (-1067) $) 17)) (-4073 (($ (-1135) (-619 (-934)) $) 22)) (-3258 (((-619 (-1049)) $) 10)) (-3177 (((-3 (-1067) "failed") (-1135) (-1135) $) 16)) (-4153 (((-3 (-619 (-934)) "failed") (-1135) $) 21)) (-4011 (($) 7)) (-3448 (($) 23)) (-3834 (((-832) $) 27)) (-3976 (($) 24))) +(((-282) (-13 (-591 (-832)) (-10 -8 (-15 -4011 ($)) (-15 -3258 ((-619 (-1049)) $)) (-15 -3177 ((-3 (-1067) "failed") (-1135) (-1135) $)) (-15 -4228 ($ (-1135) (-1135) (-1067) $)) (-15 -4153 ((-3 (-619 (-934)) "failed") (-1135) $)) (-15 -4073 ($ (-1135) (-619 (-934)) $)) (-15 -3448 ($)) (-15 -3976 ($))))) (T -282)) +((-4011 (*1 *1) (-5 *1 (-282))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-282)))) (-3177 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-282)))) (-4228 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-282)))) (-4153 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-619 (-934))) (-5 *1 (-282)))) (-4073 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-282)))) (-3448 (*1 *1) (-5 *1 (-282))) (-3976 (*1 *1) (-5 *1 (-282)))) +(-13 (-591 (-832)) (-10 -8 (-15 -4011 ($)) (-15 -3258 ((-619 (-1049)) $)) (-15 -3177 ((-3 (-1067) "failed") (-1135) (-1135) $)) (-15 -4228 ($ (-1135) (-1135) (-1067) $)) (-15 -4153 ((-3 (-619 (-934)) "failed") (-1135) $)) (-15 -4073 ($ (-1135) (-619 (-934)) $)) (-15 -3448 ($)) (-15 -3976 ($)))) +((-3602 (((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))) 85)) (-3508 (((-619 (-663 (-398 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|)))))) (-663 (-398 (-921 |#1|)))) 80) (((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-398 (-921 |#1|))) (-745) (-745)) 38)) (-3665 (((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))) 82)) (-3427 (((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-398 (-921 |#1|)))) 62)) (-3353 (((-619 (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-398 (-921 |#1|)))) 61)) (-3008 (((-921 |#1|) (-663 (-398 (-921 |#1|)))) 50) (((-921 |#1|) (-663 (-398 (-921 |#1|))) (-1135)) 51))) +(((-283 |#1|) (-10 -7 (-15 -3008 ((-921 |#1|) (-663 (-398 (-921 |#1|))) (-1135))) (-15 -3008 ((-921 |#1|) (-663 (-398 (-921 |#1|))))) (-15 -3353 ((-619 (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-398 (-921 |#1|))))) (-15 -3427 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-398 (-921 |#1|))))) (-15 -3508 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-398 (-921 |#1|))) (-745) (-745))) (-15 -3508 ((-619 (-663 (-398 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|)))))) (-663 (-398 (-921 |#1|))))) (-15 -3602 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|))))) (-15 -3665 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))))) (-442)) (T -283)) +((-3665 (*1 *2 *3) (-12 (-4 *4 (-442)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1125 (-1135) (-921 *4)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 *4)))))))) (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4)))))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-442)) (-5 *2 (-619 (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1125 (-1135) (-921 *4)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 *4)))))))) (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4)))))) (-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-398 (-921 *5)) (-1125 (-1135) (-921 *5)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5))))) (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5)))))) (-3508 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-398 (-921 *6)) (-1125 (-1135) (-921 *6)))) (-5 *5 (-745)) (-4 *6 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *6))))) (-5 *1 (-283 *6)) (-5 *4 (-663 (-398 (-921 *6)))))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-398 (-921 *5)) (-1125 (-1135) (-921 *5)))) (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5))))) (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5)))))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-4 *4 (-442)) (-5 *2 (-619 (-3 (-398 (-921 *4)) (-1125 (-1135) (-921 *4))))) (-5 *1 (-283 *4)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-5 *2 (-921 *4)) (-5 *1 (-283 *4)) (-4 *4 (-442)))) (-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-921 *5)))) (-5 *4 (-1135)) (-5 *2 (-921 *5)) (-5 *1 (-283 *5)) (-4 *5 (-442))))) +(-10 -7 (-15 -3008 ((-921 |#1|) (-663 (-398 (-921 |#1|))) (-1135))) (-15 -3008 ((-921 |#1|) (-663 (-398 (-921 |#1|))))) (-15 -3353 ((-619 (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (-663 (-398 (-921 |#1|))))) (-15 -3427 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-398 (-921 |#1|))))) (-15 -3508 ((-619 (-663 (-398 (-921 |#1|)))) (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|))) (-663 (-398 (-921 |#1|))) (-745) (-745))) (-15 -3508 ((-619 (-663 (-398 (-921 |#1|)))) (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|)))))) (-663 (-398 (-921 |#1|))))) (-15 -3602 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |geneigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|))))) (-15 -3665 ((-619 (-2 (|:| |eigval| (-3 (-398 (-921 |#1|)) (-1125 (-1135) (-921 |#1|)))) (|:| |eigmult| (-745)) (|:| |eigvec| (-619 (-663 (-398 (-921 |#1|))))))) (-663 (-398 (-921 |#1|)))))) +((-2781 (((-285 |#2|) (-1 |#2| |#1|) (-285 |#1|)) 14))) +(((-284 |#1| |#2|) (-10 -7 (-15 -2781 ((-285 |#2|) (-1 |#2| |#1|) (-285 |#1|)))) (-1172) (-1172)) (T -284)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-285 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-285 *6)) (-5 *1 (-284 *5 *6))))) +(-10 -7 (-15 -2781 ((-285 |#2|) (-1 |#2| |#1|) (-285 |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4046 (((-112) $) NIL (|has| |#1| (-21)))) (-2982 (($ $) 12)) (-3013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2999 (($ $ $) 94 (|has| |#1| (-293)))) (-3219 (($) NIL (-1524 (|has| |#1| (-21)) (|has| |#1| (-701))) CONST)) (-2838 (($ $) 50 (|has| |#1| (-21)))) (-2710 (((-3 $ "failed") $) 61 (|has| |#1| (-701)))) (-2186 ((|#1| $) 11)) (-2537 (((-3 $ "failed") $) 59 (|has| |#1| (-701)))) (-4114 (((-112) $) NIL (|has| |#1| (-701)))) (-2781 (($ (-1 |#1| |#1|) $) 14)) (-2174 ((|#1| $) 10)) (-2914 (($ $) 49 (|has| |#1| (-21)))) (-2783 (((-3 $ "failed") $) 60 (|has| |#1| (-701)))) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1976 (($ $) 63 (-1524 (|has| |#1| (-354)) (|has| |#1| (-463))))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2634 (((-619 $) $) 84 (|has| |#1| (-539)))) (-2670 (($ $ $) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 $)) 28 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-1135) |#1|) 17 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 21 (|has| |#1| (-503 (-1135) |#1|)))) (-2374 (($ |#1| |#1|) 9)) (-3512 (((-133)) 89 (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) 86 (|has| |#1| (-869 (-1135))))) (-2444 (($ $ $) NIL (|has| |#1| (-463)))) (-4121 (($ $ $) NIL (|has| |#1| (-463)))) (-3834 (($ (-547)) NIL (|has| |#1| (-1016))) (((-112) $) 36 (|has| |#1| (-1063))) (((-832) $) 35 (|has| |#1| (-1063)))) (-2311 (((-745)) 66 (|has| |#1| (-1016)))) (-3267 (($) 46 (|has| |#1| (-21)) CONST)) (-3277 (($) 56 (|has| |#1| (-701)) CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135))))) (-2371 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1063)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 91 (-1524 (|has| |#1| (-354)) (|has| |#1| (-463))))) (-2484 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2470 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-547)) NIL (|has| |#1| (-463))) (($ $ (-745)) NIL (|has| |#1| (-701))) (($ $ (-890)) NIL (|has| |#1| (-1075)))) (* (($ $ |#1|) 54 (|has| |#1| (-1075))) (($ |#1| $) 53 (|has| |#1| (-1075))) (($ $ $) 52 (|has| |#1| (-1075))) (($ (-547) $) 69 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-25))))) +(((-285 |#1|) (-13 (-1172) (-10 -8 (-15 -2371 ($ |#1| |#1|)) (-15 -2374 ($ |#1| |#1|)) (-15 -2982 ($ $)) (-15 -2174 (|#1| $)) (-15 -2186 (|#1| $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-503 (-1135) |#1|)) (-6 (-503 (-1135) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-591 (-112))) (IF (|has| |#1| (-300 |#1|)) (PROGN (-15 -2670 ($ $ $)) (-15 -2670 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2470 ($ |#1| $)) (-15 -2470 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2914 ($ $)) (-15 -2838 ($ $)) (-15 -2484 ($ |#1| $)) (-15 -2484 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -2783 ((-3 $ "failed") $)) (-15 -2710 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-463)) (PROGN (-6 (-463)) (-15 -2783 ((-3 $ "failed") $)) (-15 -2710 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -2634 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-1225 |#1|)) (-15 -2497 ($ $ $)) (-15 -1976 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -2999 ($ $ $)) |%noBranch|))) (-1172)) (T -285)) +((-2371 (*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) (-2374 (*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) (-2982 (*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) (-2174 (*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) (-2186 (*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-285 *3)))) (-2670 (*1 *1 *1 *1) (-12 (-4 *2 (-300 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)) (-5 *1 (-285 *2)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *3))) (-4 *3 (-300 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)) (-5 *1 (-285 *3)))) (-2470 (*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) (-2470 (*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) (-2914 (*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2838 (*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2484 (*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2484 (*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) (-2783 (*1 *1 *1) (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1172)))) (-2710 (*1 *1 *1) (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1172)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-619 (-285 *3))) (-5 *1 (-285 *3)) (-4 *3 (-539)) (-4 *3 (-1172)))) (-2999 (*1 *1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-293)) (-4 *2 (-1172)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) (-2497 (*1 *1 *1 *1) (-1524 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1172))) (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1172))))) (-1976 (*1 *1 *1) (-1524 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1172))) (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1172)))))) +(-13 (-1172) (-10 -8 (-15 -2371 ($ |#1| |#1|)) (-15 -2374 ($ |#1| |#1|)) (-15 -2982 ($ $)) (-15 -2174 (|#1| $)) (-15 -2186 (|#1| $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-503 (-1135) |#1|)) (-6 (-503 (-1135) |#1|)) |%noBranch|) (IF (|has| |#1| (-1063)) (PROGN (-6 (-1063)) (-6 (-591 (-112))) (IF (|has| |#1| (-300 |#1|)) (PROGN (-15 -2670 ($ $ $)) (-15 -2670 ($ $ (-619 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2470 ($ |#1| $)) (-15 -2470 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2914 ($ $)) (-15 -2838 ($ $)) (-15 -2484 ($ |#1| $)) (-15 -2484 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1075)) (PROGN (-6 (-1075)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-701)) (PROGN (-6 (-701)) (-15 -2783 ((-3 $ "failed") $)) (-15 -2710 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-463)) (PROGN (-6 (-463)) (-15 -2783 ((-3 $ "failed") $)) (-15 -2710 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|) (IF (|has| |#1| (-539)) (-15 -2634 ((-619 $) $)) |%noBranch|) (IF (|has| |#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-1225 |#1|)) (-15 -2497 ($ $ $)) (-15 -1976 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -2999 ($ $ $)) |%noBranch|))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#2| $ |#1| |#2|) NIL)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) NIL)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3437 (((-619 |#1|) $) NIL)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1520 (((-619 |#1|) $) NIL)) (-1641 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-286 |#1| |#2|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) (-1063) (-1063)) (T -286)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) +((-3026 (((-303) (-1118) (-619 (-1118))) 16) (((-303) (-1118) (-1118)) 15) (((-303) (-619 (-1118))) 14) (((-303) (-1118)) 12))) +(((-287) (-10 -7 (-15 -3026 ((-303) (-1118))) (-15 -3026 ((-303) (-619 (-1118)))) (-15 -3026 ((-303) (-1118) (-1118))) (-15 -3026 ((-303) (-1118) (-619 (-1118)))))) (T -287)) +((-3026 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1118))) (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-287)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-287)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-303)) (-5 *1 (-287)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-287))))) +(-10 -7 (-15 -3026 ((-303) (-1118))) (-15 -3026 ((-303) (-619 (-1118)))) (-15 -3026 ((-303) (-1118) (-1118))) (-15 -3026 ((-303) (-1118) (-619 (-1118))))) +((-2781 ((|#2| (-1 |#2| |#1|) (-1118) (-590 |#1|)) 18))) +(((-288 |#1| |#2|) (-10 -7 (-15 -2781 (|#2| (-1 |#2| |#1|) (-1118) (-590 |#1|)))) (-293) (-1172)) (T -288)) +((-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1118)) (-5 *5 (-590 *6)) (-4 *6 (-293)) (-4 *2 (-1172)) (-5 *1 (-288 *6 *2))))) +(-10 -7 (-15 -2781 (|#2| (-1 |#2| |#1|) (-1118) (-590 |#1|)))) +((-2781 ((|#2| (-1 |#2| |#1|) (-590 |#1|)) 17))) +(((-289 |#1| |#2|) (-10 -7 (-15 -2781 (|#2| (-1 |#2| |#1|) (-590 |#1|)))) (-293) (-293)) (T -289)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-590 *5)) (-4 *5 (-293)) (-4 *2 (-293)) (-5 *1 (-289 *5 *2))))) +(-10 -7 (-15 -2781 (|#2| (-1 |#2| |#1|) (-590 |#1|)))) +((-2611 (((-112) (-217)) 10))) +(((-290 |#1| |#2|) (-10 -7 (-15 -2611 ((-112) (-217)))) (-217) (-217)) (T -290)) +((-2611 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-290 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2611 ((-112) (-217)))) +((-2514 (((-1116 (-217)) (-307 (-217)) (-619 (-1135)) (-1058 (-814 (-217)))) 93)) (-2602 (((-1116 (-217)) (-1218 (-307 (-217))) (-619 (-1135)) (-1058 (-814 (-217)))) 107) (((-1116 (-217)) (-307 (-217)) (-619 (-1135)) (-1058 (-814 (-217)))) 61)) (-2695 (((-619 (-1118)) (-1116 (-217))) NIL)) (-2413 (((-619 (-217)) (-307 (-217)) (-1135) (-1058 (-814 (-217)))) 58)) (-1355 (((-619 (-217)) (-921 (-398 (-547))) (-1135) (-1058 (-814 (-217)))) 49)) (-3721 (((-619 (-1118)) (-619 (-217))) NIL)) (-2778 (((-217) (-1058 (-814 (-217)))) 25)) (-2863 (((-217) (-1058 (-814 (-217)))) 26)) (-2314 (((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 54)) (-3552 (((-1118) (-217)) NIL))) +(((-291) (-10 -7 (-15 -2778 ((-217) (-1058 (-814 (-217))))) (-15 -2863 ((-217) (-1058 (-814 (-217))))) (-15 -2314 ((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2413 ((-619 (-217)) (-307 (-217)) (-1135) (-1058 (-814 (-217))))) (-15 -2514 ((-1116 (-217)) (-307 (-217)) (-619 (-1135)) (-1058 (-814 (-217))))) (-15 -2602 ((-1116 (-217)) (-307 (-217)) (-619 (-1135)) (-1058 (-814 (-217))))) (-15 -2602 ((-1116 (-217)) (-1218 (-307 (-217))) (-619 (-1135)) (-1058 (-814 (-217))))) (-15 -1355 ((-619 (-217)) (-921 (-398 (-547))) (-1135) (-1058 (-814 (-217))))) (-15 -3552 ((-1118) (-217))) (-15 -3721 ((-619 (-1118)) (-619 (-217)))) (-15 -2695 ((-619 (-1118)) (-1116 (-217)))))) (T -291)) +((-2695 (*1 *2 *3) (-12 (-5 *3 (-1116 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-291)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-291)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1118)) (-5 *1 (-291)))) (-1355 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291)))) (-2602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-291)))) (-2602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-291)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1135))) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-291)))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1135)) (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-112)) (-5 *1 (-291)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291))))) +(-10 -7 (-15 -2778 ((-217) (-1058 (-814 (-217))))) (-15 -2863 ((-217) (-1058 (-814 (-217))))) (-15 -2314 ((-112) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -2413 ((-619 (-217)) (-307 (-217)) (-1135) (-1058 (-814 (-217))))) (-15 -2514 ((-1116 (-217)) (-307 (-217)) (-619 (-1135)) (-1058 (-814 (-217))))) (-15 -2602 ((-1116 (-217)) (-307 (-217)) (-619 (-1135)) (-1058 (-814 (-217))))) (-15 -2602 ((-1116 (-217)) (-1218 (-307 (-217))) (-619 (-1135)) (-1058 (-814 (-217))))) (-15 -1355 ((-619 (-217)) (-921 (-398 (-547))) (-1135) (-1058 (-814 (-217))))) (-15 -3552 ((-1118) (-217))) (-15 -3721 ((-619 (-1118)) (-619 (-217)))) (-15 -2695 ((-619 (-1118)) (-1116 (-217))))) +((-1965 (((-619 (-590 $)) $) 30)) (-2999 (($ $ (-285 $)) 81) (($ $ (-619 (-285 $))) 123) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2698 (((-3 (-590 $) "failed") $) 113)) (-2643 (((-590 $) $) 112)) (-2566 (($ $) 19) (($ (-619 $)) 56)) (-2004 (((-619 (-114)) $) 38)) (-3454 (((-114) (-114)) 91)) (-3466 (((-112) $) 131)) (-2781 (($ (-1 $ $) (-590 $)) 89)) (-2108 (((-3 (-590 $) "failed") $) 93)) (-1465 (($ (-114) $) 61) (($ (-114) (-619 $)) 100)) (-1469 (((-112) $ (-114)) 117) (((-112) $ (-1135)) 116)) (-4029 (((-745) $) 46)) (-3128 (((-112) $ $) 59) (((-112) $ (-1135)) 51)) (-3590 (((-112) $) 129)) (-2670 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) 121) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 84) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) 69) (($ $ (-1135) (-1 $ $)) 75) (($ $ (-619 (-114)) (-619 (-1 $ $))) 83) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 85) (($ $ (-114) (-1 $ (-619 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-3329 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-619 $)) 109)) (-2207 (($ $) 53) (($ $ $) 119)) (-3518 (($ $) 17) (($ (-619 $)) 55)) (-3358 (((-112) (-114)) 22))) +(((-292 |#1|) (-10 -8 (-15 -3466 ((-112) |#1|)) (-15 -3590 ((-112) |#1|)) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -3128 ((-112) |#1| (-1135))) (-15 -3128 ((-112) |#1| |#1|)) (-15 -2781 (|#1| (-1 |#1| |#1|) (-590 |#1|))) (-15 -1465 (|#1| (-114) (-619 |#1|))) (-15 -1465 (|#1| (-114) |#1|)) (-15 -1469 ((-112) |#1| (-1135))) (-15 -1469 ((-112) |#1| (-114))) (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -2004 ((-619 (-114)) |#1|)) (-15 -1965 ((-619 (-590 |#1|)) |#1|)) (-15 -2108 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -4029 ((-745) |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2566 (|#1| (-619 |#1|))) (-15 -2566 (|#1| |#1|)) (-15 -3518 (|#1| (-619 |#1|))) (-15 -3518 (|#1| |#1|)) (-15 -2999 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2999 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2999 (|#1| |#1| (-285 |#1|))) (-15 -3329 (|#1| (-114) (-619 |#1|))) (-15 -3329 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2670 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2643 ((-590 |#1|) |#1|)) (-15 -2698 ((-3 (-590 |#1|) "failed") |#1|))) (-293)) (T -292)) +((-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-292 *3)) (-4 *3 (-293)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293))))) +(-10 -8 (-15 -3466 ((-112) |#1|)) (-15 -3590 ((-112) |#1|)) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -3128 ((-112) |#1| (-1135))) (-15 -3128 ((-112) |#1| |#1|)) (-15 -2781 (|#1| (-1 |#1| |#1|) (-590 |#1|))) (-15 -1465 (|#1| (-114) (-619 |#1|))) (-15 -1465 (|#1| (-114) |#1|)) (-15 -1469 ((-112) |#1| (-1135))) (-15 -1469 ((-112) |#1| (-114))) (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -2004 ((-619 (-114)) |#1|)) (-15 -1965 ((-619 (-590 |#1|)) |#1|)) (-15 -2108 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -4029 ((-745) |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2566 (|#1| (-619 |#1|))) (-15 -2566 (|#1| |#1|)) (-15 -3518 (|#1| (-619 |#1|))) (-15 -3518 (|#1| |#1|)) (-15 -2999 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2999 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2999 (|#1| |#1| (-285 |#1|))) (-15 -3329 (|#1| (-114) (-619 |#1|))) (-15 -3329 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2670 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2643 ((-590 |#1|) |#1|)) (-15 -2698 ((-3 (-590 |#1|) "failed") |#1|))) +((-3821 (((-112) $ $) 7)) (-1965 (((-619 (-590 $)) $) 44)) (-2999 (($ $ (-285 $)) 56) (($ $ (-619 (-285 $))) 55) (($ $ (-619 (-590 $)) (-619 $)) 54)) (-2698 (((-3 (-590 $) "failed") $) 69)) (-2643 (((-590 $) $) 68)) (-2566 (($ $) 51) (($ (-619 $)) 50)) (-2004 (((-619 (-114)) $) 43)) (-3454 (((-114) (-114)) 42)) (-3466 (((-112) $) 22 (|has| $ (-1007 (-547))))) (-3057 (((-1131 $) (-590 $)) 25 (|has| $ (-1016)))) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-2781 (($ (-1 $ $) (-590 $)) 36)) (-2108 (((-3 (-590 $) "failed") $) 46)) (-1917 (((-1118) $) 9)) (-2043 (((-619 (-590 $)) $) 45)) (-1465 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-1469 (((-112) $ (-114)) 40) (((-112) $ (-1135)) 39)) (-4029 (((-745) $) 47)) (-3979 (((-1082) $) 10)) (-3128 (((-112) $ $) 35) (((-112) $ (-1135)) 34)) (-3590 (((-112) $) 23 (|has| $ (-1007 (-547))))) (-2670 (($ $ (-590 $) $) 67) (($ $ (-619 (-590 $)) (-619 $)) 66) (($ $ (-619 (-285 $))) 65) (($ $ (-285 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1135) (-1 $ (-619 $))) 31) (($ $ (-1135) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3329 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-2207 (($ $) 49) (($ $ $) 48)) (-1901 (($ $) 24 (|has| $ (-1016)))) (-3834 (((-832) $) 11) (($ (-590 $)) 70)) (-3518 (($ $) 53) (($ (-619 $)) 52)) (-3358 (((-112) (-114)) 41)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18))) +(((-293) (-138)) (T -293)) +((-3329 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3329 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3329 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3329 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3329 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *2 (-285 *1)) (-4 *1 (-293)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *1))) (-4 *1 (-293)))) (-2999 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-590 *1))) (-5 *3 (-619 *1)) (-4 *1 (-293)))) (-3518 (*1 *1 *1) (-4 *1 (-293))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293)))) (-2566 (*1 *1 *1) (-4 *1 (-293))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293)))) (-2207 (*1 *1 *1) (-4 *1 (-293))) (-2207 (*1 *1 *1 *1) (-4 *1 (-293))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-745)))) (-2108 (*1 *2 *1) (|partial| -12 (-5 *2 (-590 *1)) (-4 *1 (-293)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-619 (-114))))) (-3454 (*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-3358 (*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1469 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1469 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1135)) (-5 *2 (-112)))) (-1465 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) (-1465 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293)))) (-2781 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-590 *1)) (-4 *1 (-293)))) (-3128 (*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112)))) (-3128 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1135)) (-5 *2 (-112)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-590 *1)) (-4 *1 (-1016)) (-4 *1 (-293)) (-5 *2 (-1131 *1)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-293)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112))))) +(-13 (-821) (-1007 (-590 $)) (-503 (-590 $) $) (-300 $) (-10 -8 (-15 -3329 ($ (-114) $)) (-15 -3329 ($ (-114) $ $)) (-15 -3329 ($ (-114) $ $ $)) (-15 -3329 ($ (-114) $ $ $ $)) (-15 -3329 ($ (-114) (-619 $))) (-15 -2999 ($ $ (-285 $))) (-15 -2999 ($ $ (-619 (-285 $)))) (-15 -2999 ($ $ (-619 (-590 $)) (-619 $))) (-15 -3518 ($ $)) (-15 -3518 ($ (-619 $))) (-15 -2566 ($ $)) (-15 -2566 ($ (-619 $))) (-15 -2207 ($ $)) (-15 -2207 ($ $ $)) (-15 -4029 ((-745) $)) (-15 -2108 ((-3 (-590 $) "failed") $)) (-15 -2043 ((-619 (-590 $)) $)) (-15 -1965 ((-619 (-590 $)) $)) (-15 -2004 ((-619 (-114)) $)) (-15 -3454 ((-114) (-114))) (-15 -3358 ((-112) (-114))) (-15 -1469 ((-112) $ (-114))) (-15 -1469 ((-112) $ (-1135))) (-15 -1465 ($ (-114) $)) (-15 -1465 ($ (-114) (-619 $))) (-15 -2781 ($ (-1 $ $) (-590 $))) (-15 -3128 ((-112) $ $)) (-15 -3128 ((-112) $ (-1135))) (-15 -2670 ($ $ (-619 (-1135)) (-619 (-1 $ $)))) (-15 -2670 ($ $ (-619 (-1135)) (-619 (-1 $ (-619 $))))) (-15 -2670 ($ $ (-1135) (-1 $ (-619 $)))) (-15 -2670 ($ $ (-1135) (-1 $ $))) (-15 -2670 ($ $ (-619 (-114)) (-619 (-1 $ $)))) (-15 -2670 ($ $ (-619 (-114)) (-619 (-1 $ (-619 $))))) (-15 -2670 ($ $ (-114) (-1 $ (-619 $)))) (-15 -2670 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1016)) (PROGN (-15 -3057 ((-1131 $) (-590 $))) (-15 -1901 ($ $))) |%noBranch|) (IF (|has| $ (-1007 (-547))) (PROGN (-15 -3590 ((-112) $)) (-15 -3466 ((-112) $))) |%noBranch|))) +(((-101) . T) ((-591 (-832)) . T) ((-300 $) . T) ((-503 (-590 $) $) . T) ((-503 $ $) . T) ((-821) . T) ((-1007 (-590 $)) . T) ((-1063) . T)) +((-3625 (((-619 |#1|) (-619 |#1|)) 10))) +(((-294 |#1|) (-10 -7 (-15 -3625 ((-619 |#1|) (-619 |#1|)))) (-819)) (T -294)) +((-3625 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-294 *3))))) +(-10 -7 (-15 -3625 ((-619 |#1|) (-619 |#1|)))) +((-2781 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 17))) +(((-295 |#1| |#2|) (-10 -7 (-15 -2781 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1016) (-1016)) (T -295)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-295 *5 *6))))) +(-10 -7 (-15 -2781 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) +((-3464 (((-1218 (-307 (-370))) (-1218 (-307 (-217)))) 105)) (-1766 (((-1058 (-814 (-217))) (-1058 (-814 (-370)))) 40)) (-2695 (((-619 (-1118)) (-1116 (-217))) 87)) (-2091 (((-307 (-370)) (-921 (-217))) 50)) (-2202 (((-217) (-921 (-217))) 46)) (-2945 (((-1118) (-370)) 169)) (-1673 (((-814 (-217)) (-814 (-370))) 34)) (-4039 (((-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))) (-1218 (-307 (-217)))) 143)) (-3023 (((-1004) (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) 181) (((-1004) (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) 179)) (-3509 (((-663 (-217)) (-619 (-217)) (-745)) 14)) (-3296 (((-1218 (-673)) (-619 (-217))) 94)) (-3721 (((-619 (-1118)) (-619 (-217))) 75)) (-3973 (((-3 (-307 (-217)) "failed") (-307 (-217))) 120)) (-2611 (((-112) (-217) (-1058 (-814 (-217)))) 109)) (-1974 (((-1004) (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))) 198)) (-2778 (((-217) (-1058 (-814 (-217)))) 107)) (-2863 (((-217) (-1058 (-814 (-217)))) 108)) (-3410 (((-217) (-398 (-547))) 27)) (-3638 (((-1118) (-370)) 73)) (-1463 (((-217) (-370)) 17)) (-3950 (((-370) (-1218 (-307 (-217)))) 154)) (-1577 (((-307 (-217)) (-307 (-370))) 23)) (-3806 (((-398 (-547)) (-307 (-217))) 53)) (-4119 (((-307 (-398 (-547))) (-307 (-217))) 69)) (-3382 (((-307 (-370)) (-307 (-217))) 98)) (-3876 (((-217) (-307 (-217))) 54)) (-4272 (((-619 (-217)) (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) 64)) (-4194 (((-1058 (-814 (-217))) (-1058 (-814 (-217)))) 61)) (-3552 (((-1118) (-217)) 72)) (-3211 (((-673) (-217)) 90)) (-1862 (((-398 (-547)) (-217)) 55)) (-2322 (((-307 (-370)) (-217)) 49)) (-2829 (((-619 (-1058 (-814 (-217)))) (-619 (-1058 (-814 (-370))))) 43)) (-1935 (((-1004) (-619 (-1004))) 165) (((-1004) (-1004) (-1004)) 162)) (-3104 (((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-296) (-10 -7 (-15 -1463 ((-217) (-370))) (-15 -1577 ((-307 (-217)) (-307 (-370)))) (-15 -1673 ((-814 (-217)) (-814 (-370)))) (-15 -1766 ((-1058 (-814 (-217))) (-1058 (-814 (-370))))) (-15 -2829 ((-619 (-1058 (-814 (-217)))) (-619 (-1058 (-814 (-370)))))) (-15 -1862 ((-398 (-547)) (-217))) (-15 -3806 ((-398 (-547)) (-307 (-217)))) (-15 -3876 ((-217) (-307 (-217)))) (-15 -3973 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -3950 ((-370) (-1218 (-307 (-217))))) (-15 -4039 ((-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))) (-1218 (-307 (-217))))) (-15 -4119 ((-307 (-398 (-547))) (-307 (-217)))) (-15 -4194 ((-1058 (-814 (-217))) (-1058 (-814 (-217))))) (-15 -4272 ((-619 (-217)) (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) (-15 -3211 ((-673) (-217))) (-15 -3296 ((-1218 (-673)) (-619 (-217)))) (-15 -3382 ((-307 (-370)) (-307 (-217)))) (-15 -3464 ((-1218 (-307 (-370))) (-1218 (-307 (-217))))) (-15 -2611 ((-112) (-217) (-1058 (-814 (-217))))) (-15 -3552 ((-1118) (-217))) (-15 -3638 ((-1118) (-370))) (-15 -3721 ((-619 (-1118)) (-619 (-217)))) (-15 -2695 ((-619 (-1118)) (-1116 (-217)))) (-15 -2778 ((-217) (-1058 (-814 (-217))))) (-15 -2863 ((-217) (-1058 (-814 (-217))))) (-15 -1935 ((-1004) (-1004) (-1004))) (-15 -1935 ((-1004) (-619 (-1004)))) (-15 -2945 ((-1118) (-370))) (-15 -3023 ((-1004) (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))))) (-15 -3023 ((-1004) (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))))) (-15 -3104 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1974 ((-1004) (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))) (-15 -2091 ((-307 (-370)) (-921 (-217)))) (-15 -2202 ((-217) (-921 (-217)))) (-15 -2322 ((-307 (-370)) (-217))) (-15 -3410 ((-217) (-398 (-547)))) (-15 -3509 ((-663 (-217)) (-619 (-217)) (-745))))) (T -296)) +((-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-217))) (-5 *4 (-745)) (-5 *2 (-663 (-217))) (-5 *1 (-296)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-398 (-547))) (-5 *2 (-217)) (-5 *1 (-296)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-307 (-370))) (-5 *1 (-296)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-921 (-217))) (-5 *2 (-217)) (-5 *1 (-296)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-921 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1118)) (-5 *1 (-296)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-296)))) (-1935 (*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-296)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-1116 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-296)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-296)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1118)) (-5 *1 (-296)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1118)) (-5 *1 (-296)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1058 (-814 (-217)))) (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-296)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *2 (-1218 (-307 (-370)))) (-5 *1 (-296)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1218 (-673))) (-5 *1 (-296)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-673)) (-5 *1 (-296)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *2 (-619 (-217))) (-5 *1 (-296)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-217)))) (-5 *1 (-296)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-398 (-547)))) (-5 *1 (-296)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *2 (-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547)))) (-5 *1 (-296)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-296)))) (-3973 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-296)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-217)) (-5 *1 (-296)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-398 (-547))) (-5 *1 (-296)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-398 (-547))) (-5 *1 (-296)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-619 (-1058 (-814 (-370))))) (-5 *2 (-619 (-1058 (-814 (-217))))) (-5 *1 (-296)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1058 (-814 (-370)))) (-5 *2 (-1058 (-814 (-217)))) (-5 *1 (-296)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-814 (-370))) (-5 *2 (-814 (-217))) (-5 *1 (-296)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-307 (-370))) (-5 *2 (-307 (-217))) (-5 *1 (-296)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-296))))) +(-10 -7 (-15 -1463 ((-217) (-370))) (-15 -1577 ((-307 (-217)) (-307 (-370)))) (-15 -1673 ((-814 (-217)) (-814 (-370)))) (-15 -1766 ((-1058 (-814 (-217))) (-1058 (-814 (-370))))) (-15 -2829 ((-619 (-1058 (-814 (-217)))) (-619 (-1058 (-814 (-370)))))) (-15 -1862 ((-398 (-547)) (-217))) (-15 -3806 ((-398 (-547)) (-307 (-217)))) (-15 -3876 ((-217) (-307 (-217)))) (-15 -3973 ((-3 (-307 (-217)) "failed") (-307 (-217)))) (-15 -3950 ((-370) (-1218 (-307 (-217))))) (-15 -4039 ((-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547))) (-1218 (-307 (-217))))) (-15 -4119 ((-307 (-398 (-547))) (-307 (-217)))) (-15 -4194 ((-1058 (-814 (-217))) (-1058 (-814 (-217))))) (-15 -4272 ((-619 (-217)) (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) (-15 -3211 ((-673) (-217))) (-15 -3296 ((-1218 (-673)) (-619 (-217)))) (-15 -3382 ((-307 (-370)) (-307 (-217)))) (-15 -3464 ((-1218 (-307 (-370))) (-1218 (-307 (-217))))) (-15 -2611 ((-112) (-217) (-1058 (-814 (-217))))) (-15 -3552 ((-1118) (-217))) (-15 -3638 ((-1118) (-370))) (-15 -3721 ((-619 (-1118)) (-619 (-217)))) (-15 -2695 ((-619 (-1118)) (-1116 (-217)))) (-15 -2778 ((-217) (-1058 (-814 (-217))))) (-15 -2863 ((-217) (-1058 (-814 (-217))))) (-15 -1935 ((-1004) (-1004) (-1004))) (-15 -1935 ((-1004) (-619 (-1004)))) (-15 -2945 ((-1118) (-370))) (-15 -3023 ((-1004) (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))))) (-15 -3023 ((-1004) (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))))) (-15 -3104 ((-1004) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1974 ((-1004) (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))) (-15 -2091 ((-307 (-370)) (-921 (-217)))) (-15 -2202 ((-217) (-921 (-217)))) (-15 -2322 ((-307 (-370)) (-217))) (-15 -3410 ((-217) (-398 (-547)))) (-15 -3509 ((-663 (-217)) (-619 (-217)) (-745)))) +((-2873 (((-112) $ $) 11)) (-2079 (($ $ $) 15)) (-2052 (($ $ $) 14)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 44)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 53)) (-3715 (($ $ $) 21) (($ (-619 $)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2025 (((-3 $ "failed") $ $) 17)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 46))) +(((-297 |#1|) (-10 -8 (-15 -3710 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3793 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3793 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4240 |#1|)) |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2873 ((-112) |#1| |#1|)) (-15 -1690 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -1805 ((-2 (|:| -1557 (-619 |#1|)) (|:| -4240 |#1|)) (-619 |#1|))) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3715 (|#1| |#1| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|))) (-298)) (T -297)) +NIL +(-10 -8 (-15 -3710 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -3793 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3793 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4240 |#1|)) |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2873 ((-112) |#1| |#1|)) (-15 -1690 ((-3 (-619 |#1|) "failed") (-619 |#1|) |#1|)) (-15 -1805 ((-2 (|:| -1557 (-619 |#1|)) (|:| -4240 |#1|)) (-619 |#1|))) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3715 (|#1| |#1| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-4114 (((-112) $) 30)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-298) (-138)) (T -298)) +((-2873 (*1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-112)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-745)))) (-2468 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-298)))) (-2052 (*1 *1 *1 *1) (-4 *1 (-298))) (-2079 (*1 *1 *1 *1) (-4 *1 (-298))) (-3793 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4240 *1))) (-4 *1 (-298)))) (-3793 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-298)))) (-3710 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-298))))) +(-13 (-889) (-10 -8 (-15 -2873 ((-112) $ $)) (-15 -2776 ((-745) $)) (-15 -2468 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -2052 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -3793 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $)) (-15 -3793 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3710 ((-3 (-619 $) "failed") (-619 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2670 (($ $ (-619 |#2|) (-619 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-285 |#2|)) 11) (($ $ (-619 (-285 |#2|))) NIL))) +(((-299 |#1| |#2|) (-10 -8 (-15 -2670 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2670 (|#1| |#1| (-285 |#2|))) (-15 -2670 (|#1| |#1| |#2| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) (-300 |#2|) (-1063)) (T -299)) +NIL +(-10 -8 (-15 -2670 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2670 (|#1| |#1| (-285 |#2|))) (-15 -2670 (|#1| |#1| |#2| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#2|)))) +((-2670 (($ $ (-619 |#1|) (-619 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-285 |#1|)) 11) (($ $ (-619 (-285 |#1|))) 10))) +(((-300 |#1|) (-138) (-1063)) (T -300)) +((-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-285 *3)) (-4 *1 (-300 *3)) (-4 *3 (-1063)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *3))) (-4 *1 (-300 *3)) (-4 *3 (-1063))))) +(-13 (-503 |t#1| |t#1|) (-10 -8 (-15 -2670 ($ $ (-285 |t#1|))) (-15 -2670 ($ $ (-619 (-285 |t#1|)))))) +(((-503 |#1| |#1|) . T)) +((-2670 ((|#1| (-1 |#1| (-547)) (-1137 (-398 (-547)))) 25))) +(((-301 |#1|) (-10 -7 (-15 -2670 (|#1| (-1 |#1| (-547)) (-1137 (-398 (-547)))))) (-38 (-398 (-547)))) (T -301)) +((-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-547))) (-5 *4 (-1137 (-398 (-547)))) (-5 *1 (-301 *2)) (-4 *2 (-38 (-398 (-547))))))) +(-10 -7 (-15 -2670 (|#1| (-1 |#1| (-547)) (-1137 (-398 (-547)))))) +((-3821 (((-112) $ $) NIL)) (-1481 (((-547) $) 12)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3943 (((-1140) $) 9)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-302) (-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $)) (-15 -1481 ((-547) $))))) (T -302)) +((-3943 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-302)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-302))))) +(-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $)) (-15 -1481 ((-547) $)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 7)) (-2371 (((-112) $ $) 9))) +(((-303) (-1063)) (T -303)) NIL (-1063) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 62)) (-3875 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1204 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-3 (-1203 |#2| |#3| |#4|) "failed") $) 25)) (-2375 (((-1204 |#1| |#2| |#3| |#4|) $) NIL) (((-1135) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-548) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-548)))) (((-1203 |#2| |#3| |#4|) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-1204 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1218 (-1204 |#1| |#2| |#3| |#4|)))) (-663 $) (-1218 $)) NIL) (((-663 (-1204 |#1| |#2| |#3| |#4|)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-1204 |#1| |#2| |#3| |#4|) $) 21)) (-3725 (((-3 $ "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1111)))) (-3312 (((-112) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-3091 (($ $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2540 (($ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) $) NIL)) (-3592 (((-3 (-814 |#2|) "failed") $) 78)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-299)))) (-3887 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-1204 |#1| |#2| |#3| |#4|)) (-619 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-286 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-286 (-1204 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-301 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-1135)) (-619 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-504 (-1135) (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-1135) (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-504 (-1135) (-1204 |#1| |#2| |#3| |#4|))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-278 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-1204 |#1| |#2| |#3| |#4|) $) 17)) (-2591 (((-861 (-548)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-593 (-524)))) (((-371) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-991))) (((-218) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-1204 |#1| |#2| |#3| |#4|)) 29) (($ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (($ (-1203 |#2| |#3| |#4|)) 36)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-878))) (|has| (-1204 |#1| |#2| |#3| |#4|) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3107 (($) 41 T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-226))) (($ $ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2309 (($ $ $) 34) (($ (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) 31)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-1204 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1204 |#1| |#2| |#3| |#4|)) NIL))) -(((-305 |#1| |#2| |#3| |#4|) (-13 (-961 (-1204 |#1| |#2| |#3| |#4|)) (-1007 (-1203 |#2| |#3| |#4|)) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3743 ($ (-1203 |#2| |#3| |#4|))))) (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443)) (-13 (-27) (-1157) (-422 |#1|)) (-1135) |#2|) (T -305)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1203 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4) (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *1 (-305 *3 *4 *5 *6)))) (-3592 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *2 (-814 *4)) (-5 *1 (-305 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4)))) -(-13 (-961 (-1204 |#1| |#2| |#3| |#4|)) (-1007 (-1203 |#2| |#3| |#4|)) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3743 ($ (-1203 |#2| |#3| |#4|))))) -((-2540 (((-308 |#2|) (-1 |#2| |#1|) (-308 |#1|)) 13))) -(((-306 |#1| |#2|) (-10 -7 (-15 -2540 ((-308 |#2|) (-1 |#2| |#1|) (-308 |#1|)))) (-821) (-821)) (T -306)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-308 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-5 *2 (-308 *6)) (-5 *1 (-306 *5 *6))))) -(-10 -7 (-15 -2540 ((-308 |#2|) (-1 |#2| |#1|) (-308 |#1|)))) -((-2107 (((-52) |#2| (-286 |#2|) (-745)) 33) (((-52) |#2| (-286 |#2|)) 24) (((-52) |#2| (-745)) 28) (((-52) |#2|) 25) (((-52) (-1135)) 21)) (-1761 (((-52) |#2| (-286 |#2|) (-399 (-548))) 51) (((-52) |#2| (-286 |#2|)) 48) (((-52) |#2| (-399 (-548))) 50) (((-52) |#2|) 49) (((-52) (-1135)) 47)) (-2129 (((-52) |#2| (-286 |#2|) (-399 (-548))) 46) (((-52) |#2| (-286 |#2|)) 43) (((-52) |#2| (-399 (-548))) 45) (((-52) |#2|) 44) (((-52) (-1135)) 42)) (-2119 (((-52) |#2| (-286 |#2|) (-548)) 39) (((-52) |#2| (-286 |#2|)) 35) (((-52) |#2| (-548)) 38) (((-52) |#2|) 36) (((-52) (-1135)) 34))) -(((-307 |#1| |#2|) (-10 -7 (-15 -2107 ((-52) (-1135))) (-15 -2107 ((-52) |#2|)) (-15 -2107 ((-52) |#2| (-745))) (-15 -2107 ((-52) |#2| (-286 |#2|))) (-15 -2107 ((-52) |#2| (-286 |#2|) (-745))) (-15 -2119 ((-52) (-1135))) (-15 -2119 ((-52) |#2|)) (-15 -2119 ((-52) |#2| (-548))) (-15 -2119 ((-52) |#2| (-286 |#2|))) (-15 -2119 ((-52) |#2| (-286 |#2|) (-548))) (-15 -2129 ((-52) (-1135))) (-15 -2129 ((-52) |#2|)) (-15 -2129 ((-52) |#2| (-399 (-548)))) (-15 -2129 ((-52) |#2| (-286 |#2|))) (-15 -2129 ((-52) |#2| (-286 |#2|) (-399 (-548)))) (-15 -1761 ((-52) (-1135))) (-15 -1761 ((-52) |#2|)) (-15 -1761 ((-52) |#2| (-399 (-548)))) (-15 -1761 ((-52) |#2| (-286 |#2|))) (-15 -1761 ((-52) |#2| (-286 |#2|) (-399 (-548))))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -307)) -((-1761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-399 (-548))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4))))) (-2129 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-399 (-548))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2129 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4))))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-548)) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-4 *5 (-13 (-443) (-821) (-1007 *4) (-615 *4))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4))))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-745)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-422 *4)))))) -(-10 -7 (-15 -2107 ((-52) (-1135))) (-15 -2107 ((-52) |#2|)) (-15 -2107 ((-52) |#2| (-745))) (-15 -2107 ((-52) |#2| (-286 |#2|))) (-15 -2107 ((-52) |#2| (-286 |#2|) (-745))) (-15 -2119 ((-52) (-1135))) (-15 -2119 ((-52) |#2|)) (-15 -2119 ((-52) |#2| (-548))) (-15 -2119 ((-52) |#2| (-286 |#2|))) (-15 -2119 ((-52) |#2| (-286 |#2|) (-548))) (-15 -2129 ((-52) (-1135))) (-15 -2129 ((-52) |#2|)) (-15 -2129 ((-52) |#2| (-399 (-548)))) (-15 -2129 ((-52) |#2| (-286 |#2|))) (-15 -2129 ((-52) |#2| (-286 |#2|) (-399 (-548)))) (-15 -1761 ((-52) (-1135))) (-15 -1761 ((-52) |#2|)) (-15 -1761 ((-52) |#2| (-399 (-548)))) (-15 -1761 ((-52) |#2| (-286 |#2|))) (-15 -1761 ((-52) |#2| (-286 |#2|) (-399 (-548))))) -((-3730 (((-112) $ $) NIL)) (-1786 (((-619 $) $ (-1135)) NIL (|has| |#1| (-540))) (((-619 $) $) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $) (-1135)) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $)) NIL (|has| |#1| (-540))) (((-619 $) (-921 $)) NIL (|has| |#1| (-540)))) (-1262 (($ $ (-1135)) NIL (|has| |#1| (-540))) (($ $) NIL (|has| |#1| (-540))) (($ (-1131 $) (-1135)) NIL (|has| |#1| (-540))) (($ (-1131 $)) NIL (|has| |#1| (-540))) (($ (-921 $)) NIL (|has| |#1| (-540)))) (-3324 (((-112) $) 27 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-2049 (((-619 (-1135)) $) 351)) (-1884 (((-399 (-1131 $)) $ (-591 $)) NIL (|has| |#1| (-540)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1806 (((-619 (-591 $)) $) NIL)) (-2074 (($ $) 161 (|has| |#1| (-540)))) (-1940 (($ $) 137 (|has| |#1| (-540)))) (-4237 (($ $ (-1056 $)) 222 (|has| |#1| (-540))) (($ $ (-1135)) 218 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) 368) (($ $ (-619 (-591 $)) (-619 $)) 412)) (-4070 (((-410 (-1131 $)) (-1131 $)) 295 (-12 (|has| |#1| (-443)) (|has| |#1| (-540))))) (-1688 (($ $) NIL (|has| |#1| (-540)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-540)))) (-1926 (($ $) NIL (|has| |#1| (-540)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2054 (($ $) 157 (|has| |#1| (-540)))) (-1918 (($ $) 133 (|has| |#1| (-540)))) (-4095 (($ $ (-548)) 72 (|has| |#1| (-540)))) (-2098 (($ $) 165 (|has| |#1| (-540)))) (-1963 (($ $) 141 (|has| |#1| (-540)))) (-3030 (($) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-1274 (((-619 $) $ (-1135)) NIL (|has| |#1| (-540))) (((-619 $) $) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $) (-1135)) NIL (|has| |#1| (-540))) (((-619 $) (-1131 $)) NIL (|has| |#1| (-540))) (((-619 $) (-921 $)) NIL (|has| |#1| (-540)))) (-3263 (($ $ (-1135)) NIL (|has| |#1| (-540))) (($ $) NIL (|has| |#1| (-540))) (($ (-1131 $) (-1135)) 124 (|has| |#1| (-540))) (($ (-1131 $)) NIL (|has| |#1| (-540))) (($ (-921 $)) NIL (|has| |#1| (-540)))) (-2441 (((-3 (-591 $) "failed") $) 17) (((-3 (-1135) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-921 |#1|)) "failed") $) NIL (|has| |#1| (-540))) (((-3 (-921 |#1|) "failed") $) NIL (|has| |#1| (-1016))) (((-3 (-399 (-548)) "failed") $) 46 (-1524 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 (((-591 $) $) 11) (((-1135) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-921 |#1|)) $) NIL (|has| |#1| (-540))) (((-921 |#1|) $) NIL (|has| |#1| (-1016))) (((-399 (-548)) $) 306 (-1524 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-1945 (($ $ $) NIL (|has| |#1| (-540)))) (-1608 (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 117 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 107 (|has| |#1| (-1016))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (-2061 (($ $) 89 (|has| |#1| (-540)))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-1922 (($ $ $) NIL (|has| |#1| (-540)))) (-2481 (($ $ (-1056 $)) 226 (|has| |#1| (-540))) (($ $ (-1135)) 224 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-540)))) (-1271 (((-112) $) NIL (|has| |#1| (-540)))) (-1478 (($ $ $) 192 (|has| |#1| (-540)))) (-1365 (($) 127 (|has| |#1| (-540)))) (-4206 (($ $ $) 212 (|has| |#1| (-540)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 374 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 381 (|has| |#1| (-855 (-371))))) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) 267)) (-2266 (((-112) $) 25 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2002 (($ $) 71 (|has| |#1| (-1016)))) (-2470 (((-1087 |#1| (-591 $)) $) 84 (|has| |#1| (-1016)))) (-4108 (((-112) $) 64 (|has| |#1| (-540)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-540)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-540)))) (-1724 (((-1131 $) (-591 $)) 268 (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) 408)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-3496 (($ $) 131 (|has| |#1| (-540)))) (-1613 (($ $) 237 (|has| |#1| (-540)))) (-3553 (($ (-619 $)) NIL (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) 49)) (-1409 (($ (-114) $) NIL) (($ (-114) (-619 $)) 413)) (-3939 (((-3 (-619 $) "failed") $) NIL (|has| |#1| (-1075)))) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) NIL (|has| |#1| (-1016)))) (-3927 (((-3 (-619 $) "failed") $) 416 (|has| |#1| (-25)))) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) NIL (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) NIL (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) NIL (|has| |#1| (-1016)))) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) 53)) (-2153 (($ $) NIL (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-4044 (($ $ (-1135)) 241 (|has| |#1| (-540))) (($ $ (-1056 $)) 243 (|has| |#1| (-540)))) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 43)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 288 (|has| |#1| (-540)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-4249 (($ $ (-1135)) 216 (|has| |#1| (-540))) (($ $) 214 (|has| |#1| (-540)))) (-4185 (($ $) 208 (|has| |#1| (-540)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 293 (-12 (|has| |#1| (-443)) (|has| |#1| (-540))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-540)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-540))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-540)))) (-2458 (($ $) 129 (|has| |#1| (-540)))) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) 407) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) 361) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1135)) NIL (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-593 (-524)))) (($ $) NIL (|has| |#1| (-593 (-524)))) (($ $ (-114) $ (-1135)) 349 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-114)) (-619 $) (-1135)) 348 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ $)) NIL (|has| |#1| (-1016)))) (-4077 (((-745) $) NIL (|has| |#1| (-540)))) (-1877 (($ $) 229 (|has| |#1| (-540)))) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1762 (($ $) NIL) (($ $ $) NIL)) (-1907 (($ $) 239 (|has| |#1| (-540)))) (-1467 (($ $) 190 (|has| |#1| (-540)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-1016))) (($ $ (-1135)) NIL (|has| |#1| (-1016)))) (-1993 (($ $) 73 (|has| |#1| (-540)))) (-2480 (((-1087 |#1| (-591 $)) $) 86 (|has| |#1| (-540)))) (-3287 (($ $) 304 (|has| $ (-1016)))) (-2110 (($ $) 167 (|has| |#1| (-540)))) (-1973 (($ $) 143 (|has| |#1| (-540)))) (-2086 (($ $) 163 (|has| |#1| (-540)))) (-1952 (($ $) 139 (|has| |#1| (-540)))) (-2065 (($ $) 159 (|has| |#1| (-540)))) (-1929 (($ $) 135 (|has| |#1| (-540)))) (-2591 (((-861 (-548)) $) NIL (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#1| (-593 (-861 (-371))))) (($ (-410 $)) NIL (|has| |#1| (-540))) (((-524) $) 346 (|has| |#1| (-593 (-524))))) (-2128 (($ $ $) NIL (|has| |#1| (-464)))) (-3652 (($ $ $) NIL (|has| |#1| (-464)))) (-3743 (((-832) $) 406) (($ (-591 $)) 397) (($ (-1135)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-540))) (($ (-48)) 299 (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) (($ (-1087 |#1| (-591 $))) 88 (|has| |#1| (-1016))) (($ (-399 |#1|)) NIL (|has| |#1| (-540))) (($ (-921 (-399 |#1|))) NIL (|has| |#1| (-540))) (($ (-399 (-921 (-399 |#1|)))) NIL (|has| |#1| (-540))) (($ (-399 (-921 |#1|))) NIL (|has| |#1| (-540))) (($ (-921 |#1|)) NIL (|has| |#1| (-1016))) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-540)) (|has| |#1| (-1007 (-399 (-548)))))) (($ (-548)) 34 (-1524 (|has| |#1| (-1007 (-548))) (|has| |#1| (-1016))))) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL (|has| |#1| (-1016)))) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-3612 (($ $ $) 210 (|has| |#1| (-540)))) (-1513 (($ $ $) 196 (|has| |#1| (-540)))) (-1533 (($ $ $) 200 (|has| |#1| (-540)))) (-1502 (($ $ $) 194 (|has| |#1| (-540)))) (-1523 (($ $ $) 198 (|has| |#1| (-540)))) (-1392 (((-112) (-114)) 9)) (-2145 (($ $) 173 (|has| |#1| (-540)))) (-2006 (($ $) 149 (|has| |#1| (-540)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 169 (|has| |#1| (-540)))) (-1986 (($ $) 145 (|has| |#1| (-540)))) (-2170 (($ $) 177 (|has| |#1| (-540)))) (-2029 (($ $) 153 (|has| |#1| (-540)))) (-2201 (($ (-1135) $) NIL) (($ (-1135) $ $) NIL) (($ (-1135) $ $ $) NIL) (($ (-1135) $ $ $ $) NIL) (($ (-1135) (-619 $)) NIL)) (-1551 (($ $) 204 (|has| |#1| (-540)))) (-1542 (($ $) 202 (|has| |#1| (-540)))) (-4026 (($ $) 179 (|has| |#1| (-540)))) (-2040 (($ $) 155 (|has| |#1| (-540)))) (-2158 (($ $) 175 (|has| |#1| (-540)))) (-2017 (($ $) 151 (|has| |#1| (-540)))) (-2132 (($ $) 171 (|has| |#1| (-540)))) (-1996 (($ $) 147 (|has| |#1| (-540)))) (-1446 (($ $) 182 (|has| |#1| (-540)))) (-3107 (($) 20 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) CONST)) (-1424 (($ $) 233 (|has| |#1| (-540)))) (-3118 (($) 22 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-1491 (($ $) 184 (|has| |#1| (-540))) (($ $ $) 186 (|has| |#1| (-540)))) (-1437 (($ $) 231 (|has| |#1| (-540)))) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-1016))) (($ $ (-1135)) NIL (|has| |#1| (-1016)))) (-1413 (($ $) 235 (|has| |#1| (-540)))) (-1456 (($ $ $) 188 (|has| |#1| (-540)))) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 81)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 80)) (-2309 (($ (-1087 |#1| (-591 $)) (-1087 |#1| (-591 $))) 98 (|has| |#1| (-540))) (($ $ $) 42 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-2299 (($ $ $) 40 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (($ $) 29 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (-2290 (($ $ $) 38 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))))) (** (($ $ $) 66 (|has| |#1| (-540))) (($ $ (-399 (-548))) 301 (|has| |#1| (-540))) (($ $ (-548)) 76 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540)))) (($ $ (-745)) 74 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ $ (-890)) 78 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (* (($ (-399 (-548)) $) NIL (|has| |#1| (-540))) (($ $ (-399 (-548))) NIL (|has| |#1| (-540))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-1524 (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ (-548) $) 32 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (($ (-745) $) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))) (($ (-890) $) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))))))) -(((-308 |#1|) (-13 (-422 |#1|) (-10 -8 (IF (|has| |#1| (-540)) (PROGN (-6 (-29 |#1|)) (-6 (-1157)) (-6 (-157)) (-6 (-605)) (-6 (-1099)) (-15 -2061 ($ $)) (-15 -4108 ((-112) $)) (-15 -4095 ($ $ (-548))) (IF (|has| |#1| (-443)) (PROGN (-15 -4060 ((-410 (-1131 $)) (-1131 $))) (-15 -4070 ((-410 (-1131 $)) (-1131 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-548))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) (-821)) (T -308)) -((-2061 (*1 *1 *1) (-12 (-5 *1 (-308 *2)) (-4 *2 (-540)) (-4 *2 (-821)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821)))) (-4095 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821)))) (-4060 (*1 *2 *3) (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821)))) (-4070 (*1 *2 *3) (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821))))) -(-13 (-422 |#1|) (-10 -8 (IF (|has| |#1| (-540)) (PROGN (-6 (-29 |#1|)) (-6 (-1157)) (-6 (-157)) (-6 (-605)) (-6 (-1099)) (-15 -2061 ($ $)) (-15 -4108 ((-112) $)) (-15 -4095 ($ $ (-548))) (IF (|has| |#1| (-443)) (PROGN (-15 -4060 ((-410 (-1131 $)) (-1131 $))) (-15 -4070 ((-410 (-1131 $)) (-1131 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-548))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) -((-4120 (((-52) |#2| (-114) (-286 |#2|) (-619 |#2|)) 88) (((-52) |#2| (-114) (-286 |#2|) (-286 |#2|)) 84) (((-52) |#2| (-114) (-286 |#2|) |#2|) 86) (((-52) (-286 |#2|) (-114) (-286 |#2|) |#2|) 87) (((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|))) 80) (((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 |#2|)) 82) (((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 |#2|)) 83) (((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|))) 81) (((-52) (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|)) 89) (((-52) (-286 |#2|) (-114) (-286 |#2|) (-286 |#2|)) 85))) -(((-309 |#1| |#2|) (-10 -7 (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-619 |#2|)))) (-13 (-821) (-540) (-593 (-524))) (-422 |#1|)) (T -309)) -((-4120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-5 *6 (-619 *3)) (-4 *3 (-422 *7)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *7 *3)))) (-4120 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-4120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-4120 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *5)) (-5 *4 (-114)) (-4 *5 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *5)))) (-4120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-286 *8))) (-4 *8 (-422 *7)) (-5 *5 (-286 *8)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *7 *8)))) (-4120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) (-4120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 (-286 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *8)) (-5 *6 (-619 *8)) (-4 *8 (-422 *7)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *7 *8)))) (-4120 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) (-4120 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) (-4120 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-286 *6)) (-5 *4 (-114)) (-4 *6 (-422 *5)) (-4 *5 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *6))))) -(-10 -7 (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-619 (-286 |#2|)) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 |#2|))) (-15 -4120 ((-52) (-619 |#2|) (-619 (-114)) (-286 |#2|) (-619 (-286 |#2|)))) (-15 -4120 ((-52) (-286 |#2|) (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) |#2|)) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-286 |#2|))) (-15 -4120 ((-52) |#2| (-114) (-286 |#2|) (-619 |#2|)))) -((-4138 (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548) (-1118)) 46) (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548)) 47) (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548) (-1118)) 43) (((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548)) 44)) (-4128 (((-1 (-218) (-218)) (-218)) 45))) -(((-310) (-10 -7 (-15 -4128 ((-1 (-218) (-218)) (-218))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548) (-1118))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548) (-1118))))) (T -310)) -((-4138 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) (-5 *8 (-1118)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4138 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4138 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *7 (-1118)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4138 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) (-4128 (*1 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-310)) (-5 *3 (-218))))) -(-10 -7 (-15 -4128 ((-1 (-218) (-218)) (-218))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-1 (-218) (-218)) (-548) (-1118))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548))) (-15 -4138 ((-1167 (-895)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-218) (-548) (-1118)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 25)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 20)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 32)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) 16)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) NIL) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-4148 (((-399 (-548)) $) 17)) (-3567 (($ (-1203 |#1| |#2| |#3|)) 11)) (-3352 (((-1203 |#1| |#2| |#3|) $) 12)) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 10)) (-3743 (((-832) $) 38) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 30)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) NIL)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 27)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 33)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-311 |#1| |#2| |#3|) (-13 (-1199 |#1|) (-766) (-10 -8 (-15 -3567 ($ (-1203 |#1| |#2| |#3|))) (-15 -3352 ((-1203 |#1| |#2| |#3|) $)) (-15 -4148 ((-399 (-548)) $)))) (-13 (-355) (-821)) (-1135) |#1|) (T -311)) -((-3567 (*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-311 *3 *4 *5)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4 *5)) (-5 *1 (-311 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-311 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3)))) -(-13 (-1199 |#1|) (-766) (-10 -8 (-15 -3567 ($ (-1203 |#1| |#2| |#3|))) (-15 -3352 ((-1203 |#1| |#2| |#3|) $)) (-15 -4148 ((-399 (-548)) $)))) -((-2154 (((-2 (|:| -3352 (-745)) (|:| -1489 |#1|) (|:| |radicand| (-619 |#1|))) (-410 |#1|) (-745)) 24)) (-3496 (((-619 (-2 (|:| -1489 (-745)) (|:| |logand| |#1|))) (-410 |#1|)) 28))) -(((-312 |#1|) (-10 -7 (-15 -2154 ((-2 (|:| -3352 (-745)) (|:| -1489 |#1|) (|:| |radicand| (-619 |#1|))) (-410 |#1|) (-745))) (-15 -3496 ((-619 (-2 (|:| -1489 (-745)) (|:| |logand| |#1|))) (-410 |#1|)))) (-540)) (T -312)) -((-3496 (*1 *2 *3) (-12 (-5 *3 (-410 *4)) (-4 *4 (-540)) (-5 *2 (-619 (-2 (|:| -1489 (-745)) (|:| |logand| *4)))) (-5 *1 (-312 *4)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *5)) (-4 *5 (-540)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *5) (|:| |radicand| (-619 *5)))) (-5 *1 (-312 *5)) (-5 *4 (-745))))) -(-10 -7 (-15 -2154 ((-2 (|:| -3352 (-745)) (|:| -1489 |#1|) (|:| |radicand| (-619 |#1|))) (-410 |#1|) (-745))) (-15 -3496 ((-619 (-2 (|:| -1489 (-745)) (|:| |logand| |#1|))) (-410 |#1|)))) -((-2049 (((-619 |#2|) (-1131 |#4|)) 43)) (-4200 ((|#3| (-548)) 46)) (-4180 (((-1131 |#4|) (-1131 |#3|)) 30)) (-4190 (((-1131 |#4|) (-1131 |#4|) (-548)) 56)) (-4170 (((-1131 |#3|) (-1131 |#4|)) 21)) (-2512 (((-619 (-745)) (-1131 |#4|) (-619 |#2|)) 40)) (-4158 (((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|)) 35))) -(((-313 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -2512 ((-619 (-745)) (-1131 |#4|) (-619 |#2|))) (-15 -2049 ((-619 |#2|) (-1131 |#4|))) (-15 -4170 ((-1131 |#3|) (-1131 |#4|))) (-15 -4180 ((-1131 |#4|) (-1131 |#3|))) (-15 -4190 ((-1131 |#4|) (-1131 |#4|) (-548))) (-15 -4200 (|#3| (-548)))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|)) (T -313)) -((-4200 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) (-5 *1 (-313 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5)))) (-4190 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 *7)) (-5 *3 (-548)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *1 (-313 *4 *5 *6 *7)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1131 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1131 *7)) (-5 *1 (-313 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-313 *4 *5 *6 *7)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5)) (-5 *1 (-313 *4 *5 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) (-5 *2 (-619 (-745))) (-5 *1 (-313 *5 *6 *7 *8)))) (-4158 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-1131 *8)) (-5 *1 (-313 *6 *7 *8 *9))))) -(-10 -7 (-15 -4158 ((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -2512 ((-619 (-745)) (-1131 |#4|) (-619 |#2|))) (-15 -2049 ((-619 |#2|) (-1131 |#4|))) (-15 -4170 ((-1131 |#3|) (-1131 |#4|))) (-15 -4180 ((-1131 |#4|) (-1131 |#3|))) (-15 -4190 ((-1131 |#4|) (-1131 |#4|) (-548))) (-15 -4200 (|#3| (-548)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 14)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $) 18)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3224 ((|#1| $ (-548)) NIL)) (-4232 (((-548) $ (-548)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-1628 (($ (-1 |#1| |#1|) $) NIL)) (-4222 (($ (-1 (-548) (-548)) $) 10)) (-2546 (((-1118) $) NIL)) (-4211 (($ $ $) NIL (|has| (-548) (-766)))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-1951 (((-548) |#1| $) NIL)) (-3107 (($) 15 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) 21 (|has| |#1| (-821)))) (-2299 (($ $) 11) (($ $ $) 20)) (-2290 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL) (($ (-548) |#1|) 19))) -(((-314 |#1|) (-13 (-21) (-692 (-548)) (-315 |#1| (-548)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -314)) -NIL -(-13 (-21) (-692 (-548)) (-315 |#1| (-548)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $) 27)) (-4104 (((-3 $ "failed") $ $) 19)) (-3423 (((-745) $) 28)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 32)) (-2375 ((|#1| $) 31)) (-3224 ((|#1| $ (-548)) 25)) (-4232 ((|#2| $ (-548)) 26)) (-1628 (($ (-1 |#1| |#1|) $) 22)) (-4222 (($ (-1 |#2| |#2|) $) 23)) (-2546 (((-1118) $) 9)) (-4211 (($ $ $) 21 (|has| |#2| (-766)))) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ |#1|) 33)) (-1951 ((|#2| |#1| $) 24)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2290 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ |#2| |#1|) 29))) -(((-315 |#1| |#2|) (-138) (-1063) (-130)) (T -315)) -((-2290 (*1 *1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-745)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-315 *4 *2)) (-4 *4 (-1063)) (-4 *2 (-130)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-315 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1063)))) (-1951 (*1 *2 *3 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-4211 (*1 *1 *1 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) (-4 *3 (-766))))) -(-13 (-130) (-1007 |t#1|) (-10 -8 (-15 -2290 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3423 ((-745) $)) (-15 -1680 ((-619 (-2 (|:| |gen| |t#1|) (|:| -2458 |t#2|))) $)) (-15 -4232 (|t#2| $ (-548))) (-15 -3224 (|t#1| $ (-548))) (-15 -1951 (|t#2| |t#1| $)) (-15 -4222 ($ (-1 |t#2| |t#2|) $)) (-15 -1628 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-766)) (-15 -4211 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1007 |#1|) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3224 ((|#1| $ (-548)) NIL)) (-4232 (((-745) $ (-548)) NIL)) (-1628 (($ (-1 |#1| |#1|) $) NIL)) (-4222 (($ (-1 (-745) (-745)) $) NIL)) (-2546 (((-1118) $) NIL)) (-4211 (($ $ $) NIL (|has| (-745) (-766)))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-1951 (((-745) |#1| $) NIL)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-745) |#1|) NIL))) -(((-316 |#1|) (-315 |#1| (-745)) (-1063)) (T -316)) -NIL -(-315 |#1| (-745)) -((-4065 (($ $) 53)) (-4256 (($ $ |#2| |#3| $) 14)) (-4267 (($ (-1 |#3| |#3|) $) 33)) (-2164 (((-112) $) 24)) (-2175 ((|#2| $) 26)) (-1900 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3881 ((|#2| $) 49)) (-3852 (((-619 |#2|) $) 36)) (-4243 (($ $ $ (-745)) 20)) (-2309 (($ $ |#2|) 40))) -(((-317 |#1| |#2| |#3|) (-10 -8 (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4243 (|#1| |#1| |#1| (-745))) (-15 -4256 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4267 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2309 (|#1| |#1| |#2|))) (-318 |#2| |#3|) (-1016) (-766)) (T -317)) -NIL -(-10 -8 (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4243 (|#1| |#1| |#1| (-745))) (-15 -4256 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4267 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2309 (|#1| |#1| |#2|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 88 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 86 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 85)) (-2375 (((-548) $) 89 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 87 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 84)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 73 (|has| |#1| (-443)))) (-4256 (($ $ |#1| |#2| $) 77)) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 80)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59)) (-3904 ((|#2| $) 79)) (-4267 (($ (-1 |#2| |#2|) $) 78)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 83)) (-2175 ((|#1| $) 82)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-540)))) (-2512 ((|#2| $) 62)) (-3881 ((|#1| $) 74 (|has| |#1| (-443)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45) (($ (-399 (-548))) 55 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548))))))) (-3852 (((-619 |#1|) $) 81)) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 76 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) -(((-318 |#1| |#2|) (-138) (-1016) (-766)) (T -318)) -((-2164 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-619 *3)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-745)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-4267 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-4256 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-4243 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *3 (-169)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-540)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) (-4 *2 (-443)))) (-4065 (*1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-443))))) -(-13 (-47 |t#1| |t#2|) (-403 |t#1|) (-10 -8 (-15 -2164 ((-112) $)) (-15 -2175 (|t#1| $)) (-15 -3852 ((-619 |t#1|) $)) (-15 -2333 ((-745) $)) (-15 -3904 (|t#2| $)) (-15 -4267 ($ (-1 |t#2| |t#2|) $)) (-15 -4256 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -4243 ($ $ $ (-745))) |%noBranch|) (IF (|has| |t#1| (-540)) (-15 -1900 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-15 -3881 (|t#1| $)) (-15 -4065 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-282) |has| |#1| (-540)) ((-403 |#1|) . T) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-3952 (((-112) (-112)) NIL)) (-2089 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2969 (($ $) NIL (|has| |#1| (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-3967 (($ $ (-548)) NIL)) (-3977 (((-745) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3987 (($ (-619 |#1|)) NIL)) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3659 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-319 |#1|) (-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) (-1172)) (T -319)) -((-3987 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-319 *3)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-1172))))) -(-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) -((-2395 (((-112) $) 42)) (-2364 (((-745)) 22)) (-2707 ((|#2| $) 46) (($ $ (-890)) 101)) (-3423 (((-745)) 102)) (-2455 (($ (-1218 |#2|)) 20)) (-2866 (((-112) $) 115)) (-3910 ((|#2| $) 48) (($ $ (-890)) 99)) (-2898 (((-1131 |#2|) $) NIL) (((-1131 $) $ (-890)) 95)) (-4288 (((-1131 |#2|) $) 82)) (-4278 (((-1131 |#2|) $) 79) (((-3 (-1131 |#2|) "failed") $ $) 76)) (-4300 (($ $ (-1131 |#2|)) 53)) (-2373 (((-807 (-890))) 28) (((-890)) 43)) (-3402 (((-133)) 25)) (-2512 (((-807 (-890)) $) 30) (((-890) $) 117)) (-1255 (($) 108)) (-2447 (((-1218 |#2|) $) NIL) (((-663 |#2|) (-1218 $)) 39)) (-4017 (($ $) NIL) (((-3 $ "failed") $) 85)) (-2406 (((-112) $) 41))) -(((-320 |#1| |#2|) (-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -3423 ((-745))) (-15 -4017 (|#1| |#1|)) (-15 -4278 ((-3 (-1131 |#2|) "failed") |#1| |#1|)) (-15 -4278 ((-1131 |#2|) |#1|)) (-15 -4288 ((-1131 |#2|) |#1|)) (-15 -4300 (|#1| |#1| (-1131 |#2|))) (-15 -2866 ((-112) |#1|)) (-15 -1255 (|#1|)) (-15 -2707 (|#1| |#1| (-890))) (-15 -3910 (|#1| |#1| (-890))) (-15 -2898 ((-1131 |#1|) |#1| (-890))) (-15 -2707 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2512 ((-890) |#1|)) (-15 -2373 ((-890))) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2364 ((-745))) (-15 -2373 ((-807 (-890)))) (-15 -2512 ((-807 (-890)) |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -3402 ((-133)))) (-321 |#2|) (-355)) (T -320)) -((-3402 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-133)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2373 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-807 (-890))) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2364 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2373 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-890)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-3423 (*1 *2) (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4))))) -(-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -3423 ((-745))) (-15 -4017 (|#1| |#1|)) (-15 -4278 ((-3 (-1131 |#2|) "failed") |#1| |#1|)) (-15 -4278 ((-1131 |#2|) |#1|)) (-15 -4288 ((-1131 |#2|) |#1|)) (-15 -4300 (|#1| |#1| (-1131 |#2|))) (-15 -2866 ((-112) |#1|)) (-15 -1255 (|#1|)) (-15 -2707 (|#1| |#1| (-890))) (-15 -3910 (|#1| |#1| (-890))) (-15 -2898 ((-1131 |#1|) |#1| (-890))) (-15 -2707 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2512 ((-890) |#1|)) (-15 -2373 ((-890))) (-15 -2898 ((-1131 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2364 ((-745))) (-15 -2373 ((-807 (-890)))) (-15 -2512 ((-807 (-890)) |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -3402 ((-133)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-2395 (((-112) $) 91)) (-2364 (((-745)) 87)) (-2707 ((|#1| $) 137) (($ $ (-890)) 134 (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 119 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3423 (((-745)) 109 (|has| |#1| (-360)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 98)) (-2375 ((|#1| $) 97)) (-2455 (($ (-1218 |#1|)) 143)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-360)))) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) 106 (|has| |#1| (-360)))) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2771 (($) 121 (|has| |#1| (-360)))) (-3727 (((-112) $) 122 (|has| |#1| (-360)))) (-2208 (($ $ (-745)) 84 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) 83 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) 68)) (-1672 (((-890) $) 124 (|has| |#1| (-360))) (((-807 (-890)) $) 81 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) 30)) (-2887 (($) 132 (|has| |#1| (-360)))) (-2866 (((-112) $) 131 (|has| |#1| (-360)))) (-3910 ((|#1| $) 138) (($ $ (-890)) 135 (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) 110 (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2898 (((-1131 |#1|) $) 142) (((-1131 $) $ (-890)) 136 (|has| |#1| (-360)))) (-2855 (((-890) $) 107 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) 128 (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) 127 (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) 126 (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) 129 (|has| |#1| (-360)))) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3410 (($) 111 (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 108 (|has| |#1| (-360)))) (-2384 (((-112) $) 90)) (-3932 (((-1082) $) 10)) (-4160 (($) 130 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 118 (|has| |#1| (-360)))) (-1915 (((-410 $) $) 71)) (-2373 (((-807 (-890))) 88) (((-890)) 140)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-745) $) 123 (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) 82 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) 96)) (-4050 (($ $) 115 (|has| |#1| (-360))) (($ $ (-745)) 113 (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) 89) (((-890) $) 139)) (-3287 (((-1131 |#1|)) 141)) (-3655 (($) 120 (|has| |#1| (-360)))) (-1255 (($) 133 (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 145) (((-663 |#1|) (-1218 $)) 144)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 117 (|has| |#1| (-360)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ |#1|) 99)) (-4017 (($ $) 116 (|has| |#1| (-360))) (((-3 $ "failed") $) 80 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 147) (((-1218 $) (-890)) 146)) (-3290 (((-112) $ $) 37)) (-2406 (((-112) $) 92)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2354 (($ $) 86 (|has| |#1| (-360))) (($ $ (-745)) 85 (|has| |#1| (-360)))) (-3296 (($ $) 114 (|has| |#1| (-360))) (($ $ (-745)) 112 (|has| |#1| (-360)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62) (($ $ |#1|) 95)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-321 |#1|) (-138) (-355)) (T -321)) -((-2877 (*1 *2) (-12 (-4 *3 (-355)) (-5 *2 (-1218 *1)) (-4 *1 (-321 *3)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-355)) (-5 *2 (-1218 *1)) (-4 *1 (-321 *4)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1218 *3)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-321 *4)) (-4 *4 (-355)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-4 *1 (-321 *3)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) (-3287 (*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) (-2373 (*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-4 *4 (-360)) (-4 *4 (-355)) (-5 *2 (-1131 *1)) (-4 *1 (-321 *4)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) (-1255 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) (-2887 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-112)))) (-4160 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) (-4300 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-360)) (-4 *1 (-321 *3)) (-4 *3 (-355)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-1131 *3)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-1131 *3)))) (-4278 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-1131 *3))))) -(-13 (-1237 |t#1|) (-1007 |t#1|) (-10 -8 (-15 -2877 ((-1218 $))) (-15 -2877 ((-1218 $) (-890))) (-15 -2447 ((-1218 |t#1|) $)) (-15 -2447 ((-663 |t#1|) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|))) (-15 -2898 ((-1131 |t#1|) $)) (-15 -3287 ((-1131 |t#1|))) (-15 -2373 ((-890))) (-15 -2512 ((-890) $)) (-15 -3910 (|t#1| $)) (-15 -2707 (|t#1| $)) (IF (|has| |t#1| (-360)) (PROGN (-6 (-341)) (-15 -2898 ((-1131 $) $ (-890))) (-15 -3910 ($ $ (-890))) (-15 -2707 ($ $ (-890))) (-15 -1255 ($)) (-15 -2887 ($)) (-15 -2866 ((-112) $)) (-15 -4160 ($)) (-15 -4300 ($ $ (-1131 |t#1|))) (-15 -4288 ((-1131 |t#1|) $)) (-15 -4278 ((-1131 |t#1|) $)) (-15 -4278 ((-3 (-1131 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-226) |has| |#1| (-360)) ((-236) . T) ((-282) . T) ((-299) . T) ((-1237 |#1|) . T) ((-355) . T) ((-394) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-360) |has| |#1| (-360)) ((-341) |has| |#1| (-360)) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-360)) ((-1176) . T) ((-1225 |#1|) . T)) -((-3730 (((-112) $ $) NIL)) (-1358 (($ (-1134) $) 88)) (-3422 (($) 77)) (-1267 (((-1082) (-1082)) 11)) (-2277 (($) 78)) (-1325 (($) 90) (($ (-308 (-673))) 98) (($ (-308 (-675))) 94) (($ (-308 (-668))) 102) (($ (-308 (-371))) 109) (($ (-308 (-548))) 105) (($ (-308 (-166 (-371)))) 113)) (-1347 (($ (-1134) $) 89)) (-1302 (($ (-619 (-832))) 79)) (-1291 (((-1223) $) 75)) (-1739 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1337 (($ (-1082)) 51)) (-1279 (((-1067) $) 25)) (-1369 (($ (-1056 (-921 (-548))) $) 85) (($ (-1056 (-921 (-548))) (-921 (-548)) $) 86)) (-2099 (($ (-1082)) 87)) (-3997 (($ (-1134) $) 115) (($ (-1134) $ $) 116)) (-3350 (($ (-1135) (-619 (-1135))) 76)) (-1729 (($ (-1118)) 82) (($ (-619 (-1118))) 80)) (-3743 (((-832) $) 118)) (-1887 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 $))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $) 44)) (-3294 (($ (-1118)) 187)) (-1314 (($ (-619 $)) 114)) (-4173 (($ (-1135) (-1118)) 120) (($ (-1135) (-308 (-675))) 160) (($ (-1135) (-308 (-673))) 161) (($ (-1135) (-308 (-668))) 162) (($ (-1135) (-663 (-675))) 123) (($ (-1135) (-663 (-673))) 126) (($ (-1135) (-663 (-668))) 129) (($ (-1135) (-1218 (-675))) 132) (($ (-1135) (-1218 (-673))) 135) (($ (-1135) (-1218 (-668))) 138) (($ (-1135) (-663 (-308 (-675)))) 141) (($ (-1135) (-663 (-308 (-673)))) 144) (($ (-1135) (-663 (-308 (-668)))) 147) (($ (-1135) (-1218 (-308 (-675)))) 150) (($ (-1135) (-1218 (-308 (-673)))) 153) (($ (-1135) (-1218 (-308 (-668)))) 156) (($ (-1135) (-619 (-921 (-548))) (-308 (-675))) 157) (($ (-1135) (-619 (-921 (-548))) (-308 (-673))) 158) (($ (-1135) (-619 (-921 (-548))) (-308 (-668))) 159) (($ (-1135) (-308 (-548))) 184) (($ (-1135) (-308 (-371))) 185) (($ (-1135) (-308 (-166 (-371)))) 186) (($ (-1135) (-663 (-308 (-548)))) 165) (($ (-1135) (-663 (-308 (-371)))) 168) (($ (-1135) (-663 (-308 (-166 (-371))))) 171) (($ (-1135) (-1218 (-308 (-548)))) 174) (($ (-1135) (-1218 (-308 (-371)))) 177) (($ (-1135) (-1218 (-308 (-166 (-371))))) 180) (($ (-1135) (-619 (-921 (-548))) (-308 (-548))) 181) (($ (-1135) (-619 (-921 (-548))) (-308 (-371))) 182) (($ (-1135) (-619 (-921 (-548))) (-308 (-166 (-371)))) 183)) (-2214 (((-112) $ $) NIL))) -(((-322) (-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -1369 ($ (-1056 (-921 (-548))) $)) (-15 -1369 ($ (-1056 (-921 (-548))) (-921 (-548)) $)) (-15 -1358 ($ (-1134) $)) (-15 -1347 ($ (-1134) $)) (-15 -1337 ($ (-1082))) (-15 -2099 ($ (-1082))) (-15 -1729 ($ (-1118))) (-15 -1729 ($ (-619 (-1118)))) (-15 -3294 ($ (-1118))) (-15 -1325 ($)) (-15 -1325 ($ (-308 (-673)))) (-15 -1325 ($ (-308 (-675)))) (-15 -1325 ($ (-308 (-668)))) (-15 -1325 ($ (-308 (-371)))) (-15 -1325 ($ (-308 (-548)))) (-15 -1325 ($ (-308 (-166 (-371))))) (-15 -3997 ($ (-1134) $)) (-15 -3997 ($ (-1134) $ $)) (-15 -4173 ($ (-1135) (-1118))) (-15 -4173 ($ (-1135) (-308 (-675)))) (-15 -4173 ($ (-1135) (-308 (-673)))) (-15 -4173 ($ (-1135) (-308 (-668)))) (-15 -4173 ($ (-1135) (-663 (-675)))) (-15 -4173 ($ (-1135) (-663 (-673)))) (-15 -4173 ($ (-1135) (-663 (-668)))) (-15 -4173 ($ (-1135) (-1218 (-675)))) (-15 -4173 ($ (-1135) (-1218 (-673)))) (-15 -4173 ($ (-1135) (-1218 (-668)))) (-15 -4173 ($ (-1135) (-663 (-308 (-675))))) (-15 -4173 ($ (-1135) (-663 (-308 (-673))))) (-15 -4173 ($ (-1135) (-663 (-308 (-668))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-675))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-673))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-668))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-675)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-673)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-668)))) (-15 -4173 ($ (-1135) (-308 (-548)))) (-15 -4173 ($ (-1135) (-308 (-371)))) (-15 -4173 ($ (-1135) (-308 (-166 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-548))))) (-15 -4173 ($ (-1135) (-663 (-308 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-548))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-371))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-548)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-371)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-166 (-371))))) (-15 -1314 ($ (-619 $))) (-15 -3422 ($)) (-15 -2277 ($)) (-15 -1302 ($ (-619 (-832)))) (-15 -3350 ($ (-1135) (-619 (-1135)))) (-15 -1739 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1887 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 $))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -1291 ((-1223) $)) (-15 -1279 ((-1067) $)) (-15 -1267 ((-1082) (-1082)))))) (T -322)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-322)))) (-1369 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *1 (-322)))) (-1369 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *3 (-921 (-548))) (-5 *1 (-322)))) (-1358 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-1337 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322)))) (-1729 (*1 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-322)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322)))) (-1325 (*1 *1) (-5 *1 (-322))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-673))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-675))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-668))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-322)))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-322)))) (-3997 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-3997 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-675)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-673)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-668)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-675)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-673)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-668)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-675))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-673))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-668))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-548))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-371))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-166 (-371)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-548)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-371)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-166 (-371))))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-548)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-371)))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-166 (-371))))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-548))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-371))) (-5 *1 (-322)))) (-4173 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-308 (-166 (-371)))) (-5 *1 (-322)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-5 *1 (-322)))) (-3422 (*1 *1) (-5 *1 (-322))) (-2277 (*1 *1) (-5 *1 (-322))) (-1302 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-322)))) (-3350 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-322)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-322)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| (-322)) (|:| |elseClause| (-322)))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 (-322))) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 (-322)))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 (-322)))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832))))) (-5 *1 (-322)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-322)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-322)))) (-1267 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) -(-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -1369 ($ (-1056 (-921 (-548))) $)) (-15 -1369 ($ (-1056 (-921 (-548))) (-921 (-548)) $)) (-15 -1358 ($ (-1134) $)) (-15 -1347 ($ (-1134) $)) (-15 -1337 ($ (-1082))) (-15 -2099 ($ (-1082))) (-15 -1729 ($ (-1118))) (-15 -1729 ($ (-619 (-1118)))) (-15 -3294 ($ (-1118))) (-15 -1325 ($)) (-15 -1325 ($ (-308 (-673)))) (-15 -1325 ($ (-308 (-675)))) (-15 -1325 ($ (-308 (-668)))) (-15 -1325 ($ (-308 (-371)))) (-15 -1325 ($ (-308 (-548)))) (-15 -1325 ($ (-308 (-166 (-371))))) (-15 -3997 ($ (-1134) $)) (-15 -3997 ($ (-1134) $ $)) (-15 -4173 ($ (-1135) (-1118))) (-15 -4173 ($ (-1135) (-308 (-675)))) (-15 -4173 ($ (-1135) (-308 (-673)))) (-15 -4173 ($ (-1135) (-308 (-668)))) (-15 -4173 ($ (-1135) (-663 (-675)))) (-15 -4173 ($ (-1135) (-663 (-673)))) (-15 -4173 ($ (-1135) (-663 (-668)))) (-15 -4173 ($ (-1135) (-1218 (-675)))) (-15 -4173 ($ (-1135) (-1218 (-673)))) (-15 -4173 ($ (-1135) (-1218 (-668)))) (-15 -4173 ($ (-1135) (-663 (-308 (-675))))) (-15 -4173 ($ (-1135) (-663 (-308 (-673))))) (-15 -4173 ($ (-1135) (-663 (-308 (-668))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-675))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-673))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-668))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-675)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-673)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-668)))) (-15 -4173 ($ (-1135) (-308 (-548)))) (-15 -4173 ($ (-1135) (-308 (-371)))) (-15 -4173 ($ (-1135) (-308 (-166 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-548))))) (-15 -4173 ($ (-1135) (-663 (-308 (-371))))) (-15 -4173 ($ (-1135) (-663 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-548))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-371))))) (-15 -4173 ($ (-1135) (-1218 (-308 (-166 (-371)))))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-548)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-371)))) (-15 -4173 ($ (-1135) (-619 (-921 (-548))) (-308 (-166 (-371))))) (-15 -1314 ($ (-619 $))) (-15 -3422 ($)) (-15 -2277 ($)) (-15 -1302 ($ (-619 (-832)))) (-15 -3350 ($ (-1135) (-619 (-1135)))) (-15 -1739 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1887 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-548)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1616 (-112)) (|:| -4056 (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -3094 (-1056 (-921 (-548)))) (|:| |span| (-921 (-548))) (|:| -2286 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 $))) (|:| |commonBranch| (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -1291 ((-1223) $)) (-15 -1279 ((-1067) $)) (-15 -1267 ((-1082) (-1082))))) -((-3730 (((-112) $ $) NIL)) (-1380 (((-112) $) 11)) (-1918 (($ |#1|) 8)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1929 (($ |#1|) 9)) (-3743 (((-832) $) 17)) (-4257 ((|#1| $) 12)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 19))) -(((-323 |#1|) (-13 (-821) (-10 -8 (-15 -1918 ($ |#1|)) (-15 -1929 ($ |#1|)) (-15 -1380 ((-112) $)) (-15 -4257 (|#1| $)))) (-821)) (T -323)) -((-1918 (*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) (-1929 (*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-821)))) (-4257 (*1 *2 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821))))) -(-13 (-821) (-10 -8 (-15 -1918 ($ |#1|)) (-15 -1929 ($ |#1|)) (-15 -1380 ((-112) $)) (-15 -4257 (|#1| $)))) -((-1391 (((-322) (-1135) (-921 (-548))) 23)) (-1401 (((-322) (-1135) (-921 (-548))) 27)) (-3820 (((-322) (-1135) (-1056 (-921 (-548))) (-1056 (-921 (-548)))) 26) (((-322) (-1135) (-921 (-548)) (-921 (-548))) 24)) (-1412 (((-322) (-1135) (-921 (-548))) 31))) -(((-324) (-10 -7 (-15 -1391 ((-322) (-1135) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-921 (-548)) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-1056 (-921 (-548))) (-1056 (-921 (-548))))) (-15 -1401 ((-322) (-1135) (-921 (-548)))) (-15 -1412 ((-322) (-1135) (-921 (-548)))))) (T -324)) -((-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1056 (-921 (-548)))) (-5 *2 (-322)) (-5 *1 (-324)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) (-5 *1 (-324))))) -(-10 -7 (-15 -1391 ((-322) (-1135) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-921 (-548)) (-921 (-548)))) (-15 -3820 ((-322) (-1135) (-1056 (-921 (-548))) (-1056 (-921 (-548))))) (-15 -1401 ((-322) (-1135) (-921 (-548)))) (-15 -1412 ((-322) (-1135) (-921 (-548))))) -((-2540 (((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)) 33))) -(((-325 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|) (-355) (-1194 |#5|) (-1194 (-399 |#6|)) (-334 |#5| |#6| |#7|)) (T -325)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-355)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *9 (-355)) (-4 *10 (-1194 *9)) (-4 *11 (-1194 (-399 *10))) (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-325 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-334 *9 *10 *11))))) -(-10 -7 (-15 -2540 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) -((-1447 (((-112) $) 14))) -(((-326 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1447 ((-112) |#1|))) (-327 |#2| |#3| |#4| |#5|) (-355) (-1194 |#2|) (-1194 (-399 |#3|)) (-334 |#2| |#3| |#4|)) (T -326)) -NIL -(-10 -8 (-15 -1447 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2061 (($ $) 26)) (-1447 (((-112) $) 25)) (-2546 (((-1118) $) 9)) (-3778 (((-405 |#2| (-399 |#2|) |#3| |#4|) $) 32)) (-3932 (((-1082) $) 10)) (-4160 (((-3 |#4| "failed") $) 24)) (-1457 (($ (-405 |#2| (-399 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-548)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3642 (((-2 (|:| -3514 (-405 |#2| (-399 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20))) -(((-327 |#1| |#2| |#3| |#4|) (-138) (-355) (-1194 |t#1|) (-1194 (-399 |t#2|)) (-334 |t#1| |t#2| |t#3|)) (T -327)) -((-3778 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-405 *4 (-399 *4) *5 *6)))) (-1457 (*1 *1 *2) (-12 (-5 *2 (-405 *4 (-399 *4) *5 *6)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-4 *3 (-355)) (-4 *1 (-327 *3 *4 *5 *6)))) (-1457 (*1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *1 (-327 *3 *4 *5 *2)) (-4 *2 (-334 *3 *4 *5)))) (-1457 (*1 *1 *2 *2) (-12 (-4 *2 (-355)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))) (-4 *1 (-327 *2 *3 *4 *5)) (-4 *5 (-334 *2 *3 *4)))) (-1457 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-548)) (-4 *2 (-355)) (-4 *4 (-1194 *2)) (-4 *5 (-1194 (-399 *4))) (-4 *1 (-327 *2 *4 *5 *6)) (-4 *6 (-334 *2 *4 *5)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-2 (|:| -3514 (-405 *4 (-399 *4) *5 *6)) (|:| |principalPart| *6))))) (-2061 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3 *4 *5)) (-4 *2 (-355)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))) (-4 *5 (-334 *2 *3 *4)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-112)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *1 (-327 *3 *4 *5 *2)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *2 (-334 *3 *4 *5)))) (-1457 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-355)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-4 *1 (-327 *4 *3 *5 *2)) (-4 *2 (-334 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3778 ((-405 |t#2| (-399 |t#2|) |t#3| |t#4|) $)) (-15 -1457 ($ (-405 |t#2| (-399 |t#2|) |t#3| |t#4|))) (-15 -1457 ($ |t#4|)) (-15 -1457 ($ |t#1| |t#1|)) (-15 -1457 ($ |t#1| |t#1| (-548))) (-15 -3642 ((-2 (|:| -3514 (-405 |t#2| (-399 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2061 ($ $)) (-15 -1447 ((-112) $)) (-15 -4160 ((-3 |t#4| "failed") $)) (-15 -1457 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ $) 33)) (-1447 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-1423 (((-1218 |#4|) $) 125)) (-3778 (((-405 |#2| (-399 |#2|) |#3| |#4|) $) 31)) (-3932 (((-1082) $) NIL)) (-4160 (((-3 |#4| "failed") $) 36)) (-1436 (((-1218 |#4|) $) 118)) (-1457 (($ (-405 |#2| (-399 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-548)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3642 (((-2 (|:| -3514 (-405 |#2| (-399 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3743 (((-832) $) 17)) (-3107 (($) 14 T CONST)) (-2214 (((-112) $ $) 20)) (-2299 (($ $) 27) (($ $ $) NIL)) (-2290 (($ $ $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 23))) -(((-328 |#1| |#2| |#3| |#4|) (-13 (-327 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1436 ((-1218 |#4|) $)) (-15 -1423 ((-1218 |#4|) $)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -328)) -((-1436 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5)))) (-1423 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5))))) -(-13 (-327 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1436 ((-1218 |#4|) $)) (-15 -1423 ((-1218 |#4|) $)))) -((-2460 (($ $ (-1135) |#2|) NIL) (($ $ (-619 (-1135)) (-619 |#2|)) 20) (($ $ (-619 (-286 |#2|))) 15) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3171 (($ $ |#2|) 11))) -(((-329 |#1| |#2|) (-10 -8 (-15 -3171 (|#1| |#1| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1135) |#2|))) (-330 |#2|) (-1063)) (T -329)) -NIL -(-10 -8 (-15 -3171 (|#1| |#1| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1135) |#2|))) -((-2540 (($ (-1 |#1| |#1|) $) 6)) (-2460 (($ $ (-1135) |#1|) 17 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 16 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-619 (-286 |#1|))) 15 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 14 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-301 |#1|))) (($ $ (-619 |#1|) (-619 |#1|)) 12 (|has| |#1| (-301 |#1|)))) (-3171 (($ $ |#1|) 11 (|has| |#1| (-278 |#1| |#1|))))) -(((-330 |#1|) (-138) (-1063)) (T -330)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1063))))) -(-13 (-10 -8 (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-278 |t#1| |t#1|)) (-6 (-278 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-301 |t#1|)) (-6 (-301 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-504 (-1135) |t#1|)) (-6 (-504 (-1135) |t#1|)) |%noBranch|))) -(((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1135)) $) NIL)) (-1468 (((-112)) 91) (((-112) (-112)) 92)) (-1806 (((-619 (-591 $)) $) NIL)) (-2074 (($ $) NIL)) (-1940 (($ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-1926 (($ $) NIL)) (-2054 (($ $) NIL)) (-1918 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-308 |#3|)) 71) (((-3 $ "failed") (-1135)) 97) (((-3 $ "failed") (-308 (-548))) 59 (|has| |#3| (-1007 (-548)))) (((-3 $ "failed") (-399 (-921 (-548)))) 65 (|has| |#3| (-1007 (-548)))) (((-3 $ "failed") (-921 (-548))) 60 (|has| |#3| (-1007 (-548)))) (((-3 $ "failed") (-308 (-371))) 89 (|has| |#3| (-1007 (-371)))) (((-3 $ "failed") (-399 (-921 (-371)))) 83 (|has| |#3| (-1007 (-371)))) (((-3 $ "failed") (-921 (-371))) 78 (|has| |#3| (-1007 (-371))))) (-2375 (((-591 $) $) NIL) ((|#3| $) NIL) (($ (-308 |#3|)) 72) (($ (-1135)) 98) (($ (-308 (-548))) 61 (|has| |#3| (-1007 (-548)))) (($ (-399 (-921 (-548)))) 66 (|has| |#3| (-1007 (-548)))) (($ (-921 (-548))) 62 (|has| |#3| (-1007 (-548)))) (($ (-308 (-371))) 90 (|has| |#3| (-1007 (-371)))) (($ (-399 (-921 (-371)))) 84 (|has| |#3| (-1007 (-371)))) (($ (-921 (-371))) 80 (|has| |#3| (-1007 (-371))))) (-3859 (((-3 $ "failed") $) NIL)) (-1365 (($) 10)) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) NIL)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-1724 (((-1131 $) (-591 $)) NIL (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) NIL)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-2133 (($ $) 94)) (-3496 (($ $) NIL)) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) NIL)) (-1409 (($ (-114) $) 93) (($ (-114) (-619 $)) NIL)) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-2458 (($ $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-1762 (($ $) NIL) (($ $ $) NIL)) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL)) (-3287 (($ $) NIL (|has| $ (-1016)))) (-2065 (($ $) NIL)) (-1929 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-591 $)) NIL) (($ |#3|) NIL) (($ (-548)) NIL) (((-308 |#3|) $) 96)) (-3835 (((-745)) NIL)) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-1392 (((-112) (-114)) NIL)) (-2006 (($ $) NIL)) (-1986 (($ $) NIL)) (-1996 (($ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) 95 T CONST)) (-3118 (($) 24 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) -(((-331 |#1| |#2| |#3|) (-13 (-294) (-38 |#3|) (-1007 |#3|) (-869 (-1135)) (-10 -8 (-15 -2375 ($ (-308 |#3|))) (-15 -2441 ((-3 $ "failed") (-308 |#3|))) (-15 -2375 ($ (-1135))) (-15 -2441 ((-3 $ "failed") (-1135))) (-15 -3743 ((-308 |#3|) $)) (IF (|has| |#3| (-1007 (-548))) (PROGN (-15 -2375 ($ (-308 (-548)))) (-15 -2441 ((-3 $ "failed") (-308 (-548)))) (-15 -2375 ($ (-399 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-548))))) (-15 -2375 ($ (-921 (-548)))) (-15 -2441 ((-3 $ "failed") (-921 (-548))))) |%noBranch|) (IF (|has| |#3| (-1007 (-371))) (PROGN (-15 -2375 ($ (-308 (-371)))) (-15 -2441 ((-3 $ "failed") (-308 (-371)))) (-15 -2375 ($ (-399 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-371))))) (-15 -2375 ($ (-921 (-371)))) (-15 -2441 ((-3 $ "failed") (-921 (-371))))) |%noBranch|) (-15 -1446 ($ $)) (-15 -1926 ($ $)) (-15 -2458 ($ $)) (-15 -3496 ($ $)) (-15 -2133 ($ $)) (-15 -1918 ($ $)) (-15 -1929 ($ $)) (-15 -1940 ($ $)) (-15 -1986 ($ $)) (-15 -1996 ($ $)) (-15 -2006 ($ $)) (-15 -2054 ($ $)) (-15 -2065 ($ $)) (-15 -2074 ($ $)) (-15 -1365 ($)) (-15 -2049 ((-619 (-1135)) $)) (-15 -1468 ((-112))) (-15 -1468 ((-112) (-112))))) (-619 (-1135)) (-619 (-1135)) (-379)) (T -331)) -((-2375 (*1 *1 *2) (-12 (-5 *2 (-308 *5)) (-4 *5 (-379)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 *5)) (-4 *5 (-379)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-379)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-308 *5)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-1446 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1926 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2458 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-3496 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2133 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1918 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1929 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1940 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1986 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1996 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2006 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2065 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2074 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-1365 (*1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-331 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-379)))) (-1468 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379))))) -(-13 (-294) (-38 |#3|) (-1007 |#3|) (-869 (-1135)) (-10 -8 (-15 -2375 ($ (-308 |#3|))) (-15 -2441 ((-3 $ "failed") (-308 |#3|))) (-15 -2375 ($ (-1135))) (-15 -2441 ((-3 $ "failed") (-1135))) (-15 -3743 ((-308 |#3|) $)) (IF (|has| |#3| (-1007 (-548))) (PROGN (-15 -2375 ($ (-308 (-548)))) (-15 -2441 ((-3 $ "failed") (-308 (-548)))) (-15 -2375 ($ (-399 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-548))))) (-15 -2375 ($ (-921 (-548)))) (-15 -2441 ((-3 $ "failed") (-921 (-548))))) |%noBranch|) (IF (|has| |#3| (-1007 (-371))) (PROGN (-15 -2375 ($ (-308 (-371)))) (-15 -2441 ((-3 $ "failed") (-308 (-371)))) (-15 -2375 ($ (-399 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-371))))) (-15 -2375 ($ (-921 (-371)))) (-15 -2441 ((-3 $ "failed") (-921 (-371))))) |%noBranch|) (-15 -1446 ($ $)) (-15 -1926 ($ $)) (-15 -2458 ($ $)) (-15 -3496 ($ $)) (-15 -2133 ($ $)) (-15 -1918 ($ $)) (-15 -1929 ($ $)) (-15 -1940 ($ $)) (-15 -1986 ($ $)) (-15 -1996 ($ $)) (-15 -2006 ($ $)) (-15 -2054 ($ $)) (-15 -2065 ($ $)) (-15 -2074 ($ $)) (-15 -1365 ($)) (-15 -2049 ((-619 (-1135)) $)) (-15 -1468 ((-112))) (-15 -1468 ((-112) (-112))))) -((-2540 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|))) (-1176) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|) (-1176) (-1194 |#5|) (-1194 (-399 |#6|)) (-334 |#5| |#6| |#7|)) (T -332)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1176)) (-4 *8 (-1176)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *9 (-1194 *8)) (-4 *2 (-334 *8 *9 *10)) (-5 *1 (-332 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-334 *5 *6 *7)) (-4 *10 (-1194 (-399 *9)))))) -(-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|))) -((-1562 (((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) $) 38)) (-2455 (($ (-1218 (-399 |#3|)) (-1218 $)) NIL) (($ (-1218 (-399 |#3|))) NIL) (($ (-1218 |#3|) |#3|) 161)) (-3409 (((-1218 $) (-1218 $)) 145)) (-1479 (((-619 (-619 |#2|))) 119)) (-3542 (((-112) |#2| |#2|) 73)) (-4065 (($ $) 139)) (-1400 (((-745)) 31)) (-3421 (((-1218 $) (-1218 $)) 198)) (-1492 (((-619 (-921 |#2|)) (-1135)) 110)) (-3451 (((-112) $) 158)) (-3441 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1515 (((-3 |#3| "failed")) 50)) (-3564 (((-745)) 170)) (-3171 ((|#2| $ |#2| |#2|) 132)) (-1525 (((-3 |#3| "failed")) 68)) (-4050 (($ $ (-1 (-399 |#3|) (-399 |#3|)) (-745)) NIL) (($ $ (-1 (-399 |#3|) (-399 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3433 (((-1218 $) (-1218 $)) 151)) (-1503 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3554 (((-112)) 33))) -(((-333 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1479 ((-619 (-619 |#2|)))) (-15 -1492 ((-619 (-921 |#2|)) (-1135))) (-15 -1503 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1515 ((-3 |#3| "failed"))) (-15 -1525 ((-3 |#3| "failed"))) (-15 -3171 (|#2| |#1| |#2| |#2|)) (-15 -4065 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3441 ((-112) |#1| |#3|)) (-15 -3441 ((-112) |#1| |#2|)) (-15 -2455 (|#1| (-1218 |#3|) |#3|)) (-15 -1562 ((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3409 ((-1218 |#1|) (-1218 |#1|))) (-15 -3421 ((-1218 |#1|) (-1218 |#1|))) (-15 -3433 ((-1218 |#1|) (-1218 |#1|))) (-15 -3441 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3542 ((-112) |#2| |#2|)) (-15 -3554 ((-112))) (-15 -3564 ((-745))) (-15 -1400 ((-745))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)) (-745))) (-15 -2455 (|#1| (-1218 (-399 |#3|)))) (-15 -2455 (|#1| (-1218 (-399 |#3|)) (-1218 |#1|)))) (-334 |#2| |#3| |#4|) (-1176) (-1194 |#2|) (-1194 (-399 |#3|))) (T -333)) -((-1400 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-3564 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-3554 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-112)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-3542 (*1 *2 *3 *3) (-12 (-4 *3 (-1176)) (-4 *5 (-1194 *3)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-112)) (-5 *1 (-333 *4 *3 *5 *6)) (-4 *4 (-334 *3 *5 *6)))) (-1525 (*1 *2) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) (-1515 (*1 *2) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-5 *2 (-619 (-921 *5))) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *4 (-334 *5 *6 *7)))) (-1479 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6))))) -(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -1479 ((-619 (-619 |#2|)))) (-15 -1492 ((-619 (-921 |#2|)) (-1135))) (-15 -1503 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1515 ((-3 |#3| "failed"))) (-15 -1525 ((-3 |#3| "failed"))) (-15 -3171 (|#2| |#1| |#2| |#2|)) (-15 -4065 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3441 ((-112) |#1| |#3|)) (-15 -3441 ((-112) |#1| |#2|)) (-15 -2455 (|#1| (-1218 |#3|) |#3|)) (-15 -1562 ((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3409 ((-1218 |#1|) (-1218 |#1|))) (-15 -3421 ((-1218 |#1|) (-1218 |#1|))) (-15 -3433 ((-1218 |#1|) (-1218 |#1|))) (-15 -3441 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3542 ((-112) |#2| |#2|)) (-15 -3554 ((-112))) (-15 -3564 ((-745))) (-15 -1400 ((-745))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)))) (-15 -4050 (|#1| |#1| (-1 (-399 |#3|) (-399 |#3|)) (-745))) (-15 -2455 (|#1| (-1218 (-399 |#3|)))) (-15 -2455 (|#1| (-1218 (-399 |#3|)) (-1218 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-1562 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 193)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 91 (|has| (-399 |#2|) (-355)))) (-3303 (($ $) 92 (|has| (-399 |#2|) (-355)))) (-3279 (((-112) $) 94 (|has| (-399 |#2|) (-355)))) (-2350 (((-663 (-399 |#2|)) (-1218 $)) 44) (((-663 (-399 |#2|))) 59)) (-2707 (((-399 |#2|) $) 50)) (-3667 (((-1145 (-890) (-745)) (-548)) 144 (|has| (-399 |#2|) (-341)))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 111 (|has| (-399 |#2|) (-355)))) (-2634 (((-410 $) $) 112 (|has| (-399 |#2|) (-355)))) (-4087 (((-112) $ $) 102 (|has| (-399 |#2|) (-355)))) (-3423 (((-745)) 85 (|has| (-399 |#2|) (-360)))) (-3509 (((-112)) 210)) (-3497 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 166 (|has| (-399 |#2|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 164 (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-3 (-399 |#2|) "failed") $) 163)) (-2375 (((-548) $) 167 (|has| (-399 |#2|) (-1007 (-548)))) (((-399 (-548)) $) 165 (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-399 |#2|) $) 162)) (-2455 (($ (-1218 (-399 |#2|)) (-1218 $)) 46) (($ (-1218 (-399 |#2|))) 62) (($ (-1218 |#2|) |#2|) 192)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-399 |#2|) (-341)))) (-1945 (($ $ $) 106 (|has| (-399 |#2|) (-355)))) (-2341 (((-663 (-399 |#2|)) $ (-1218 $)) 51) (((-663 (-399 |#2|)) $) 57)) (-1608 (((-663 (-548)) (-663 $)) 161 (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 160 (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-399 |#2|))) (|:| |vec| (-1218 (-399 |#2|)))) (-663 $) (-1218 $)) 159) (((-663 (-399 |#2|)) (-663 $)) 158)) (-3409 (((-1218 $) (-1218 $)) 198)) (-2061 (($ |#3|) 155) (((-3 $ "failed") (-399 |#3|)) 152 (|has| (-399 |#2|) (-355)))) (-3859 (((-3 $ "failed") $) 32)) (-1479 (((-619 (-619 |#1|))) 179 (|has| |#1| (-360)))) (-3542 (((-112) |#1| |#1|) 214)) (-2103 (((-890)) 52)) (-2545 (($) 88 (|has| (-399 |#2|) (-360)))) (-3485 (((-112)) 207)) (-3473 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-1922 (($ $ $) 105 (|has| (-399 |#2|) (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 100 (|has| (-399 |#2|) (-355)))) (-4065 (($ $) 185)) (-2771 (($) 146 (|has| (-399 |#2|) (-341)))) (-3727 (((-112) $) 147 (|has| (-399 |#2|) (-341)))) (-2208 (($ $ (-745)) 138 (|has| (-399 |#2|) (-341))) (($ $) 137 (|has| (-399 |#2|) (-341)))) (-1271 (((-112) $) 113 (|has| (-399 |#2|) (-355)))) (-1672 (((-890) $) 149 (|has| (-399 |#2|) (-341))) (((-807 (-890)) $) 135 (|has| (-399 |#2|) (-341)))) (-2266 (((-112) $) 30)) (-1400 (((-745)) 217)) (-3421 (((-1218 $) (-1218 $)) 199)) (-3910 (((-399 |#2|) $) 49)) (-1492 (((-619 (-921 |#1|)) (-1135)) 180 (|has| |#1| (-355)))) (-3725 (((-3 $ "failed") $) 139 (|has| (-399 |#2|) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| (-399 |#2|) (-355)))) (-2898 ((|#3| $) 42 (|has| (-399 |#2|) (-355)))) (-2855 (((-890) $) 87 (|has| (-399 |#2|) (-360)))) (-2050 ((|#3| $) 153)) (-3553 (($ (-619 $)) 98 (|has| (-399 |#2|) (-355))) (($ $ $) 97 (|has| (-399 |#2|) (-355)))) (-2546 (((-1118) $) 9)) (-3349 (((-663 (-399 |#2|))) 194)) (-3383 (((-663 (-399 |#2|))) 196)) (-2153 (($ $) 114 (|has| (-399 |#2|) (-355)))) (-1544 (($ (-1218 |#2|) |#2|) 190)) (-3365 (((-663 (-399 |#2|))) 195)) (-3396 (((-663 (-399 |#2|))) 197)) (-1535 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1553 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 191)) (-3463 (((-1218 $)) 203)) (-3478 (((-1218 $)) 204)) (-3451 (((-112) $) 202)) (-3441 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3410 (($) 140 (|has| (-399 |#2|) (-341)) CONST)) (-3337 (($ (-890)) 86 (|has| (-399 |#2|) (-360)))) (-1515 (((-3 |#2| "failed")) 182)) (-3932 (((-1082) $) 10)) (-3564 (((-745)) 216)) (-4160 (($) 157)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 99 (|has| (-399 |#2|) (-355)))) (-3587 (($ (-619 $)) 96 (|has| (-399 |#2|) (-355))) (($ $ $) 95 (|has| (-399 |#2|) (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 143 (|has| (-399 |#2|) (-341)))) (-1915 (((-410 $) $) 110 (|has| (-399 |#2|) (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-399 |#2|) (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 107 (|has| (-399 |#2|) (-355)))) (-1900 (((-3 $ "failed") $ $) 90 (|has| (-399 |#2|) (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| (-399 |#2|) (-355)))) (-4077 (((-745) $) 103 (|has| (-399 |#2|) (-355)))) (-3171 ((|#1| $ |#1| |#1|) 184)) (-1525 (((-3 |#2| "failed")) 183)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 104 (|has| (-399 |#2|) (-355)))) (-1566 (((-399 |#2|) (-1218 $)) 45) (((-399 |#2|)) 58)) (-2217 (((-745) $) 148 (|has| (-399 |#2|) (-341))) (((-3 (-745) "failed") $ $) 136 (|has| (-399 |#2|) (-341)))) (-4050 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) 120 (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) 119 (|has| (-399 |#2|) (-355))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-619 (-1135)) (-619 (-745))) 127 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135) (-745)) 128 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-619 (-1135))) 129 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135)) 130 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-745)) 132 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) 134 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2257 (((-663 (-399 |#2|)) (-1218 $) (-1 (-399 |#2|) (-399 |#2|))) 151 (|has| (-399 |#2|) (-355)))) (-3287 ((|#3|) 156)) (-3655 (($) 145 (|has| (-399 |#2|) (-341)))) (-2447 (((-1218 (-399 |#2|)) $ (-1218 $)) 48) (((-663 (-399 |#2|)) (-1218 $) (-1218 $)) 47) (((-1218 (-399 |#2|)) $) 64) (((-663 (-399 |#2|)) (-1218 $)) 63)) (-2591 (((-1218 (-399 |#2|)) $) 61) (($ (-1218 (-399 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 142 (|has| (-399 |#2|) (-341)))) (-3433 (((-1218 $) (-1218 $)) 200)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 |#2|)) 35) (($ (-399 (-548))) 84 (-1524 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-1007 (-399 (-548)))))) (($ $) 89 (|has| (-399 |#2|) (-355)))) (-4017 (($ $) 141 (|has| (-399 |#2|) (-341))) (((-3 $ "failed") $) 41 (|has| (-399 |#2|) (-143)))) (-3780 ((|#3| $) 43)) (-3835 (((-745)) 28)) (-3531 (((-112)) 213)) (-3518 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2877 (((-1218 $)) 65)) (-3290 (((-112) $ $) 93 (|has| (-399 |#2|) (-355)))) (-1503 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-3554 (((-112)) 215)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) 122 (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) 121 (|has| (-399 |#2|) (-355))) (($ $ (-619 (-1135)) (-619 (-745))) 123 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135) (-745)) 124 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-619 (-1135))) 125 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-1135)) 126 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) (-1723 (|has| (-399 |#2|) (-869 (-1135))) (|has| (-399 |#2|) (-355))))) (($ $ (-745)) 131 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) 133 (-1524 (-1723 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-226))) (-1723 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 118 (|has| (-399 |#2|) (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 115 (|has| (-399 |#2|) (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 |#2|)) 37) (($ (-399 |#2|) $) 36) (($ (-399 (-548)) $) 117 (|has| (-399 |#2|) (-355))) (($ $ (-399 (-548))) 116 (|has| (-399 |#2|) (-355))))) -(((-334 |#1| |#2| |#3|) (-138) (-1176) (-1194 |t#1|) (-1194 (-399 |t#2|))) (T -334)) -((-1400 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745)))) (-3564 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745)))) (-3554 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3542 (*1 *2 *3 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3531 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3518 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3518 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-3509 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3497 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3497 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-3485 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3473 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3473 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-3478 (*1 *2) (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)))) (-3463 (*1 *2) (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3433 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-3396 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-3383 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-3365 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-3349 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4))))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4))))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3))))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4))))) (-1544 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3))))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5))))) (-3441 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) (-3441 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) (-4065 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))))) (-3171 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))))) (-1525 (*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3)))) (-1515 (*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1176)) (-4 *6 (-1194 (-399 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-334 *4 *5 *6)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *4 (-355)) (-5 *2 (-619 (-921 *4))))) (-1479 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) (-4 *3 (-360)) (-5 *2 (-619 (-619 *3)))))) -(-13 (-699 (-399 |t#2|) |t#3|) (-10 -8 (-15 -1400 ((-745))) (-15 -3564 ((-745))) (-15 -3554 ((-112))) (-15 -3542 ((-112) |t#1| |t#1|)) (-15 -3531 ((-112))) (-15 -3518 ((-112) |t#1|)) (-15 -3518 ((-112) |t#2|)) (-15 -3509 ((-112))) (-15 -3497 ((-112) |t#1|)) (-15 -3497 ((-112) |t#2|)) (-15 -3485 ((-112))) (-15 -3473 ((-112) |t#1|)) (-15 -3473 ((-112) |t#2|)) (-15 -3478 ((-1218 $))) (-15 -3463 ((-1218 $))) (-15 -3451 ((-112) $)) (-15 -3441 ((-112) $)) (-15 -3433 ((-1218 $) (-1218 $))) (-15 -3421 ((-1218 $) (-1218 $))) (-15 -3409 ((-1218 $) (-1218 $))) (-15 -3396 ((-663 (-399 |t#2|)))) (-15 -3383 ((-663 (-399 |t#2|)))) (-15 -3365 ((-663 (-399 |t#2|)))) (-15 -3349 ((-663 (-399 |t#2|)))) (-15 -1562 ((-2 (|:| |num| (-1218 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2455 ($ (-1218 |t#2|) |t#2|)) (-15 -1553 ((-2 (|:| |num| (-1218 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1544 ($ (-1218 |t#2|) |t#2|)) (-15 -1535 ((-2 (|:| |num| (-663 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3441 ((-112) $ |t#1|)) (-15 -3441 ((-112) $ |t#2|)) (-15 -4050 ($ $ (-1 |t#2| |t#2|))) (-15 -4065 ($ $)) (-15 -3171 (|t#1| $ |t#1| |t#1|)) (-15 -1525 ((-3 |t#2| "failed"))) (-15 -1515 ((-3 |t#2| "failed"))) (-15 -1503 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-355)) (-15 -1492 ((-619 (-921 |t#1|)) (-1135))) |%noBranch|) (IF (|has| |t#1| (-360)) (-15 -1479 ((-619 (-619 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-38 #1=(-399 |#2|)) . T) ((-38 $) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-101) . T) ((-111 #0# #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-143))) ((-145) |has| (-399 |#2|) (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 |#3|) . T) ((-224 #1#) |has| (-399 |#2|) (-355)) ((-226) -1524 (|has| (-399 |#2|) (-341)) (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355)))) ((-236) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-282) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-299) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-355) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-394) |has| (-399 |#2|) (-341)) ((-360) -1524 (|has| (-399 |#2|) (-360)) (|has| (-399 |#2|) (-341))) ((-341) |has| (-399 |#2|) (-341)) ((-362 #1# |#3|) . T) ((-401 #1# |#3|) . T) ((-369 #1#) . T) ((-403 #1#) . T) ((-443) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-540) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-622 #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-622 #1#) . T) ((-622 $) . T) ((-615 #1#) . T) ((-615 (-548)) |has| (-399 |#2|) (-615 (-548))) ((-692 #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-692 #1#) . T) ((-692 $) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-699 #1# |#3|) . T) ((-701) . T) ((-869 (-1135)) -12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135)))) ((-889) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-1007 (-399 (-548))) |has| (-399 |#2|) (-1007 (-399 (-548)))) ((-1007 #1#) . T) ((-1007 (-548)) |has| (-399 |#2|) (-1007 (-548))) ((-1022 #0#) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355))) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| (-399 |#2|) (-341)) ((-1176) -1524 (|has| (-399 |#2|) (-341)) (|has| (-399 |#2|) (-355)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-879 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-879 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-879 |#1|) "failed") $) NIL)) (-2375 (((-879 |#1|) $) NIL)) (-2455 (($ (-1218 (-879 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-879 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-879 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-879 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-879 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-3910 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-879 |#1|) (-360)))) (-4288 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360)))) (-4278 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-360)))) (-4300 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-879 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3576 (((-927 (-1082))) NIL)) (-4160 (($) NIL (|has| (-879 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-879 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-879 |#1|))) NIL)) (-3655 (($) NIL (|has| (-879 |#1|) (-360)))) (-1255 (($) NIL (|has| (-879 |#1|) (-360)))) (-2447 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-879 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-879 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) -(((-335 |#1| |#2|) (-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3576 ((-927 (-1082)))))) (-890) (-890)) (T -335)) -((-3576 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) -(-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3576 ((-927 (-1082)))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 44)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 41 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 115)) (-2375 ((|#1| $) 86)) (-2455 (($ (-1218 |#1|)) 104)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) 98 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 129 (|has| |#1| (-360)))) (-3727 (((-112) $) 48 (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) 45 (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) 131 (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) 90) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) 139 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 146)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 71 (|has| |#1| (-360)))) (-2384 (((-112) $) 118)) (-3932 (((-1082) $) NIL)) (-3576 (((-927 (-1082))) 42)) (-4160 (($) 127 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 93 (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) 67) (((-890)) 68)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) 130 (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) 125 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) 96)) (-3655 (($) 128 (|has| |#1| (-360)))) (-1255 (($) 136 (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 59) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) 142) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 75)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 138)) (-2877 (((-1218 $)) 117) (((-1218 $) (-890)) 73)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 49 T CONST)) (-3118 (($) 46 T CONST)) (-2354 (($ $) 81 (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) 47)) (-2309 (($ $ $) 144) (($ $ |#1|) 145)) (-2299 (($ $) 126) (($ $ $) NIL)) (-2290 (($ $ $) 61)) (** (($ $ (-890)) 148) (($ $ (-745)) 149) (($ $ (-548)) 147)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 77) (($ $ $) 76) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-336 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) (-341) (-1131 |#1|)) (T -336)) -((-3576 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-341)) (-14 *4 (-1131 *3))))) -(-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3576 (((-927 (-1082))) NIL)) (-4160 (($) NIL (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) NIL)) (-3655 (($) NIL (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) NIL)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-337 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) (-341) (-890)) (T -337)) -((-3576 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-337 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890))))) -(-13 (-321 |#1|) (-10 -7 (-15 -3576 ((-927 (-1082)))))) -((-3689 (((-745) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) 42)) (-3588 (((-927 (-1082)) (-1131 |#1|)) 85)) (-3600 (((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) (-1131 |#1|)) 78)) (-3610 (((-663 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) 86)) (-3620 (((-3 (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) "failed") (-890)) 13)) (-3631 (((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) (-890)) 18))) -(((-338 |#1|) (-10 -7 (-15 -3588 ((-927 (-1082)) (-1131 |#1|))) (-15 -3600 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) (-1131 |#1|))) (-15 -3610 ((-663 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3689 ((-745) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3620 ((-3 (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) "failed") (-890))) (-15 -3631 ((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) (-890)))) (-341)) (T -338)) -((-3631 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-3 (-1131 *4) (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082))))))) (-5 *1 (-338 *4)) (-4 *4 (-341)))) (-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-5 *1 (-338 *4)) (-4 *4 (-341)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-4 *4 (-341)) (-5 *2 (-745)) (-5 *1 (-338 *4)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-4 *4 (-341)) (-5 *2 (-663 *4)) (-5 *1 (-338 *4)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-5 *1 (-338 *4)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-927 (-1082))) (-5 *1 (-338 *4))))) -(-10 -7 (-15 -3588 ((-927 (-1082)) (-1131 |#1|))) (-15 -3600 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) (-1131 |#1|))) (-15 -3610 ((-663 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3689 ((-745) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3620 ((-3 (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) "failed") (-890))) (-15 -3631 ((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) (-890)))) -((-3743 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -3743 (|#3| |#1|)) (-15 -3743 (|#1| |#3|))) (-321 |#2|) (-341) (-321 |#2|)) (T -339)) -((-3743 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *2 *4 *3)) (-4 *3 (-321 *4)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *3 *4 *2)) (-4 *3 (-321 *4))))) -(-10 -7 (-15 -3743 (|#3| |#1|)) (-15 -3743 (|#1| |#3|))) -((-3727 (((-112) $) 51)) (-1672 (((-807 (-890)) $) 21) (((-890) $) 52)) (-3725 (((-3 $ "failed") $) 16)) (-3410 (($) 9)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93)) (-2217 (((-3 (-745) "failed") $ $) 71) (((-745) $) 60)) (-4050 (($ $ (-745)) NIL) (($ $) 8)) (-3655 (($) 44)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 34)) (-4017 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-340 |#1|) (-10 -8 (-15 -1672 ((-890) |#1|)) (-15 -2217 ((-745) |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -3655 (|#1|)) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4017 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-3 (-745) "failed") |#1| |#1|)) (-15 -1672 ((-807 (-890)) |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) (-341)) (T -340)) -NIL -(-10 -8 (-15 -1672 ((-890) |#1|)) (-15 -2217 ((-745) |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -3655 (|#1|)) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4017 (|#1| |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2217 ((-3 (-745) "failed") |#1| |#1|)) (-15 -1672 ((-807 (-890)) |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-3667 (((-1145 (-890) (-745)) (-548)) 90)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3423 (((-745)) 100)) (-3030 (($) 17 T CONST)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) 103)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2771 (($) 88)) (-3727 (((-112) $) 87)) (-2208 (($ $) 76) (($ $ (-745)) 75)) (-1271 (((-112) $) 68)) (-1672 (((-807 (-890)) $) 78) (((-890) $) 85)) (-2266 (((-112) $) 30)) (-3725 (((-3 $ "failed") $) 99)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2855 (((-890) $) 102)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3410 (($) 98 T CONST)) (-3337 (($ (-890)) 101)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 91)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-3 (-745) "failed") $ $) 77) (((-745) $) 86)) (-4050 (($ $ (-745)) 96) (($ $) 94)) (-3655 (($) 89)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 92)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-4017 (((-3 $ "failed") $) 79) (($ $) 93)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-745)) 97) (($ $) 95)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) -(((-341) (-138)) (T -341)) -((-4017 (*1 *1 *1) (-4 *1 (-341))) (-4028 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-341)) (-5 *2 (-1218 *1)))) (-3679 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))))) (-3667 (*1 *2 *3) (-12 (-4 *1 (-341)) (-5 *3 (-548)) (-5 *2 (-1145 (-890) (-745))))) (-3655 (*1 *1) (-4 *1 (-341))) (-2771 (*1 *1) (-4 *1 (-341))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-112)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-745)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-890)))) (-3644 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-394) (-360) (-1111) (-226) (-10 -8 (-15 -4017 ($ $)) (-15 -4028 ((-3 (-1218 $) "failed") (-663 $))) (-15 -3679 ((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548)))))) (-15 -3667 ((-1145 (-890) (-745)) (-548))) (-15 -3655 ($)) (-15 -2771 ($)) (-15 -3727 ((-112) $)) (-15 -2217 ((-745) $)) (-15 -1672 ((-890) $)) (-15 -3644 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-592 (-832)) . T) ((-169) . T) ((-226) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-394) . T) ((-360) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) . T) ((-1176) . T)) -((-3490 (((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|) 53)) (-3478 (((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 51))) -(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $)))) (-1194 |#1|) (-401 |#1| |#2|)) (T -342)) -((-3490 (*1 *2 *3) (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3478 (*1 *2) (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) -(-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-879 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-3689 (((-745)) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-879 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-879 |#1|) "failed") $) NIL)) (-2375 (((-879 |#1|) $) NIL)) (-2455 (($ (-1218 (-879 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-879 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-879 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-879 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-879 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-3910 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-879 |#1|) (-360)))) (-4288 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360)))) (-4278 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-360)))) (-4300 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-879 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3714 (((-1218 (-619 (-2 (|:| -4056 (-879 |#1|)) (|:| -3337 (-1082)))))) NIL)) (-3701 (((-663 (-879 |#1|))) NIL)) (-4160 (($) NIL (|has| (-879 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-879 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-879 |#1|))) NIL)) (-3655 (($) NIL (|has| (-879 |#1|) (-360)))) (-1255 (($) NIL (|has| (-879 |#1|) (-360)))) (-2447 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-879 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-879 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) -(((-343 |#1| |#2|) (-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 (-879 |#1|)) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 (-879 |#1|)))) (-15 -3689 ((-745))))) (-890) (-890)) (T -343)) -((-3714 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 (-879 *3)) (|:| -3337 (-1082)))))) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3701 (*1 *2) (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3689 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) -(-13 (-321 (-879 |#1|)) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 (-879 |#1|)) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 (-879 |#1|)))) (-15 -3689 ((-745))))) -((-3730 (((-112) $ $) 61)) (-3324 (((-112) $) 74)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) 92) (($ $ (-890)) 90 (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 148 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-3689 (((-745)) 89)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) 162 (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 112)) (-2375 ((|#1| $) 91)) (-2455 (($ (-1218 |#1|)) 58)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) 158 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 149 (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) 98 (|has| |#1| (-360)))) (-2866 (((-112) $) 175 (|has| |#1| (-360)))) (-3910 ((|#1| $) 94) (($ $ (-890)) 93 (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) 189) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) 134 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) 73 (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) 70 (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) 82 (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) 69 (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 192)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 137 (|has| |#1| (-360)))) (-2384 (((-112) $) 108)) (-3932 (((-1082) $) NIL)) (-3714 (((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) 83)) (-3701 (((-663 |#1|)) 87)) (-4160 (($) 96 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 150 (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) 151)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) 62)) (-3287 (((-1131 |#1|)) 152)) (-3655 (($) 133 (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 106) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) 124) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 57)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 156)) (-2877 (((-1218 $)) 172) (((-1218 $) (-890)) 101)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 117 T CONST)) (-3118 (($) 33 T CONST)) (-2354 (($ $) 107 (|has| |#1| (-360))) (($ $ (-745)) 99 (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) 183)) (-2309 (($ $ $) 104) (($ $ |#1|) 105)) (-2299 (($ $) 177) (($ $ $) 181)) (-2290 (($ $ $) 179)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 138)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 186) (($ $ $) 142) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-344 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) (-341) (-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (T -344)) -((-3714 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) *2)))) (-3701 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082))))))))) (-3689 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))))))) -(-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-3689 (((-745)) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-3714 (((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082)))))) NIL)) (-3701 (((-663 |#1|)) NIL)) (-4160 (($) NIL (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) NIL)) (-3655 (($) NIL (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) NIL)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-345 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) (-341) (-890)) (T -345)) -((-3714 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890)))) (-3701 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890)))) (-3689 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890))))) -(-13 (-321 |#1|) (-10 -7 (-15 -3714 ((-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))))) (-15 -3701 ((-663 |#1|))) (-15 -3689 ((-745))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-879 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-879 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-879 |#1|) "failed") $) NIL)) (-2375 (((-879 |#1|) $) NIL)) (-2455 (($ (-1218 (-879 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-879 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-879 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-879 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-879 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-879 |#1|) (-360)))) (-3910 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-879 |#1|) (-360)))) (-4288 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360)))) (-4278 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-360)))) (-4300 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-879 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-879 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| (-879 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-879 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-879 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-879 |#1|))) NIL)) (-3655 (($) NIL (|has| (-879 |#1|) (-360)))) (-1255 (($) NIL (|has| (-879 |#1|) (-360)))) (-2447 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-879 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-879 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-879 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) -(((-346 |#1| |#2|) (-321 (-879 |#1|)) (-890) (-890)) (T -346)) -NIL -(-321 (-879 |#1|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) 120 (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) 140 (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 93)) (-2375 ((|#1| $) 90)) (-2455 (($ (-1218 |#1|)) 85)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) 82 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 42 (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) 121 (|has| |#1| (-360)))) (-2866 (((-112) $) 74 (|has| |#1| (-360)))) (-3910 ((|#1| $) 39) (($ $ (-890)) 43 (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) 65) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) 97 (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) 95 (|has| |#1| (-360)))) (-2384 (((-112) $) 142)) (-3932 (((-1082) $) NIL)) (-4160 (($) 36 (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 115 (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) 139)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) 59)) (-3287 (((-1131 |#1|)) 88)) (-3655 (($) 126 (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) 53) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) 138) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 87)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 144)) (-2877 (((-1218 $)) 109) (((-1218 $) (-890)) 49)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 111 T CONST)) (-3118 (($) 32 T CONST)) (-2354 (($ $) 68 (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) 107)) (-2309 (($ $ $) 99) (($ $ |#1|) 100)) (-2299 (($ $) 80) (($ $ $) 105)) (-2290 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) 44) (($ $ (-548)) 130)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 78) (($ $ $) 56) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-347 |#1| |#2|) (-321 |#1|) (-341) (-1131 |#1|)) (T -347)) -NIL -(-321 |#1|) -((-3918 ((|#1| (-1131 |#2|)) 52))) -(((-348 |#1| |#2|) (-10 -7 (-15 -3918 (|#1| (-1131 |#2|)))) (-13 (-394) (-10 -7 (-15 -3743 (|#1| |#2|)) (-15 -2855 ((-890) |#1|)) (-15 -2877 ((-1218 |#1|) (-890))) (-15 -2354 (|#1| |#1|)))) (-341)) (T -348)) -((-3918 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-4 *2 (-13 (-394) (-10 -7 (-15 -3743 (*2 *4)) (-15 -2855 ((-890) *2)) (-15 -2877 ((-1218 *2) (-890))) (-15 -2354 (*2 *2))))) (-5 *1 (-348 *2 *4))))) -(-10 -7 (-15 -3918 (|#1| (-1131 |#2|)))) -((-3908 (((-927 (-1131 |#1|)) (-1131 |#1|)) 36)) (-2545 (((-1131 |#1|) (-890) (-890)) 113) (((-1131 |#1|) (-890)) 112)) (-3727 (((-112) (-1131 |#1|)) 84)) (-3751 (((-890) (-890)) 71)) (-3762 (((-890) (-890)) 74)) (-3739 (((-890) (-890)) 69)) (-2866 (((-112) (-1131 |#1|)) 88)) (-3847 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 101)) (-3884 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 104)) (-3872 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 103)) (-3860 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 102)) (-3832 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 98)) (-3895 (((-1131 |#1|) (-1131 |#1|)) 62)) (-3783 (((-1131 |#1|) (-890)) 107)) (-3819 (((-1131 |#1|) (-890)) 110)) (-3806 (((-1131 |#1|) (-890)) 109)) (-3794 (((-1131 |#1|) (-890)) 108)) (-3772 (((-1131 |#1|) (-890)) 105))) -(((-349 |#1|) (-10 -7 (-15 -3727 ((-112) (-1131 |#1|))) (-15 -2866 ((-112) (-1131 |#1|))) (-15 -3739 ((-890) (-890))) (-15 -3751 ((-890) (-890))) (-15 -3762 ((-890) (-890))) (-15 -3772 ((-1131 |#1|) (-890))) (-15 -3783 ((-1131 |#1|) (-890))) (-15 -3794 ((-1131 |#1|) (-890))) (-15 -3806 ((-1131 |#1|) (-890))) (-15 -3819 ((-1131 |#1|) (-890))) (-15 -3832 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3847 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3860 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3872 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3884 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2545 ((-1131 |#1|) (-890))) (-15 -2545 ((-1131 |#1|) (-890) (-890))) (-15 -3895 ((-1131 |#1|) (-1131 |#1|))) (-15 -3908 ((-927 (-1131 |#1|)) (-1131 |#1|)))) (-341)) (T -349)) -((-3908 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-927 (-1131 *4))) (-5 *1 (-349 *4)) (-5 *3 (-1131 *4)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-2545 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3884 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3872 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3860 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3847 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3832 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) (-4 *4 (-341)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) -(-10 -7 (-15 -3727 ((-112) (-1131 |#1|))) (-15 -2866 ((-112) (-1131 |#1|))) (-15 -3739 ((-890) (-890))) (-15 -3751 ((-890) (-890))) (-15 -3762 ((-890) (-890))) (-15 -3772 ((-1131 |#1|) (-890))) (-15 -3783 ((-1131 |#1|) (-890))) (-15 -3794 ((-1131 |#1|) (-890))) (-15 -3806 ((-1131 |#1|) (-890))) (-15 -3819 ((-1131 |#1|) (-890))) (-15 -3832 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3847 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3860 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3872 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3884 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2545 ((-1131 |#1|) (-890))) (-15 -2545 ((-1131 |#1|) (-890) (-890))) (-15 -3895 ((-1131 |#1|) (-1131 |#1|))) (-15 -3908 ((-927 (-1131 |#1|)) (-1131 |#1|)))) -((-4039 (((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|) 34))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4039 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) (-341) (-1194 |#1|) (-1194 |#2|)) (T -350)) -((-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *1 (-350 *4 *5 *3))))) -(-10 -7 (-15 -4039 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| |#1| (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| |#1| (-360)))) (-3727 (((-112) $) NIL (|has| |#1| (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| |#1| (-360))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| |#1| (-360)))) (-2866 (((-112) $) NIL (|has| |#1| (-360)))) (-3910 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-360)))) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4288 (((-1131 |#1|) $) NIL (|has| |#1| (-360)))) (-4278 (((-1131 |#1|) $) NIL (|has| |#1| (-360))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-360)))) (-4300 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| |#1| (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| |#1| (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 |#1|)) NIL)) (-3655 (($) NIL (|has| |#1| (-360)))) (-1255 (($) NIL (|has| |#1| (-360)))) (-2447 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) NIL)) (-4017 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-3296 (($ $) NIL (|has| |#1| (-360))) (($ $ (-745)) NIL (|has| |#1| (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-351 |#1| |#2|) (-321 |#1|) (-341) (-890)) (T -351)) -NIL -(-321 |#1|) -((-1338 (((-112) (-619 (-921 |#1|))) 34)) (-1359 (((-619 (-921 |#1|)) (-619 (-921 |#1|))) 46)) (-1348 (((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|))) 41))) -(((-352 |#1| |#2|) (-10 -7 (-15 -1338 ((-112) (-619 (-921 |#1|)))) (-15 -1348 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -1359 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) (-443) (-619 (-1135))) (T -352)) -((-1359 (*1 *2 *2) (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) (-5 *1 (-352 *3 *4)) (-14 *4 (-619 (-1135))))) (-1348 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) (-5 *1 (-352 *3 *4)) (-14 *4 (-619 (-1135))))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-112)) (-5 *1 (-352 *4 *5)) (-14 *5 (-619 (-1135)))))) -(-10 -7 (-15 -1338 ((-112) (-619 (-921 |#1|)))) (-15 -1348 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -1359 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) 15)) (-3224 ((|#1| $ (-548)) NIL)) (-3235 (((-548) $ (-548)) NIL)) (-1628 (($ (-1 |#1| |#1|) $) 32)) (-3442 (($ (-1 (-548) (-548)) $) 24)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 26)) (-3932 (((-1082) $) NIL)) (-3213 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $) 28)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 38) (($ |#1|) NIL)) (-3118 (($) 9 T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ |#1| (-548)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-353 |#1|) (-13 (-464) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-548))) (-15 -3423 ((-745) $)) (-15 -3235 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-548) (-548)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $)))) (-1063)) (T -353)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) (-3235 (*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-548) (-548))) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-353 *3)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-548))))) (-5 *1 (-353 *3)) (-4 *3 (-1063))))) -(-13 (-464) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-548))) (-15 -3423 ((-745) $)) (-15 -3235 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-548) (-548)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-548)))) $)))) -((-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 13)) (-3303 (($ $) 14)) (-2634 (((-410 $) $) 30)) (-1271 (((-112) $) 26)) (-2153 (($ $) 19)) (-3587 (($ $ $) 23) (($ (-619 $)) NIL)) (-1915 (((-410 $) $) 31)) (-1900 (((-3 $ "failed") $ $) 22)) (-4077 (((-745) $) 25)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 35)) (-3290 (((-112) $ $) 16)) (-2309 (($ $ $) 33))) -(((-354 |#1|) (-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) (-355)) (T -354)) -NIL -(-10 -8 (-15 -2309 (|#1| |#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) -(((-355) (-138)) (T -355)) -((-2309 (*1 *1 *1 *1) (-4 *1 (-355)))) -(-13 (-299) (-1176) (-236) (-10 -8 (-15 -2309 ($ $ $)) (-6 -4325) (-6 -4319))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-3730 (((-112) $ $) 7)) (-3930 ((|#2| $ |#2|) 13)) (-3981 (($ $ (-1118)) 18)) (-3943 ((|#2| $) 14)) (-1280 (($ |#1|) 20) (($ |#1| (-1118)) 19)) (-2275 ((|#1| $) 16)) (-2546 (((-1118) $) 9)) (-3959 (((-1118) $) 15)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3972 (($ $) 17)) (-2214 (((-112) $ $) 6))) -(((-356 |#1| |#2|) (-138) (-1063) (-1063)) (T -356)) -((-1280 (*1 *1 *2) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1280 (*1 *1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *1 (-356 *2 *4)) (-4 *2 (-1063)) (-4 *4 (-1063)))) (-3981 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3972 (*1 *1 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-1118)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3930 (*1 *2 *1 *2) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -1280 ($ |t#1|)) (-15 -1280 ($ |t#1| (-1118))) (-15 -3981 ($ $ (-1118))) (-15 -3972 ($ $)) (-15 -2275 (|t#1| $)) (-15 -3959 ((-1118) $)) (-15 -3943 (|t#2| $)) (-15 -3930 (|t#2| $ |t#2|)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3930 ((|#1| $ |#1|) 30)) (-3981 (($ $ (-1118)) 22)) (-2630 (((-3 |#1| "failed") $) 29)) (-3943 ((|#1| $) 27)) (-1280 (($ (-380)) 21) (($ (-380) (-1118)) 20)) (-2275 (((-380) $) 24)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) 25)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 19)) (-3972 (($ $) 23)) (-2214 (((-112) $ $) 18))) -(((-357 |#1|) (-13 (-356 (-380) |#1|) (-10 -8 (-15 -2630 ((-3 |#1| "failed") $)))) (-1063)) (T -357)) -((-2630 (*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1063))))) -(-13 (-356 (-380) |#1|) (-10 -8 (-15 -2630 ((-3 |#1| "failed") $)))) -((-2434 (((-1218 (-663 |#2|)) (-1218 $)) 61)) (-2413 (((-663 |#2|) (-1218 $)) 120)) (-2947 ((|#2| $) 32)) (-2391 (((-663 |#2|) $ (-1218 $)) 123)) (-3399 (((-3 $ "failed") $) 75)) (-2925 ((|#2| $) 35)) (-2741 (((-1131 |#2|) $) 83)) (-2432 ((|#2| (-1218 $)) 106)) (-2903 (((-1131 |#2|) $) 28)) (-2842 (((-112)) 100)) (-2455 (($ (-1218 |#2|) (-1218 $)) 113)) (-3859 (((-3 $ "failed") $) 79)) (-2782 (((-112)) 95)) (-2766 (((-112)) 90)) (-2797 (((-112)) 53)) (-2422 (((-663 |#2|) (-1218 $)) 118)) (-2958 ((|#2| $) 31)) (-2402 (((-663 |#2|) $ (-1218 $)) 122)) (-3411 (((-3 $ "failed") $) 73)) (-2936 ((|#2| $) 34)) (-2750 (((-1131 |#2|) $) 82)) (-2444 ((|#2| (-1218 $)) 104)) (-2914 (((-1131 |#2|) $) 26)) (-2851 (((-112)) 99)) (-2774 (((-112)) 92)) (-2790 (((-112)) 51)) (-2806 (((-112)) 87)) (-2832 (((-112)) 101)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) 111)) (-2891 (((-112)) 97)) (-2759 (((-619 (-1218 |#2|))) 86)) (-2871 (((-112)) 98)) (-2881 (((-112)) 96)) (-2859 (((-112)) 46)) (-2823 (((-112)) 102))) -(((-358 |#1| |#2|) (-10 -8 (-15 -2741 ((-1131 |#2|) |#1|)) (-15 -2750 ((-1131 |#2|) |#1|)) (-15 -2759 ((-619 (-1218 |#2|)))) (-15 -3399 ((-3 |#1| "failed") |#1|)) (-15 -3411 ((-3 |#1| "failed") |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 -2766 ((-112))) (-15 -2774 ((-112))) (-15 -2782 ((-112))) (-15 -2790 ((-112))) (-15 -2797 ((-112))) (-15 -2806 ((-112))) (-15 -2823 ((-112))) (-15 -2832 ((-112))) (-15 -2842 ((-112))) (-15 -2851 ((-112))) (-15 -2859 ((-112))) (-15 -2871 ((-112))) (-15 -2881 ((-112))) (-15 -2891 ((-112))) (-15 -2903 ((-1131 |#2|) |#1|)) (-15 -2914 ((-1131 |#2|) |#1|)) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2925 (|#2| |#1|)) (-15 -2936 (|#2| |#1|)) (-15 -2947 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|)))) (-359 |#2|) (-169)) (T -358)) -((-2891 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2881 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2871 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2859 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2851 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2842 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2832 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2823 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2806 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2797 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2790 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2782 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2774 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2766 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4)))) (-2759 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1218 *4))) (-5 *1 (-358 *3 *4)) (-4 *3 (-359 *4))))) -(-10 -8 (-15 -2741 ((-1131 |#2|) |#1|)) (-15 -2750 ((-1131 |#2|) |#1|)) (-15 -2759 ((-619 (-1218 |#2|)))) (-15 -3399 ((-3 |#1| "failed") |#1|)) (-15 -3411 ((-3 |#1| "failed") |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 -2766 ((-112))) (-15 -2774 ((-112))) (-15 -2782 ((-112))) (-15 -2790 ((-112))) (-15 -2797 ((-112))) (-15 -2806 ((-112))) (-15 -2823 ((-112))) (-15 -2832 ((-112))) (-15 -2842 ((-112))) (-15 -2851 ((-112))) (-15 -2859 ((-112))) (-15 -2871 ((-112))) (-15 -2881 ((-112))) (-15 -2891 ((-112))) (-15 -2903 ((-1131 |#2|) |#1|)) (-15 -2914 ((-1131 |#2|) |#1|)) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2925 (|#2| |#1|)) (-15 -2936 (|#2| |#1|)) (-15 -2947 (|#2| |#1|)) (-15 -2958 (|#2| |#1|)) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2265 (((-3 $ "failed")) 37 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-2434 (((-1218 (-663 |#1|)) (-1218 $)) 78)) (-2968 (((-1218 $)) 81)) (-3030 (($) 17 T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 40 (|has| |#1| (-540)))) (-3991 (((-3 $ "failed")) 38 (|has| |#1| (-540)))) (-2413 (((-663 |#1|) (-1218 $)) 65)) (-2947 ((|#1| $) 74)) (-2391 (((-663 |#1|) $ (-1218 $)) 76)) (-3399 (((-3 $ "failed") $) 45 (|has| |#1| (-540)))) (-2246 (($ $ (-890)) 28)) (-2925 ((|#1| $) 72)) (-2741 (((-1131 |#1|) $) 42 (|has| |#1| (-540)))) (-2432 ((|#1| (-1218 $)) 67)) (-2903 (((-1131 |#1|) $) 63)) (-2842 (((-112)) 57)) (-2455 (($ (-1218 |#1|) (-1218 $)) 69)) (-3859 (((-3 $ "failed") $) 47 (|has| |#1| (-540)))) (-2103 (((-890)) 80)) (-2815 (((-112)) 54)) (-2468 (($ $ (-890)) 33)) (-2782 (((-112)) 50)) (-2766 (((-112)) 48)) (-2797 (((-112)) 52)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 41 (|has| |#1| (-540)))) (-4003 (((-3 $ "failed")) 39 (|has| |#1| (-540)))) (-2422 (((-663 |#1|) (-1218 $)) 66)) (-2958 ((|#1| $) 75)) (-2402 (((-663 |#1|) $ (-1218 $)) 77)) (-3411 (((-3 $ "failed") $) 46 (|has| |#1| (-540)))) (-3424 (($ $ (-890)) 29)) (-2936 ((|#1| $) 73)) (-2750 (((-1131 |#1|) $) 43 (|has| |#1| (-540)))) (-2444 ((|#1| (-1218 $)) 68)) (-2914 (((-1131 |#1|) $) 64)) (-2851 (((-112)) 58)) (-2546 (((-1118) $) 9)) (-2774 (((-112)) 49)) (-2790 (((-112)) 51)) (-2806 (((-112)) 53)) (-3932 (((-1082) $) 10)) (-2832 (((-112)) 56)) (-2447 (((-1218 |#1|) $ (-1218 $)) 71) (((-663 |#1|) (-1218 $) (-1218 $)) 70)) (-4218 (((-619 (-921 |#1|)) (-1218 $)) 79)) (-3652 (($ $ $) 25)) (-2891 (((-112)) 62)) (-3743 (((-832) $) 11)) (-2759 (((-619 (-1218 |#1|))) 44 (|has| |#1| (-540)))) (-3664 (($ $ $ $) 26)) (-2871 (((-112)) 60)) (-3639 (($ $ $) 24)) (-2881 (((-112)) 61)) (-2859 (((-112)) 59)) (-2823 (((-112)) 55)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-359 |#1|) (-138) (-169)) (T -359)) -((-2968 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-359 *3)))) (-2103 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))))) (-2402 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2391 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-1218 *4)))) (-2447 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) (-4 *1 (-359 *4)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3)))) (-2891 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2881 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2871 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2859 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2851 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2842 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2832 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2823 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2815 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2806 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2797 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2790 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2782 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2774 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2766 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3859 (*1 *1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-3411 (*1 *1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-3399 (*1 *1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) (-2759 (*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) (-5 *2 (-619 (-1218 *3))))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) (-5 *2 (-1131 *3)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) (-5 *2 (-1131 *3)))) (-1332 (*1 *2) (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) (-4 *1 (-359 *3)))) (-1321 (*1 *2) (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) (-4 *1 (-359 *3)))) (-4003 (*1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169)))) (-3991 (*1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169)))) (-2265 (*1 *1) (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169))))) -(-13 (-719 |t#1|) (-10 -8 (-15 -2968 ((-1218 $))) (-15 -2103 ((-890))) (-15 -4218 ((-619 (-921 |t#1|)) (-1218 $))) (-15 -2434 ((-1218 (-663 |t#1|)) (-1218 $))) (-15 -2402 ((-663 |t#1|) $ (-1218 $))) (-15 -2391 ((-663 |t#1|) $ (-1218 $))) (-15 -2958 (|t#1| $)) (-15 -2947 (|t#1| $)) (-15 -2936 (|t#1| $)) (-15 -2925 (|t#1| $)) (-15 -2447 ((-1218 |t#1|) $ (-1218 $))) (-15 -2447 ((-663 |t#1|) (-1218 $) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|) (-1218 $))) (-15 -2444 (|t#1| (-1218 $))) (-15 -2432 (|t#1| (-1218 $))) (-15 -2422 ((-663 |t#1|) (-1218 $))) (-15 -2413 ((-663 |t#1|) (-1218 $))) (-15 -2914 ((-1131 |t#1|) $)) (-15 -2903 ((-1131 |t#1|) $)) (-15 -2891 ((-112))) (-15 -2881 ((-112))) (-15 -2871 ((-112))) (-15 -2859 ((-112))) (-15 -2851 ((-112))) (-15 -2842 ((-112))) (-15 -2832 ((-112))) (-15 -2823 ((-112))) (-15 -2815 ((-112))) (-15 -2806 ((-112))) (-15 -2797 ((-112))) (-15 -2790 ((-112))) (-15 -2782 ((-112))) (-15 -2774 ((-112))) (-15 -2766 ((-112))) (IF (|has| |t#1| (-540)) (PROGN (-15 -3859 ((-3 $ "failed") $)) (-15 -3411 ((-3 $ "failed") $)) (-15 -3399 ((-3 $ "failed") $)) (-15 -2759 ((-619 (-1218 |t#1|)))) (-15 -2750 ((-1131 |t#1|) $)) (-15 -2741 ((-1131 |t#1|) $)) (-15 -1332 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -4003 ((-3 $ "failed"))) (-15 -3991 ((-3 $ "failed"))) (-15 -2265 ((-3 $ "failed"))) (-6 -4324)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-3423 (((-745)) 16)) (-2545 (($) 13)) (-2855 (((-890) $) 14)) (-2546 (((-1118) $) 9)) (-3337 (($ (-890)) 15)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) -(((-360) (-138)) (T -360)) -((-3423 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-745)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-360)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-890)))) (-2545 (*1 *1) (-4 *1 (-360)))) -(-13 (-1063) (-10 -8 (-15 -3423 ((-745))) (-15 -3337 ($ (-890))) (-15 -2855 ((-890) $)) (-15 -2545 ($)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-2350 (((-663 |#2|) (-1218 $)) 40)) (-2455 (($ (-1218 |#2|) (-1218 $)) 34)) (-2341 (((-663 |#2|) $ (-1218 $)) 42)) (-1566 ((|#2| (-1218 $)) 13)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) 25))) -(((-361 |#1| |#2| |#3|) (-10 -8 (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) (-362 |#2| |#3|) (-169) (-1194 |#2|)) (T -361)) -NIL -(-10 -8 (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2350 (((-663 |#1|) (-1218 $)) 44)) (-2707 ((|#1| $) 50)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46)) (-2341 (((-663 |#1|) $ (-1218 $)) 51)) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-890)) 52)) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 49)) (-2898 ((|#2| $) 42 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1566 ((|#1| (-1218 $)) 45)) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35)) (-4017 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3780 ((|#2| $) 43)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-362 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -362)) -((-2103 (*1 *2) (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-890)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *4)))) (-2447 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) (-4 *1 (-362 *4 *5)) (-4 *5 (-1194 *4)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *2 *4)) (-4 *4 (-1194 *2)) (-4 *2 (-169)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *3 (-355)) (-4 *2 (-1194 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -2103 ((-890))) (-15 -2341 ((-663 |t#1|) $ (-1218 $))) (-15 -2707 (|t#1| $)) (-15 -3910 (|t#1| $)) (-15 -2447 ((-1218 |t#1|) $ (-1218 $))) (-15 -2447 ((-663 |t#1|) (-1218 $) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|) (-1218 $))) (-15 -1566 (|t#1| (-1218 $))) (-15 -2350 ((-663 |t#1|) (-1218 $))) (-15 -3780 (|t#2| $)) (IF (|has| |t#1| (-355)) (-15 -2898 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-4040 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2061 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2540 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1172) (-365 |#1|) (-1172) (-365 |#3|)) (T -363)) -((-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-4 *2 (-365 *5)) (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *2 (-365 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-365 *5))))) -(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3001 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2980 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2490 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2796 (($ $) 25)) (-2621 (((-548) (-1 (-112) |#2|) $) NIL) (((-548) |#2| $) 11) (((-548) |#2| $ (-548)) NIL)) (-2913 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-364 |#1| |#2|) (-10 -8 (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2490 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-365 |#2|) (-1172)) (T -364)) -NIL -(-10 -8 (-15 -2980 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2490 (|#1| |#1|)) (-15 -2913 (|#1| |#1| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2490 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-365 |#1|) (-138) (-1172)) (T -365)) -((-2913 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)))) (-2490 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-3001 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-2621 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) (-5 *2 (-548)))) (-2621 (*1 *2 *3 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-548)))) (-2621 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) (-2490 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-821)) (-5 *2 (-112)))) (-2990 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-3499 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)))) (-2980 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4328)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) (-2980 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821))))) -(-13 (-625 |t#1|) (-10 -8 (-6 -4327) (-15 -2913 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2796 ($ $)) (-15 -2490 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3001 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2621 ((-548) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2621 ((-548) |t#1| $)) (-15 -2621 ((-548) |t#1| $ (-548)))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-6 (-821)) (-15 -2913 ($ $ $)) (-15 -2490 ($ $)) (-15 -3001 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2990 ($ $ $ (-548))) (-15 -3499 ($ $)) (-15 -2980 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-821)) (-15 -2980 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3065 (((-619 |#1|) $) 32)) (-2502 (($ $ (-745)) 33)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2448 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 36)) (-2425 (($ $) 34)) (-2459 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 37)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2460 (($ $ |#1| $) 31) (($ $ (-619 |#1|) (-619 $)) 30)) (-2512 (((-745) $) 38)) (-3754 (($ $ $) 29)) (-3743 (((-832) $) 11) (($ |#1|) 41) (((-1233 |#1| |#2|) $) 40) (((-1242 |#1| |#2|) $) 39)) (-1489 ((|#2| (-1242 |#1| |#2|) $) 42)) (-3107 (($) 18 T CONST)) (-3011 (($ (-646 |#1|)) 35)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#2|) 28 (|has| |#2| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-366 |#1| |#2|) (-138) (-821) (-169)) (T -366)) -((-1489 (*1 *2 *3 *1) (-12 (-5 *3 (-1242 *4 *2)) (-4 *1 (-366 *4 *2)) (-4 *4 (-821)) (-4 *2 (-169)))) (-3743 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1233 *3 *4)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1242 *3 *4)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-745)))) (-2459 (*1 *2 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2448 (*1 *2 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-366 *3 *4)) (-4 *4 (-169)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-619 *3)))) (-2460 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-821)) (-4 *5 (-169))))) -(-13 (-610 |t#2|) (-10 -8 (-15 -1489 (|t#2| (-1242 |t#1| |t#2|) $)) (-15 -3743 ($ |t#1|)) (-15 -3743 ((-1233 |t#1| |t#2|) $)) (-15 -3743 ((-1242 |t#1| |t#2|) $)) (-15 -2512 ((-745) $)) (-15 -2459 ((-1242 |t#1| |t#2|) (-1242 |t#1| |t#2|) $)) (-15 -2448 ((-1242 |t#1| |t#2|) (-1242 |t#1| |t#2|) $)) (-15 -3011 ($ (-646 |t#1|))) (-15 -2425 ($ $)) (-15 -2502 ($ $ (-745))) (-15 -3065 ((-619 |t#1|) $)) (-15 -2460 ($ $ |t#1| $)) (-15 -2460 ($ $ (-619 |t#1|) (-619 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#2|) . T) ((-610 |#2|) . T) ((-692 |#2|) . T) ((-1022 |#2|) . T) ((-1063) . T)) -((-3042 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3021 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3031 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-367 |#1| |#2|) (-10 -7 (-15 -3021 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3031 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3042 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1172) (-13 (-365 |#1|) (-10 -7 (-6 -4328)))) (T -367)) -((-3042 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))))) (-3031 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))))) (-3021 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) -(-10 -7 (-15 -3021 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3031 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3042 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-1608 (((-663 |#2|) (-663 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 22) (((-663 (-548)) (-663 $)) 14))) -(((-368 |#1| |#2|) (-10 -8 (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 |#2|) (-663 |#1|)))) (-369 |#2|) (-1016)) (T -368)) -NIL -(-10 -8 (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 |#2|) (-663 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1608 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 33) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 41 (|has| |#1| (-615 (-548)))) (((-663 (-548)) (-663 $)) 40 (|has| |#1| (-615 (-548))))) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-369 |#1|) (-138) (-1016)) (T -369)) -NIL -(-13 (-615 |t#1|) (-10 -7 (IF (|has| |t#1| (-615 (-548))) (-6 (-615 (-548))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3143 (((-619 (-286 (-921 (-166 |#1|)))) (-286 (-399 (-921 (-166 (-548))))) |#1|) 51) (((-619 (-286 (-921 (-166 |#1|)))) (-399 (-921 (-166 (-548)))) |#1|) 50) (((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-286 (-399 (-921 (-166 (-548)))))) |#1|) 47) (((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-399 (-921 (-166 (-548))))) |#1|) 41)) (-3153 (((-619 (-619 (-166 |#1|))) (-619 (-399 (-921 (-166 (-548))))) (-619 (-1135)) |#1|) 30) (((-619 (-166 |#1|)) (-399 (-921 (-166 (-548)))) |#1|) 18))) -(((-370 |#1|) (-10 -7 (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-286 (-399 (-921 (-166 (-548)))))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-286 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3153 ((-619 (-166 |#1|)) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3153 ((-619 (-619 (-166 |#1|))) (-619 (-399 (-921 (-166 (-548))))) (-619 (-1135)) |#1|))) (-13 (-355) (-819))) (T -370)) -((-3153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-166 *5)))) (-5 *1 (-370 *5)) (-4 *5 (-13 (-355) (-819))))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-166 (-548))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 (-166 (-548)))))) (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-166 (-548))))) (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-286 (-399 (-921 (-166 (-548))))))) (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819)))))) -(-10 -7 (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3143 ((-619 (-619 (-286 (-921 (-166 |#1|))))) (-619 (-286 (-399 (-921 (-166 (-548)))))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3143 ((-619 (-286 (-921 (-166 |#1|)))) (-286 (-399 (-921 (-166 (-548))))) |#1|)) (-15 -3153 ((-619 (-166 |#1|)) (-399 (-921 (-166 (-548)))) |#1|)) (-15 -3153 ((-619 (-619 (-166 |#1|))) (-619 (-399 (-921 (-166 (-548))))) (-619 (-1135)) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 33)) (-3875 (((-548) $) 55)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1665 (($ $) 110)) (-2074 (($ $) 82)) (-1940 (($ $) 71)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) 44)) (-4087 (((-112) $ $) NIL)) (-2054 (($ $) 80)) (-1918 (($ $) 69)) (-2672 (((-548) $) 64)) (-2970 (($ $ (-548)) 62)) (-2098 (($ $) NIL)) (-1963 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-3849 (($ $) 112)) (-2441 (((-3 (-548) "failed") $) 189) (((-3 (-399 (-548)) "failed") $) 185)) (-2375 (((-548) $) 187) (((-399 (-548)) $) 183)) (-1945 (($ $ $) NIL)) (-3133 (((-548) $ $) 102)) (-3859 (((-3 $ "failed") $) 114)) (-3123 (((-399 (-548)) $ (-745)) 190) (((-399 (-548)) $ (-745) (-745)) 182)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2232 (((-890)) 73) (((-890) (-890)) 98 (|has| $ (-6 -4318)))) (-3298 (((-112) $) 106)) (-1365 (($) 40)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL)) (-3054 (((-1223) (-745)) 152)) (-3064 (((-1223)) 157) (((-1223) (-745)) 158)) (-3086 (((-1223)) 159) (((-1223) (-745)) 160)) (-3075 (((-1223)) 155) (((-1223) (-745)) 156)) (-1672 (((-548) $) 58)) (-2266 (((-112) $) 104)) (-2154 (($ $ (-548)) NIL)) (-3711 (($ $) 48)) (-3910 (($ $) NIL)) (-3312 (((-112) $) 35)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL) (($) NIL (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-3091 (($ $ $) NIL) (($) 99 (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-1382 (((-548) $) 17)) (-3112 (($) 87) (($ $) 92)) (-2133 (($) 91) (($ $) 93)) (-3496 (($ $) 83)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 116)) (-2237 (((-890) (-548)) 43 (|has| $ (-6 -4318)))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) 53)) (-3887 (($ $) 109)) (-1335 (($ (-548) (-548)) 107) (($ (-548) (-548) (-890)) 108)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3352 (((-548) $) 19)) (-3100 (($) 94)) (-2458 (($ $) 79)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-890)) 100) (((-890) (-890)) 101 (|has| $ (-6 -4318)))) (-4050 (($ $ (-745)) NIL) (($ $) 115)) (-2226 (((-890) (-548)) 47 (|has| $ (-6 -4318)))) (-2110 (($ $) NIL)) (-1973 (($ $) NIL)) (-2086 (($ $) NIL)) (-1952 (($ $) NIL)) (-2065 (($ $) 81)) (-1929 (($ $) 70)) (-2591 (((-371) $) 175) (((-218) $) 177) (((-861 (-371)) $) NIL) (((-1118) $) 162) (((-524) $) 173) (($ (-218)) 181)) (-3743 (((-832) $) 164) (($ (-548)) 186) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-548)) 186) (($ (-399 (-548))) NIL) (((-218) $) 178)) (-3835 (((-745)) NIL)) (-3897 (($ $) 111)) (-2245 (((-890)) 54) (((-890) (-890)) 66 (|has| $ (-6 -4318)))) (-3957 (((-890)) 103)) (-2145 (($ $) 86)) (-2006 (($ $) 46) (($ $ $) 52)) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) 84)) (-1986 (($ $) 37)) (-2170 (($ $) NIL)) (-2029 (($ $) NIL)) (-4026 (($ $) NIL)) (-2040 (($ $) NIL)) (-2158 (($ $) NIL)) (-2017 (($ $) NIL)) (-2132 (($ $) 85)) (-1996 (($ $) 49)) (-1446 (($ $) 51)) (-3107 (($) 34 T CONST)) (-3118 (($) 38 T CONST)) (-2739 (((-1118) $) 27) (((-1118) $ (-112)) 29) (((-1223) (-796) $) 30) (((-1223) (-796) $ (-112)) 31)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 39)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 42)) (-2309 (($ $ $) 45) (($ $ (-548)) 41)) (-2299 (($ $) 36) (($ $ $) 50)) (-2290 (($ $ $) 61)) (** (($ $ (-890)) 67) (($ $ (-745)) NIL) (($ $ (-548)) 88) (($ $ (-399 (-548))) 125) (($ $ $) 117)) (* (($ (-890) $) 65) (($ (-745) $) NIL) (($ (-548) $) 68) (($ $ $) 60) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-371) (-13 (-396) (-226) (-593 (-1118)) (-802) (-592 (-218)) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3711 ($ $)) (-15 -3133 ((-548) $ $)) (-15 -2970 ($ $ (-548))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745))) (-15 -3112 ($)) (-15 -2133 ($)) (-15 -3100 ($)) (-15 -2006 ($ $ $)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2591 ($ (-218))) (-15 -3086 ((-1223))) (-15 -3086 ((-1223) (-745))) (-15 -3075 ((-1223))) (-15 -3075 ((-1223) (-745))) (-15 -3064 ((-1223))) (-15 -3064 ((-1223) (-745))) (-15 -3054 ((-1223) (-745))) (-6 -4318) (-6 -4310)))) (T -371)) -((** (*1 *1 *1 *1) (-5 *1 (-371))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) (-3711 (*1 *1 *1) (-5 *1 (-371))) (-3133 (*1 *2 *1 *1) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) (-2970 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) (-3123 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371)))) (-3123 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371)))) (-3112 (*1 *1) (-5 *1 (-371))) (-2133 (*1 *1) (-5 *1 (-371))) (-3100 (*1 *1) (-5 *1 (-371))) (-2006 (*1 *1 *1 *1) (-5 *1 (-371))) (-3112 (*1 *1 *1) (-5 *1 (-371))) (-2133 (*1 *1 *1) (-5 *1 (-371))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-371)))) (-3086 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) (-3075 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) (-3064 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371))))) -(-13 (-396) (-226) (-593 (-1118)) (-802) (-592 (-218)) (-1157) (-593 (-524)) (-10 -8 (-15 -2309 ($ $ (-548))) (-15 ** ($ $ $)) (-15 -3711 ($ $)) (-15 -3133 ((-548) $ $)) (-15 -2970 ($ $ (-548))) (-15 -3123 ((-399 (-548)) $ (-745))) (-15 -3123 ((-399 (-548)) $ (-745) (-745))) (-15 -3112 ($)) (-15 -2133 ($)) (-15 -3100 ($)) (-15 -2006 ($ $ $)) (-15 -3112 ($ $)) (-15 -2133 ($ $)) (-15 -2591 ($ (-218))) (-15 -3086 ((-1223))) (-15 -3086 ((-1223) (-745))) (-15 -3075 ((-1223))) (-15 -3075 ((-1223) (-745))) (-15 -3064 ((-1223))) (-15 -3064 ((-1223) (-745))) (-15 -3054 ((-1223) (-745))) (-6 -4318) (-6 -4310))) -((-3408 (((-619 (-286 (-921 |#1|))) (-286 (-399 (-921 (-548)))) |#1|) 46) (((-619 (-286 (-921 |#1|))) (-399 (-921 (-548))) |#1|) 45) (((-619 (-619 (-286 (-921 |#1|)))) (-619 (-286 (-399 (-921 (-548))))) |#1|) 42) (((-619 (-619 (-286 (-921 |#1|)))) (-619 (-399 (-921 (-548)))) |#1|) 36)) (-3164 (((-619 |#1|) (-399 (-921 (-548))) |#1|) 20) (((-619 (-619 |#1|)) (-619 (-399 (-921 (-548)))) (-619 (-1135)) |#1|) 30))) -(((-372 |#1|) (-10 -7 (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-399 (-921 (-548)))) |#1|)) (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-286 (-399 (-921 (-548))))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-399 (-921 (-548))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-286 (-399 (-921 (-548)))) |#1|)) (-15 -3164 ((-619 (-619 |#1|)) (-619 (-399 (-921 (-548)))) (-619 (-1135)) |#1|)) (-15 -3164 ((-619 |#1|) (-399 (-921 (-548))) |#1|))) (-13 (-819) (-355))) (T -372)) -((-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-399 (-921 (-548))))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 *5))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 (-548))))) (-5 *2 (-619 (-286 (-921 *4)))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 (-286 (-921 *4)))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-286 (-399 (-921 (-548)))))) (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 (-548))))) (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355)))))) -(-10 -7 (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-399 (-921 (-548)))) |#1|)) (-15 -3408 ((-619 (-619 (-286 (-921 |#1|)))) (-619 (-286 (-399 (-921 (-548))))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-399 (-921 (-548))) |#1|)) (-15 -3408 ((-619 (-286 (-921 |#1|))) (-286 (-399 (-921 (-548)))) |#1|)) (-15 -3164 ((-619 (-619 |#1|)) (-619 (-399 (-921 (-548)))) (-619 (-1135)) |#1|)) (-15 -3164 ((-619 |#1|) (-399 (-921 (-548))) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 26)) (-2375 ((|#2| $) 28)) (-1872 (($ $) NIL)) (-2333 (((-745) $) 10)) (-3915 (((-619 $) $) 20)) (-2435 (((-112) $) NIL)) (-3310 (($ |#2| |#1|) 18)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2185 ((|#2| $) 15)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 45) (($ |#2|) 27)) (-3852 (((-619 |#1|) $) 17)) (-1951 ((|#1| $ |#2|) 47)) (-3107 (($) 29 T CONST)) (-3623 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-373 |#1| |#2|) (-13 (-374 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1016) (-821)) (T -373)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821))))) -(-13 (-374 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#2| "failed") $) 44)) (-2375 ((|#2| $) 43)) (-1872 (($ $) 30)) (-2333 (((-745) $) 34)) (-3915 (((-619 $) $) 35)) (-2435 (((-112) $) 38)) (-3310 (($ |#2| |#1|) 39)) (-2540 (($ (-1 |#1| |#1|) $) 40)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2185 ((|#2| $) 33)) (-2197 ((|#1| $) 32)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ |#2|) 45)) (-3852 (((-619 |#1|) $) 36)) (-1951 ((|#1| $ |#2|) 41)) (-3107 (($) 18 T CONST)) (-3623 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-374 |#1| |#2|) (-138) (-1016) (-1063)) (T -374)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) (-1951 (*1 *2 *1 *3) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)))) (-3310 (*1 *1 *2 *3) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-374 *3 *4)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-745)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063))))) -(-13 (-111 |t#1| |t#1|) (-1007 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1951 (|t#1| $ |t#2|)) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -3310 ($ |t#2| |t#1|)) (-15 -2435 ((-112) $)) (-15 -3623 ((-619 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3852 ((-619 |t#1|) $)) (-15 -3915 ((-619 $) $)) (-15 -2333 ((-745) $)) (-15 -2185 (|t#2| $)) (-15 -2197 (|t#1| $)) (-15 -3176 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1872 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-692 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) |has| |#1| (-169)) ((-1007 |#2|) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-663 (-673))) 14) (($ (-619 (-322))) 13) (($ (-322)) 12) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 11))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 62)) (-2673 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-1204 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-3 (-1203 |#2| |#3| |#4|) "failed") $) 25)) (-2643 (((-1204 |#1| |#2| |#3| |#4|) $) NIL) (((-1135) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-547) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-547)))) (((-1203 |#2| |#3| |#4|) $) NIL)) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-1204 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1218 (-1204 |#1| |#2| |#3| |#4|)))) (-663 $) (-1218 $)) NIL) (((-663 (-1204 |#1| |#2| |#3| |#4|)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-1204 |#1| |#2| |#3| |#4|) $) 21)) (-3652 (((-3 $ "failed") $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1111)))) (-3937 (((-112) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-3563 (($ $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2781 (($ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) $) NIL)) (-1676 (((-3 (-814 |#2|) "failed") $) 78)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-298)))) (-1435 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-1204 |#1| |#2| |#3| |#4|)) (-619 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-300 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-300 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-285 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-300 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-285 (-1204 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-300 (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-619 (-1135)) (-619 (-1204 |#1| |#2| |#3| |#4|))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-503 (-1135) (-1204 |#1| |#2| |#3| |#4|)))) (($ $ (-1135) (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-503 (-1135) (-1204 |#1| |#2| |#3| |#4|))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-1204 |#1| |#2| |#3| |#4|)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-277 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-1204 |#1| |#2| |#3| |#4|) $) 17)) (-2829 (((-861 (-547)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-592 (-523)))) (((-370) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-991))) (((-217) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-1204 |#1| |#2| |#3| |#4|)) 29) (($ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-1007 (-1135)))) (($ (-1203 |#2| |#3| |#4|)) 36)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1204 |#1| |#2| |#3| |#4|) (-878))) (|has| (-1204 |#1| |#2| |#3| |#4|) (-143))))) (-2311 (((-745)) NIL)) (-1564 (((-1204 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-532)))) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-794)))) (-3267 (($) 41 T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-1135)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-869 (-1135)))) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) (-745)) NIL) (($ $ (-1 (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-1204 |#1| |#2| |#3| |#4|) (-821)))) (-2497 (($ $ $) 34) (($ (-1204 |#1| |#2| |#3| |#4|) (-1204 |#1| |#2| |#3| |#4|)) 31)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-1204 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1204 |#1| |#2| |#3| |#4|)) NIL))) +(((-304 |#1| |#2| |#3| |#4|) (-13 (-961 (-1204 |#1| |#2| |#3| |#4|)) (-1007 (-1203 |#2| |#3| |#4|)) (-10 -8 (-15 -1676 ((-3 (-814 |#2|) "failed") $)) (-15 -3834 ($ (-1203 |#2| |#3| |#4|))))) (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)) (-13 (-27) (-1157) (-421 |#1|)) (-1135) |#2|) (T -304)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1203 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) (-14 *6 *4) (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *1 (-304 *3 *4 *5 *6)))) (-1676 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *2 (-814 *4)) (-5 *1 (-304 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) (-14 *6 *4)))) +(-13 (-961 (-1204 |#1| |#2| |#3| |#4|)) (-1007 (-1203 |#2| |#3| |#4|)) (-10 -8 (-15 -1676 ((-3 (-814 |#2|) "failed") $)) (-15 -3834 ($ (-1203 |#2| |#3| |#4|))))) +((-2781 (((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)) 13))) +(((-305 |#1| |#2|) (-10 -7 (-15 -2781 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) (-821) (-821)) (T -305)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-5 *2 (-307 *6)) (-5 *1 (-305 *5 *6))))) +(-10 -7 (-15 -2781 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) +((-2324 (((-52) |#2| (-285 |#2|) (-745)) 33) (((-52) |#2| (-285 |#2|)) 24) (((-52) |#2| (-745)) 28) (((-52) |#2|) 25) (((-52) (-1135)) 21)) (-2810 (((-52) |#2| (-285 |#2|) (-398 (-547))) 51) (((-52) |#2| (-285 |#2|)) 48) (((-52) |#2| (-398 (-547))) 50) (((-52) |#2|) 49) (((-52) (-1135)) 47)) (-2351 (((-52) |#2| (-285 |#2|) (-398 (-547))) 46) (((-52) |#2| (-285 |#2|)) 43) (((-52) |#2| (-398 (-547))) 45) (((-52) |#2|) 44) (((-52) (-1135)) 42)) (-2337 (((-52) |#2| (-285 |#2|) (-547)) 39) (((-52) |#2| (-285 |#2|)) 35) (((-52) |#2| (-547)) 38) (((-52) |#2|) 36) (((-52) (-1135)) 34))) +(((-306 |#1| |#2|) (-10 -7 (-15 -2324 ((-52) (-1135))) (-15 -2324 ((-52) |#2|)) (-15 -2324 ((-52) |#2| (-745))) (-15 -2324 ((-52) |#2| (-285 |#2|))) (-15 -2324 ((-52) |#2| (-285 |#2|) (-745))) (-15 -2337 ((-52) (-1135))) (-15 -2337 ((-52) |#2|)) (-15 -2337 ((-52) |#2| (-547))) (-15 -2337 ((-52) |#2| (-285 |#2|))) (-15 -2337 ((-52) |#2| (-285 |#2|) (-547))) (-15 -2351 ((-52) (-1135))) (-15 -2351 ((-52) |#2|)) (-15 -2351 ((-52) |#2| (-398 (-547)))) (-15 -2351 ((-52) |#2| (-285 |#2|))) (-15 -2351 ((-52) |#2| (-285 |#2|) (-398 (-547)))) (-15 -2810 ((-52) (-1135))) (-15 -2810 ((-52) |#2|)) (-15 -2810 ((-52) |#2| (-398 (-547)))) (-15 -2810 ((-52) |#2| (-285 |#2|))) (-15 -2810 ((-52) |#2| (-285 |#2|) (-398 (-547))))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -306)) +((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *4 (-398 (-547))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-2810 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4))))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-421 *4))))) (-2351 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2351 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2351 (*1 *2 *3 *4) (-12 (-5 *4 (-398 (-547))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4))))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-421 *4))))) (-2337 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-547)) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-4 *5 (-13 (-442) (-821) (-1007 *4) (-615 *4))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4))))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-421 *4))))) (-2324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-285 *3)) (-5 *5 (-745)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-2324 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4))))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) (-4 *5 (-13 (-27) (-1157) (-421 *4)))))) +(-10 -7 (-15 -2324 ((-52) (-1135))) (-15 -2324 ((-52) |#2|)) (-15 -2324 ((-52) |#2| (-745))) (-15 -2324 ((-52) |#2| (-285 |#2|))) (-15 -2324 ((-52) |#2| (-285 |#2|) (-745))) (-15 -2337 ((-52) (-1135))) (-15 -2337 ((-52) |#2|)) (-15 -2337 ((-52) |#2| (-547))) (-15 -2337 ((-52) |#2| (-285 |#2|))) (-15 -2337 ((-52) |#2| (-285 |#2|) (-547))) (-15 -2351 ((-52) (-1135))) (-15 -2351 ((-52) |#2|)) (-15 -2351 ((-52) |#2| (-398 (-547)))) (-15 -2351 ((-52) |#2| (-285 |#2|))) (-15 -2351 ((-52) |#2| (-285 |#2|) (-398 (-547)))) (-15 -2810 ((-52) (-1135))) (-15 -2810 ((-52) |#2|)) (-15 -2810 ((-52) |#2| (-398 (-547)))) (-15 -2810 ((-52) |#2| (-285 |#2|))) (-15 -2810 ((-52) |#2| (-285 |#2|) (-398 (-547))))) +((-3821 (((-112) $ $) NIL)) (-2514 (((-619 $) $ (-1135)) NIL (|has| |#1| (-539))) (((-619 $) $) NIL (|has| |#1| (-539))) (((-619 $) (-1131 $) (-1135)) NIL (|has| |#1| (-539))) (((-619 $) (-1131 $)) NIL (|has| |#1| (-539))) (((-619 $) (-921 $)) NIL (|has| |#1| (-539)))) (-3233 (($ $ (-1135)) NIL (|has| |#1| (-539))) (($ $) NIL (|has| |#1| (-539))) (($ (-1131 $) (-1135)) NIL (|has| |#1| (-539))) (($ (-1131 $)) NIL (|has| |#1| (-539))) (($ (-921 $)) NIL (|has| |#1| (-539)))) (-4046 (((-112) $) 27 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-2259 (((-619 (-1135)) $) 351)) (-2067 (((-398 (-1131 $)) $ (-590 $)) NIL (|has| |#1| (-539)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1965 (((-619 (-590 $)) $) NIL)) (-1648 (($ $) 161 (|has| |#1| (-539)))) (-1498 (($ $) 137 (|has| |#1| (-539)))) (-1919 (($ $ (-1056 $)) 222 (|has| |#1| (-539))) (($ $ (-1135)) 218 (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) NIL (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-2999 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) 368) (($ $ (-619 (-590 $)) (-619 $)) 412)) (-3833 (((-409 (-1131 $)) (-1131 $)) 295 (-12 (|has| |#1| (-442)) (|has| |#1| (-539))))) (-2745 (($ $) NIL (|has| |#1| (-539)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-539)))) (-2118 (($ $) NIL (|has| |#1| (-539)))) (-2873 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1624 (($ $) 157 (|has| |#1| (-539)))) (-1473 (($ $) 133 (|has| |#1| (-539)))) (-2943 (($ $ (-547)) 72 (|has| |#1| (-539)))) (-1670 (($ $) 165 (|has| |#1| (-539)))) (-1526 (($ $) 141 (|has| |#1| (-539)))) (-3219 (($) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-1607 (((-619 $) $ (-1135)) NIL (|has| |#1| (-539))) (((-619 $) $) NIL (|has| |#1| (-539))) (((-619 $) (-1131 $) (-1135)) NIL (|has| |#1| (-539))) (((-619 $) (-1131 $)) NIL (|has| |#1| (-539))) (((-619 $) (-921 $)) NIL (|has| |#1| (-539)))) (-1658 (($ $ (-1135)) NIL (|has| |#1| (-539))) (($ $) NIL (|has| |#1| (-539))) (($ (-1131 $) (-1135)) 124 (|has| |#1| (-539))) (($ (-1131 $)) NIL (|has| |#1| (-539))) (($ (-921 $)) NIL (|has| |#1| (-539)))) (-2698 (((-3 (-590 $) "failed") $) 17) (((-3 (-1135) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-921 |#1|)) "failed") $) NIL (|has| |#1| (-539))) (((-3 (-921 |#1|) "failed") $) NIL (|has| |#1| (-1016))) (((-3 (-398 (-547)) "failed") $) 46 (-1524 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2643 (((-590 $) $) 11) (((-1135) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-921 |#1|)) $) NIL (|has| |#1| (-539))) (((-921 |#1|) $) NIL (|has| |#1| (-1016))) (((-398 (-547)) $) 306 (-1524 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2079 (($ $ $) NIL (|has| |#1| (-539)))) (-4238 (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 117 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 107 (|has| |#1| (-1016))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (-2542 (($ $) 89 (|has| |#1| (-539)))) (-2537 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-2052 (($ $ $) NIL (|has| |#1| (-539)))) (-2651 (($ $ (-1056 $)) 226 (|has| |#1| (-539))) (($ $ (-1135)) 224 (|has| |#1| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-539)))) (-3674 (((-112) $) NIL (|has| |#1| (-539)))) (-2420 (($ $ $) 192 (|has| |#1| (-539)))) (-1413 (($) 127 (|has| |#1| (-539)))) (-1569 (($ $ $) 212 (|has| |#1| (-539)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 374 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 381 (|has| |#1| (-855 (-370))))) (-2566 (($ $) NIL) (($ (-619 $)) NIL)) (-2004 (((-619 (-114)) $) NIL)) (-3454 (((-114) (-114)) 267)) (-4114 (((-112) $) 25 (-1524 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (-3466 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-3739 (($ $) 71 (|has| |#1| (-1016)))) (-1382 (((-1087 |#1| (-590 $)) $) 84 (|has| |#1| (-1016)))) (-3038 (((-112) $) 64 (|has| |#1| (-539)))) (-1311 (($ $ (-547)) NIL (|has| |#1| (-539)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-539)))) (-3057 (((-1131 $) (-590 $)) 268 (|has| $ (-1016)))) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 $ $) (-590 $)) 408)) (-2108 (((-3 (-590 $) "failed") $) NIL)) (-3620 (($ $) 131 (|has| |#1| (-539)))) (-1697 (($ $) 237 (|has| |#1| (-539)))) (-3685 (($ (-619 $)) NIL (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-1917 (((-1118) $) NIL)) (-2043 (((-619 (-590 $)) $) 49)) (-1465 (($ (-114) $) NIL) (($ (-114) (-619 $)) 413)) (-1967 (((-3 (-619 $) "failed") $) NIL (|has| |#1| (-1075)))) (-4014 (((-3 (-2 (|:| |val| $) (|:| -4248 (-547))) "failed") $) NIL (|has| |#1| (-1016)))) (-1859 (((-3 (-619 $) "failed") $) 416 (|has| |#1| (-25)))) (-2614 (((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3909 (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $) NIL (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-114)) NIL (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-1135)) NIL (|has| |#1| (-1016)))) (-1469 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) 53)) (-1976 (($ $) NIL (-1524 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-3595 (($ $ (-1135)) 241 (|has| |#1| (-539))) (($ $ (-1056 $)) 243 (|has| |#1| (-539)))) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) 43)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 288 (|has| |#1| (-539)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-3128 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-2037 (($ $ (-1135)) 216 (|has| |#1| (-539))) (($ $) 214 (|has| |#1| (-539)))) (-2677 (($ $) 208 (|has| |#1| (-539)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 293 (-12 (|has| |#1| (-442)) (|has| |#1| (-539))))) (-2106 (((-409 $) $) NIL (|has| |#1| (-539)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-539))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-539)))) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-539)))) (-2703 (($ $) 129 (|has| |#1| (-539)))) (-3590 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2670 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) 407) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) 361) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1135)) NIL (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-592 (-523)))) (($ $) NIL (|has| |#1| (-592 (-523)))) (($ $ (-114) $ (-1135)) 349 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-114)) (-619 $) (-1135)) 348 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ $)) NIL (|has| |#1| (-1016)))) (-2776 (((-745) $) NIL (|has| |#1| (-539)))) (-1417 (($ $) 229 (|has| |#1| (-539)))) (-3329 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-2207 (($ $) NIL) (($ $ $) NIL)) (-1456 (($ $) 239 (|has| |#1| (-539)))) (-2292 (($ $) 190 (|has| |#1| (-539)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-1016))) (($ $ (-1135)) NIL (|has| |#1| (-1016)))) (-3660 (($ $) 73 (|has| |#1| (-539)))) (-1392 (((-1087 |#1| (-590 $)) $) 86 (|has| |#1| (-539)))) (-1901 (($ $) 304 (|has| $ (-1016)))) (-1681 (($ $) 167 (|has| |#1| (-539)))) (-1539 (($ $) 143 (|has| |#1| (-539)))) (-1659 (($ $) 163 (|has| |#1| (-539)))) (-1513 (($ $) 139 (|has| |#1| (-539)))) (-1635 (($ $) 159 (|has| |#1| (-539)))) (-1488 (($ $) 135 (|has| |#1| (-539)))) (-2829 (((-861 (-547)) $) NIL (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#1| (-592 (-861 (-370))))) (($ (-409 $)) NIL (|has| |#1| (-539))) (((-523) $) 346 (|has| |#1| (-592 (-523))))) (-2444 (($ $ $) NIL (|has| |#1| (-463)))) (-4121 (($ $ $) NIL (|has| |#1| (-463)))) (-3834 (((-832) $) 406) (($ (-590 $)) 397) (($ (-1135)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-539))) (($ (-48)) 299 (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) (($ (-1087 |#1| (-590 $))) 88 (|has| |#1| (-1016))) (($ (-398 |#1|)) NIL (|has| |#1| (-539))) (($ (-921 (-398 |#1|))) NIL (|has| |#1| (-539))) (($ (-398 (-921 (-398 |#1|)))) NIL (|has| |#1| (-539))) (($ (-398 (-921 |#1|))) NIL (|has| |#1| (-539))) (($ (-921 |#1|)) NIL (|has| |#1| (-1016))) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-539)) (|has| |#1| (-1007 (-398 (-547)))))) (($ (-547)) 34 (-1524 (|has| |#1| (-1007 (-547))) (|has| |#1| (-1016))))) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL (|has| |#1| (-1016)))) (-3518 (($ $) NIL) (($ (-619 $)) NIL)) (-1884 (($ $ $) 210 (|has| |#1| (-539)))) (-1418 (($ $ $) 196 (|has| |#1| (-539)))) (-1645 (($ $ $) 200 (|has| |#1| (-539)))) (-1329 (($ $ $) 194 (|has| |#1| (-539)))) (-1535 (($ $ $) 198 (|has| |#1| (-539)))) (-3358 (((-112) (-114)) 9)) (-1717 (($ $) 173 (|has| |#1| (-539)))) (-1574 (($ $) 149 (|has| |#1| (-539)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) 169 (|has| |#1| (-539)))) (-1550 (($ $) 145 (|has| |#1| (-539)))) (-1741 (($ $) 177 (|has| |#1| (-539)))) (-1597 (($ $) 153 (|has| |#1| (-539)))) (-1773 (($ (-1135) $) NIL) (($ (-1135) $ $) NIL) (($ (-1135) $ $ $) NIL) (($ (-1135) $ $ $ $) NIL) (($ (-1135) (-619 $)) NIL)) (-1845 (($ $) 204 (|has| |#1| (-539)))) (-1740 (($ $) 202 (|has| |#1| (-539)))) (-1918 (($ $) 179 (|has| |#1| (-539)))) (-1610 (($ $) 155 (|has| |#1| (-539)))) (-1729 (($ $) 175 (|has| |#1| (-539)))) (-1586 (($ $) 151 (|has| |#1| (-539)))) (-1706 (($ $) 171 (|has| |#1| (-539)))) (-1563 (($ $) 147 (|has| |#1| (-539)))) (-2040 (($ $) 182 (|has| |#1| (-539)))) (-3267 (($) 20 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) CONST)) (-3648 (($ $) 233 (|has| |#1| (-539)))) (-3277 (($) 22 (-1524 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))) CONST)) (-2554 (($ $) 184 (|has| |#1| (-539))) (($ $ $) 186 (|has| |#1| (-539)))) (-1942 (($ $) 231 (|has| |#1| (-539)))) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-1016))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-1016))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-1016))) (($ $ (-1135)) NIL (|has| |#1| (-1016)))) (-3550 (($ $) 235 (|has| |#1| (-539)))) (-2165 (($ $ $) 188 (|has| |#1| (-539)))) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 81)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 80)) (-2497 (($ (-1087 |#1| (-590 $)) (-1087 |#1| (-590 $))) 98 (|has| |#1| (-539))) (($ $ $) 42 (-1524 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-2484 (($ $ $) 40 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (($ $) 29 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (-2470 (($ $ $) 38 (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))))) (** (($ $ $) 66 (|has| |#1| (-539))) (($ $ (-398 (-547))) 301 (|has| |#1| (-539))) (($ $ (-547)) 76 (-1524 (|has| |#1| (-463)) (|has| |#1| (-539)))) (($ $ (-745)) 74 (-1524 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ $ (-890)) 78 (-1524 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075))))) (* (($ (-398 (-547)) $) NIL (|has| |#1| (-539))) (($ $ (-398 (-547))) NIL (|has| |#1| (-539))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-1524 (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) (|has| |#1| (-1075)))) (($ (-547) $) 32 (-1524 (|has| |#1| (-21)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (($ (-745) $) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))) (($ (-890) $) NIL (-1524 (|has| |#1| (-25)) (-12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))))))) +(((-307 |#1|) (-13 (-421 |#1|) (-10 -8 (IF (|has| |#1| (-539)) (PROGN (-6 (-29 |#1|)) (-6 (-1157)) (-6 (-157)) (-6 (-605)) (-6 (-1099)) (-15 -2542 ($ $)) (-15 -3038 ((-112) $)) (-15 -2943 ($ $ (-547))) (IF (|has| |#1| (-442)) (PROGN (-15 -3738 ((-409 (-1131 $)) (-1131 $))) (-15 -3833 ((-409 (-1131 $)) (-1131 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-547))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) (-821)) (T -307)) +((-2542 (*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-539)) (-4 *2 (-821)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) (-2943 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-409 (-1131 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1131 *1)) (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-409 (-1131 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1131 *1)) (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821))))) +(-13 (-421 |#1|) (-10 -8 (IF (|has| |#1| (-539)) (PROGN (-6 (-29 |#1|)) (-6 (-1157)) (-6 (-157)) (-6 (-605)) (-6 (-1099)) (-15 -2542 ($ $)) (-15 -3038 ((-112) $)) (-15 -2943 ($ $ (-547))) (IF (|has| |#1| (-442)) (PROGN (-15 -3738 ((-409 (-1131 $)) (-1131 $))) (-15 -3833 ((-409 (-1131 $)) (-1131 $)))) |%noBranch|) (IF (|has| |#1| (-1007 (-547))) (-6 (-1007 (-48))) |%noBranch|)) |%noBranch|))) +((-3142 (((-52) |#2| (-114) (-285 |#2|) (-619 |#2|)) 88) (((-52) |#2| (-114) (-285 |#2|) (-285 |#2|)) 84) (((-52) |#2| (-114) (-285 |#2|) |#2|) 86) (((-52) (-285 |#2|) (-114) (-285 |#2|) |#2|) 87) (((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|))) 80) (((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 |#2|)) 82) (((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 |#2|)) 83) (((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|))) 81) (((-52) (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|)) 89) (((-52) (-285 |#2|) (-114) (-285 |#2|) (-285 |#2|)) 85))) +(((-308 |#1| |#2|) (-10 -7 (-15 -3142 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-285 |#2|))) (-15 -3142 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3142 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3142 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3142 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3142 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3142 ((-52) (-285 |#2|) (-114) (-285 |#2|) |#2|)) (-15 -3142 ((-52) |#2| (-114) (-285 |#2|) |#2|)) (-15 -3142 ((-52) |#2| (-114) (-285 |#2|) (-285 |#2|))) (-15 -3142 ((-52) |#2| (-114) (-285 |#2|) (-619 |#2|)))) (-13 (-821) (-539) (-592 (-523))) (-421 |#1|)) (T -308)) +((-3142 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-5 *6 (-619 *3)) (-4 *3 (-421 *7)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *7 *3)))) (-3142 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3142 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *3)))) (-3142 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-285 *5)) (-5 *4 (-114)) (-4 *5 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *5)))) (-3142 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-285 *8))) (-4 *8 (-421 *7)) (-5 *5 (-285 *8)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *7 *8)))) (-3142 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) (-3142 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 (-285 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *8)) (-5 *6 (-619 *8)) (-4 *8 (-421 *7)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *7 *8)))) (-3142 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) (-3142 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) (-3142 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-285 *6)) (-5 *4 (-114)) (-4 *6 (-421 *5)) (-4 *5 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) (-5 *1 (-308 *5 *6))))) +(-10 -7 (-15 -3142 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-285 |#2|))) (-15 -3142 ((-52) (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3142 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3142 ((-52) (-619 (-285 |#2|)) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3142 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 |#2|))) (-15 -3142 ((-52) (-619 |#2|) (-619 (-114)) (-285 |#2|) (-619 (-285 |#2|)))) (-15 -3142 ((-52) (-285 |#2|) (-114) (-285 |#2|) |#2|)) (-15 -3142 ((-52) |#2| (-114) (-285 |#2|) |#2|)) (-15 -3142 ((-52) |#2| (-114) (-285 |#2|) (-285 |#2|))) (-15 -3142 ((-52) |#2| (-114) (-285 |#2|) (-619 |#2|)))) +((-2146 (((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547) (-1118)) 46) (((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547)) 47) (((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547) (-1118)) 43) (((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547)) 44)) (-3218 (((-1 (-217) (-217)) (-217)) 45))) +(((-309) (-10 -7 (-15 -3218 ((-1 (-217) (-217)) (-217))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547) (-1118))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547) (-1118))))) (T -309)) +((-2146 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) (-5 *8 (-1118)) (-5 *2 (-1167 (-895))) (-5 *1 (-309)))) (-2146 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) (-5 *2 (-1167 (-895))) (-5 *1 (-309)))) (-2146 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *7 (-1118)) (-5 *2 (-1167 (-895))) (-5 *1 (-309)))) (-2146 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *2 (-1167 (-895))) (-5 *1 (-309)))) (-3218 (*1 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-309)) (-5 *3 (-217))))) +(-10 -7 (-15 -3218 ((-1 (-217) (-217)) (-217))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-1 (-217) (-217)) (-547) (-1118))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547))) (-15 -2146 ((-1167 (-895)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-217) (-547) (-1118)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 25)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 20)) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) 32)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) 16)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-398 (-547))) NIL) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2069 (($ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) NIL)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2273 (((-398 (-547)) $) 17)) (-1403 (($ (-1203 |#1| |#2| |#3|)) 11)) (-4248 (((-1203 |#1| |#2| |#3|) $) 12)) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-1618 (((-398 (-547)) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 10)) (-3834 (((-832) $) 38) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) 30)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) NIL)) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 27)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 33)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-310 |#1| |#2| |#3|) (-13 (-1199 |#1|) (-766) (-10 -8 (-15 -1403 ($ (-1203 |#1| |#2| |#3|))) (-15 -4248 ((-1203 |#1| |#2| |#3|) $)) (-15 -2273 ((-398 (-547)) $)))) (-13 (-354) (-821)) (-1135) |#1|) (T -310)) +((-1403 (*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-310 *3 *4 *5)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4 *5)) (-5 *1 (-310 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1135)) (-14 *5 *3))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-310 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1135)) (-14 *5 *3)))) +(-13 (-1199 |#1|) (-766) (-10 -8 (-15 -1403 ($ (-1203 |#1| |#2| |#3|))) (-15 -4248 ((-1203 |#1| |#2| |#3|) $)) (-15 -2273 ((-398 (-547)) $)))) +((-1311 (((-2 (|:| -4248 (-745)) (|:| -1557 |#1|) (|:| |radicand| (-619 |#1|))) (-409 |#1|) (-745)) 24)) (-3620 (((-619 (-2 (|:| -1557 (-745)) (|:| |logand| |#1|))) (-409 |#1|)) 28))) +(((-311 |#1|) (-10 -7 (-15 -1311 ((-2 (|:| -4248 (-745)) (|:| -1557 |#1|) (|:| |radicand| (-619 |#1|))) (-409 |#1|) (-745))) (-15 -3620 ((-619 (-2 (|:| -1557 (-745)) (|:| |logand| |#1|))) (-409 |#1|)))) (-539)) (T -311)) +((-3620 (*1 *2 *3) (-12 (-5 *3 (-409 *4)) (-4 *4 (-539)) (-5 *2 (-619 (-2 (|:| -1557 (-745)) (|:| |logand| *4)))) (-5 *1 (-311 *4)))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *5)) (-4 *5 (-539)) (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *5) (|:| |radicand| (-619 *5)))) (-5 *1 (-311 *5)) (-5 *4 (-745))))) +(-10 -7 (-15 -1311 ((-2 (|:| -4248 (-745)) (|:| -1557 |#1|) (|:| |radicand| (-619 |#1|))) (-409 |#1|) (-745))) (-15 -3620 ((-619 (-2 (|:| -1557 (-745)) (|:| |logand| |#1|))) (-409 |#1|)))) +((-2259 (((-619 |#2|) (-1131 |#4|)) 43)) (-1506 ((|#3| (-547)) 46)) (-2628 (((-1131 |#4|) (-1131 |#3|)) 30)) (-2720 (((-1131 |#4|) (-1131 |#4|) (-547)) 56)) (-2517 (((-1131 |#3|) (-1131 |#4|)) 21)) (-1618 (((-619 (-745)) (-1131 |#4|) (-619 |#2|)) 40)) (-2400 (((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|)) 35))) +(((-312 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2400 ((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -1618 ((-619 (-745)) (-1131 |#4|) (-619 |#2|))) (-15 -2259 ((-619 |#2|) (-1131 |#4|))) (-15 -2517 ((-1131 |#3|) (-1131 |#4|))) (-15 -2628 ((-1131 |#4|) (-1131 |#3|))) (-15 -2720 ((-1131 |#4|) (-1131 |#4|) (-547))) (-15 -1506 (|#3| (-547)))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|)) (T -312)) +((-1506 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) (-5 *1 (-312 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5)))) (-2720 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 *7)) (-5 *3 (-547)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *1 (-312 *4 *5 *6 *7)))) (-2628 (*1 *2 *3) (-12 (-5 *3 (-1131 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1131 *7)) (-5 *1 (-312 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-312 *4 *5 *6 *7)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5)) (-5 *1 (-312 *4 *5 *6 *7)))) (-1618 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) (-5 *2 (-619 (-745))) (-5 *1 (-312 *5 *6 *7 *8)))) (-2400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-1131 *8)) (-5 *1 (-312 *6 *7 *8 *9))))) +(-10 -7 (-15 -2400 ((-1131 |#3|) (-1131 |#4|) (-619 |#2|) (-619 |#3|))) (-15 -1618 ((-619 (-745)) (-1131 |#4|) (-619 |#2|))) (-15 -2259 ((-619 |#2|) (-1131 |#4|))) (-15 -2517 ((-1131 |#3|) (-1131 |#4|))) (-15 -2628 ((-1131 |#4|) (-1131 |#3|))) (-15 -2720 ((-1131 |#4|) (-1131 |#4|) (-547))) (-15 -1506 (|#3| (-547)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 14)) (-2674 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-547)))) $) 18)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3603 (((-745) $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2598 ((|#1| $ (-547)) NIL)) (-1865 (((-547) $ (-547)) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-3270 (($ (-1 |#1| |#1|) $) NIL)) (-1748 (($ (-1 (-547) (-547)) $) 10)) (-1917 (((-1118) $) NIL)) (-1630 (($ $ $) NIL (|has| (-547) (-766)))) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (($ |#1|) NIL)) (-3338 (((-547) |#1| $) NIL)) (-3267 (($) 15 T CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) 21 (|has| |#1| (-821)))) (-2484 (($ $) 11) (($ $ $) 20)) (-2470 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL) (($ (-547) |#1|) 19))) +(((-313 |#1|) (-13 (-21) (-692 (-547)) (-314 |#1| (-547)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -313)) +NIL +(-13 (-21) (-692 (-547)) (-314 |#1| (-547)) (-10 -7 (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2674 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))) $) 27)) (-3013 (((-3 $ "failed") $ $) 19)) (-3603 (((-745) $) 28)) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 32)) (-2643 ((|#1| $) 31)) (-2598 ((|#1| $ (-547)) 25)) (-1865 ((|#2| $ (-547)) 26)) (-3270 (($ (-1 |#1| |#1|) $) 22)) (-1748 (($ (-1 |#2| |#2|) $) 23)) (-1917 (((-1118) $) 9)) (-1630 (($ $ $) 21 (|has| |#2| (-766)))) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ |#1|) 33)) (-3338 ((|#2| |#1| $) 24)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2470 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ |#2| |#1|) 29))) +(((-314 |#1| |#2|) (-138) (-1063) (-130)) (T -314)) +((-2470 (*1 *1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-745)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 *4)))))) (-1865 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-314 *4 *2)) (-4 *4 (-1063)) (-4 *2 (-130)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-314 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1063)))) (-3338 (*1 *2 *3 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) (-1748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-3270 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)))) (-1630 (*1 *1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) (-4 *3 (-766))))) +(-13 (-130) (-1007 |t#1|) (-10 -8 (-15 -2470 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3603 ((-745) $)) (-15 -2674 ((-619 (-2 (|:| |gen| |t#1|) (|:| -2703 |t#2|))) $)) (-15 -1865 (|t#2| $ (-547))) (-15 -2598 (|t#1| $ (-547))) (-15 -3338 (|t#2| |t#1| $)) (-15 -1748 ($ (-1 |t#2| |t#2|) $)) (-15 -3270 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-766)) (-15 -1630 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1007 |#1|) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2674 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3603 (((-745) $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2598 ((|#1| $ (-547)) NIL)) (-1865 (((-745) $ (-547)) NIL)) (-3270 (($ (-1 |#1| |#1|) $) NIL)) (-1748 (($ (-1 (-745) (-745)) $) NIL)) (-1917 (((-1118) $) NIL)) (-1630 (($ $ $) NIL (|has| (-745) (-766)))) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (($ |#1|) NIL)) (-3338 (((-745) |#1| $) NIL)) (-3267 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2470 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-745) |#1|) NIL))) +(((-315 |#1|) (-314 |#1| (-745)) (-1063)) (T -315)) +NIL +(-314 |#1| (-745)) +((-3786 (($ $) 53)) (-3913 (($ $ |#2| |#3| $) 14)) (-4019 (($ (-1 |#3| |#3|) $) 33)) (-1988 (((-112) $) 24)) (-1999 ((|#2| $) 26)) (-2025 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-1378 ((|#2| $) 49)) (-2472 (((-619 |#2|) $) 36)) (-1969 (($ $ $ (-745)) 20)) (-2497 (($ $ |#2|) 40))) +(((-316 |#1| |#2| |#3|) (-10 -8 (-15 -3786 (|#1| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1969 (|#1| |#1| |#1| (-745))) (-15 -3913 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4019 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2472 ((-619 |#2|) |#1|)) (-15 -1999 (|#2| |#1|)) (-15 -1988 ((-112) |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2497 (|#1| |#1| |#2|))) (-317 |#2| |#3|) (-1016) (-766)) (T -316)) +NIL +(-10 -8 (-15 -3786 (|#1| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1969 (|#1| |#1| |#1| (-745))) (-15 -3913 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4019 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2472 ((-619 |#2|) |#1|)) (-15 -1999 (|#2| |#1|)) (-15 -1988 ((-112) |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2497 (|#1| |#1| |#2|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 88 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 86 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 85)) (-2643 (((-547) $) 89 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 87 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 84)) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-3786 (($ $) 73 (|has| |#1| (-442)))) (-3913 (($ $ |#1| |#2| $) 77)) (-4114 (((-112) $) 30)) (-3570 (((-745) $) 80)) (-2187 (((-112) $) 60)) (-2229 (($ |#1| |#2|) 59)) (-1626 ((|#2| $) 79)) (-4019 (($ (-1 |#2| |#2|) $) 78)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1988 (((-112) $) 83)) (-1999 ((|#1| $) 82)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-539)))) (-1618 ((|#2| $) 62)) (-1378 ((|#1| $) 74 (|has| |#1| (-442)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45) (($ (-398 (-547))) 55 (-1524 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547))))))) (-2472 (((-619 |#1|) $) 81)) (-3338 ((|#1| $ |#2|) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-1969 (($ $ $ (-745)) 76 (|has| |#1| (-169)))) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) +(((-317 |#1| |#2|) (-138) (-1016) (-766)) (T -317)) +((-1988 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-112)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-619 *3)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-745)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-4019 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-3913 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) (-1969 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *3 (-169)))) (-2025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-539)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) (-4 *2 (-442)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *2 (-442))))) +(-13 (-47 |t#1| |t#2|) (-402 |t#1|) (-10 -8 (-15 -1988 ((-112) $)) (-15 -1999 (|t#1| $)) (-15 -2472 ((-619 |t#1|) $)) (-15 -3570 ((-745) $)) (-15 -1626 (|t#2| $)) (-15 -4019 ($ (-1 |t#2| |t#2|) $)) (-15 -3913 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -1969 ($ $ $ (-745))) |%noBranch|) (IF (|has| |t#1| (-539)) (-15 -2025 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-15 -1378 (|t#1| $)) (-15 -3786 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-281) |has| |#1| (-539)) ((-402 |#1|) . T) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-3900 (((-112) (-112)) NIL)) (-2238 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) |#1|) $) NIL)) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3796 (($ $) NIL (|has| |#1| (-1063)))) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-4004 (($ $ (-547)) NIL)) (-4096 (((-745) $) NIL)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3756 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1885 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4192 (($ (-619 |#1|)) NIL)) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3769 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-4187 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-318 |#1|) (-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -4192 ($ (-619 |#1|))) (-15 -4096 ((-745) $)) (-15 -4004 ($ $ (-547))) (-15 -3900 ((-112) (-112))))) (-1172)) (T -318)) +((-4192 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-318 *3)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-318 *3)) (-4 *3 (-1172)))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-318 *3)) (-4 *3 (-1172)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-318 *3)) (-4 *3 (-1172))))) +(-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -4192 ($ (-619 |#1|))) (-15 -4096 ((-745) $)) (-15 -4004 ($ $ (-547))) (-15 -3900 ((-112) (-112))))) +((-2992 (((-112) $) 42)) (-2747 (((-745)) 22)) (-2890 ((|#2| $) 46) (($ $ (-890)) 101)) (-3603 (((-745)) 102)) (-2402 (($ (-1218 |#2|)) 20)) (-3908 (((-112) $) 115)) (-1684 ((|#2| $) 48) (($ $ (-890)) 99)) (-4213 (((-1131 |#2|) $) NIL) (((-1131 $) $ (-890)) 95)) (-4218 (((-1131 |#2|) $) 82)) (-4122 (((-1131 |#2|) $) 79) (((-3 (-1131 |#2|) "failed") $ $) 76)) (-1277 (($ $ (-1131 |#2|)) 53)) (-2832 (((-807 (-890))) 28) (((-890)) 43)) (-3512 (((-133)) 25)) (-1618 (((-807 (-890)) $) 30) (((-890) $) 117)) (-3164 (($) 108)) (-2301 (((-1218 |#2|) $) NIL) (((-663 |#2|) (-1218 $)) 39)) (-3336 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3084 (((-112) $) 41))) +(((-319 |#1| |#2|) (-10 -8 (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -3603 ((-745))) (-15 -3336 (|#1| |#1|)) (-15 -4122 ((-3 (-1131 |#2|) "failed") |#1| |#1|)) (-15 -4122 ((-1131 |#2|) |#1|)) (-15 -4218 ((-1131 |#2|) |#1|)) (-15 -1277 (|#1| |#1| (-1131 |#2|))) (-15 -3908 ((-112) |#1|)) (-15 -3164 (|#1|)) (-15 -2890 (|#1| |#1| (-890))) (-15 -1684 (|#1| |#1| (-890))) (-15 -4213 ((-1131 |#1|) |#1| (-890))) (-15 -2890 (|#2| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -1618 ((-890) |#1|)) (-15 -2832 ((-890))) (-15 -4213 ((-1131 |#2|) |#1|)) (-15 -2402 (|#1| (-1218 |#2|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -2747 ((-745))) (-15 -2832 ((-807 (-890)))) (-15 -1618 ((-807 (-890)) |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -3084 ((-112) |#1|)) (-15 -3512 ((-133)))) (-320 |#2|) (-354)) (T -319)) +((-3512 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-133)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-2832 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-807 (-890))) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-2747 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-2832 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-890)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4)))) (-3603 (*1 *2) (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4)) (-4 *3 (-320 *4))))) +(-10 -8 (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -3603 ((-745))) (-15 -3336 (|#1| |#1|)) (-15 -4122 ((-3 (-1131 |#2|) "failed") |#1| |#1|)) (-15 -4122 ((-1131 |#2|) |#1|)) (-15 -4218 ((-1131 |#2|) |#1|)) (-15 -1277 (|#1| |#1| (-1131 |#2|))) (-15 -3908 ((-112) |#1|)) (-15 -3164 (|#1|)) (-15 -2890 (|#1| |#1| (-890))) (-15 -1684 (|#1| |#1| (-890))) (-15 -4213 ((-1131 |#1|) |#1| (-890))) (-15 -2890 (|#2| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -1618 ((-890) |#1|)) (-15 -2832 ((-890))) (-15 -4213 ((-1131 |#2|) |#1|)) (-15 -2402 (|#1| (-1218 |#2|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -2747 ((-745))) (-15 -2832 ((-807 (-890)))) (-15 -1618 ((-807 (-890)) |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -3084 ((-112) |#1|)) (-15 -3512 ((-133)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-2992 (((-112) $) 91)) (-2747 (((-745)) 87)) (-2890 ((|#1| $) 137) (($ $ (-890)) 134 (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) 119 (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2873 (((-112) $ $) 57)) (-3603 (((-745)) 109 (|has| |#1| (-359)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 98)) (-2643 ((|#1| $) 97)) (-2402 (($ (-1218 |#1|)) 143)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-359)))) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-3229 (($) 106 (|has| |#1| (-359)))) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-2445 (($) 121 (|has| |#1| (-359)))) (-3661 (((-112) $) 122 (|has| |#1| (-359)))) (-1771 (($ $ (-745)) 84 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) 83 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) 68)) (-3707 (((-890) $) 124 (|has| |#1| (-359))) (((-807 (-890)) $) 81 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) 30)) (-4116 (($) 132 (|has| |#1| (-359)))) (-3908 (((-112) $) 131 (|has| |#1| (-359)))) (-1684 ((|#1| $) 138) (($ $ (-890)) 135 (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) 110 (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-4213 (((-1131 |#1|) $) 142) (((-1131 $) $ (-890)) 136 (|has| |#1| (-359)))) (-1966 (((-890) $) 107 (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) 128 (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) 127 (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) 126 (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) 129 (|has| |#1| (-359)))) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3045 (($) 111 (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) 108 (|has| |#1| (-359)))) (-2916 (((-112) $) 90)) (-3979 (((-1082) $) 10)) (-4240 (($) 130 (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 118 (|has| |#1| (-359)))) (-2106 (((-409 $) $) 71)) (-2832 (((-807 (-890))) 88) (((-890)) 140)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-1868 (((-745) $) 123 (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) 82 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) 96)) (-3443 (($ $) 115 (|has| |#1| (-359))) (($ $ (-745)) 113 (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) 89) (((-890) $) 139)) (-1901 (((-1131 |#1|)) 141)) (-4150 (($) 120 (|has| |#1| (-359)))) (-3164 (($) 133 (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) 145) (((-663 |#1|) (-1218 $)) 144)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 117 (|has| |#1| (-359)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ |#1|) 99)) (-3336 (($ $) 116 (|has| |#1| (-359))) (((-3 $ "failed") $) 80 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) 28)) (-4013 (((-1218 $)) 147) (((-1218 $) (-890)) 146)) (-1932 (((-112) $ $) 37)) (-3084 (((-112) $) 92)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-3774 (($ $) 86 (|has| |#1| (-359))) (($ $ (-745)) 85 (|has| |#1| (-359)))) (-1686 (($ $) 114 (|has| |#1| (-359))) (($ $ (-745)) 112 (|has| |#1| (-359)))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 62) (($ $ |#1|) 95)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-320 |#1|) (-138) (-354)) (T -320)) +((-4013 (*1 *2) (-12 (-4 *3 (-354)) (-5 *2 (-1218 *1)) (-4 *1 (-320 *3)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-354)) (-5 *2 (-1218 *1)) (-4 *1 (-320 *4)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1218 *3)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-320 *4)) (-4 *4 (-354)) (-5 *2 (-663 *4)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-354)) (-4 *1 (-320 *3)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1131 *3)))) (-1901 (*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1131 *3)))) (-2832 (*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-4 *4 (-359)) (-4 *4 (-354)) (-5 *2 (-1131 *1)) (-4 *1 (-320 *4)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) (-2890 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) (-3164 (*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) (-4116 (*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-112)))) (-4240 (*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) (-1277 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-359)) (-4 *1 (-320 *3)) (-4 *3 (-354)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-1131 *3)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-1131 *3)))) (-4122 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-1131 *3))))) +(-13 (-1237 |t#1|) (-1007 |t#1|) (-10 -8 (-15 -4013 ((-1218 $))) (-15 -4013 ((-1218 $) (-890))) (-15 -2301 ((-1218 |t#1|) $)) (-15 -2301 ((-663 |t#1|) (-1218 $))) (-15 -2402 ($ (-1218 |t#1|))) (-15 -4213 ((-1131 |t#1|) $)) (-15 -1901 ((-1131 |t#1|))) (-15 -2832 ((-890))) (-15 -1618 ((-890) $)) (-15 -1684 (|t#1| $)) (-15 -2890 (|t#1| $)) (IF (|has| |t#1| (-359)) (PROGN (-6 (-340)) (-15 -4213 ((-1131 $) $ (-890))) (-15 -1684 ($ $ (-890))) (-15 -2890 ($ $ (-890))) (-15 -3164 ($)) (-15 -4116 ($)) (-15 -3908 ((-112) $)) (-15 -4240 ($)) (-15 -1277 ($ $ (-1131 |t#1|))) (-15 -4218 ((-1131 |t#1|) $)) (-15 -4122 ((-1131 |t#1|) $)) (-15 -4122 ((-3 (-1131 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-225) |has| |#1| (-359)) ((-235) . T) ((-281) . T) ((-298) . T) ((-1237 |#1|) . T) ((-354) . T) ((-393) -1524 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-359) |has| |#1| (-359)) ((-340) |has| |#1| (-359)) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-359)) ((-1176) . T) ((-1225 |#1|) . T)) +((-3821 (((-112) $ $) NIL)) (-1384 (($ (-1134) $) 88)) (-4140 (($) 77)) (-1279 (((-1082) (-1082)) 11)) (-2522 (($) 78)) (-2601 (($) 90) (($ (-307 (-673))) 98) (($ (-307 (-675))) 94) (($ (-307 (-668))) 102) (($ (-307 (-370))) 109) (($ (-307 (-547))) 105) (($ (-307 (-166 (-370)))) 113)) (-1972 (($ (-1134) $) 89)) (-2147 (($ (-619 (-832))) 79)) (-2007 (((-1223) $) 75)) (-3364 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-4266 (($ (-1082)) 51)) (-2485 (((-1067) $) 25)) (-3108 (($ (-1056 (-921 (-547))) $) 85) (($ (-1056 (-921 (-547))) (-921 (-547)) $) 86)) (-2315 (($ (-1082)) 87)) (-4101 (($ (-1134) $) 115) (($ (-1134) $ $) 116)) (-3543 (($ (-1135) (-619 (-1135))) 76)) (-1254 (($ (-1118)) 82) (($ (-619 (-1118))) 80)) (-3834 (((-832) $) 118)) (-2087 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3169 (-112)) (|:| -4152 (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -2693 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2478 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2478 $))) (|:| |commonBranch| (-2 (|:| -2464 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $) 44)) (-3500 (($ (-1118)) 187)) (-2284 (($ (-619 $)) 114)) (-2553 (($ (-1135) (-1118)) 120) (($ (-1135) (-307 (-675))) 160) (($ (-1135) (-307 (-673))) 161) (($ (-1135) (-307 (-668))) 162) (($ (-1135) (-663 (-675))) 123) (($ (-1135) (-663 (-673))) 126) (($ (-1135) (-663 (-668))) 129) (($ (-1135) (-1218 (-675))) 132) (($ (-1135) (-1218 (-673))) 135) (($ (-1135) (-1218 (-668))) 138) (($ (-1135) (-663 (-307 (-675)))) 141) (($ (-1135) (-663 (-307 (-673)))) 144) (($ (-1135) (-663 (-307 (-668)))) 147) (($ (-1135) (-1218 (-307 (-675)))) 150) (($ (-1135) (-1218 (-307 (-673)))) 153) (($ (-1135) (-1218 (-307 (-668)))) 156) (($ (-1135) (-619 (-921 (-547))) (-307 (-675))) 157) (($ (-1135) (-619 (-921 (-547))) (-307 (-673))) 158) (($ (-1135) (-619 (-921 (-547))) (-307 (-668))) 159) (($ (-1135) (-307 (-547))) 184) (($ (-1135) (-307 (-370))) 185) (($ (-1135) (-307 (-166 (-370)))) 186) (($ (-1135) (-663 (-307 (-547)))) 165) (($ (-1135) (-663 (-307 (-370)))) 168) (($ (-1135) (-663 (-307 (-166 (-370))))) 171) (($ (-1135) (-1218 (-307 (-547)))) 174) (($ (-1135) (-1218 (-307 (-370)))) 177) (($ (-1135) (-1218 (-307 (-166 (-370))))) 180) (($ (-1135) (-619 (-921 (-547))) (-307 (-547))) 181) (($ (-1135) (-619 (-921 (-547))) (-307 (-370))) 182) (($ (-1135) (-619 (-921 (-547))) (-307 (-166 (-370)))) 183)) (-2371 (((-112) $ $) NIL))) +(((-321) (-13 (-1063) (-10 -8 (-15 -3834 ((-832) $)) (-15 -3108 ($ (-1056 (-921 (-547))) $)) (-15 -3108 ($ (-1056 (-921 (-547))) (-921 (-547)) $)) (-15 -1384 ($ (-1134) $)) (-15 -1972 ($ (-1134) $)) (-15 -4266 ($ (-1082))) (-15 -2315 ($ (-1082))) (-15 -1254 ($ (-1118))) (-15 -1254 ($ (-619 (-1118)))) (-15 -3500 ($ (-1118))) (-15 -2601 ($)) (-15 -2601 ($ (-307 (-673)))) (-15 -2601 ($ (-307 (-675)))) (-15 -2601 ($ (-307 (-668)))) (-15 -2601 ($ (-307 (-370)))) (-15 -2601 ($ (-307 (-547)))) (-15 -2601 ($ (-307 (-166 (-370))))) (-15 -4101 ($ (-1134) $)) (-15 -4101 ($ (-1134) $ $)) (-15 -2553 ($ (-1135) (-1118))) (-15 -2553 ($ (-1135) (-307 (-675)))) (-15 -2553 ($ (-1135) (-307 (-673)))) (-15 -2553 ($ (-1135) (-307 (-668)))) (-15 -2553 ($ (-1135) (-663 (-675)))) (-15 -2553 ($ (-1135) (-663 (-673)))) (-15 -2553 ($ (-1135) (-663 (-668)))) (-15 -2553 ($ (-1135) (-1218 (-675)))) (-15 -2553 ($ (-1135) (-1218 (-673)))) (-15 -2553 ($ (-1135) (-1218 (-668)))) (-15 -2553 ($ (-1135) (-663 (-307 (-675))))) (-15 -2553 ($ (-1135) (-663 (-307 (-673))))) (-15 -2553 ($ (-1135) (-663 (-307 (-668))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-675))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-673))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-668))))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-675)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-673)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-668)))) (-15 -2553 ($ (-1135) (-307 (-547)))) (-15 -2553 ($ (-1135) (-307 (-370)))) (-15 -2553 ($ (-1135) (-307 (-166 (-370))))) (-15 -2553 ($ (-1135) (-663 (-307 (-547))))) (-15 -2553 ($ (-1135) (-663 (-307 (-370))))) (-15 -2553 ($ (-1135) (-663 (-307 (-166 (-370)))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-547))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-370))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-166 (-370)))))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-547)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-370)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-166 (-370))))) (-15 -2284 ($ (-619 $))) (-15 -4140 ($)) (-15 -2522 ($)) (-15 -2147 ($ (-619 (-832)))) (-15 -3543 ($ (-1135) (-619 (-1135)))) (-15 -3364 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2087 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3169 (-112)) (|:| -4152 (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -2693 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2478 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2478 $))) (|:| |commonBranch| (-2 (|:| -2464 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -2007 ((-1223) $)) (-15 -2485 ((-1067) $)) (-15 -1279 ((-1082) (-1082)))))) (T -321)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-321)))) (-3108 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *1 (-321)))) (-3108 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *3 (-921 (-547))) (-5 *1 (-321)))) (-1384 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321)))) (-1972 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321)))) (-4266 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))) (-2315 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321)))) (-1254 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-321)))) (-1254 (*1 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-321)))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-321)))) (-2601 (*1 *1) (-5 *1 (-321))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-307 (-673))) (-5 *1 (-321)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-321)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-307 (-668))) (-5 *1 (-321)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-321)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-321)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-321)))) (-4101 (*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321)))) (-4101 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-675))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-673))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-668))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-675))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-673))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-668))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-675))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-673))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-668))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-675)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-673)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-668)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-675)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-673)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-668)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-675))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-673))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-668))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-547))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-370))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-166 (-370)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-547)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-370)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-166 (-370))))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-547)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-370)))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-166 (-370))))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-547))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-370))) (-5 *1 (-321)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-307 (-166 (-370)))) (-5 *1 (-321)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-5 *1 (-321)))) (-4140 (*1 *1) (-5 *1 (-321))) (-2522 (*1 *1) (-5 *1 (-321))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-321)))) (-3543 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-321)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-321)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| (-321)) (|:| |elseClause| (-321)))) (|:| |returnBranch| (-2 (|:| -3169 (-112)) (|:| -4152 (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |blockBranch| (-619 (-321))) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -2693 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2478 (-321)))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2478 (-321)))) (|:| |commonBranch| (-2 (|:| -2464 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832))))) (-5 *1 (-321)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-321)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-321)))) (-1279 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321))))) +(-13 (-1063) (-10 -8 (-15 -3834 ((-832) $)) (-15 -3108 ($ (-1056 (-921 (-547))) $)) (-15 -3108 ($ (-1056 (-921 (-547))) (-921 (-547)) $)) (-15 -1384 ($ (-1134) $)) (-15 -1972 ($ (-1134) $)) (-15 -4266 ($ (-1082))) (-15 -2315 ($ (-1082))) (-15 -1254 ($ (-1118))) (-15 -1254 ($ (-619 (-1118)))) (-15 -3500 ($ (-1118))) (-15 -2601 ($)) (-15 -2601 ($ (-307 (-673)))) (-15 -2601 ($ (-307 (-675)))) (-15 -2601 ($ (-307 (-668)))) (-15 -2601 ($ (-307 (-370)))) (-15 -2601 ($ (-307 (-547)))) (-15 -2601 ($ (-307 (-166 (-370))))) (-15 -4101 ($ (-1134) $)) (-15 -4101 ($ (-1134) $ $)) (-15 -2553 ($ (-1135) (-1118))) (-15 -2553 ($ (-1135) (-307 (-675)))) (-15 -2553 ($ (-1135) (-307 (-673)))) (-15 -2553 ($ (-1135) (-307 (-668)))) (-15 -2553 ($ (-1135) (-663 (-675)))) (-15 -2553 ($ (-1135) (-663 (-673)))) (-15 -2553 ($ (-1135) (-663 (-668)))) (-15 -2553 ($ (-1135) (-1218 (-675)))) (-15 -2553 ($ (-1135) (-1218 (-673)))) (-15 -2553 ($ (-1135) (-1218 (-668)))) (-15 -2553 ($ (-1135) (-663 (-307 (-675))))) (-15 -2553 ($ (-1135) (-663 (-307 (-673))))) (-15 -2553 ($ (-1135) (-663 (-307 (-668))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-675))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-673))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-668))))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-675)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-673)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-668)))) (-15 -2553 ($ (-1135) (-307 (-547)))) (-15 -2553 ($ (-1135) (-307 (-370)))) (-15 -2553 ($ (-1135) (-307 (-166 (-370))))) (-15 -2553 ($ (-1135) (-663 (-307 (-547))))) (-15 -2553 ($ (-1135) (-663 (-307 (-370))))) (-15 -2553 ($ (-1135) (-663 (-307 (-166 (-370)))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-547))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-370))))) (-15 -2553 ($ (-1135) (-1218 (-307 (-166 (-370)))))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-547)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-370)))) (-15 -2553 ($ (-1135) (-619 (-921 (-547))) (-307 (-166 (-370))))) (-15 -2284 ($ (-619 $))) (-15 -4140 ($)) (-15 -2522 ($)) (-15 -2147 ($ (-619 (-832)))) (-15 -3543 ($ (-1135) (-619 (-1135)))) (-15 -3364 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2087 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1134)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3169 (-112)) (|:| -4152 (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |blockBranch| (-619 $)) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| (-2 (|:| -2693 (-1056 (-921 (-547)))) (|:| |span| (-921 (-547))) (|:| -2478 $))) (|:| |labelBranch| (-1082)) (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2478 $))) (|:| |commonBranch| (-2 (|:| -2464 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832)))) $)) (-15 -2007 ((-1223) $)) (-15 -2485 ((-1067) $)) (-15 -1279 ((-1082) (-1082))))) +((-3821 (((-112) $ $) NIL)) (-3253 (((-112) $) 11)) (-1473 (($ |#1|) 8)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1488 (($ |#1|) 9)) (-3834 (((-832) $) 17)) (-3922 ((|#1| $) 12)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 19))) +(((-322 |#1|) (-13 (-821) (-10 -8 (-15 -1473 ($ |#1|)) (-15 -1488 ($ |#1|)) (-15 -3253 ((-112) $)) (-15 -3922 (|#1| $)))) (-821)) (T -322)) +((-1473 (*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) (-1488 (*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-821)))) (-3922 (*1 *2 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821))))) +(-13 (-821) (-10 -8 (-15 -1473 ($ |#1|)) (-15 -1488 ($ |#1|)) (-15 -3253 ((-112) $)) (-15 -3922 (|#1| $)))) +((-3347 (((-321) (-1135) (-921 (-547))) 23)) (-3444 (((-321) (-1135) (-921 (-547))) 27)) (-2158 (((-321) (-1135) (-1056 (-921 (-547))) (-1056 (-921 (-547)))) 26) (((-321) (-1135) (-921 (-547)) (-921 (-547))) 24)) (-3538 (((-321) (-1135) (-921 (-547))) 31))) +(((-323) (-10 -7 (-15 -3347 ((-321) (-1135) (-921 (-547)))) (-15 -2158 ((-321) (-1135) (-921 (-547)) (-921 (-547)))) (-15 -2158 ((-321) (-1135) (-1056 (-921 (-547))) (-1056 (-921 (-547))))) (-15 -3444 ((-321) (-1135) (-921 (-547)))) (-15 -3538 ((-321) (-1135) (-921 (-547)))))) (T -323)) +((-3538 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))) (-2158 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1056 (-921 (-547)))) (-5 *2 (-321)) (-5 *1 (-323)))) (-2158 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) (-5 *1 (-323))))) +(-10 -7 (-15 -3347 ((-321) (-1135) (-921 (-547)))) (-15 -2158 ((-321) (-1135) (-921 (-547)) (-921 (-547)))) (-15 -2158 ((-321) (-1135) (-1056 (-921 (-547))) (-1056 (-921 (-547))))) (-15 -3444 ((-321) (-1135) (-921 (-547)))) (-15 -3538 ((-321) (-1135) (-921 (-547))))) +((-2781 (((-327 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-327 |#1| |#2| |#3| |#4|)) 33))) +(((-324 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2781 ((-327 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-327 |#1| |#2| |#3| |#4|)))) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|) (-354) (-1194 |#5|) (-1194 (-398 |#6|)) (-333 |#5| |#6| |#7|)) (T -324)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-327 *5 *6 *7 *8)) (-4 *5 (-354)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *9 (-354)) (-4 *10 (-1194 *9)) (-4 *11 (-1194 (-398 *10))) (-5 *2 (-327 *9 *10 *11 *12)) (-5 *1 (-324 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-333 *9 *10 *11))))) +(-10 -7 (-15 -2781 ((-327 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-327 |#1| |#2| |#3| |#4|)))) +((-2047 (((-112) $) 14))) +(((-325 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2047 ((-112) |#1|))) (-326 |#2| |#3| |#4| |#5|) (-354) (-1194 |#2|) (-1194 (-398 |#3|)) (-333 |#2| |#3| |#4|)) (T -325)) +NIL +(-10 -8 (-15 -2047 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2542 (($ $) 26)) (-2047 (((-112) $) 25)) (-1917 (((-1118) $) 9)) (-2989 (((-404 |#2| (-398 |#2|) |#3| |#4|) $) 32)) (-3979 (((-1082) $) 10)) (-4240 (((-3 |#4| "failed") $) 24)) (-2177 (($ (-404 |#2| (-398 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-547)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4030 (((-2 (|:| -3702 (-404 |#2| (-398 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20))) +(((-326 |#1| |#2| |#3| |#4|) (-138) (-354) (-1194 |t#1|) (-1194 (-398 |t#2|)) (-333 |t#1| |t#2| |t#3|)) (T -326)) +((-2989 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-404 *4 (-398 *4) *5 *6)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-404 *4 (-398 *4) *5 *6)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-4 *3 (-354)) (-4 *1 (-326 *3 *4 *5 *6)))) (-2177 (*1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *1 (-326 *3 *4 *5 *2)) (-4 *2 (-333 *3 *4 *5)))) (-2177 (*1 *1 *2 *2) (-12 (-4 *2 (-354)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-398 *3))) (-4 *1 (-326 *2 *3 *4 *5)) (-4 *5 (-333 *2 *3 *4)))) (-2177 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-547)) (-4 *2 (-354)) (-4 *4 (-1194 *2)) (-4 *5 (-1194 (-398 *4))) (-4 *1 (-326 *2 *4 *5 *6)) (-4 *6 (-333 *2 *4 *5)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-2 (|:| -3702 (-404 *4 (-398 *4) *5 *6)) (|:| |principalPart| *6))))) (-2542 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-398 *3))) (-4 *5 (-333 *2 *3 *4)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-112)))) (-4240 (*1 *2 *1) (|partial| -12 (-4 *1 (-326 *3 *4 *5 *2)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *2 (-333 *3 *4 *5)))) (-2177 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-354)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-398 *3))) (-4 *1 (-326 *4 *3 *5 *2)) (-4 *2 (-333 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2989 ((-404 |t#2| (-398 |t#2|) |t#3| |t#4|) $)) (-15 -2177 ($ (-404 |t#2| (-398 |t#2|) |t#3| |t#4|))) (-15 -2177 ($ |t#4|)) (-15 -2177 ($ |t#1| |t#1|)) (-15 -2177 ($ |t#1| |t#1| (-547))) (-15 -4030 ((-2 (|:| -3702 (-404 |t#2| (-398 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2542 ($ $)) (-15 -2047 ((-112) $)) (-15 -4240 ((-3 |t#4| "failed") $)) (-15 -2177 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2542 (($ $) 33)) (-2047 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-3637 (((-1218 |#4|) $) 125)) (-2989 (((-404 |#2| (-398 |#2|) |#3| |#4|) $) 31)) (-3979 (((-1082) $) NIL)) (-4240 (((-3 |#4| "failed") $) 36)) (-1931 (((-1218 |#4|) $) 118)) (-2177 (($ (-404 |#2| (-398 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-547)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4030 (((-2 (|:| -3702 (-404 |#2| (-398 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3834 (((-832) $) 17)) (-3267 (($) 14 T CONST)) (-2371 (((-112) $ $) 20)) (-2484 (($ $) 27) (($ $ $) NIL)) (-2470 (($ $ $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 23))) +(((-327 |#1| |#2| |#3| |#4|) (-13 (-326 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1931 ((-1218 |#4|) $)) (-15 -3637 ((-1218 |#4|) $)))) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -327)) +((-1931 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-1218 *6)) (-5 *1 (-327 *3 *4 *5 *6)) (-4 *6 (-333 *3 *4 *5)))) (-3637 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-1218 *6)) (-5 *1 (-327 *3 *4 *5 *6)) (-4 *6 (-333 *3 *4 *5))))) +(-13 (-326 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1931 ((-1218 |#4|) $)) (-15 -3637 ((-1218 |#4|) $)))) +((-2670 (($ $ (-1135) |#2|) NIL) (($ $ (-619 (-1135)) (-619 |#2|)) 20) (($ $ (-619 (-285 |#2|))) 15) (($ $ (-285 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3329 (($ $ |#2|) 11))) +(((-328 |#1| |#2|) (-10 -8 (-15 -3329 (|#1| |#1| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#2| |#2|)) (-15 -2670 (|#1| |#1| (-285 |#2|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 |#2|))) (-15 -2670 (|#1| |#1| (-1135) |#2|))) (-329 |#2|) (-1063)) (T -328)) +NIL +(-10 -8 (-15 -3329 (|#1| |#1| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#2| |#2|)) (-15 -2670 (|#1| |#1| (-285 |#2|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 |#2|))) (-15 -2670 (|#1| |#1| (-1135) |#2|))) +((-2781 (($ (-1 |#1| |#1|) $) 6)) (-2670 (($ $ (-1135) |#1|) 17 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 16 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-619 (-285 |#1|))) 15 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 14 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-300 |#1|))) (($ $ (-619 |#1|) (-619 |#1|)) 12 (|has| |#1| (-300 |#1|)))) (-3329 (($ $ |#1|) 11 (|has| |#1| (-277 |#1| |#1|))))) +(((-329 |#1|) (-138) (-1063)) (T -329)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1063))))) +(-13 (-10 -8 (-15 -2781 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-277 |t#1| |t#1|)) (-6 (-277 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-300 |t#1|)) (-6 (-300 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-503 (-1135) |t#1|)) (-6 (-503 (-1135) |t#1|)) |%noBranch|))) +(((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-503 (-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1135)) $) NIL)) (-2307 (((-112)) 91) (((-112) (-112)) 92)) (-1965 (((-619 (-590 $)) $) NIL)) (-1648 (($ $) NIL)) (-1498 (($ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2999 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2118 (($ $) NIL)) (-1624 (($ $) NIL)) (-1473 (($ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-590 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-307 |#3|)) 71) (((-3 $ "failed") (-1135)) 97) (((-3 $ "failed") (-307 (-547))) 59 (|has| |#3| (-1007 (-547)))) (((-3 $ "failed") (-398 (-921 (-547)))) 65 (|has| |#3| (-1007 (-547)))) (((-3 $ "failed") (-921 (-547))) 60 (|has| |#3| (-1007 (-547)))) (((-3 $ "failed") (-307 (-370))) 89 (|has| |#3| (-1007 (-370)))) (((-3 $ "failed") (-398 (-921 (-370)))) 83 (|has| |#3| (-1007 (-370)))) (((-3 $ "failed") (-921 (-370))) 78 (|has| |#3| (-1007 (-370))))) (-2643 (((-590 $) $) NIL) ((|#3| $) NIL) (($ (-307 |#3|)) 72) (($ (-1135)) 98) (($ (-307 (-547))) 61 (|has| |#3| (-1007 (-547)))) (($ (-398 (-921 (-547)))) 66 (|has| |#3| (-1007 (-547)))) (($ (-921 (-547))) 62 (|has| |#3| (-1007 (-547)))) (($ (-307 (-370))) 90 (|has| |#3| (-1007 (-370)))) (($ (-398 (-921 (-370)))) 84 (|has| |#3| (-1007 (-370)))) (($ (-921 (-370))) 80 (|has| |#3| (-1007 (-370))))) (-2537 (((-3 $ "failed") $) NIL)) (-1413 (($) 10)) (-2566 (($ $) NIL) (($ (-619 $)) NIL)) (-2004 (((-619 (-114)) $) NIL)) (-3454 (((-114) (-114)) NIL)) (-4114 (((-112) $) NIL)) (-3466 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-3057 (((-1131 $) (-590 $)) NIL (|has| $ (-1016)))) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 $ $) (-590 $)) NIL)) (-2108 (((-3 (-590 $) "failed") $) NIL)) (-2289 (($ $) 94)) (-3620 (($ $) NIL)) (-1917 (((-1118) $) NIL)) (-2043 (((-619 (-590 $)) $) NIL)) (-1465 (($ (-114) $) 93) (($ (-114) (-619 $)) NIL)) (-1469 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-3128 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-2703 (($ $) NIL)) (-3590 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2670 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3329 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-2207 (($ $) NIL) (($ $ $) NIL)) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL)) (-1901 (($ $) NIL (|has| $ (-1016)))) (-1635 (($ $) NIL)) (-1488 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-590 $)) NIL) (($ |#3|) NIL) (($ (-547)) NIL) (((-307 |#3|) $) 96)) (-2311 (((-745)) NIL)) (-3518 (($ $) NIL) (($ (-619 $)) NIL)) (-3358 (((-112) (-114)) NIL)) (-1574 (($ $) NIL)) (-1550 (($ $) NIL)) (-1563 (($ $) NIL)) (-2040 (($ $) NIL)) (-3267 (($) 95 T CONST)) (-3277 (($) 24 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-330 |#1| |#2| |#3|) (-13 (-293) (-38 |#3|) (-1007 |#3|) (-869 (-1135)) (-10 -8 (-15 -2643 ($ (-307 |#3|))) (-15 -2698 ((-3 $ "failed") (-307 |#3|))) (-15 -2643 ($ (-1135))) (-15 -2698 ((-3 $ "failed") (-1135))) (-15 -3834 ((-307 |#3|) $)) (IF (|has| |#3| (-1007 (-547))) (PROGN (-15 -2643 ($ (-307 (-547)))) (-15 -2698 ((-3 $ "failed") (-307 (-547)))) (-15 -2643 ($ (-398 (-921 (-547))))) (-15 -2698 ((-3 $ "failed") (-398 (-921 (-547))))) (-15 -2643 ($ (-921 (-547)))) (-15 -2698 ((-3 $ "failed") (-921 (-547))))) |%noBranch|) (IF (|has| |#3| (-1007 (-370))) (PROGN (-15 -2643 ($ (-307 (-370)))) (-15 -2698 ((-3 $ "failed") (-307 (-370)))) (-15 -2643 ($ (-398 (-921 (-370))))) (-15 -2698 ((-3 $ "failed") (-398 (-921 (-370))))) (-15 -2643 ($ (-921 (-370)))) (-15 -2698 ((-3 $ "failed") (-921 (-370))))) |%noBranch|) (-15 -2040 ($ $)) (-15 -2118 ($ $)) (-15 -2703 ($ $)) (-15 -3620 ($ $)) (-15 -2289 ($ $)) (-15 -1473 ($ $)) (-15 -1488 ($ $)) (-15 -1498 ($ $)) (-15 -1550 ($ $)) (-15 -1563 ($ $)) (-15 -1574 ($ $)) (-15 -1624 ($ $)) (-15 -1635 ($ $)) (-15 -1648 ($ $)) (-15 -1413 ($)) (-15 -2259 ((-619 (-1135)) $)) (-15 -2307 ((-112))) (-15 -2307 ((-112) (-112))))) (-619 (-1135)) (-619 (-1135)) (-378)) (T -330)) +((-2643 (*1 *1 *2) (-12 (-5 *2 (-307 *5)) (-4 *5 (-378)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-378)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-378)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-307 *5)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5)) (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2040 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-2118 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-2703 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-2289 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1473 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1498 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1550 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1563 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-1413 (*1 *1) (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-330 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-378)))) (-2307 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378))))) +(-13 (-293) (-38 |#3|) (-1007 |#3|) (-869 (-1135)) (-10 -8 (-15 -2643 ($ (-307 |#3|))) (-15 -2698 ((-3 $ "failed") (-307 |#3|))) (-15 -2643 ($ (-1135))) (-15 -2698 ((-3 $ "failed") (-1135))) (-15 -3834 ((-307 |#3|) $)) (IF (|has| |#3| (-1007 (-547))) (PROGN (-15 -2643 ($ (-307 (-547)))) (-15 -2698 ((-3 $ "failed") (-307 (-547)))) (-15 -2643 ($ (-398 (-921 (-547))))) (-15 -2698 ((-3 $ "failed") (-398 (-921 (-547))))) (-15 -2643 ($ (-921 (-547)))) (-15 -2698 ((-3 $ "failed") (-921 (-547))))) |%noBranch|) (IF (|has| |#3| (-1007 (-370))) (PROGN (-15 -2643 ($ (-307 (-370)))) (-15 -2698 ((-3 $ "failed") (-307 (-370)))) (-15 -2643 ($ (-398 (-921 (-370))))) (-15 -2698 ((-3 $ "failed") (-398 (-921 (-370))))) (-15 -2643 ($ (-921 (-370)))) (-15 -2698 ((-3 $ "failed") (-921 (-370))))) |%noBranch|) (-15 -2040 ($ $)) (-15 -2118 ($ $)) (-15 -2703 ($ $)) (-15 -3620 ($ $)) (-15 -2289 ($ $)) (-15 -1473 ($ $)) (-15 -1488 ($ $)) (-15 -1498 ($ $)) (-15 -1550 ($ $)) (-15 -1563 ($ $)) (-15 -1574 ($ $)) (-15 -1624 ($ $)) (-15 -1635 ($ $)) (-15 -1648 ($ $)) (-15 -1413 ($)) (-15 -2259 ((-619 (-1135)) $)) (-15 -2307 ((-112))) (-15 -2307 ((-112) (-112))))) +((-2781 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-331 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2781 (|#8| (-1 |#5| |#1|) |#4|))) (-1176) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|) (-1176) (-1194 |#5|) (-1194 (-398 |#6|)) (-333 |#5| |#6| |#7|)) (T -331)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1176)) (-4 *8 (-1176)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *9 (-1194 *8)) (-4 *2 (-333 *8 *9 *10)) (-5 *1 (-331 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-333 *5 *6 *7)) (-4 *10 (-1194 (-398 *9)))))) +(-10 -7 (-15 -2781 (|#8| (-1 |#5| |#1|) |#4|))) +((-3809 (((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) $) 38)) (-2402 (($ (-1218 (-398 |#3|)) (-1218 $)) NIL) (($ (-1218 (-398 |#3|))) NIL) (($ (-1218 |#3|) |#3|) 161)) (-3581 (((-1218 $) (-1218 $)) 145)) (-2431 (((-619 (-619 |#2|))) 119)) (-2515 (((-112) |#2| |#2|) 73)) (-3786 (($ $) 139)) (-3433 (((-745)) 31)) (-3686 (((-1218 $) (-1218 $)) 198)) (-2564 (((-619 (-921 |#2|)) (-1135)) 110)) (-2840 (((-112) $) 158)) (-2746 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1431 (((-3 |#3| "failed")) 50)) (-1379 (((-745)) 170)) (-3329 ((|#2| $ |#2| |#2|) 132)) (-1548 (((-3 |#3| "failed")) 68)) (-3443 (($ $ (-1 (-398 |#3|) (-398 |#3|)) (-745)) NIL) (($ $ (-1 (-398 |#3|) (-398 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-3784 (((-1218 $) (-1218 $)) 151)) (-1338 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2626 (((-112)) 33))) +(((-332 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2431 ((-619 (-619 |#2|)))) (-15 -2564 ((-619 (-921 |#2|)) (-1135))) (-15 -1338 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1431 ((-3 |#3| "failed"))) (-15 -1548 ((-3 |#3| "failed"))) (-15 -3329 (|#2| |#1| |#2| |#2|)) (-15 -3786 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2746 ((-112) |#1| |#3|)) (-15 -2746 ((-112) |#1| |#2|)) (-15 -2402 (|#1| (-1218 |#3|) |#3|)) (-15 -3809 ((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3581 ((-1218 |#1|) (-1218 |#1|))) (-15 -3686 ((-1218 |#1|) (-1218 |#1|))) (-15 -3784 ((-1218 |#1|) (-1218 |#1|))) (-15 -2746 ((-112) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 -2515 ((-112) |#2| |#2|)) (-15 -2626 ((-112))) (-15 -1379 ((-745))) (-15 -3433 ((-745))) (-15 -3443 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)))) (-15 -3443 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)) (-745))) (-15 -2402 (|#1| (-1218 (-398 |#3|)))) (-15 -2402 (|#1| (-1218 (-398 |#3|)) (-1218 |#1|)))) (-333 |#2| |#3| |#4|) (-1176) (-1194 |#2|) (-1194 (-398 |#3|))) (T -332)) +((-3433 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) (-1379 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) (-2626 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) (-2515 (*1 *2 *3 *3) (-12 (-4 *3 (-1176)) (-4 *5 (-1194 *3)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-112)) (-5 *1 (-332 *4 *3 *5 *6)) (-4 *4 (-333 *3 *5 *6)))) (-1548 (*1 *2) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-398 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-332 *3 *4 *2 *5)) (-4 *3 (-333 *4 *2 *5)))) (-1431 (*1 *2) (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-398 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-332 *3 *4 *2 *5)) (-4 *3 (-333 *4 *2 *5)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-5 *2 (-619 (-921 *5))) (-5 *1 (-332 *4 *5 *6 *7)) (-4 *4 (-333 *5 *6 *7)))) (-2431 (*1 *2) (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6))))) +(-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2431 ((-619 (-619 |#2|)))) (-15 -2564 ((-619 (-921 |#2|)) (-1135))) (-15 -1338 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1431 ((-3 |#3| "failed"))) (-15 -1548 ((-3 |#3| "failed"))) (-15 -3329 (|#2| |#1| |#2| |#2|)) (-15 -3786 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2746 ((-112) |#1| |#3|)) (-15 -2746 ((-112) |#1| |#2|)) (-15 -2402 (|#1| (-1218 |#3|) |#3|)) (-15 -3809 ((-2 (|:| |num| (-1218 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3581 ((-1218 |#1|) (-1218 |#1|))) (-15 -3686 ((-1218 |#1|) (-1218 |#1|))) (-15 -3784 ((-1218 |#1|) (-1218 |#1|))) (-15 -2746 ((-112) |#1|)) (-15 -2840 ((-112) |#1|)) (-15 -2515 ((-112) |#2| |#2|)) (-15 -2626 ((-112))) (-15 -1379 ((-745))) (-15 -3433 ((-745))) (-15 -3443 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)))) (-15 -3443 (|#1| |#1| (-1 (-398 |#3|) (-398 |#3|)) (-745))) (-15 -2402 (|#1| (-1218 (-398 |#3|)))) (-15 -2402 (|#1| (-1218 (-398 |#3|)) (-1218 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3809 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 193)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 91 (|has| (-398 |#2|) (-354)))) (-3881 (($ $) 92 (|has| (-398 |#2|) (-354)))) (-1832 (((-112) $) 94 (|has| (-398 |#2|) (-354)))) (-3743 (((-663 (-398 |#2|)) (-1218 $)) 44) (((-663 (-398 |#2|))) 59)) (-2890 (((-398 |#2|) $) 50)) (-4253 (((-1145 (-890) (-745)) (-547)) 144 (|has| (-398 |#2|) (-340)))) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 111 (|has| (-398 |#2|) (-354)))) (-3457 (((-409 $) $) 112 (|has| (-398 |#2|) (-354)))) (-2873 (((-112) $ $) 102 (|has| (-398 |#2|) (-354)))) (-3603 (((-745)) 85 (|has| (-398 |#2|) (-359)))) (-2159 (((-112)) 210)) (-2017 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 166 (|has| (-398 |#2|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 164 (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-3 (-398 |#2|) "failed") $) 163)) (-2643 (((-547) $) 167 (|has| (-398 |#2|) (-1007 (-547)))) (((-398 (-547)) $) 165 (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-398 |#2|) $) 162)) (-2402 (($ (-1218 (-398 |#2|)) (-1218 $)) 46) (($ (-1218 (-398 |#2|))) 62) (($ (-1218 |#2|) |#2|) 192)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-398 |#2|) (-340)))) (-2079 (($ $ $) 106 (|has| (-398 |#2|) (-354)))) (-3653 (((-663 (-398 |#2|)) $ (-1218 $)) 51) (((-663 (-398 |#2|)) $) 57)) (-4238 (((-663 (-547)) (-663 $)) 161 (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 160 (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-398 |#2|))) (|:| |vec| (-1218 (-398 |#2|)))) (-663 $) (-1218 $)) 159) (((-663 (-398 |#2|)) (-663 $)) 158)) (-3581 (((-1218 $) (-1218 $)) 198)) (-2542 (($ |#3|) 155) (((-3 $ "failed") (-398 |#3|)) 152 (|has| (-398 |#2|) (-354)))) (-2537 (((-3 $ "failed") $) 32)) (-2431 (((-619 (-619 |#1|))) 179 (|has| |#1| (-359)))) (-2515 (((-112) |#1| |#1|) 214)) (-3107 (((-890)) 52)) (-3229 (($) 88 (|has| (-398 |#2|) (-359)))) (-3110 (((-112)) 207)) (-3019 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2052 (($ $ $) 105 (|has| (-398 |#2|) (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 100 (|has| (-398 |#2|) (-354)))) (-3786 (($ $) 185)) (-2445 (($) 146 (|has| (-398 |#2|) (-340)))) (-3661 (((-112) $) 147 (|has| (-398 |#2|) (-340)))) (-1771 (($ $ (-745)) 138 (|has| (-398 |#2|) (-340))) (($ $) 137 (|has| (-398 |#2|) (-340)))) (-3674 (((-112) $) 113 (|has| (-398 |#2|) (-354)))) (-3707 (((-890) $) 149 (|has| (-398 |#2|) (-340))) (((-807 (-890)) $) 135 (|has| (-398 |#2|) (-340)))) (-4114 (((-112) $) 30)) (-3433 (((-745)) 217)) (-3686 (((-1218 $) (-1218 $)) 199)) (-1684 (((-398 |#2|) $) 49)) (-2564 (((-619 (-921 |#1|)) (-1135)) 180 (|has| |#1| (-354)))) (-3652 (((-3 $ "failed") $) 139 (|has| (-398 |#2|) (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| (-398 |#2|) (-354)))) (-4213 ((|#3| $) 42 (|has| (-398 |#2|) (-354)))) (-1966 (((-890) $) 87 (|has| (-398 |#2|) (-359)))) (-2531 ((|#3| $) 153)) (-3685 (($ (-619 $)) 98 (|has| (-398 |#2|) (-354))) (($ $ $) 97 (|has| (-398 |#2|) (-354)))) (-1917 (((-1118) $) 9)) (-4237 (((-663 (-398 |#2|))) 194)) (-3365 (((-663 (-398 |#2|))) 196)) (-1976 (($ $) 114 (|has| (-398 |#2|) (-354)))) (-1760 (($ (-1218 |#2|) |#2|) 190)) (-3216 (((-663 (-398 |#2|))) 195)) (-3459 (((-663 (-398 |#2|))) 197)) (-1656 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1867 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 191)) (-2941 (((-1218 $)) 203)) (-3059 (((-1218 $)) 204)) (-2840 (((-112) $) 202)) (-2746 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3045 (($) 140 (|has| (-398 |#2|) (-340)) CONST)) (-3479 (($ (-890)) 86 (|has| (-398 |#2|) (-359)))) (-1431 (((-3 |#2| "failed")) 182)) (-3979 (((-1082) $) 10)) (-1379 (((-745)) 216)) (-4240 (($) 157)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 99 (|has| (-398 |#2|) (-354)))) (-3715 (($ (-619 $)) 96 (|has| (-398 |#2|) (-354))) (($ $ $) 95 (|has| (-398 |#2|) (-354)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 143 (|has| (-398 |#2|) (-340)))) (-2106 (((-409 $) $) 110 (|has| (-398 |#2|) (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-398 |#2|) (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 107 (|has| (-398 |#2|) (-354)))) (-2025 (((-3 $ "failed") $ $) 90 (|has| (-398 |#2|) (-354)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| (-398 |#2|) (-354)))) (-2776 (((-745) $) 103 (|has| (-398 |#2|) (-354)))) (-3329 ((|#1| $ |#1| |#1|) 184)) (-1548 (((-3 |#2| "failed")) 183)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 104 (|has| (-398 |#2|) (-354)))) (-3846 (((-398 |#2|) (-1218 $)) 45) (((-398 |#2|)) 58)) (-1868 (((-745) $) 148 (|has| (-398 |#2|) (-340))) (((-3 (-745) "failed") $ $) 136 (|has| (-398 |#2|) (-340)))) (-3443 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) 120 (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) 119 (|has| (-398 |#2|) (-354))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-619 (-1135)) (-619 (-745))) 127 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-1135) (-745)) 128 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-619 (-1135))) 129 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-1135)) 130 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-745)) 132 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1806 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) 134 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1806 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-4035 (((-663 (-398 |#2|)) (-1218 $) (-1 (-398 |#2|) (-398 |#2|))) 151 (|has| (-398 |#2|) (-354)))) (-1901 ((|#3|) 156)) (-4150 (($) 145 (|has| (-398 |#2|) (-340)))) (-2301 (((-1218 (-398 |#2|)) $ (-1218 $)) 48) (((-663 (-398 |#2|)) (-1218 $) (-1218 $)) 47) (((-1218 (-398 |#2|)) $) 64) (((-663 (-398 |#2|)) (-1218 $)) 63)) (-2829 (((-1218 (-398 |#2|)) $) 61) (($ (-1218 (-398 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 142 (|has| (-398 |#2|) (-340)))) (-3784 (((-1218 $) (-1218 $)) 200)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 |#2|)) 35) (($ (-398 (-547))) 84 (-1524 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-1007 (-398 (-547)))))) (($ $) 89 (|has| (-398 |#2|) (-354)))) (-3336 (($ $) 141 (|has| (-398 |#2|) (-340))) (((-3 $ "failed") $) 41 (|has| (-398 |#2|) (-143)))) (-3008 ((|#3| $) 43)) (-2311 (((-745)) 28)) (-2389 (((-112)) 213)) (-2261 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-4013 (((-1218 $)) 65)) (-1932 (((-112) $ $) 93 (|has| (-398 |#2|) (-354)))) (-1338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2626 (((-112)) 215)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) 122 (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) 121 (|has| (-398 |#2|) (-354))) (($ $ (-619 (-1135)) (-619 (-745))) 123 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-1135) (-745)) 124 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-619 (-1135))) 125 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-1135)) 126 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) (-1806 (|has| (-398 |#2|) (-869 (-1135))) (|has| (-398 |#2|) (-354))))) (($ $ (-745)) 131 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1806 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) 133 (-1524 (-1806 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-225))) (-1806 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 118 (|has| (-398 |#2|) (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 115 (|has| (-398 |#2|) (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 |#2|)) 37) (($ (-398 |#2|) $) 36) (($ (-398 (-547)) $) 117 (|has| (-398 |#2|) (-354))) (($ $ (-398 (-547))) 116 (|has| (-398 |#2|) (-354))))) +(((-333 |#1| |#2| |#3|) (-138) (-1176) (-1194 |t#1|) (-1194 (-398 |t#2|))) (T -333)) +((-3433 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-745)))) (-1379 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-745)))) (-2626 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2515 (*1 *2 *3 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2389 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2261 (*1 *2 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2261 (*1 *2 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) (-2159 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2017 (*1 *2 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2017 (*1 *2 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) (-3110 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-3019 (*1 *2 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-3019 (*1 *2 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) (-3059 (*1 *2) (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)))) (-2941 (*1 *2) (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))))) (-3686 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))))) (-3459 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-3365 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-3216 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-4237 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4))))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4))))) (-2402 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1194 (-398 *3))))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4))))) (-1760 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1194 (-398 *3))))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5))))) (-2746 (*1 *2 *1 *3) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) (-2746 (*1 *2 *1 *3) (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-398 *3))))) (-3329 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-398 *3))))) (-1548 (*1 *2) (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1176)) (-4 *4 (-1194 (-398 *2))) (-4 *2 (-1194 *3)))) (-1431 (*1 *2) (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1176)) (-4 *4 (-1194 (-398 *2))) (-4 *2 (-1194 *3)))) (-1338 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1176)) (-4 *6 (-1194 (-398 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-333 *4 *5 *6)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-4 *4 (-354)) (-5 *2 (-619 (-921 *4))))) (-2431 (*1 *2) (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) (-4 *3 (-359)) (-5 *2 (-619 (-619 *3)))))) +(-13 (-699 (-398 |t#2|) |t#3|) (-10 -8 (-15 -3433 ((-745))) (-15 -1379 ((-745))) (-15 -2626 ((-112))) (-15 -2515 ((-112) |t#1| |t#1|)) (-15 -2389 ((-112))) (-15 -2261 ((-112) |t#1|)) (-15 -2261 ((-112) |t#2|)) (-15 -2159 ((-112))) (-15 -2017 ((-112) |t#1|)) (-15 -2017 ((-112) |t#2|)) (-15 -3110 ((-112))) (-15 -3019 ((-112) |t#1|)) (-15 -3019 ((-112) |t#2|)) (-15 -3059 ((-1218 $))) (-15 -2941 ((-1218 $))) (-15 -2840 ((-112) $)) (-15 -2746 ((-112) $)) (-15 -3784 ((-1218 $) (-1218 $))) (-15 -3686 ((-1218 $) (-1218 $))) (-15 -3581 ((-1218 $) (-1218 $))) (-15 -3459 ((-663 (-398 |t#2|)))) (-15 -3365 ((-663 (-398 |t#2|)))) (-15 -3216 ((-663 (-398 |t#2|)))) (-15 -4237 ((-663 (-398 |t#2|)))) (-15 -3809 ((-2 (|:| |num| (-1218 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2402 ($ (-1218 |t#2|) |t#2|)) (-15 -1867 ((-2 (|:| |num| (-1218 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1760 ($ (-1218 |t#2|) |t#2|)) (-15 -1656 ((-2 (|:| |num| (-663 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2746 ((-112) $ |t#1|)) (-15 -2746 ((-112) $ |t#2|)) (-15 -3443 ($ $ (-1 |t#2| |t#2|))) (-15 -3786 ($ $)) (-15 -3329 (|t#1| $ |t#1| |t#1|)) (-15 -1548 ((-3 |t#2| "failed"))) (-15 -1431 ((-3 |t#2| "failed"))) (-15 -1338 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-354)) (-15 -2564 ((-619 (-921 |t#1|)) (-1135))) |%noBranch|) (IF (|has| |t#1| (-359)) (-15 -2431 ((-619 (-619 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-38 #1=(-398 |#2|)) . T) ((-38 $) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-101) . T) ((-111 #0# #0#) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-143))) ((-145) |has| (-398 |#2|) (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 |#3|) . T) ((-223 #1#) |has| (-398 |#2|) (-354)) ((-225) -1524 (|has| (-398 |#2|) (-340)) (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354)))) ((-235) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-281) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-298) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-354) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-393) |has| (-398 |#2|) (-340)) ((-359) -1524 (|has| (-398 |#2|) (-359)) (|has| (-398 |#2|) (-340))) ((-340) |has| (-398 |#2|) (-340)) ((-361 #1# |#3|) . T) ((-400 #1# |#3|) . T) ((-368 #1#) . T) ((-402 #1#) . T) ((-442) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-539) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-622 #0#) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-622 #1#) . T) ((-622 $) . T) ((-615 #1#) . T) ((-615 (-547)) |has| (-398 |#2|) (-615 (-547))) ((-692 #0#) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-692 #1#) . T) ((-692 $) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-699 #1# |#3|) . T) ((-701) . T) ((-869 (-1135)) -12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135)))) ((-889) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-1007 (-398 (-547))) |has| (-398 |#2|) (-1007 (-398 (-547)))) ((-1007 #1#) . T) ((-1007 (-547)) |has| (-398 |#2|) (-1007 (-547))) ((-1022 #0#) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354))) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| (-398 |#2|) (-340)) ((-1176) -1524 (|has| (-398 |#2|) (-340)) (|has| (-398 |#2|) (-354)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-879 |#1|) (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| (-879 |#1|) (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-879 |#1|) "failed") $) NIL)) (-2643 (((-879 |#1|) $) NIL)) (-2402 (($ (-1218 (-879 |#1|))) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-879 |#1|) (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| (-879 |#1|) (-359)))) (-3661 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| (-879 |#1|) (-359))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| (-879 |#1|) (-359)))) (-3908 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1684 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-1966 (((-890) $) NIL (|has| (-879 |#1|) (-359)))) (-4218 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359)))) (-4122 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-359)))) (-1277 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-879 |#1|) (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-1502 (((-927 (-1082))) NIL)) (-4240 (($) NIL (|has| (-879 |#1|) (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-879 |#1|) (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 (-879 |#1|))) NIL)) (-4150 (($) NIL (|has| (-879 |#1|) (-359)))) (-3164 (($) NIL (|has| (-879 |#1|) (-359)))) (-2301 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-879 |#1|)) NIL)) (-3336 (($ $) NIL (|has| (-879 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1686 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) +(((-334 |#1| |#2|) (-13 (-320 (-879 |#1|)) (-10 -7 (-15 -1502 ((-927 (-1082)))))) (-890) (-890)) (T -334)) +((-1502 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-334 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) +(-13 (-320 (-879 |#1|)) (-10 -7 (-15 -1502 ((-927 (-1082)))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 44)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) 41 (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 115)) (-2643 ((|#1| $) 86)) (-2402 (($ (-1218 |#1|)) 104)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) 98 (|has| |#1| (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) 129 (|has| |#1| (-359)))) (-3661 (((-112) $) 48 (|has| |#1| (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) 45 (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) 131 (|has| |#1| (-359)))) (-3908 (((-112) $) NIL (|has| |#1| (-359)))) (-1684 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 |#1|) $) 90) (((-1131 $) $ (-890)) NIL (|has| |#1| (-359)))) (-1966 (((-890) $) 139 (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) NIL (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 146)) (-3045 (($) NIL (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) 71 (|has| |#1| (-359)))) (-2916 (((-112) $) 118)) (-3979 (((-1082) $) NIL)) (-1502 (((-927 (-1082))) 42)) (-4240 (($) 127 (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 93 (|has| |#1| (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) 67) (((-890)) 68)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) 130 (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) 125 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 |#1|)) 96)) (-4150 (($) 128 (|has| |#1| (-359)))) (-3164 (($) 136 (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) 59) (((-663 |#1|) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) 142) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 75)) (-3336 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) 138)) (-4013 (((-1218 $)) 117) (((-1218 $) (-890)) 73)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) 49 T CONST)) (-3277 (($) 46 T CONST)) (-3774 (($ $) 81 (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1686 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2371 (((-112) $ $) 47)) (-2497 (($ $ $) 144) (($ $ |#1|) 145)) (-2484 (($ $) 126) (($ $ $) NIL)) (-2470 (($ $ $) 61)) (** (($ $ (-890)) 148) (($ $ (-745)) 149) (($ $ (-547)) 147)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 77) (($ $ $) 76) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-335 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -1502 ((-927 (-1082)))))) (-340) (-1131 |#1|)) (T -335)) +((-1502 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-4 *3 (-340)) (-14 *4 (-1131 *3))))) +(-13 (-320 |#1|) (-10 -7 (-15 -1502 ((-927 (-1082)))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2402 (($ (-1218 |#1|)) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| |#1| (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| |#1| (-359)))) (-3661 (((-112) $) NIL (|has| |#1| (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| |#1| (-359)))) (-3908 (((-112) $) NIL (|has| |#1| (-359)))) (-1684 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-359)))) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) NIL (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-1502 (((-927 (-1082))) NIL)) (-4240 (($) NIL (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| |#1| (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 |#1|)) NIL)) (-4150 (($) NIL (|has| |#1| (-359)))) (-3164 (($) NIL (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) NIL)) (-3336 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1686 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-336 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -1502 ((-927 (-1082)))))) (-340) (-890)) (T -336)) +((-1502 (*1 *2) (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890))))) +(-13 (-320 |#1|) (-10 -7 (-15 -1502 ((-927 (-1082)))))) +((-3316 (((-745) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) 42)) (-1629 (((-927 (-1082)) (-1131 |#1|)) 85)) (-1746 (((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) (-1131 |#1|)) 78)) (-1863 (((-663 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) 86)) (-1970 (((-3 (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) "failed") (-890)) 13)) (-3920 (((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) (-890)) 18))) +(((-337 |#1|) (-10 -7 (-15 -1629 ((-927 (-1082)) (-1131 |#1|))) (-15 -1746 ((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) (-1131 |#1|))) (-15 -1863 ((-663 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -3316 ((-745) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -1970 ((-3 (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) "failed") (-890))) (-15 -3920 ((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) (-890)))) (-340)) (T -337)) +((-3920 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-3 (-1131 *4) (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082))))))) (-5 *1 (-337 *4)) (-4 *4 (-340)))) (-1970 (*1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-5 *2 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) (-5 *1 (-337 *4)) (-4 *4 (-340)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) (-4 *4 (-340)) (-5 *2 (-745)) (-5 *1 (-337 *4)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) (-4 *4 (-340)) (-5 *2 (-663 *4)) (-5 *1 (-337 *4)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) (-5 *1 (-337 *4)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-927 (-1082))) (-5 *1 (-337 *4))))) +(-10 -7 (-15 -1629 ((-927 (-1082)) (-1131 |#1|))) (-15 -1746 ((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) (-1131 |#1|))) (-15 -1863 ((-663 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -3316 ((-745) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -1970 ((-3 (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) "failed") (-890))) (-15 -3920 ((-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) (-890)))) +((-3834 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-338 |#1| |#2| |#3|) (-10 -7 (-15 -3834 (|#3| |#1|)) (-15 -3834 (|#1| |#3|))) (-320 |#2|) (-340) (-320 |#2|)) (T -338)) +((-3834 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *2 *4 *3)) (-4 *3 (-320 *4)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *3 *4 *2)) (-4 *3 (-320 *4))))) +(-10 -7 (-15 -3834 (|#3| |#1|)) (-15 -3834 (|#1| |#3|))) +((-3661 (((-112) $) 51)) (-3707 (((-807 (-890)) $) 21) (((-890) $) 52)) (-3652 (((-3 $ "failed") $) 16)) (-3045 (($) 9)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 93)) (-1868 (((-3 (-745) "failed") $ $) 71) (((-745) $) 60)) (-3443 (($ $ (-745)) NIL) (($ $) 8)) (-4150 (($) 44)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 34)) (-3336 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-339 |#1|) (-10 -8 (-15 -3707 ((-890) |#1|)) (-15 -1868 ((-745) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -4150 (|#1|)) (-15 -3442 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -3336 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -1868 ((-3 (-745) "failed") |#1| |#1|)) (-15 -3707 ((-807 (-890)) |#1|)) (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) (-340)) (T -339)) +NIL +(-10 -8 (-15 -3707 ((-890) |#1|)) (-15 -1868 ((-745) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -4150 (|#1|)) (-15 -3442 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -3336 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -1868 ((-3 (-745) "failed") |#1| |#1|)) (-15 -3707 ((-807 (-890)) |#1|)) (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-4253 (((-1145 (-890) (-745)) (-547)) 90)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2873 (((-112) $ $) 57)) (-3603 (((-745)) 100)) (-3219 (($) 17 T CONST)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-3229 (($) 103)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-2445 (($) 88)) (-3661 (((-112) $) 87)) (-1771 (($ $) 76) (($ $ (-745)) 75)) (-3674 (((-112) $) 68)) (-3707 (((-807 (-890)) $) 78) (((-890) $) 85)) (-4114 (((-112) $) 30)) (-3652 (((-3 $ "failed") $) 99)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1966 (((-890) $) 102)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3045 (($) 98 T CONST)) (-3479 (($ (-890)) 101)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 91)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-1868 (((-3 (-745) "failed") $ $) 77) (((-745) $) 86)) (-3443 (($ $ (-745)) 96) (($ $) 94)) (-4150 (($) 89)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 92)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-3336 (((-3 $ "failed") $) 79) (($ $) 93)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-745)) 97) (($ $) 95)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 62)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64))) +(((-340) (-138)) (T -340)) +((-3336 (*1 *1 *1) (-4 *1 (-340))) (-3442 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-340)) (-5 *2 (-1218 *1)))) (-1296 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))))) (-4253 (*1 *2 *3) (-12 (-4 *1 (-340)) (-5 *3 (-547)) (-5 *2 (-1145 (-890) (-745))))) (-4150 (*1 *1) (-4 *1 (-340))) (-2445 (*1 *1) (-4 *1 (-340))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-112)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-745)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-890)))) (-4040 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-393) (-359) (-1111) (-225) (-10 -8 (-15 -3336 ($ $)) (-15 -3442 ((-3 (-1218 $) "failed") (-663 $))) (-15 -1296 ((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547)))))) (-15 -4253 ((-1145 (-890) (-745)) (-547))) (-15 -4150 ($)) (-15 -2445 ($)) (-15 -3661 ((-112) $)) (-15 -1868 ((-745) $)) (-15 -3707 ((-890) $)) (-15 -4040 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-591 (-832)) . T) ((-169) . T) ((-225) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-393) . T) ((-359) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) . T) ((-1176) . T)) +((-3161 (((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|) 53)) (-3059 (((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 51))) +(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -3059 ((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3161 ((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $)))) (-1194 |#1|) (-400 |#1| |#2|)) (T -341)) +((-3161 (*1 *2 *3) (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-3059 (*1 *2) (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4))))) +(-10 -7 (-15 -3059 ((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))))) (-15 -3161 ((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-879 |#1|) (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3316 (((-745)) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| (-879 |#1|) (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-879 |#1|) "failed") $) NIL)) (-2643 (((-879 |#1|) $) NIL)) (-2402 (($ (-1218 (-879 |#1|))) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-879 |#1|) (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| (-879 |#1|) (-359)))) (-3661 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| (-879 |#1|) (-359))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| (-879 |#1|) (-359)))) (-3908 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1684 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-1966 (((-890) $) NIL (|has| (-879 |#1|) (-359)))) (-4218 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359)))) (-4122 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-359)))) (-1277 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-879 |#1|) (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-3553 (((-1218 (-619 (-2 (|:| -4152 (-879 |#1|)) (|:| -3479 (-1082)))))) NIL)) (-3434 (((-663 (-879 |#1|))) NIL)) (-4240 (($) NIL (|has| (-879 |#1|) (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-879 |#1|) (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 (-879 |#1|))) NIL)) (-4150 (($) NIL (|has| (-879 |#1|) (-359)))) (-3164 (($) NIL (|has| (-879 |#1|) (-359)))) (-2301 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-879 |#1|)) NIL)) (-3336 (($ $) NIL (|has| (-879 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1686 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) +(((-342 |#1| |#2|) (-13 (-320 (-879 |#1|)) (-10 -7 (-15 -3553 ((-1218 (-619 (-2 (|:| -4152 (-879 |#1|)) (|:| -3479 (-1082))))))) (-15 -3434 ((-663 (-879 |#1|)))) (-15 -3316 ((-745))))) (-890) (-890)) (T -342)) +((-3553 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4152 (-879 *3)) (|:| -3479 (-1082)))))) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3434 (*1 *2) (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3316 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890))))) +(-13 (-320 (-879 |#1|)) (-10 -7 (-15 -3553 ((-1218 (-619 (-2 (|:| -4152 (-879 |#1|)) (|:| -3479 (-1082))))))) (-15 -3434 ((-663 (-879 |#1|)))) (-15 -3316 ((-745))))) +((-3821 (((-112) $ $) 61)) (-4046 (((-112) $) 74)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 ((|#1| $) 92) (($ $ (-890)) 90 (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) 148 (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3316 (((-745)) 89)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) 162 (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 112)) (-2643 ((|#1| $) 91)) (-2402 (($ (-1218 |#1|)) 58)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) 158 (|has| |#1| (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) 149 (|has| |#1| (-359)))) (-3661 (((-112) $) NIL (|has| |#1| (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) 98 (|has| |#1| (-359)))) (-3908 (((-112) $) 175 (|has| |#1| (-359)))) (-1684 ((|#1| $) 94) (($ $ (-890)) 93 (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 |#1|) $) 189) (((-1131 $) $ (-890)) NIL (|has| |#1| (-359)))) (-1966 (((-890) $) 134 (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) 73 (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) 70 (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) 82 (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) 69 (|has| |#1| (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 192)) (-3045 (($) NIL (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) 137 (|has| |#1| (-359)))) (-2916 (((-112) $) 108)) (-3979 (((-1082) $) NIL)) (-3553 (((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) 83)) (-3434 (((-663 |#1|)) 87)) (-4240 (($) 96 (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 150 (|has| |#1| (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) 151)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) 62)) (-1901 (((-1131 |#1|)) 152)) (-4150 (($) 133 (|has| |#1| (-359)))) (-3164 (($) NIL (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) 106) (((-663 |#1|) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) 124) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 57)) (-3336 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) 156)) (-4013 (((-1218 $)) 172) (((-1218 $) (-890)) 101)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) 117 T CONST)) (-3277 (($) 33 T CONST)) (-3774 (($ $) 107 (|has| |#1| (-359))) (($ $ (-745)) 99 (|has| |#1| (-359)))) (-1686 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2371 (((-112) $ $) 183)) (-2497 (($ $ $) 104) (($ $ |#1|) 105)) (-2484 (($ $) 177) (($ $ $) 181)) (-2470 (($ $ $) 179)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 138)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 186) (($ $ $) 142) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-343 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -3553 ((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -3434 ((-663 |#1|))) (-15 -3316 ((-745))))) (-340) (-3 (-1131 |#1|) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (T -343)) +((-3553 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082)))))) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1131 *3) *2)))) (-3434 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1131 *3) (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082))))))))) (-3316 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1131 *3) (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082)))))))))) +(-13 (-320 |#1|) (-10 -7 (-15 -3553 ((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -3434 ((-663 |#1|))) (-15 -3316 ((-745))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3316 (((-745)) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2402 (($ (-1218 |#1|)) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| |#1| (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| |#1| (-359)))) (-3661 (((-112) $) NIL (|has| |#1| (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| |#1| (-359)))) (-3908 (((-112) $) NIL (|has| |#1| (-359)))) (-1684 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-359)))) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) NIL (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-3553 (((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082)))))) NIL)) (-3434 (((-663 |#1|)) NIL)) (-4240 (($) NIL (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| |#1| (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 |#1|)) NIL)) (-4150 (($) NIL (|has| |#1| (-359)))) (-3164 (($) NIL (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) NIL)) (-3336 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1686 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-344 |#1| |#2|) (-13 (-320 |#1|) (-10 -7 (-15 -3553 ((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -3434 ((-663 |#1|))) (-15 -3316 ((-745))))) (-340) (-890)) (T -344)) +((-3553 (*1 *2) (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082)))))) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))) (-3434 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890)))) (-3316 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890))))) +(-13 (-320 |#1|) (-10 -7 (-15 -3553 ((-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))))) (-15 -3434 ((-663 |#1|))) (-15 -3316 ((-745))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-879 |#1|) (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| (-879 |#1|) (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-879 |#1|) "failed") $) NIL)) (-2643 (((-879 |#1|) $) NIL)) (-2402 (($ (-1218 (-879 |#1|))) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-879 |#1|) (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-879 |#1|) (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| (-879 |#1|) (-359)))) (-3661 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359)))) (($ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| (-879 |#1|) (-359))) (((-807 (-890)) $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| (-879 |#1|) (-359)))) (-3908 (((-112) $) NIL (|has| (-879 |#1|) (-359)))) (-1684 (((-879 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 (-879 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-1966 (((-890) $) NIL (|has| (-879 |#1|) (-359)))) (-4218 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359)))) (-4122 (((-1131 (-879 |#1|)) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-1131 (-879 |#1|)) "failed") $ $) NIL (|has| (-879 |#1|) (-359)))) (-1277 (($ $ (-1131 (-879 |#1|))) NIL (|has| (-879 |#1|) (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-879 |#1|) (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| (-879 |#1|) (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4240 (($) NIL (|has| (-879 |#1|) (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-879 |#1|) (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| (-879 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 (-879 |#1|))) NIL)) (-4150 (($) NIL (|has| (-879 |#1|) (-359)))) (-3164 (($) NIL (|has| (-879 |#1|) (-359)))) (-2301 (((-1218 (-879 |#1|)) $) NIL) (((-663 (-879 |#1|)) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-879 |#1|) (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-879 |#1|)) NIL)) (-3336 (($ $) NIL (|has| (-879 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| (-879 |#1|) (-143)) (|has| (-879 |#1|) (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-1686 (($ $) NIL (|has| (-879 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-879 |#1|) (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ (-879 |#1|)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-879 |#1|)) NIL) (($ (-879 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-320 (-879 |#1|)) (-890) (-890)) (T -345)) +NIL +(-320 (-879 |#1|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) 120 (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) 140 (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 93)) (-2643 ((|#1| $) 90)) (-2402 (($ (-1218 |#1|)) 85)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) 82 (|has| |#1| (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) 42 (|has| |#1| (-359)))) (-3661 (((-112) $) NIL (|has| |#1| (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) 121 (|has| |#1| (-359)))) (-3908 (((-112) $) 74 (|has| |#1| (-359)))) (-1684 ((|#1| $) 39) (($ $ (-890)) 43 (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 |#1|) $) 65) (((-1131 $) $ (-890)) NIL (|has| |#1| (-359)))) (-1966 (((-890) $) 97 (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) NIL (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) 95 (|has| |#1| (-359)))) (-2916 (((-112) $) 142)) (-3979 (((-1082) $) NIL)) (-4240 (($) 36 (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 115 (|has| |#1| (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) 139)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) 59)) (-1901 (((-1131 |#1|)) 88)) (-4150 (($) 126 (|has| |#1| (-359)))) (-3164 (($) NIL (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) 53) (((-663 |#1|) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) 138) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 87)) (-3336 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) 144)) (-4013 (((-1218 $)) 109) (((-1218 $) (-890)) 49)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) 111 T CONST)) (-3277 (($) 32 T CONST)) (-3774 (($ $) 68 (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1686 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2371 (((-112) $ $) 107)) (-2497 (($ $ $) 99) (($ $ |#1|) 100)) (-2484 (($ $) 80) (($ $ $) 105)) (-2470 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) 44) (($ $ (-547)) 130)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 78) (($ $ $) 56) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-346 |#1| |#2|) (-320 |#1|) (-340) (-1131 |#1|)) (T -346)) +NIL +(-320 |#1|) +((-1776 ((|#1| (-1131 |#2|)) 52))) +(((-347 |#1| |#2|) (-10 -7 (-15 -1776 (|#1| (-1131 |#2|)))) (-13 (-393) (-10 -7 (-15 -3834 (|#1| |#2|)) (-15 -1966 ((-890) |#1|)) (-15 -4013 ((-1218 |#1|) (-890))) (-15 -3774 (|#1| |#1|)))) (-340)) (T -347)) +((-1776 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-4 *2 (-13 (-393) (-10 -7 (-15 -3834 (*2 *4)) (-15 -1966 ((-890) *2)) (-15 -4013 ((-1218 *2) (-890))) (-15 -3774 (*2 *2))))) (-5 *1 (-347 *2 *4))))) +(-10 -7 (-15 -1776 (|#1| (-1131 |#2|)))) +((-1660 (((-927 (-1131 |#1|)) (-1131 |#1|)) 36)) (-3229 (((-1131 |#1|) (-890) (-890)) 113) (((-1131 |#1|) (-890)) 112)) (-3661 (((-112) (-1131 |#1|)) 84)) (-2750 (((-890) (-890)) 71)) (-2843 (((-890) (-890)) 74)) (-3758 (((-890) (-890)) 69)) (-3908 (((-112) (-1131 |#1|)) 88)) (-2424 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 101)) (-1408 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 104)) (-2654 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 103)) (-2547 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 102)) (-2282 (((-3 (-1131 |#1|) "failed") (-1131 |#1|)) 98)) (-1540 (((-1131 |#1|) (-1131 |#1|)) 62)) (-3024 (((-1131 |#1|) (-890)) 107)) (-2144 (((-1131 |#1|) (-890)) 110)) (-3212 (((-1131 |#1|) (-890)) 109)) (-3116 (((-1131 |#1|) (-890)) 108)) (-2937 (((-1131 |#1|) (-890)) 105))) +(((-348 |#1|) (-10 -7 (-15 -3661 ((-112) (-1131 |#1|))) (-15 -3908 ((-112) (-1131 |#1|))) (-15 -3758 ((-890) (-890))) (-15 -2750 ((-890) (-890))) (-15 -2843 ((-890) (-890))) (-15 -2937 ((-1131 |#1|) (-890))) (-15 -3024 ((-1131 |#1|) (-890))) (-15 -3116 ((-1131 |#1|) (-890))) (-15 -3212 ((-1131 |#1|) (-890))) (-15 -2144 ((-1131 |#1|) (-890))) (-15 -2282 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2424 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2547 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2654 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -1408 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3229 ((-1131 |#1|) (-890))) (-15 -3229 ((-1131 |#1|) (-890) (-890))) (-15 -1540 ((-1131 |#1|) (-1131 |#1|))) (-15 -1660 ((-927 (-1131 |#1|)) (-1131 |#1|)))) (-340)) (T -348)) +((-1660 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-927 (-1131 *4))) (-5 *1 (-348 *4)) (-5 *3 (-1131 *4)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-3229 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-1408 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-2654 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-2547 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-2424 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-2282 (*1 *2 *2) (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) (-4 *4 (-340)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-348 *4)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-348 *4))))) +(-10 -7 (-15 -3661 ((-112) (-1131 |#1|))) (-15 -3908 ((-112) (-1131 |#1|))) (-15 -3758 ((-890) (-890))) (-15 -2750 ((-890) (-890))) (-15 -2843 ((-890) (-890))) (-15 -2937 ((-1131 |#1|) (-890))) (-15 -3024 ((-1131 |#1|) (-890))) (-15 -3116 ((-1131 |#1|) (-890))) (-15 -3212 ((-1131 |#1|) (-890))) (-15 -2144 ((-1131 |#1|) (-890))) (-15 -2282 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2424 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2547 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -2654 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -1408 ((-3 (-1131 |#1|) "failed") (-1131 |#1|))) (-15 -3229 ((-1131 |#1|) (-890))) (-15 -3229 ((-1131 |#1|) (-890) (-890))) (-15 -1540 ((-1131 |#1|) (-1131 |#1|))) (-15 -1660 ((-927 (-1131 |#1|)) (-1131 |#1|)))) +((-3548 (((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|) 34))) +(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -3548 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) (-340) (-1194 |#1|) (-1194 |#2|)) (T -349)) +((-3548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-340)) (-5 *1 (-349 *4 *5 *3))))) +(-10 -7 (-15 -3548 ((-3 (-619 |#3|) "failed") (-619 |#3|) |#3|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| |#1| (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2402 (($ (-1218 |#1|)) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| |#1| (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| |#1| (-359)))) (-3661 (((-112) $) NIL (|has| |#1| (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| |#1| (-359))) (((-807 (-890)) $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| |#1| (-359)))) (-3908 (((-112) $) NIL (|has| |#1| (-359)))) (-1684 ((|#1| $) NIL) (($ $ (-890)) NIL (|has| |#1| (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 |#1|) $) NIL) (((-1131 $) $ (-890)) NIL (|has| |#1| (-359)))) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-4218 (((-1131 |#1|) $) NIL (|has| |#1| (-359)))) (-4122 (((-1131 |#1|) $) NIL (|has| |#1| (-359))) (((-3 (-1131 |#1|) "failed") $ $) NIL (|has| |#1| (-359)))) (-1277 (($ $ (-1131 |#1|)) NIL (|has| |#1| (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| |#1| (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4240 (($) NIL (|has| |#1| (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| |#1| (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| |#1| (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 |#1|)) NIL)) (-4150 (($) NIL (|has| |#1| (-359)))) (-3164 (($) NIL (|has| |#1| (-359)))) (-2301 (((-1218 |#1|) $) NIL) (((-663 |#1|) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) NIL)) (-3336 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-1686 (($ $) NIL (|has| |#1| (-359))) (($ $ (-745)) NIL (|has| |#1| (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-350 |#1| |#2|) (-320 |#1|) (-340) (-890)) (T -350)) +NIL +(-320 |#1|) +((-2508 (((-112) (-619 (-921 |#1|))) 34)) (-3760 (((-619 (-921 |#1|)) (-619 (-921 |#1|))) 46)) (-2224 (((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|))) 41))) +(((-351 |#1| |#2|) (-10 -7 (-15 -2508 ((-112) (-619 (-921 |#1|)))) (-15 -2224 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -3760 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) (-442) (-619 (-1135))) (T -351)) +((-3760 (*1 *2 *2) (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) (-5 *1 (-351 *3 *4)) (-14 *4 (-619 (-1135))))) (-2224 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) (-5 *1 (-351 *3 *4)) (-14 *4 (-619 (-1135))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-112)) (-5 *1 (-351 *4 *5)) (-14 *5 (-619 (-1135)))))) +(-10 -7 (-15 -2508 ((-112) (-619 (-921 |#1|)))) (-15 -2224 ((-3 (-619 (-921 |#1|)) "failed") (-619 (-921 |#1|)))) (-15 -3760 ((-619 (-921 |#1|)) (-619 (-921 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-3603 (((-745) $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) 15)) (-2598 ((|#1| $ (-547)) NIL)) (-1359 (((-547) $ (-547)) NIL)) (-3270 (($ (-1 |#1| |#1|) $) 32)) (-2754 (($ (-1 (-547) (-547)) $) 24)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 26)) (-3979 (((-1082) $) NIL)) (-2483 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-547)))) $) 28)) (-2444 (($ $ $) NIL)) (-4121 (($ $ $) NIL)) (-3834 (((-832) $) 38) (($ |#1|) NIL)) (-3277 (($) 9 T CONST)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ |#1| (-547)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-352 |#1|) (-13 (-463) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-547))) (-15 -3603 ((-745) $)) (-15 -1359 ((-547) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -2754 ($ (-1 (-547) (-547)) $)) (-15 -3270 ($ (-1 |#1| |#1|) $)) (-15 -2483 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-547)))) $)))) (-1063)) (T -352)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) (-1359 (*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063)))) (-2754 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-547) (-547))) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) (-3270 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-352 *3)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 (-547))))) (-5 *1 (-352 *3)) (-4 *3 (-1063))))) +(-13 (-463) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-547))) (-15 -3603 ((-745) $)) (-15 -1359 ((-547) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -2754 ($ (-1 (-547) (-547)) $)) (-15 -3270 ($ (-1 |#1| |#1|) $)) (-15 -2483 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-547)))) $)))) +((-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 13)) (-3881 (($ $) 14)) (-3457 (((-409 $) $) 30)) (-3674 (((-112) $) 26)) (-1976 (($ $) 19)) (-3715 (($ $ $) 23) (($ (-619 $)) NIL)) (-2106 (((-409 $) $) 31)) (-2025 (((-3 $ "failed") $ $) 22)) (-2776 (((-745) $) 25)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 35)) (-1932 (((-112) $ $) 16)) (-2497 (($ $ $) 33))) +(((-353 |#1|) (-10 -8 (-15 -2497 (|#1| |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -3674 ((-112) |#1|)) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2468 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2776 ((-745) |#1|)) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3715 (|#1| |#1| |#1|)) (-15 -1932 ((-112) |#1| |#1|)) (-15 -3881 (|#1| |#1|)) (-15 -3977 ((-2 (|:| -4104 |#1|) (|:| -4315 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|))) (-354)) (T -353)) +NIL +(-10 -8 (-15 -2497 (|#1| |#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -3674 ((-112) |#1|)) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2468 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2776 ((-745) |#1|)) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3715 (|#1| |#1| |#1|)) (-15 -1932 ((-112) |#1| |#1|)) (-15 -3881 (|#1| |#1|)) (-15 -3977 ((-2 (|:| -4104 |#1|) (|:| -4315 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3674 (((-112) $) 68)) (-4114 (((-112) $) 30)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 62)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64))) +(((-354) (-138)) (T -354)) +((-2497 (*1 *1 *1 *1) (-4 *1 (-354)))) +(-13 (-298) (-1176) (-235) (-10 -8 (-15 -2497 ($ $ $)) (-6 -4326) (-6 -4320))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3821 (((-112) $ $) 7)) (-1891 ((|#2| $ |#2|) 13)) (-4135 (($ $ (-1118)) 18)) (-2002 ((|#2| $) 14)) (-1351 (($ |#1|) 20) (($ |#1| (-1118)) 19)) (-2464 ((|#1| $) 16)) (-1917 (((-1118) $) 9)) (-3938 (((-1118) $) 15)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-4048 (($ $) 17)) (-2371 (((-112) $ $) 6))) +(((-355 |#1| |#2|) (-138) (-1063) (-1063)) (T -355)) +((-1351 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1351 (*1 *1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *1 (-355 *2 *4)) (-4 *2 (-1063)) (-4 *4 (-1063)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-1118)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-1891 (*1 *2 *1 *2) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -1351 ($ |t#1|)) (-15 -1351 ($ |t#1| (-1118))) (-15 -4135 ($ $ (-1118))) (-15 -4048 ($ $)) (-15 -2464 (|t#1| $)) (-15 -3938 ((-1118) $)) (-15 -2002 (|t#2| $)) (-15 -1891 (|t#2| $ |t#2|)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-1891 ((|#1| $ |#1|) 30)) (-4135 (($ $ (-1118)) 22)) (-3415 (((-3 |#1| "failed") $) 29)) (-2002 ((|#1| $) 27)) (-1351 (($ (-379)) 21) (($ (-379) (-1118)) 20)) (-2464 (((-379) $) 24)) (-1917 (((-1118) $) NIL)) (-3938 (((-1118) $) 25)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 19)) (-4048 (($ $) 23)) (-2371 (((-112) $ $) 18))) +(((-356 |#1|) (-13 (-355 (-379) |#1|) (-10 -8 (-15 -3415 ((-3 |#1| "failed") $)))) (-1063)) (T -356)) +((-3415 (*1 *2 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1063))))) +(-13 (-355 (-379) |#1|) (-10 -8 (-15 -3415 ((-3 |#1| "failed") $)))) +((-2173 (((-1218 (-663 |#2|)) (-1218 $)) 61)) (-3140 (((-663 |#2|) (-1218 $)) 120)) (-3573 ((|#2| $) 32)) (-2966 (((-663 |#2|) $ (-1218 $)) 123)) (-3480 (((-3 $ "failed") $) 75)) (-3335 ((|#2| $) 35)) (-2101 (((-1131 |#2|) $) 83)) (-2149 ((|#2| (-1218 $)) 106)) (-4250 (((-1131 |#2|) $) 28)) (-1834 (((-112)) 100)) (-2402 (($ (-1218 |#2|) (-1218 $)) 113)) (-2537 (((-3 $ "failed") $) 79)) (-2578 (((-112)) 95)) (-2385 (((-112)) 90)) (-1377 (((-112)) 53)) (-2033 (((-663 |#2|) (-1218 $)) 118)) (-3690 ((|#2| $) 31)) (-3058 (((-663 |#2|) $ (-1218 $)) 122)) (-3593 (((-3 $ "failed") $) 73)) (-3452 ((|#2| $) 34)) (-2205 (((-1131 |#2|) $) 82)) (-2275 ((|#2| (-1218 $)) 104)) (-1303 (((-1131 |#2|) $) 26)) (-1924 (((-112)) 99)) (-2486 (((-112)) 92)) (-2662 (((-112)) 51)) (-1475 (((-112)) 87)) (-1739 (((-112)) 101)) (-2301 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) 111)) (-4156 (((-112)) 97)) (-2310 (((-619 (-1218 |#2|))) 86)) (-3948 (((-112)) 98)) (-4057 (((-112)) 96)) (-2014 (((-112)) 46)) (-1649 (((-112)) 102))) +(((-357 |#1| |#2|) (-10 -8 (-15 -2101 ((-1131 |#2|) |#1|)) (-15 -2205 ((-1131 |#2|) |#1|)) (-15 -2310 ((-619 (-1218 |#2|)))) (-15 -3480 ((-3 |#1| "failed") |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 -2385 ((-112))) (-15 -2486 ((-112))) (-15 -2578 ((-112))) (-15 -2662 ((-112))) (-15 -1377 ((-112))) (-15 -1475 ((-112))) (-15 -1649 ((-112))) (-15 -1739 ((-112))) (-15 -1834 ((-112))) (-15 -1924 ((-112))) (-15 -2014 ((-112))) (-15 -3948 ((-112))) (-15 -4057 ((-112))) (-15 -4156 ((-112))) (-15 -4250 ((-1131 |#2|) |#1|)) (-15 -1303 ((-1131 |#2|) |#1|)) (-15 -3140 ((-663 |#2|) (-1218 |#1|))) (-15 -2033 ((-663 |#2|) (-1218 |#1|))) (-15 -2149 (|#2| (-1218 |#1|))) (-15 -2275 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3335 (|#2| |#1|)) (-15 -3452 (|#2| |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3690 (|#2| |#1|)) (-15 -2966 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -3058 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2173 ((-1218 (-663 |#2|)) (-1218 |#1|)))) (-358 |#2|) (-169)) (T -357)) +((-4156 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-4057 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-3948 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2014 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1924 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1834 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1739 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1649 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1475 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1377 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2662 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2578 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2486 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2385 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2310 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1218 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4))))) +(-10 -8 (-15 -2101 ((-1131 |#2|) |#1|)) (-15 -2205 ((-1131 |#2|) |#1|)) (-15 -2310 ((-619 (-1218 |#2|)))) (-15 -3480 ((-3 |#1| "failed") |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 -2385 ((-112))) (-15 -2486 ((-112))) (-15 -2578 ((-112))) (-15 -2662 ((-112))) (-15 -1377 ((-112))) (-15 -1475 ((-112))) (-15 -1649 ((-112))) (-15 -1739 ((-112))) (-15 -1834 ((-112))) (-15 -1924 ((-112))) (-15 -2014 ((-112))) (-15 -3948 ((-112))) (-15 -4057 ((-112))) (-15 -4156 ((-112))) (-15 -4250 ((-1131 |#2|) |#1|)) (-15 -1303 ((-1131 |#2|) |#1|)) (-15 -3140 ((-663 |#2|) (-1218 |#1|))) (-15 -2033 ((-663 |#2|) (-1218 |#1|))) (-15 -2149 (|#2| (-1218 |#1|))) (-15 -2275 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3335 (|#2| |#1|)) (-15 -3452 (|#2| |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3690 (|#2| |#1|)) (-15 -2966 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -3058 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2173 ((-1218 (-663 |#2|)) (-1218 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-4104 (((-3 $ "failed")) 37 (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) 19)) (-2173 (((-1218 (-663 |#1|)) (-1218 $)) 78)) (-3785 (((-1218 $)) 81)) (-3219 (($) 17 T CONST)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) 40 (|has| |#1| (-539)))) (-4231 (((-3 $ "failed")) 38 (|has| |#1| (-539)))) (-3140 (((-663 |#1|) (-1218 $)) 65)) (-3573 ((|#1| $) 74)) (-2966 (((-663 |#1|) $ (-1218 $)) 76)) (-3480 (((-3 $ "failed") $) 45 (|has| |#1| (-539)))) (-3946 (($ $ (-890)) 28)) (-3335 ((|#1| $) 72)) (-2101 (((-1131 |#1|) $) 42 (|has| |#1| (-539)))) (-2149 ((|#1| (-1218 $)) 67)) (-4250 (((-1131 |#1|) $) 63)) (-1834 (((-112)) 57)) (-2402 (($ (-1218 |#1|) (-1218 $)) 69)) (-2537 (((-3 $ "failed") $) 47 (|has| |#1| (-539)))) (-3107 (((-890)) 80)) (-1575 (((-112)) 54)) (-2530 (($ $ (-890)) 33)) (-2578 (((-112)) 50)) (-2385 (((-112)) 48)) (-1377 (((-112)) 52)) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) 41 (|has| |#1| (-539)))) (-1283 (((-3 $ "failed")) 39 (|has| |#1| (-539)))) (-2033 (((-663 |#1|) (-1218 $)) 66)) (-3690 ((|#1| $) 75)) (-3058 (((-663 |#1|) $ (-1218 $)) 77)) (-3593 (((-3 $ "failed") $) 46 (|has| |#1| (-539)))) (-3699 (($ $ (-890)) 29)) (-3452 ((|#1| $) 73)) (-2205 (((-1131 |#1|) $) 43 (|has| |#1| (-539)))) (-2275 ((|#1| (-1218 $)) 68)) (-1303 (((-1131 |#1|) $) 64)) (-1924 (((-112)) 58)) (-1917 (((-1118) $) 9)) (-2486 (((-112)) 49)) (-2662 (((-112)) 51)) (-1475 (((-112)) 53)) (-3979 (((-1082) $) 10)) (-1739 (((-112)) 56)) (-2301 (((-1218 |#1|) $ (-1218 $)) 71) (((-663 |#1|) (-1218 $) (-1218 $)) 70)) (-1701 (((-619 (-921 |#1|)) (-1218 $)) 79)) (-4121 (($ $ $) 25)) (-4156 (((-112)) 62)) (-3834 (((-832) $) 11)) (-2310 (((-619 (-1218 |#1|))) 44 (|has| |#1| (-539)))) (-4225 (($ $ $ $) 26)) (-3948 (((-112)) 60)) (-4007 (($ $ $) 24)) (-4057 (((-112)) 61)) (-2014 (((-112)) 59)) (-1649 (((-112)) 55)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-358 |#1|) (-138) (-169)) (T -358)) +((-3785 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-358 *3)))) (-3107 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2966 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-1218 *4)))) (-2301 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) (-4 *1 (-358 *4)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3)))) (-4156 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-4057 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-3948 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2014 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1924 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1834 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1739 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1649 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1575 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1475 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-1377 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2662 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2578 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2486 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2385 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112)))) (-2537 (*1 *1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-3480 (*1 *1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) (-2310 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) (-5 *2 (-619 (-1218 *3))))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) (-5 *2 (-1131 *3)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) (-5 *2 (-1131 *3)))) (-2580 (*1 *2) (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-619 *1)))) (-4 *1 (-358 *3)))) (-2377 (*1 *2) (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-619 *1)))) (-4 *1 (-358 *3)))) (-1283 (*1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))) (-4231 (*1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))) (-4104 (*1 *1) (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169))))) +(-13 (-719 |t#1|) (-10 -8 (-15 -3785 ((-1218 $))) (-15 -3107 ((-890))) (-15 -1701 ((-619 (-921 |t#1|)) (-1218 $))) (-15 -2173 ((-1218 (-663 |t#1|)) (-1218 $))) (-15 -3058 ((-663 |t#1|) $ (-1218 $))) (-15 -2966 ((-663 |t#1|) $ (-1218 $))) (-15 -3690 (|t#1| $)) (-15 -3573 (|t#1| $)) (-15 -3452 (|t#1| $)) (-15 -3335 (|t#1| $)) (-15 -2301 ((-1218 |t#1|) $ (-1218 $))) (-15 -2301 ((-663 |t#1|) (-1218 $) (-1218 $))) (-15 -2402 ($ (-1218 |t#1|) (-1218 $))) (-15 -2275 (|t#1| (-1218 $))) (-15 -2149 (|t#1| (-1218 $))) (-15 -2033 ((-663 |t#1|) (-1218 $))) (-15 -3140 ((-663 |t#1|) (-1218 $))) (-15 -1303 ((-1131 |t#1|) $)) (-15 -4250 ((-1131 |t#1|) $)) (-15 -4156 ((-112))) (-15 -4057 ((-112))) (-15 -3948 ((-112))) (-15 -2014 ((-112))) (-15 -1924 ((-112))) (-15 -1834 ((-112))) (-15 -1739 ((-112))) (-15 -1649 ((-112))) (-15 -1575 ((-112))) (-15 -1475 ((-112))) (-15 -1377 ((-112))) (-15 -2662 ((-112))) (-15 -2578 ((-112))) (-15 -2486 ((-112))) (-15 -2385 ((-112))) (IF (|has| |t#1| (-539)) (PROGN (-15 -2537 ((-3 $ "failed") $)) (-15 -3593 ((-3 $ "failed") $)) (-15 -3480 ((-3 $ "failed") $)) (-15 -2310 ((-619 (-1218 |t#1|)))) (-15 -2205 ((-1131 |t#1|) $)) (-15 -2101 ((-1131 |t#1|) $)) (-15 -2580 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed"))) (-15 -2377 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed"))) (-15 -1283 ((-3 $ "failed"))) (-15 -4231 ((-3 $ "failed"))) (-15 -4104 ((-3 $ "failed"))) (-6 -4325)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-3603 (((-745)) 16)) (-3229 (($) 13)) (-1966 (((-890) $) 14)) (-1917 (((-1118) $) 9)) (-3479 (($ (-890)) 15)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) +(((-359) (-138)) (T -359)) +((-3603 (*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-745)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-359)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-890)))) (-3229 (*1 *1) (-4 *1 (-359)))) +(-13 (-1063) (-10 -8 (-15 -3603 ((-745))) (-15 -3479 ($ (-890))) (-15 -1966 ((-890) $)) (-15 -3229 ($)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3743 (((-663 |#2|) (-1218 $)) 40)) (-2402 (($ (-1218 |#2|) (-1218 $)) 34)) (-3653 (((-663 |#2|) $ (-1218 $)) 42)) (-3846 ((|#2| (-1218 $)) 13)) (-2301 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) 25))) +(((-360 |#1| |#2| |#3|) (-10 -8 (-15 -3743 ((-663 |#2|) (-1218 |#1|))) (-15 -3846 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3653 ((-663 |#2|) |#1| (-1218 |#1|)))) (-361 |#2| |#3|) (-169) (-1194 |#2|)) (T -360)) +NIL +(-10 -8 (-15 -3743 ((-663 |#2|) (-1218 |#1|))) (-15 -3846 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3653 ((-663 |#2|) |#1| (-1218 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3743 (((-663 |#1|) (-1218 $)) 44)) (-2890 ((|#1| $) 50)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2402 (($ (-1218 |#1|) (-1218 $)) 46)) (-3653 (((-663 |#1|) $ (-1218 $)) 51)) (-2537 (((-3 $ "failed") $) 32)) (-3107 (((-890)) 52)) (-4114 (((-112) $) 30)) (-1684 ((|#1| $) 49)) (-4213 ((|#2| $) 42 (|has| |#1| (-354)))) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3846 ((|#1| (-1218 $)) 45)) (-2301 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35)) (-3336 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3008 ((|#2| $) 43)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-361 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -361)) +((-3107 (*1 *2) (-12 (-4 *1 (-361 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-890)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *4)))) (-2301 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) (-4 *1 (-361 *4 *5)) (-4 *5 (-1194 *4)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *2 *4)) (-4 *4 (-1194 *2)) (-4 *2 (-169)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-4213 (*1 *2 *1) (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *3 (-354)) (-4 *2 (-1194 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3107 ((-890))) (-15 -3653 ((-663 |t#1|) $ (-1218 $))) (-15 -2890 (|t#1| $)) (-15 -1684 (|t#1| $)) (-15 -2301 ((-1218 |t#1|) $ (-1218 $))) (-15 -2301 ((-663 |t#1|) (-1218 $) (-1218 $))) (-15 -2402 ($ (-1218 |t#1|) (-1218 $))) (-15 -3846 (|t#1| (-1218 $))) (-15 -3743 ((-663 |t#1|) (-1218 $))) (-15 -3008 (|t#2| $)) (IF (|has| |t#1| (-354)) (-15 -4213 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3562 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2542 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2781 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2542 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3562 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1172) (-364 |#1|) (-1172) (-364 |#3|)) (T -362)) +((-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-4 *2 (-364 *5)) (-5 *1 (-362 *6 *4 *5 *2)) (-4 *4 (-364 *6)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-362 *5 *4 *2 *6)) (-4 *4 (-364 *5)) (-4 *6 (-364 *2)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *2 (-364 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) +(-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2542 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3562 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2951 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2765 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3180 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3048 (($ $) 25)) (-2867 (((-547) (-1 (-112) |#2|) $) NIL) (((-547) |#2| $) 11) (((-547) |#2| $ (-547)) NIL)) (-1294 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-363 |#1| |#2|) (-10 -8 (-15 -2765 (|#1| |#1|)) (-15 -2765 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2867 ((-547) |#2| |#1| (-547))) (-15 -2867 ((-547) |#2| |#1|)) (-15 -2867 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2951 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3048 (|#1| |#1|)) (-15 -1294 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-364 |#2|) (-1172)) (T -363)) +NIL +(-10 -8 (-15 -2765 (|#1| |#1|)) (-15 -2765 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2867 ((-547) |#2| |#1| (-547))) (-15 -2867 ((-547) |#2| |#1|)) (-15 -2867 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2951 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3180 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3048 (|#1| |#1|)) (-15 -1294 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4329))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-2034 (($ $) 90 (|has| $ (-6 -4329)))) (-3048 (($ $) 100)) (-3664 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 51)) (-2867 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 87 (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 86 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 42 (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2418 (($ $ |#1|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1185 (-547))) 63)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 91 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 70)) (-1935 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2421 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 82 (|has| |#1| (-821)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-364 |#1|) (-138) (-1172)) (T -364)) +((-1294 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1172)))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1172)))) (-3180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1172)))) (-2951 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-364 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-2867 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-364 *4)) (-4 *4 (-1172)) (-5 *2 (-547)))) (-2867 (*1 *2 *3 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-547)))) (-2867 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-364 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1172)) (-4 *3 (-821)) (-5 *2 (-112)))) (-2861 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-547)) (|has| *1 (-6 -4329)) (-4 *1 (-364 *3)) (-4 *3 (-1172)))) (-2034 (*1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-364 *2)) (-4 *2 (-1172)))) (-2765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4329)) (-4 *1 (-364 *3)) (-4 *3 (-1172)))) (-2765 (*1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-364 *2)) (-4 *2 (-1172)) (-4 *2 (-821))))) +(-13 (-625 |t#1|) (-10 -8 (-6 -4328) (-15 -1294 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3048 ($ $)) (-15 -3180 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2951 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2867 ((-547) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -2867 ((-547) |t#1| $)) (-15 -2867 ((-547) |t#1| $ (-547)))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-6 (-821)) (-15 -1294 ($ $ $)) (-15 -3180 ($ $)) (-15 -2951 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4329)) (PROGN (-15 -2861 ($ $ $ (-547))) (-15 -2034 ($ $)) (-15 -2765 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-821)) (-15 -2765 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3292 (((-619 |#1|) $) 32)) (-1505 (($ $ (-745)) 33)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2317 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 36)) (-2074 (($ $) 34)) (-2439 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 37)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2670 (($ $ |#1| $) 31) (($ $ (-619 |#1|) (-619 $)) 30)) (-1618 (((-745) $) 38)) (-3841 (($ $ $) 29)) (-3834 (((-832) $) 11) (($ |#1|) 41) (((-1233 |#1| |#2|) $) 40) (((-1242 |#1| |#2|) $) 39)) (-1557 ((|#2| (-1242 |#1| |#2|) $) 42)) (-3267 (($) 18 T CONST)) (-3042 (($ (-646 |#1|)) 35)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#2|) 28 (|has| |#2| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-365 |#1| |#2|) (-138) (-821) (-169)) (T -365)) +((-1557 (*1 *2 *3 *1) (-12 (-5 *3 (-1242 *4 *2)) (-4 *1 (-365 *4 *2)) (-4 *4 (-821)) (-4 *2 (-169)))) (-3834 (*1 *1 *2) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1233 *3 *4)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1242 *3 *4)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-745)))) (-2439 (*1 *2 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2317 (*1 *2 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3042 (*1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-365 *3 *4)) (-4 *4 (-169)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-1505 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-619 *3)))) (-2670 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-821)) (-4 *5 (-169))))) +(-13 (-610 |t#2|) (-10 -8 (-15 -1557 (|t#2| (-1242 |t#1| |t#2|) $)) (-15 -3834 ($ |t#1|)) (-15 -3834 ((-1233 |t#1| |t#2|) $)) (-15 -3834 ((-1242 |t#1| |t#2|) $)) (-15 -1618 ((-745) $)) (-15 -2439 ((-1242 |t#1| |t#2|) (-1242 |t#1| |t#2|) $)) (-15 -2317 ((-1242 |t#1| |t#2|) (-1242 |t#1| |t#2|) $)) (-15 -3042 ($ (-646 |t#1|))) (-15 -2074 ($ $)) (-15 -1505 ($ $ (-745))) (-15 -3292 ((-619 |t#1|) $)) (-15 -2670 ($ $ |t#1| $)) (-15 -2670 ($ $ (-619 |t#1|) (-619 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#2|) . T) ((-610 |#2|) . T) ((-692 |#2|) . T) ((-1022 |#2|) . T) ((-1063) . T)) +((-2161 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3133 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3230 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-366 |#1| |#2|) (-10 -7 (-15 -3133 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3230 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2161 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1172) (-13 (-364 |#1|) (-10 -7 (-6 -4329)))) (T -366)) +((-2161 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329)))))) (-3230 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329)))))) (-3133 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-366 *4 *2)) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329))))))) +(-10 -7 (-15 -3133 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3230 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2161 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-4238 (((-663 |#2|) (-663 $)) NIL) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 22) (((-663 (-547)) (-663 $)) 14))) +(((-367 |#1| |#2|) (-10 -8 (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 |#2|) (-663 |#1|)))) (-368 |#2|) (-1016)) (T -367)) +NIL +(-10 -8 (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 |#2|) (-663 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-4238 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 33) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 41 (|has| |#1| (-615 (-547)))) (((-663 (-547)) (-663 $)) 40 (|has| |#1| (-615 (-547))))) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-368 |#1|) (-138) (-1016)) (T -368)) +NIL +(-13 (-615 |t#1|) (-10 -7 (IF (|has| |t#1| (-615 (-547))) (-6 (-615 (-547))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-1886 (((-619 (-285 (-921 (-166 |#1|)))) (-285 (-398 (-921 (-166 (-547))))) |#1|) 51) (((-619 (-285 (-921 (-166 |#1|)))) (-398 (-921 (-166 (-547)))) |#1|) 50) (((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-285 (-398 (-921 (-166 (-547)))))) |#1|) 47) (((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-398 (-921 (-166 (-547))))) |#1|) 41)) (-1995 (((-619 (-619 (-166 |#1|))) (-619 (-398 (-921 (-166 (-547))))) (-619 (-1135)) |#1|) 30) (((-619 (-166 |#1|)) (-398 (-921 (-166 (-547)))) |#1|) 18))) +(((-369 |#1|) (-10 -7 (-15 -1886 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -1886 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-285 (-398 (-921 (-166 (-547)))))) |#1|)) (-15 -1886 ((-619 (-285 (-921 (-166 |#1|)))) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -1886 ((-619 (-285 (-921 (-166 |#1|)))) (-285 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -1995 ((-619 (-166 |#1|)) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -1995 ((-619 (-619 (-166 |#1|))) (-619 (-398 (-921 (-166 (-547))))) (-619 (-1135)) |#1|))) (-13 (-354) (-819))) (T -369)) +((-1995 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547)))))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-166 *5)))) (-5 *1 (-369 *5)) (-4 *5 (-13 (-354) (-819))))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-166 (-547))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 (-166 (-547)))))) (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-166 (-547))))) (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-285 (-398 (-921 (-166 (-547))))))) (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547)))))) (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819)))))) +(-10 -7 (-15 -1886 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -1886 ((-619 (-619 (-285 (-921 (-166 |#1|))))) (-619 (-285 (-398 (-921 (-166 (-547)))))) |#1|)) (-15 -1886 ((-619 (-285 (-921 (-166 |#1|)))) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -1886 ((-619 (-285 (-921 (-166 |#1|)))) (-285 (-398 (-921 (-166 (-547))))) |#1|)) (-15 -1995 ((-619 (-166 |#1|)) (-398 (-921 (-166 (-547)))) |#1|)) (-15 -1995 ((-619 (-619 (-166 |#1|))) (-619 (-398 (-921 (-166 (-547))))) (-619 (-1135)) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 33)) (-2673 (((-547) $) 55)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3643 (($ $) 110)) (-1648 (($ $) 82)) (-1498 (($ $) 71)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2118 (($ $) 44)) (-2873 (((-112) $ $) NIL)) (-1624 (($ $) 80)) (-1473 (($ $) 69)) (-3807 (((-547) $) 64)) (-1302 (($ $ (-547)) 62)) (-1670 (($ $) NIL)) (-1526 (($ $) NIL)) (-3219 (($) NIL T CONST)) (-2446 (($ $) 112)) (-2698 (((-3 (-547) "failed") $) 189) (((-3 (-398 (-547)) "failed") $) 185)) (-2643 (((-547) $) 187) (((-398 (-547)) $) 183)) (-2079 (($ $ $) NIL)) (-1769 (((-547) $ $) 102)) (-2537 (((-3 $ "failed") $) 114)) (-1654 (((-398 (-547)) $ (-745)) 190) (((-398 (-547)) $ (-745) (-745)) 182)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3225 (((-890)) 73) (((-890) (-890)) 98 (|has| $ (-6 -4319)))) (-3848 (((-112) $) 106)) (-1413 (($) 40)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL)) (-2285 (((-1223) (-745)) 152)) (-2414 (((-1223)) 157) (((-1223) (-745)) 158)) (-2652 (((-1223)) 159) (((-1223) (-745)) 160)) (-2538 (((-1223)) 155) (((-1223) (-745)) 156)) (-3707 (((-547) $) 58)) (-4114 (((-112) $) 104)) (-1311 (($ $ (-547)) NIL)) (-3530 (($ $) 48)) (-1684 (($ $) NIL)) (-3937 (((-112) $) 35)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL) (($) NIL (-12 (-3998 (|has| $ (-6 -4311))) (-3998 (|has| $ (-6 -4319)))))) (-3563 (($ $ $) NIL) (($) 99 (-12 (-3998 (|has| $ (-6 -4311))) (-3998 (|has| $ (-6 -4319)))))) (-1448 (((-547) $) 17)) (-1533 (($) 87) (($ $) 92)) (-2289 (($) 91) (($ $) 93)) (-3620 (($ $) 83)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 116)) (-3880 (((-890) (-547)) 43 (|has| $ (-6 -4319)))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) 53)) (-1435 (($ $) 109)) (-1347 (($ (-547) (-547)) 107) (($ (-547) (-547) (-890)) 108)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4248 (((-547) $) 19)) (-2740 (($) 94)) (-2703 (($ $) 79)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2871 (((-890)) 100) (((-890) (-890)) 101 (|has| $ (-6 -4319)))) (-3443 (($ $ (-745)) NIL) (($ $) 115)) (-3810 (((-890) (-547)) 47 (|has| $ (-6 -4319)))) (-1681 (($ $) NIL)) (-1539 (($ $) NIL)) (-1659 (($ $) NIL)) (-1513 (($ $) NIL)) (-1635 (($ $) 81)) (-1488 (($ $) 70)) (-2829 (((-370) $) 175) (((-217) $) 177) (((-861 (-370)) $) NIL) (((-1118) $) 162) (((-523) $) 173) (($ (-217)) 181)) (-3834 (((-832) $) 164) (($ (-547)) 186) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-547)) 186) (($ (-398 (-547))) NIL) (((-217) $) 178)) (-2311 (((-745)) NIL)) (-1564 (($ $) 111)) (-3936 (((-890)) 54) (((-890) (-890)) 66 (|has| $ (-6 -4319)))) (-1849 (((-890)) 103)) (-1717 (($ $) 86)) (-1574 (($ $) 46) (($ $ $) 52)) (-1932 (((-112) $ $) NIL)) (-1693 (($ $) 84)) (-1550 (($ $) 37)) (-1741 (($ $) NIL)) (-1597 (($ $) NIL)) (-1918 (($ $) NIL)) (-1610 (($ $) NIL)) (-1729 (($ $) NIL)) (-1586 (($ $) NIL)) (-1706 (($ $) 85)) (-1563 (($ $) 49)) (-2040 (($ $) 51)) (-3267 (($) 34 T CONST)) (-3277 (($) 38 T CONST)) (-2083 (((-1118) $) 27) (((-1118) $ (-112)) 29) (((-1223) (-796) $) 30) (((-1223) (-796) $ (-112)) 31)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 39)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 42)) (-2497 (($ $ $) 45) (($ $ (-547)) 41)) (-2484 (($ $) 36) (($ $ $) 50)) (-2470 (($ $ $) 61)) (** (($ $ (-890)) 67) (($ $ (-745)) NIL) (($ $ (-547)) 88) (($ $ (-398 (-547))) 125) (($ $ $) 117)) (* (($ (-890) $) 65) (($ (-745) $) NIL) (($ (-547) $) 68) (($ $ $) 60) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-370) (-13 (-395) (-225) (-592 (-1118)) (-802) (-591 (-217)) (-1157) (-592 (-523)) (-10 -8 (-15 -2497 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -3530 ($ $)) (-15 -1769 ((-547) $ $)) (-15 -1302 ($ $ (-547))) (-15 -1654 ((-398 (-547)) $ (-745))) (-15 -1654 ((-398 (-547)) $ (-745) (-745))) (-15 -1533 ($)) (-15 -2289 ($)) (-15 -2740 ($)) (-15 -1574 ($ $ $)) (-15 -1533 ($ $)) (-15 -2289 ($ $)) (-15 -2829 ($ (-217))) (-15 -2652 ((-1223))) (-15 -2652 ((-1223) (-745))) (-15 -2538 ((-1223))) (-15 -2538 ((-1223) (-745))) (-15 -2414 ((-1223))) (-15 -2414 ((-1223) (-745))) (-15 -2285 ((-1223) (-745))) (-6 -4319) (-6 -4311)))) (T -370)) +((** (*1 *1 *1 *1) (-5 *1 (-370))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) (-3530 (*1 *1 *1) (-5 *1 (-370))) (-1769 (*1 *2 *1 *1) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) (-1302 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370)))) (-1654 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370)))) (-1533 (*1 *1) (-5 *1 (-370))) (-2289 (*1 *1) (-5 *1 (-370))) (-2740 (*1 *1) (-5 *1 (-370))) (-1574 (*1 *1 *1 *1) (-5 *1 (-370))) (-1533 (*1 *1 *1) (-5 *1 (-370))) (-2289 (*1 *1 *1) (-5 *1 (-370))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-370)))) (-2652 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-370)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370)))) (-2538 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-370)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370)))) (-2414 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-370)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370))))) +(-13 (-395) (-225) (-592 (-1118)) (-802) (-591 (-217)) (-1157) (-592 (-523)) (-10 -8 (-15 -2497 ($ $ (-547))) (-15 ** ($ $ $)) (-15 -3530 ($ $)) (-15 -1769 ((-547) $ $)) (-15 -1302 ($ $ (-547))) (-15 -1654 ((-398 (-547)) $ (-745))) (-15 -1654 ((-398 (-547)) $ (-745) (-745))) (-15 -1533 ($)) (-15 -2289 ($)) (-15 -2740 ($)) (-15 -1574 ($ $ $)) (-15 -1533 ($ $)) (-15 -2289 ($ $)) (-15 -2829 ($ (-217))) (-15 -2652 ((-1223))) (-15 -2652 ((-1223) (-745))) (-15 -2538 ((-1223))) (-15 -2538 ((-1223) (-745))) (-15 -2414 ((-1223))) (-15 -2414 ((-1223) (-745))) (-15 -2285 ((-1223) (-745))) (-6 -4319) (-6 -4311))) +((-3571 (((-619 (-285 (-921 |#1|))) (-285 (-398 (-921 (-547)))) |#1|) 46) (((-619 (-285 (-921 |#1|))) (-398 (-921 (-547))) |#1|) 45) (((-619 (-619 (-285 (-921 |#1|)))) (-619 (-285 (-398 (-921 (-547))))) |#1|) 42) (((-619 (-619 (-285 (-921 |#1|)))) (-619 (-398 (-921 (-547)))) |#1|) 36)) (-1998 (((-619 |#1|) (-398 (-921 (-547))) |#1|) 20) (((-619 (-619 |#1|)) (-619 (-398 (-921 (-547)))) (-619 (-1135)) |#1|) 30))) +(((-371 |#1|) (-10 -7 (-15 -3571 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-398 (-921 (-547)))) |#1|)) (-15 -3571 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-285 (-398 (-921 (-547))))) |#1|)) (-15 -3571 ((-619 (-285 (-921 |#1|))) (-398 (-921 (-547))) |#1|)) (-15 -3571 ((-619 (-285 (-921 |#1|))) (-285 (-398 (-921 (-547)))) |#1|)) (-15 -1998 ((-619 (-619 |#1|)) (-619 (-398 (-921 (-547)))) (-619 (-1135)) |#1|)) (-15 -1998 ((-619 |#1|) (-398 (-921 (-547))) |#1|))) (-13 (-819) (-354))) (T -371)) +((-1998 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-1998 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-398 (-921 (-547))))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 *5))) (-5 *1 (-371 *5)) (-4 *5 (-13 (-819) (-354))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 (-547))))) (-5 *2 (-619 (-285 (-921 *4)))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 (-285 (-921 *4)))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-285 (-398 (-921 (-547)))))) (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 (-547))))) (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354)))))) +(-10 -7 (-15 -3571 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-398 (-921 (-547)))) |#1|)) (-15 -3571 ((-619 (-619 (-285 (-921 |#1|)))) (-619 (-285 (-398 (-921 (-547))))) |#1|)) (-15 -3571 ((-619 (-285 (-921 |#1|))) (-398 (-921 (-547))) |#1|)) (-15 -3571 ((-619 (-285 (-921 |#1|))) (-285 (-398 (-921 (-547)))) |#1|)) (-15 -1998 ((-619 (-619 |#1|)) (-619 (-398 (-921 (-547)))) (-619 (-1135)) |#1|)) (-15 -1998 ((-619 |#1|) (-398 (-921 (-547))) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) 26)) (-2643 ((|#2| $) 28)) (-2054 (($ $) NIL)) (-3570 (((-745) $) 10)) (-1744 (((-619 $) $) 20)) (-2187 (((-112) $) NIL)) (-3513 (($ |#2| |#1|) 18)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2128 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2013 ((|#2| $) 15)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 45) (($ |#2|) 27)) (-2472 (((-619 |#1|) $) 17)) (-3338 ((|#1| $ |#2|) 47)) (-3267 (($) 29 T CONST)) (-3853 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-372 |#1| |#2|) (-13 (-373 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1016) (-821)) (T -372)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821))))) +(-13 (-373 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#2| "failed") $) 44)) (-2643 ((|#2| $) 43)) (-2054 (($ $) 30)) (-3570 (((-745) $) 34)) (-1744 (((-619 $) $) 35)) (-2187 (((-112) $) 38)) (-3513 (($ |#2| |#1|) 39)) (-2781 (($ (-1 |#1| |#1|) $) 40)) (-2128 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2013 ((|#2| $) 33)) (-2027 ((|#1| $) 32)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ |#2|) 45)) (-2472 (((-619 |#1|) $) 36)) (-3338 ((|#1| $ |#2|) 41)) (-3267 (($) 18 T CONST)) (-3853 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-373 |#1| |#2|) (-138) (-1016) (-1063)) (T -373)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) (-3338 (*1 *2 *1 *3) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)))) (-3513 (*1 *1 *2 *3) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-1744 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-373 *3 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-745)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2054 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063))))) +(-13 (-111 |t#1| |t#1|) (-1007 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3338 (|t#1| $ |t#2|)) (-15 -2781 ($ (-1 |t#1| |t#1|) $)) (-15 -3513 ($ |t#2| |t#1|)) (-15 -2187 ((-112) $)) (-15 -3853 ((-619 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2472 ((-619 |t#1|) $)) (-15 -1744 ((-619 $) $)) (-15 -3570 ((-745) $)) (-15 -2013 (|t#2| $)) (-15 -2027 (|t#1| $)) (-15 -2128 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2054 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-692 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) |has| |#1| (-169)) ((-1007 |#2|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3304 (((-1223) $) 7)) (-3834 (((-832) $) 8) (($ (-663 (-673))) 14) (($ (-619 (-321))) 13) (($ (-321)) 12) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 11))) +(((-374) (-138)) (T -374)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-374)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-374)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-374)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) (-4 *1 (-374))))) +(-13 (-386) (-10 -8 (-15 -3834 ($ (-663 (-673)))) (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-321))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))))) +(((-591 (-832)) . T) ((-386) . T) ((-1172) . T)) +((-2698 (((-3 $ "failed") (-663 (-307 (-370)))) 21) (((-3 $ "failed") (-663 (-307 (-547)))) 19) (((-3 $ "failed") (-663 (-921 (-370)))) 17) (((-3 $ "failed") (-663 (-921 (-547)))) 15) (((-3 $ "failed") (-663 (-398 (-921 (-370))))) 13) (((-3 $ "failed") (-663 (-398 (-921 (-547))))) 11)) (-2643 (($ (-663 (-307 (-370)))) 22) (($ (-663 (-307 (-547)))) 20) (($ (-663 (-921 (-370)))) 18) (($ (-663 (-921 (-547)))) 16) (($ (-663 (-398 (-921 (-370))))) 14) (($ (-663 (-398 (-921 (-547))))) 12)) (-3304 (((-1223) $) 7)) (-3834 (((-832) $) 8) (($ (-619 (-321))) 25) (($ (-321)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 23))) (((-375) (-138)) (T -375)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-375)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-375)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-375)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-375))))) -(-13 (-387) (-10 -8 (-15 -3743 ($ (-663 (-673)))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))))) -(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) -((-2441 (((-3 $ "failed") (-663 (-308 (-371)))) 21) (((-3 $ "failed") (-663 (-308 (-548)))) 19) (((-3 $ "failed") (-663 (-921 (-371)))) 17) (((-3 $ "failed") (-663 (-921 (-548)))) 15) (((-3 $ "failed") (-663 (-399 (-921 (-371))))) 13) (((-3 $ "failed") (-663 (-399 (-921 (-548))))) 11)) (-2375 (($ (-663 (-308 (-371)))) 22) (($ (-663 (-308 (-548)))) 20) (($ (-663 (-921 (-371)))) 18) (($ (-663 (-921 (-548)))) 16) (($ (-663 (-399 (-921 (-371))))) 14) (($ (-663 (-399 (-921 (-548))))) 12)) (-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-619 (-322))) 25) (($ (-322)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 23))) -(((-376) (-138)) (T -376)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-376)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-376)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376))))) -(-13 (-387) (-10 -8 (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -2375 ($ (-663 (-308 (-371))))) (-15 -2441 ((-3 $ "failed") (-663 (-308 (-371))))) (-15 -2375 ($ (-663 (-308 (-548))))) (-15 -2441 ((-3 $ "failed") (-663 (-308 (-548))))) (-15 -2375 ($ (-663 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-663 (-921 (-371))))) (-15 -2375 ($ (-663 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-663 (-921 (-548))))) (-15 -2375 ($ (-663 (-399 (-921 (-371)))))) (-15 -2441 ((-3 $ "failed") (-663 (-399 (-921 (-371)))))) (-15 -2375 ($ (-663 (-399 (-921 (-548)))))) (-15 -2441 ((-3 $ "failed") (-663 (-399 (-921 (-548)))))))) -(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 28)) (-3107 (($) 12 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-377 |#1| |#2|) (-13 (-111 |#1| |#1|) (-499 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) (-1016) (-821)) (T -377)) -NIL -(-13 (-111 |#1| |#1|) (-499 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3423 (((-745) $) 59)) (-3030 (($) NIL T CONST)) (-2448 (((-3 $ "failed") $ $) 61)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3245 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2266 (((-112) $) 15)) (-3224 ((|#1| $ (-548)) NIL)) (-3235 (((-745) $ (-548)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-1628 (($ (-1 |#1| |#1|) $) 38)) (-3442 (($ (-1 (-745) (-745)) $) 35)) (-2459 (((-3 $ "failed") $ $) 50)) (-2546 (((-1118) $) NIL)) (-3257 (($ $ $) 26)) (-3269 (($ $ $) 24)) (-3932 (((-1082) $) NIL)) (-3213 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $) 32)) (-3209 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3743 (((-832) $) 22) (($ |#1|) NIL)) (-3118 (($) 9 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 41)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) 63 (|has| |#1| (-821)))) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-378 |#1|) (-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-745) (-745)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -378)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3269 (*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-2459 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3209 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-378 *3)) (|:| |rm| (-378 *3)))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3245 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-378 *3)) (|:| |mm| (-378 *3)) (|:| |rm| (-378 *3)))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-378 *4)) (-4 *4 (-1063)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-378 *3))))) -(-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3442 ($ (-1 (-745) (-745)) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 45)) (-2375 (((-548) $) 44)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-1795 (($ $ $) 52)) (-3091 (($ $ $) 51)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-548)) 46)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 49)) (-2241 (((-112) $ $) 48)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 50)) (-2234 (((-112) $ $) 47)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-379) (-138)) (T -379)) -NIL -(-13 (-540) (-821) (-1007 (-548))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-1007 (-548)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3188 (((-112) $) 20)) (-3201 (((-112) $) 19)) (-3550 (($ (-1118) (-1118) (-1118)) 21)) (-2275 (((-1118) $) 16)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3177 (($ (-1118) (-1118) (-1118)) 14)) (-3226 (((-1118) $) 17)) (-3215 (((-112) $) 18)) (-3283 (((-1118) $) 15)) (-3743 (((-832) $) 12) (($ (-1118)) 13) (((-1118) $) 9)) (-2214 (((-112) $ $) 7))) -(((-380) (-381)) (T -380)) -NIL -(-381) -((-3730 (((-112) $ $) 7)) (-3188 (((-112) $) 14)) (-3201 (((-112) $) 15)) (-3550 (($ (-1118) (-1118) (-1118)) 13)) (-2275 (((-1118) $) 18)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3177 (($ (-1118) (-1118) (-1118)) 20)) (-3226 (((-1118) $) 17)) (-3215 (((-112) $) 16)) (-3283 (((-1118) $) 19)) (-3743 (((-832) $) 11) (($ (-1118)) 22) (((-1118) $) 21)) (-2214 (((-112) $ $) 6))) -(((-381) (-138)) (T -381)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-3177 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112)))) (-3550 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-1118))) (-15 -3743 ((-1118) $)) (-15 -3177 ($ (-1118) (-1118) (-1118))) (-15 -3283 ((-1118) $)) (-15 -2275 ((-1118) $)) (-15 -3226 ((-1118) $)) (-15 -3215 ((-112) $)) (-15 -3201 ((-112) $)) (-15 -3188 ((-112) $)) (-15 -3550 ($ (-1118) (-1118) (-1118))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3237 (((-832) $) 50)) (-3030 (($) NIL T CONST)) (-2246 (($ $ (-890)) NIL)) (-2468 (($ $ (-890)) NIL)) (-3424 (($ $ (-890)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($ (-745)) 26)) (-3402 (((-745)) 17)) (-3248 (((-832) $) 52)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) NIL)) (-3664 (($ $ $ $) NIL)) (-3639 (($ $ $) NIL)) (-3107 (($) 20 T CONST)) (-2214 (((-112) $ $) 28)) (-2299 (($ $) 34) (($ $ $) 36)) (-2290 (($ $ $) 37)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-382 |#1| |#2| |#3|) (-13 (-719 |#3|) (-10 -8 (-15 -3402 ((-745))) (-15 -3248 ((-832) $)) (-15 -3237 ((-832) $)) (-15 -4160 ($ (-745))))) (-745) (-745) (-169)) (T -382)) -((-3402 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) -(-13 (-719 |#3|) (-10 -8 (-15 -3402 ((-745))) (-15 -3248 ((-832) $)) (-15 -3237 ((-832) $)) (-15 -4160 ($ (-745))))) -((-3284 (((-1118)) 10)) (-3272 (((-1107 (-1118))) 28)) (-3873 (((-1223) (-1118)) 25) (((-1223) (-380)) 24)) (-3885 (((-1223)) 26)) (-3260 (((-1107 (-1118))) 27))) -(((-383) (-10 -7 (-15 -3260 ((-1107 (-1118)))) (-15 -3272 ((-1107 (-1118)))) (-15 -3885 ((-1223))) (-15 -3873 ((-1223) (-380))) (-15 -3873 ((-1223) (-1118))) (-15 -3284 ((-1118))))) (T -383)) -((-3284 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-383)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-383)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-383)))) (-3885 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-383)))) (-3272 (*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383)))) (-3260 (*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383))))) -(-10 -7 (-15 -3260 ((-1107 (-1118)))) (-15 -3272 ((-1107 (-1118)))) (-15 -3885 ((-1223))) (-15 -3873 ((-1223) (-380))) (-15 -3873 ((-1223) (-1118))) (-15 -3284 ((-1118)))) -((-1672 (((-745) (-328 |#1| |#2| |#3| |#4|)) 16))) -(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|)))) (-13 (-360) (-355)) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -384)) -((-1672 (*1 *2 *3) (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-360) (-355))) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *7 (-334 *4 *5 *6)) (-5 *2 (-745)) (-5 *1 (-384 *4 *5 *6 *7))))) -(-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|)))) -((-3743 (((-386) |#1|) 11))) -(((-385 |#1|) (-10 -7 (-15 -3743 ((-386) |#1|))) (-1063)) (T -385)) -((-3743 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-385 *3)) (-4 *3 (-1063))))) -(-10 -7 (-15 -3743 ((-386) |#1|))) -((-3730 (((-112) $ $) NIL)) (-2572 (((-619 (-1118)) $ (-619 (-1118))) 38)) (-3295 (((-619 (-1118)) $ (-619 (-1118))) 39)) (-2590 (((-619 (-1118)) $ (-619 (-1118))) 40)) (-2601 (((-619 (-1118)) $) 35)) (-3550 (($) 23)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4163 (((-619 (-1118)) $) 36)) (-2611 (((-619 (-1118)) $) 37)) (-2487 (((-1223) $ (-548)) 33) (((-1223) $) 34)) (-2591 (($ (-832) (-548)) 30)) (-3743 (((-832) $) 42) (($ (-832)) 25)) (-2214 (((-112) $ $) NIL))) -(((-386) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -4163 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -3295 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118))))))) (T -386)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-386)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-386)))) (-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-386)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-386)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-3550 (*1 *1) (-5 *1 (-386))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-2590 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-3295 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) (-2572 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -4163 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -3295 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118)))))) -((-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8))) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-375)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-375)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) (-4 *1 (-375)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375))))) +(-13 (-386) (-10 -8 (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-321))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))) (-15 -2643 ($ (-663 (-307 (-370))))) (-15 -2698 ((-3 $ "failed") (-663 (-307 (-370))))) (-15 -2643 ($ (-663 (-307 (-547))))) (-15 -2698 ((-3 $ "failed") (-663 (-307 (-547))))) (-15 -2643 ($ (-663 (-921 (-370))))) (-15 -2698 ((-3 $ "failed") (-663 (-921 (-370))))) (-15 -2643 ($ (-663 (-921 (-547))))) (-15 -2698 ((-3 $ "failed") (-663 (-921 (-547))))) (-15 -2643 ($ (-663 (-398 (-921 (-370)))))) (-15 -2698 ((-3 $ "failed") (-663 (-398 (-921 (-370)))))) (-15 -2643 ($ (-663 (-398 (-921 (-547)))))) (-15 -2698 ((-3 $ "failed") (-663 (-398 (-921 (-547)))))))) +(((-591 (-832)) . T) ((-386) . T) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2229 (($ |#1| |#2|) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1954 ((|#2| $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 28)) (-3267 (($) 12 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-376 |#1| |#2|) (-13 (-111 |#1| |#1|) (-498 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) (-1016) (-821)) (T -376)) +NIL +(-13 (-111 |#1| |#1|) (-498 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-692 |#1|)) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-3603 (((-745) $) 59)) (-3219 (($) NIL T CONST)) (-2317 (((-3 $ "failed") $ $) 61)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1470 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-4114 (((-112) $) 15)) (-2598 ((|#1| $ (-547)) NIL)) (-1359 (((-745) $ (-547)) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-3270 (($ (-1 |#1| |#1|) $) 38)) (-2754 (($ (-1 (-745) (-745)) $) 35)) (-2439 (((-3 $ "failed") $ $) 50)) (-1917 (((-1118) $) NIL)) (-1596 (($ $ $) 26)) (-1727 (($ $ $) 24)) (-3979 (((-1082) $) NIL)) (-2483 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $) 32)) (-2468 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-3834 (((-832) $) 22) (($ |#1|) NIL)) (-3277 (($) 9 T CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 41)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) 63 (|has| |#1| (-821)))) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-377 |#1|) (-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -1727 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -2439 ((-3 $ "failed") $ $)) (-15 -2317 ((-3 $ "failed") $ $)) (-15 -2468 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1470 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3603 ((-745) $)) (-15 -2483 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $)) (-15 -1359 ((-745) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -2754 ($ (-1 (-745) (-745)) $)) (-15 -3270 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) (-1063)) (T -377)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-1727 (*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-1596 (*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-2439 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-2317 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-2468 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-377 *3)) (|:| |rm| (-377 *3)))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-1470 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-377 *3)) (|:| |mm| (-377 *3)) (|:| |rm| (-377 *3)))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 (-745))))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-377 *4)) (-4 *4 (-1063)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-377 *2)) (-4 *2 (-1063)))) (-2754 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) (-3270 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-377 *3))))) +(-13 (-701) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -1727 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -2439 ((-3 $ "failed") $ $)) (-15 -2317 ((-3 $ "failed") $ $)) (-15 -2468 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1470 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3603 ((-745) $)) (-15 -2483 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $)) (-15 -1359 ((-745) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -2754 ($ (-1 (-745) (-745)) $)) (-15 -3270 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-821)) (-6 (-821)) |%noBranch|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 45)) (-2643 (((-547) $) 44)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-2847 (($ $ $) 52)) (-3563 (($ $ $) 51)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ $) 40)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-547)) 46)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 49)) (-2408 (((-112) $ $) 48)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 50)) (-2396 (((-112) $ $) 47)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-378) (-138)) (T -378)) +NIL +(-13 (-539) (-821) (-1007 (-547))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-1007 (-547)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-2255 (((-112) $) 20)) (-2383 (((-112) $) 19)) (-3732 (($ (-1118) (-1118) (-1118)) 21)) (-2464 (((-1118) $) 16)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3343 (($ (-1118) (-1118) (-1118)) 14)) (-2622 (((-1118) $) 17)) (-2507 (((-112) $) 18)) (-4063 (((-1118) $) 15)) (-3834 (((-832) $) 12) (($ (-1118)) 13) (((-1118) $) 9)) (-2371 (((-112) $ $) 7))) +(((-379) (-380)) (T -379)) +NIL +(-380) +((-3821 (((-112) $ $) 7)) (-2255 (((-112) $) 14)) (-2383 (((-112) $) 15)) (-3732 (($ (-1118) (-1118) (-1118)) 13)) (-2464 (((-1118) $) 18)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3343 (($ (-1118) (-1118) (-1118)) 20)) (-2622 (((-1118) $) 17)) (-2507 (((-112) $) 16)) (-4063 (((-1118) $) 19)) (-3834 (((-832) $) 11) (($ (-1118)) 22) (((-1118) $) 21)) (-2371 (((-112) $ $) 6))) +(((-380) (-138)) (T -380)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-380)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118)))) (-3343 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-380)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112)))) (-3732 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-380))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-1118))) (-15 -3834 ((-1118) $)) (-15 -3343 ($ (-1118) (-1118) (-1118))) (-15 -4063 ((-1118) $)) (-15 -2464 ((-1118) $)) (-15 -2622 ((-1118) $)) (-15 -2507 ((-112) $)) (-15 -2383 ((-112) $)) (-15 -2255 ((-112) $)) (-15 -3732 ($ (-1118) (-1118) (-1118))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-1375 (((-832) $) 50)) (-3219 (($) NIL T CONST)) (-3946 (($ $ (-890)) NIL)) (-2530 (($ $ (-890)) NIL)) (-3699 (($ $ (-890)) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-4240 (($ (-745)) 26)) (-3512 (((-745)) 17)) (-1497 (((-832) $) 52)) (-4121 (($ $ $) NIL)) (-3834 (((-832) $) NIL)) (-4225 (($ $ $ $) NIL)) (-4007 (($ $ $) NIL)) (-3267 (($) 20 T CONST)) (-2371 (((-112) $ $) 28)) (-2484 (($ $) 34) (($ $ $) 36)) (-2470 (($ $ $) 37)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-381 |#1| |#2| |#3|) (-13 (-719 |#3|) (-10 -8 (-15 -3512 ((-745))) (-15 -1497 ((-832) $)) (-15 -1375 ((-832) $)) (-15 -4240 ($ (-745))))) (-745) (-745) (-169)) (T -381)) +((-3512 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-169)))) (-4240 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) +(-13 (-719 |#3|) (-10 -8 (-15 -3512 ((-745))) (-15 -1497 ((-832) $)) (-15 -1375 ((-832) $)) (-15 -4240 ($ (-745))))) +((-1878 (((-1118)) 10)) (-1761 (((-1107 (-1118))) 28)) (-3283 (((-1223) (-1118)) 25) (((-1223) (-379)) 24)) (-3291 (((-1223)) 26)) (-1632 (((-1107 (-1118))) 27))) +(((-382) (-10 -7 (-15 -1632 ((-1107 (-1118)))) (-15 -1761 ((-1107 (-1118)))) (-15 -3291 ((-1223))) (-15 -3283 ((-1223) (-379))) (-15 -3283 ((-1223) (-1118))) (-15 -1878 ((-1118))))) (T -382)) +((-1878 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-382)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-382)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1223)) (-5 *1 (-382)))) (-3291 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-382)))) (-1761 (*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-382)))) (-1632 (*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-382))))) +(-10 -7 (-15 -1632 ((-1107 (-1118)))) (-15 -1761 ((-1107 (-1118)))) (-15 -3291 ((-1223))) (-15 -3283 ((-1223) (-379))) (-15 -3283 ((-1223) (-1118))) (-15 -1878 ((-1118)))) +((-3707 (((-745) (-327 |#1| |#2| |#3| |#4|)) 16))) +(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3707 ((-745) (-327 |#1| |#2| |#3| |#4|)))) (-13 (-359) (-354)) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -383)) +((-3707 (*1 *2 *3) (-12 (-5 *3 (-327 *4 *5 *6 *7)) (-4 *4 (-13 (-359) (-354))) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-4 *7 (-333 *4 *5 *6)) (-5 *2 (-745)) (-5 *1 (-383 *4 *5 *6 *7))))) +(-10 -7 (-15 -3707 ((-745) (-327 |#1| |#2| |#3| |#4|)))) +((-3834 (((-385) |#1|) 11))) +(((-384 |#1|) (-10 -7 (-15 -3834 ((-385) |#1|))) (-1063)) (T -384)) +((-3834 (*1 *2 *3) (-12 (-5 *2 (-385)) (-5 *1 (-384 *3)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3834 ((-385) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4008 (((-619 (-1118)) $ (-619 (-1118))) 38)) (-3830 (((-619 (-1118)) $ (-619 (-1118))) 39)) (-4186 (((-619 (-1118)) $ (-619 (-1118))) 40)) (-4274 (((-619 (-1118)) $) 35)) (-3732 (($) 23)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2075 (((-619 (-1118)) $) 36)) (-1307 (((-619 (-1118)) $) 37)) (-2683 (((-1223) $ (-547)) 33) (((-1223) $) 34)) (-2829 (($ (-832) (-547)) 30)) (-3834 (((-832) $) 42) (($ (-832)) 25)) (-2371 (((-112) $ $) NIL))) +(((-385) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-832))) (-15 -2829 ($ (-832) (-547))) (-15 -2683 ((-1223) $ (-547))) (-15 -2683 ((-1223) $)) (-15 -1307 ((-619 (-1118)) $)) (-15 -2075 ((-619 (-1118)) $)) (-15 -3732 ($)) (-15 -4274 ((-619 (-1118)) $)) (-15 -4186 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -3830 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -4008 ((-619 (-1118)) $ (-619 (-1118))))))) (T -385)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-385)))) (-2829 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-385)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-385)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-385)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) (-3732 (*1 *1) (-5 *1 (-385))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) (-4186 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) (-3830 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) (-4008 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-832))) (-15 -2829 ($ (-832) (-547))) (-15 -2683 ((-1223) $ (-547))) (-15 -2683 ((-1223) $)) (-15 -1307 ((-619 (-1118)) $)) (-15 -2075 ((-619 (-1118)) $)) (-15 -3732 ($)) (-15 -4274 ((-619 (-1118)) $)) (-15 -4186 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -3830 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -4008 ((-619 (-1118)) $ (-619 (-1118)))))) +((-3304 (((-1223) $) 7)) (-3834 (((-832) $) 8))) +(((-386) (-138)) (T -386)) +((-3304 (*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-1223))))) +(-13 (-1172) (-591 (-832)) (-10 -8 (-15 -3304 ((-1223) $)))) +(((-591 (-832)) . T) ((-1172) . T)) +((-2698 (((-3 $ "failed") (-307 (-370))) 21) (((-3 $ "failed") (-307 (-547))) 19) (((-3 $ "failed") (-921 (-370))) 17) (((-3 $ "failed") (-921 (-547))) 15) (((-3 $ "failed") (-398 (-921 (-370)))) 13) (((-3 $ "failed") (-398 (-921 (-547)))) 11)) (-2643 (($ (-307 (-370))) 22) (($ (-307 (-547))) 20) (($ (-921 (-370))) 18) (($ (-921 (-547))) 16) (($ (-398 (-921 (-370)))) 14) (($ (-398 (-921 (-547)))) 12)) (-3304 (((-1223) $) 7)) (-3834 (((-832) $) 8) (($ (-619 (-321))) 25) (($ (-321)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 23))) (((-387) (-138)) (T -387)) -((-3898 (*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-1223))))) -(-13 (-1172) (-592 (-832)) (-10 -8 (-15 -3898 ((-1223) $)))) -(((-592 (-832)) . T) ((-1172) . T)) -((-2441 (((-3 $ "failed") (-308 (-371))) 21) (((-3 $ "failed") (-308 (-548))) 19) (((-3 $ "failed") (-921 (-371))) 17) (((-3 $ "failed") (-921 (-548))) 15) (((-3 $ "failed") (-399 (-921 (-371)))) 13) (((-3 $ "failed") (-399 (-921 (-548)))) 11)) (-2375 (($ (-308 (-371))) 22) (($ (-308 (-548))) 20) (($ (-921 (-371))) 18) (($ (-921 (-548))) 16) (($ (-399 (-921 (-371)))) 14) (($ (-399 (-921 (-548)))) 12)) (-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-619 (-322))) 25) (($ (-322)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 23))) -(((-388) (-138)) (T -388)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-388)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-388)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388))))) -(-13 (-387) (-10 -8 (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -2375 ($ (-308 (-371)))) (-15 -2441 ((-3 $ "failed") (-308 (-371)))) (-15 -2375 ($ (-308 (-548)))) (-15 -2441 ((-3 $ "failed") (-308 (-548)))) (-15 -2375 ($ (-921 (-371)))) (-15 -2441 ((-3 $ "failed") (-921 (-371)))) (-15 -2375 ($ (-921 (-548)))) (-15 -2441 ((-3 $ "failed") (-921 (-548)))) (-15 -2375 ($ (-399 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-371))))) (-15 -2375 ($ (-399 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-399 (-921 (-548))))))) -(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) -((-3321 (((-619 (-1118)) (-619 (-1118))) 9)) (-3898 (((-1223) (-380)) 27)) (-3308 (((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135))) 60) (((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135)) 35) (((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135))) 34))) -(((-389) (-10 -7 (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)))) (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135))) (-15 -3308 ((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135)))) (-15 -3898 ((-1223) (-380))) (-15 -3321 ((-619 (-1118)) (-619 (-1118)))))) (T -389)) -((-3321 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-389)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-389)))) (-3308 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *5 (-1138)) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-389)))) (-3308 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-389)))) (-3308 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-389))))) -(-10 -7 (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)))) (-15 -3308 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135))) (-15 -3308 ((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135)))) (-15 -3898 ((-1223) (-380))) (-15 -3321 ((-619 (-1118)) (-619 (-1118))))) -((-3898 (((-1223) $) 38)) (-3743 (((-832) $) 98) (($ (-322)) 100) (($ (-619 (-322))) 99) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 97) (($ (-308 (-675))) 54) (($ (-308 (-673))) 73) (($ (-308 (-668))) 86) (($ (-286 (-308 (-675)))) 68) (($ (-286 (-308 (-673)))) 81) (($ (-286 (-308 (-668)))) 94) (($ (-308 (-548))) 104) (($ (-308 (-371))) 117) (($ (-308 (-166 (-371)))) 130) (($ (-286 (-308 (-548)))) 112) (($ (-286 (-308 (-371)))) 125) (($ (-286 (-308 (-166 (-371))))) 138))) -(((-390 |#1| |#2| |#3| |#4|) (-13 (-387) (-10 -8 (-15 -3743 ($ (-322))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -3743 ($ (-308 (-675)))) (-15 -3743 ($ (-308 (-673)))) (-15 -3743 ($ (-308 (-668)))) (-15 -3743 ($ (-286 (-308 (-675))))) (-15 -3743 ($ (-286 (-308 (-673))))) (-15 -3743 ($ (-286 (-308 (-668))))) (-15 -3743 ($ (-308 (-548)))) (-15 -3743 ($ (-308 (-371)))) (-15 -3743 ($ (-308 (-166 (-371))))) (-15 -3743 ($ (-286 (-308 (-548))))) (-15 -3743 ($ (-286 (-308 (-371))))) (-15 -3743 ($ (-286 (-308 (-166 (-371)))))))) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-1139)) (T -390)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-675))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-673))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-668))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-675)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-673)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-668)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-548)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-286 (-308 (-166 (-371))))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139))))) -(-13 (-387) (-10 -8 (-15 -3743 ($ (-322))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -3743 ($ (-308 (-675)))) (-15 -3743 ($ (-308 (-673)))) (-15 -3743 ($ (-308 (-668)))) (-15 -3743 ($ (-286 (-308 (-675))))) (-15 -3743 ($ (-286 (-308 (-673))))) (-15 -3743 ($ (-286 (-308 (-668))))) (-15 -3743 ($ (-308 (-548)))) (-15 -3743 ($ (-308 (-371)))) (-15 -3743 ($ (-308 (-166 (-371))))) (-15 -3743 ($ (-286 (-308 (-548))))) (-15 -3743 ($ (-286 (-308 (-371))))) (-15 -3743 ($ (-286 (-308 (-166 (-371)))))))) -((-3730 (((-112) $ $) NIL)) (-2189 ((|#2| $) 36)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2200 (($ (-399 |#2|)) 85)) (-2180 (((-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))) $) 37)) (-4050 (($ $) 32) (($ $ (-745)) 34)) (-2591 (((-399 |#2|) $) 46)) (-3754 (($ (-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|)))) 31)) (-3743 (((-832) $) 120)) (-3296 (($ $) 33) (($ $ (-745)) 35)) (-2214 (((-112) $ $) NIL)) (-2290 (($ |#2| $) 39))) -(((-391 |#1| |#2|) (-13 (-1063) (-593 (-399 |#2|)) (-10 -8 (-15 -2290 ($ |#2| $)) (-15 -2200 ($ (-399 |#2|))) (-15 -2189 (|#2| $)) (-15 -2180 ((-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))))) (-15 -4050 ($ $)) (-15 -3296 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3296 ($ $ (-745))))) (-13 (-355) (-145)) (-1194 |#1|)) (T -391)) -((-2290 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *2)) (-4 *2 (-1194 *3)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-391 *3 *2)) (-4 *3 (-13 (-355) (-145))))) (-2180 (*1 *2 *1) (-12 (-4 *3 (-13 (-355) (-145))) (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)))) (-4050 (*1 *1 *1) (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) (-4 *3 (-1194 *2)))) (-3296 (*1 *1 *1) (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) (-4 *3 (-1194 *2)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3))))) -(-13 (-1063) (-593 (-399 |#2|)) (-10 -8 (-15 -2290 ($ |#2| $)) (-15 -2200 ($ (-399 |#2|))) (-15 -2189 (|#2| $)) (-15 -2180 ((-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3352 (-745)) (|:| -2278 |#2|) (|:| |num| |#2|))))) (-15 -4050 ($ $)) (-15 -3296 ($ $)) (-15 -4050 ($ $ (-745))) (-15 -3296 ($ $ (-745))))) -((-3730 (((-112) $ $) 9 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 15 (|has| |#1| (-855 (-371)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 14 (|has| |#1| (-855 (-548))))) (-2546 (((-1118) $) 13 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-3932 (((-1082) $) 12 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-3743 (((-832) $) 11 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))))) (-2214 (((-112) $ $) 10 (-1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371))))))) -(((-392 |#1|) (-138) (-1172)) (T -392)) -NIL -(-13 (-1172) (-10 -7 (IF (|has| |t#1| (-855 (-548))) (-6 (-855 (-548))) |%noBranch|) (IF (|has| |t#1| (-855 (-371))) (-6 (-855 (-371))) |%noBranch|))) -(((-101) -1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))) ((-592 (-832)) -1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-1063) -1524 (|has| |#1| (-855 (-548))) (|has| |#1| (-855 (-371)))) ((-1172) . T)) -((-2208 (($ $) 10) (($ $ (-745)) 11))) -(((-393 |#1|) (-10 -8 (-15 -2208 (|#1| |#1| (-745))) (-15 -2208 (|#1| |#1|))) (-394)) (T -393)) -NIL -(-10 -8 (-15 -2208 (|#1| |#1| (-745))) (-15 -2208 (|#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2208 (($ $) 76) (($ $ (-745)) 75)) (-1271 (((-112) $) 68)) (-1672 (((-807 (-890)) $) 78)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-3 (-745) "failed") $ $) 77)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63)) (-4017 (((-3 $ "failed") $) 79)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) -(((-394) (-138)) (T -394)) -((-1672 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-807 (-890))))) (-2217 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-394)) (-5 *2 (-745)))) (-2208 (*1 *1 *1) (-4 *1 (-394))) (-2208 (*1 *1 *1 *2) (-12 (-4 *1 (-394)) (-5 *2 (-745))))) -(-13 (-355) (-143) (-10 -8 (-15 -1672 ((-807 (-890)) $)) (-15 -2217 ((-3 (-745) "failed") $ $)) (-15 -2208 ($ $)) (-15 -2208 ($ $ (-745))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-1335 (($ (-548) (-548)) 11) (($ (-548) (-548) (-890)) NIL)) (-1340 (((-890)) 16) (((-890) (-890)) NIL))) -(((-395 |#1|) (-10 -8 (-15 -1340 ((-890) (-890))) (-15 -1340 ((-890))) (-15 -1335 (|#1| (-548) (-548) (-890))) (-15 -1335 (|#1| (-548) (-548)))) (-396)) (T -395)) -((-1340 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396))))) -(-10 -8 (-15 -1340 ((-890) (-890))) (-15 -1340 ((-890))) (-15 -1335 (|#1| (-548) (-548) (-890))) (-15 -1335 (|#1| (-548) (-548)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 (((-548) $) 86)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-1665 (($ $) 84)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 94)) (-4087 (((-112) $ $) 57)) (-2672 (((-548) $) 111)) (-3030 (($) 17 T CONST)) (-3849 (($ $) 83)) (-2441 (((-3 (-548) "failed") $) 99) (((-3 (-399 (-548)) "failed") $) 96)) (-2375 (((-548) $) 98) (((-399 (-548)) $) 95)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-2232 (((-890)) 127) (((-890) (-890)) 124 (|has| $ (-6 -4318)))) (-3298 (((-112) $) 109)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 90)) (-1672 (((-548) $) 133)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 93)) (-3910 (($ $) 89)) (-3312 (((-112) $) 110)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1795 (($ $ $) 108) (($) 121 (-12 (-3958 (|has| $ (-6 -4318))) (-3958 (|has| $ (-6 -4310)))))) (-3091 (($ $ $) 107) (($) 120 (-12 (-3958 (|has| $ (-6 -4318))) (-3958 (|has| $ (-6 -4310)))))) (-1382 (((-548) $) 130)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-2237 (((-890) (-548)) 123 (|has| $ (-6 -4318)))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3862 (($ $) 85)) (-3887 (($ $) 87)) (-1335 (($ (-548) (-548)) 135) (($ (-548) (-548) (-890)) 134)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3352 (((-548) $) 131)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-1340 (((-890)) 128) (((-890) (-890)) 125 (|has| $ (-6 -4318)))) (-2226 (((-890) (-548)) 122 (|has| $ (-6 -4318)))) (-2591 (((-371) $) 102) (((-218) $) 101) (((-861 (-371)) $) 91)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ (-548)) 100) (($ (-399 (-548))) 97)) (-3835 (((-745)) 28)) (-3897 (($ $) 88)) (-2245 (((-890)) 129) (((-890) (-890)) 126 (|has| $ (-6 -4318)))) (-3957 (((-890)) 132)) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 112)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 105)) (-2241 (((-112) $ $) 104)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 106)) (-2234 (((-112) $ $) 103)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) -(((-396) (-138)) (T -396)) -((-1335 (*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-396)))) (-1335 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-4 *1 (-396)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) (-3957 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) (-2245 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-1340 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-2232 (*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) (-5 *2 (-890)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) (-5 *2 (-890)))) (-1795 (*1 *1) (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) (-3958 (|has| *1 (-6 -4310))))) (-3091 (*1 *1) (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) (-3958 (|has| *1 (-6 -4310)))))) -(-13 (-1025) (-10 -8 (-6 -2439) (-15 -1335 ($ (-548) (-548))) (-15 -1335 ($ (-548) (-548) (-890))) (-15 -1672 ((-548) $)) (-15 -3957 ((-890))) (-15 -3352 ((-548) $)) (-15 -1382 ((-548) $)) (-15 -2245 ((-890))) (-15 -1340 ((-890))) (-15 -2232 ((-890))) (IF (|has| $ (-6 -4318)) (PROGN (-15 -2245 ((-890) (-890))) (-15 -1340 ((-890) (-890))) (-15 -2232 ((-890) (-890))) (-15 -2237 ((-890) (-548))) (-15 -2226 ((-890) (-548)))) |%noBranch|) (IF (|has| $ (-6 -4310)) |%noBranch| (IF (|has| $ (-6 -4318)) |%noBranch| (PROGN (-15 -1795 ($)) (-15 -3091 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-593 (-218)) . T) ((-593 (-371)) . T) ((-593 (-861 (-371))) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-371)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1025) . T) ((-1007 (-399 (-548))) . T) ((-1007 (-548)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-2540 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 20))) -(((-397 |#1| |#2|) (-10 -7 (-15 -2540 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-540) (-540)) (T -397)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-540)) (-4 *6 (-540)) (-5 *2 (-410 *6)) (-5 *1 (-397 *5 *6))))) -(-10 -7 (-15 -2540 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) -((-2540 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 13))) -(((-398 |#1| |#2|) (-10 -7 (-15 -2540 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-540) (-540)) (T -398)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-540)) (-4 *6 (-540)) (-5 *2 (-399 *6)) (-5 *1 (-398 *5 *6))))) -(-10 -7 (-15 -2540 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 13)) (-3875 ((|#1| $) 21 (|has| |#1| (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| |#1| (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 17) (((-3 (-1135) "failed") $) NIL (|has| |#1| (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) 70 (|has| |#1| (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548))))) (-2375 ((|#1| $) 15) (((-1135) $) NIL (|has| |#1| (-1007 (-1135)))) (((-399 (-548)) $) 67 (|has| |#1| (-1007 (-548)))) (((-548) $) NIL (|has| |#1| (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 50)) (-2545 (($) NIL (|has| |#1| (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| |#1| (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| |#1| (-855 (-371))))) (-2266 (((-112) $) 64)) (-2002 (($ $) NIL)) (-2470 ((|#1| $) 71)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-3312 (((-112) $) NIL (|has| |#1| (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 97)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| |#1| (-299)))) (-3887 ((|#1| $) 28 (|has| |#1| (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 135 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 131 (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) NIL)) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1993 (($ $) NIL)) (-2480 ((|#1| $) 73)) (-2591 (((-861 (-548)) $) NIL (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#1| (-593 (-861 (-371))))) (((-524) $) NIL (|has| |#1| (-593 (-524)))) (((-371) $) NIL (|has| |#1| (-991))) (((-218) $) NIL (|has| |#1| (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 10) (($ (-1135)) NIL (|has| |#1| (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) 99 (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 100)) (-3897 ((|#1| $) 26 (|has| |#1| (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| |#1| (-794)))) (-3107 (($) 22 T CONST)) (-3118 (($) 8 T CONST)) (-2739 (((-1118) $) 43 (-12 (|has| |#1| (-533)) (|has| |#1| (-802)))) (((-1118) $ (-112)) 44 (-12 (|has| |#1| (-533)) (|has| |#1| (-802)))) (((-1223) (-796) $) 45 (-12 (|has| |#1| (-533)) (|has| |#1| (-802)))) (((-1223) (-796) $ (-112)) 46 (-12 (|has| |#1| (-533)) (|has| |#1| (-802))))) (-3296 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 56)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) 24 (|has| |#1| (-821)))) (-2309 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2299 (($ $) 25) (($ $ $) 55)) (-2290 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 125)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 60) (($ $ $) 57) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-399 |#1|) (-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-533)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4314)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-6 -4325)) (-6 -4314) |%noBranch|) |%noBranch|) |%noBranch|))) (-540)) (T -399)) -NIL -(-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-533)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4314)) (IF (|has| |#1| (-443)) (IF (|has| |#1| (-6 -4325)) (-6 -4314) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2350 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 18)) (-2455 (($ (-1218 |#2|) (-1218 $)) NIL) (($ (-1218 |#2|)) 24)) (-2341 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 38)) (-2898 ((|#3| $) 60)) (-1566 ((|#2| (-1218 $)) NIL) ((|#2|) 20)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 22) (((-663 |#2|) (-1218 $)) 36)) (-2591 (((-1218 |#2|) $) 11) (($ (-1218 |#2|)) 13)) (-3780 ((|#3| $) 52))) -(((-400 |#1| |#2| |#3|) (-10 -8 (-15 -2341 ((-663 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2350 ((-663 |#2|))) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 (|#3| |#1|)) (-15 -3780 (|#3| |#1|)) (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) (-401 |#2| |#3|) (-169) (-1194 |#2|)) (T -400)) -((-2350 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)) (-5 *1 (-400 *3 *4 *5)) (-4 *3 (-401 *4 *5)))) (-1566 (*1 *2) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-169)) (-5 *1 (-400 *3 *2 *4)) (-4 *3 (-401 *2 *4))))) -(-10 -8 (-15 -2341 ((-663 |#2|) |#1|)) (-15 -1566 (|#2|)) (-15 -2350 ((-663 |#2|))) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2898 (|#3| |#1|)) (-15 -3780 (|#3| |#1|)) (-15 -2350 ((-663 |#2|) (-1218 |#1|))) (-15 -1566 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2341 ((-663 |#2|) |#1| (-1218 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2350 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2707 ((|#1| $) 50)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-2341 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-890)) 52)) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 49)) (-2898 ((|#2| $) 42 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1566 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2591 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35)) (-4017 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3780 ((|#2| $) 43)) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 65)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-401 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -401)) -((-2877 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *1)) (-4 *1 (-401 *3 *4)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-401 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) (-4 *4 (-1194 *3)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) (-4 *4 (-1194 *3)))) (-2350 (*1 *2) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-663 *3)))) (-1566 (*1 *2) (-12 (-4 *1 (-401 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-663 *3))))) -(-13 (-362 |t#1| |t#2|) (-10 -8 (-15 -2877 ((-1218 $))) (-15 -2447 ((-1218 |t#1|) $)) (-15 -2447 ((-663 |t#1|) (-1218 $))) (-15 -2455 ($ (-1218 |t#1|))) (-15 -2591 ((-1218 |t#1|) $)) (-15 -2591 ($ (-1218 |t#1|))) (-15 -2350 ((-663 |t#1|))) (-15 -1566 (|t#1|)) (-15 -2341 ((-663 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-362 |#1| |#2|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) 27) (((-3 (-548) "failed") $) 19)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) 24) (((-548) $) 14)) (-3743 (($ |#2|) NIL) (($ (-399 (-548))) 22) (($ (-548)) 11))) -(((-402 |#1| |#2|) (-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|))) (-403 |#2|) (-1172)) (T -402)) -NIL -(-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|))) -((-2441 (((-3 |#1| "failed") $) 7) (((-3 (-399 (-548)) "failed") $) 16 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 13 (|has| |#1| (-1007 (-548))))) (-2375 ((|#1| $) 8) (((-399 (-548)) $) 15 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 12 (|has| |#1| (-1007 (-548))))) (-3743 (($ |#1|) 6) (($ (-399 (-548))) 17 (|has| |#1| (-1007 (-399 (-548))))) (($ (-548)) 14 (|has| |#1| (-1007 (-548)))))) -(((-403 |#1|) (-138) (-1172)) (T -403)) -NIL -(-13 (-1007 |t#1|) (-10 -7 (IF (|has| |t#1| (-1007 (-548))) (-6 (-1007 (-548))) |%noBranch|) (IF (|has| |t#1| (-1007 (-399 (-548)))) (-6 (-1007 (-399 (-548)))) |%noBranch|))) -(((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T)) -((-2540 (((-405 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-405 |#1| |#2| |#3| |#4|)) 33))) -(((-404 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 ((-405 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-405 |#1| |#2| |#3| |#4|)))) (-299) (-961 |#1|) (-1194 |#2|) (-13 (-401 |#2| |#3|) (-1007 |#2|)) (-299) (-961 |#5|) (-1194 |#6|) (-13 (-401 |#6| |#7|) (-1007 |#6|))) (T -404)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-405 *5 *6 *7 *8)) (-4 *5 (-299)) (-4 *6 (-961 *5)) (-4 *7 (-1194 *6)) (-4 *8 (-13 (-401 *6 *7) (-1007 *6))) (-4 *9 (-299)) (-4 *10 (-961 *9)) (-4 *11 (-1194 *10)) (-5 *2 (-405 *9 *10 *11 *12)) (-5 *1 (-404 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-401 *10 *11) (-1007 *10)))))) -(-10 -7 (-15 -2540 ((-405 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-405 |#1| |#2| |#3| |#4|)))) -((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2361 ((|#4| (-745) (-1218 |#4|)) 56)) (-2266 (((-112) $) NIL)) (-2470 (((-1218 |#4|) $) 17)) (-3910 ((|#2| $) 54)) (-2370 (($ $) 139)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 100)) (-3778 (($ (-1218 |#4|)) 99)) (-3932 (((-1082) $) NIL)) (-2480 ((|#1| $) 18)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 134)) (-2877 (((-1218 |#4|) $) 129)) (-3118 (($) 11 T CONST)) (-2214 (((-112) $ $) 40)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 122)) (* (($ $ $) 121))) -(((-405 |#1| |#2| |#3| |#4|) (-13 (-464) (-10 -8 (-15 -3778 ($ (-1218 |#4|))) (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2470 ((-1218 |#4|) $)) (-15 -2480 (|#1| $)) (-15 -2370 ($ $)) (-15 -2361 (|#4| (-745) (-1218 |#4|))))) (-299) (-961 |#1|) (-1194 |#2|) (-13 (-401 |#2| |#3|) (-1007 |#2|))) (T -405)) -((-3778 (*1 *1 *2) (-12 (-5 *2 (-1218 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-299)) (-5 *1 (-405 *3 *4 *5 *6)))) (-2877 (*1 *2 *1) (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) (-3910 (*1 *2 *1) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-405 *3 *2 *4 *5)) (-4 *3 (-299)) (-4 *5 (-13 (-401 *2 *4) (-1007 *2))))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) (-2480 (*1 *2 *1) (-12 (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-4 *2 (-299)) (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3))))) (-2370 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3))))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1218 *2)) (-4 *5 (-299)) (-4 *6 (-961 *5)) (-4 *2 (-13 (-401 *6 *7) (-1007 *6))) (-5 *1 (-405 *5 *6 *7 *2)) (-4 *7 (-1194 *6))))) -(-13 (-464) (-10 -8 (-15 -3778 ($ (-1218 |#4|))) (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2470 ((-1218 |#4|) $)) (-15 -2480 (|#1| $)) (-15 -2370 ($ $)) (-15 -2361 (|#4| (-745) (-1218 |#4|))))) -((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-3910 ((|#2| $) 61)) (-2380 (($ (-1218 |#4|)) 25) (($ (-405 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1007 |#2|)))) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 34)) (-2877 (((-1218 |#4|) $) 26)) (-3118 (($) 23 T CONST)) (-2214 (((-112) $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ $ $) 72))) -(((-406 |#1| |#2| |#3| |#4| |#5|) (-13 (-701) (-10 -8 (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2380 ($ (-1218 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -2380 ($ (-405 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-299) (-961 |#1|) (-1194 |#2|) (-401 |#2| |#3|) (-1218 |#4|)) (T -406)) -((-2877 (*1 *2 *1) (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7)) (-4 *6 (-401 *4 *5)) (-14 *7 *2))) (-3910 (*1 *2 *1) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-406 *3 *2 *4 *5 *6)) (-4 *3 (-299)) (-4 *5 (-401 *2 *4)) (-14 *6 (-1218 *5)))) (-2380 (*1 *1 *2) (-12 (-5 *2 (-1218 *6)) (-4 *6 (-401 *4 *5)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-299)) (-5 *1 (-406 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2380 (*1 *1 *2) (-12 (-5 *2 (-405 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *6 (-401 *4 *5)) (-14 *7 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7))))) -(-13 (-701) (-10 -8 (-15 -2877 ((-1218 |#4|) $)) (-15 -3910 (|#2| $)) (-15 -2380 ($ (-1218 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -2380 ($ (-405 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2540 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-407 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) (-409 |#2|) (-169) (-409 |#4|) (-169)) (T -407)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-409 *6)) (-5 *1 (-407 *4 *5 *2 *6)) (-4 *4 (-409 *5))))) -(-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) -((-2265 (((-3 $ "failed")) 86)) (-2434 (((-1218 (-663 |#2|)) (-1218 $)) NIL) (((-1218 (-663 |#2|))) 91)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 85)) (-3991 (((-3 $ "failed")) 84)) (-2413 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 102)) (-2391 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 110)) (-4307 (((-1131 (-921 |#2|))) 55)) (-2432 ((|#2| (-1218 $)) NIL) ((|#2|) 106)) (-2455 (($ (-1218 |#2|) (-1218 $)) NIL) (($ (-1218 |#2|)) 112)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 83)) (-4003 (((-3 $ "failed")) 75)) (-2422 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 100)) (-2402 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 108)) (-1298 (((-1131 (-921 |#2|))) 54)) (-2444 ((|#2| (-1218 $)) NIL) ((|#2|) 104)) (-2447 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 111) (((-663 |#2|) (-1218 $)) 118)) (-2591 (((-1218 |#2|) $) 96) (($ (-1218 |#2|)) 98)) (-4218 (((-619 (-921 |#2|)) (-1218 $)) NIL) (((-619 (-921 |#2|))) 94)) (-3398 (($ (-663 |#2|) $) 90))) -(((-408 |#1| |#2|) (-10 -8 (-15 -3398 (|#1| (-663 |#2|) |#1|)) (-15 -4307 ((-1131 (-921 |#2|)))) (-15 -1298 ((-1131 (-921 |#2|)))) (-15 -2391 ((-663 |#2|) |#1|)) (-15 -2402 ((-663 |#2|) |#1|)) (-15 -2413 ((-663 |#2|))) (-15 -2422 ((-663 |#2|))) (-15 -2432 (|#2|)) (-15 -2444 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -4218 ((-619 (-921 |#2|)))) (-15 -2434 ((-1218 (-663 |#2|)))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2265 ((-3 |#1| "failed"))) (-15 -3991 ((-3 |#1| "failed"))) (-15 -4003 ((-3 |#1| "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -1332 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|))) (-15 -4218 ((-619 (-921 |#2|)) (-1218 |#1|)))) (-409 |#2|) (-169)) (T -408)) -((-2434 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-4218 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-2444 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) (-2432 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) (-2422 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-2413 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-1298 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4)))) (-4307 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4))))) -(-10 -8 (-15 -3398 (|#1| (-663 |#2|) |#1|)) (-15 -4307 ((-1131 (-921 |#2|)))) (-15 -1298 ((-1131 (-921 |#2|)))) (-15 -2391 ((-663 |#2|) |#1|)) (-15 -2402 ((-663 |#2|) |#1|)) (-15 -2413 ((-663 |#2|))) (-15 -2422 ((-663 |#2|))) (-15 -2432 (|#2|)) (-15 -2444 (|#2|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2455 (|#1| (-1218 |#2|))) (-15 -4218 ((-619 (-921 |#2|)))) (-15 -2434 ((-1218 (-663 |#2|)))) (-15 -2447 ((-663 |#2|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1|)) (-15 -2265 ((-3 |#1| "failed"))) (-15 -3991 ((-3 |#1| "failed"))) (-15 -4003 ((-3 |#1| "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -1332 ((-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed"))) (-15 -2413 ((-663 |#2|) (-1218 |#1|))) (-15 -2422 ((-663 |#2|) (-1218 |#1|))) (-15 -2432 (|#2| (-1218 |#1|))) (-15 -2444 (|#2| (-1218 |#1|))) (-15 -2455 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2447 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2447 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2391 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2402 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2434 ((-1218 (-663 |#2|)) (-1218 |#1|))) (-15 -4218 ((-619 (-921 |#2|)) (-1218 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2265 (((-3 $ "failed")) 37 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-2434 (((-1218 (-663 |#1|)) (-1218 $)) 78) (((-1218 (-663 |#1|))) 100)) (-2968 (((-1218 $)) 81)) (-3030 (($) 17 T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 40 (|has| |#1| (-540)))) (-3991 (((-3 $ "failed")) 38 (|has| |#1| (-540)))) (-2413 (((-663 |#1|) (-1218 $)) 65) (((-663 |#1|)) 92)) (-2947 ((|#1| $) 74)) (-2391 (((-663 |#1|) $ (-1218 $)) 76) (((-663 |#1|) $) 90)) (-3399 (((-3 $ "failed") $) 45 (|has| |#1| (-540)))) (-4307 (((-1131 (-921 |#1|))) 88 (|has| |#1| (-355)))) (-2246 (($ $ (-890)) 28)) (-2925 ((|#1| $) 72)) (-2741 (((-1131 |#1|) $) 42 (|has| |#1| (-540)))) (-2432 ((|#1| (-1218 $)) 67) ((|#1|) 94)) (-2903 (((-1131 |#1|) $) 63)) (-2842 (((-112)) 57)) (-2455 (($ (-1218 |#1|) (-1218 $)) 69) (($ (-1218 |#1|)) 98)) (-3859 (((-3 $ "failed") $) 47 (|has| |#1| (-540)))) (-2103 (((-890)) 80)) (-2815 (((-112)) 54)) (-2468 (($ $ (-890)) 33)) (-2782 (((-112)) 50)) (-2766 (((-112)) 48)) (-2797 (((-112)) 52)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) 41 (|has| |#1| (-540)))) (-4003 (((-3 $ "failed")) 39 (|has| |#1| (-540)))) (-2422 (((-663 |#1|) (-1218 $)) 66) (((-663 |#1|)) 93)) (-2958 ((|#1| $) 75)) (-2402 (((-663 |#1|) $ (-1218 $)) 77) (((-663 |#1|) $) 91)) (-3411 (((-3 $ "failed") $) 46 (|has| |#1| (-540)))) (-1298 (((-1131 (-921 |#1|))) 89 (|has| |#1| (-355)))) (-3424 (($ $ (-890)) 29)) (-2936 ((|#1| $) 73)) (-2750 (((-1131 |#1|) $) 43 (|has| |#1| (-540)))) (-2444 ((|#1| (-1218 $)) 68) ((|#1|) 95)) (-2914 (((-1131 |#1|) $) 64)) (-2851 (((-112)) 58)) (-2546 (((-1118) $) 9)) (-2774 (((-112)) 49)) (-2790 (((-112)) 51)) (-2806 (((-112)) 53)) (-3932 (((-1082) $) 10)) (-2832 (((-112)) 56)) (-3171 ((|#1| $ (-548)) 101)) (-2447 (((-1218 |#1|) $ (-1218 $)) 71) (((-663 |#1|) (-1218 $) (-1218 $)) 70) (((-1218 |#1|) $) 103) (((-663 |#1|) (-1218 $)) 102)) (-2591 (((-1218 |#1|) $) 97) (($ (-1218 |#1|)) 96)) (-4218 (((-619 (-921 |#1|)) (-1218 $)) 79) (((-619 (-921 |#1|))) 99)) (-3652 (($ $ $) 25)) (-2891 (((-112)) 62)) (-3743 (((-832) $) 11)) (-2877 (((-1218 $)) 104)) (-2759 (((-619 (-1218 |#1|))) 44 (|has| |#1| (-540)))) (-3664 (($ $ $ $) 26)) (-2871 (((-112)) 60)) (-3398 (($ (-663 |#1|) $) 87)) (-3639 (($ $ $) 24)) (-2881 (((-112)) 61)) (-2859 (((-112)) 59)) (-2823 (((-112)) 55)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-409 |#1|) (-138) (-169)) (T -409)) -((-2877 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-409 *3)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-409 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-409 *2)) (-4 *2 (-169)))) (-2434 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 (-663 *3))))) (-4218 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) (-2455 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3)))) (-2444 (*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169)))) (-2432 (*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169)))) (-2422 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2413 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-1298 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) (-5 *2 (-1131 (-921 *3))))) (-4307 (*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) (-5 *2 (-1131 (-921 *3))))) (-3398 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *3)) (-4 *1 (-409 *3)) (-4 *3 (-169))))) -(-13 (-359 |t#1|) (-10 -8 (-15 -2877 ((-1218 $))) (-15 -2447 ((-1218 |t#1|) $)) (-15 -2447 ((-663 |t#1|) (-1218 $))) (-15 -3171 (|t#1| $ (-548))) (-15 -2434 ((-1218 (-663 |t#1|)))) (-15 -4218 ((-619 (-921 |t#1|)))) (-15 -2455 ($ (-1218 |t#1|))) (-15 -2591 ((-1218 |t#1|) $)) (-15 -2591 ($ (-1218 |t#1|))) (-15 -2444 (|t#1|)) (-15 -2432 (|t#1|)) (-15 -2422 ((-663 |t#1|))) (-15 -2413 ((-663 |t#1|))) (-15 -2402 ((-663 |t#1|) $)) (-15 -2391 ((-663 |t#1|) $)) (IF (|has| |t#1| (-355)) (PROGN (-15 -1298 ((-1131 (-921 |t#1|)))) (-15 -4307 ((-1131 (-921 |t#1|))))) |%noBranch|) (-15 -3398 ($ (-663 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-359 |#1|) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 42)) (-2255 (($ $) 57)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 146)) (-3303 (($ $) NIL)) (-3279 (((-112) $) 36)) (-2265 ((|#1| $) 13)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-1176)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-1176)))) (-2283 (($ |#1| (-548)) 31)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 116)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 55)) (-3859 (((-3 $ "failed") $) 131)) (-4182 (((-3 (-399 (-548)) "failed") $) 63 (|has| |#1| (-533)))) (-4172 (((-112) $) 59 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 70 (|has| |#1| (-533)))) (-2293 (($ |#1| (-548)) 33)) (-1271 (((-112) $) 152 (|has| |#1| (-1176)))) (-2266 (((-112) $) 43)) (-1730 (((-745) $) 38)) (-2302 (((-3 "nil" "sqfr" "irred" "prime") $ (-548)) 137)) (-3224 ((|#1| $ (-548)) 136)) (-2312 (((-548) $ (-548)) 135)) (-2332 (($ |#1| (-548)) 30)) (-2540 (($ (-1 |#1| |#1|) $) 143)) (-1703 (($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548))))) 58)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2322 (($ |#1| (-548)) 32)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) 147 (|has| |#1| (-443)))) (-2272 (($ |#1| (-548) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3213 (((-619 (-2 (|:| -1915 |#1|) (|:| -3352 (-548)))) $) 54)) (-3582 (((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))) $) 12)) (-1915 (((-410 $) $) NIL (|has| |#1| (-1176)))) (-1900 (((-3 $ "failed") $ $) 138)) (-3352 (((-548) $) 132)) (-1384 ((|#1| $) 56)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 79 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 85 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) $) NIL (|has| |#1| (-504 (-1135) $))) (($ $ (-619 (-1135)) (-619 $)) 86 (|has| |#1| (-504 (-1135) $))) (($ $ (-619 (-286 $))) 82 (|has| |#1| (-301 $))) (($ $ (-286 $)) NIL (|has| |#1| (-301 $))) (($ $ $ $) NIL (|has| |#1| (-301 $))) (($ $ (-619 $) (-619 $)) NIL (|has| |#1| (-301 $)))) (-3171 (($ $ |#1|) 71 (|has| |#1| (-278 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-278 $ $)))) (-4050 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2591 (((-524) $) 27 (|has| |#1| (-593 (-524)))) (((-371) $) 92 (|has| |#1| (-991))) (((-218) $) 95 (|has| |#1| (-991)))) (-3743 (((-832) $) 114) (($ (-548)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548)))))) (-3835 (((-745)) 48)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 40 T CONST)) (-3118 (($) 39 T CONST)) (-3296 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2214 (((-112) $ $) 96)) (-2299 (($ $) 128) (($ $ $) NIL)) (-2290 (($ $ $) 140)) (** (($ $ (-890)) NIL) (($ $ (-745)) 102)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-410 |#1|) (-13 (-540) (-224 |#1|) (-38 |#1|) (-330 |#1|) (-403 |#1|) (-10 -8 (-15 -1384 (|#1| $)) (-15 -3352 ((-548) $)) (-15 -1703 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))))) (-15 -3582 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))) $)) (-15 -2332 ($ |#1| (-548))) (-15 -3213 ((-619 (-2 (|:| -1915 |#1|) (|:| -3352 (-548)))) $)) (-15 -2322 ($ |#1| (-548))) (-15 -2312 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2302 ((-3 "nil" "sqfr" "irred" "prime") $ (-548))) (-15 -1730 ((-745) $)) (-15 -2293 ($ |#1| (-548))) (-15 -2283 ($ |#1| (-548))) (-15 -2272 ($ |#1| (-548) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2265 (|#1| $)) (-15 -2255 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-443)) (-6 (-443)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1176)) (-6 (-1176)) |%noBranch|) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-278 $ $)) (-6 (-278 $ $)) |%noBranch|) (IF (|has| |#1| (-301 $)) (-6 (-301 $)) |%noBranch|) (IF (|has| |#1| (-504 (-1135) $)) (-6 (-504 (-1135) $)) |%noBranch|))) (-540)) (T -410)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-540)) (-5 *1 (-410 *3)))) (-1384 (*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-548))))) (-4 *2 (-540)) (-5 *1 (-410 *2)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-548))))) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-2332 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -3352 (-548))))) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-2322 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2312 (*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-410 *4)) (-4 *4 (-540)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2283 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-548)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2265 (*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540))))) -(-13 (-540) (-224 |#1|) (-38 |#1|) (-330 |#1|) (-403 |#1|) (-10 -8 (-15 -1384 (|#1| $)) (-15 -3352 ((-548) $)) (-15 -1703 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))))) (-15 -3582 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-548)))) $)) (-15 -2332 ($ |#1| (-548))) (-15 -3213 ((-619 (-2 (|:| -1915 |#1|) (|:| -3352 (-548)))) $)) (-15 -2322 ($ |#1| (-548))) (-15 -2312 ((-548) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2302 ((-3 "nil" "sqfr" "irred" "prime") $ (-548))) (-15 -1730 ((-745) $)) (-15 -2293 ($ |#1| (-548))) (-15 -2283 ($ |#1| (-548))) (-15 -2272 ($ |#1| (-548) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2265 (|#1| $)) (-15 -2255 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-443)) (-6 (-443)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1176)) (-6 (-1176)) |%noBranch|) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-278 $ $)) (-6 (-278 $ $)) |%noBranch|) (IF (|has| |#1| (-301 $)) (-6 (-301 $)) |%noBranch|) (IF (|has| |#1| (-504 (-1135) $)) (-6 (-504 (-1135) $)) |%noBranch|))) -((-3933 (((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|)) 21)) (-2467 (((-410 |#1|) (-410 |#1|) (-410 |#1|)) 16))) -(((-411 |#1|) (-10 -7 (-15 -3933 ((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|))) (-15 -2467 ((-410 |#1|) (-410 |#1|) (-410 |#1|)))) (-540)) (T -411)) -((-2467 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-540)) (-5 *1 (-411 *3)))) (-3933 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-410 *4) *4)) (-4 *4 (-540)) (-5 *2 (-410 *4)) (-5 *1 (-411 *4))))) -(-10 -7 (-15 -3933 ((-410 |#1|) (-410 |#1|) (-1 (-410 |#1|) |#1|))) (-15 -2467 ((-410 |#1|) (-410 |#1|) (-410 |#1|)))) -((-2518 ((|#2| |#2|) 166)) (-2488 (((-3 (|:| |%expansion| (-305 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112)) 57))) -(((-412 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2488 ((-3 (|:| |%expansion| (-305 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112))) (-15 -2518 (|#2| |#2|))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|)) (-1135) |#2|) (T -412)) -((-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-412 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1157) (-422 *3))) (-14 *4 (-1135)) (-14 *5 *2))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (|:| |%expansion| (-305 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-412 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-14 *6 (-1135)) (-14 *7 *3)))) -(-10 -7 (-15 -2488 ((-3 (|:| |%expansion| (-305 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112))) (-15 -2518 (|#2| |#2|))) -((-2540 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-413 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1016) (-821)) (-422 |#1|) (-13 (-1016) (-821)) (-422 |#3|)) (T -413)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821))) (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-422 *6)) (-5 *1 (-413 *5 *4 *6 *2)) (-4 *4 (-422 *5))))) -(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) -((-2518 ((|#2| |#2|) 90)) (-2499 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118)) 48)) (-2509 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118)) 154))) -(((-414 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2499 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2509 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2518 (|#2| |#2|))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|) (-10 -8 (-15 -3743 ($ |#3|)))) (-819) (-13 (-1196 |#2| |#3|) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $)))) (-952 |#4|) (-1135)) (T -414)) -((-2518 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *2 (-13 (-27) (-1157) (-422 *3) (-10 -8 (-15 -3743 ($ *4))))) (-4 *4 (-819)) (-4 *5 (-13 (-1196 *2 *4) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) (-5 *1 (-414 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1135)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1196 *3 *7) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) (-14 *10 (-1135)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1196 *3 *7) (-355) (-1157) (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) (-14 *10 (-1135))))) -(-10 -7 (-15 -2499 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2509 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -2518 (|#2| |#2|))) -((-4040 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2061 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2540 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1063) (-417 |#1|) (-1063) (-417 |#3|)) (T -415)) -((-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) (-4 *2 (-417 *5)) (-5 *1 (-415 *6 *4 *5 *2)) (-4 *4 (-417 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-5 *1 (-415 *5 *4 *2 *6)) (-4 *4 (-417 *5)) (-4 *6 (-417 *2)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-417 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-417 *5))))) -(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2061 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4040 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2528 (($) 44)) (-1434 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2501 (($ $ $) 39)) (-2491 (((-112) $ $) 28)) (-3423 (((-745)) 47)) (-2592 (($ (-619 |#2|)) 20) (($) NIL)) (-2545 (($) 53)) (-2531 (((-112) $ $) 13)) (-1795 ((|#2| $) 61)) (-3091 ((|#2| $) 59)) (-2855 (((-890) $) 55)) (-2520 (($ $ $) 35)) (-3337 (($ (-890)) 50)) (-2511 (($ $ |#2|) NIL) (($ $ $) 38)) (-3945 (((-745) (-1 (-112) |#2|) $) NIL) (((-745) |#2| $) 26)) (-3754 (($ (-619 |#2|)) 24)) (-2543 (($ $) 46)) (-3743 (((-832) $) 33)) (-2554 (((-745) $) 21)) (-4013 (($ (-619 |#2|)) 19) (($) NIL)) (-2214 (((-112) $ $) 16))) -(((-416 |#1| |#2|) (-10 -8 (-15 -3423 ((-745))) (-15 -3337 (|#1| (-890))) (-15 -2855 ((-890) |#1|)) (-15 -2545 (|#1|)) (-15 -1795 (|#2| |#1|)) (-15 -3091 (|#2| |#1|)) (-15 -2528 (|#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2554 ((-745) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2531 ((-112) |#1| |#1|)) (-15 -4013 (|#1|)) (-15 -4013 (|#1| (-619 |#2|))) (-15 -2592 (|#1|)) (-15 -2592 (|#1| (-619 |#2|))) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2491 ((-112) |#1| |#1|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#2| |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|))) (-417 |#2|) (-1063)) (T -416)) -((-3423 (*1 *2) (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) -(-10 -8 (-15 -3423 ((-745))) (-15 -3337 (|#1| (-890))) (-15 -2855 ((-890) |#1|)) (-15 -2545 (|#1|)) (-15 -1795 (|#2| |#1|)) (-15 -3091 (|#2| |#1|)) (-15 -2528 (|#1|)) (-15 -2543 (|#1| |#1|)) (-15 -2554 ((-745) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2531 ((-112) |#1| |#1|)) (-15 -4013 (|#1|)) (-15 -4013 (|#1| (-619 |#2|))) (-15 -2592 (|#1|)) (-15 -2592 (|#1| (-619 |#2|))) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2491 ((-112) |#1| |#1|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#2| |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3945 ((-745) |#2| |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|))) -((-3730 (((-112) $ $) 19)) (-2528 (($) 67 (|has| |#1| (-360)))) (-1434 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2501 (($ $ $) 78)) (-2491 (((-112) $ $) 79)) (-2028 (((-112) $ (-745)) 8)) (-3423 (((-745)) 61 (|has| |#1| (-360)))) (-2592 (($ (-619 |#1|)) 74) (($) 73)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-2545 (($) 64 (|has| |#1| (-360)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 70)) (-4282 (((-112) $ (-745)) 9)) (-1795 ((|#1| $) 65 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3091 ((|#1| $) 66 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-2855 (((-890) $) 63 (|has| |#1| (-360)))) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22)) (-2520 (($ $ $) 75)) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3337 (($ (-890)) 62 (|has| |#1| (-360)))) (-3932 (((-1082) $) 21)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2511 (($ $ |#1|) 77) (($ $ $) 76)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-2543 (($ $) 68 (|has| |#1| (-360)))) (-3743 (((-832) $) 18)) (-2554 (((-745) $) 69)) (-4013 (($ (-619 |#1|)) 72) (($) 71)) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-417 |#1|) (-138) (-1063)) (T -417)) -((-2554 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-360)))) (-2528 (*1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-360)) (-4 *2 (-1063)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821))))) -(-13 (-222 |t#1|) (-1061 |t#1|) (-10 -8 (-6 -4327) (-15 -2554 ((-745) $)) (IF (|has| |t#1| (-360)) (PROGN (-6 (-360)) (-15 -2543 ($ $)) (-15 -2528 ($))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -3091 (|t#1| $)) (-15 -1795 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-222 |#1|) . T) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-360) |has| |#1| (-360)) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) -((-2564 (((-566 |#2|) |#2| (-1135)) 36)) (-2560 (((-566 |#2|) |#2| (-1135)) 20)) (-1787 ((|#2| |#2| (-1135)) 25))) -(((-418 |#1| |#2|) (-10 -7 (-15 -2560 ((-566 |#2|) |#2| (-1135))) (-15 -2564 ((-566 |#2|) |#2| (-1135))) (-15 -1787 (|#2| |#2| (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-29 |#1|))) (T -418)) -((-1787 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-418 *4 *2)) (-4 *2 (-13 (-1157) (-29 *4))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) (-4 *3 (-13 (-1157) (-29 *5))))) (-2560 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) (-4 *3 (-13 (-1157) (-29 *5)))))) -(-10 -7 (-15 -2560 ((-566 |#2|) |#2| (-1135))) (-15 -2564 ((-566 |#2|) |#2| (-1135))) (-15 -1787 (|#2| |#2| (-1135)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2582 (($ |#2| |#1|) 35)) (-2573 (($ |#2| |#1|) 33)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-323 |#2|)) 25)) (-3835 (((-745)) NIL)) (-3107 (($) 10 T CONST)) (-3118 (($) 16 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-419 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4314)) (IF (|has| |#1| (-6 -4314)) (-6 -4314) |%noBranch|) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-323 |#2|))) (-15 -2582 ($ |#2| |#1|)) (-15 -2573 ($ |#2| |#1|)))) (-13 (-169) (-38 (-399 (-548)))) (-13 (-821) (-21))) (T -419)) -((-3743 (*1 *1 *2) (-12 (-5 *1 (-419 *2 *3)) (-4 *2 (-13 (-169) (-38 (-399 (-548))))) (-4 *3 (-13 (-821) (-21))))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-323 *4)) (-4 *4 (-13 (-821) (-21))) (-5 *1 (-419 *3 *4)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))))) (-2582 (*1 *1 *2 *3) (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) (-4 *2 (-13 (-821) (-21))))) (-2573 (*1 *1 *2 *3) (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) (-4 *2 (-13 (-821) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4314)) (IF (|has| |#1| (-6 -4314)) (-6 -4314) |%noBranch|) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-323 |#2|))) (-15 -2582 ($ |#2| |#1|)) (-15 -2573 ($ |#2| |#1|)))) -((-3810 (((-3 |#2| (-619 |#2|)) |#2| (-1135)) 109))) -(((-420 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 |#2| (-619 |#2|)) |#2| (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-29 |#1|))) (T -420)) -((-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1157) (-928) (-29 *5)))))) -(-10 -7 (-15 -3810 ((-3 |#2| (-619 |#2|)) |#2| (-1135)))) -((-2049 (((-619 (-1135)) $) 72)) (-1884 (((-399 (-1131 $)) $ (-591 $)) 273)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) 237)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 (-1135) "failed") $) 75) (((-3 (-548) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-399 (-921 |#2|)) "failed") $) 324) (((-3 (-921 |#2|) "failed") $) 235) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-591 $) $) NIL) (((-1135) $) 30) (((-548) $) NIL) ((|#2| $) 231) (((-399 (-921 |#2|)) $) 305) (((-921 |#2|) $) 232) (((-399 (-548)) $) NIL)) (-1402 (((-114) (-114)) 47)) (-2002 (($ $) 87)) (-1753 (((-3 (-591 $) "failed") $) 228)) (-1870 (((-619 (-591 $)) $) 229)) (-3939 (((-3 (-619 $) "failed") $) 247)) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) 254)) (-3927 (((-3 (-619 $) "failed") $) 245)) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 264)) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) 251) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) 219)) (-2164 (((-112) $) 19)) (-2175 ((|#2| $) 21)) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) 236) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 96) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1135)) 57) (($ $ (-619 (-1135))) 240) (($ $) 241) (($ $ (-114) $ (-1135)) 60) (($ $ (-619 (-114)) (-619 $) (-1135)) 67) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 107) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 242) (($ $ (-1135) (-745) (-1 $ (-619 $))) 94) (($ $ (-1135) (-745) (-1 $ $)) 93)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) 106)) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) 238)) (-1993 (($ $) 284)) (-2591 (((-861 (-548)) $) 257) (((-861 (-371)) $) 261) (($ (-410 $)) 320) (((-524) $) NIL)) (-3743 (((-832) $) 239) (($ (-591 $)) 84) (($ (-1135)) 26) (($ |#2|) NIL) (($ (-1087 |#2| (-591 $))) NIL) (($ (-399 |#2|)) 289) (($ (-921 (-399 |#2|))) 329) (($ (-399 (-921 (-399 |#2|)))) 301) (($ (-399 (-921 |#2|))) 295) (($ $) NIL) (($ (-921 |#2|)) 185) (($ (-399 (-548))) 334) (($ (-548)) NIL)) (-3835 (((-745)) 79)) (-1392 (((-112) (-114)) 41)) (-2201 (($ (-1135) $) 33) (($ (-1135) $ $) 34) (($ (-1135) $ $ $) 35) (($ (-1135) $ $ $ $) 36) (($ (-1135) (-619 $)) 39)) (* (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) -(((-421 |#1| |#2|) (-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 ((-745))) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-921 |#2|) |#1|)) (-15 -2441 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3743 (|#1| (-921 |#2|))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3743 (|#1| |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2375 ((-399 (-921 |#2|)) |#1|)) (-15 -2441 ((-3 (-399 (-921 |#2|)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-921 |#2|)))) (-15 -1884 ((-399 (-1131 |#1|)) |#1| (-591 |#1|))) (-15 -3743 (|#1| (-399 (-921 (-399 |#2|))))) (-15 -3743 (|#1| (-921 (-399 |#2|)))) (-15 -3743 (|#1| (-399 |#2|))) (-15 -1993 (|#1| |#1|)) (-15 -2591 (|#1| (-410 |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -3968 ((-3 (-2 (|:| |val| |#1|) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-1135))) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-114))) (-15 -2002 (|#1| |#1|)) (-15 -3743 (|#1| (-1087 |#2| (-591 |#1|)))) (-15 -2477 ((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1135))) (-15 -2460 (|#1| |#1| (-114) |#1| (-1135))) (-15 -2460 (|#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1135)))) (-15 -2460 (|#1| |#1| (-1135))) (-15 -2201 (|#1| (-1135) (-619 |#1|))) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1|)) (-15 -2049 ((-619 (-1135)) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1870 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3743 (|#1| (-591 |#1|))) (-15 -3743 ((-832) |#1|))) (-422 |#2|) (-821)) (T -421)) -((-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-421 *4 *5)) (-4 *4 (-422 *5)))) (-3835 (*1 *2) (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4))))) -(-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3835 ((-745))) (-15 -3743 (|#1| (-548))) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-921 |#2|) |#1|)) (-15 -2441 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3743 (|#1| (-921 |#2|))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3743 (|#1| |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2375 ((-399 (-921 |#2|)) |#1|)) (-15 -2441 ((-3 (-399 (-921 |#2|)) "failed") |#1|)) (-15 -3743 (|#1| (-399 (-921 |#2|)))) (-15 -1884 ((-399 (-1131 |#1|)) |#1| (-591 |#1|))) (-15 -3743 (|#1| (-399 (-921 (-399 |#2|))))) (-15 -3743 (|#1| (-921 (-399 |#2|)))) (-15 -3743 (|#1| (-399 |#2|))) (-15 -1993 (|#1| |#1|)) (-15 -2591 (|#1| (-410 |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -3968 ((-3 (-2 (|:| |val| |#1|) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-1135))) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1| (-114))) (-15 -2002 (|#1| |#1|)) (-15 -3743 (|#1| (-1087 |#2| (-591 |#1|)))) (-15 -2477 ((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 |#1|))) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 |#1|)) (|:| -3352 (-548))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1135))) (-15 -2460 (|#1| |#1| (-114) |#1| (-1135))) (-15 -2460 (|#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1135)))) (-15 -2460 (|#1| |#1| (-1135))) (-15 -2201 (|#1| (-1135) (-619 |#1|))) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1| |#1|)) (-15 -2201 (|#1| (-1135) |#1|)) (-15 -2049 ((-619 (-1135)) |#1|)) (-15 -2175 (|#2| |#1|)) (-15 -2164 ((-112) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2460 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2460 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1870 ((-619 (-591 |#1|)) |#1|)) (-15 -1753 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3854 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -3854 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -3854 (|#1| |#1| (-286 |#1|))) (-15 -3171 (|#1| (-114) (-619 |#1|))) (-15 -3171 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1| |#1|)) (-15 -3171 (|#1| (-114) |#1|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2460 (|#1| |#1| (-619 (-591 |#1|)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-591 |#1|) |#1|)) (-15 -2375 ((-591 |#1|) |#1|)) (-15 -2441 ((-3 (-591 |#1|) "failed") |#1|)) (-15 -3743 (|#1| (-591 |#1|))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 113 (|has| |#1| (-25)))) (-2049 (((-619 (-1135)) $) 200)) (-1884 (((-399 (-1131 $)) $ (-591 $)) 168 (|has| |#1| (-540)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 140 (|has| |#1| (-540)))) (-3303 (($ $) 141 (|has| |#1| (-540)))) (-3279 (((-112) $) 143 (|has| |#1| (-540)))) (-1806 (((-619 (-591 $)) $) 44)) (-4104 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3854 (($ $ (-286 $)) 56) (($ $ (-619 (-286 $))) 55) (($ $ (-619 (-591 $)) (-619 $)) 54)) (-1688 (($ $) 160 (|has| |#1| (-540)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-540)))) (-4087 (((-112) $ $) 151 (|has| |#1| (-540)))) (-3030 (($) 101 (-1524 (|has| |#1| (-1075)) (|has| |#1| (-25))) CONST)) (-2441 (((-3 (-591 $) "failed") $) 69) (((-3 (-1135) "failed") $) 213) (((-3 (-548) "failed") $) 206 (|has| |#1| (-1007 (-548)))) (((-3 |#1| "failed") $) 204) (((-3 (-399 (-921 |#1|)) "failed") $) 166 (|has| |#1| (-540))) (((-3 (-921 |#1|) "failed") $) 120 (|has| |#1| (-1016))) (((-3 (-399 (-548)) "failed") $) 95 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 (((-591 $) $) 68) (((-1135) $) 212) (((-548) $) 207 (|has| |#1| (-1007 (-548)))) ((|#1| $) 203) (((-399 (-921 |#1|)) $) 165 (|has| |#1| (-540))) (((-921 |#1|) $) 119 (|has| |#1| (-1016))) (((-399 (-548)) $) 94 (-1524 (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548))))))) (-1945 (($ $ $) 155 (|has| |#1| (-540)))) (-1608 (((-663 (-548)) (-663 $)) 134 (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 133 (-1723 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 132 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 131 (|has| |#1| (-1016)))) (-3859 (((-3 $ "failed") $) 103 (|has| |#1| (-1075)))) (-1922 (($ $ $) 154 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-540)))) (-1271 (((-112) $) 162 (|has| |#1| (-540)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 209 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 208 (|has| |#1| (-855 (-371))))) (-2142 (($ $) 51) (($ (-619 $)) 50)) (-1744 (((-619 (-114)) $) 43)) (-1402 (((-114) (-114)) 42)) (-2266 (((-112) $) 102 (|has| |#1| (-1075)))) (-3705 (((-112) $) 22 (|has| $ (-1007 (-548))))) (-2002 (($ $) 183 (|has| |#1| (-1016)))) (-2470 (((-1087 |#1| (-591 $)) $) 184 (|has| |#1| (-1016)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-540)))) (-1724 (((-1131 $) (-591 $)) 25 (|has| $ (-1016)))) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2540 (($ (-1 $ $) (-591 $)) 36)) (-1753 (((-3 (-591 $) "failed") $) 46)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-540))) (($ $ $) 146 (|has| |#1| (-540)))) (-2546 (((-1118) $) 9)) (-1870 (((-619 (-591 $)) $) 45)) (-1409 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-3939 (((-3 (-619 $) "failed") $) 189 (|has| |#1| (-1075)))) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $) 180 (|has| |#1| (-1016)))) (-3927 (((-3 (-619 $) "failed") $) 187 (|has| |#1| (-25)))) (-2477 (((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3954 (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $) 188 (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114)) 182 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135)) 181 (|has| |#1| (-1016)))) (-1518 (((-112) $ (-114)) 40) (((-112) $ (-1135)) 39)) (-2153 (($ $) 105 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-3926 (((-745) $) 47)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 202)) (-2175 ((|#1| $) 201)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-540)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-540))) (($ $ $) 144 (|has| |#1| (-540)))) (-1734 (((-112) $ $) 35) (((-112) $ (-1135)) 34)) (-1915 (((-410 $) $) 159 (|has| |#1| (-540)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-540))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ $) 139 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-540)))) (-3718 (((-112) $) 23 (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) 67) (($ $ (-619 (-591 $)) (-619 $)) 66) (($ $ (-619 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1135) (-1 $ (-619 $))) 31) (($ $ (-1135) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1135)) 194 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135))) 193 (|has| |#1| (-593 (-524)))) (($ $) 192 (|has| |#1| (-593 (-524)))) (($ $ (-114) $ (-1135)) 191 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-114)) (-619 $) (-1135)) 190 (|has| |#1| (-593 (-524)))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 179 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 178 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) 177 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ $)) 176 (|has| |#1| (-1016)))) (-4077 (((-745) $) 152 (|has| |#1| (-540)))) (-3171 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-540)))) (-1762 (($ $) 49) (($ $ $) 48)) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 125 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 124 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 123 (|has| |#1| (-1016))) (($ $ (-1135)) 122 (|has| |#1| (-1016)))) (-1993 (($ $) 173 (|has| |#1| (-540)))) (-2480 (((-1087 |#1| (-591 $)) $) 174 (|has| |#1| (-540)))) (-3287 (($ $) 24 (|has| $ (-1016)))) (-2591 (((-861 (-548)) $) 211 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 210 (|has| |#1| (-593 (-861 (-371))))) (($ (-410 $)) 175 (|has| |#1| (-540))) (((-524) $) 97 (|has| |#1| (-593 (-524))))) (-2128 (($ $ $) 108 (|has| |#1| (-464)))) (-3652 (($ $ $) 109 (|has| |#1| (-464)))) (-3743 (((-832) $) 11) (($ (-591 $)) 70) (($ (-1135)) 214) (($ |#1|) 205) (($ (-1087 |#1| (-591 $))) 185 (|has| |#1| (-1016))) (($ (-399 |#1|)) 171 (|has| |#1| (-540))) (($ (-921 (-399 |#1|))) 170 (|has| |#1| (-540))) (($ (-399 (-921 (-399 |#1|)))) 169 (|has| |#1| (-540))) (($ (-399 (-921 |#1|))) 167 (|has| |#1| (-540))) (($ $) 138 (|has| |#1| (-540))) (($ (-921 |#1|)) 121 (|has| |#1| (-1016))) (($ (-399 (-548))) 96 (-1524 (|has| |#1| (-540)) (-12 (|has| |#1| (-1007 (-548))) (|has| |#1| (-540))) (|has| |#1| (-1007 (-399 (-548)))))) (($ (-548)) 93 (-1524 (|has| |#1| (-1016)) (|has| |#1| (-1007 (-548)))))) (-4017 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3835 (((-745)) 130 (|has| |#1| (-1016)))) (-3528 (($ $) 53) (($ (-619 $)) 52)) (-1392 (((-112) (-114)) 41)) (-3290 (((-112) $ $) 142 (|has| |#1| (-540)))) (-2201 (($ (-1135) $) 199) (($ (-1135) $ $) 198) (($ (-1135) $ $ $) 197) (($ (-1135) $ $ $ $) 196) (($ (-1135) (-619 $)) 195)) (-3107 (($) 112 (|has| |#1| (-25)) CONST)) (-3118 (($) 100 (|has| |#1| (-1075)) CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 129 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 128 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 127 (|has| |#1| (-1016))) (($ $ (-1135)) 126 (|has| |#1| (-1016)))) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2309 (($ (-1087 |#1| (-591 $)) (-1087 |#1| (-591 $))) 172 (|has| |#1| (-540))) (($ $ $) 106 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540))))) (-2299 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2290 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-548)) 107 (-1524 (|has| |#1| (-464)) (|has| |#1| (-540)))) (($ $ (-745)) 104 (|has| |#1| (-1075))) (($ $ (-890)) 99 (|has| |#1| (-1075)))) (* (($ (-399 (-548)) $) 164 (|has| |#1| (-540))) (($ $ (-399 (-548))) 163 (|has| |#1| (-540))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-548) $) 118 (|has| |#1| (-21))) (($ (-745) $) 114 (|has| |#1| (-25))) (($ (-890) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1075))))) -(((-422 |#1|) (-138) (-821)) (T -422)) -((-2164 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-112)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1135))))) (-2201 (*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) (-2201 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 *1)) (-4 *1 (-422 *4)) (-4 *4 (-821)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-593 (-524))))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-593 (-524))))) (-2460 (*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-593 (-524))))) (-2460 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1135)) (-4 *1 (-422 *4)) (-4 *4 (-821)) (-4 *4 (-593 (-524))))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1135)) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-593 (-524))))) (-3939 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-422 *3)))) (-3954 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) (-4 *1 (-422 *3)))) (-3927 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-422 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1489 (-548)) (|:| |var| (-591 *1)))) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) (-4 *1 (-422 *3)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) (-3954 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) (-4 *1 (-422 *4)))) (-3954 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) (-4 *1 (-422 *4)))) (-3968 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |val| *1) (|:| -3352 (-548)))) (-4 *1 (-422 *3)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2460 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-422 *3)) (-4 *3 (-540)) (-4 *3 (-821)))) (-2480 (*1 *2 *1) (-12 (-4 *3 (-540)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) (-4 *1 (-422 *3)))) (-1993 (*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-540)))) (-2309 (*1 *1 *2 *2) (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-921 (-399 *3))) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-399 *3)))) (-4 *3 (-540)) (-4 *3 (-821)) (-4 *1 (-422 *3)))) (-1884 (*1 *2 *1 *3) (-12 (-5 *3 (-591 *1)) (-4 *1 (-422 *4)) (-4 *4 (-821)) (-4 *4 (-540)) (-5 *2 (-399 (-1131 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-1075))))) -(-13 (-294) (-1007 (-1135)) (-853 |t#1|) (-392 |t#1|) (-403 |t#1|) (-10 -8 (-15 -2164 ((-112) $)) (-15 -2175 (|t#1| $)) (-15 -2049 ((-619 (-1135)) $)) (-15 -2201 ($ (-1135) $)) (-15 -2201 ($ (-1135) $ $)) (-15 -2201 ($ (-1135) $ $ $)) (-15 -2201 ($ (-1135) $ $ $ $)) (-15 -2201 ($ (-1135) (-619 $))) (IF (|has| |t#1| (-593 (-524))) (PROGN (-6 (-593 (-524))) (-15 -2460 ($ $ (-1135))) (-15 -2460 ($ $ (-619 (-1135)))) (-15 -2460 ($ $)) (-15 -2460 ($ $ (-114) $ (-1135))) (-15 -2460 ($ $ (-619 (-114)) (-619 $) (-1135)))) |%noBranch|) (IF (|has| |t#1| (-1075)) (PROGN (-6 (-701)) (-15 ** ($ $ (-745))) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -2477 ((-3 (-2 (|:| -1489 (-548)) (|:| |var| (-591 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-1007 (-921 |t#1|))) (-6 (-869 (-1135))) (-6 (-369 |t#1|)) (-15 -3743 ($ (-1087 |t#1| (-591 $)))) (-15 -2470 ((-1087 |t#1| (-591 $)) $)) (-15 -2002 ($ $)) (-15 -3954 ((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-114))) (-15 -3954 ((-3 (-2 (|:| |var| (-591 $)) (|:| -3352 (-548))) "failed") $ (-1135))) (-15 -3968 ((-3 (-2 (|:| |val| $) (|:| -3352 (-548))) "failed") $)) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $)))) (-15 -2460 ($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $))))) (-15 -2460 ($ $ (-1135) (-745) (-1 $ (-619 $)))) (-15 -2460 ($ $ (-1135) (-745) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-6 (-355)) (-6 (-1007 (-399 (-921 |t#1|)))) (-15 -2591 ($ (-410 $))) (-15 -2480 ((-1087 |t#1| (-591 $)) $)) (-15 -1993 ($ $)) (-15 -2309 ($ (-1087 |t#1| (-591 $)) (-1087 |t#1| (-591 $)))) (-15 -3743 ($ (-399 |t#1|))) (-15 -3743 ($ (-921 (-399 |t#1|)))) (-15 -3743 ($ (-399 (-921 (-399 |t#1|))))) (-15 -1884 ((-399 (-1131 $)) $ (-591 $))) (IF (|has| |t#1| (-1007 (-548))) (-6 (-1007 (-399 (-548)))) |%noBranch|)) |%noBranch|))) -(((-21) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-399 (-548))) |has| |#1| (-540)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-540)) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) |has| |#1| (-540)) ((-130) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) |has| |#1| (-540)) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-236) |has| |#1| (-540)) ((-282) |has| |#1| (-540)) ((-299) |has| |#1| (-540)) ((-301 $) . T) ((-294) . T) ((-355) |has| |#1| (-540)) ((-369 |#1|) |has| |#1| (-1016)) ((-392 |#1|) . T) ((-403 |#1|) . T) ((-443) |has| |#1| (-540)) ((-464) |has| |#1| (-464)) ((-504 (-591 $) $) . T) ((-504 $ $) . T) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-540)) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-615 (-548)) -12 (|has| |#1| (-615 (-548))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) |has| |#1| (-540)) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) -1524 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-464)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-821) . T) ((-869 (-1135)) |has| |#1| (-1016)) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-889) |has| |#1| (-540)) ((-1007 (-399 (-548))) -1524 (|has| |#1| (-1007 (-399 (-548)))) (-12 (|has| |#1| (-540)) (|has| |#1| (-1007 (-548))))) ((-1007 (-399 (-921 |#1|))) |has| |#1| (-540)) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 (-591 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1135)) . T) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-540)) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) |has| |#1| (-540)) ((-1016) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1023) -1524 (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1075) -1524 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-540)) (|has| |#1| (-464)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1063) . T) ((-1172) . T) ((-1176) |has| |#1| (-540))) -((-1478 ((|#2| |#2| |#2|) 33)) (-1402 (((-114) (-114)) 44)) (-2602 ((|#2| |#2|) 66)) (-2593 ((|#2| |#2|) 69)) (-1467 ((|#2| |#2|) 32)) (-1513 ((|#2| |#2| |#2|) 35)) (-1533 ((|#2| |#2| |#2|) 37)) (-1502 ((|#2| |#2| |#2|) 34)) (-1523 ((|#2| |#2| |#2|) 36)) (-1392 (((-112) (-114)) 42)) (-1551 ((|#2| |#2|) 39)) (-1542 ((|#2| |#2|) 38)) (-1446 ((|#2| |#2|) 27)) (-1491 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1456 ((|#2| |#2| |#2|) 31))) -(((-423 |#1| |#2|) (-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1446 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1491 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1478 (|#2| |#2| |#2|)) (-15 -1502 (|#2| |#2| |#2|)) (-15 -1513 (|#2| |#2| |#2|)) (-15 -1523 (|#2| |#2| |#2|)) (-15 -1533 (|#2| |#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -2593 (|#2| |#2|)) (-15 -2602 (|#2| |#2|))) (-13 (-821) (-540)) (-422 |#1|)) (T -423)) -((-2602 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-2593 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1533 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1523 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1513 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1502 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1478 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1456 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1491 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) (-4 *2 (-422 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *4)) (-4 *4 (-422 *3)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-423 *4 *5)) (-4 *5 (-422 *4))))) -(-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1446 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1491 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1478 (|#2| |#2| |#2|)) (-15 -1502 (|#2| |#2| |#2|)) (-15 -1513 (|#2| |#2| |#2|)) (-15 -1523 (|#2| |#2| |#2|)) (-15 -1533 (|#2| |#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -2593 (|#2| |#2|)) (-15 -2602 (|#2| |#2|))) -((-2771 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|)) 61))) -(((-424 |#1| |#2|) (-10 -7 (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-540) (-821) (-145)) (-422 |#1|)) (T -424)) -((-2771 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-540) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1131 *3)) (|:| |pol2| (-1131 *3)) (|:| |prim| (-1131 *3)))) (-5 *1 (-424 *4 *3)) (-4 *3 (-27)) (-4 *3 (-422 *4)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) (-4 *4 (-13 (-540) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1131 *5))) (|:| |prim| (-1131 *5)))) (-5 *1 (-424 *4 *5))))) -(-10 -7 (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -2771 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2622 (((-1223)) 19)) (-2612 (((-1131 (-399 (-548))) |#2| (-591 |#2|)) 41) (((-399 (-548)) |#2|) 25))) -(((-425 |#1| |#2|) (-10 -7 (-15 -2612 ((-399 (-548)) |#2|)) (-15 -2612 ((-1131 (-399 (-548))) |#2| (-591 |#2|))) (-15 -2622 ((-1223)))) (-13 (-821) (-540) (-1007 (-548))) (-422 |#1|)) (T -425)) -((-2622 (*1 *2) (-12 (-4 *3 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-1223)) (-5 *1 (-425 *3 *4)) (-4 *4 (-422 *3)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-422 *5)) (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-425 *5 *3)))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-399 (-548))) (-5 *1 (-425 *4 *3)) (-4 *3 (-422 *4))))) -(-10 -7 (-15 -2612 ((-399 (-548)) |#2|)) (-15 -2612 ((-1131 (-399 (-548))) |#2| (-591 |#2|))) (-15 -2622 ((-1223)))) -((-2773 (((-112) $) 28)) (-2631 (((-112) $) 30)) (-2624 (((-112) $) 31)) (-2652 (((-112) $) 34)) (-2673 (((-112) $) 29)) (-2663 (((-112) $) 33)) (-3743 (((-832) $) 18) (($ (-1118)) 27) (($ (-1135)) 23) (((-1135) $) 22) (((-1067) $) 21)) (-2640 (((-112) $) 32)) (-2214 (((-112) $ $) 15))) -(((-426) (-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1118))) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -3743 ((-1067) $)) (-15 -2773 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2663 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -2631 ((-112) $)) (-15 -2214 ((-112) $ $))))) (T -426)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-426)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-426)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) (-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) -(-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1118))) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -3743 ((-1067) $)) (-15 -2773 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2663 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -2640 ((-112) $)) (-15 -2631 ((-112) $)) (-15 -2214 ((-112) $ $)))) -((-2692 (((-3 (-410 (-1131 (-399 (-548)))) "failed") |#3|) 70)) (-2681 (((-410 |#3|) |#3|) 34)) (-2708 (((-3 (-410 (-1131 (-48))) "failed") |#3|) 46 (|has| |#2| (-1007 (-48))))) (-2700 (((-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112))) |#3|) 37))) -(((-427 |#1| |#2| |#3|) (-10 -7 (-15 -2681 ((-410 |#3|) |#3|)) (-15 -2692 ((-3 (-410 (-1131 (-399 (-548)))) "failed") |#3|)) (-15 -2700 ((-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2708 ((-3 (-410 (-1131 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-540) (-821) (-1007 (-548))) (-422 |#1|) (-1194 |#2|)) (T -427)) -((-2708 (*1 *2 *3) (|partial| -12 (-4 *5 (-1007 (-48))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-410 (-1131 (-48)))) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112)))) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2692 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-410 (-1131 (-399 (-548))))) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2681 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) (-5 *2 (-410 *3)) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) -(-10 -7 (-15 -2681 ((-410 |#3|) |#3|)) (-15 -2692 ((-3 (-410 (-1131 (-399 (-548)))) "failed") |#3|)) (-15 -2700 ((-3 (|:| |overq| (-1131 (-399 (-548)))) (|:| |overan| (-1131 (-48))) (|:| -4119 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2708 ((-3 (-410 (-1131 (-48))) "failed") |#3|)) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-3930 (((-1118) $ (-1118)) NIL)) (-3981 (($ $ (-1118)) NIL)) (-3943 (((-1118) $) NIL)) (-1695 (((-380) (-380) (-380)) 17) (((-380) (-380)) 15)) (-1280 (($ (-380)) NIL) (($ (-380) (-1118)) NIL)) (-2275 (((-380) $) NIL)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1689 (((-1223) (-1118)) 9)) (-1681 (((-1223) (-1118)) 10)) (-1673 (((-1223)) 11)) (-3743 (((-832) $) NIL)) (-3972 (($ $) 35)) (-2214 (((-112) $ $) NIL))) -(((-428) (-13 (-356 (-380) (-1118)) (-10 -7 (-15 -1695 ((-380) (-380) (-380))) (-15 -1695 ((-380) (-380))) (-15 -1689 ((-1223) (-1118))) (-15 -1681 ((-1223) (-1118))) (-15 -1673 ((-1223)))))) (T -428)) -((-1695 (*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428)))) (-1673 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-428))))) -(-13 (-356 (-380) (-1118)) (-10 -7 (-15 -1695 ((-380) (-380) (-380))) (-15 -1695 ((-380) (-380))) (-15 -1689 ((-1223) (-1118))) (-15 -1681 ((-1223) (-1118))) (-15 -1673 ((-1223))))) -((-3730 (((-112) $ $) NIL)) (-1666 (((-3 (|:| |fst| (-426)) (|:| -2648 "void")) $) 11)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1649 (($) 32)) (-1624 (($) 38)) (-1634 (($) 34)) (-2725 (($) 36)) (-1641 (($) 33)) (-1612 (($) 35)) (-2716 (($) 37)) (-1658 (((-112) $) 8)) (-3618 (((-619 (-921 (-548))) $) 19)) (-3754 (($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-112)) 27) (($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-921 (-548))) (-112)) 28)) (-3743 (((-832) $) 23) (($ (-426)) 29)) (-2214 (((-112) $ $) NIL))) -(((-429) (-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -3743 ($ (-426))) (-15 -1666 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3618 ((-619 (-921 (-548))) $)) (-15 -1658 ((-112) $)) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-112))) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-921 (-548))) (-112))) (-15 -1649 ($)) (-15 -1641 ($)) (-15 -1634 ($)) (-15 -1624 ($)) (-15 -1612 ($)) (-15 -2725 ($)) (-15 -2716 ($))))) (T -429)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-429)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-426)) (-5 *1 (-429)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *1 (-429)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-548)))) (-5 *1 (-429)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *3 (-619 (-1135))) (-5 *4 (-112)) (-5 *1 (-429)))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-112)) (-5 *1 (-429)))) (-1649 (*1 *1) (-5 *1 (-429))) (-1641 (*1 *1) (-5 *1 (-429))) (-1634 (*1 *1) (-5 *1 (-429))) (-1624 (*1 *1) (-5 *1 (-429))) (-1612 (*1 *1) (-5 *1 (-429))) (-2725 (*1 *1) (-5 *1 (-429))) (-2716 (*1 *1) (-5 *1 (-429)))) -(-13 (-1063) (-10 -8 (-15 -3743 ((-832) $)) (-15 -3743 ($ (-426))) (-15 -1666 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3618 ((-619 (-921 (-548))) $)) (-15 -1658 ((-112) $)) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-1135)) (-112))) (-15 -3754 ($ (-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-619 (-921 (-548))) (-112))) (-15 -1649 ($)) (-15 -1641 ($)) (-15 -1634 ($)) (-15 -1624 ($)) (-15 -1612 ($)) (-15 -2725 ($)) (-15 -2716 ($)))) -((-3730 (((-112) $ $) NIL)) (-2275 (((-1135) $) 8)) (-2546 (((-1118) $) 16)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 13))) -(((-430 |#1|) (-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) (-1135)) (T -430)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-430 *3)) (-14 *3 *2)))) -(-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) -((-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-1218 (-673))) 14) (($ (-619 (-322))) 13) (($ (-322)) 12) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 11))) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-387)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-387)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) (-4 *1 (-387)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-4 *1 (-387)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-370))) (-4 *1 (-387)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-4 *1 (-387)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-547))) (-4 *1 (-387)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-921 (-370))) (-4 *1 (-387)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-370))) (-4 *1 (-387)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-387)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-547))) (-4 *1 (-387)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387))))) +(-13 (-386) (-10 -8 (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-321))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))) (-15 -2643 ($ (-307 (-370)))) (-15 -2698 ((-3 $ "failed") (-307 (-370)))) (-15 -2643 ($ (-307 (-547)))) (-15 -2698 ((-3 $ "failed") (-307 (-547)))) (-15 -2643 ($ (-921 (-370)))) (-15 -2698 ((-3 $ "failed") (-921 (-370)))) (-15 -2643 ($ (-921 (-547)))) (-15 -2698 ((-3 $ "failed") (-921 (-547)))) (-15 -2643 ($ (-398 (-921 (-370))))) (-15 -2698 ((-3 $ "failed") (-398 (-921 (-370))))) (-15 -2643 ($ (-398 (-921 (-547))))) (-15 -2698 ((-3 $ "failed") (-398 (-921 (-547))))))) +(((-591 (-832)) . T) ((-386) . T) ((-1172) . T)) +((-4022 (((-619 (-1118)) (-619 (-1118))) 9)) (-3304 (((-1223) (-379)) 27)) (-3915 (((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135))) 60) (((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135)) 35) (((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135))) 34))) +(((-388) (-10 -7 (-15 -3915 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)))) (-15 -3915 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135))) (-15 -3915 ((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135)))) (-15 -3304 ((-1223) (-379))) (-15 -4022 ((-619 (-1118)) (-619 (-1118)))))) (T -388)) +((-4022 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-388)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1223)) (-5 *1 (-388)))) (-3915 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *5 (-1138)) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-388)))) (-3915 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-388)))) (-3915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-388))))) +(-10 -7 (-15 -3915 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)))) (-15 -3915 ((-1067) (-1135) (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135)))) (-619 (-619 (-3 (|:| |array| (-619 (-1135))) (|:| |scalar| (-1135))))) (-619 (-1135)) (-1135))) (-15 -3915 ((-1067) (-1135) (-619 (-1135)) (-1138) (-619 (-1135)))) (-15 -3304 ((-1223) (-379))) (-15 -4022 ((-619 (-1118)) (-619 (-1118))))) +((-3304 (((-1223) $) 38)) (-3834 (((-832) $) 98) (($ (-321)) 100) (($ (-619 (-321))) 99) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 97) (($ (-307 (-675))) 54) (($ (-307 (-673))) 73) (($ (-307 (-668))) 86) (($ (-285 (-307 (-675)))) 68) (($ (-285 (-307 (-673)))) 81) (($ (-285 (-307 (-668)))) 94) (($ (-307 (-547))) 104) (($ (-307 (-370))) 117) (($ (-307 (-166 (-370)))) 130) (($ (-285 (-307 (-547)))) 112) (($ (-285 (-307 (-370)))) 125) (($ (-285 (-307 (-166 (-370))))) 138))) +(((-389 |#1| |#2| |#3| |#4|) (-13 (-386) (-10 -8 (-15 -3834 ($ (-321))) (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))) (-15 -3834 ($ (-307 (-675)))) (-15 -3834 ($ (-307 (-673)))) (-15 -3834 ($ (-307 (-668)))) (-15 -3834 ($ (-285 (-307 (-675))))) (-15 -3834 ($ (-285 (-307 (-673))))) (-15 -3834 ($ (-285 (-307 (-668))))) (-15 -3834 ($ (-307 (-547)))) (-15 -3834 ($ (-307 (-370)))) (-15 -3834 ($ (-307 (-166 (-370))))) (-15 -3834 ($ (-285 (-307 (-547))))) (-15 -3834 ($ (-285 (-307 (-370))))) (-15 -3834 ($ (-285 (-307 (-166 (-370)))))))) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-1135)) (-1139)) (T -389)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-321)) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-307 (-673))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-307 (-668))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-675)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-673)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-668)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-547)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-370)))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-285 (-307 (-166 (-370))))) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139))))) +(-13 (-386) (-10 -8 (-15 -3834 ($ (-321))) (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))) (-15 -3834 ($ (-307 (-675)))) (-15 -3834 ($ (-307 (-673)))) (-15 -3834 ($ (-307 (-668)))) (-15 -3834 ($ (-285 (-307 (-675))))) (-15 -3834 ($ (-285 (-307 (-673))))) (-15 -3834 ($ (-285 (-307 (-668))))) (-15 -3834 ($ (-307 (-547)))) (-15 -3834 ($ (-307 (-370)))) (-15 -3834 ($ (-307 (-166 (-370))))) (-15 -3834 ($ (-285 (-307 (-547))))) (-15 -3834 ($ (-285 (-307 (-370))))) (-15 -3834 ($ (-285 (-307 (-166 (-370)))))))) +((-3821 (((-112) $ $) NIL)) (-1609 ((|#2| $) 36)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1703 (($ (-398 |#2|)) 85)) (-1508 (((-619 (-2 (|:| -4248 (-745)) (|:| -2582 |#2|) (|:| |num| |#2|))) $) 37)) (-3443 (($ $) 32) (($ $ (-745)) 34)) (-2829 (((-398 |#2|) $) 46)) (-3841 (($ (-619 (-2 (|:| -4248 (-745)) (|:| -2582 |#2|) (|:| |num| |#2|)))) 31)) (-3834 (((-832) $) 120)) (-1686 (($ $) 33) (($ $ (-745)) 35)) (-2371 (((-112) $ $) NIL)) (-2470 (($ |#2| $) 39))) +(((-390 |#1| |#2|) (-13 (-1063) (-592 (-398 |#2|)) (-10 -8 (-15 -2470 ($ |#2| $)) (-15 -1703 ($ (-398 |#2|))) (-15 -1609 (|#2| $)) (-15 -1508 ((-619 (-2 (|:| -4248 (-745)) (|:| -2582 |#2|) (|:| |num| |#2|))) $)) (-15 -3841 ($ (-619 (-2 (|:| -4248 (-745)) (|:| -2582 |#2|) (|:| |num| |#2|))))) (-15 -3443 ($ $)) (-15 -1686 ($ $)) (-15 -3443 ($ $ (-745))) (-15 -1686 ($ $ (-745))))) (-13 (-354) (-145)) (-1194 |#1|)) (T -390)) +((-2470 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *2)) (-4 *2 (-1194 *3)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-398 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)))) (-1609 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-390 *3 *2)) (-4 *3 (-13 (-354) (-145))))) (-1508 (*1 *2 *1) (-12 (-4 *3 (-13 (-354) (-145))) (-5 *2 (-619 (-2 (|:| -4248 (-745)) (|:| -2582 *4) (|:| |num| *4)))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1194 *3)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -4248 (-745)) (|:| -2582 *4) (|:| |num| *4)))) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)))) (-3443 (*1 *1 *1) (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3)) (-4 *3 (-1194 *2)))) (-1686 (*1 *1 *1) (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3)) (-4 *3 (-1194 *2)))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1194 *3)))) (-1686 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1194 *3))))) +(-13 (-1063) (-592 (-398 |#2|)) (-10 -8 (-15 -2470 ($ |#2| $)) (-15 -1703 ($ (-398 |#2|))) (-15 -1609 (|#2| $)) (-15 -1508 ((-619 (-2 (|:| -4248 (-745)) (|:| -2582 |#2|) (|:| |num| |#2|))) $)) (-15 -3841 ($ (-619 (-2 (|:| -4248 (-745)) (|:| -2582 |#2|) (|:| |num| |#2|))))) (-15 -3443 ($ $)) (-15 -1686 ($ $)) (-15 -3443 ($ $ (-745))) (-15 -1686 ($ $ (-745))))) +((-3821 (((-112) $ $) 9 (-1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 15 (|has| |#1| (-855 (-370)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 14 (|has| |#1| (-855 (-547))))) (-1917 (((-1118) $) 13 (-1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-3979 (((-1082) $) 12 (-1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-3834 (((-832) $) 11 (-1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))))) (-2371 (((-112) $ $) 10 (-1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370))))))) +(((-391 |#1|) (-138) (-1172)) (T -391)) +NIL +(-13 (-1172) (-10 -7 (IF (|has| |t#1| (-855 (-547))) (-6 (-855 (-547))) |%noBranch|) (IF (|has| |t#1| (-855 (-370))) (-6 (-855 (-370))) |%noBranch|))) +(((-101) -1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))) ((-591 (-832)) -1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-1063) -1524 (|has| |#1| (-855 (-547))) (|has| |#1| (-855 (-370)))) ((-1172) . T)) +((-1771 (($ $) 10) (($ $ (-745)) 11))) +(((-392 |#1|) (-10 -8 (-15 -1771 (|#1| |#1| (-745))) (-15 -1771 (|#1| |#1|))) (-393)) (T -392)) +NIL +(-10 -8 (-15 -1771 (|#1| |#1| (-745))) (-15 -1771 (|#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-1771 (($ $) 76) (($ $ (-745)) 75)) (-3674 (((-112) $) 68)) (-3707 (((-807 (-890)) $) 78)) (-4114 (((-112) $) 30)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-1868 (((-3 (-745) "failed") $ $) 77)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63)) (-3336 (((-3 $ "failed") $) 79)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 62)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64))) +(((-393) (-138)) (T -393)) +((-3707 (*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-807 (-890))))) (-1868 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-393)) (-5 *2 (-745)))) (-1771 (*1 *1 *1) (-4 *1 (-393))) (-1771 (*1 *1 *1 *2) (-12 (-4 *1 (-393)) (-5 *2 (-745))))) +(-13 (-354) (-143) (-10 -8 (-15 -3707 ((-807 (-890)) $)) (-15 -1868 ((-3 (-745) "failed") $ $)) (-15 -1771 ($ $)) (-15 -1771 ($ $ (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-1347 (($ (-547) (-547)) 11) (($ (-547) (-547) (-890)) NIL)) (-2871 (((-890)) 16) (((-890) (-890)) NIL))) +(((-394 |#1|) (-10 -8 (-15 -2871 ((-890) (-890))) (-15 -2871 ((-890))) (-15 -1347 (|#1| (-547) (-547) (-890))) (-15 -1347 (|#1| (-547) (-547)))) (-395)) (T -394)) +((-2871 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395))))) +(-10 -8 (-15 -2871 ((-890) (-890))) (-15 -2871 ((-890))) (-15 -1347 (|#1| (-547) (-547) (-890))) (-15 -1347 (|#1| (-547) (-547)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2673 (((-547) $) 86)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3643 (($ $) 84)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2118 (($ $) 94)) (-2873 (((-112) $ $) 57)) (-3807 (((-547) $) 111)) (-3219 (($) 17 T CONST)) (-2446 (($ $) 83)) (-2698 (((-3 (-547) "failed") $) 99) (((-3 (-398 (-547)) "failed") $) 96)) (-2643 (((-547) $) 98) (((-398 (-547)) $) 95)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3674 (((-112) $) 68)) (-3225 (((-890)) 127) (((-890) (-890)) 124 (|has| $ (-6 -4319)))) (-3848 (((-112) $) 109)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 90)) (-3707 (((-547) $) 133)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 93)) (-1684 (($ $) 89)) (-3937 (((-112) $) 110)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2847 (($ $ $) 108) (($) 121 (-12 (-3998 (|has| $ (-6 -4319))) (-3998 (|has| $ (-6 -4311)))))) (-3563 (($ $ $) 107) (($) 120 (-12 (-3998 (|has| $ (-6 -4319))) (-3998 (|has| $ (-6 -4311)))))) (-1448 (((-547) $) 130)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3880 (((-890) (-547)) 123 (|has| $ (-6 -4319)))) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2567 (($ $) 85)) (-1435 (($ $) 87)) (-1347 (($ (-547) (-547)) 135) (($ (-547) (-547) (-890)) 134)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4248 (((-547) $) 131)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-2871 (((-890)) 128) (((-890) (-890)) 125 (|has| $ (-6 -4319)))) (-3810 (((-890) (-547)) 122 (|has| $ (-6 -4319)))) (-2829 (((-370) $) 102) (((-217) $) 101) (((-861 (-370)) $) 91)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ (-547)) 100) (($ (-398 (-547))) 97)) (-2311 (((-745)) 28)) (-1564 (($ $) 88)) (-3936 (((-890)) 129) (((-890) (-890)) 126 (|has| $ (-6 -4319)))) (-1849 (((-890)) 132)) (-1932 (((-112) $ $) 37)) (-2040 (($ $) 112)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 105)) (-2408 (((-112) $ $) 104)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 106)) (-2396 (((-112) $ $) 103)) (-2497 (($ $ $) 62)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64))) +(((-395) (-138)) (T -395)) +((-1347 (*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-395)))) (-1347 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-4 *1 (-395)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) (-1849 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) (-3936 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-2871 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-3225 (*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4319)) (-4 *1 (-395)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4319)) (-4 *1 (-395)))) (-3225 (*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4319)) (-4 *1 (-395)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-547)) (|has| *1 (-6 -4319)) (-4 *1 (-395)) (-5 *2 (-890)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-547)) (|has| *1 (-6 -4319)) (-4 *1 (-395)) (-5 *2 (-890)))) (-2847 (*1 *1) (-12 (-4 *1 (-395)) (-3998 (|has| *1 (-6 -4319))) (-3998 (|has| *1 (-6 -4311))))) (-3563 (*1 *1) (-12 (-4 *1 (-395)) (-3998 (|has| *1 (-6 -4319))) (-3998 (|has| *1 (-6 -4311)))))) +(-13 (-1025) (-10 -8 (-6 -2645) (-15 -1347 ($ (-547) (-547))) (-15 -1347 ($ (-547) (-547) (-890))) (-15 -3707 ((-547) $)) (-15 -1849 ((-890))) (-15 -4248 ((-547) $)) (-15 -1448 ((-547) $)) (-15 -3936 ((-890))) (-15 -2871 ((-890))) (-15 -3225 ((-890))) (IF (|has| $ (-6 -4319)) (PROGN (-15 -3936 ((-890) (-890))) (-15 -2871 ((-890) (-890))) (-15 -3225 ((-890) (-890))) (-15 -3880 ((-890) (-547))) (-15 -3810 ((-890) (-547)))) |%noBranch|) (IF (|has| $ (-6 -4311)) |%noBranch| (IF (|has| $ (-6 -4319)) |%noBranch| (PROGN (-15 -2847 ($)) (-15 -3563 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-592 (-217)) . T) ((-592 (-370)) . T) ((-592 (-861 (-370))) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-370)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1025) . T) ((-1007 (-398 (-547))) . T) ((-1007 (-547)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-2781 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 20))) +(((-396 |#1| |#2|) (-10 -7 (-15 -2781 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-539) (-539)) (T -396)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-5 *2 (-409 *6)) (-5 *1 (-396 *5 *6))))) +(-10 -7 (-15 -2781 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) +((-2781 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 13))) +(((-397 |#1| |#2|) (-10 -7 (-15 -2781 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-539) (-539)) (T -397)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-5 *2 (-398 *6)) (-5 *1 (-397 *5 *6))))) +(-10 -7 (-15 -2781 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 13)) (-2673 ((|#1| $) 21 (|has| |#1| (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| |#1| (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 17) (((-3 (-1135) "failed") $) NIL (|has| |#1| (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) 70 (|has| |#1| (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547))))) (-2643 ((|#1| $) 15) (((-1135) $) NIL (|has| |#1| (-1007 (-1135)))) (((-398 (-547)) $) 67 (|has| |#1| (-1007 (-547)))) (((-547) $) NIL (|has| |#1| (-1007 (-547))))) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) 50)) (-3229 (($) NIL (|has| |#1| (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| |#1| (-855 (-370))))) (-4114 (((-112) $) 64)) (-3739 (($ $) NIL)) (-1382 ((|#1| $) 71)) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-3937 (((-112) $) NIL (|has| |#1| (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| |#1| (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 97)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| |#1| (-298)))) (-1435 ((|#1| $) 28 (|has| |#1| (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 135 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 131 (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-503 (-1135) |#1|)))) (-2776 (((-745) $) NIL)) (-3329 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3660 (($ $) NIL)) (-1392 ((|#1| $) 73)) (-2829 (((-861 (-547)) $) NIL (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#1| (-592 (-861 (-370))))) (((-523) $) NIL (|has| |#1| (-592 (-523)))) (((-370) $) NIL (|has| |#1| (-991))) (((-217) $) NIL (|has| |#1| (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 10) (($ (-1135)) NIL (|has| |#1| (-1007 (-1135))))) (-3336 (((-3 $ "failed") $) 99 (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) 100)) (-1564 ((|#1| $) 26 (|has| |#1| (-532)))) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL (|has| |#1| (-794)))) (-3267 (($) 22 T CONST)) (-3277 (($) 8 T CONST)) (-2083 (((-1118) $) 43 (-12 (|has| |#1| (-532)) (|has| |#1| (-802)))) (((-1118) $ (-112)) 44 (-12 (|has| |#1| (-532)) (|has| |#1| (-802)))) (((-1223) (-796) $) 45 (-12 (|has| |#1| (-532)) (|has| |#1| (-802)))) (((-1223) (-796) $ (-112)) 46 (-12 (|has| |#1| (-532)) (|has| |#1| (-802))))) (-1686 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 56)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) 24 (|has| |#1| (-821)))) (-2497 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2484 (($ $) 25) (($ $ $) 55)) (-2470 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 125)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 60) (($ $ $) 57) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-398 |#1|) (-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-532)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4315)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-6 -4326)) (-6 -4315) |%noBranch|) |%noBranch|) |%noBranch|))) (-539)) (T -398)) +NIL +(-13 (-961 |#1|) (-10 -7 (IF (|has| |#1| (-532)) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4315)) (IF (|has| |#1| (-442)) (IF (|has| |#1| (-6 -4326)) (-6 -4315) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3743 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 18)) (-2402 (($ (-1218 |#2|) (-1218 $)) NIL) (($ (-1218 |#2|)) 24)) (-3653 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 38)) (-4213 ((|#3| $) 60)) (-3846 ((|#2| (-1218 $)) NIL) ((|#2|) 20)) (-2301 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 22) (((-663 |#2|) (-1218 $)) 36)) (-2829 (((-1218 |#2|) $) 11) (($ (-1218 |#2|)) 13)) (-3008 ((|#3| $) 52))) +(((-399 |#1| |#2| |#3|) (-10 -8 (-15 -3653 ((-663 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -3743 ((-663 |#2|))) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -2402 (|#1| (-1218 |#2|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -4213 (|#3| |#1|)) (-15 -3008 (|#3| |#1|)) (-15 -3743 ((-663 |#2|) (-1218 |#1|))) (-15 -3846 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3653 ((-663 |#2|) |#1| (-1218 |#1|)))) (-400 |#2| |#3|) (-169) (-1194 |#2|)) (T -399)) +((-3743 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)) (-5 *1 (-399 *3 *4 *5)) (-4 *3 (-400 *4 *5)))) (-3846 (*1 *2) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-169)) (-5 *1 (-399 *3 *2 *4)) (-4 *3 (-400 *2 *4))))) +(-10 -8 (-15 -3653 ((-663 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -3743 ((-663 |#2|))) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -2402 (|#1| (-1218 |#2|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -4213 (|#3| |#1|)) (-15 -3008 (|#3| |#1|)) (-15 -3743 ((-663 |#2|) (-1218 |#1|))) (-15 -3846 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -3653 ((-663 |#2|) |#1| (-1218 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3743 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2890 ((|#1| $) 50)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2402 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-3653 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-2537 (((-3 $ "failed") $) 32)) (-3107 (((-890)) 52)) (-4114 (((-112) $) 30)) (-1684 ((|#1| $) 49)) (-4213 ((|#2| $) 42 (|has| |#1| (-354)))) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3846 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2301 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2829 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35)) (-3336 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3008 ((|#2| $) 43)) (-2311 (((-745)) 28)) (-4013 (((-1218 $)) 65)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-400 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -400)) +((-4013 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *1)) (-4 *1 (-400 *3 *4)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-400 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4)) (-4 *4 (-1194 *3)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4)) (-4 *4 (-1194 *3)))) (-3743 (*1 *2) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-663 *3)))) (-3846 (*1 *2) (-12 (-4 *1 (-400 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-663 *3))))) +(-13 (-361 |t#1| |t#2|) (-10 -8 (-15 -4013 ((-1218 $))) (-15 -2301 ((-1218 |t#1|) $)) (-15 -2301 ((-663 |t#1|) (-1218 $))) (-15 -2402 ($ (-1218 |t#1|))) (-15 -2829 ((-1218 |t#1|) $)) (-15 -2829 ($ (-1218 |t#1|))) (-15 -3743 ((-663 |t#1|))) (-15 -3846 (|t#1|)) (-15 -3653 ((-663 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-361 |#1| |#2|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) 27) (((-3 (-547) "failed") $) 19)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) 24) (((-547) $) 14)) (-3834 (($ |#2|) NIL) (($ (-398 (-547))) 22) (($ (-547)) 11))) +(((-401 |#1| |#2|) (-10 -8 (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -3834 (|#1| (-547))) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|))) (-402 |#2|) (-1172)) (T -401)) +NIL +(-10 -8 (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -3834 (|#1| (-547))) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|))) +((-2698 (((-3 |#1| "failed") $) 7) (((-3 (-398 (-547)) "failed") $) 16 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 13 (|has| |#1| (-1007 (-547))))) (-2643 ((|#1| $) 8) (((-398 (-547)) $) 15 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 12 (|has| |#1| (-1007 (-547))))) (-3834 (($ |#1|) 6) (($ (-398 (-547))) 17 (|has| |#1| (-1007 (-398 (-547))))) (($ (-547)) 14 (|has| |#1| (-1007 (-547)))))) +(((-402 |#1|) (-138) (-1172)) (T -402)) +NIL +(-13 (-1007 |t#1|) (-10 -7 (IF (|has| |t#1| (-1007 (-547))) (-6 (-1007 (-547))) |%noBranch|) (IF (|has| |t#1| (-1007 (-398 (-547)))) (-6 (-1007 (-398 (-547)))) |%noBranch|))) +(((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T)) +((-2781 (((-404 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-404 |#1| |#2| |#3| |#4|)) 33))) +(((-403 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2781 ((-404 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-404 |#1| |#2| |#3| |#4|)))) (-298) (-961 |#1|) (-1194 |#2|) (-13 (-400 |#2| |#3|) (-1007 |#2|)) (-298) (-961 |#5|) (-1194 |#6|) (-13 (-400 |#6| |#7|) (-1007 |#6|))) (T -403)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-404 *5 *6 *7 *8)) (-4 *5 (-298)) (-4 *6 (-961 *5)) (-4 *7 (-1194 *6)) (-4 *8 (-13 (-400 *6 *7) (-1007 *6))) (-4 *9 (-298)) (-4 *10 (-961 *9)) (-4 *11 (-1194 *10)) (-5 *2 (-404 *9 *10 *11 *12)) (-5 *1 (-403 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-400 *10 *11) (-1007 *10)))))) +(-10 -7 (-15 -2781 ((-404 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-404 |#1| |#2| |#3| |#4|)))) +((-3821 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-2718 ((|#4| (-745) (-1218 |#4|)) 56)) (-4114 (((-112) $) NIL)) (-1382 (((-1218 |#4|) $) 17)) (-1684 ((|#2| $) 54)) (-2800 (($ $) 139)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 100)) (-2989 (($ (-1218 |#4|)) 99)) (-3979 (((-1082) $) NIL)) (-1392 ((|#1| $) 18)) (-2444 (($ $ $) NIL)) (-4121 (($ $ $) NIL)) (-3834 (((-832) $) 134)) (-4013 (((-1218 |#4|) $) 129)) (-3277 (($) 11 T CONST)) (-2371 (((-112) $ $) 40)) (-2497 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 122)) (* (($ $ $) 121))) +(((-404 |#1| |#2| |#3| |#4|) (-13 (-463) (-10 -8 (-15 -2989 ($ (-1218 |#4|))) (-15 -4013 ((-1218 |#4|) $)) (-15 -1684 (|#2| $)) (-15 -1382 ((-1218 |#4|) $)) (-15 -1392 (|#1| $)) (-15 -2800 ($ $)) (-15 -2718 (|#4| (-745) (-1218 |#4|))))) (-298) (-961 |#1|) (-1194 |#2|) (-13 (-400 |#2| |#3|) (-1007 |#2|))) (T -404)) +((-2989 (*1 *1 *2) (-12 (-5 *2 (-1218 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-298)) (-5 *1 (-404 *3 *4 *5 *6)))) (-4013 (*1 *2 *1) (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-404 *3 *4 *5 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))))) (-1684 (*1 *2 *1) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-404 *3 *2 *4 *5)) (-4 *3 (-298)) (-4 *5 (-13 (-400 *2 *4) (-1007 *2))))) (-1382 (*1 *2 *1) (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-404 *3 *4 *5 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))))) (-1392 (*1 *2 *1) (-12 (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-4 *2 (-298)) (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3))))) (-2800 (*1 *1 *1) (-12 (-4 *2 (-298)) (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3))))) (-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1218 *2)) (-4 *5 (-298)) (-4 *6 (-961 *5)) (-4 *2 (-13 (-400 *6 *7) (-1007 *6))) (-5 *1 (-404 *5 *6 *7 *2)) (-4 *7 (-1194 *6))))) +(-13 (-463) (-10 -8 (-15 -2989 ($ (-1218 |#4|))) (-15 -4013 ((-1218 |#4|) $)) (-15 -1684 (|#2| $)) (-15 -1382 ((-1218 |#4|) $)) (-15 -1392 (|#1| $)) (-15 -2800 ($ $)) (-15 -2718 (|#4| (-745) (-1218 |#4|))))) +((-3821 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-1684 ((|#2| $) 61)) (-2892 (($ (-1218 |#4|)) 25) (($ (-404 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1007 |#2|)))) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 34)) (-4013 (((-1218 |#4|) $) 26)) (-3277 (($) 23 T CONST)) (-2371 (((-112) $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ $ $) 72))) +(((-405 |#1| |#2| |#3| |#4| |#5|) (-13 (-701) (-10 -8 (-15 -4013 ((-1218 |#4|) $)) (-15 -1684 (|#2| $)) (-15 -2892 ($ (-1218 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -2892 ($ (-404 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-298) (-961 |#1|) (-1194 |#2|) (-400 |#2| |#3|) (-1218 |#4|)) (T -405)) +((-4013 (*1 *2 *1) (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7)) (-4 *6 (-400 *4 *5)) (-14 *7 *2))) (-1684 (*1 *2 *1) (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-405 *3 *2 *4 *5 *6)) (-4 *3 (-298)) (-4 *5 (-400 *2 *4)) (-14 *6 (-1218 *5)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1218 *6)) (-4 *6 (-400 *4 *5)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-298)) (-5 *1 (-405 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-404 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *6 (-400 *4 *5)) (-14 *7 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7))))) +(-13 (-701) (-10 -8 (-15 -4013 ((-1218 |#4|) $)) (-15 -1684 (|#2| $)) (-15 -2892 ($ (-1218 |#4|))) (IF (|has| |#4| (-1007 |#2|)) (-15 -2892 ($ (-404 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2781 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#3| (-1 |#4| |#2|) |#1|))) (-408 |#2|) (-169) (-408 |#4|) (-169)) (T -406)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-408 *6)) (-5 *1 (-406 *4 *5 *2 *6)) (-4 *4 (-408 *5))))) +(-10 -7 (-15 -2781 (|#3| (-1 |#4| |#2|) |#1|))) +((-4104 (((-3 $ "failed")) 86)) (-2173 (((-1218 (-663 |#2|)) (-1218 $)) NIL) (((-1218 (-663 |#2|))) 91)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) 85)) (-4231 (((-3 $ "failed")) 84)) (-3140 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 102)) (-2966 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 110)) (-1346 (((-1131 (-921 |#2|))) 55)) (-2149 ((|#2| (-1218 $)) NIL) ((|#2|) 106)) (-2402 (($ (-1218 |#2|) (-1218 $)) NIL) (($ (-1218 |#2|)) 112)) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) 83)) (-1283 (((-3 $ "failed")) 75)) (-2033 (((-663 |#2|) (-1218 $)) NIL) (((-663 |#2|)) 100)) (-3058 (((-663 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) $) 108)) (-2100 (((-1131 (-921 |#2|))) 54)) (-2275 ((|#2| (-1218 $)) NIL) ((|#2|) 104)) (-2301 (((-1218 |#2|) $ (-1218 $)) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $) 111) (((-663 |#2|) (-1218 $)) 118)) (-2829 (((-1218 |#2|) $) 96) (($ (-1218 |#2|)) 98)) (-1701 (((-619 (-921 |#2|)) (-1218 $)) NIL) (((-619 (-921 |#2|))) 94)) (-3583 (($ (-663 |#2|) $) 90))) +(((-407 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| (-663 |#2|) |#1|)) (-15 -1346 ((-1131 (-921 |#2|)))) (-15 -2100 ((-1131 (-921 |#2|)))) (-15 -2966 ((-663 |#2|) |#1|)) (-15 -3058 ((-663 |#2|) |#1|)) (-15 -3140 ((-663 |#2|))) (-15 -2033 ((-663 |#2|))) (-15 -2149 (|#2|)) (-15 -2275 (|#2|)) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -2402 (|#1| (-1218 |#2|))) (-15 -1701 ((-619 (-921 |#2|)))) (-15 -2173 ((-1218 (-663 |#2|)))) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -4104 ((-3 |#1| "failed"))) (-15 -4231 ((-3 |#1| "failed"))) (-15 -1283 ((-3 |#1| "failed"))) (-15 -2377 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed"))) (-15 -2580 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed"))) (-15 -3140 ((-663 |#2|) (-1218 |#1|))) (-15 -2033 ((-663 |#2|) (-1218 |#1|))) (-15 -2149 (|#2| (-1218 |#1|))) (-15 -2275 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2966 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -3058 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2173 ((-1218 (-663 |#2|)) (-1218 |#1|))) (-15 -1701 ((-619 (-921 |#2|)) (-1218 |#1|)))) (-408 |#2|) (-169)) (T -407)) +((-2173 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-1701 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-2275 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2)))) (-2149 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2)))) (-2033 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-3140 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-2100 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-1346 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4))))) +(-10 -8 (-15 -3583 (|#1| (-663 |#2|) |#1|)) (-15 -1346 ((-1131 (-921 |#2|)))) (-15 -2100 ((-1131 (-921 |#2|)))) (-15 -2966 ((-663 |#2|) |#1|)) (-15 -3058 ((-663 |#2|) |#1|)) (-15 -3140 ((-663 |#2|))) (-15 -2033 ((-663 |#2|))) (-15 -2149 (|#2|)) (-15 -2275 (|#2|)) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -2402 (|#1| (-1218 |#2|))) (-15 -1701 ((-619 (-921 |#2|)))) (-15 -2173 ((-1218 (-663 |#2|)))) (-15 -2301 ((-663 |#2|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1|)) (-15 -4104 ((-3 |#1| "failed"))) (-15 -4231 ((-3 |#1| "failed"))) (-15 -1283 ((-3 |#1| "failed"))) (-15 -2377 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed"))) (-15 -2580 ((-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed"))) (-15 -3140 ((-663 |#2|) (-1218 |#1|))) (-15 -2033 ((-663 |#2|) (-1218 |#1|))) (-15 -2149 (|#2| (-1218 |#1|))) (-15 -2275 (|#2| (-1218 |#1|))) (-15 -2402 (|#1| (-1218 |#2|) (-1218 |#1|))) (-15 -2301 ((-663 |#2|) (-1218 |#1|) (-1218 |#1|))) (-15 -2301 ((-1218 |#2|) |#1| (-1218 |#1|))) (-15 -2966 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -3058 ((-663 |#2|) |#1| (-1218 |#1|))) (-15 -2173 ((-1218 (-663 |#2|)) (-1218 |#1|))) (-15 -1701 ((-619 (-921 |#2|)) (-1218 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-4104 (((-3 $ "failed")) 37 (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) 19)) (-2173 (((-1218 (-663 |#1|)) (-1218 $)) 78) (((-1218 (-663 |#1|))) 100)) (-3785 (((-1218 $)) 81)) (-3219 (($) 17 T CONST)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) 40 (|has| |#1| (-539)))) (-4231 (((-3 $ "failed")) 38 (|has| |#1| (-539)))) (-3140 (((-663 |#1|) (-1218 $)) 65) (((-663 |#1|)) 92)) (-3573 ((|#1| $) 74)) (-2966 (((-663 |#1|) $ (-1218 $)) 76) (((-663 |#1|) $) 90)) (-3480 (((-3 $ "failed") $) 45 (|has| |#1| (-539)))) (-1346 (((-1131 (-921 |#1|))) 88 (|has| |#1| (-354)))) (-3946 (($ $ (-890)) 28)) (-3335 ((|#1| $) 72)) (-2101 (((-1131 |#1|) $) 42 (|has| |#1| (-539)))) (-2149 ((|#1| (-1218 $)) 67) ((|#1|) 94)) (-4250 (((-1131 |#1|) $) 63)) (-1834 (((-112)) 57)) (-2402 (($ (-1218 |#1|) (-1218 $)) 69) (($ (-1218 |#1|)) 98)) (-2537 (((-3 $ "failed") $) 47 (|has| |#1| (-539)))) (-3107 (((-890)) 80)) (-1575 (((-112)) 54)) (-2530 (($ $ (-890)) 33)) (-2578 (((-112)) 50)) (-2385 (((-112)) 48)) (-1377 (((-112)) 52)) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) 41 (|has| |#1| (-539)))) (-1283 (((-3 $ "failed")) 39 (|has| |#1| (-539)))) (-2033 (((-663 |#1|) (-1218 $)) 66) (((-663 |#1|)) 93)) (-3690 ((|#1| $) 75)) (-3058 (((-663 |#1|) $ (-1218 $)) 77) (((-663 |#1|) $) 91)) (-3593 (((-3 $ "failed") $) 46 (|has| |#1| (-539)))) (-2100 (((-1131 (-921 |#1|))) 89 (|has| |#1| (-354)))) (-3699 (($ $ (-890)) 29)) (-3452 ((|#1| $) 73)) (-2205 (((-1131 |#1|) $) 43 (|has| |#1| (-539)))) (-2275 ((|#1| (-1218 $)) 68) ((|#1|) 95)) (-1303 (((-1131 |#1|) $) 64)) (-1924 (((-112)) 58)) (-1917 (((-1118) $) 9)) (-2486 (((-112)) 49)) (-2662 (((-112)) 51)) (-1475 (((-112)) 53)) (-3979 (((-1082) $) 10)) (-1739 (((-112)) 56)) (-3329 ((|#1| $ (-547)) 101)) (-2301 (((-1218 |#1|) $ (-1218 $)) 71) (((-663 |#1|) (-1218 $) (-1218 $)) 70) (((-1218 |#1|) $) 103) (((-663 |#1|) (-1218 $)) 102)) (-2829 (((-1218 |#1|) $) 97) (($ (-1218 |#1|)) 96)) (-1701 (((-619 (-921 |#1|)) (-1218 $)) 79) (((-619 (-921 |#1|))) 99)) (-4121 (($ $ $) 25)) (-4156 (((-112)) 62)) (-3834 (((-832) $) 11)) (-4013 (((-1218 $)) 104)) (-2310 (((-619 (-1218 |#1|))) 44 (|has| |#1| (-539)))) (-4225 (($ $ $ $) 26)) (-3948 (((-112)) 60)) (-3583 (($ (-663 |#1|) $) 87)) (-4007 (($ $ $) 24)) (-4057 (((-112)) 61)) (-2014 (((-112)) 59)) (-1649 (((-112)) 55)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-408 |#1|) (-138) (-169)) (T -408)) +((-4013 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-408 *3)))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-408 *4)) (-4 *4 (-169)) (-5 *2 (-663 *4)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-408 *2)) (-4 *2 (-169)))) (-2173 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1218 (-663 *3))))) (-1701 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) (-2402 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3)))) (-2275 (*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169)))) (-2149 (*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169)))) (-2033 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-3140 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3)))) (-2100 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354)) (-5 *2 (-1131 (-921 *3))))) (-1346 (*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354)) (-5 *2 (-1131 (-921 *3))))) (-3583 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *3)) (-4 *1 (-408 *3)) (-4 *3 (-169))))) +(-13 (-358 |t#1|) (-10 -8 (-15 -4013 ((-1218 $))) (-15 -2301 ((-1218 |t#1|) $)) (-15 -2301 ((-663 |t#1|) (-1218 $))) (-15 -3329 (|t#1| $ (-547))) (-15 -2173 ((-1218 (-663 |t#1|)))) (-15 -1701 ((-619 (-921 |t#1|)))) (-15 -2402 ($ (-1218 |t#1|))) (-15 -2829 ((-1218 |t#1|) $)) (-15 -2829 ($ (-1218 |t#1|))) (-15 -2275 (|t#1|)) (-15 -2149 (|t#1|)) (-15 -2033 ((-663 |t#1|))) (-15 -3140 ((-663 |t#1|))) (-15 -3058 ((-663 |t#1|) $)) (-15 -2966 ((-663 |t#1|) $)) (IF (|has| |t#1| (-354)) (PROGN (-15 -2100 ((-1131 (-921 |t#1|)))) (-15 -1346 ((-1131 (-921 |t#1|))))) |%noBranch|) (-15 -3583 ($ (-663 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-358 |#1|) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-719 |#1|) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 42)) (-4023 (($ $) 57)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 146)) (-3881 (($ $) NIL)) (-1832 (((-112) $) 36)) (-4104 ((|#1| $) 13)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-1176)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-1176)))) (-4239 (($ |#1| (-547)) 31)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 116)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 55)) (-2537 (((-3 $ "failed") $) 131)) (-2653 (((-3 (-398 (-547)) "failed") $) 63 (|has| |#1| (-532)))) (-2543 (((-112) $) 59 (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) 70 (|has| |#1| (-532)))) (-1256 (($ |#1| (-547)) 33)) (-3674 (((-112) $) 152 (|has| |#1| (-1176)))) (-4114 (((-112) $) 43)) (-3099 (((-745) $) 38)) (-3259 (((-3 "nil" "sqfr" "irred" "prime") $ (-547)) 137)) (-2598 ((|#1| $ (-547)) 136)) (-3355 (((-547) $ (-547)) 135)) (-3557 (($ |#1| (-547)) 30)) (-2781 (($ (-1 |#1| |#1|) $) 143)) (-2889 (($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547))))) 58)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-3460 (($ |#1| (-547)) 32)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) 147 (|has| |#1| (-442)))) (-4163 (($ |#1| (-547) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2483 (((-619 (-2 (|:| -2106 |#1|) (|:| -4248 (-547)))) $) 54)) (-1580 (((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))) $) 12)) (-2106 (((-409 $) $) NIL (|has| |#1| (-1176)))) (-2025 (((-3 $ "failed") $ $) 138)) (-4248 (((-547) $) 132)) (-1436 ((|#1| $) 56)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 79 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 85 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) $) NIL (|has| |#1| (-503 (-1135) $))) (($ $ (-619 (-1135)) (-619 $)) 86 (|has| |#1| (-503 (-1135) $))) (($ $ (-619 (-285 $))) 82 (|has| |#1| (-300 $))) (($ $ (-285 $)) NIL (|has| |#1| (-300 $))) (($ $ $ $) NIL (|has| |#1| (-300 $))) (($ $ (-619 $) (-619 $)) NIL (|has| |#1| (-300 $)))) (-3329 (($ $ |#1|) 71 (|has| |#1| (-277 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-277 $ $)))) (-3443 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2829 (((-523) $) 27 (|has| |#1| (-592 (-523)))) (((-370) $) 92 (|has| |#1| (-991))) (((-217) $) 95 (|has| |#1| (-991)))) (-3834 (((-832) $) 114) (($ (-547)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547)))))) (-2311 (((-745)) 48)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 40 T CONST)) (-3277 (($) 39 T CONST)) (-1686 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2371 (((-112) $ $) 96)) (-2484 (($ $) 128) (($ $ $) NIL)) (-2470 (($ $ $) 140)) (** (($ $ (-890)) NIL) (($ $ (-745)) 102)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-409 |#1|) (-13 (-539) (-223 |#1|) (-38 |#1|) (-329 |#1|) (-402 |#1|) (-10 -8 (-15 -1436 (|#1| $)) (-15 -4248 ((-547) $)) (-15 -2889 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))))) (-15 -1580 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))) $)) (-15 -3557 ($ |#1| (-547))) (-15 -2483 ((-619 (-2 (|:| -2106 |#1|) (|:| -4248 (-547)))) $)) (-15 -3460 ($ |#1| (-547))) (-15 -3355 ((-547) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -3259 ((-3 "nil" "sqfr" "irred" "prime") $ (-547))) (-15 -3099 ((-745) $)) (-15 -1256 ($ |#1| (-547))) (-15 -4239 ($ |#1| (-547))) (-15 -4163 ($ |#1| (-547) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4104 (|#1| $)) (-15 -4023 ($ $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1176)) (-6 (-1176)) |%noBranch|) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-277 $ $)) (-6 (-277 $ $)) |%noBranch|) (IF (|has| |#1| (-300 $)) (-6 (-300 $)) |%noBranch|) (IF (|has| |#1| (-503 (-1135) $)) (-6 (-503 (-1135) $)) |%noBranch|))) (-539)) (T -409)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-539)) (-5 *1 (-409 *3)))) (-1436 (*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-547))))) (-4 *2 (-539)) (-5 *1 (-409 *2)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-547))))) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-3557 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -2106 *3) (|:| -4248 (-547))))) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3355 (*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-409 *4)) (-4 *4 (-539)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) (-1256 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-4239 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-4163 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-547)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-4104 (*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-4023 (*1 *1 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539)))) (-2653 (*1 *2 *1) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539))))) +(-13 (-539) (-223 |#1|) (-38 |#1|) (-329 |#1|) (-402 |#1|) (-10 -8 (-15 -1436 (|#1| $)) (-15 -4248 ((-547) $)) (-15 -2889 ($ |#1| (-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))))) (-15 -1580 ((-619 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-547)))) $)) (-15 -3557 ($ |#1| (-547))) (-15 -2483 ((-619 (-2 (|:| -2106 |#1|) (|:| -4248 (-547)))) $)) (-15 -3460 ($ |#1| (-547))) (-15 -3355 ((-547) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -3259 ((-3 "nil" "sqfr" "irred" "prime") $ (-547))) (-15 -3099 ((-745) $)) (-15 -1256 ($ |#1| (-547))) (-15 -4239 ($ |#1| (-547))) (-15 -4163 ($ |#1| (-547) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4104 (|#1| $)) (-15 -4023 ($ $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |#1| (-1176)) (-6 (-1176)) |%noBranch|) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-277 $ $)) (-6 (-277 $ $)) |%noBranch|) (IF (|has| |#1| (-300 $)) (-6 (-300 $)) |%noBranch|) (IF (|has| |#1| (-503 (-1135) $)) (-6 (-503 (-1135) $)) |%noBranch|))) +((-1914 (((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|)) 21)) (-2516 (((-409 |#1|) (-409 |#1|) (-409 |#1|)) 16))) +(((-410 |#1|) (-10 -7 (-15 -1914 ((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|))) (-15 -2516 ((-409 |#1|) (-409 |#1|) (-409 |#1|)))) (-539)) (T -410)) +((-2516 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-539)) (-5 *1 (-410 *3)))) (-1914 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-409 *4) *4)) (-4 *4 (-539)) (-5 *2 (-409 *4)) (-5 *1 (-410 *4))))) +(-10 -7 (-15 -1914 ((-409 |#1|) (-409 |#1|) (-1 (-409 |#1|) |#1|))) (-15 -2516 ((-409 |#1|) (-409 |#1|) (-409 |#1|)))) +((-1688 ((|#2| |#2|) 166)) (-1365 (((-3 (|:| |%expansion| (-304 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112)) 57))) +(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1365 ((-3 (|:| |%expansion| (-304 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112))) (-15 -1688 (|#2| |#2|))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|)) (-1135) |#2|) (T -411)) +((-1688 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-411 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1157) (-421 *3))) (-14 *4 (-1135)) (-14 *5 *2))) (-1365 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (|:| |%expansion| (-304 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-411 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) (-14 *6 (-1135)) (-14 *7 *3)))) +(-10 -7 (-15 -1365 ((-3 (|:| |%expansion| (-304 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112))) (-15 -1688 (|#2| |#2|))) +((-2781 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-412 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1016) (-821)) (-421 |#1|) (-13 (-1016) (-821)) (-421 |#3|)) (T -412)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821))) (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-421 *6)) (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-421 *5))))) +(-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|))) +((-1688 ((|#2| |#2|) 90)) (-1464 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118)) 48)) (-1578 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118)) 154))) +(((-413 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1464 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -1578 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -1688 (|#2| |#2|))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|) (-10 -8 (-15 -3834 ($ |#3|)))) (-819) (-13 (-1196 |#2| |#3|) (-354) (-1157) (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $)))) (-952 |#4|) (-1135)) (T -413)) +((-1688 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *2 (-13 (-27) (-1157) (-421 *3) (-10 -8 (-15 -3834 ($ *4))))) (-4 *4 (-819)) (-4 *5 (-13 (-1196 *2 *4) (-354) (-1157) (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $))))) (-5 *1 (-413 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1135)))) (-1578 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *3 (-13 (-27) (-1157) (-421 *6) (-10 -8 (-15 -3834 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1196 *3 *7) (-354) (-1157) (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) (-14 *10 (-1135)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-4 *3 (-13 (-27) (-1157) (-421 *6) (-10 -8 (-15 -3834 ($ *7))))) (-4 *7 (-819)) (-4 *8 (-13 (-1196 *3 *7) (-354) (-1157) (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) (-14 *10 (-1135))))) +(-10 -7 (-15 -1464 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -1578 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118))))) |#2| (-112) (-1118))) (-15 -1688 (|#2| |#2|))) +((-3562 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2542 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2781 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2542 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3562 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1063) (-416 |#1|) (-1063) (-416 |#3|)) (T -414)) +((-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) (-4 *2 (-416 *5)) (-5 *1 (-414 *6 *4 *5 *2)) (-4 *4 (-416 *6)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-5 *1 (-414 *5 *4 *2 *6)) (-4 *4 (-416 *5)) (-4 *6 (-416 *2)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-416 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-416 *5))))) +(-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2542 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3562 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1788 (($) 44)) (-1428 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1492 (($ $ $) 39)) (-1383 (((-112) $ $) 28)) (-3603 (((-745)) 47)) (-2771 (($ (-619 |#2|)) 20) (($) NIL)) (-3229 (($) 53)) (-1815 (((-112) $ $) 13)) (-2847 ((|#2| $) 61)) (-3563 ((|#2| $) 59)) (-1966 (((-890) $) 55)) (-1711 (($ $ $) 35)) (-3479 (($ (-890)) 50)) (-1604 (($ $ |#2|) NIL) (($ $ $) 38)) (-3987 (((-745) (-1 (-112) |#2|) $) NIL) (((-745) |#2| $) 26)) (-3841 (($ (-619 |#2|)) 24)) (-1893 (($ $) 46)) (-3834 (((-832) $) 33)) (-3844 (((-745) $) 21)) (-4112 (($ (-619 |#2|)) 19) (($) NIL)) (-2371 (((-112) $ $) 16))) +(((-415 |#1| |#2|) (-10 -8 (-15 -3603 ((-745))) (-15 -3479 (|#1| (-890))) (-15 -1966 ((-890) |#1|)) (-15 -3229 (|#1|)) (-15 -2847 (|#2| |#1|)) (-15 -3563 (|#2| |#1|)) (-15 -1788 (|#1|)) (-15 -1893 (|#1| |#1|)) (-15 -3844 ((-745) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -1815 ((-112) |#1| |#1|)) (-15 -4112 (|#1|)) (-15 -4112 (|#1| (-619 |#2|))) (-15 -2771 (|#1|)) (-15 -2771 (|#1| (-619 |#2|))) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1| |#2|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -1383 ((-112) |#1| |#1|)) (-15 -1428 (|#1| |#1| |#1|)) (-15 -1428 (|#1| |#1| |#2|)) (-15 -1428 (|#1| |#2| |#1|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|))) (-416 |#2|) (-1063)) (T -415)) +((-3603 (*1 *2) (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4))))) +(-10 -8 (-15 -3603 ((-745))) (-15 -3479 (|#1| (-890))) (-15 -1966 ((-890) |#1|)) (-15 -3229 (|#1|)) (-15 -2847 (|#2| |#1|)) (-15 -3563 (|#2| |#1|)) (-15 -1788 (|#1|)) (-15 -1893 (|#1| |#1|)) (-15 -3844 ((-745) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -1815 ((-112) |#1| |#1|)) (-15 -4112 (|#1|)) (-15 -4112 (|#1| (-619 |#2|))) (-15 -2771 (|#1|)) (-15 -2771 (|#1| (-619 |#2|))) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1| |#2|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -1383 ((-112) |#1| |#1|)) (-15 -1428 (|#1| |#1| |#1|)) (-15 -1428 (|#1| |#1| |#2|)) (-15 -1428 (|#1| |#2| |#1|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|))) +((-3821 (((-112) $ $) 19)) (-1788 (($) 67 (|has| |#1| (-359)))) (-1428 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1492 (($ $ $) 78)) (-1383 (((-112) $ $) 79)) (-2826 (((-112) $ (-745)) 8)) (-3603 (((-745)) 61 (|has| |#1| (-359)))) (-2771 (($ (-619 |#1|)) 74) (($) 73)) (-3681 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3664 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4328)))) (-3229 (($) 64 (|has| |#1| (-359)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) 70)) (-4161 (((-112) $ (-745)) 9)) (-2847 ((|#1| $) 65 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3563 ((|#1| $) 66 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-1966 (((-890) $) 63 (|has| |#1| (-359)))) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22)) (-1711 (($ $ $) 75)) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3479 (($ (-890)) 62 (|has| |#1| (-359)))) (-3979 (((-1082) $) 21)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-1604 (($ $ |#1|) 77) (($ $ $) 76)) (-1404 (($) 49) (($ (-619 |#1|)) 48)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 50)) (-1893 (($ $) 68 (|has| |#1| (-359)))) (-3834 (((-832) $) 18)) (-3844 (((-745) $) 69)) (-4112 (($ (-619 |#1|)) 72) (($) 71)) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20)) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-416 |#1|) (-138) (-1063)) (T -416)) +((-3844 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-1893 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-359)))) (-1788 (*1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-359)) (-4 *2 (-1063)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821))))) +(-13 (-221 |t#1|) (-1061 |t#1|) (-10 -8 (-6 -4328) (-15 -3844 ((-745) $)) (IF (|has| |t#1| (-359)) (PROGN (-6 (-359)) (-15 -1893 ($ $)) (-15 -1788 ($))) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -3563 (|t#1| $)) (-15 -2847 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-221 |#1|) . T) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-359) |has| |#1| (-359)) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) +((-3921 (((-565 |#2|) |#2| (-1135)) 36)) (-3886 (((-565 |#2|) |#2| (-1135)) 20)) (-2527 ((|#2| |#2| (-1135)) 25))) +(((-417 |#1| |#2|) (-10 -7 (-15 -3886 ((-565 |#2|) |#2| (-1135))) (-15 -3921 ((-565 |#2|) |#2| (-1135))) (-15 -2527 (|#2| |#2| (-1135)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-29 |#1|))) (T -417)) +((-2527 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-417 *4 *2)) (-4 *2 (-13 (-1157) (-29 *4))))) (-3921 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3)) (-4 *3 (-13 (-1157) (-29 *5))))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3)) (-4 *3 (-13 (-1157) (-29 *5)))))) +(-10 -7 (-15 -3886 ((-565 |#2|) |#2| (-1135))) (-15 -3921 ((-565 |#2|) |#2| (-1135))) (-15 -2527 (|#2| |#2| (-1135)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-4109 (($ |#2| |#1|) 35)) (-4017 (($ |#2| |#1|) 33)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-322 |#2|)) 25)) (-2311 (((-745)) NIL)) (-3267 (($) 10 T CONST)) (-3277 (($) 16 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-418 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4315)) (IF (|has| |#1| (-6 -4315)) (-6 -4315) |%noBranch|) |%noBranch|) (-15 -3834 ($ |#1|)) (-15 -3834 ($ (-322 |#2|))) (-15 -4109 ($ |#2| |#1|)) (-15 -4017 ($ |#2| |#1|)))) (-13 (-169) (-38 (-398 (-547)))) (-13 (-821) (-21))) (T -418)) +((-3834 (*1 *1 *2) (-12 (-5 *1 (-418 *2 *3)) (-4 *2 (-13 (-169) (-38 (-398 (-547))))) (-4 *3 (-13 (-821) (-21))))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-322 *4)) (-4 *4 (-13 (-821) (-21))) (-5 *1 (-418 *3 *4)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))))) (-4109 (*1 *1 *2 *3) (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))) (-4 *2 (-13 (-821) (-21))))) (-4017 (*1 *1 *2 *3) (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))) (-4 *2 (-13 (-821) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4315)) (IF (|has| |#1| (-6 -4315)) (-6 -4315) |%noBranch|) |%noBranch|) (-15 -3834 ($ |#1|)) (-15 -3834 ($ (-322 |#2|))) (-15 -4109 ($ |#2| |#1|)) (-15 -4017 ($ |#2| |#1|)))) +((-2069 (((-3 |#2| (-619 |#2|)) |#2| (-1135)) 109))) +(((-419 |#1| |#2|) (-10 -7 (-15 -2069 ((-3 |#2| (-619 |#2|)) |#2| (-1135)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-928) (-29 |#1|))) (T -419)) +((-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-419 *5 *3)) (-4 *3 (-13 (-1157) (-928) (-29 *5)))))) +(-10 -7 (-15 -2069 ((-3 |#2| (-619 |#2|)) |#2| (-1135)))) +((-2259 (((-619 (-1135)) $) 72)) (-2067 (((-398 (-1131 $)) $ (-590 $)) 273)) (-2999 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) 237)) (-2698 (((-3 (-590 $) "failed") $) NIL) (((-3 (-1135) "failed") $) 75) (((-3 (-547) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-398 (-921 |#2|)) "failed") $) 324) (((-3 (-921 |#2|) "failed") $) 235) (((-3 (-398 (-547)) "failed") $) NIL)) (-2643 (((-590 $) $) NIL) (((-1135) $) 30) (((-547) $) NIL) ((|#2| $) 231) (((-398 (-921 |#2|)) $) 305) (((-921 |#2|) $) 232) (((-398 (-547)) $) NIL)) (-3454 (((-114) (-114)) 47)) (-3739 (($ $) 87)) (-2108 (((-3 (-590 $) "failed") $) 228)) (-2043 (((-619 (-590 $)) $) 229)) (-1967 (((-3 (-619 $) "failed") $) 247)) (-4014 (((-3 (-2 (|:| |val| $) (|:| -4248 (-547))) "failed") $) 254)) (-1859 (((-3 (-619 $) "failed") $) 245)) (-2614 (((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 $))) "failed") $) 264)) (-3909 (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $) 251) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-1135)) 219)) (-1988 (((-112) $) 19)) (-1999 ((|#2| $) 21)) (-2670 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) 236) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 96) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1135)) 57) (($ $ (-619 (-1135))) 240) (($ $) 241) (($ $ (-114) $ (-1135)) 60) (($ $ (-619 (-114)) (-619 $) (-1135)) 67) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 107) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 242) (($ $ (-1135) (-745) (-1 $ (-619 $))) 94) (($ $ (-1135) (-745) (-1 $ $)) 93)) (-3329 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) 106)) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) 238)) (-3660 (($ $) 284)) (-2829 (((-861 (-547)) $) 257) (((-861 (-370)) $) 261) (($ (-409 $)) 320) (((-523) $) NIL)) (-3834 (((-832) $) 239) (($ (-590 $)) 84) (($ (-1135)) 26) (($ |#2|) NIL) (($ (-1087 |#2| (-590 $))) NIL) (($ (-398 |#2|)) 289) (($ (-921 (-398 |#2|))) 329) (($ (-398 (-921 (-398 |#2|)))) 301) (($ (-398 (-921 |#2|))) 295) (($ $) NIL) (($ (-921 |#2|)) 185) (($ (-398 (-547))) 334) (($ (-547)) NIL)) (-2311 (((-745)) 79)) (-3358 (((-112) (-114)) 41)) (-1773 (($ (-1135) $) 33) (($ (-1135) $ $) 34) (($ (-1135) $ $ $) 35) (($ (-1135) $ $ $ $) 36) (($ (-1135) (-619 $)) 39)) (* (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-420 |#1| |#2|) (-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2311 ((-745))) (-15 -3834 (|#1| (-547))) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2829 ((-523) |#1|)) (-15 -2643 ((-921 |#2|) |#1|)) (-15 -2698 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3834 (|#1| (-921 |#2|))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2643 ((-398 (-921 |#2|)) |#1|)) (-15 -2698 ((-3 (-398 (-921 |#2|)) "failed") |#1|)) (-15 -3834 (|#1| (-398 (-921 |#2|)))) (-15 -2067 ((-398 (-1131 |#1|)) |#1| (-590 |#1|))) (-15 -3834 (|#1| (-398 (-921 (-398 |#2|))))) (-15 -3834 (|#1| (-921 (-398 |#2|)))) (-15 -3834 (|#1| (-398 |#2|))) (-15 -3660 (|#1| |#1|)) (-15 -2829 (|#1| (-409 |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-745) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -4014 ((-3 (-2 (|:| |val| |#1|) (|:| -4248 (-547))) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -4248 (-547))) "failed") |#1| (-1135))) (-15 -3909 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -4248 (-547))) "failed") |#1| (-114))) (-15 -3739 (|#1| |#1|)) (-15 -3834 (|#1| (-1087 |#2| (-590 |#1|)))) (-15 -2614 ((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 |#1|))) "failed") |#1|)) (-15 -1859 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -4248 (-547))) "failed") |#1|)) (-15 -1967 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1135))) (-15 -2670 (|#1| |#1| (-114) |#1| (-1135))) (-15 -2670 (|#1| |#1|)) (-15 -2670 (|#1| |#1| (-619 (-1135)))) (-15 -2670 (|#1| |#1| (-1135))) (-15 -1773 (|#1| (-1135) (-619 |#1|))) (-15 -1773 (|#1| (-1135) |#1| |#1| |#1| |#1|)) (-15 -1773 (|#1| (-1135) |#1| |#1| |#1|)) (-15 -1773 (|#1| (-1135) |#1| |#1|)) (-15 -1773 (|#1| (-1135) |#1|)) (-15 -2259 ((-619 (-1135)) |#1|)) (-15 -1999 (|#2| |#1|)) (-15 -1988 ((-112) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2643 ((-1135) |#1|)) (-15 -2698 ((-3 (-1135) "failed") |#1|)) (-15 -3834 (|#1| (-1135))) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -2043 ((-619 (-590 |#1|)) |#1|)) (-15 -2108 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -2999 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2999 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2999 (|#1| |#1| (-285 |#1|))) (-15 -3329 (|#1| (-114) (-619 |#1|))) (-15 -3329 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2670 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2643 ((-590 |#1|) |#1|)) (-15 -2698 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -3834 (|#1| (-590 |#1|))) (-15 -3834 ((-832) |#1|))) (-421 |#2|) (-821)) (T -420)) +((-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-420 *4 *5)) (-4 *4 (-421 *5)))) (-2311 (*1 *2) (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))) +(-10 -8 (-15 * (|#1| (-890) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2311 ((-745))) (-15 -3834 (|#1| (-547))) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2829 ((-523) |#1|)) (-15 -2643 ((-921 |#2|) |#1|)) (-15 -2698 ((-3 (-921 |#2|) "failed") |#1|)) (-15 -3834 (|#1| (-921 |#2|))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2643 ((-398 (-921 |#2|)) |#1|)) (-15 -2698 ((-3 (-398 (-921 |#2|)) "failed") |#1|)) (-15 -3834 (|#1| (-398 (-921 |#2|)))) (-15 -2067 ((-398 (-1131 |#1|)) |#1| (-590 |#1|))) (-15 -3834 (|#1| (-398 (-921 (-398 |#2|))))) (-15 -3834 (|#1| (-921 (-398 |#2|)))) (-15 -3834 (|#1| (-398 |#2|))) (-15 -3660 (|#1| |#1|)) (-15 -2829 (|#1| (-409 |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-745) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-745) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-745)) (-619 (-1 |#1| |#1|)))) (-15 -4014 ((-3 (-2 (|:| |val| |#1|) (|:| -4248 (-547))) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -4248 (-547))) "failed") |#1| (-1135))) (-15 -3909 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -4248 (-547))) "failed") |#1| (-114))) (-15 -3739 (|#1| |#1|)) (-15 -3834 (|#1| (-1087 |#2| (-590 |#1|)))) (-15 -2614 ((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 |#1|))) "failed") |#1|)) (-15 -1859 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| (-590 |#1|)) (|:| -4248 (-547))) "failed") |#1|)) (-15 -1967 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 |#1|) (-1135))) (-15 -2670 (|#1| |#1| (-114) |#1| (-1135))) (-15 -2670 (|#1| |#1|)) (-15 -2670 (|#1| |#1| (-619 (-1135)))) (-15 -2670 (|#1| |#1| (-1135))) (-15 -1773 (|#1| (-1135) (-619 |#1|))) (-15 -1773 (|#1| (-1135) |#1| |#1| |#1| |#1|)) (-15 -1773 (|#1| (-1135) |#1| |#1| |#1|)) (-15 -1773 (|#1| (-1135) |#1| |#1|)) (-15 -1773 (|#1| (-1135) |#1|)) (-15 -2259 ((-619 (-1135)) |#1|)) (-15 -1999 (|#2| |#1|)) (-15 -1988 ((-112) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2643 ((-1135) |#1|)) (-15 -2698 ((-3 (-1135) "failed") |#1|)) (-15 -3834 (|#1| (-1135))) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-114) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-114)) (-619 (-1 |#1| |#1|)))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| |#1|))) (-15 -2670 (|#1| |#1| (-1135) (-1 |#1| (-619 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| (-619 |#1|))))) (-15 -2670 (|#1| |#1| (-619 (-1135)) (-619 (-1 |#1| |#1|)))) (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -2043 ((-619 (-590 |#1|)) |#1|)) (-15 -2108 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -2999 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2999 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2999 (|#1| |#1| (-285 |#1|))) (-15 -3329 (|#1| (-114) (-619 |#1|))) (-15 -3329 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1| |#1|)) (-15 -3329 (|#1| (-114) |#1|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2670 (|#1| |#1| (-619 (-590 |#1|)) (-619 |#1|))) (-15 -2670 (|#1| |#1| (-590 |#1|) |#1|)) (-15 -2643 ((-590 |#1|) |#1|)) (-15 -2698 ((-3 (-590 |#1|) "failed") |#1|)) (-15 -3834 (|#1| (-590 |#1|))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 113 (|has| |#1| (-25)))) (-2259 (((-619 (-1135)) $) 200)) (-2067 (((-398 (-1131 $)) $ (-590 $)) 168 (|has| |#1| (-539)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 140 (|has| |#1| (-539)))) (-3881 (($ $) 141 (|has| |#1| (-539)))) (-1832 (((-112) $) 143 (|has| |#1| (-539)))) (-1965 (((-619 (-590 $)) $) 44)) (-3013 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-2999 (($ $ (-285 $)) 56) (($ $ (-619 (-285 $))) 55) (($ $ (-619 (-590 $)) (-619 $)) 54)) (-2745 (($ $) 160 (|has| |#1| (-539)))) (-3457 (((-409 $) $) 161 (|has| |#1| (-539)))) (-2873 (((-112) $ $) 151 (|has| |#1| (-539)))) (-3219 (($) 101 (-1524 (|has| |#1| (-1075)) (|has| |#1| (-25))) CONST)) (-2698 (((-3 (-590 $) "failed") $) 69) (((-3 (-1135) "failed") $) 213) (((-3 (-547) "failed") $) 206 (|has| |#1| (-1007 (-547)))) (((-3 |#1| "failed") $) 204) (((-3 (-398 (-921 |#1|)) "failed") $) 166 (|has| |#1| (-539))) (((-3 (-921 |#1|) "failed") $) 120 (|has| |#1| (-1016))) (((-3 (-398 (-547)) "failed") $) 95 (-1524 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2643 (((-590 $) $) 68) (((-1135) $) 212) (((-547) $) 207 (|has| |#1| (-1007 (-547)))) ((|#1| $) 203) (((-398 (-921 |#1|)) $) 165 (|has| |#1| (-539))) (((-921 |#1|) $) 119 (|has| |#1| (-1016))) (((-398 (-547)) $) 94 (-1524 (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547))))))) (-2079 (($ $ $) 155 (|has| |#1| (-539)))) (-4238 (((-663 (-547)) (-663 $)) 134 (-1806 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 133 (-1806 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 132 (|has| |#1| (-1016))) (((-663 |#1|) (-663 $)) 131 (|has| |#1| (-1016)))) (-2537 (((-3 $ "failed") $) 103 (|has| |#1| (-1075)))) (-2052 (($ $ $) 154 (|has| |#1| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 149 (|has| |#1| (-539)))) (-3674 (((-112) $) 162 (|has| |#1| (-539)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 209 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 208 (|has| |#1| (-855 (-370))))) (-2566 (($ $) 51) (($ (-619 $)) 50)) (-2004 (((-619 (-114)) $) 43)) (-3454 (((-114) (-114)) 42)) (-4114 (((-112) $) 102 (|has| |#1| (-1075)))) (-3466 (((-112) $) 22 (|has| $ (-1007 (-547))))) (-3739 (($ $) 183 (|has| |#1| (-1016)))) (-1382 (((-1087 |#1| (-590 $)) $) 184 (|has| |#1| (-1016)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-539)))) (-3057 (((-1131 $) (-590 $)) 25 (|has| $ (-1016)))) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-2781 (($ (-1 $ $) (-590 $)) 36)) (-2108 (((-3 (-590 $) "failed") $) 46)) (-3685 (($ (-619 $)) 147 (|has| |#1| (-539))) (($ $ $) 146 (|has| |#1| (-539)))) (-1917 (((-1118) $) 9)) (-2043 (((-619 (-590 $)) $) 45)) (-1465 (($ (-114) $) 38) (($ (-114) (-619 $)) 37)) (-1967 (((-3 (-619 $) "failed") $) 189 (|has| |#1| (-1075)))) (-4014 (((-3 (-2 (|:| |val| $) (|:| -4248 (-547))) "failed") $) 180 (|has| |#1| (-1016)))) (-1859 (((-3 (-619 $) "failed") $) 187 (|has| |#1| (-25)))) (-2614 (((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3909 (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $) 188 (|has| |#1| (-1075))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-114)) 182 (|has| |#1| (-1016))) (((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-1135)) 181 (|has| |#1| (-1016)))) (-1469 (((-112) $ (-114)) 40) (((-112) $ (-1135)) 39)) (-1976 (($ $) 105 (-1524 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-4029 (((-745) $) 47)) (-3979 (((-1082) $) 10)) (-1988 (((-112) $) 202)) (-1999 ((|#1| $) 201)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-539)))) (-3715 (($ (-619 $)) 145 (|has| |#1| (-539))) (($ $ $) 144 (|has| |#1| (-539)))) (-3128 (((-112) $ $) 35) (((-112) $ (-1135)) 34)) (-2106 (((-409 $) $) 159 (|has| |#1| (-539)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-539))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 156 (|has| |#1| (-539)))) (-2025 (((-3 $ "failed") $ $) 139 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-539)))) (-3590 (((-112) $) 23 (|has| $ (-1007 (-547))))) (-2670 (($ $ (-590 $) $) 67) (($ $ (-619 (-590 $)) (-619 $)) 66) (($ $ (-619 (-285 $))) 65) (($ $ (-285 $)) 64) (($ $ $ $) 63) (($ $ (-619 $) (-619 $)) 62) (($ $ (-619 (-1135)) (-619 (-1 $ $))) 33) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) 32) (($ $ (-1135) (-1 $ (-619 $))) 31) (($ $ (-1135) (-1 $ $)) 30) (($ $ (-619 (-114)) (-619 (-1 $ $))) 29) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) 28) (($ $ (-114) (-1 $ (-619 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1135)) 194 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1135))) 193 (|has| |#1| (-592 (-523)))) (($ $) 192 (|has| |#1| (-592 (-523)))) (($ $ (-114) $ (-1135)) 191 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-114)) (-619 $) (-1135)) 190 (|has| |#1| (-592 (-523)))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $))) 179 (|has| |#1| (-1016))) (($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $)))) 178 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ (-619 $))) 177 (|has| |#1| (-1016))) (($ $ (-1135) (-745) (-1 $ $)) 176 (|has| |#1| (-1016)))) (-2776 (((-745) $) 152 (|has| |#1| (-539)))) (-3329 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-619 $)) 57)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 153 (|has| |#1| (-539)))) (-2207 (($ $) 49) (($ $ $) 48)) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) 125 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 124 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 123 (|has| |#1| (-1016))) (($ $ (-1135)) 122 (|has| |#1| (-1016)))) (-3660 (($ $) 173 (|has| |#1| (-539)))) (-1392 (((-1087 |#1| (-590 $)) $) 174 (|has| |#1| (-539)))) (-1901 (($ $) 24 (|has| $ (-1016)))) (-2829 (((-861 (-547)) $) 211 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 210 (|has| |#1| (-592 (-861 (-370))))) (($ (-409 $)) 175 (|has| |#1| (-539))) (((-523) $) 97 (|has| |#1| (-592 (-523))))) (-2444 (($ $ $) 108 (|has| |#1| (-463)))) (-4121 (($ $ $) 109 (|has| |#1| (-463)))) (-3834 (((-832) $) 11) (($ (-590 $)) 70) (($ (-1135)) 214) (($ |#1|) 205) (($ (-1087 |#1| (-590 $))) 185 (|has| |#1| (-1016))) (($ (-398 |#1|)) 171 (|has| |#1| (-539))) (($ (-921 (-398 |#1|))) 170 (|has| |#1| (-539))) (($ (-398 (-921 (-398 |#1|)))) 169 (|has| |#1| (-539))) (($ (-398 (-921 |#1|))) 167 (|has| |#1| (-539))) (($ $) 138 (|has| |#1| (-539))) (($ (-921 |#1|)) 121 (|has| |#1| (-1016))) (($ (-398 (-547))) 96 (-1524 (|has| |#1| (-539)) (-12 (|has| |#1| (-1007 (-547))) (|has| |#1| (-539))) (|has| |#1| (-1007 (-398 (-547)))))) (($ (-547)) 93 (-1524 (|has| |#1| (-1016)) (|has| |#1| (-1007 (-547)))))) (-3336 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-2311 (((-745)) 130 (|has| |#1| (-1016)))) (-3518 (($ $) 53) (($ (-619 $)) 52)) (-3358 (((-112) (-114)) 41)) (-1932 (((-112) $ $) 142 (|has| |#1| (-539)))) (-1773 (($ (-1135) $) 199) (($ (-1135) $ $) 198) (($ (-1135) $ $ $) 197) (($ (-1135) $ $ $ $) 196) (($ (-1135) (-619 $)) 195)) (-3267 (($) 112 (|has| |#1| (-25)) CONST)) (-3277 (($) 100 (|has| |#1| (-1075)) CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) 129 (|has| |#1| (-1016))) (($ $ (-1135) (-745)) 128 (|has| |#1| (-1016))) (($ $ (-619 (-1135))) 127 (|has| |#1| (-1016))) (($ $ (-1135)) 126 (|has| |#1| (-1016)))) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2497 (($ (-1087 |#1| (-590 $)) (-1087 |#1| (-590 $))) 172 (|has| |#1| (-539))) (($ $ $) 106 (-1524 (|has| |#1| (-463)) (|has| |#1| (-539))))) (-2484 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2470 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-547)) 107 (-1524 (|has| |#1| (-463)) (|has| |#1| (-539)))) (($ $ (-745)) 104 (|has| |#1| (-1075))) (($ $ (-890)) 99 (|has| |#1| (-1075)))) (* (($ (-398 (-547)) $) 164 (|has| |#1| (-539))) (($ $ (-398 (-547))) 163 (|has| |#1| (-539))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-547) $) 118 (|has| |#1| (-21))) (($ (-745) $) 114 (|has| |#1| (-25))) (($ (-890) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1075))))) +(((-421 |#1|) (-138) (-821)) (T -421)) +((-1988 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-112)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1135))))) (-1773 (*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1773 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1773 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1773 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-592 (-523))))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-592 (-523))))) (-2670 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-592 (-523))))) (-2670 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1135)) (-4 *1 (-421 *4)) (-4 *4 (-821)) (-4 *4 (-592 (-523))))) (-2670 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1135)) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-592 (-523))))) (-1967 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-421 *3)))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -4248 (-547)))) (-4 *1 (-421 *3)))) (-1859 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-421 *3)))) (-2614 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1557 (-547)) (|:| |var| (-590 *1)))) (-4 *1 (-421 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-1382 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1))) (-4 *1 (-421 *3)))) (-3739 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) (-3909 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -4248 (-547)))) (-4 *1 (-421 *4)))) (-3909 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-1016)) (-4 *4 (-821)) (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -4248 (-547)))) (-4 *1 (-421 *4)))) (-4014 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-2 (|:| |val| *1) (|:| -4248 (-547)))) (-4 *1 (-421 *3)))) (-2670 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2670 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2670 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2670 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-421 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) (-1392 (*1 *2 *1) (-12 (-4 *3 (-539)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1))) (-4 *1 (-421 *3)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-539)))) (-2497 (*1 *1 *2 *2) (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-921 (-398 *3))) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-398 *3)))) (-4 *3 (-539)) (-4 *3 (-821)) (-4 *1 (-421 *3)))) (-2067 (*1 *2 *1 *3) (-12 (-5 *3 (-590 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821)) (-4 *4 (-539)) (-5 *2 (-398 (-1131 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-1075))))) +(-13 (-293) (-1007 (-1135)) (-853 |t#1|) (-391 |t#1|) (-402 |t#1|) (-10 -8 (-15 -1988 ((-112) $)) (-15 -1999 (|t#1| $)) (-15 -2259 ((-619 (-1135)) $)) (-15 -1773 ($ (-1135) $)) (-15 -1773 ($ (-1135) $ $)) (-15 -1773 ($ (-1135) $ $ $)) (-15 -1773 ($ (-1135) $ $ $ $)) (-15 -1773 ($ (-1135) (-619 $))) (IF (|has| |t#1| (-592 (-523))) (PROGN (-6 (-592 (-523))) (-15 -2670 ($ $ (-1135))) (-15 -2670 ($ $ (-619 (-1135)))) (-15 -2670 ($ $)) (-15 -2670 ($ $ (-114) $ (-1135))) (-15 -2670 ($ $ (-619 (-114)) (-619 $) (-1135)))) |%noBranch|) (IF (|has| |t#1| (-1075)) (PROGN (-6 (-701)) (-15 ** ($ $ (-745))) (-15 -1967 ((-3 (-619 $) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-463)) (-6 (-463)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1859 ((-3 (-619 $) "failed") $)) (-15 -2614 ((-3 (-2 (|:| -1557 (-547)) (|:| |var| (-590 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-1016)) (-6 (-1007 (-921 |t#1|))) (-6 (-869 (-1135))) (-6 (-368 |t#1|)) (-15 -3834 ($ (-1087 |t#1| (-590 $)))) (-15 -1382 ((-1087 |t#1| (-590 $)) $)) (-15 -3739 ($ $)) (-15 -3909 ((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-114))) (-15 -3909 ((-3 (-2 (|:| |var| (-590 $)) (|:| -4248 (-547))) "failed") $ (-1135))) (-15 -4014 ((-3 (-2 (|:| |val| $) (|:| -4248 (-547))) "failed") $)) (-15 -2670 ($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ $)))) (-15 -2670 ($ $ (-619 (-1135)) (-619 (-745)) (-619 (-1 $ (-619 $))))) (-15 -2670 ($ $ (-1135) (-745) (-1 $ (-619 $)))) (-15 -2670 ($ $ (-1135) (-745) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-6 (-354)) (-6 (-1007 (-398 (-921 |t#1|)))) (-15 -2829 ($ (-409 $))) (-15 -1392 ((-1087 |t#1| (-590 $)) $)) (-15 -3660 ($ $)) (-15 -2497 ($ (-1087 |t#1| (-590 $)) (-1087 |t#1| (-590 $)))) (-15 -3834 ($ (-398 |t#1|))) (-15 -3834 ($ (-921 (-398 |t#1|)))) (-15 -3834 ($ (-398 (-921 (-398 |t#1|))))) (-15 -2067 ((-398 (-1131 $)) $ (-590 $))) (IF (|has| |t#1| (-1007 (-547))) (-6 (-1007 (-398 (-547)))) |%noBranch|)) |%noBranch|))) +(((-21) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-398 (-547))) |has| |#1| (-539)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-539)) ((-111 |#1| |#1|) |has| |#1| (-169)) ((-111 $ $) |has| |#1| (-539)) ((-130) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) |has| |#1| (-539)) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-235) |has| |#1| (-539)) ((-281) |has| |#1| (-539)) ((-298) |has| |#1| (-539)) ((-300 $) . T) ((-293) . T) ((-354) |has| |#1| (-539)) ((-368 |#1|) |has| |#1| (-1016)) ((-391 |#1|) . T) ((-402 |#1|) . T) ((-442) |has| |#1| (-539)) ((-463) |has| |#1| (-463)) ((-503 (-590 $) $) . T) ((-503 $ $) . T) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-539)) ((-622 |#1|) |has| |#1| (-169)) ((-622 $) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-615 (-547)) -12 (|has| |#1| (-615 (-547))) (|has| |#1| (-1016))) ((-615 |#1|) |has| |#1| (-1016)) ((-692 #0#) |has| |#1| (-539)) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) -1524 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-463)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-821) . T) ((-869 (-1135)) |has| |#1| (-1016)) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-889) |has| |#1| (-539)) ((-1007 (-398 (-547))) -1524 (|has| |#1| (-1007 (-398 (-547)))) (-12 (|has| |#1| (-539)) (|has| |#1| (-1007 (-547))))) ((-1007 (-398 (-921 |#1|))) |has| |#1| (-539)) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 (-590 $)) . T) ((-1007 (-921 |#1|)) |has| |#1| (-1016)) ((-1007 (-1135)) . T) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-539)) ((-1022 |#1|) |has| |#1| (-169)) ((-1022 $) |has| |#1| (-539)) ((-1016) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1023) -1524 (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1075) -1524 (|has| |#1| (-1075)) (|has| |#1| (-1016)) (|has| |#1| (-539)) (|has| |#1| (-463)) (|has| |#1| (-169)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1063) . T) ((-1172) . T) ((-1176) |has| |#1| (-539))) +((-2420 ((|#2| |#2| |#2|) 33)) (-3454 (((-114) (-114)) 44)) (-4282 ((|#2| |#2|) 66)) (-4196 ((|#2| |#2|) 69)) (-2292 ((|#2| |#2|) 32)) (-1418 ((|#2| |#2| |#2|) 35)) (-1645 ((|#2| |#2| |#2|) 37)) (-1329 ((|#2| |#2| |#2|) 34)) (-1535 ((|#2| |#2| |#2|) 36)) (-3358 (((-112) (-114)) 42)) (-1845 ((|#2| |#2|) 39)) (-1740 ((|#2| |#2|) 38)) (-2040 ((|#2| |#2|) 27)) (-2554 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2165 ((|#2| |#2| |#2|) 31))) +(((-422 |#1| |#2|) (-10 -7 (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -2040 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -2554 (|#2| |#2| |#2|)) (-15 -2165 (|#2| |#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2420 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2|)) (-15 -1418 (|#2| |#2| |#2|)) (-15 -1535 (|#2| |#2| |#2|)) (-15 -1645 (|#2| |#2| |#2|)) (-15 -1740 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -4196 (|#2| |#2|)) (-15 -4282 (|#2| |#2|))) (-13 (-821) (-539)) (-421 |#1|)) (T -422)) +((-4282 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-4196 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1740 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1645 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1535 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1418 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-1329 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2420 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2165 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2554 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) (-4 *2 (-421 *3)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *4)) (-4 *4 (-421 *3)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-422 *4 *5)) (-4 *5 (-421 *4))))) +(-10 -7 (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -2040 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -2554 (|#2| |#2| |#2|)) (-15 -2165 (|#2| |#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2420 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2|)) (-15 -1418 (|#2| |#2| |#2|)) (-15 -1535 (|#2| |#2| |#2|)) (-15 -1645 (|#2| |#2| |#2|)) (-15 -1740 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -4196 (|#2| |#2|)) (-15 -4282 (|#2| |#2|))) +((-2445 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|)) 61))) +(((-423 |#1| |#2|) (-10 -7 (-15 -2445 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -2445 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-539) (-821) (-145)) (-421 |#1|)) (T -423)) +((-2445 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-539) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1131 *3)) (|:| |pol2| (-1131 *3)) (|:| |prim| (-1131 *3)))) (-5 *1 (-423 *4 *3)) (-4 *3 (-27)) (-4 *3 (-421 *4)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-539) (-821) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1131 *5))) (|:| |prim| (-1131 *5)))) (-5 *1 (-423 *4 *5))))) +(-10 -7 (-15 -2445 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-619 (-1131 |#2|))) (|:| |prim| (-1131 |#2|))) (-619 |#2|))) (IF (|has| |#2| (-27)) (-15 -2445 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1131 |#2|)) (|:| |pol2| (-1131 |#2|)) (|:| |prim| (-1131 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3330 (((-1223)) 19)) (-1317 (((-1131 (-398 (-547))) |#2| (-590 |#2|)) 41) (((-398 (-547)) |#2|) 25))) +(((-424 |#1| |#2|) (-10 -7 (-15 -1317 ((-398 (-547)) |#2|)) (-15 -1317 ((-1131 (-398 (-547))) |#2| (-590 |#2|))) (-15 -3330 ((-1223)))) (-13 (-821) (-539) (-1007 (-547))) (-421 |#1|)) (T -424)) +((-3330 (*1 *2) (-12 (-4 *3 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-1223)) (-5 *1 (-424 *3 *4)) (-4 *4 (-421 *3)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *4 (-590 *3)) (-4 *3 (-421 *5)) (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-424 *5 *3)))) (-1317 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-398 (-547))) (-5 *1 (-424 *4 *3)) (-4 *3 (-421 *4))))) +(-10 -7 (-15 -1317 ((-398 (-547)) |#2|)) (-15 -1317 ((-1131 (-398 (-547))) |#2| (-590 |#2|))) (-15 -3330 ((-1223)))) +((-2471 (((-112) $) 28)) (-3424 (((-112) $) 30)) (-3350 (((-112) $) 31)) (-3629 (((-112) $) 34)) (-3816 (((-112) $) 29)) (-3733 (((-112) $) 33)) (-3834 (((-832) $) 18) (($ (-1118)) 27) (($ (-1135)) 23) (((-1135) $) 22) (((-1067) $) 21)) (-3519 (((-112) $) 32)) (-2371 (((-112) $ $) 15))) +(((-425) (-13 (-591 (-832)) (-10 -8 (-15 -3834 ($ (-1118))) (-15 -3834 ($ (-1135))) (-15 -3834 ((-1135) $)) (-15 -3834 ((-1067) $)) (-15 -2471 ((-112) $)) (-15 -3816 ((-112) $)) (-15 -3350 ((-112) $)) (-15 -3733 ((-112) $)) (-15 -3629 ((-112) $)) (-15 -3519 ((-112) $)) (-15 -3424 ((-112) $)) (-15 -2371 ((-112) $ $))))) (T -425)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-425)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-425)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-425)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-425)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) (-2371 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))) +(-13 (-591 (-832)) (-10 -8 (-15 -3834 ($ (-1118))) (-15 -3834 ($ (-1135))) (-15 -3834 ((-1135) $)) (-15 -3834 ((-1067) $)) (-15 -2471 ((-112) $)) (-15 -3816 ((-112) $)) (-15 -3350 ((-112) $)) (-15 -3733 ((-112) $)) (-15 -3629 ((-112) $)) (-15 -3519 ((-112) $)) (-15 -3424 ((-112) $)) (-15 -2371 ((-112) $ $)))) +((-2854 (((-3 (-409 (-1131 (-398 (-547)))) "failed") |#3|) 70)) (-2779 (((-409 |#3|) |#3|) 34)) (-2988 (((-3 (-409 (-1131 (-48))) "failed") |#3|) 46 (|has| |#2| (-1007 (-48))))) (-2928 (((-3 (|:| |overq| (-1131 (-398 (-547)))) (|:| |overan| (-1131 (-48))) (|:| -4142 (-112))) |#3|) 37))) +(((-426 |#1| |#2| |#3|) (-10 -7 (-15 -2779 ((-409 |#3|) |#3|)) (-15 -2854 ((-3 (-409 (-1131 (-398 (-547)))) "failed") |#3|)) (-15 -2928 ((-3 (|:| |overq| (-1131 (-398 (-547)))) (|:| |overan| (-1131 (-48))) (|:| -4142 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2988 ((-3 (-409 (-1131 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-539) (-821) (-1007 (-547))) (-421 |#1|) (-1194 |#2|)) (T -426)) +((-2988 (*1 *2 *3) (|partial| -12 (-4 *5 (-1007 (-48))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-409 (-1131 (-48)))) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-3 (|:| |overq| (-1131 (-398 (-547)))) (|:| |overan| (-1131 (-48))) (|:| -4142 (-112)))) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2854 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-409 (-1131 (-398 (-547))))) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-2779 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 (-409 *3)) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -2779 ((-409 |#3|) |#3|)) (-15 -2854 ((-3 (-409 (-1131 (-398 (-547)))) "failed") |#3|)) (-15 -2928 ((-3 (|:| |overq| (-1131 (-398 (-547)))) (|:| |overan| (-1131 (-48))) (|:| -4142 (-112))) |#3|)) (IF (|has| |#2| (-1007 (-48))) (-15 -2988 ((-3 (-409 (-1131 (-48))) "failed") |#3|)) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-1891 (((-1118) $ (-1118)) NIL)) (-4135 (($ $ (-1118)) NIL)) (-2002 (((-1118) $) NIL)) (-2811 (((-379) (-379) (-379)) 17) (((-379) (-379)) 15)) (-1351 (($ (-379)) NIL) (($ (-379) (-1118)) NIL)) (-2464 (((-379) $) NIL)) (-1917 (((-1118) $) NIL)) (-3938 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2752 (((-1223) (-1118)) 9)) (-2682 (((-1223) (-1118)) 10)) (-3716 (((-1223)) 11)) (-3834 (((-832) $) NIL)) (-4048 (($ $) 35)) (-2371 (((-112) $ $) NIL))) +(((-427) (-13 (-355 (-379) (-1118)) (-10 -7 (-15 -2811 ((-379) (-379) (-379))) (-15 -2811 ((-379) (-379))) (-15 -2752 ((-1223) (-1118))) (-15 -2682 ((-1223) (-1118))) (-15 -3716 ((-1223)))))) (T -427)) +((-2811 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-427)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-427)))) (-3716 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-427))))) +(-13 (-355 (-379) (-1118)) (-10 -7 (-15 -2811 ((-379) (-379) (-379))) (-15 -2811 ((-379) (-379))) (-15 -2752 ((-1223) (-1118))) (-15 -2682 ((-1223) (-1118))) (-15 -3716 ((-1223))))) +((-3821 (((-112) $ $) NIL)) (-3654 (((-3 (|:| |fst| (-425)) (|:| -2887 "void")) $) 11)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3478 (($) 32)) (-3224 (($) 38)) (-3322 (($) 34)) (-3136 (($) 36)) (-3398 (($) 33)) (-4276 (($) 35)) (-3063 (($) 37)) (-3568 (((-112) $) 8)) (-1949 (((-619 (-921 (-547))) $) 19)) (-3841 (($ (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-1135)) (-112)) 27) (($ (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-921 (-547))) (-112)) 28)) (-3834 (((-832) $) 23) (($ (-425)) 29)) (-2371 (((-112) $ $) NIL))) +(((-428) (-13 (-1063) (-10 -8 (-15 -3834 ((-832) $)) (-15 -3834 ($ (-425))) (-15 -3654 ((-3 (|:| |fst| (-425)) (|:| -2887 "void")) $)) (-15 -1949 ((-619 (-921 (-547))) $)) (-15 -3568 ((-112) $)) (-15 -3841 ($ (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-1135)) (-112))) (-15 -3841 ($ (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-921 (-547))) (-112))) (-15 -3478 ($)) (-15 -3398 ($)) (-15 -3322 ($)) (-15 -3224 ($)) (-15 -4276 ($)) (-15 -3136 ($)) (-15 -3063 ($))))) (T -428)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-428)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-425)) (-5 *1 (-428)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *1 (-428)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-547)))) (-5 *1 (-428)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428)))) (-3841 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *3 (-619 (-1135))) (-5 *4 (-112)) (-5 *1 (-428)))) (-3841 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-112)) (-5 *1 (-428)))) (-3478 (*1 *1) (-5 *1 (-428))) (-3398 (*1 *1) (-5 *1 (-428))) (-3322 (*1 *1) (-5 *1 (-428))) (-3224 (*1 *1) (-5 *1 (-428))) (-4276 (*1 *1) (-5 *1 (-428))) (-3136 (*1 *1) (-5 *1 (-428))) (-3063 (*1 *1) (-5 *1 (-428)))) +(-13 (-1063) (-10 -8 (-15 -3834 ((-832) $)) (-15 -3834 ($ (-425))) (-15 -3654 ((-3 (|:| |fst| (-425)) (|:| -2887 "void")) $)) (-15 -1949 ((-619 (-921 (-547))) $)) (-15 -3568 ((-112) $)) (-15 -3841 ($ (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-1135)) (-112))) (-15 -3841 ($ (-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-619 (-921 (-547))) (-112))) (-15 -3478 ($)) (-15 -3398 ($)) (-15 -3322 ($)) (-15 -3224 ($)) (-15 -4276 ($)) (-15 -3136 ($)) (-15 -3063 ($)))) +((-3821 (((-112) $ $) NIL)) (-2464 (((-1135) $) 8)) (-1917 (((-1118) $) 16)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 13))) +(((-429 |#1|) (-13 (-1063) (-10 -8 (-15 -2464 ((-1135) $)))) (-1135)) (T -429)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-429 *3)) (-14 *3 *2)))) +(-13 (-1063) (-10 -8 (-15 -2464 ((-1135) $)))) +((-3304 (((-1223) $) 7)) (-3834 (((-832) $) 8) (($ (-1218 (-673))) 14) (($ (-619 (-321))) 13) (($ (-321)) 12) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 11))) +(((-430) (-138)) (T -430)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-673))) (-4 *1 (-430)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-430)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-430)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) (-4 *1 (-430))))) +(-13 (-386) (-10 -8 (-15 -3834 ($ (-1218 (-673)))) (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-321))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))))) +(((-591 (-832)) . T) ((-386) . T) ((-1172) . T)) +((-2698 (((-3 $ "failed") (-1218 (-307 (-370)))) 21) (((-3 $ "failed") (-1218 (-307 (-547)))) 19) (((-3 $ "failed") (-1218 (-921 (-370)))) 17) (((-3 $ "failed") (-1218 (-921 (-547)))) 15) (((-3 $ "failed") (-1218 (-398 (-921 (-370))))) 13) (((-3 $ "failed") (-1218 (-398 (-921 (-547))))) 11)) (-2643 (($ (-1218 (-307 (-370)))) 22) (($ (-1218 (-307 (-547)))) 20) (($ (-1218 (-921 (-370)))) 18) (($ (-1218 (-921 (-547)))) 16) (($ (-1218 (-398 (-921 (-370))))) 14) (($ (-1218 (-398 (-921 (-547))))) 12)) (-3304 (((-1223) $) 7)) (-3834 (((-832) $) 8) (($ (-619 (-321))) 25) (($ (-321)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) 23))) (((-431) (-138)) (T -431)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-673))) (-4 *1 (-431)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-431)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-431)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-431))))) -(-13 (-387) (-10 -8 (-15 -3743 ($ (-1218 (-673)))) (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))))) -(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) -((-2441 (((-3 $ "failed") (-1218 (-308 (-371)))) 21) (((-3 $ "failed") (-1218 (-308 (-548)))) 19) (((-3 $ "failed") (-1218 (-921 (-371)))) 17) (((-3 $ "failed") (-1218 (-921 (-548)))) 15) (((-3 $ "failed") (-1218 (-399 (-921 (-371))))) 13) (((-3 $ "failed") (-1218 (-399 (-921 (-548))))) 11)) (-2375 (($ (-1218 (-308 (-371)))) 22) (($ (-1218 (-308 (-548)))) 20) (($ (-1218 (-921 (-371)))) 18) (($ (-1218 (-921 (-548)))) 16) (($ (-1218 (-399 (-921 (-371))))) 14) (($ (-1218 (-399 (-921 (-548))))) 12)) (-3898 (((-1223) $) 7)) (-3743 (((-832) $) 8) (($ (-619 (-322))) 25) (($ (-322)) 24) (($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) 23))) -(((-432) (-138)) (T -432)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-432)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-432)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432))))) -(-13 (-387) (-10 -8 (-15 -3743 ($ (-619 (-322)))) (-15 -3743 ($ (-322))) (-15 -3743 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322)))))) (-15 -2375 ($ (-1218 (-308 (-371))))) (-15 -2441 ((-3 $ "failed") (-1218 (-308 (-371))))) (-15 -2375 ($ (-1218 (-308 (-548))))) (-15 -2441 ((-3 $ "failed") (-1218 (-308 (-548))))) (-15 -2375 ($ (-1218 (-921 (-371))))) (-15 -2441 ((-3 $ "failed") (-1218 (-921 (-371))))) (-15 -2375 ($ (-1218 (-921 (-548))))) (-15 -2441 ((-3 $ "failed") (-1218 (-921 (-548))))) (-15 -2375 ($ (-1218 (-399 (-921 (-371)))))) (-15 -2441 ((-3 $ "failed") (-1218 (-399 (-921 (-371)))))) (-15 -2375 ($ (-1218 (-399 (-921 (-548)))))) (-15 -2441 ((-3 $ "failed") (-1218 (-399 (-921 (-548)))))))) -(((-592 (-832)) . T) ((-387) . T) ((-1172) . T)) -((-1749 (((-112)) 17)) (-1758 (((-112) (-112)) 18)) (-1767 (((-112)) 13)) (-1775 (((-112) (-112)) 14)) (-1791 (((-112)) 15)) (-1801 (((-112) (-112)) 16)) (-1720 (((-890) (-890)) 21) (((-890)) 20)) (-1730 (((-745) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548))))) 42)) (-1711 (((-890) (-890)) 23) (((-890)) 22)) (-1740 (((-2 (|:| -2198 (-548)) (|:| -3213 (-619 |#1|))) |#1|) 62)) (-1703 (((-410 |#1|) (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548))))))) 126)) (-1341 (((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)) 152)) (-1329 (((-410 |#1|) |#1| (-745) (-745)) 165) (((-410 |#1|) |#1| (-619 (-745)) (-745)) 162) (((-410 |#1|) |#1| (-619 (-745))) 164) (((-410 |#1|) |#1| (-745)) 163) (((-410 |#1|) |#1|) 161)) (-1908 (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112)) 167) (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745)) 168) (((-3 |#1| "failed") (-890) |#1| (-619 (-745))) 170) (((-3 |#1| "failed") (-890) |#1| (-745)) 169) (((-3 |#1| "failed") (-890) |#1|) 171)) (-1915 (((-410 |#1|) |#1| (-745) (-745)) 160) (((-410 |#1|) |#1| (-619 (-745)) (-745)) 156) (((-410 |#1|) |#1| (-619 (-745))) 158) (((-410 |#1|) |#1| (-745)) 157) (((-410 |#1|) |#1|) 155)) (-1783 (((-112) |#1|) 37)) (-1896 (((-712 (-745)) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548))))) 67)) (-1811 (((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112) (-1065 (-745)) (-745)) 154))) -(((-433 |#1|) (-10 -7 (-15 -1703 ((-410 |#1|) (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))))) (-15 -1896 ((-712 (-745)) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1711 ((-890))) (-15 -1711 ((-890) (-890))) (-15 -1720 ((-890))) (-15 -1720 ((-890) (-890))) (-15 -1730 ((-745) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1740 ((-2 (|:| -2198 (-548)) (|:| -3213 (-619 |#1|))) |#1|)) (-15 -1749 ((-112))) (-15 -1758 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -1775 ((-112) (-112))) (-15 -1783 ((-112) |#1|)) (-15 -1791 ((-112))) (-15 -1801 ((-112) (-112))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1| (-745))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1915 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1| (-745))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1329 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112))) (-15 -1811 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112) (-1065 (-745)) (-745)))) (-1194 (-548))) (T -433)) -((-1811 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) (-5 *2 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *6 (-112)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1908 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-890)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) (-1329 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1801 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1791 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1783 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1740 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2198 (-548)) (|:| -3213 (-619 *3)))) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) (-4 *4 (-1194 (-548))) (-5 *2 (-745)) (-5 *1 (-433 *4)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1720 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1711 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) (-4 *4 (-1194 (-548))) (-5 *2 (-712 (-745))) (-5 *1 (-433 *4)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *4) (|:| -3286 (-548))))))) (-4 *4 (-1194 (-548))) (-5 *2 (-410 *4)) (-5 *1 (-433 *4))))) -(-10 -7 (-15 -1703 ((-410 |#1|) (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))))) (-15 -1896 ((-712 (-745)) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1711 ((-890))) (-15 -1711 ((-890) (-890))) (-15 -1720 ((-890))) (-15 -1720 ((-890) (-890))) (-15 -1730 ((-745) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))))) (-15 -1740 ((-2 (|:| -2198 (-548)) (|:| -3213 (-619 |#1|))) |#1|)) (-15 -1749 ((-112))) (-15 -1758 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -1775 ((-112) (-112))) (-15 -1783 ((-112) |#1|)) (-15 -1791 ((-112))) (-15 -1801 ((-112) (-112))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1915 ((-410 |#1|) |#1| (-745))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1915 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1915 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1| (-745))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)))) (-15 -1329 ((-410 |#1|) |#1| (-619 (-745)) (-745))) (-15 -1329 ((-410 |#1|) |#1| (-745) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1|)) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -1908 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112))) (-15 -1811 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112) (-1065 (-745)) (-745)))) -((-1849 (((-548) |#2|) 48) (((-548) |#2| (-745)) 47)) (-1840 (((-548) |#2|) 55)) (-1858 ((|#3| |#2|) 25)) (-3910 ((|#3| |#2| (-890)) 14)) (-3198 ((|#3| |#2|) 15)) (-1867 ((|#3| |#2|) 9)) (-3926 ((|#3| |#2|) 10)) (-1832 ((|#3| |#2| (-890)) 62) ((|#3| |#2|) 30)) (-1822 (((-548) |#2|) 57))) -(((-434 |#1| |#2| |#3|) (-10 -7 (-15 -1822 ((-548) |#2|)) (-15 -1832 (|#3| |#2|)) (-15 -1832 (|#3| |#2| (-890))) (-15 -1840 ((-548) |#2|)) (-15 -1849 ((-548) |#2| (-745))) (-15 -1849 ((-548) |#2|)) (-15 -3910 (|#3| |#2| (-890))) (-15 -1858 (|#3| |#2|)) (-15 -1867 (|#3| |#2|)) (-15 -3926 (|#3| |#2|)) (-15 -3198 (|#3| |#2|))) (-1016) (-1194 |#1|) (-13 (-396) (-1007 |#1|) (-355) (-1157) (-276))) (T -434)) -((-3198 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-3926 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *5 *3 *6)) (-4 *3 (-1194 *5)) (-4 *6 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))))) (-1840 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))))) (-1832 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5)))) (-1832 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1822 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) -(-10 -7 (-15 -1822 ((-548) |#2|)) (-15 -1832 (|#3| |#2|)) (-15 -1832 (|#3| |#2| (-890))) (-15 -1840 ((-548) |#2|)) (-15 -1849 ((-548) |#2| (-745))) (-15 -1849 ((-548) |#2|)) (-15 -3910 (|#3| |#2| (-890))) (-15 -1858 (|#3| |#2|)) (-15 -1867 (|#3| |#2|)) (-15 -3926 (|#3| |#2|)) (-15 -3198 (|#3| |#2|))) -((-4220 ((|#2| (-1218 |#1|)) 36)) (-1888 ((|#2| |#2| |#1|) 49)) (-1878 ((|#2| |#2| |#1|) 41)) (-2796 ((|#2| |#2|) 38)) (-3166 (((-112) |#2|) 30)) (-1919 (((-619 |#2|) (-890) (-410 |#2|)) 17)) (-1908 ((|#2| (-890) (-410 |#2|)) 21)) (-1896 (((-712 (-745)) (-410 |#2|)) 25))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3166 ((-112) |#2|)) (-15 -4220 (|#2| (-1218 |#1|))) (-15 -2796 (|#2| |#2|)) (-15 -1878 (|#2| |#2| |#1|)) (-15 -1888 (|#2| |#2| |#1|)) (-15 -1896 ((-712 (-745)) (-410 |#2|))) (-15 -1908 (|#2| (-890) (-410 |#2|))) (-15 -1919 ((-619 |#2|) (-890) (-410 |#2|)))) (-1016) (-1194 |#1|)) (T -435)) -((-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-410 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-435 *5 *6)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-410 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-435 *5 *2)) (-4 *5 (-1016)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1016)) (-5 *2 (-712 (-745))) (-5 *1 (-435 *4 *5)))) (-1888 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) (-1878 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-1016)) (-4 *2 (-1194 *4)) (-5 *1 (-435 *4 *2)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -3166 ((-112) |#2|)) (-15 -4220 (|#2| (-1218 |#1|))) (-15 -2796 (|#2| |#2|)) (-15 -1878 (|#2| |#2| |#1|)) (-15 -1888 (|#2| |#2| |#1|)) (-15 -1896 ((-712 (-745)) (-410 |#2|))) (-15 -1908 (|#2| (-890) (-410 |#2|))) (-15 -1919 ((-619 |#2|) (-890) (-410 |#2|)))) -((-1953 (((-745)) 41)) (-1997 (((-745)) 23 (|has| |#1| (-396))) (((-745) (-745)) 22 (|has| |#1| (-396)))) (-1985 (((-548) |#1|) 18 (|has| |#1| (-396)))) (-1972 (((-548) |#1|) 20 (|has| |#1| (-396)))) (-1941 (((-745)) 40) (((-745) (-745)) 39)) (-1930 ((|#1| (-745) (-548)) 29)) (-1964 (((-1223)) 43))) -(((-436 |#1|) (-10 -7 (-15 -1930 (|#1| (-745) (-548))) (-15 -1941 ((-745) (-745))) (-15 -1941 ((-745))) (-15 -1953 ((-745))) (-15 -1964 ((-1223))) (IF (|has| |#1| (-396)) (PROGN (-15 -1972 ((-548) |#1|)) (-15 -1985 ((-548) |#1|)) (-15 -1997 ((-745) (-745))) (-15 -1997 ((-745)))) |%noBranch|)) (-1016)) (T -436)) -((-1997 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1972 (*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) (-1964 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1953 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1941 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-548)) (-5 *1 (-436 *2)) (-4 *2 (-1016))))) -(-10 -7 (-15 -1930 (|#1| (-745) (-548))) (-15 -1941 ((-745) (-745))) (-15 -1941 ((-745))) (-15 -1953 ((-745))) (-15 -1964 ((-1223))) (IF (|has| |#1| (-396)) (PROGN (-15 -1972 ((-548) |#1|)) (-15 -1985 ((-548) |#1|)) (-15 -1997 ((-745) (-745))) (-15 -1997 ((-745)))) |%noBranch|)) -((-2007 (((-619 (-548)) (-548)) 61)) (-1271 (((-112) (-166 (-548))) 65)) (-1915 (((-410 (-166 (-548))) (-166 (-548))) 60))) -(((-437) (-10 -7 (-15 -1915 ((-410 (-166 (-548))) (-166 (-548)))) (-15 -2007 ((-619 (-548)) (-548))) (-15 -1271 ((-112) (-166 (-548)))))) (T -437)) -((-1271 (*1 *2 *3) (-12 (-5 *3 (-166 (-548))) (-5 *2 (-112)) (-5 *1 (-437)))) (-2007 (*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-437)) (-5 *3 (-548)))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 (-166 (-548)))) (-5 *1 (-437)) (-5 *3 (-166 (-548)))))) -(-10 -7 (-15 -1915 ((-410 (-166 (-548))) (-166 (-548)))) (-15 -2007 ((-619 (-548)) (-548))) (-15 -1271 ((-112) (-166 (-548))))) -((-2018 ((|#4| |#4| (-619 |#4|)) 61)) (-2030 (((-619 |#4|) (-619 |#4|) (-1118) (-1118)) 17) (((-619 |#4|) (-619 |#4|) (-1118)) 16) (((-619 |#4|) (-619 |#4|)) 11))) -(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2018 (|#4| |#4| (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118) (-1118)))) (-299) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -438)) -((-2030 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *7)))) (-2030 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *7)))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-438 *3 *4 *5 *6)))) (-2018 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *2))))) -(-10 -7 (-15 -2018 (|#4| |#4| (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -2030 ((-619 |#4|) (-619 |#4|) (-1118) (-1118)))) -((-2055 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 73) (((-619 (-619 |#4|)) (-619 |#4|)) 72) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112)) 66) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|)) 67)) (-2041 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 42) (((-619 (-619 |#4|)) (-619 |#4|)) 63))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) (-13 (-299) (-145)) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -439)) -((-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2055 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2055 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) -(-10 -7 (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2041 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2055 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) -((-4207 (((-745) |#4|) 12)) (-4084 (((-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)))) 31)) (-4103 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-4092 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2075 ((|#4| |#4| (-619 |#4|)) 40)) (-4063 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|)) 70)) (-4135 (((-1223) |#4|) 42)) (-4165 (((-1223) (-619 |#4|)) 51)) (-4145 (((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548)) 48)) (-4176 (((-1223) (-548)) 79)) (-4115 (((-619 |#4|) (-619 |#4|)) 77)) (-4196 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)) |#4| (-745)) 25)) (-4127 (((-548) |#4|) 78)) (-4073 ((|#4| |#4|) 29)) (-2084 (((-619 |#4|) (-619 |#4|) (-548) (-548)) 56)) (-4155 (((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548) (-548)) 89)) (-4186 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2100 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2160 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2146 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2111 (((-112) |#2| |#2|) 57)) (-2134 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2123 (((-112) |#2| |#2| |#2| |#2|) 60)) (-2066 ((|#4| |#4| (-619 |#4|)) 71))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2066 (|#4| |#4| (-619 |#4|))) (-15 -2075 (|#4| |#4| (-619 |#4|))) (-15 -2084 ((-619 |#4|) (-619 |#4|) (-548) (-548))) (-15 -2100 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2111 ((-112) |#2| |#2|)) (-15 -2123 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2134 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2146 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2160 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4063 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -4073 (|#4| |#4|)) (-15 -4084 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))))) (-15 -4092 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4103 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4115 ((-619 |#4|) (-619 |#4|))) (-15 -4127 ((-548) |#4|)) (-15 -4135 ((-1223) |#4|)) (-15 -4145 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548))) (-15 -4155 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548) (-548))) (-15 -4165 ((-1223) (-619 |#4|))) (-15 -4176 ((-1223) (-548))) (-15 -4186 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4196 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)) |#4| (-745))) (-15 -4207 ((-745) |#4|))) (-443) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -440)) -((-4207 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -2802 *4))) (-5 *5 (-745)) (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-440 *6 *7 *8 *4)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *7)))) (-4155 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *4)))) (-4145 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *4)))) (-4135 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-548)) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) (-4103 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-440 *4 *5 *6 *2)) (-4 *4 (-443)) (-4 *6 (-821)))) (-4084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 *3)))) (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *3)))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-440 *5 *6 *7 *3)))) (-2160 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-443)) (-4 *5 (-821)) (-5 *1 (-440 *4 *3 *5 *6)))) (-2146 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) (-2134 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *3)))) (-2123 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-2111 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2084 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2075 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2)))) (-2066 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2))))) -(-10 -7 (-15 -2066 (|#4| |#4| (-619 |#4|))) (-15 -2075 (|#4| |#4| (-619 |#4|))) (-15 -2084 ((-619 |#4|) (-619 |#4|) (-548) (-548))) (-15 -2100 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2111 ((-112) |#2| |#2|)) (-15 -2123 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2134 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2146 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2160 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4063 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -4073 (|#4| |#4|)) (-15 -4084 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|))))) (-15 -4092 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4103 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4115 ((-619 |#4|) (-619 |#4|))) (-15 -4127 ((-548) |#4|)) (-15 -4135 ((-1223) |#4|)) (-15 -4145 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548))) (-15 -4155 ((-548) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-548) (-548) (-548) (-548))) (-15 -4165 ((-1223) (-619 |#4|))) (-15 -4176 ((-1223) (-548))) (-15 -4186 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4196 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -2802 |#4|)) |#4| (-745))) (-15 -4207 ((-745) |#4|))) -((-2670 ((|#4| |#4| (-619 |#4|)) 22 (|has| |#1| (-355)))) (-1359 (((-619 |#4|) (-619 |#4|) (-1118) (-1118)) 41) (((-619 |#4|) (-619 |#4|) (-1118)) 40) (((-619 |#4|) (-619 |#4|)) 35))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1359 ((-619 |#4|) (-619 |#4|))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118) (-1118))) (IF (|has| |#1| (-355)) (-15 -2670 (|#4| |#4| (-619 |#4|))) |%noBranch|)) (-443) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -441)) -((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-355)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-441 *4 *5 *6 *2)))) (-1359 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-441 *4 *5 *6 *7)))) (-1359 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-441 *4 *5 *6 *7)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-441 *3 *4 *5 *6))))) -(-10 -7 (-15 -1359 ((-619 |#4|) (-619 |#4|))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -1359 ((-619 |#4|) (-619 |#4|) (-1118) (-1118))) (IF (|has| |#1| (-355)) (-15 -2670 (|#4| |#4| (-619 |#4|))) |%noBranch|)) -((-3553 (($ $ $) 14) (($ (-619 $)) 21)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 41)) (-3587 (($ $ $) NIL) (($ (-619 $)) 22))) -(((-442 |#1|) (-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3553 (|#1| (-619 |#1|))) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|))) (-443)) (T -442)) -NIL -(-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3553 (|#1| (-619 |#1|))) (-15 -3553 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3587 (|#1| |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-443) (-138)) (T -443)) -((-3587 (*1 *1 *1 *1) (-4 *1 (-443))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) (-3553 (*1 *1 *1 *1) (-4 *1 (-443))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-443))))) -(-13 (-540) (-10 -8 (-15 -3587 ($ $ $)) (-15 -3587 ($ (-619 $))) (-15 -3553 ($ $ $)) (-15 -3553 ($ (-619 $))) (-15 -4081 ((-1131 $) (-1131 $) (-1131 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 (-399 (-921 |#1|)))) (-1218 $)) NIL) (((-1218 (-663 (-399 (-921 |#1|))))) NIL)) (-2968 (((-1218 $)) NIL)) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL)) (-3991 (((-3 $ "failed")) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-2413 (((-663 (-399 (-921 |#1|))) (-1218 $)) NIL) (((-663 (-399 (-921 |#1|)))) NIL)) (-2947 (((-399 (-921 |#1|)) $) NIL)) (-2391 (((-663 (-399 (-921 |#1|))) $ (-1218 $)) NIL) (((-663 (-399 (-921 |#1|))) $) NIL)) (-3399 (((-3 $ "failed") $) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-4307 (((-1131 (-921 (-399 (-921 |#1|))))) NIL (|has| (-399 (-921 |#1|)) (-355))) (((-1131 (-399 (-921 |#1|)))) 84 (|has| |#1| (-540)))) (-2246 (($ $ (-890)) NIL)) (-2925 (((-399 (-921 |#1|)) $) NIL)) (-2741 (((-1131 (-399 (-921 |#1|))) $) 82 (|has| (-399 (-921 |#1|)) (-540)))) (-2432 (((-399 (-921 |#1|)) (-1218 $)) NIL) (((-399 (-921 |#1|))) NIL)) (-2903 (((-1131 (-399 (-921 |#1|))) $) NIL)) (-2842 (((-112)) NIL)) (-2455 (($ (-1218 (-399 (-921 |#1|))) (-1218 $)) 103) (($ (-1218 (-399 (-921 |#1|)))) NIL)) (-3859 (((-3 $ "failed") $) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-2103 (((-890)) NIL)) (-2815 (((-112)) NIL)) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL)) (-2766 (((-112)) NIL)) (-2797 (((-112)) NIL)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL)) (-4003 (((-3 $ "failed")) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-2422 (((-663 (-399 (-921 |#1|))) (-1218 $)) NIL) (((-663 (-399 (-921 |#1|)))) NIL)) (-2958 (((-399 (-921 |#1|)) $) NIL)) (-2402 (((-663 (-399 (-921 |#1|))) $ (-1218 $)) NIL) (((-663 (-399 (-921 |#1|))) $) NIL)) (-3411 (((-3 $ "failed") $) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-1298 (((-1131 (-921 (-399 (-921 |#1|))))) NIL (|has| (-399 (-921 |#1|)) (-355))) (((-1131 (-399 (-921 |#1|)))) 83 (|has| |#1| (-540)))) (-3424 (($ $ (-890)) NIL)) (-2936 (((-399 (-921 |#1|)) $) NIL)) (-2750 (((-1131 (-399 (-921 |#1|))) $) 77 (|has| (-399 (-921 |#1|)) (-540)))) (-2444 (((-399 (-921 |#1|)) (-1218 $)) NIL) (((-399 (-921 |#1|))) NIL)) (-2914 (((-1131 (-399 (-921 |#1|))) $) NIL)) (-2851 (((-112)) NIL)) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL)) (-2790 (((-112)) NIL)) (-2806 (((-112)) NIL)) (-3932 (((-1082) $) NIL)) (-4239 (((-399 (-921 |#1|)) $ $) 71 (|has| |#1| (-540)))) (-4284 (((-399 (-921 |#1|)) $) 93 (|has| |#1| (-540)))) (-4274 (((-399 (-921 |#1|)) $) 95 (|has| |#1| (-540)))) (-4295 (((-1131 (-399 (-921 |#1|))) $) 88 (|has| |#1| (-540)))) (-4228 (((-399 (-921 |#1|))) 72 (|has| |#1| (-540)))) (-4263 (((-399 (-921 |#1|)) $ $) 64 (|has| |#1| (-540)))) (-1275 (((-399 (-921 |#1|)) $) 92 (|has| |#1| (-540)))) (-1263 (((-399 (-921 |#1|)) $) 94 (|has| |#1| (-540)))) (-1286 (((-1131 (-399 (-921 |#1|))) $) 87 (|has| |#1| (-540)))) (-4250 (((-399 (-921 |#1|))) 68 (|has| |#1| (-540)))) (-1309 (($) 101) (($ (-1135)) 107) (($ (-1218 (-1135))) 106) (($ (-1218 $)) 96) (($ (-1135) (-1218 $)) 105) (($ (-1218 (-1135)) (-1218 $)) 104)) (-2832 (((-112)) NIL)) (-3171 (((-399 (-921 |#1|)) $ (-548)) NIL)) (-2447 (((-1218 (-399 (-921 |#1|))) $ (-1218 $)) 98) (((-663 (-399 (-921 |#1|))) (-1218 $) (-1218 $)) NIL) (((-1218 (-399 (-921 |#1|))) $) 40) (((-663 (-399 (-921 |#1|))) (-1218 $)) NIL)) (-2591 (((-1218 (-399 (-921 |#1|))) $) NIL) (($ (-1218 (-399 (-921 |#1|)))) 37)) (-4218 (((-619 (-921 (-399 (-921 |#1|)))) (-1218 $)) NIL) (((-619 (-921 (-399 (-921 |#1|))))) NIL) (((-619 (-921 |#1|)) (-1218 $)) 99 (|has| |#1| (-540))) (((-619 (-921 |#1|))) 100 (|has| |#1| (-540)))) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL)) (-3743 (((-832) $) NIL) (($ (-1218 (-399 (-921 |#1|)))) NIL)) (-2877 (((-1218 $)) 60)) (-2759 (((-619 (-1218 (-399 (-921 |#1|))))) NIL (|has| (-399 (-921 |#1|)) (-540)))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL)) (-3398 (($ (-663 (-399 (-921 |#1|))) $) NIL)) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL)) (-2859 (((-112)) NIL)) (-2823 (((-112)) NIL)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) 97)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 56) (($ $ (-399 (-921 |#1|))) NIL) (($ (-399 (-921 |#1|)) $) NIL) (($ (-1102 |#2| (-399 (-921 |#1|))) $) NIL))) -(((-444 |#1| |#2| |#3| |#4|) (-13 (-409 (-399 (-921 |#1|))) (-622 (-1102 |#2| (-399 (-921 |#1|)))) (-10 -8 (-15 -3743 ($ (-1218 (-399 (-921 |#1|))))) (-15 -1332 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1309 ($)) (-15 -1309 ($ (-1135))) (-15 -1309 ($ (-1218 (-1135)))) (-15 -1309 ($ (-1218 $))) (-15 -1309 ($ (-1135) (-1218 $))) (-15 -1309 ($ (-1218 (-1135)) (-1218 $))) (IF (|has| |#1| (-540)) (PROGN (-15 -1298 ((-1131 (-399 (-921 |#1|))))) (-15 -1286 ((-1131 (-399 (-921 |#1|))) $)) (-15 -1275 ((-399 (-921 |#1|)) $)) (-15 -1263 ((-399 (-921 |#1|)) $)) (-15 -4307 ((-1131 (-399 (-921 |#1|))))) (-15 -4295 ((-1131 (-399 (-921 |#1|))) $)) (-15 -4284 ((-399 (-921 |#1|)) $)) (-15 -4274 ((-399 (-921 |#1|)) $)) (-15 -4263 ((-399 (-921 |#1|)) $ $)) (-15 -4250 ((-399 (-921 |#1|)))) (-15 -4239 ((-399 (-921 |#1|)) $ $)) (-15 -4228 ((-399 (-921 |#1|)))) (-15 -4218 ((-619 (-921 |#1|)) (-1218 $))) (-15 -4218 ((-619 (-921 |#1|))))) |%noBranch|))) (-169) (-890) (-619 (-1135)) (-1218 (-663 |#1|))) (T -444)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 *3)))) (-4 *3 (-169)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) (-1332 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-444 *3 *4 *5 *6)) (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1321 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-444 *3 *4 *5 *6)) (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1) (-12 (-5 *1 (-444 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) (-14 *4 (-619 (-1135))) (-14 *5 (-1218 (-663 *2))))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-1218 (-1135))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1 *2) (-12 (-5 *2 (-1218 (-444 *3 *4 *5 *6))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 *2)) (-14 *7 (-1218 (-663 *4))))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 (-1135))) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) (-1298 (*1 *2) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4307 (*1 *2) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4263 (*1 *2 *1 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4250 (*1 *2) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4239 (*1 *2 *1 *1) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4228 (*1 *2) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-540)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) (-4218 (*1 *2) (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(-13 (-409 (-399 (-921 |#1|))) (-622 (-1102 |#2| (-399 (-921 |#1|)))) (-10 -8 (-15 -3743 ($ (-1218 (-399 (-921 |#1|))))) (-15 -1332 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1321 ((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed"))) (-15 -1309 ($)) (-15 -1309 ($ (-1135))) (-15 -1309 ($ (-1218 (-1135)))) (-15 -1309 ($ (-1218 $))) (-15 -1309 ($ (-1135) (-1218 $))) (-15 -1309 ($ (-1218 (-1135)) (-1218 $))) (IF (|has| |#1| (-540)) (PROGN (-15 -1298 ((-1131 (-399 (-921 |#1|))))) (-15 -1286 ((-1131 (-399 (-921 |#1|))) $)) (-15 -1275 ((-399 (-921 |#1|)) $)) (-15 -1263 ((-399 (-921 |#1|)) $)) (-15 -4307 ((-1131 (-399 (-921 |#1|))))) (-15 -4295 ((-1131 (-399 (-921 |#1|))) $)) (-15 -4284 ((-399 (-921 |#1|)) $)) (-15 -4274 ((-399 (-921 |#1|)) $)) (-15 -4263 ((-399 (-921 |#1|)) $ $)) (-15 -4250 ((-399 (-921 |#1|)))) (-15 -4239 ((-399 (-921 |#1|)) $ $)) (-15 -4228 ((-399 (-921 |#1|)))) (-15 -4218 ((-619 (-921 |#1|)) (-1218 $))) (-15 -4218 ((-619 (-921 |#1|))))) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 13)) (-2049 (((-619 (-834 |#1|)) $) 75)) (-1884 (((-1131 $) $ (-834 |#1|)) 46) (((-1131 |#2|) $) 118)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) 21) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 44) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) 42) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3447 (($ $ (-619 (-548))) 80)) (-1872 (($ $) 68)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| |#3| $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 58)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) 123) (($ (-1131 $) (-834 |#1|)) 52)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) 59)) (-2024 (($ |#2| |#3|) 28) (($ $ (-834 |#1|) (-745)) 30) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 ((|#3| $) NIL) (((-745) $ (-834 |#1|)) 50) (((-619 (-745)) $ (-619 (-834 |#1|))) 57)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 |#3| |#3|) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) 39)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) 41)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 40)) (-2175 ((|#2| $) 116)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) 128 (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) 87) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) 90) (($ $ (-834 |#1|) $) 85) (($ $ (-619 (-834 |#1|)) (-619 $)) 106)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) 53) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 ((|#3| $) 67) (((-745) $ (-834 |#1|)) 37) (((-619 (-745)) $ (-619 (-834 |#1|))) 56)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) 125 (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) 145) (($ (-548)) NIL) (($ |#2|) 86) (($ (-834 |#1|)) 31) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ |#3|) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) 17 T CONST)) (-3118 (($) 25 T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) 64 (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 111)) (** (($ $ (-890)) NIL) (($ $ (-745)) 109)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 29) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-445 |#1| |#2| |#3|) (-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) (-619 (-1135)) (-1016) (-231 (-3643 |#1|) (-745))) (T -445)) -((-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-14 *3 (-619 (-1135))) (-5 *1 (-445 *3 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-231 (-3643 *3) (-745)))))) -(-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) -((-1376 (((-112) |#1| (-619 |#2|)) 69)) (-1354 (((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|)) 78)) (-1364 (((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|))) 80)) (-3037 ((|#2| |#2| |#1|) 28)) (-1343 (((-745) |#2| (-619 |#2|)) 20))) -(((-446 |#1| |#2|) (-10 -7 (-15 -3037 (|#2| |#2| |#1|)) (-15 -1343 ((-745) |#2| (-619 |#2|))) (-15 -1354 ((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -1364 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|)))) (-15 -1376 ((-112) |#1| (-619 |#2|)))) (-299) (-1194 |#1|)) (T -446)) -((-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-1194 *3)) (-4 *3 (-299)) (-5 *2 (-112)) (-5 *1 (-446 *3 *5)))) (-1364 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1218 (-619 *3))) (-4 *4 (-299)) (-5 *2 (-619 *3)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1194 *4)))) (-1354 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-299)) (-4 *6 (-1194 *4)) (-5 *2 (-1218 (-619 *6))) (-5 *1 (-446 *4 *6)) (-5 *5 (-619 *6)))) (-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-299)) (-5 *2 (-745)) (-5 *1 (-446 *5 *3)))) (-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1194 *3))))) -(-10 -7 (-15 -3037 (|#2| |#2| |#1|)) (-15 -1343 ((-745) |#2| (-619 |#2|))) (-15 -1354 ((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -1364 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|)))) (-15 -1376 ((-112) |#1| (-619 |#2|)))) -((-1915 (((-410 |#5|) |#5|) 24))) -(((-447 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1915 ((-410 |#5|) |#5|))) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135))))) (-767) (-540) (-540) (-918 |#4| |#2| |#1|)) (T -447)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *5 (-767)) (-4 *7 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-447 *4 *5 *6 *7 *3)) (-4 *6 (-540)) (-4 *3 (-918 *7 *5 *4))))) -(-10 -7 (-15 -1915 ((-410 |#5|) |#5|))) -((-3994 ((|#3|) 37)) (-4081 (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 33))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4081 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3994 (|#3|))) (-767) (-821) (-878) (-918 |#3| |#1| |#2|)) (T -448)) -((-3994 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-448 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) (-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-448 *3 *4 *5 *6))))) -(-10 -7 (-15 -4081 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3994 (|#3|))) -((-1915 (((-410 (-1131 |#1|)) (-1131 |#1|)) 43))) -(((-449 |#1|) (-10 -7 (-15 -1915 ((-410 (-1131 |#1|)) (-1131 |#1|)))) (-299)) (T -449)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-410 (-1131 *4))) (-5 *1 (-449 *4)) (-5 *3 (-1131 *4))))) -(-10 -7 (-15 -1915 ((-410 (-1131 |#1|)) (-1131 |#1|)))) -((-2107 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-745))) 42) (((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-745))) 41) (((-52) |#2| (-1135) (-286 |#2|)) 35) (((-52) (-1 |#2| (-548)) (-286 |#2|)) 28)) (-1761 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 80) (((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 79) (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548))) 78) (((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548))) 77) (((-52) |#2| (-1135) (-286 |#2|)) 72) (((-52) (-1 |#2| (-548)) (-286 |#2|)) 71)) (-2129 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 66) (((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))) 64)) (-2119 (((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548))) 48) (((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548))) 47))) -(((-450 |#1| |#2|) (-10 -7 (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-745)))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-745)))) (-15 -2119 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -2119 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -2129 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -2129 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -450)) -((-1761 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) (-1761 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) (-4 *8 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) (-1761 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) (-4 *7 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *5 *6)))) (-2129 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) (-2129 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) (-4 *8 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) (-2119 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) (-4 *7 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) (-2107 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-745))) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-745))) (-4 *7 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-52)) (-5 *1 (-450 *5 *6))))) -(-10 -7 (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -2107 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-745)))) (-15 -2107 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-745)))) (-15 -2119 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -2119 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -2129 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -2129 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|))) (-15 -1761 ((-52) (-1 |#2| (-548)) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-548)))) (-15 -1761 ((-52) (-1 |#2| (-399 (-548))) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548)))) (-15 -1761 ((-52) |#2| (-1135) (-286 |#2|) (-1185 (-399 (-548))) (-399 (-548))))) -((-3037 ((|#2| |#2| |#1|) 15)) (-1398 (((-619 |#2|) |#2| (-619 |#2|) |#1| (-890)) 69)) (-1388 (((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890)) 60))) -(((-451 |#1| |#2|) (-10 -7 (-15 -1388 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -1398 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -3037 (|#2| |#2| |#1|))) (-299) (-1194 |#1|)) (T -451)) -((-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-5 *1 (-451 *3 *2)) (-4 *2 (-1194 *3)))) (-1398 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1194 *4)) (-4 *4 (-299)) (-5 *1 (-451 *4 *3)))) (-1388 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-890)) (-4 *5 (-299)) (-4 *3 (-1194 *5)) (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) (-5 *1 (-451 *5 *3)) (-5 *4 (-619 *3))))) -(-10 -7 (-15 -1388 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -1398 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -3037 (|#2| |#2| |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 28)) (-2264 (($ |#3|) 25)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) 32)) (-1408 (($ |#2| |#4| $) 33)) (-2024 (($ |#2| (-688 |#3| |#4| |#5|)) 24)) (-2185 (((-688 |#3| |#4| |#5|) $) 15)) (-1431 ((|#3| $) 19)) (-1443 ((|#4| $) 17)) (-2197 ((|#2| $) 29)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-1420 (($ |#2| |#3| |#4|) 26)) (-3107 (($) 36 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 34)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-452 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2197 (|#2| $)) (-15 -2185 ((-688 |#3| |#4| |#5|) $)) (-15 -1443 (|#4| $)) (-15 -1431 (|#3| $)) (-15 -1872 ($ $)) (-15 -2024 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -2264 ($ |#3|)) (-15 -1420 ($ |#2| |#3| |#4|)) (-15 -1408 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-619 (-1135)) (-169) (-821) (-231 (-3643 |#1|) (-745)) (-1 (-112) (-2 (|:| -3337 |#3|) (|:| -3352 |#4|)) (-2 (|:| -3337 |#3|) (|:| -3352 |#4|))) (-918 |#2| |#4| (-834 |#1|))) (T -452)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *6 (-231 (-3643 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) (-2 (|:| -3337 *5) (|:| -3352 *6)))) (-5 *1 (-452 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) (-4 *2 (-918 *4 *6 (-834 *3))))) (-2197 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *5 (-231 (-3643 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) (-2 (|:| -3337 *4) (|:| -3352 *5)))) (-4 *2 (-169)) (-5 *1 (-452 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *2 *5 (-834 *3))))) (-2185 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *6 (-231 (-3643 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) (-2 (|:| -3337 *5) (|:| -3352 *6)))) (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-452 *3 *4 *5 *6 *7 *8)) (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) (-1443 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-14 *6 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *2)) (-2 (|:| -3337 *5) (|:| -3352 *2)))) (-4 *2 (-231 (-3643 *3) (-745))) (-5 *1 (-452 *3 *4 *5 *2 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3))))) (-1431 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *5 (-231 (-3643 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) (-2 (|:| -3337 *2) (|:| -3352 *5)))) (-4 *2 (-821)) (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-1872 (*1 *1 *1) (-12 (-14 *2 (-619 (-1135))) (-4 *3 (-169)) (-4 *5 (-231 (-3643 *2) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) (-2 (|:| -3337 *4) (|:| -3352 *5)))) (-5 *1 (-452 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *3 *5 (-834 *2))))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821)) (-4 *6 (-231 (-3643 *4) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) (-2 (|:| -3337 *5) (|:| -3352 *6)))) (-14 *4 (-619 (-1135))) (-4 *2 (-169)) (-5 *1 (-452 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) (-2264 (*1 *1 *2) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *5 (-231 (-3643 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) (-2 (|:| -3337 *2) (|:| -3352 *5)))) (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-1420 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-619 (-1135))) (-4 *2 (-169)) (-4 *4 (-231 (-3643 *5) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *4)) (-2 (|:| -3337 *3) (|:| -3352 *4)))) (-5 *1 (-452 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) (-4 *7 (-918 *2 *4 (-834 *5))))) (-1408 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-619 (-1135))) (-4 *2 (-169)) (-4 *3 (-231 (-3643 *4) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *3)) (-2 (|:| -3337 *5) (|:| -3352 *3)))) (-5 *1 (-452 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *2 *3 (-834 *4)))))) -(-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2197 (|#2| $)) (-15 -2185 ((-688 |#3| |#4| |#5|) $)) (-15 -1443 (|#4| $)) (-15 -1431 (|#3| $)) (-15 -1872 ($ $)) (-15 -2024 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -2264 ($ |#3|)) (-15 -1420 ($ |#2| |#3| |#4|)) (-15 -1408 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1454 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-453 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1454 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-767) (-821) (-540) (-918 |#3| |#1| |#2|) (-13 (-1007 (-399 (-548))) (-355) (-10 -8 (-15 -3743 ($ |#4|)) (-15 -2470 (|#4| $)) (-15 -2480 (|#4| $))))) (T -453)) -((-1454 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) (-4 *6 (-540)) (-4 *7 (-918 *6 *5 *3)) (-5 *1 (-453 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1007 (-399 (-548))) (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $)))))))) -(-10 -7 (-15 -1454 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3730 (((-112) $ $) NIL)) (-2049 (((-619 |#3|) $) 41)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) NIL (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 47)) (-2375 (($ (-619 |#4|)) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327)))) (-1934 (((-619 |#4|) $) 18 (|has| $ (-6 -4327)))) (-3239 ((|#3| $) 45)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 14 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-3932 (((-1082) $) NIL)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 39)) (-3319 (($) 17)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 16)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524)))) (($ (-619 |#4|)) 49)) (-3754 (($ (-619 |#4|)) 13)) (-2298 (($ $ |#3|) NIL)) (-2319 (($ $ |#3|) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 38) (((-619 |#4|) $) 48)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 30)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-454 |#1| |#2| |#3| |#4|) (-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2591 ($ (-619 |#4|))) (-6 -4327) (-6 -4328))) (-1016) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -454)) -((-2591 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-454 *3 *4 *5 *6))))) -(-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2591 ($ (-619 |#4|))) (-6 -4327) (-6 -4328))) -((-3107 (($) 11)) (-3118 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-455 |#1| |#2| |#3|) (-10 -8 (-15 -3118 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3107 (|#1|))) (-456 |#2| |#3|) (-169) (-23)) (T -455)) -NIL -(-10 -8 (-15 -3118 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3107 (|#1|))) -((-3730 (((-112) $ $) 7)) (-2441 (((-3 |#1| "failed") $) 26)) (-2375 ((|#1| $) 25)) (-2481 (($ $ $) 23)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 ((|#2| $) 19)) (-3743 (((-832) $) 11) (($ |#1|) 27)) (-3107 (($) 18 T CONST)) (-3118 (($) 24 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 15) (($ $ $) 13)) (-2290 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-456 |#1| |#2|) (-138) (-169) (-23)) (T -456)) -((-3118 (*1 *1) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) -(-13 (-461 |t#1| |t#2|) (-1007 |t#1|) (-10 -8 (-15 (-3118) ($) -2325) (-15 -2481 ($ $ $)))) -(((-101) . T) ((-592 (-832)) . T) ((-461 |#1| |#2|) . T) ((-1007 |#1|) . T) ((-1063) . T)) -((-1465 (((-1218 (-1218 (-548))) (-1218 (-1218 (-548))) (-890)) 18)) (-1476 (((-1218 (-1218 (-548))) (-890)) 16))) -(((-457) (-10 -7 (-15 -1465 ((-1218 (-1218 (-548))) (-1218 (-1218 (-548))) (-890))) (-15 -1476 ((-1218 (-1218 (-548))) (-890))))) (T -457)) -((-1476 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 (-548)))) (-5 *1 (-457)))) (-1465 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 (-1218 (-548)))) (-5 *3 (-890)) (-5 *1 (-457))))) -(-10 -7 (-15 -1465 ((-1218 (-1218 (-548))) (-1218 (-1218 (-548))) (-890))) (-15 -1476 ((-1218 (-1218 (-548))) (-890)))) -((-3477 (((-548) (-548)) 30) (((-548)) 22)) (-3417 (((-548) (-548)) 26) (((-548)) 18)) (-3502 (((-548) (-548)) 28) (((-548)) 20)) (-1500 (((-112) (-112)) 12) (((-112)) 10)) (-1488 (((-112) (-112)) 11) (((-112)) 9)) (-1511 (((-112) (-112)) 24) (((-112)) 15))) -(((-458) (-10 -7 (-15 -1488 ((-112))) (-15 -1500 ((-112))) (-15 -1488 ((-112) (-112))) (-15 -1500 ((-112) (-112))) (-15 -1511 ((-112))) (-15 -3502 ((-548))) (-15 -3417 ((-548))) (-15 -3477 ((-548))) (-15 -1511 ((-112) (-112))) (-15 -3502 ((-548) (-548))) (-15 -3417 ((-548) (-548))) (-15 -3477 ((-548) (-548))))) (T -458)) -((-3477 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-3477 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3417 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-3502 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) (-1511 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1500 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) (-1488 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) -(-10 -7 (-15 -1488 ((-112))) (-15 -1500 ((-112))) (-15 -1488 ((-112) (-112))) (-15 -1500 ((-112) (-112))) (-15 -1511 ((-112))) (-15 -3502 ((-548))) (-15 -3417 ((-548))) (-15 -3477 ((-548))) (-15 -1511 ((-112) (-112))) (-15 -3502 ((-548) (-548))) (-15 -3417 ((-548) (-548))) (-15 -3477 ((-548) (-548)))) -((-3730 (((-112) $ $) NIL)) (-1841 (((-619 (-371)) $) 28) (((-619 (-371)) $ (-619 (-371))) 96)) (-1558 (((-619 (-1058 (-371))) $) 16) (((-619 (-1058 (-371))) $ (-619 (-1058 (-371)))) 94)) (-1531 (((-619 (-619 (-912 (-218)))) (-619 (-619 (-912 (-218)))) (-619 (-843))) 45)) (-1567 (((-619 (-619 (-912 (-218)))) $) 90)) (-1733 (((-1223) $ (-912 (-218)) (-843)) 108)) (-1576 (($ $) 89) (($ (-619 (-619 (-912 (-218))))) 99) (($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890))) 98) (($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-255))) 100)) (-2546 (((-1118) $) NIL)) (-3156 (((-548) $) 71)) (-3932 (((-1082) $) NIL)) (-1587 (($) 97)) (-1521 (((-619 (-218)) (-619 (-619 (-912 (-218))))) 56)) (-1549 (((-1223) $ (-619 (-912 (-218))) (-843) (-843) (-890)) 102) (((-1223) $ (-912 (-218))) 104) (((-1223) $ (-912 (-218)) (-843) (-843) (-890)) 103)) (-3743 (((-832) $) 114) (($ (-619 (-619 (-912 (-218))))) 109)) (-1540 (((-1223) $ (-912 (-218))) 107)) (-2214 (((-112) $ $) NIL))) -(((-459) (-13 (-1063) (-10 -8 (-15 -1587 ($)) (-15 -1576 ($ $)) (-15 -1576 ($ (-619 (-619 (-912 (-218)))))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-255)))) (-15 -1567 ((-619 (-619 (-912 (-218)))) $)) (-15 -3156 ((-548) $)) (-15 -1558 ((-619 (-1058 (-371))) $)) (-15 -1558 ((-619 (-1058 (-371))) $ (-619 (-1058 (-371))))) (-15 -1841 ((-619 (-371)) $)) (-15 -1841 ((-619 (-371)) $ (-619 (-371)))) (-15 -1549 ((-1223) $ (-619 (-912 (-218))) (-843) (-843) (-890))) (-15 -1549 ((-1223) $ (-912 (-218)))) (-15 -1549 ((-1223) $ (-912 (-218)) (-843) (-843) (-890))) (-15 -1540 ((-1223) $ (-912 (-218)))) (-15 -1733 ((-1223) $ (-912 (-218)) (-843))) (-15 -3743 ($ (-619 (-619 (-912 (-218)))))) (-15 -3743 ((-832) $)) (-15 -1531 ((-619 (-619 (-912 (-218)))) (-619 (-619 (-912 (-218)))) (-619 (-843)))) (-15 -1521 ((-619 (-218)) (-619 (-619 (-912 (-218))))))))) (T -459)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-459)))) (-1587 (*1 *1) (-5 *1 (-459))) (-1576 (*1 *1 *1) (-5 *1 (-459))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) (-1576 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *1 (-459)))) (-1576 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *5 (-619 (-255))) (-5 *1 (-459)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-459)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459)))) (-1558 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) (-1841 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) (-1549 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1549 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1549 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1540 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459)))) (-1733 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-459)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) (-1531 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) (-5 *1 (-459)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-619 (-218))) (-5 *1 (-459))))) -(-13 (-1063) (-10 -8 (-15 -1587 ($)) (-15 -1576 ($ $)) (-15 -1576 ($ (-619 (-619 (-912 (-218)))))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -1576 ($ (-619 (-619 (-912 (-218)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-255)))) (-15 -1567 ((-619 (-619 (-912 (-218)))) $)) (-15 -3156 ((-548) $)) (-15 -1558 ((-619 (-1058 (-371))) $)) (-15 -1558 ((-619 (-1058 (-371))) $ (-619 (-1058 (-371))))) (-15 -1841 ((-619 (-371)) $)) (-15 -1841 ((-619 (-371)) $ (-619 (-371)))) (-15 -1549 ((-1223) $ (-619 (-912 (-218))) (-843) (-843) (-890))) (-15 -1549 ((-1223) $ (-912 (-218)))) (-15 -1549 ((-1223) $ (-912 (-218)) (-843) (-843) (-890))) (-15 -1540 ((-1223) $ (-912 (-218)))) (-15 -1733 ((-1223) $ (-912 (-218)) (-843))) (-15 -3743 ($ (-619 (-619 (-912 (-218)))))) (-15 -3743 ((-832) $)) (-15 -1531 ((-619 (-619 (-912 (-218)))) (-619 (-619 (-912 (-218)))) (-619 (-843)))) (-15 -1521 ((-619 (-218)) (-619 (-619 (-912 (-218)))))))) -((-2299 (($ $) NIL) (($ $ $) 11))) -(((-460 |#1| |#2| |#3|) (-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|))) (-461 |#2| |#3|) (-169) (-23)) (T -460)) -NIL -(-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 ((|#2| $) 19)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 15) (($ $ $) 13)) (-2290 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-461 |#1| |#2|) (-138) (-169) (-23)) (T -461)) -((-2512 (*1 *2 *1) (-12 (-4 *1 (-461 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-3107 (*1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) -(-13 (-1063) (-10 -8 (-15 -2512 (|t#2| $)) (-15 (-3107) ($) -2325) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2299 ($ $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3404 (((-3 (-619 (-472 |#1| |#2|)) "failed") (-619 (-472 |#1| |#2|)) (-619 (-834 |#1|))) 92)) (-1595 (((-619 (-619 (-240 |#1| |#2|))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))) 90)) (-3416 (((-2 (|:| |dpolys| (-619 (-240 |#1| |#2|))) (|:| |coords| (-619 (-548)))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))) 61))) -(((-462 |#1| |#2| |#3|) (-10 -7 (-15 -1595 ((-619 (-619 (-240 |#1| |#2|))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3404 ((-3 (-619 (-472 |#1| |#2|)) "failed") (-619 (-472 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3416 ((-2 (|:| |dpolys| (-619 (-240 |#1| |#2|))) (|:| |coords| (-619 (-548)))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))))) (-619 (-1135)) (-443) (-443)) (T -462)) -((-3416 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-2 (|:| |dpolys| (-619 (-240 *5 *6))) (|:| |coords| (-619 (-548))))) (-5 *1 (-462 *5 *6 *7)) (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443)))) (-3404 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-462 *4 *5 *6)) (-4 *6 (-443)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-619 (-619 (-240 *5 *6)))) (-5 *1 (-462 *5 *6 *7)) (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443))))) -(-10 -7 (-15 -1595 ((-619 (-619 (-240 |#1| |#2|))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3404 ((-3 (-619 (-472 |#1| |#2|)) "failed") (-619 (-472 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3416 ((-2 (|:| |dpolys| (-619 (-240 |#1| |#2|))) (|:| |coords| (-619 (-548)))) (-619 (-240 |#1| |#2|)) (-619 (-834 |#1|))))) -((-3859 (((-3 $ "failed") $) 11)) (-2128 (($ $ $) 18)) (-3652 (($ $ $) 19)) (-2309 (($ $ $) 9)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 17))) -(((-463 |#1|) (-10 -8 (-15 -3652 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -3652 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-3030 (($) 18 T CONST)) (-3859 (((-3 $ "failed") $) 15)) (-2266 (((-112) $) 17)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 24)) (-3932 (((-1082) $) 10)) (-2128 (($ $ $) 21)) (-3652 (($ $ $) 20)) (-3743 (((-832) $) 11)) (-3118 (($) 19 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-548)) 22)) (* (($ $ $) 14))) -(((-464) (-138)) (T -464)) -((-2153 (*1 *1 *1) (-4 *1 (-464))) (-2309 (*1 *1 *1 *1) (-4 *1 (-464))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-464)) (-5 *2 (-548)))) (-2128 (*1 *1 *1 *1) (-4 *1 (-464))) (-3652 (*1 *1 *1 *1) (-4 *1 (-464)))) -(-13 (-701) (-10 -8 (-15 -2153 ($ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ (-548))) (-6 -4324) (-15 -2128 ($ $ $)) (-15 -3652 ($ $ $)))) -(((-101) . T) ((-592 (-832)) . T) ((-701) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 17)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) NIL) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 22)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 26 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 33 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 27 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 25 (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $ (-1214 |#2|)) 15)) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1214 |#2|)) NIL) (($ (-1203 |#1| |#2| |#3|)) 9) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 18)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 24)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-465 |#1| |#2| |#3|) (-13 (-1199 |#1|) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -3743 ($ (-1203 |#1| |#2| |#3|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -465)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-465 *3 *4 *5)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1199 |#1|) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -3743 ($ (-1203 |#1| |#2| |#3|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) 18)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 19)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 16)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-466 |#1| |#2| |#3| |#4|) (-1148 |#1| |#2|) (-1063) (-1063) (-1148 |#1| |#2|) |#2|) (T -466)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-431)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-431)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) (-4 *1 (-431)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1218 (-307 (-370)))) (-4 *1 (-431)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-307 (-370)))) (-4 *1 (-431)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1218 (-307 (-547)))) (-4 *1 (-431)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-307 (-547)))) (-4 *1 (-431)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-370)))) (-4 *1 (-431)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-921 (-370)))) (-4 *1 (-431)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-547)))) (-4 *1 (-431)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-921 (-547)))) (-4 *1 (-431)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1218 (-398 (-921 (-370))))) (-4 *1 (-431)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-398 (-921 (-370))))) (-4 *1 (-431)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-1218 (-398 (-921 (-547))))) (-4 *1 (-431)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-1218 (-398 (-921 (-547))))) (-4 *1 (-431))))) +(-13 (-386) (-10 -8 (-15 -3834 ($ (-619 (-321)))) (-15 -3834 ($ (-321))) (-15 -3834 ($ (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321)))))) (-15 -2643 ($ (-1218 (-307 (-370))))) (-15 -2698 ((-3 $ "failed") (-1218 (-307 (-370))))) (-15 -2643 ($ (-1218 (-307 (-547))))) (-15 -2698 ((-3 $ "failed") (-1218 (-307 (-547))))) (-15 -2643 ($ (-1218 (-921 (-370))))) (-15 -2698 ((-3 $ "failed") (-1218 (-921 (-370))))) (-15 -2643 ($ (-1218 (-921 (-547))))) (-15 -2698 ((-3 $ "failed") (-1218 (-921 (-547))))) (-15 -2643 ($ (-1218 (-398 (-921 (-370)))))) (-15 -2698 ((-3 $ "failed") (-1218 (-398 (-921 (-370)))))) (-15 -2643 ($ (-1218 (-398 (-921 (-547)))))) (-15 -2698 ((-3 $ "failed") (-1218 (-398 (-921 (-547)))))))) +(((-591 (-832)) . T) ((-386) . T) ((-1172) . T)) +((-2072 (((-112)) 17)) (-2170 (((-112) (-112)) 18)) (-2274 (((-112)) 13)) (-2376 (((-112) (-112)) 14)) (-2571 (((-112)) 15)) (-1316 (((-112) (-112)) 16)) (-3028 (((-890) (-890)) 21) (((-890)) 20)) (-3099 (((-745) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547))))) 42)) (-2956 (((-890) (-890)) 23) (((-890)) 22)) (-1968 (((-2 (|:| -1679 (-547)) (|:| -2483 (-619 |#1|))) |#1|) 62)) (-2889 (((-409 |#1|) (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547))))))) 126)) (-2880 (((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112)) 152)) (-2236 (((-409 |#1|) |#1| (-745) (-745)) 165) (((-409 |#1|) |#1| (-619 (-745)) (-745)) 162) (((-409 |#1|) |#1| (-619 (-745))) 164) (((-409 |#1|) |#1| (-745)) 163) (((-409 |#1|) |#1|) 161)) (-4167 (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112)) 167) (((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745)) 168) (((-3 |#1| "failed") (-890) |#1| (-619 (-745))) 170) (((-3 |#1| "failed") (-890) |#1| (-745)) 169) (((-3 |#1| "failed") (-890) |#1|) 171)) (-2106 (((-409 |#1|) |#1| (-745) (-745)) 160) (((-409 |#1|) |#1| (-619 (-745)) (-745)) 156) (((-409 |#1|) |#1| (-619 (-745))) 158) (((-409 |#1|) |#1| (-745)) 157) (((-409 |#1|) |#1|) 155)) (-2474 (((-112) |#1|) 37)) (-4087 (((-712 (-745)) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547))))) 67)) (-1400 (((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112) (-1065 (-745)) (-745)) 154))) +(((-432 |#1|) (-10 -7 (-15 -2889 ((-409 |#1|) (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))))) (-15 -4087 ((-712 (-745)) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))))) (-15 -2956 ((-890))) (-15 -2956 ((-890) (-890))) (-15 -3028 ((-890))) (-15 -3028 ((-890) (-890))) (-15 -3099 ((-745) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))))) (-15 -1968 ((-2 (|:| -1679 (-547)) (|:| -2483 (-619 |#1|))) |#1|)) (-15 -2072 ((-112))) (-15 -2170 ((-112) (-112))) (-15 -2274 ((-112))) (-15 -2376 ((-112) (-112))) (-15 -2474 ((-112) |#1|)) (-15 -2571 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2106 ((-409 |#1|) |#1| (-745))) (-15 -2106 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -2106 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -2106 ((-409 |#1|) |#1| (-745) (-745))) (-15 -2236 ((-409 |#1|) |#1|)) (-15 -2236 ((-409 |#1|) |#1| (-745))) (-15 -2236 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -2236 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -2236 ((-409 |#1|) |#1| (-745) (-745))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1|)) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -2880 ((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112))) (-15 -1400 ((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112) (-1065 (-745)) (-745)))) (-1194 (-547))) (T -432)) +((-1400 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) (-5 *2 (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-4167 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *6 (-112)) (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) (-4167 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) (-4167 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) (-4167 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) (-4167 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-890)) (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) (-2236 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2236 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2106 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2106 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2571 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2474 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2274 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2072 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1679 (-547)) (|:| -2483 (-619 *3)))) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2106 *4) (|:| -1618 (-547))))) (-4 *4 (-1194 (-547))) (-5 *2 (-745)) (-5 *1 (-432 *4)))) (-3028 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-3028 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2956 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-2956 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2106 *4) (|:| -1618 (-547))))) (-4 *4 (-1194 (-547))) (-5 *2 (-712 (-745))) (-5 *1 (-432 *4)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| *4) (|:| -1889 (-547))))))) (-4 *4 (-1194 (-547))) (-5 *2 (-409 *4)) (-5 *1 (-432 *4))))) +(-10 -7 (-15 -2889 ((-409 |#1|) (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))))) (-15 -4087 ((-712 (-745)) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))))) (-15 -2956 ((-890))) (-15 -2956 ((-890) (-890))) (-15 -3028 ((-890))) (-15 -3028 ((-890) (-890))) (-15 -3099 ((-745) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))))) (-15 -1968 ((-2 (|:| -1679 (-547)) (|:| -2483 (-619 |#1|))) |#1|)) (-15 -2072 ((-112))) (-15 -2170 ((-112) (-112))) (-15 -2274 ((-112))) (-15 -2376 ((-112) (-112))) (-15 -2474 ((-112) |#1|)) (-15 -2571 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2106 ((-409 |#1|) |#1| (-745))) (-15 -2106 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -2106 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -2106 ((-409 |#1|) |#1| (-745) (-745))) (-15 -2236 ((-409 |#1|) |#1|)) (-15 -2236 ((-409 |#1|) |#1| (-745))) (-15 -2236 ((-409 |#1|) |#1| (-619 (-745)))) (-15 -2236 ((-409 |#1|) |#1| (-619 (-745)) (-745))) (-15 -2236 ((-409 |#1|) |#1| (-745) (-745))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1|)) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-745))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745))) (-15 -4167 ((-3 |#1| "failed") (-890) |#1| (-619 (-745)) (-745) (-112))) (-15 -2880 ((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112))) (-15 -1400 ((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112) (-1065 (-745)) (-745)))) +((-1824 (((-547) |#2|) 48) (((-547) |#2| (-745)) 47)) (-1733 (((-547) |#2|) 55)) (-3778 ((|#3| |#2|) 25)) (-1684 ((|#3| |#2| (-890)) 14)) (-4202 ((|#3| |#2|) 15)) (-3851 ((|#3| |#2|) 9)) (-4029 ((|#3| |#2|) 10)) (-1638 ((|#3| |#2| (-890)) 62) ((|#3| |#2|) 30)) (-1530 (((-547) |#2|) 57))) +(((-433 |#1| |#2| |#3|) (-10 -7 (-15 -1530 ((-547) |#2|)) (-15 -1638 (|#3| |#2|)) (-15 -1638 (|#3| |#2| (-890))) (-15 -1733 ((-547) |#2|)) (-15 -1824 ((-547) |#2| (-745))) (-15 -1824 ((-547) |#2|)) (-15 -1684 (|#3| |#2| (-890))) (-15 -3778 (|#3| |#2|)) (-15 -3851 (|#3| |#2|)) (-15 -4029 (|#3| |#2|)) (-15 -4202 (|#3| |#2|))) (-1016) (-1194 |#1|) (-13 (-395) (-1007 |#1|) (-354) (-1157) (-275))) (T -433)) +((-4202 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1157) (-275))) (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1194 *5)))) (-1824 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))))) (-1824 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *5 *3 *6)) (-4 *3 (-1194 *5)) (-4 *6 (-13 (-395) (-1007 *5) (-354) (-1157) (-275))))) (-1733 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1157) (-275))) (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1194 *5)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) (-4 *3 (-1194 *4)) (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1157) (-275)))))) +(-10 -7 (-15 -1530 ((-547) |#2|)) (-15 -1638 (|#3| |#2|)) (-15 -1638 (|#3| |#2| (-890))) (-15 -1733 ((-547) |#2|)) (-15 -1824 ((-547) |#2| (-745))) (-15 -1824 ((-547) |#2|)) (-15 -1684 (|#3| |#2| (-890))) (-15 -3778 (|#3| |#2|)) (-15 -3851 (|#3| |#2|)) (-15 -4029 (|#3| |#2|)) (-15 -4202 (|#3| |#2|))) +((-1724 ((|#2| (-1218 |#1|)) 36)) (-4006 ((|#2| |#2| |#1|) 49)) (-3919 ((|#2| |#2| |#1|) 41)) (-3048 ((|#2| |#2|) 38)) (-2026 (((-112) |#2|) 30)) (-4243 (((-619 |#2|) (-890) (-409 |#2|)) 17)) (-4167 ((|#2| (-890) (-409 |#2|)) 21)) (-4087 (((-712 (-745)) (-409 |#2|)) 25))) +(((-434 |#1| |#2|) (-10 -7 (-15 -2026 ((-112) |#2|)) (-15 -1724 (|#2| (-1218 |#1|))) (-15 -3048 (|#2| |#2|)) (-15 -3919 (|#2| |#2| |#1|)) (-15 -4006 (|#2| |#2| |#1|)) (-15 -4087 ((-712 (-745)) (-409 |#2|))) (-15 -4167 (|#2| (-890) (-409 |#2|))) (-15 -4243 ((-619 |#2|) (-890) (-409 |#2|)))) (-1016) (-1194 |#1|)) (T -434)) +((-4243 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-409 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-434 *5 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-409 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-434 *5 *2)) (-4 *5 (-1016)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1016)) (-5 *2 (-712 (-745))) (-5 *1 (-434 *4 *5)))) (-4006 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1194 *3)))) (-3919 (*1 *2 *2 *3) (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1194 *3)))) (-3048 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1194 *3)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-1016)) (-4 *2 (-1194 *4)) (-5 *1 (-434 *4 *2)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-434 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -2026 ((-112) |#2|)) (-15 -1724 (|#2| (-1218 |#1|))) (-15 -3048 (|#2| |#2|)) (-15 -3919 (|#2| |#2| |#1|)) (-15 -4006 (|#2| |#2| |#1|)) (-15 -4087 ((-712 (-745)) (-409 |#2|))) (-15 -4167 (|#2| (-890) (-409 |#2|))) (-15 -4243 ((-619 |#2|) (-890) (-409 |#2|)))) +((-3348 (((-745)) 41)) (-3693 (((-745)) 23 (|has| |#1| (-395))) (((-745) (-745)) 22 (|has| |#1| (-395)))) (-3608 (((-547) |#1|) 18 (|has| |#1| (-395)))) (-3517 (((-547) |#1|) 20 (|has| |#1| (-395)))) (-3266 (((-745)) 40) (((-745) (-745)) 39)) (-3183 ((|#1| (-745) (-547)) 29)) (-3435 (((-1223)) 43))) +(((-435 |#1|) (-10 -7 (-15 -3183 (|#1| (-745) (-547))) (-15 -3266 ((-745) (-745))) (-15 -3266 ((-745))) (-15 -3348 ((-745))) (-15 -3435 ((-1223))) (IF (|has| |#1| (-395)) (PROGN (-15 -3517 ((-547) |#1|)) (-15 -3608 ((-547) |#1|)) (-15 -3693 ((-745) (-745))) (-15 -3693 ((-745)))) |%noBranch|)) (-1016)) (T -435)) +((-3693 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-3608 (*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-3517 (*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) (-3435 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3348 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3266 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-547)) (-5 *1 (-435 *2)) (-4 *2 (-1016))))) +(-10 -7 (-15 -3183 (|#1| (-745) (-547))) (-15 -3266 ((-745) (-745))) (-15 -3266 ((-745))) (-15 -3348 ((-745))) (-15 -3435 ((-1223))) (IF (|has| |#1| (-395)) (PROGN (-15 -3517 ((-547) |#1|)) (-15 -3608 ((-547) |#1|)) (-15 -3693 ((-745) (-745))) (-15 -3693 ((-745)))) |%noBranch|)) +((-2671 (((-619 (-547)) (-547)) 61)) (-3674 (((-112) (-166 (-547))) 65)) (-2106 (((-409 (-166 (-547))) (-166 (-547))) 60))) +(((-436) (-10 -7 (-15 -2106 ((-409 (-166 (-547))) (-166 (-547)))) (-15 -2671 ((-619 (-547)) (-547))) (-15 -3674 ((-112) (-166 (-547)))))) (T -436)) +((-3674 (*1 *2 *3) (-12 (-5 *3 (-166 (-547))) (-5 *2 (-112)) (-5 *1 (-436)))) (-2671 (*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-436)) (-5 *3 (-547)))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-409 (-166 (-547)))) (-5 *1 (-436)) (-5 *3 (-166 (-547)))))) +(-10 -7 (-15 -2106 ((-409 (-166 (-547))) (-166 (-547)))) (-15 -2671 ((-619 (-547)) (-547))) (-15 -3674 ((-112) (-166 (-547))))) +((-2748 ((|#4| |#4| (-619 |#4|)) 61)) (-2835 (((-619 |#4|) (-619 |#4|) (-1118) (-1118)) 17) (((-619 |#4|) (-619 |#4|) (-1118)) 16) (((-619 |#4|) (-619 |#4|)) 11))) +(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2748 (|#4| |#4| (-619 |#4|))) (-15 -2835 ((-619 |#4|) (-619 |#4|))) (-15 -2835 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -2835 ((-619 |#4|) (-619 |#4|) (-1118) (-1118)))) (-298) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -437)) +((-2835 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *7)))) (-2835 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *7)))) (-2835 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-437 *3 *4 *5 *6)))) (-2748 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *2))))) +(-10 -7 (-15 -2748 (|#4| |#4| (-619 |#4|))) (-15 -2835 ((-619 |#4|) (-619 |#4|))) (-15 -2835 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -2835 ((-619 |#4|) (-619 |#4|) (-1118) (-1118)))) +((-2996 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 73) (((-619 (-619 |#4|)) (-619 |#4|)) 72) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112)) 66) (((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|)) 67)) (-2919 (((-619 (-619 |#4|)) (-619 |#4|) (-112)) 42) (((-619 (-619 |#4|)) (-619 |#4|)) 63))) +(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2919 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2919 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) (-13 (-298) (-145)) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -438)) +((-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2996 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2996 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) (-2919 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(-10 -7 (-15 -2919 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2919 ((-619 (-619 |#4|)) (-619 |#4|) (-112))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|))) (-15 -2996 ((-619 (-619 |#4|)) (-619 |#4|) (-112)))) +((-1579 (((-745) |#4|) 12)) (-2841 (((-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|)))) 31)) (-3003 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2917 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3154 ((|#4| |#4| (-619 |#4|)) 40)) (-3767 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|)) 70)) (-2109 (((-1223) |#4|) 42)) (-2460 (((-1223) (-619 |#4|)) 51)) (-2231 (((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547)) 48)) (-2585 (((-1223) (-547)) 79)) (-3102 (((-619 |#4|) (-619 |#4|)) 77)) (-1453 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|)) |#4| (-745)) 25)) (-3207 (((-547) |#4|) 78)) (-3857 ((|#4| |#4|) 29)) (-2051 (((-619 |#4|) (-619 |#4|) (-547) (-547)) 56)) (-2367 (((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547) (-547)) 89)) (-2684 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2166 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1339 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2587 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2268 (((-112) |#2| |#2|) 57)) (-2480 (((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2384 (((-112) |#2| |#2| |#2| |#2|) 60)) (-3079 ((|#4| |#4| (-619 |#4|)) 71))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3079 (|#4| |#4| (-619 |#4|))) (-15 -3154 (|#4| |#4| (-619 |#4|))) (-15 -2051 ((-619 |#4|) (-619 |#4|) (-547) (-547))) (-15 -2166 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2268 ((-112) |#2| |#2|)) (-15 -2384 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2480 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2587 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1339 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3767 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -3857 (|#4| |#4|)) (-15 -2841 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|))))) (-15 -2917 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3003 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3102 ((-619 |#4|) (-619 |#4|))) (-15 -3207 ((-547) |#4|)) (-15 -2109 ((-1223) |#4|)) (-15 -2231 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547))) (-15 -2367 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547) (-547))) (-15 -2460 ((-1223) (-619 |#4|))) (-15 -2585 ((-1223) (-547))) (-15 -2684 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1453 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|)) |#4| (-745))) (-15 -1579 ((-745) |#4|))) (-442) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -439)) +((-1579 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-1453 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -1416 *4))) (-5 *5 (-745)) (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-439 *6 *7 *8 *4)))) (-2684 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2367 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *4)))) (-2231 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *4)))) (-2109 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-547)) (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))) (-3003 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-439 *4 *5 *6 *2)) (-4 *4 (-442)) (-4 *6 (-821)))) (-2841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 *3)))) (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *3)))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-439 *5 *6 *7 *3)))) (-1339 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-442)) (-4 *5 (-821)) (-5 *1 (-439 *4 *3 *5 *6)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6)))) (-2480 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *3)))) (-2384 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-2268 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2051 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *7)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2)))) (-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2))))) +(-10 -7 (-15 -3079 (|#4| |#4| (-619 |#4|))) (-15 -3154 (|#4| |#4| (-619 |#4|))) (-15 -2051 ((-619 |#4|) (-619 |#4|) (-547) (-547))) (-15 -2166 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2268 ((-112) |#2| |#2|)) (-15 -2384 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2480 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2587 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1339 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3767 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-619 |#4|))) (-15 -3857 (|#4| |#4|)) (-15 -2841 ((-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|))) |#4| (-745) (-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|))))) (-15 -2917 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3003 ((-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-619 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3102 ((-619 |#4|) (-619 |#4|))) (-15 -3207 ((-547) |#4|)) (-15 -2109 ((-1223) |#4|)) (-15 -2231 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547))) (-15 -2367 ((-547) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-547) (-547) (-547) (-547))) (-15 -2460 ((-1223) (-619 |#4|))) (-15 -2585 ((-1223) (-547))) (-15 -2684 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1453 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-745)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-745)) (|:| -1416 |#4|)) |#4| (-745))) (-15 -1579 ((-745) |#4|))) +((-3789 ((|#4| |#4| (-619 |#4|)) 22 (|has| |#1| (-354)))) (-3760 (((-619 |#4|) (-619 |#4|) (-1118) (-1118)) 41) (((-619 |#4|) (-619 |#4|) (-1118)) 40) (((-619 |#4|) (-619 |#4|)) 35))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3760 ((-619 |#4|) (-619 |#4|))) (-15 -3760 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -3760 ((-619 |#4|) (-619 |#4|) (-1118) (-1118))) (IF (|has| |#1| (-354)) (-15 -3789 (|#4| |#4| (-619 |#4|))) |%noBranch|)) (-442) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -440)) +((-3789 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-354)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2)))) (-3760 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *7)))) (-3760 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *7)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6))))) +(-10 -7 (-15 -3760 ((-619 |#4|) (-619 |#4|))) (-15 -3760 ((-619 |#4|) (-619 |#4|) (-1118))) (-15 -3760 ((-619 |#4|) (-619 |#4|) (-1118) (-1118))) (IF (|has| |#1| (-354)) (-15 -3789 (|#4| |#4| (-619 |#4|))) |%noBranch|)) +((-3685 (($ $ $) 14) (($ (-619 $)) 21)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 41)) (-3715 (($ $ $) NIL) (($ (-619 $)) 22))) +(((-441 |#1|) (-10 -8 (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3685 (|#1| (-619 |#1|))) (-15 -3685 (|#1| |#1| |#1|)) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3715 (|#1| |#1| |#1|))) (-442)) (T -441)) +NIL +(-10 -8 (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3685 (|#1| (-619 |#1|))) (-15 -3685 (|#1| |#1| |#1|)) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3715 (|#1| |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2025 (((-3 $ "failed") $ $) 40)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-442) (-138)) (T -442)) +((-3715 (*1 *1 *1 *1) (-4 *1 (-442))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442)))) (-3685 (*1 *1 *1 *1) (-4 *1 (-442))) (-3685 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442)))) (-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-442))))) +(-13 (-539) (-10 -8 (-15 -3715 ($ $ $)) (-15 -3715 ($ (-619 $))) (-15 -3685 ($ $ $)) (-15 -3685 ($ (-619 $))) (-15 -2816 ((-1131 $) (-1131 $) (-1131 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4104 (((-3 $ "failed")) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2173 (((-1218 (-663 (-398 (-921 |#1|)))) (-1218 $)) NIL) (((-1218 (-663 (-398 (-921 |#1|))))) NIL)) (-3785 (((-1218 $)) NIL)) (-3219 (($) NIL T CONST)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL)) (-4231 (((-3 $ "failed")) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-3140 (((-663 (-398 (-921 |#1|))) (-1218 $)) NIL) (((-663 (-398 (-921 |#1|)))) NIL)) (-3573 (((-398 (-921 |#1|)) $) NIL)) (-2966 (((-663 (-398 (-921 |#1|))) $ (-1218 $)) NIL) (((-663 (-398 (-921 |#1|))) $) NIL)) (-3480 (((-3 $ "failed") $) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-1346 (((-1131 (-921 (-398 (-921 |#1|))))) NIL (|has| (-398 (-921 |#1|)) (-354))) (((-1131 (-398 (-921 |#1|)))) 84 (|has| |#1| (-539)))) (-3946 (($ $ (-890)) NIL)) (-3335 (((-398 (-921 |#1|)) $) NIL)) (-2101 (((-1131 (-398 (-921 |#1|))) $) 82 (|has| (-398 (-921 |#1|)) (-539)))) (-2149 (((-398 (-921 |#1|)) (-1218 $)) NIL) (((-398 (-921 |#1|))) NIL)) (-4250 (((-1131 (-398 (-921 |#1|))) $) NIL)) (-1834 (((-112)) NIL)) (-2402 (($ (-1218 (-398 (-921 |#1|))) (-1218 $)) 103) (($ (-1218 (-398 (-921 |#1|)))) NIL)) (-2537 (((-3 $ "failed") $) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-3107 (((-890)) NIL)) (-1575 (((-112)) NIL)) (-2530 (($ $ (-890)) NIL)) (-2578 (((-112)) NIL)) (-2385 (((-112)) NIL)) (-1377 (((-112)) NIL)) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL)) (-1283 (((-3 $ "failed")) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-2033 (((-663 (-398 (-921 |#1|))) (-1218 $)) NIL) (((-663 (-398 (-921 |#1|)))) NIL)) (-3690 (((-398 (-921 |#1|)) $) NIL)) (-3058 (((-663 (-398 (-921 |#1|))) $ (-1218 $)) NIL) (((-663 (-398 (-921 |#1|))) $) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-2100 (((-1131 (-921 (-398 (-921 |#1|))))) NIL (|has| (-398 (-921 |#1|)) (-354))) (((-1131 (-398 (-921 |#1|)))) 83 (|has| |#1| (-539)))) (-3699 (($ $ (-890)) NIL)) (-3452 (((-398 (-921 |#1|)) $) NIL)) (-2205 (((-1131 (-398 (-921 |#1|))) $) 77 (|has| (-398 (-921 |#1|)) (-539)))) (-2275 (((-398 (-921 |#1|)) (-1218 $)) NIL) (((-398 (-921 |#1|))) NIL)) (-1303 (((-1131 (-398 (-921 |#1|))) $) NIL)) (-1924 (((-112)) NIL)) (-1917 (((-1118) $) NIL)) (-2486 (((-112)) NIL)) (-2662 (((-112)) NIL)) (-1475 (((-112)) NIL)) (-3979 (((-1082) $) NIL)) (-1929 (((-398 (-921 |#1|)) $ $) 71 (|has| |#1| (-539)))) (-4179 (((-398 (-921 |#1|)) $) 93 (|has| |#1| (-539)))) (-4081 (((-398 (-921 |#1|)) $) 95 (|has| |#1| (-539)))) (-4284 (((-1131 (-398 (-921 |#1|))) $) 88 (|has| |#1| (-539)))) (-1817 (((-398 (-921 |#1|))) 72 (|has| |#1| (-539)))) (-3974 (((-398 (-921 |#1|)) $ $) 64 (|has| |#1| (-539)))) (-1725 (((-398 (-921 |#1|)) $) 92 (|has| |#1| (-539)))) (-3244 (((-398 (-921 |#1|)) $) 94 (|has| |#1| (-539)))) (-2857 (((-1131 (-398 (-921 |#1|))) $) 87 (|has| |#1| (-539)))) (-2049 (((-398 (-921 |#1|))) 68 (|has| |#1| (-539)))) (-2232 (($) 101) (($ (-1135)) 107) (($ (-1218 (-1135))) 106) (($ (-1218 $)) 96) (($ (-1135) (-1218 $)) 105) (($ (-1218 (-1135)) (-1218 $)) 104)) (-1739 (((-112)) NIL)) (-3329 (((-398 (-921 |#1|)) $ (-547)) NIL)) (-2301 (((-1218 (-398 (-921 |#1|))) $ (-1218 $)) 98) (((-663 (-398 (-921 |#1|))) (-1218 $) (-1218 $)) NIL) (((-1218 (-398 (-921 |#1|))) $) 40) (((-663 (-398 (-921 |#1|))) (-1218 $)) NIL)) (-2829 (((-1218 (-398 (-921 |#1|))) $) NIL) (($ (-1218 (-398 (-921 |#1|)))) 37)) (-1701 (((-619 (-921 (-398 (-921 |#1|)))) (-1218 $)) NIL) (((-619 (-921 (-398 (-921 |#1|))))) NIL) (((-619 (-921 |#1|)) (-1218 $)) 99 (|has| |#1| (-539))) (((-619 (-921 |#1|))) 100 (|has| |#1| (-539)))) (-4121 (($ $ $) NIL)) (-4156 (((-112)) NIL)) (-3834 (((-832) $) NIL) (($ (-1218 (-398 (-921 |#1|)))) NIL)) (-4013 (((-1218 $)) 60)) (-2310 (((-619 (-1218 (-398 (-921 |#1|))))) NIL (|has| (-398 (-921 |#1|)) (-539)))) (-4225 (($ $ $ $) NIL)) (-3948 (((-112)) NIL)) (-3583 (($ (-663 (-398 (-921 |#1|))) $) NIL)) (-4007 (($ $ $) NIL)) (-4057 (((-112)) NIL)) (-2014 (((-112)) NIL)) (-1649 (((-112)) NIL)) (-3267 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) 97)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 56) (($ $ (-398 (-921 |#1|))) NIL) (($ (-398 (-921 |#1|)) $) NIL) (($ (-1102 |#2| (-398 (-921 |#1|))) $) NIL))) +(((-443 |#1| |#2| |#3| |#4|) (-13 (-408 (-398 (-921 |#1|))) (-622 (-1102 |#2| (-398 (-921 |#1|)))) (-10 -8 (-15 -3834 ($ (-1218 (-398 (-921 |#1|))))) (-15 -2580 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed"))) (-15 -2377 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed"))) (-15 -2232 ($)) (-15 -2232 ($ (-1135))) (-15 -2232 ($ (-1218 (-1135)))) (-15 -2232 ($ (-1218 $))) (-15 -2232 ($ (-1135) (-1218 $))) (-15 -2232 ($ (-1218 (-1135)) (-1218 $))) (IF (|has| |#1| (-539)) (PROGN (-15 -2100 ((-1131 (-398 (-921 |#1|))))) (-15 -2857 ((-1131 (-398 (-921 |#1|))) $)) (-15 -1725 ((-398 (-921 |#1|)) $)) (-15 -3244 ((-398 (-921 |#1|)) $)) (-15 -1346 ((-1131 (-398 (-921 |#1|))))) (-15 -4284 ((-1131 (-398 (-921 |#1|))) $)) (-15 -4179 ((-398 (-921 |#1|)) $)) (-15 -4081 ((-398 (-921 |#1|)) $)) (-15 -3974 ((-398 (-921 |#1|)) $ $)) (-15 -2049 ((-398 (-921 |#1|)))) (-15 -1929 ((-398 (-921 |#1|)) $ $)) (-15 -1817 ((-398 (-921 |#1|)))) (-15 -1701 ((-619 (-921 |#1|)) (-1218 $))) (-15 -1701 ((-619 (-921 |#1|))))) |%noBranch|))) (-169) (-890) (-619 (-1135)) (-1218 (-663 |#1|))) (T -443)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1218 (-398 (-921 *3)))) (-4 *3 (-169)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) (-2580 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-443 *3 *4 *5 *6)) (|:| -4013 (-619 (-443 *3 *4 *5 *6))))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-2377 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-443 *3 *4 *5 *6)) (|:| -4013 (-619 (-443 *3 *4 *5 *6))))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-2232 (*1 *1) (-12 (-5 *1 (-443 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) (-14 *4 (-619 (-1135))) (-14 *5 (-1218 (-663 *2))))) (-2232 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1218 (-663 *3))))) (-2232 (*1 *1 *2) (-12 (-5 *2 (-1218 (-1135))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-2232 (*1 *1 *2) (-12 (-5 *2 (-1218 (-443 *3 *4 *5 *6))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-2232 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-443 *4 *5 *6 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 *2)) (-14 *7 (-1218 (-663 *4))))) (-2232 (*1 *1 *2 *3) (-12 (-5 *2 (-1218 (-1135))) (-5 *3 (-1218 (-443 *4 *5 *6 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) (-2100 (*1 *2) (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1346 (*1 *2) (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-3974 (*1 *2 *1 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-2049 (*1 *2) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1929 (*1 *2 *1 *1) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1817 (*1 *2) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1218 (-443 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-539)) (-4 *4 (-169)) (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) (-1701 (*1 *2) (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(-13 (-408 (-398 (-921 |#1|))) (-622 (-1102 |#2| (-398 (-921 |#1|)))) (-10 -8 (-15 -3834 ($ (-1218 (-398 (-921 |#1|))))) (-15 -2580 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed"))) (-15 -2377 ((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed"))) (-15 -2232 ($)) (-15 -2232 ($ (-1135))) (-15 -2232 ($ (-1218 (-1135)))) (-15 -2232 ($ (-1218 $))) (-15 -2232 ($ (-1135) (-1218 $))) (-15 -2232 ($ (-1218 (-1135)) (-1218 $))) (IF (|has| |#1| (-539)) (PROGN (-15 -2100 ((-1131 (-398 (-921 |#1|))))) (-15 -2857 ((-1131 (-398 (-921 |#1|))) $)) (-15 -1725 ((-398 (-921 |#1|)) $)) (-15 -3244 ((-398 (-921 |#1|)) $)) (-15 -1346 ((-1131 (-398 (-921 |#1|))))) (-15 -4284 ((-1131 (-398 (-921 |#1|))) $)) (-15 -4179 ((-398 (-921 |#1|)) $)) (-15 -4081 ((-398 (-921 |#1|)) $)) (-15 -3974 ((-398 (-921 |#1|)) $ $)) (-15 -2049 ((-398 (-921 |#1|)))) (-15 -1929 ((-398 (-921 |#1|)) $ $)) (-15 -1817 ((-398 (-921 |#1|)))) (-15 -1701 ((-619 (-921 |#1|)) (-1218 $))) (-15 -1701 ((-619 (-921 |#1|))))) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 13)) (-2259 (((-619 (-834 |#1|)) $) 75)) (-2067 (((-1131 $) $ (-834 |#1|)) 46) (((-1131 |#2|) $) 118)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3881 (($ $) NIL (|has| |#2| (-539)))) (-1832 (((-112) $) NIL (|has| |#2| (-539)))) (-1500 (((-745) $) 21) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2745 (($ $) NIL (|has| |#2| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#2| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) 44) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2643 ((|#2| $) 42) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-3772 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-2801 (($ $ (-619 (-547))) 80)) (-2054 (($ $) 68)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#2| (-878)))) (-3913 (($ $ |#2| |#3| $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) 58)) (-2245 (($ (-1131 |#2|) (-834 |#1|)) 123) (($ (-1131 $) (-834 |#1|)) 52)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) 59)) (-2229 (($ |#2| |#3|) 28) (($ $ (-834 |#1|) (-745)) 30) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-834 |#1|)) NIL)) (-1626 ((|#3| $) NIL) (((-745) $ (-834 |#1|)) 50) (((-619 (-745)) $ (-619 (-834 |#1|))) 57)) (-2847 (($ $ $) NIL (|has| |#2| (-821)))) (-3563 (($ $ $) NIL (|has| |#2| (-821)))) (-4019 (($ (-1 |#3| |#3|) $) NIL)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2185 (((-3 (-834 |#1|) "failed") $) 39)) (-2013 (($ $) NIL)) (-2027 ((|#2| $) 41)) (-3685 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -4248 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) 40)) (-1999 ((|#2| $) 116)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) 128 (|has| |#2| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) 87) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) 90) (($ $ (-834 |#1|) $) 85) (($ $ (-619 (-834 |#1|)) (-619 $)) 106)) (-3846 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3443 (($ $ (-834 |#1|)) 53) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1618 ((|#3| $) 67) (((-745) $ (-834 |#1|)) 37) (((-619 (-745)) $ (-619 (-834 |#1|))) 56)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-1378 ((|#2| $) 125 (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3834 (((-832) $) 145) (($ (-547)) NIL) (($ |#2|) 86) (($ (-834 |#1|)) 31) (($ (-398 (-547))) NIL (-1524 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ |#3|) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3267 (($) 17 T CONST)) (-3277 (($) 25 T CONST)) (-1686 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2497 (($ $ |#2|) 64 (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 111)) (** (($ $ (-890)) NIL) (($ $ (-745)) 109)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 29) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-444 |#1| |#2| |#3|) (-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -2801 ($ $ (-619 (-547)))))) (-619 (-1135)) (-1016) (-230 (-3763 |#1|) (-745))) (T -444)) +((-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-14 *3 (-619 (-1135))) (-5 *1 (-444 *3 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-230 (-3763 *3) (-745)))))) +(-13 (-918 |#2| |#3| (-834 |#1|)) (-10 -8 (-15 -2801 ($ $ (-619 (-547)))))) +((-3220 (((-112) |#1| (-619 |#2|)) 69)) (-2015 (((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|)) 78)) (-3147 (((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|))) 80)) (-2112 ((|#2| |#2| |#1|) 28)) (-1363 (((-745) |#2| (-619 |#2|)) 20))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2112 (|#2| |#2| |#1|)) (-15 -1363 ((-745) |#2| (-619 |#2|))) (-15 -2015 ((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -3147 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|)))) (-15 -3220 ((-112) |#1| (-619 |#2|)))) (-298) (-1194 |#1|)) (T -445)) +((-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-1194 *3)) (-4 *3 (-298)) (-5 *2 (-112)) (-5 *1 (-445 *3 *5)))) (-3147 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1218 (-619 *3))) (-4 *4 (-298)) (-5 *2 (-619 *3)) (-5 *1 (-445 *4 *3)) (-4 *3 (-1194 *4)))) (-2015 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-298)) (-4 *6 (-1194 *4)) (-5 *2 (-1218 (-619 *6))) (-5 *1 (-445 *4 *6)) (-5 *5 (-619 *6)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-298)) (-5 *2 (-745)) (-5 *1 (-445 *5 *3)))) (-2112 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -2112 (|#2| |#2| |#1|)) (-15 -1363 ((-745) |#2| (-619 |#2|))) (-15 -2015 ((-3 (-1218 (-619 |#2|)) "failed") (-745) |#1| (-619 |#2|))) (-15 -3147 ((-3 (-619 |#2|) "failed") |#2| |#1| (-1218 (-619 |#2|)))) (-15 -3220 ((-112) |#1| (-619 |#2|)))) +((-2106 (((-409 |#5|) |#5|) 24))) +(((-446 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2106 ((-409 |#5|) |#5|))) (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135))))) (-767) (-539) (-539) (-918 |#4| |#2| |#1|)) (T -446)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-4 *5 (-767)) (-4 *7 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-446 *4 *5 *6 *7 *3)) (-4 *6 (-539)) (-4 *3 (-918 *7 *5 *4))))) +(-10 -7 (-15 -2106 ((-409 |#5|) |#5|))) +((-4261 ((|#3|) 37)) (-2816 (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 33))) +(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2816 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -4261 (|#3|))) (-767) (-821) (-878) (-918 |#3| |#1| |#2|)) (T -447)) +((-4261 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-447 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-447 *3 *4 *5 *6))))) +(-10 -7 (-15 -2816 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -4261 (|#3|))) +((-2106 (((-409 (-1131 |#1|)) (-1131 |#1|)) 43))) +(((-448 |#1|) (-10 -7 (-15 -2106 ((-409 (-1131 |#1|)) (-1131 |#1|)))) (-298)) (T -448)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-409 (-1131 *4))) (-5 *1 (-448 *4)) (-5 *3 (-1131 *4))))) +(-10 -7 (-15 -2106 ((-409 (-1131 |#1|)) (-1131 |#1|)))) +((-2324 (((-52) |#2| (-1135) (-285 |#2|) (-1185 (-745))) 42) (((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-745))) 41) (((-52) |#2| (-1135) (-285 |#2|)) 35) (((-52) (-1 |#2| (-547)) (-285 |#2|)) 28)) (-2810 (((-52) |#2| (-1135) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547))) 80) (((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547))) 79) (((-52) |#2| (-1135) (-285 |#2|) (-1185 (-547))) 78) (((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-547))) 77) (((-52) |#2| (-1135) (-285 |#2|)) 72) (((-52) (-1 |#2| (-547)) (-285 |#2|)) 71)) (-2351 (((-52) |#2| (-1135) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547))) 66) (((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547))) 64)) (-2337 (((-52) |#2| (-1135) (-285 |#2|) (-1185 (-547))) 48) (((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-547))) 47))) +(((-449 |#1| |#2|) (-10 -7 (-15 -2324 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2324 ((-52) |#2| (-1135) (-285 |#2|))) (-15 -2324 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-745)))) (-15 -2324 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-745)))) (-15 -2337 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-547)))) (-15 -2337 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-547)))) (-15 -2351 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547)))) (-15 -2351 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547)))) (-15 -2810 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2810 ((-52) |#2| (-1135) (-285 |#2|))) (-15 -2810 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-547)))) (-15 -2810 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-547)))) (-15 -2810 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547)))) (-15 -2810 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547))))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -449)) +((-2810 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-398 (-547)))) (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *8))) (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *8 *3)))) (-2810 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8)) (-5 *5 (-1185 (-398 (-547)))) (-5 *6 (-398 (-547))) (-4 *8 (-13 (-27) (-1157) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *8)))) (-2810 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1185 (-547))) (-4 *7 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *3)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6)) (-4 *6 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *5 *6)))) (-2351 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-398 (-547)))) (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *8))) (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *8 *3)))) (-2351 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8)) (-5 *5 (-1185 (-398 (-547)))) (-5 *6 (-398 (-547))) (-4 *8 (-13 (-27) (-1157) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *8)))) (-2337 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) (-2337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1185 (-547))) (-4 *7 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) (-2324 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-745))) (-4 *3 (-13 (-27) (-1157) (-421 *7))) (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) (-2324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1185 (-745))) (-4 *7 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) (-2324 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *6 *3)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6)) (-4 *6 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-52)) (-5 *1 (-449 *5 *6))))) +(-10 -7 (-15 -2324 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2324 ((-52) |#2| (-1135) (-285 |#2|))) (-15 -2324 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-745)))) (-15 -2324 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-745)))) (-15 -2337 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-547)))) (-15 -2337 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-547)))) (-15 -2351 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547)))) (-15 -2351 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547)))) (-15 -2810 ((-52) (-1 |#2| (-547)) (-285 |#2|))) (-15 -2810 ((-52) |#2| (-1135) (-285 |#2|))) (-15 -2810 ((-52) (-1 |#2| (-547)) (-285 |#2|) (-1185 (-547)))) (-15 -2810 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-547)))) (-15 -2810 ((-52) (-1 |#2| (-398 (-547))) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547)))) (-15 -2810 ((-52) |#2| (-1135) (-285 |#2|) (-1185 (-398 (-547))) (-398 (-547))))) +((-2112 ((|#2| |#2| |#1|) 15)) (-3412 (((-619 |#2|) |#2| (-619 |#2|) |#1| (-890)) 69)) (-3315 (((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890)) 60))) +(((-450 |#1| |#2|) (-10 -7 (-15 -3315 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -3412 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -2112 (|#2| |#2| |#1|))) (-298) (-1194 |#1|)) (T -450)) +((-2112 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1194 *3)))) (-3412 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1194 *4)) (-4 *4 (-298)) (-5 *1 (-450 *4 *3)))) (-3315 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-890)) (-4 *5 (-298)) (-4 *3 (-1194 *5)) (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) (-5 *1 (-450 *5 *3)) (-5 *4 (-619 *3))))) +(-10 -7 (-15 -3315 ((-2 (|:| |plist| (-619 |#2|)) (|:| |modulo| |#1|)) |#2| (-619 |#2|) |#1| (-890))) (-15 -3412 ((-619 |#2|) |#2| (-619 |#2|) |#1| (-890))) (-15 -2112 (|#2| |#2| |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 28)) (-4095 (($ |#3|) 25)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2054 (($ $) 32)) (-3504 (($ |#2| |#4| $) 33)) (-2229 (($ |#2| (-688 |#3| |#4| |#5|)) 24)) (-2013 (((-688 |#3| |#4| |#5|) $) 15)) (-1899 ((|#3| $) 19)) (-2010 ((|#4| $) 17)) (-2027 ((|#2| $) 29)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3607 (($ |#2| |#3| |#4|) 26)) (-3267 (($) 36 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 34)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-451 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2027 (|#2| $)) (-15 -2013 ((-688 |#3| |#4| |#5|) $)) (-15 -2010 (|#4| $)) (-15 -1899 (|#3| $)) (-15 -2054 ($ $)) (-15 -2229 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -4095 ($ |#3|)) (-15 -3607 ($ |#2| |#3| |#4|)) (-15 -3504 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-619 (-1135)) (-169) (-821) (-230 (-3763 |#1|) (-745)) (-1 (-112) (-2 (|:| -3479 |#3|) (|:| -4248 |#4|)) (-2 (|:| -3479 |#3|) (|:| -4248 |#4|))) (-918 |#2| |#4| (-834 |#1|))) (T -451)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *6 (-230 (-3763 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *6)) (-2 (|:| -3479 *5) (|:| -4248 *6)))) (-5 *1 (-451 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) (-4 *2 (-918 *4 *6 (-834 *3))))) (-2027 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *5 (-230 (-3763 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3479 *4) (|:| -4248 *5)) (-2 (|:| -3479 *4) (|:| -4248 *5)))) (-4 *2 (-169)) (-5 *1 (-451 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *2 *5 (-834 *3))))) (-2013 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *6 (-230 (-3763 *3) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *6)) (-2 (|:| -3479 *5) (|:| -4248 *6)))) (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-451 *3 *4 *5 *6 *7 *8)) (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) (-2010 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-14 *6 (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *2)) (-2 (|:| -3479 *5) (|:| -4248 *2)))) (-4 *2 (-230 (-3763 *3) (-745))) (-5 *1 (-451 *3 *4 *5 *2 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3))))) (-1899 (*1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *5 (-230 (-3763 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *5)) (-2 (|:| -3479 *2) (|:| -4248 *5)))) (-4 *2 (-821)) (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-2054 (*1 *1 *1) (-12 (-14 *2 (-619 (-1135))) (-4 *3 (-169)) (-4 *5 (-230 (-3763 *2) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3479 *4) (|:| -4248 *5)) (-2 (|:| -3479 *4) (|:| -4248 *5)))) (-5 *1 (-451 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *3 *5 (-834 *2))))) (-2229 (*1 *1 *2 *3) (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821)) (-4 *6 (-230 (-3763 *4) (-745))) (-14 *7 (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *6)) (-2 (|:| -3479 *5) (|:| -4248 *6)))) (-14 *4 (-619 (-1135))) (-4 *2 (-169)) (-5 *1 (-451 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) (-4095 (*1 *1 *2) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) (-4 *5 (-230 (-3763 *3) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *5)) (-2 (|:| -3479 *2) (|:| -4248 *5)))) (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) (-4 *7 (-918 *4 *5 (-834 *3))))) (-3607 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-619 (-1135))) (-4 *2 (-169)) (-4 *4 (-230 (-3763 *5) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3479 *3) (|:| -4248 *4)) (-2 (|:| -3479 *3) (|:| -4248 *4)))) (-5 *1 (-451 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) (-4 *7 (-918 *2 *4 (-834 *5))))) (-3504 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-619 (-1135))) (-4 *2 (-169)) (-4 *3 (-230 (-3763 *4) (-745))) (-14 *6 (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *3)) (-2 (|:| -3479 *5) (|:| -4248 *3)))) (-5 *1 (-451 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) (-4 *7 (-918 *2 *3 (-834 *4)))))) +(-13 (-692 |#6|) (-692 |#2|) (-10 -8 (-15 -2027 (|#2| $)) (-15 -2013 ((-688 |#3| |#4| |#5|) $)) (-15 -2010 (|#4| $)) (-15 -1899 (|#3| $)) (-15 -2054 ($ $)) (-15 -2229 ($ |#2| (-688 |#3| |#4| |#5|))) (-15 -4095 ($ |#3|)) (-15 -3607 ($ |#2| |#3| |#4|)) (-15 -3504 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2141 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-452 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2141 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-767) (-821) (-539) (-918 |#3| |#1| |#2|) (-13 (-1007 (-398 (-547))) (-354) (-10 -8 (-15 -3834 ($ |#4|)) (-15 -1382 (|#4| $)) (-15 -1392 (|#4| $))))) (T -452)) +((-2141 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) (-4 *6 (-539)) (-4 *7 (-918 *6 *5 *3)) (-5 *1 (-452 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1007 (-398 (-547))) (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $)))))))) +(-10 -7 (-15 -2141 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3821 (((-112) $ $) NIL)) (-2259 (((-619 |#3|) $) 41)) (-4286 (((-112) $) NIL)) (-3312 (((-112) $) NIL (|has| |#1| (-539)))) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-1476 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3990 (((-112) $) NIL (|has| |#1| (-539)))) (-4154 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4075 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4212 (((-112) $) NIL (|has| |#1| (-539)))) (-1833 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 47)) (-2643 (($ (-619 |#4|)) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-3801 (($ |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4328)))) (-2973 (((-619 |#4|) $) 18 (|has| $ (-6 -4328)))) (-1397 ((|#3| $) 45)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#4|) $) 14 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-1850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 21)) (-3623 (((-619 |#3|) $) NIL)) (-3523 (((-112) |#3| $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-3979 (((-1082) $) NIL)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2462 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 39)) (-4011 (($) 17)) (-3987 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) 16)) (-2829 (((-523) $) NIL (|has| |#4| (-592 (-523)))) (($ (-619 |#4|)) 49)) (-3841 (($ (-619 |#4|)) 13)) (-3228 (($ $ |#3|) NIL)) (-3429 (($ $ |#3|) NIL)) (-3324 (($ $ |#3|) NIL)) (-3834 (((-832) $) 38) (((-619 |#4|) $) 48)) (-2583 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 30)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-453 |#1| |#2| |#3| |#4|) (-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2829 ($ (-619 |#4|))) (-6 -4328) (-6 -4329))) (-1016) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -453)) +((-2829 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-453 *3 *4 *5 *6))))) +(-13 (-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2829 ($ (-619 |#4|))) (-6 -4328) (-6 -4329))) +((-3267 (($) 11)) (-3277 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-454 |#1| |#2| |#3|) (-10 -8 (-15 -3277 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3267 (|#1|))) (-455 |#2| |#3|) (-169) (-23)) (T -454)) +NIL +(-10 -8 (-15 -3277 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3267 (|#1|))) +((-3821 (((-112) $ $) 7)) (-2698 (((-3 |#1| "failed") $) 26)) (-2643 ((|#1| $) 25)) (-2651 (($ $ $) 23)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1618 ((|#2| $) 19)) (-3834 (((-832) $) 11) (($ |#1|) 27)) (-3267 (($) 18 T CONST)) (-3277 (($) 24 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 15) (($ $ $) 13)) (-2470 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-455 |#1| |#2|) (-138) (-169) (-23)) (T -455)) +((-3277 (*1 *1) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2651 (*1 *1 *1 *1) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-460 |t#1| |t#2|) (-1007 |t#1|) (-10 -8 (-15 (-3277) ($) -2573) (-15 -2651 ($ $ $)))) +(((-101) . T) ((-591 (-832)) . T) ((-460 |#1| |#2|) . T) ((-1007 |#1|) . T) ((-1063) . T)) +((-2267 (((-1218 (-1218 (-547))) (-1218 (-1218 (-547))) (-890)) 18)) (-2393 (((-1218 (-1218 (-547))) (-890)) 16))) +(((-456) (-10 -7 (-15 -2267 ((-1218 (-1218 (-547))) (-1218 (-1218 (-547))) (-890))) (-15 -2393 ((-1218 (-1218 (-547))) (-890))))) (T -456)) +((-2393 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 (-547)))) (-5 *1 (-456)))) (-2267 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 (-1218 (-547)))) (-5 *3 (-890)) (-5 *1 (-456))))) +(-10 -7 (-15 -2267 ((-1218 (-1218 (-547))) (-1218 (-1218 (-547))) (-890))) (-15 -2393 ((-1218 (-1218 (-547))) (-890)))) +((-3050 (((-547) (-547)) 30) (((-547)) 22)) (-3656 (((-547) (-547)) 26) (((-547)) 18)) (-2073 (((-547) (-547)) 28) (((-547)) 20)) (-1308 (((-112) (-112)) 12) (((-112)) 10)) (-2533 (((-112) (-112)) 11) (((-112)) 9)) (-1394 (((-112) (-112)) 24) (((-112)) 15))) +(((-457) (-10 -7 (-15 -2533 ((-112))) (-15 -1308 ((-112))) (-15 -2533 ((-112) (-112))) (-15 -1308 ((-112) (-112))) (-15 -1394 ((-112))) (-15 -2073 ((-547))) (-15 -3656 ((-547))) (-15 -3050 ((-547))) (-15 -1394 ((-112) (-112))) (-15 -2073 ((-547) (-547))) (-15 -3656 ((-547) (-547))) (-15 -3050 ((-547) (-547))))) (T -457)) +((-3050 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-3656 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-3050 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-3656 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-2073 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) (-1394 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1308 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-1308 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) (-2533 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))) +(-10 -7 (-15 -2533 ((-112))) (-15 -1308 ((-112))) (-15 -2533 ((-112) (-112))) (-15 -1308 ((-112) (-112))) (-15 -1394 ((-112))) (-15 -2073 ((-547))) (-15 -3656 ((-547))) (-15 -3050 ((-547))) (-15 -1394 ((-112) (-112))) (-15 -2073 ((-547) (-547))) (-15 -3656 ((-547) (-547))) (-15 -3050 ((-547) (-547)))) +((-3821 (((-112) $ $) NIL)) (-2020 (((-619 (-370)) $) 28) (((-619 (-370)) $ (-619 (-370))) 96)) (-3782 (((-619 (-1058 (-370))) $) 16) (((-619 (-1058 (-370))) $ (-619 (-1058 (-370)))) 94)) (-1622 (((-619 (-619 (-912 (-217)))) (-619 (-619 (-912 (-217)))) (-619 (-843))) 45)) (-3854 (((-619 (-619 (-912 (-217)))) $) 90)) (-2782 (((-1223) $ (-912 (-217)) (-843)) 108)) (-3935 (($ $) 89) (($ (-619 (-619 (-912 (-217))))) 99) (($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890))) 98) (($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-254))) 100)) (-1917 (((-1118) $) NIL)) (-3326 (((-547) $) 71)) (-3979 (((-1082) $) NIL)) (-4045 (($) 97)) (-1509 (((-619 (-217)) (-619 (-619 (-912 (-217))))) 56)) (-1819 (((-1223) $ (-619 (-912 (-217))) (-843) (-843) (-890)) 102) (((-1223) $ (-912 (-217))) 104) (((-1223) $ (-912 (-217)) (-843) (-843) (-890)) 103)) (-3834 (((-832) $) 114) (($ (-619 (-619 (-912 (-217))))) 109)) (-1714 (((-1223) $ (-912 (-217))) 107)) (-2371 (((-112) $ $) NIL))) +(((-458) (-13 (-1063) (-10 -8 (-15 -4045 ($)) (-15 -3935 ($ $)) (-15 -3935 ($ (-619 (-619 (-912 (-217)))))) (-15 -3935 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -3935 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-254)))) (-15 -3854 ((-619 (-619 (-912 (-217)))) $)) (-15 -3326 ((-547) $)) (-15 -3782 ((-619 (-1058 (-370))) $)) (-15 -3782 ((-619 (-1058 (-370))) $ (-619 (-1058 (-370))))) (-15 -2020 ((-619 (-370)) $)) (-15 -2020 ((-619 (-370)) $ (-619 (-370)))) (-15 -1819 ((-1223) $ (-619 (-912 (-217))) (-843) (-843) (-890))) (-15 -1819 ((-1223) $ (-912 (-217)))) (-15 -1819 ((-1223) $ (-912 (-217)) (-843) (-843) (-890))) (-15 -1714 ((-1223) $ (-912 (-217)))) (-15 -2782 ((-1223) $ (-912 (-217)) (-843))) (-15 -3834 ($ (-619 (-619 (-912 (-217)))))) (-15 -3834 ((-832) $)) (-15 -1622 ((-619 (-619 (-912 (-217)))) (-619 (-619 (-912 (-217)))) (-619 (-843)))) (-15 -1509 ((-619 (-217)) (-619 (-619 (-912 (-217))))))))) (T -458)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-458)))) (-4045 (*1 *1) (-5 *1 (-458))) (-3935 (*1 *1 *1) (-5 *1 (-458))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) (-3935 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *1 (-458)))) (-3935 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) (-5 *4 (-619 (-890))) (-5 *5 (-619 (-254))) (-5 *1 (-458)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-458)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458)))) (-3782 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458)))) (-1819 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1223)) (-5 *1 (-458)))) (-1819 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1223)) (-5 *1 (-458)))) (-1819 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *2 (-1223)) (-5 *1 (-458)))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1223)) (-5 *1 (-458)))) (-2782 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-458)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) (-1622 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) (-5 *1 (-458)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-619 (-217))) (-5 *1 (-458))))) +(-13 (-1063) (-10 -8 (-15 -4045 ($)) (-15 -3935 ($ $)) (-15 -3935 ($ (-619 (-619 (-912 (-217)))))) (-15 -3935 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)))) (-15 -3935 ($ (-619 (-619 (-912 (-217)))) (-619 (-843)) (-619 (-843)) (-619 (-890)) (-619 (-254)))) (-15 -3854 ((-619 (-619 (-912 (-217)))) $)) (-15 -3326 ((-547) $)) (-15 -3782 ((-619 (-1058 (-370))) $)) (-15 -3782 ((-619 (-1058 (-370))) $ (-619 (-1058 (-370))))) (-15 -2020 ((-619 (-370)) $)) (-15 -2020 ((-619 (-370)) $ (-619 (-370)))) (-15 -1819 ((-1223) $ (-619 (-912 (-217))) (-843) (-843) (-890))) (-15 -1819 ((-1223) $ (-912 (-217)))) (-15 -1819 ((-1223) $ (-912 (-217)) (-843) (-843) (-890))) (-15 -1714 ((-1223) $ (-912 (-217)))) (-15 -2782 ((-1223) $ (-912 (-217)) (-843))) (-15 -3834 ($ (-619 (-619 (-912 (-217)))))) (-15 -3834 ((-832) $)) (-15 -1622 ((-619 (-619 (-912 (-217)))) (-619 (-619 (-912 (-217)))) (-619 (-843)))) (-15 -1509 ((-619 (-217)) (-619 (-619 (-912 (-217)))))))) +((-2484 (($ $) NIL) (($ $ $) 11))) +(((-459 |#1| |#2| |#3|) (-10 -8 (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|))) (-460 |#2| |#3|) (-169) (-23)) (T -459)) +NIL +(-10 -8 (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1618 ((|#2| $) 19)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 15) (($ $ $) 13)) (-2470 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-460 |#1| |#2|) (-138) (-169) (-23)) (T -460)) +((-1618 (*1 *2 *1) (-12 (-4 *1 (-460 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-3267 (*1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-1063) (-10 -8 (-15 -1618 (|t#2| $)) (-15 (-3267) ($) -2573) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2484 ($ $)) (-15 -2470 ($ $ $)) (-15 -2484 ($ $ $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3531 (((-3 (-619 (-471 |#1| |#2|)) "failed") (-619 (-471 |#1| |#2|)) (-619 (-834 |#1|))) 92)) (-4123 (((-619 (-619 (-239 |#1| |#2|))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))) 90)) (-3641 (((-2 (|:| |dpolys| (-619 (-239 |#1| |#2|))) (|:| |coords| (-619 (-547)))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))) 61))) +(((-461 |#1| |#2| |#3|) (-10 -7 (-15 -4123 ((-619 (-619 (-239 |#1| |#2|))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3531 ((-3 (-619 (-471 |#1| |#2|)) "failed") (-619 (-471 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3641 ((-2 (|:| |dpolys| (-619 (-239 |#1| |#2|))) (|:| |coords| (-619 (-547)))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))))) (-619 (-1135)) (-442) (-442)) (T -461)) +((-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-442)) (-5 *2 (-2 (|:| |dpolys| (-619 (-239 *5 *6))) (|:| |coords| (-619 (-547))))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442)))) (-3531 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *1 (-461 *4 *5 *6)) (-4 *6 (-442)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-442)) (-5 *2 (-619 (-619 (-239 *5 *6)))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442))))) +(-10 -7 (-15 -4123 ((-619 (-619 (-239 |#1| |#2|))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3531 ((-3 (-619 (-471 |#1| |#2|)) "failed") (-619 (-471 |#1| |#2|)) (-619 (-834 |#1|)))) (-15 -3641 ((-2 (|:| |dpolys| (-619 (-239 |#1| |#2|))) (|:| |coords| (-619 (-547)))) (-619 (-239 |#1| |#2|)) (-619 (-834 |#1|))))) +((-2537 (((-3 $ "failed") $) 11)) (-2444 (($ $ $) 18)) (-4121 (($ $ $) 19)) (-2497 (($ $ $) 9)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 17))) +(((-462 |#1|) (-10 -8 (-15 -4121 (|#1| |#1| |#1|)) (-15 -2444 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-463)) (T -462)) +NIL +(-10 -8 (-15 -4121 (|#1| |#1| |#1|)) (-15 -2444 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) +((-3821 (((-112) $ $) 7)) (-3219 (($) 18 T CONST)) (-2537 (((-3 $ "failed") $) 15)) (-4114 (((-112) $) 17)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 24)) (-3979 (((-1082) $) 10)) (-2444 (($ $ $) 21)) (-4121 (($ $ $) 20)) (-3834 (((-832) $) 11)) (-3277 (($) 19 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-547)) 22)) (* (($ $ $) 14))) +(((-463) (-138)) (T -463)) +((-1976 (*1 *1 *1) (-4 *1 (-463))) (-2497 (*1 *1 *1 *1) (-4 *1 (-463))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-463)) (-5 *2 (-547)))) (-2444 (*1 *1 *1 *1) (-4 *1 (-463))) (-4121 (*1 *1 *1 *1) (-4 *1 (-463)))) +(-13 (-701) (-10 -8 (-15 -1976 ($ $)) (-15 -2497 ($ $ $)) (-15 ** ($ $ (-547))) (-6 -4325) (-15 -2444 ($ $ $)) (-15 -4121 ($ $ $)))) +(((-101) . T) ((-591 (-832)) . T) ((-701) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 17)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) NIL)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-398 (-547))) NIL) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) 22)) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2069 (($ $) 26 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 33 (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 27 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) NIL)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 25 (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $ (-1214 |#2|)) 15)) (-1618 (((-398 (-547)) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1214 |#2|)) NIL) (($ (-1203 |#1| |#2| |#3|)) 9) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 18)) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) 24)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-464 |#1| |#2| |#3|) (-13 (-1199 |#1|) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3834 ($ (-1203 |#1| |#2| |#3|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -464)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-464 *3 *4 *5)))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1199 |#1|) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3834 ($ (-1203 |#1| |#2| |#3|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#2| $ |#1| |#2|) 18)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) 19)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) 16)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3437 (((-619 |#1|) $) NIL)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1520 (((-619 |#1|) $) NIL)) (-1641 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-465 |#1| |#2| |#3| |#4|) (-1148 |#1| |#2|) (-1063) (-1063) (-1148 |#1| |#2|) |#2|) (T -465)) NIL (-1148 |#1| |#2|) -((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) NIL)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) 26 (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 39)) (-2038 ((|#4| |#4| $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-1934 (((-619 |#4|) $) 16 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 33)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 17 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3724 (((-3 |#4| "failed") $) 37)) (-2179 (((-619 |#4|) $) NIL)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 35)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) 47)) (-1656 (($ $ |#4|) NIL)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 13)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 12)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 20)) (-2298 (($ $ |#3|) 42)) (-2319 (($ $ |#3|) 44)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 31) (((-619 |#4|) $) 40)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2406 (((-112) |#3| $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-467 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|) (-540) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -467)) +((-3821 (((-112) $ $) NIL)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) NIL)) (-3759 (((-619 $) (-619 |#4|)) NIL)) (-2259 (((-619 |#3|) $) NIL)) (-4286 (((-112) $) NIL)) (-3312 (((-112) $) NIL (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3144 ((|#4| |#4| $) NIL)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-1476 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3219 (($) NIL T CONST)) (-3990 (((-112) $) 26 (|has| |#1| (-539)))) (-4154 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4075 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4212 (((-112) $) NIL (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1833 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2643 (($ (-619 |#4|)) NIL)) (-3645 (((-3 $ "failed") $) 39)) (-2903 ((|#4| |#4| $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-3801 (($ |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2733 ((|#4| |#4| $) NIL)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) NIL)) (-2973 (((-619 |#4|) $) 16 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1397 ((|#3| $) 33)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#4|) $) 17 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-1850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 21)) (-3623 (((-619 |#3|) $) NIL)) (-3523 (((-112) |#3| $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3817 (((-3 |#4| "failed") $) 37)) (-1499 (((-619 |#4|) $) NIL)) (-2257 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2979 ((|#4| |#4| $) NIL)) (-1694 (((-112) $ $) NIL)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3062 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-3 |#4| "failed") $) 35)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3505 (((-3 $ "failed") $ |#4|) 47)) (-3558 (($ $ |#4|) NIL)) (-2462 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 15)) (-4011 (($) 13)) (-1618 (((-745) $) NIL)) (-3987 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) 12)) (-2829 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 20)) (-3228 (($ $ |#3|) 42)) (-3429 (($ $ |#3|) 44)) (-2817 (($ $) NIL)) (-3324 (($ $ |#3|) NIL)) (-3834 (((-832) $) 31) (((-619 |#4|) $) 40)) (-3423 (((-745) $) NIL (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-2583 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) NIL)) (-3084 (((-112) |#3| $) NIL)) (-2371 (((-112) $ $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-466 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|) (-539) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -466)) NIL (-1165 |#1| |#2| |#3| |#4|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-1365 (($) 18)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2591 (((-371) $) 22) (((-218) $) 25) (((-399 (-1131 (-548))) $) 19) (((-524) $) 52)) (-3743 (((-832) $) 50) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (((-218) $) 24) (((-371) $) 21)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 36 T CONST)) (-3118 (($) 11 T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-468) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))) (-991) (-592 (-218)) (-592 (-371)) (-593 (-399 (-1131 (-548)))) (-593 (-524)) (-10 -8 (-15 -1365 ($))))) (T -468)) -((-1365 (*1 *1) (-5 *1 (-468)))) -(-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))) (-991) (-592 (-218)) (-592 (-371)) (-593 (-399 (-1131 (-548)))) (-593 (-524)) (-10 -8 (-15 -1365 ($)))) -((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-469) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -469)) -((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469))))) -(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) 16)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 20)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 18)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) 13)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 19)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 11 (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) 15 (|has| $ (-6 -4327))))) -(((-470 |#1| |#2| |#3|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063) (-1118)) (T -470)) -NIL -(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) -((-3429 (((-548) (-548) (-548)) 7)) (-3437 (((-112) (-548) (-548) (-548) (-548)) 11)) (-1350 (((-1218 (-619 (-548))) (-745) (-745)) 23))) -(((-471) (-10 -7 (-15 -3429 ((-548) (-548) (-548))) (-15 -3437 ((-112) (-548) (-548) (-548) (-548))) (-15 -1350 ((-1218 (-619 (-548))) (-745) (-745))))) (T -471)) -((-1350 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1218 (-619 (-548)))) (-5 *1 (-471)))) (-3437 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-471)))) (-3429 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-471))))) -(-10 -7 (-15 -3429 ((-548) (-548) (-548))) (-15 -3437 ((-112) (-548) (-548) (-548) (-548))) (-15 -1350 ((-1218 (-619 (-548))) (-745) (-745)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-834 |#1|)) $) NIL)) (-1884 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3447 (($ $ (-619 (-548))) NIL)) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-473 (-3643 |#1|) (-745)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-473 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 (((-473 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-473 (-3643 |#1|) (-745)) (-473 (-3643 |#1|) (-745))) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 (((-473 (-3643 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-473 (-3643 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-472 |#1| |#2|) (-13 (-918 |#2| (-473 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) (-619 (-1135)) (-1016)) (T -472)) -((-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-472 *3 *4)) (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) -(-13 (-918 |#2| (-473 (-3643 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -3447 ($ $ (-619 (-548)))))) -((-3730 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-3324 (((-112) $) NIL (|has| |#2| (-130)))) (-2264 (($ (-890)) NIL (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#2| (-360)))) (-2672 (((-548) $) NIL (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-2545 (($) NIL (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) 11)) (-3298 (((-112) $) NIL (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#2| (-701)))) (-3312 (((-112) $) NIL (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#2| (-360)))) (-3932 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3453 ((|#2| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) NIL)) (-4029 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) NIL)) (-3402 (((-133)) NIL (|has| |#2| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#2|) $) NIL) (($ (-548)) NIL (-1524 (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#2| (-819)))) (-3107 (($) NIL (|has| |#2| (-130)) CONST)) (-3118 (($) NIL (|has| |#2| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2214 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2234 (((-112) $ $) 15 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2290 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-548) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-473 |#1| |#2|) (-231 |#1| |#2|) (-745) (-767)) (T -473)) -NIL -(-231 |#1| |#2|) -((-3730 (((-112) $ $) NIL)) (-3302 (((-619 (-496)) $) 11)) (-2275 (((-496) $) 10)) (-2546 (((-1118) $) NIL)) (-3458 (($ (-496) (-619 (-496))) 9)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-474) (-13 (-1047) (-10 -8 (-15 -3458 ($ (-496) (-619 (-496)))) (-15 -2275 ((-496) $)) (-15 -3302 ((-619 (-496)) $))))) (T -474)) -((-3458 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-496))) (-5 *2 (-496)) (-5 *1 (-474)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-474)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-474))))) -(-13 (-1047) (-10 -8 (-15 -3458 ($ (-496) (-619 (-496)))) (-15 -2275 ((-496) $)) (-15 -3302 ((-619 (-496)) $)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2965 (($ $ $) 32)) (-2913 (($ $ $) 31)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3091 ((|#1| $) 26)) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 27)) (-2539 (($ |#1| $) 10)) (-3470 (($ (-619 |#1|)) 12)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1357 ((|#1| $) 23)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 9)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 29)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) 21 (|has| $ (-6 -4327))))) -(((-475 |#1|) (-13 (-937 |#1|) (-10 -8 (-15 -3470 ($ (-619 |#1|))))) (-821)) (T -475)) -((-3470 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-475 *3))))) -(-13 (-937 |#1|) (-10 -8 (-15 -3470 ($ (-619 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ $) 69)) (-1447 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3778 (((-405 |#2| (-399 |#2|) |#3| |#4|) $) 44)) (-3932 (((-1082) $) NIL)) (-4160 (((-3 |#4| "failed") $) 107)) (-1457 (($ (-405 |#2| (-399 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-548)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3642 (((-2 (|:| -3514 (-405 |#2| (-399 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3743 (((-832) $) 102)) (-3107 (($) 33 T CONST)) (-2214 (((-112) $ $) 109)) (-2299 (($ $) 72) (($ $ $) NIL)) (-2290 (($ $ $) 70)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 73))) -(((-476 |#1| |#2| |#3| |#4|) (-327 |#1| |#2| |#3| |#4|) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -476)) -NIL -(-327 |#1| |#2| |#3| |#4|) -((-3513 (((-548) (-619 (-548))) 30)) (-3480 ((|#1| (-619 |#1|)) 56)) (-3505 (((-619 |#1|) (-619 |#1|)) 57)) (-3492 (((-619 |#1|) (-619 |#1|)) 59)) (-3587 ((|#1| (-619 |#1|)) 58)) (-3881 (((-619 (-548)) (-619 |#1|)) 33))) -(((-477 |#1|) (-10 -7 (-15 -3587 (|#1| (-619 |#1|))) (-15 -3480 (|#1| (-619 |#1|))) (-15 -3492 ((-619 |#1|) (-619 |#1|))) (-15 -3505 ((-619 |#1|) (-619 |#1|))) (-15 -3881 ((-619 (-548)) (-619 |#1|))) (-15 -3513 ((-548) (-619 (-548))))) (-1194 (-548))) (T -477)) -((-3513 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-548)) (-5 *1 (-477 *4)) (-4 *4 (-1194 *2)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1194 (-548))) (-5 *2 (-619 (-548))) (-5 *1 (-477 *4)))) (-3505 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548))))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548)))))) -(-10 -7 (-15 -3587 (|#1| (-619 |#1|))) (-15 -3480 (|#1| (-619 |#1|))) (-15 -3492 ((-619 |#1|) (-619 |#1|))) (-15 -3505 ((-619 |#1|) (-619 |#1|))) (-15 -3881 ((-619 (-548)) (-619 |#1|))) (-15 -3513 ((-548) (-619 (-548))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-548) $) NIL (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3526 (($ (-399 (-548))) 9)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) NIL)) (-3887 (((-548) $) NIL (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 8) (($ (-548)) NIL) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL) (((-973 16) $) 10)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-548) $) NIL (|has| (-548) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2309 (($ $ $) NIL) (($ (-548) (-548)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) NIL) (($ $ (-548)) NIL))) -(((-478) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 16) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3526 ($ (-399 (-548))))))) (T -478)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-478)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478))))) -(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3743 ((-973 16) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -3526 ($ (-399 (-548)))))) -((-2342 (((-619 |#2|) $) 23)) (-2556 (((-112) |#2| $) 28)) (-3537 (((-112) (-1 (-112) |#2|) $) 21)) (-2460 (($ $ (-619 (-286 |#2|))) 13) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3945 (((-745) (-1 (-112) |#2|) $) 22) (((-745) |#2| $) 26)) (-3743 (((-832) $) 37)) (-3548 (((-112) (-1 (-112) |#2|) $) 20)) (-2214 (((-112) $ $) 31)) (-3643 (((-745) $) 17))) -(((-479 |#1| |#2|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -2342 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) (-480 |#2|) (-1172)) (T -479)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#2| |#2|)) (-15 -2460 (|#1| |#1| (-286 |#2|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#2|)))) (-15 -2556 ((-112) |#2| |#1|)) (-15 -3945 ((-745) |#2| |#1|)) (-15 -2342 ((-619 |#2|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-480 |#1|) (-138) (-1172)) (T -480)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-480 *3)) (-4 *3 (-1172)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4328)) (-4 *1 (-480 *3)) (-4 *3 (-1172)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-3537 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-3945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) (-4 *4 (-1172)) (-5 *2 (-745)))) (-1934 (*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-2342 (*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-3945 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-2556 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-1063)) (IF (|has| |t#1| (-301 |t#1|)) (-6 (-301 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4328)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4327)) (PROGN (-15 -3548 ((-112) (-1 (-112) |t#1|) $)) (-15 -3537 ((-112) (-1 (-112) |t#1|) $)) (-15 -3945 ((-745) (-1 (-112) |t#1|) $)) (-15 -1934 ((-619 |t#1|) $)) (-15 -2342 ((-619 |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -3945 ((-745) |t#1| $)) (-15 -2556 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3560 (($ (-1118)) 8)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 14) (((-1118) $) 11)) (-2214 (((-112) $ $) 10))) -(((-481) (-13 (-1063) (-592 (-1118)) (-10 -8 (-15 -3560 ($ (-1118)))))) (T -481)) -((-3560 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-481))))) -(-13 (-1063) (-592 (-1118)) (-10 -8 (-15 -3560 ($ (-1118))))) -((-2074 (($ $) 15)) (-2054 (($ $) 24)) (-2098 (($ $) 12)) (-2110 (($ $) 10)) (-2086 (($ $) 17)) (-2065 (($ $) 22))) -(((-482 |#1|) (-10 -8 (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|))) (-483)) (T -482)) -NIL -(-10 -8 (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|))) -((-2074 (($ $) 11)) (-2054 (($ $) 10)) (-2098 (($ $) 9)) (-2110 (($ $) 8)) (-2086 (($ $) 7)) (-2065 (($ $) 6))) -(((-483) (-138)) (T -483)) -((-2074 (*1 *1 *1) (-4 *1 (-483))) (-2054 (*1 *1 *1) (-4 *1 (-483))) (-2098 (*1 *1 *1) (-4 *1 (-483))) (-2110 (*1 *1 *1) (-4 *1 (-483))) (-2086 (*1 *1 *1) (-4 *1 (-483))) (-2065 (*1 *1 *1) (-4 *1 (-483)))) -(-13 (-10 -8 (-15 -2065 ($ $)) (-15 -2086 ($ $)) (-15 -2110 ($ $)) (-15 -2098 ($ $)) (-15 -2054 ($ $)) (-15 -2074 ($ $)))) -((-1915 (((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)) 42))) -(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)))) (-355) (-1194 |#1|) (-13 (-355) (-145) (-699 |#1| |#2|)) (-1194 |#3|)) (T -484)) -((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-4 *7 (-13 (-355) (-145) (-699 *5 *6))) (-5 *2 (-410 *3)) (-5 *1 (-484 *5 *6 *7 *3)) (-4 *3 (-1194 *7))))) -(-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 |#2|) |#2|)))) -((-3730 (((-112) $ $) NIL)) (-1786 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1262 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-3324 (((-112) $) 39)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3571 (((-112) $ $) 64)) (-1806 (((-619 (-591 $)) $) 48)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3854 (($ $ (-286 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1274 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-3263 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-2441 (((-3 (-591 $) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL)) (-2375 (((-591 $) $) NIL) (((-548) $) NIL) (((-399 (-548)) $) 50)) (-1945 (($ $ $) NIL)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-399 (-548)))) (|:| |vec| (-1218 (-399 (-548))))) (-663 $) (-1218 $)) NIL) (((-663 (-399 (-548))) (-663 $)) NIL)) (-2061 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2142 (($ $) NIL) (($ (-619 $)) NIL)) (-1744 (((-619 (-114)) $) NIL)) (-1402 (((-114) (-114)) NIL)) (-2266 (((-112) $) 42)) (-3705 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2470 (((-1087 (-548) (-591 $)) $) 37)) (-2154 (($ $ (-548)) NIL)) (-3910 (((-1131 $) (-1131 $) (-591 $)) 78) (((-1131 $) (-1131 $) (-619 (-591 $))) 55) (($ $ (-591 $)) 67) (($ $ (-619 (-591 $))) 68)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1724 (((-1131 $) (-591 $)) 65 (|has| $ (-1016)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 $ $) (-591 $)) NIL)) (-1753 (((-3 (-591 $) "failed") $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1870 (((-619 (-591 $)) $) NIL)) (-1409 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1518 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-2153 (($ $) NIL)) (-3926 (((-745) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1734 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL (|has| $ (-1007 (-548))))) (-2460 (($ $ (-591 $) $) NIL) (($ $ (-619 (-591 $)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4077 (((-745) $) NIL)) (-3171 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1762 (($ $) NIL) (($ $ $) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) 36)) (-2480 (((-1087 (-548) (-591 $)) $) 20)) (-3287 (($ $) NIL (|has| $ (-1016)))) (-2591 (((-371) $) 92) (((-218) $) 100) (((-166 (-371)) $) 108)) (-3743 (((-832) $) NIL) (($ (-591 $)) NIL) (($ (-399 (-548))) NIL) (($ $) NIL) (($ (-548)) NIL) (($ (-1087 (-548) (-591 $))) 21)) (-3835 (((-745)) NIL)) (-3528 (($ $) NIL) (($ (-619 $)) NIL)) (-1392 (((-112) (-114)) 84)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 10 T CONST)) (-3118 (($) 22 T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 24)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2309 (($ $ $) 44)) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-399 (-548))) NIL) (($ $ (-548)) 46) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ $ $) 27) (($ (-548) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) -(((-485) (-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3571 ((-112) $ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $))))))) (T -485)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) (-2061 (*1 *1 *1) (-5 *1 (-485))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-485)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-591 (-485))) (-5 *1 (-485)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-619 (-591 (-485)))) (-5 *1 (-485)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-591 (-485))) (-5 *1 (-485)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-485)))) (-5 *1 (-485))))) -(-13 (-294) (-27) (-1007 (-548)) (-1007 (-399 (-548))) (-615 (-548)) (-991) (-615 (-399 (-548))) (-145) (-593 (-166 (-371))) (-226) (-10 -8 (-15 -3743 ($ (-1087 (-548) (-591 $)))) (-15 -2470 ((-1087 (-548) (-591 $)) $)) (-15 -2480 ((-1087 (-548) (-591 $)) $)) (-15 -2061 ($ $)) (-15 -3571 ((-112) $ $)) (-15 -3910 ((-1131 $) (-1131 $) (-591 $))) (-15 -3910 ((-1131 $) (-1131 $) (-619 (-591 $)))) (-15 -3910 ($ $ (-591 $))) (-15 -3910 ($ $ (-619 (-591 $)))))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 25 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 22 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 21)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 14)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 12 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) 23 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) 10 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 13)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 24) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 9 (|has| $ (-6 -4327))))) -(((-486 |#1| |#2|) (-19 |#1|) (-1172) (-548)) (T -486)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL)) (-2643 (((-547) $) NIL) (((-398 (-547)) $) NIL)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-1413 (($) 18)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2829 (((-370) $) 22) (((-217) $) 25) (((-398 (-1131 (-547))) $) 19) (((-523) $) 52)) (-3834 (((-832) $) 50) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (((-217) $) 24) (((-370) $) 21)) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 36 T CONST)) (-3277 (($) 11 T CONST)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-467) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))) (-991) (-591 (-217)) (-591 (-370)) (-592 (-398 (-1131 (-547)))) (-592 (-523)) (-10 -8 (-15 -1413 ($))))) (T -467)) +((-1413 (*1 *1) (-5 *1 (-467)))) +(-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))) (-991) (-591 (-217)) (-591 (-370)) (-592 (-398 (-1131 (-547)))) (-592 (-523)) (-10 -8 (-15 -1413 ($)))) +((-3821 (((-112) $ $) NIL)) (-2186 (((-1140) $) 11)) (-2174 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-468) (-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $))))) (T -468)) +((-2174 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-468)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-468))))) +(-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $)))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#2| $ |#1| |#2|) 16)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) 20)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) 18)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3437 (((-619 |#1|) $) 13)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1520 (((-619 |#1|) $) NIL)) (-1641 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 19)) (-3329 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 11 (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3763 (((-745) $) 15 (|has| $ (-6 -4328))))) +(((-469 |#1| |#2| |#3|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) (-1063) (-1063) (-1118)) (T -469)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) +((-3744 (((-547) (-547) (-547)) 7)) (-2711 (((-112) (-547) (-547) (-547) (-547)) 11)) (-1399 (((-1218 (-619 (-547))) (-745) (-745)) 23))) +(((-470) (-10 -7 (-15 -3744 ((-547) (-547) (-547))) (-15 -2711 ((-112) (-547) (-547) (-547) (-547))) (-15 -1399 ((-1218 (-619 (-547))) (-745) (-745))))) (T -470)) +((-1399 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1218 (-619 (-547)))) (-5 *1 (-470)))) (-2711 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-470)))) (-3744 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-470))))) +(-10 -7 (-15 -3744 ((-547) (-547) (-547))) (-15 -2711 ((-112) (-547) (-547) (-547) (-547))) (-15 -1399 ((-1218 (-619 (-547))) (-745) (-745)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-834 |#1|)) $) NIL)) (-2067 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3881 (($ $) NIL (|has| |#2| (-539)))) (-1832 (((-112) $) NIL (|has| |#2| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2745 (($ $) NIL (|has| |#2| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#2| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-3772 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-2801 (($ $ (-619 (-547))) NIL)) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#2| (-878)))) (-3913 (($ $ |#2| (-472 (-3763 |#1|) (-745)) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#2| (-472 (-3763 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-834 |#1|)) NIL)) (-1626 (((-472 (-3763 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2847 (($ $ $) NIL (|has| |#2| (-821)))) (-3563 (($ $ $) NIL (|has| |#2| (-821)))) (-4019 (($ (-1 (-472 (-3763 |#1|) (-745)) (-472 (-3763 |#1|) (-745))) $) NIL)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2185 (((-3 (-834 |#1|) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#2| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -4248 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#2| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-3846 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3443 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1618 (((-472 (-3763 |#1|) (-745)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-1378 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-472 (-3763 |#1|) (-745))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-471 |#1| |#2|) (-13 (-918 |#2| (-472 (-3763 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -2801 ($ $ (-619 (-547)))))) (-619 (-1135)) (-1016)) (T -471)) +((-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-471 *3 *4)) (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) +(-13 (-918 |#2| (-472 (-3763 |#1|) (-745)) (-834 |#1|)) (-10 -8 (-15 -2801 ($ $ (-619 (-547)))))) +((-3821 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-4046 (((-112) $) NIL (|has| |#2| (-130)))) (-4095 (($ (-890)) NIL (|has| |#2| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1991 (($ $ $) NIL (|has| |#2| (-767)))) (-3013 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| |#2| (-359)))) (-3807 (((-547) $) NIL (|has| |#2| (-819)))) (-2238 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2643 (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-4238 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-2537 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-3229 (($) NIL (|has| |#2| (-359)))) (-1861 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ (-547)) 11)) (-3848 (((-112) $) NIL (|has| |#2| (-819)))) (-2973 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL (|has| |#2| (-701)))) (-3937 (((-112) $) NIL (|has| |#2| (-819)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3666 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-1850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#2| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#2| (-1063)))) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3479 (($ (-890)) NIL (|has| |#2| (-359)))) (-3979 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3634 ((|#2| $) NIL (|has| (-547) (-821)))) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) NIL)) (-3453 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-2155 (($ (-1218 |#2|)) NIL)) (-3512 (((-133)) NIL (|has| |#2| (-354)))) (-3443 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3987 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1218 |#2|) $) NIL) (($ (-547)) NIL (-1524 (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-591 (-832))))) (-2311 (((-745)) NIL (|has| |#2| (-1016)))) (-2583 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2040 (($ $) NIL (|has| |#2| (-819)))) (-3267 (($) NIL (|has| |#2| (-130)) CONST)) (-3277 (($) NIL (|has| |#2| (-701)) CONST)) (-1686 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2433 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2371 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2421 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2396 (((-112) $ $) 15 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2470 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-547) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-472 |#1| |#2|) (-230 |#1| |#2|) (-745) (-767)) (T -472)) +NIL +(-230 |#1| |#2|) +((-3821 (((-112) $ $) NIL)) (-2888 (((-619 (-495)) $) 11)) (-2464 (((-495) $) 10)) (-1917 (((-1118) $) NIL)) (-2899 (($ (-495) (-619 (-495))) 9)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-473) (-13 (-1047) (-10 -8 (-15 -2899 ($ (-495) (-619 (-495)))) (-15 -2464 ((-495) $)) (-15 -2888 ((-619 (-495)) $))))) (T -473)) +((-2899 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-495))) (-5 *2 (-495)) (-5 *1 (-473)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-473)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-473))))) +(-13 (-1047) (-10 -8 (-15 -2899 ($ (-495) (-619 (-495)))) (-15 -2464 ((-495) $)) (-15 -2888 ((-619 (-495)) $)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) NIL)) (-3219 (($) NIL T CONST)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3756 (($ $ $) 32)) (-1294 (($ $ $) 31)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3563 ((|#1| $) 26)) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1959 ((|#1| $) 27)) (-1885 (($ |#1| $) 10)) (-2991 (($ (-619 |#1|)) 12)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1373 ((|#1| $) 23)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 9)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 29)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) 21 (|has| $ (-6 -4328))))) +(((-474 |#1|) (-13 (-937 |#1|) (-10 -8 (-15 -2991 ($ (-619 |#1|))))) (-821)) (T -474)) +((-2991 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-474 *3))))) +(-13 (-937 |#1|) (-10 -8 (-15 -2991 ($ (-619 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2542 (($ $) 69)) (-2047 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-2989 (((-404 |#2| (-398 |#2|) |#3| |#4|) $) 44)) (-3979 (((-1082) $) NIL)) (-4240 (((-3 |#4| "failed") $) 107)) (-2177 (($ (-404 |#2| (-398 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-547)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4030 (((-2 (|:| -3702 (-404 |#2| (-398 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-3834 (((-832) $) 102)) (-3267 (($) 33 T CONST)) (-2371 (((-112) $ $) 109)) (-2484 (($ $) 72) (($ $ $) NIL)) (-2470 (($ $ $) 70)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 73))) +(((-475 |#1| |#2| |#3| |#4|) (-326 |#1| |#2| |#3| |#4|) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -475)) +NIL +(-326 |#1| |#2| |#3| |#4|) +((-2208 (((-547) (-619 (-547))) 30)) (-3075 ((|#1| (-619 |#1|)) 56)) (-2110 (((-619 |#1|) (-619 |#1|)) 57)) (-3179 (((-619 |#1|) (-619 |#1|)) 59)) (-3715 ((|#1| (-619 |#1|)) 58)) (-1378 (((-619 (-547)) (-619 |#1|)) 33))) +(((-476 |#1|) (-10 -7 (-15 -3715 (|#1| (-619 |#1|))) (-15 -3075 (|#1| (-619 |#1|))) (-15 -3179 ((-619 |#1|) (-619 |#1|))) (-15 -2110 ((-619 |#1|) (-619 |#1|))) (-15 -1378 ((-619 (-547)) (-619 |#1|))) (-15 -2208 ((-547) (-619 (-547))))) (-1194 (-547))) (T -476)) +((-2208 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-547)) (-5 *1 (-476 *4)) (-4 *4 (-1194 *2)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1194 (-547))) (-5 *2 (-619 (-547))) (-5 *1 (-476 *4)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-547))) (-5 *1 (-476 *3)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-547))) (-5 *1 (-476 *3)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1194 (-547))))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1194 (-547)))))) +(-10 -7 (-15 -3715 (|#1| (-619 |#1|))) (-15 -3075 (|#1| (-619 |#1|))) (-15 -3179 ((-619 |#1|) (-619 |#1|))) (-15 -2110 ((-619 |#1|) (-619 |#1|))) (-15 -1378 ((-619 (-547)) (-619 |#1|))) (-15 -2208 ((-547) (-619 (-547))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-547) $) NIL (|has| (-547) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-547) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-547) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-547) (-1007 (-547))))) (-2643 (((-547) $) NIL) (((-1135) $) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-547) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| (-547) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-547) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| (-547) (-1111)))) (-3937 (((-112) $) NIL (|has| (-547) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-547) (-821)))) (-2781 (($ (-1 (-547) (-547)) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-547) (-1111)) CONST)) (-2340 (($ (-398 (-547))) 9)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) NIL)) (-1435 (((-547) $) NIL (|has| (-547) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1135)) (-619 (-547))) NIL (|has| (-547) (-503 (-1135) (-547)))) (($ $ (-1135) (-547)) NIL (|has| (-547) (-503 (-1135) (-547))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-547) $) NIL)) (-2829 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 8) (($ (-547)) NIL) (($ (-1135)) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL) (((-973 16) $) 10)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2311 (((-745)) NIL)) (-1564 (((-547) $) NIL (|has| (-547) (-532)))) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL (|has| (-547) (-794)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2497 (($ $ $) NIL) (($ (-547) (-547)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) NIL) (($ $ (-547)) NIL))) +(((-477) (-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -3834 ((-973 16) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -2340 ($ (-398 (-547))))))) (T -477)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-477)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477))))) +(-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -3834 ((-973 16) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -2340 ($ (-398 (-547)))))) +((-3666 (((-619 |#2|) $) 23)) (-3860 (((-112) |#2| $) 28)) (-2462 (((-112) (-1 (-112) |#2|) $) 21)) (-2670 (($ $ (-619 (-285 |#2|))) 13) (($ $ (-285 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-619 |#2|) (-619 |#2|)) NIL)) (-3987 (((-745) (-1 (-112) |#2|) $) 22) (((-745) |#2| $) 26)) (-3834 (((-832) $) 37)) (-2583 (((-112) (-1 (-112) |#2|) $) 20)) (-2371 (((-112) $ $) 31)) (-3763 (((-745) $) 17))) +(((-478 |#1| |#2|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#2| |#2|)) (-15 -2670 (|#1| |#1| (-285 |#2|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -3860 ((-112) |#2| |#1|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3666 ((-619 |#2|) |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3763 ((-745) |#1|))) (-479 |#2|) (-1172)) (T -478)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#2| |#2|)) (-15 -2670 (|#1| |#1| (-285 |#2|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#2|)))) (-15 -3860 ((-112) |#2| |#1|)) (-15 -3987 ((-745) |#2| |#1|)) (-15 -3666 ((-619 |#2|) |#1|)) (-15 -3987 ((-745) (-1 (-112) |#2|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3763 ((-745) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-479 |#1|) (-138) (-1172)) (T -479)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3)) (-4 *3 (-1172)))) (-1850 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1172)))) (-2583 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4328)) (-4 *1 (-479 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-2462 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4328)) (-4 *1 (-479 *4)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-3987 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4328)) (-4 *1 (-479 *4)) (-4 *4 (-1172)) (-5 *2 (-745)))) (-2973 (*1 *2 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-3666 (*1 *2 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-3987 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-745)))) (-3860 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) (IF (|has| |t#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |t#1| (-1063)) (IF (|has| |t#1| (-300 |t#1|)) (-6 (-300 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2781 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4329)) (-15 -1850 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -2583 ((-112) (-1 (-112) |t#1|) $)) (-15 -2462 ((-112) (-1 (-112) |t#1|) $)) (-15 -3987 ((-745) (-1 (-112) |t#1|) $)) (-15 -2973 ((-619 |t#1|) $)) (-15 -3666 ((-619 |t#1|) $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -3987 ((-745) |t#1| $)) (-15 -3860 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-1344 (($ (-1118)) 8)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 14) (((-1118) $) 11)) (-2371 (((-112) $ $) 10))) +(((-480) (-13 (-1063) (-591 (-1118)) (-10 -8 (-15 -1344 ($ (-1118)))))) (T -480)) +((-1344 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-480))))) +(-13 (-1063) (-591 (-1118)) (-10 -8 (-15 -1344 ($ (-1118))))) +((-1648 (($ $) 15)) (-1624 (($ $) 24)) (-1670 (($ $) 12)) (-1681 (($ $) 10)) (-1659 (($ $) 17)) (-1635 (($ $) 22))) +(((-481 |#1|) (-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|))) (-482)) (T -481)) +NIL +(-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|))) +((-1648 (($ $) 11)) (-1624 (($ $) 10)) (-1670 (($ $) 9)) (-1681 (($ $) 8)) (-1659 (($ $) 7)) (-1635 (($ $) 6))) +(((-482) (-138)) (T -482)) +((-1648 (*1 *1 *1) (-4 *1 (-482))) (-1624 (*1 *1 *1) (-4 *1 (-482))) (-1670 (*1 *1 *1) (-4 *1 (-482))) (-1681 (*1 *1 *1) (-4 *1 (-482))) (-1659 (*1 *1 *1) (-4 *1 (-482))) (-1635 (*1 *1 *1) (-4 *1 (-482)))) +(-13 (-10 -8 (-15 -1635 ($ $)) (-15 -1659 ($ $)) (-15 -1681 ($ $)) (-15 -1670 ($ $)) (-15 -1624 ($ $)) (-15 -1648 ($ $)))) +((-2106 (((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)) 42))) +(((-483 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)))) (-354) (-1194 |#1|) (-13 (-354) (-145) (-699 |#1| |#2|)) (-1194 |#3|)) (T -483)) +((-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-4 *7 (-13 (-354) (-145) (-699 *5 *6))) (-5 *2 (-409 *3)) (-5 *1 (-483 *5 *6 *7 *3)) (-4 *3 (-1194 *7))))) +(-10 -7 (-15 -2106 ((-409 |#4|) |#4| (-1 (-409 |#2|) |#2|)))) +((-3821 (((-112) $ $) NIL)) (-2514 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-3233 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-4046 (((-112) $) 39)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1450 (((-112) $ $) 64)) (-1965 (((-619 (-590 $)) $) 48)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2999 (($ $ (-285 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2118 (($ $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-1607 (((-619 $) (-1131 $) (-1135)) NIL) (((-619 $) (-1131 $)) NIL) (((-619 $) (-921 $)) NIL)) (-1658 (($ (-1131 $) (-1135)) NIL) (($ (-1131 $)) NIL) (($ (-921 $)) NIL)) (-2698 (((-3 (-590 $) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL)) (-2643 (((-590 $) $) NIL) (((-547) $) NIL) (((-398 (-547)) $) 50)) (-2079 (($ $ $) NIL)) (-4238 (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-398 (-547)))) (|:| |vec| (-1218 (-398 (-547))))) (-663 $) (-1218 $)) NIL) (((-663 (-398 (-547))) (-663 $)) NIL)) (-2542 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2566 (($ $) NIL) (($ (-619 $)) NIL)) (-2004 (((-619 (-114)) $) NIL)) (-3454 (((-114) (-114)) NIL)) (-4114 (((-112) $) 42)) (-3466 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-1382 (((-1087 (-547) (-590 $)) $) 37)) (-1311 (($ $ (-547)) NIL)) (-1684 (((-1131 $) (-1131 $) (-590 $)) 78) (((-1131 $) (-1131 $) (-619 (-590 $))) 55) (($ $ (-590 $)) 67) (($ $ (-619 (-590 $))) 68)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3057 (((-1131 $) (-590 $)) 65 (|has| $ (-1016)))) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 $ $) (-590 $)) NIL)) (-2108 (((-3 (-590 $) "failed") $) NIL)) (-3685 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-2043 (((-619 (-590 $)) $) NIL)) (-1465 (($ (-114) $) NIL) (($ (-114) (-619 $)) NIL)) (-1469 (((-112) $ (-114)) NIL) (((-112) $ (-1135)) NIL)) (-1976 (($ $) NIL)) (-4029 (((-745) $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ (-619 $)) NIL) (($ $ $) NIL)) (-3128 (((-112) $ $) NIL) (((-112) $ (-1135)) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3590 (((-112) $) NIL (|has| $ (-1007 (-547))))) (-2670 (($ $ (-590 $) $) NIL) (($ $ (-619 (-590 $)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-1135)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-1135) (-1 $ (-619 $))) NIL) (($ $ (-1135) (-1 $ $)) NIL) (($ $ (-619 (-114)) (-619 (-1 $ $))) NIL) (($ $ (-619 (-114)) (-619 (-1 $ (-619 $)))) NIL) (($ $ (-114) (-1 $ (-619 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2776 (((-745) $) NIL)) (-3329 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-619 $)) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2207 (($ $) NIL) (($ $ $) NIL)) (-3443 (($ $ (-745)) NIL) (($ $) 36)) (-1392 (((-1087 (-547) (-590 $)) $) 20)) (-1901 (($ $) NIL (|has| $ (-1016)))) (-2829 (((-370) $) 92) (((-217) $) 100) (((-166 (-370)) $) 108)) (-3834 (((-832) $) NIL) (($ (-590 $)) NIL) (($ (-398 (-547))) NIL) (($ $) NIL) (($ (-547)) NIL) (($ (-1087 (-547) (-590 $))) 21)) (-2311 (((-745)) NIL)) (-3518 (($ $) NIL) (($ (-619 $)) NIL)) (-3358 (((-112) (-114)) 84)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 10 T CONST)) (-3277 (($) 22 T CONST)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 24)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2497 (($ $ $) 44)) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-398 (-547))) NIL) (($ $ (-547)) 46) (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ $ $) 27) (($ (-547) $) NIL) (($ (-745) $) NIL) (($ (-890) $) NIL))) +(((-484) (-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3834 ($ (-1087 (-547) (-590 $)))) (-15 -1382 ((-1087 (-547) (-590 $)) $)) (-15 -1392 ((-1087 (-547) (-590 $)) $)) (-15 -2542 ($ $)) (-15 -1450 ((-112) $ $)) (-15 -1684 ((-1131 $) (-1131 $) (-590 $))) (-15 -1684 ((-1131 $) (-1131 $) (-619 (-590 $)))) (-15 -1684 ($ $ (-590 $))) (-15 -1684 ($ $ (-619 (-590 $))))))) (T -484)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) (-2542 (*1 *1 *1) (-5 *1 (-484))) (-1450 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-484)))) (-1684 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-484))) (-5 *3 (-590 (-484))) (-5 *1 (-484)))) (-1684 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 (-484))) (-5 *3 (-619 (-590 (-484)))) (-5 *1 (-484)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-590 (-484))) (-5 *1 (-484)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-484)))) (-5 *1 (-484))))) +(-13 (-293) (-27) (-1007 (-547)) (-1007 (-398 (-547))) (-615 (-547)) (-991) (-615 (-398 (-547))) (-145) (-592 (-166 (-370))) (-225) (-10 -8 (-15 -3834 ($ (-1087 (-547) (-590 $)))) (-15 -1382 ((-1087 (-547) (-590 $)) $)) (-15 -1392 ((-1087 (-547) (-590 $)) $)) (-15 -2542 ($ $)) (-15 -1450 ((-112) $ $)) (-15 -1684 ((-1131 $) (-1131 $) (-590 $))) (-15 -1684 ((-1131 $) (-1131 $) (-619 (-590 $)))) (-15 -1684 ($ $ (-590 $))) (-15 -1684 ($ $ (-619 (-590 $)))))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) |#1|) 25 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 22 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 21)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 14)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 12 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) 23 (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) 10 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 13)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 24) (($ $ (-1185 (-547))) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) 9 (|has| $ (-6 -4328))))) +(((-485 |#1| |#2|) (-19 |#1|) (-1172) (-547)) (T -485)) NIL (-19 |#1|) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL)) (-4141 (($ $ (-548) (-486 |#1| |#3|)) NIL)) (-4131 (($ $ (-548) (-486 |#1| |#2|)) NIL)) (-3030 (($) NIL T CONST)) (-3717 (((-486 |#1| |#3|) $ (-548)) NIL)) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-486 |#1| |#2|) $ (-548)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-487 |#1| |#2| |#3|) (-56 |#1| (-486 |#1| |#3|) (-486 |#1| |#2|)) (-1172) (-548) (-548)) (T -487)) -NIL -(-56 |#1| (-486 |#1| |#3|) (-486 |#1| |#2|)) -((-3594 (((-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745)) 27)) (-3582 (((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745)) 34)) (-2318 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)) 85))) -(((-488 |#1| |#2| |#3|) (-10 -7 (-15 -3582 ((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745))) (-15 -3594 ((-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -2318 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) (-341) (-1194 |#1|) (-1194 |#2|)) (T -488)) -((-2318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7))))) (-5 *5 (-745)) (-4 *8 (-1194 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7)))) (-5 *1 (-488 *6 *7 *8)))) (-3594 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-4 *5 (-341)) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6))))) (-5 *1 (-488 *5 *6 *7)) (-5 *3 (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6)))) (-4 *7 (-1194 *6)))) (-3582 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-745)) (-4 *3 (-341)) (-4 *5 (-1194 *3)) (-5 *2 (-619 (-1131 *3))) (-5 *1 (-488 *3 *5 *6)) (-4 *6 (-1194 *5))))) -(-10 -7 (-15 -3582 ((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745))) (-15 -3594 ((-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -2318 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) -((-3661 (((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 62)) (-3606 ((|#1| (-663 |#1|) |#1| (-745)) 25)) (-3627 (((-745) (-745) (-745)) 30)) (-3650 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 42)) (-3638 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 50) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 47)) (-3616 ((|#1| (-663 |#1|) (-663 |#1|) |#1| (-548)) 29)) (-2077 ((|#1| (-663 |#1|)) 18))) -(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2077 (|#1| (-663 |#1|))) (-15 -3606 (|#1| (-663 |#1|) |#1| (-745))) (-15 -3616 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-548))) (-15 -3627 ((-745) (-745) (-745))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -3650 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3661 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $)))) (-1194 |#1|) (-401 |#1| |#2|)) (T -489)) -((-3661 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3650 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3638 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3638 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3627 (*1 *2 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3616 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-548)) (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5)))) (-3606 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *4 (-1194 *2)) (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) (-5 *1 (-489 *2 *4 *5)) (-4 *5 (-401 *2 *4))))) -(-10 -7 (-15 -2077 (|#1| (-663 |#1|))) (-15 -3606 (|#1| (-663 |#1|) |#1| (-745))) (-15 -3616 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-548))) (-15 -3627 ((-745) (-745) (-745))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3638 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -3650 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3661 ((-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -2877 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) -((-3730 (((-112) $ $) NIL)) (-1258 (($ $) NIL)) (-2218 (($ $ $) 35)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-112) $ (-1185 (-548)) (-112)) NIL (|has| $ (-6 -4328))) (((-112) $ (-548) (-112)) 36 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3699 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-2061 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-3971 (((-112) $ (-548) (-112)) NIL (|has| $ (-6 -4328)))) (-3899 (((-112) $ (-548)) NIL)) (-2621 (((-548) (-112) $ (-548)) NIL (|has| (-112) (-1063))) (((-548) (-112) $) NIL (|has| (-112) (-1063))) (((-548) (-1 (-112) (-112)) $) NIL)) (-1934 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-4168 (($ $ $) 33)) (-3958 (($ $) NIL)) (-4078 (($ $ $) NIL)) (-3550 (($ (-745) (-112)) 23)) (-4293 (($ $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 8 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL)) (-2913 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2342 (((-619 (-112)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL)) (-3960 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ (-112) $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-112) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4159 (($ $ (-112)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-286 (-112)))) NIL (-12 (|has| (-112) (-301 (-112))) (|has| (-112) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063))))) (-4223 (((-619 (-112)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 24)) (-3171 (($ $ (-1185 (-548))) NIL) (((-112) $ (-548)) 18) (((-112) $ (-548) (-112)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-3945 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) 25)) (-2591 (((-524) $) NIL (|has| (-112) (-593 (-524))))) (-3754 (($ (-619 (-112))) NIL)) (-1831 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3743 (((-832) $) 22)) (-3548 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4327)))) (-1723 (($ $ $) 31)) (-2818 (($ $ $) NIL)) (-3363 (($ $ $) 39)) (-3381 (($ $) 37)) (-3348 (($ $ $) 38)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 26)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 27)) (-2809 (($ $ $) NIL)) (-3643 (((-745) $) 10 (|has| $ (-6 -4327))))) -(((-490 |#1|) (-13 (-123) (-10 -8 (-15 -3381 ($ $)) (-15 -3363 ($ $ $)) (-15 -3348 ($ $ $)))) (-548)) (T -490)) -((-3381 (*1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) (-3363 (*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) (-3348 (*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548))))) -(-13 (-123) (-10 -8 (-15 -3381 ($ $)) (-15 -3363 ($ $ $)) (-15 -3348 ($ $ $)))) -((-3685 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|)) 35)) (-3674 (((-1131 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1131 |#4|)) 22)) (-3696 (((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|))) 46)) (-3709 (((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-491 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3674 (|#2| (-1 |#1| |#4|) (-1131 |#4|))) (-15 -3674 ((-1131 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3685 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|))) (-15 -3696 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|)))) (-15 -3709 ((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|))) (-1016) (-1194 |#1|) (-1194 |#2|) (-1016)) (T -491)) -((-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *7))) (-5 *1 (-491 *5 *6 *4 *7)) (-4 *4 (-1194 *6)))) (-3696 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-663 (-1131 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-1194 *5)) (-5 *2 (-663 *6)) (-5 *1 (-491 *5 *6 *7 *8)) (-4 *7 (-1194 *6)))) (-3685 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-491 *5 *2 *6 *7)) (-4 *6 (-1194 *2)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *4 (-1194 *5)) (-5 *2 (-1131 *7)) (-5 *1 (-491 *5 *4 *6 *7)) (-4 *6 (-1194 *4)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-491 *5 *2 *6 *7)) (-4 *6 (-1194 *2))))) -(-10 -7 (-15 -3674 (|#2| (-1 |#1| |#4|) (-1131 |#4|))) (-15 -3674 ((-1131 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3685 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|))) (-15 -3696 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|)))) (-15 -3709 ((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3721 (((-1223) $) 19)) (-3171 (((-1118) $ (-1135)) 23)) (-2487 (((-1223) $) 15)) (-3743 (((-832) $) 21) (($ (-1118)) 20)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 9)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 8))) -(((-492) (-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3743 ($ (-1118)))))) (T -492)) -((-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1118)) (-5 *1 (-492)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-492))))) -(-13 (-821) (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) (-15 -3721 ((-1223) $)) (-15 -3743 ($ (-1118))))) -((-1396 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1374 ((|#1| |#4|) 10)) (-1386 ((|#3| |#4|) 17))) -(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1374 (|#1| |#4|)) (-15 -1386 (|#3| |#4|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-540) (-961 |#1|) (-365 |#1|) (-365 |#2|)) (T -493)) -((-1396 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-493 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) (-1386 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-4 *2 (-365 *4)) (-5 *1 (-493 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-493 *2 *4 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-365 *4))))) -(-10 -7 (-15 -1374 (|#1| |#4|)) (-15 -1386 (|#3| |#4|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3730 (((-112) $ $) NIL)) (-3841 (((-112) $ (-619 |#3|)) 105) (((-112) $) 106)) (-3324 (((-112) $) 149)) (-3747 (($ $ |#4|) 97) (($ $ |#4| (-619 |#3|)) 101)) (-3735 (((-1125 (-619 (-921 |#1|)) (-619 (-286 (-921 |#1|)))) (-619 |#4|)) 142 (|has| |#3| (-593 (-1135))))) (-3826 (($ $ $) 91) (($ $ |#4|) 89)) (-2266 (((-112) $) 148)) (-3790 (($ $) 109)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 83) (($ (-619 $)) 85)) (-3855 (((-112) |#4| $) 108)) (-3866 (((-112) $ $) 72)) (-3778 (($ (-619 |#4|)) 90)) (-3932 (((-1082) $) NIL)) (-3768 (($ (-619 |#4|)) 146)) (-3758 (((-112) $) 147)) (-1359 (($ $) 74)) (-3935 (((-619 |#4|) $) 63)) (-3813 (((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|)) NIL)) (-3880 (((-112) |#4| $) 77)) (-3402 (((-548) $ (-619 |#3|)) 110) (((-548) $) 111)) (-3743 (((-832) $) 145) (($ (-619 |#4|)) 86)) (-3801 (($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $))) NIL)) (-2214 (((-112) $ $) 73)) (-2290 (($ $ $) 93)) (** (($ $ (-745)) 96)) (* (($ $ $) 95))) -(((-494 |#1| |#2| |#3| |#4|) (-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2290 ($ $ $)) (-15 -2266 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -3880 ((-112) |#4| $)) (-15 -3866 ((-112) $ $)) (-15 -3855 ((-112) |#4| $)) (-15 -3841 ((-112) $ (-619 |#3|))) (-15 -3841 ((-112) $)) (-15 -2520 ($ $ $)) (-15 -2520 ($ (-619 $))) (-15 -3826 ($ $ $)) (-15 -3826 ($ $ |#4|)) (-15 -1359 ($ $)) (-15 -3813 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3801 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3402 ((-548) $ (-619 |#3|))) (-15 -3402 ((-548) $)) (-15 -3790 ($ $)) (-15 -3778 ($ (-619 |#4|))) (-15 -3768 ($ (-619 |#4|))) (-15 -3758 ((-112) $)) (-15 -3935 ((-619 |#4|) $)) (-15 -3743 ($ (-619 |#4|))) (-15 -3747 ($ $ |#4|)) (-15 -3747 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-593 (-1135))) (-15 -3735 ((-1125 (-619 (-921 |#1|)) (-619 (-286 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) (-355) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -494)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2266 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3324 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3880 (*1 *2 *3 *1) (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3866 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3855 (*1 *2 *3 *1) (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3841 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2520 (*1 *1 *2) (-12 (-5 *2 (-619 (-494 *3 *4 *5 *6))) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3826 (*1 *1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3826 (*1 *1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-1359 (*1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *2 (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) (|:| |genIdeal| (-494 *4 *5 *6 *7)))) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) (|:| |genIdeal| (-494 *3 *4 *5 *6)))) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3402 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *2 (-548)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3402 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3790 (*1 *1 *1) (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) (-3758 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3935 (*1 *2 *1) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) (-3747 (*1 *1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-3747 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-593 (-1135))) (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1125 (-619 (-921 *4)) (-619 (-286 (-921 *4))))) (-5 *1 (-494 *4 *5 *6 *7))))) -(-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2290 ($ $ $)) (-15 -2266 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -3880 ((-112) |#4| $)) (-15 -3866 ((-112) $ $)) (-15 -3855 ((-112) |#4| $)) (-15 -3841 ((-112) $ (-619 |#3|))) (-15 -3841 ((-112) $)) (-15 -2520 ($ $ $)) (-15 -2520 ($ (-619 $))) (-15 -3826 ($ $ $)) (-15 -3826 ($ $ |#4|)) (-15 -1359 ($ $)) (-15 -3813 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3801 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3402 ((-548) $ (-619 |#3|))) (-15 -3402 ((-548) $)) (-15 -3790 ($ $)) (-15 -3778 ($ (-619 |#4|))) (-15 -3768 ($ (-619 |#4|))) (-15 -3758 ((-112) $)) (-15 -3935 ((-619 |#4|) $)) (-15 -3743 ($ (-619 |#4|))) (-15 -3747 ($ $ |#4|)) (-15 -3747 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-593 (-1135))) (-15 -3735 ((-1125 (-619 (-921 |#1|)) (-619 (-286 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) -((-3891 (((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 150)) (-3903 (((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 151)) (-3715 (((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 108)) (-1271 (((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) NIL)) (-3914 (((-619 (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) 153)) (-3925 (((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-619 (-834 |#1|))) 165))) -(((-495 |#1| |#2|) (-10 -7 (-15 -3891 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3903 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -1271 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3715 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3914 ((-619 (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3925 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-619 (-834 |#1|))))) (-619 (-1135)) (-745)) (T -495)) -((-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *1 (-495 *4 *5)))) (-3914 (*1 *2 *3) (-12 (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-619 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548)))))) (-5 *1 (-495 *4 *5)) (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-494 (-399 (-548)) (-233 *4 (-745)) (-834 *3) (-240 *3 (-399 (-548))))) (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-495 *3 *4)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) (-240 *4 (-399 (-548))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5))))) -(-10 -7 (-15 -3891 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3903 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -1271 ((-112) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3715 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3914 ((-619 (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548))))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))))) (-15 -3925 ((-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-494 (-399 (-548)) (-233 |#2| (-745)) (-834 |#1|) (-240 |#1| (-399 (-548)))) (-619 (-834 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11) (((-1140) $) NIL) (((-1135) $) 8)) (-2214 (((-112) $ $) NIL))) -(((-496) (-13 (-1047) (-592 (-1135)))) (T -496)) -NIL -(-13 (-1047) (-592 (-1135))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) 12 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) 11) (($ $ $) 24)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 18))) -(((-497 |#1| |#2|) (-13 (-21) (-499 |#1| |#2|)) (-21) (-821)) (T -497)) -NIL -(-13 (-21) (-499 |#1| |#2|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 12)) (-3030 (($) NIL T CONST)) (-1872 (($ $) 28)) (-2024 (($ |#1| |#2|) 25)) (-2540 (($ (-1 |#1| |#1|) $) 27)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) 29)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) 10 T CONST)) (-2214 (((-112) $ $) NIL)) (-2290 (($ $ $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) 23))) -(((-498 |#1| |#2|) (-13 (-23) (-499 |#1| |#2|)) (-23) (-821)) (T -498)) -NIL -(-13 (-23) (-499 |#1| |#2|)) -((-3730 (((-112) $ $) 7)) (-1872 (($ $) 13)) (-2024 (($ |#1| |#2|) 16)) (-2540 (($ (-1 |#1| |#1|) $) 17)) (-3938 ((|#2| $) 14)) (-2197 ((|#1| $) 15)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) -(((-499 |#1| |#2|) (-138) (-1063) (-821)) (T -499)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-821)))) (-2024 (*1 *1 *2 *3) (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-499 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821))))) -(-13 (-1063) (-10 -8 (-15 -2540 ($ (-1 |t#1| |t#1|) $)) (-15 -2024 ($ |t#1| |t#2|)) (-15 -2197 (|t#1| $)) (-15 -3938 (|t#2| $)) (-15 -1872 ($ $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 13)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) -(((-500 |#1| |#2|) (-13 (-766) (-499 |#1| |#2|)) (-766) (-821)) (T -500)) -NIL -(-13 (-766) (-499 |#1| |#2|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2857 (($ $ $) 16)) (-4104 (((-3 $ "failed") $ $) 13)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3938 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) -(((-501 |#1| |#2|) (-13 (-767) (-499 |#1| |#2|)) (-767) (-821)) (T -501)) -NIL -(-13 (-767) (-499 |#1| |#2|)) -((-3730 (((-112) $ $) NIL)) (-1872 (($ $) 25)) (-2024 (($ |#1| |#2|) 22)) (-2540 (($ (-1 |#1| |#1|) $) 24)) (-3938 ((|#2| $) 27)) (-2197 ((|#1| $) 26)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 21)) (-2214 (((-112) $ $) 14))) -(((-502 |#1| |#2|) (-499 |#1| |#2|) (-1063) (-821)) (T -502)) -NIL -(-499 |#1| |#2|) -((-2460 (($ $ (-619 |#2|) (-619 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-503 |#1| |#2| |#3|) (-10 -8 (-15 -2460 (|#1| |#1| |#2| |#3|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) (-504 |#2| |#3|) (-1063) (-1172)) (T -503)) -NIL -(-10 -8 (-15 -2460 (|#1| |#1| |#2| |#3|)) (-15 -2460 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) -((-2460 (($ $ (-619 |#1|) (-619 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-504 |#1| |#2|) (-138) (-1063) (-1172)) (T -504)) -((-2460 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-504 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1172)))) (-2460 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-504 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1172))))) -(-13 (-10 -8 (-15 -2460 ($ $ |t#1| |t#2|)) (-15 -2460 ($ $ (-619 |t#1|) (-619 |t#2|))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 16)) (-1680 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $) 18)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3224 ((|#1| $ (-548)) 23)) (-4232 ((|#2| $ (-548)) 21)) (-1628 (($ (-1 |#1| |#1|) $) 46)) (-4222 (($ (-1 |#2| |#2|) $) 43)) (-2546 (((-1118) $) NIL)) (-4211 (($ $ $) 53 (|has| |#2| (-766)))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 42) (($ |#1|) NIL)) (-1951 ((|#2| |#1| $) 49)) (-3107 (($) 11 T CONST)) (-2214 (((-112) $ $) 29)) (-2290 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) 36) (($ |#2| |#1|) 31))) -(((-505 |#1| |#2| |#3|) (-315 |#1| |#2|) (-1063) (-130) |#2|) (T -505)) -NIL -(-315 |#1| |#2|) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-3952 (((-112) (-112)) 25)) (-2089 ((|#1| $ (-548) |#1|) 28 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) 52)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2969 (($ $) 56 (|has| |#1| (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 44)) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-3967 (($ $ (-548)) 13)) (-3977 (((-745) $) 11)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 23)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 21 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) 20 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2539 (($ $ $ (-548)) 51) (($ |#1| $ (-548)) 37)) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3987 (($ (-619 |#1|)) 29)) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) 19 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 40)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 16)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 33) (($ $ (-1185 (-548))) NIL)) (-2668 (($ $ (-1185 (-548))) 50) (($ $ (-548)) 45)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) 41 (|has| $ (-6 -4328)))) (-2113 (($ $) 32)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3659 (($ $ $) 42) (($ $ |#1|) 39)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 17 (|has| $ (-6 -4327))))) -(((-506 |#1| |#2|) (-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) (-1172) (-548)) (T -506)) -((-3987 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-506 *3 *4)) (-14 *4 (-548)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 (-548)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 *2))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 (-548))))) -(-13 (-19 |#1|) (-274 |#1|) (-10 -8 (-15 -3987 ($ (-619 |#1|))) (-15 -3977 ((-745) $)) (-15 -3967 ($ $ (-548))) (-15 -3952 ((-112) (-112))))) -((-3730 (((-112) $ $) NIL)) (-4009 (((-1140) $) 11)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3998 (((-1140) $) 13)) (-2897 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-507) (-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $)) (-15 -4009 ((-1140) $)) (-15 -3998 ((-1140) $))))) (T -507)) -((-2897 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507))))) -(-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $)) (-15 -4009 ((-1140) $)) (-15 -3998 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (((-562 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-562 |#1|) (-360)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL (|has| (-562 |#1|) (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-562 |#1|) "failed") $) NIL)) (-2375 (((-562 |#1|) $) NIL)) (-2455 (($ (-1218 (-562 |#1|))) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-562 |#1|) (-360)))) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-562 |#1|) (-360)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL (|has| (-562 |#1|) (-360)))) (-3727 (((-112) $) NIL (|has| (-562 |#1|) (-360)))) (-2208 (($ $ (-745)) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360)))) (($ $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-1271 (((-112) $) NIL)) (-1672 (((-890) $) NIL (|has| (-562 |#1|) (-360))) (((-807 (-890)) $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| (-562 |#1|) (-360)))) (-2866 (((-112) $) NIL (|has| (-562 |#1|) (-360)))) (-3910 (((-562 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-562 |#1|) (-360)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 (-562 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-2855 (((-890) $) NIL (|has| (-562 |#1|) (-360)))) (-4288 (((-1131 (-562 |#1|)) $) NIL (|has| (-562 |#1|) (-360)))) (-4278 (((-1131 (-562 |#1|)) $) NIL (|has| (-562 |#1|) (-360))) (((-3 (-1131 (-562 |#1|)) "failed") $ $) NIL (|has| (-562 |#1|) (-360)))) (-4300 (($ $ (-1131 (-562 |#1|))) NIL (|has| (-562 |#1|) (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-562 |#1|) (-360)) CONST)) (-3337 (($ (-890)) NIL (|has| (-562 |#1|) (-360)))) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| (-562 |#1|) (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-562 |#1|) (-360)))) (-1915 (((-410 $) $) NIL)) (-2373 (((-807 (-890))) NIL) (((-890)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-745) $) NIL (|has| (-562 |#1|) (-360))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-3402 (((-133)) NIL)) (-4050 (($ $) NIL (|has| (-562 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-562 |#1|) (-360)))) (-2512 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-3287 (((-1131 (-562 |#1|))) NIL)) (-3655 (($) NIL (|has| (-562 |#1|) (-360)))) (-1255 (($) NIL (|has| (-562 |#1|) (-360)))) (-2447 (((-1218 (-562 |#1|)) $) NIL) (((-663 (-562 |#1|)) (-1218 $)) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-562 |#1|) (-360)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-562 |#1|)) NIL)) (-4017 (($ $) NIL (|has| (-562 |#1|) (-360))) (((-3 $ "failed") $) NIL (-1524 (|has| (-562 |#1|) (-143)) (|has| (-562 |#1|) (-360))))) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $) NIL (|has| (-562 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-562 |#1|) (-360)))) (-3296 (($ $) NIL (|has| (-562 |#1|) (-360))) (($ $ (-745)) NIL (|has| (-562 |#1|) (-360)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL) (($ $ (-562 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-562 |#1|)) NIL) (($ (-562 |#1|) $) NIL))) -(((-508 |#1| |#2|) (-321 (-562 |#1|)) (-890) (-890)) (T -508)) -NIL -(-321 (-562 |#1|)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) 35)) (-4141 (($ $ (-548) |#4|) NIL)) (-4131 (($ $ (-548) |#5|) NIL)) (-3030 (($) NIL T CONST)) (-3717 ((|#4| $ (-548)) NIL)) (-3971 ((|#1| $ (-548) (-548) |#1|) 34)) (-3899 ((|#1| $ (-548) (-548)) 32)) (-1934 (((-619 |#1|) $) NIL)) (-4205 (((-745) $) 28)) (-3550 (($ (-745) (-745) |#1|) 25)) (-4216 (((-745) $) 30)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) 26)) (-3742 (((-548) $) 27)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) 29)) (-3729 (((-548) $) 31)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) 38 (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 16)) (-3171 ((|#1| $ (-548) (-548)) 33) ((|#1| $ (-548) (-548) |#1|) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 ((|#5| $ (-548)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-509 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1172) (-548) (-548) (-365 |#1|) (-365 |#1|)) (T -509)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) (-547) |#1|) NIL)) (-2183 (($ $ (-547) (-485 |#1| |#3|)) NIL)) (-3251 (($ $ (-547) (-485 |#1| |#2|)) NIL)) (-3219 (($) NIL T CONST)) (-3578 (((-485 |#1| |#3|) $ (-547)) NIL)) (-1861 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1793 ((|#1| $ (-547) (-547)) NIL)) (-2973 (((-619 |#1|) $) NIL)) (-2126 (((-745) $) NIL)) (-3732 (($ (-745) (-745) |#1|) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2865 (((-547) $) NIL)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2769 (((-547) $) NIL)) (-3684 (((-547) $) NIL)) (-1850 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3456 (((-485 |#1| |#2|) $ (-547)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-486 |#1| |#2| |#3|) (-56 |#1| (-485 |#1| |#3|) (-485 |#1| |#2|)) (-1172) (-547) (-547)) (T -486)) +NIL +(-56 |#1| (-485 |#1| |#3|) (-485 |#1| |#2|)) +((-1699 (((-619 (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745)) 27)) (-1580 (((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745)) 34)) (-3419 (((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)) 85))) +(((-487 |#1| |#2| |#3|) (-10 -7 (-15 -1580 ((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745))) (-15 -1699 ((-619 (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -3419 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) (-340) (-1194 |#1|) (-1194 |#2|)) (T -487)) +((-3419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-2 (|:| -4013 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7))))) (-5 *5 (-745)) (-4 *8 (-1194 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-340)) (-5 *2 (-2 (|:| -4013 (-663 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-663 *7)))) (-5 *1 (-487 *6 *7 *8)))) (-1699 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-745)) (-4 *5 (-340)) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -4013 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6))))) (-5 *1 (-487 *5 *6 *7)) (-5 *3 (-2 (|:| -4013 (-663 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-663 *6)))) (-4 *7 (-1194 *6)))) (-1580 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-745)) (-4 *3 (-340)) (-4 *5 (-1194 *3)) (-5 *2 (-619 (-1131 *3))) (-5 *1 (-487 *3 *5 *6)) (-4 *6 (-1194 *5))))) +(-10 -7 (-15 -1580 ((-619 (-1131 |#1|)) |#1| (-745) (-745) (-745))) (-15 -1699 ((-619 (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-745) (-745))) (-15 -3419 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) (-619 |#3|) (-619 (-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) (-745)))) +((-4206 (((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))) 62)) (-1813 ((|#1| (-663 |#1|) |#1| (-745)) 25)) (-3885 (((-745) (-745) (-745)) 30)) (-4099 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 42)) (-3993 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 50) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 47)) (-1927 ((|#1| (-663 |#1|) (-663 |#1|) |#1| (-547)) 29)) (-1963 ((|#1| (-663 |#1|)) 18))) +(((-488 |#1| |#2| |#3|) (-10 -7 (-15 -1963 (|#1| (-663 |#1|))) (-15 -1813 (|#1| (-663 |#1|) |#1| (-745))) (-15 -1927 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-547))) (-15 -3885 ((-745) (-745) (-745))) (-15 -3993 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3993 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -4099 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -4206 ((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $)))) (-1194 |#1|) (-400 |#1| |#2|)) (T -488)) +((-4206 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-3993 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-3993 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-3885 (*1 *2 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) (-1927 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-547)) (-4 *2 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *5 (-1194 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5)))) (-1813 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) (-4 *2 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-4 *5 (-1194 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *4 (-1194 *2)) (-4 *2 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) (-5 *1 (-488 *2 *4 *5)) (-4 *5 (-400 *2 *4))))) +(-10 -7 (-15 -1963 (|#1| (-663 |#1|))) (-15 -1813 (|#1| (-663 |#1|) |#1| (-745))) (-15 -1927 (|#1| (-663 |#1|) (-663 |#1|) |#1| (-547))) (-15 -3885 ((-745) (-745) (-745))) (-15 -3993 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3993 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -4099 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -4206 ((-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|))) (-2 (|:| -4013 (-663 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-663 |#1|)))))) +((-3821 (((-112) $ $) NIL)) (-1332 (($ $) NIL)) (-2447 (($ $ $) 35)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) $) NIL (|has| (-112) (-821))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2765 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-112) (-821)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-3180 (($ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2238 (((-112) $ (-1185 (-547)) (-112)) NIL (|has| $ (-6 -4329))) (((-112) $ (-547) (-112)) 36 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-3801 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-2542 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-1861 (((-112) $ (-547) (-112)) NIL (|has| $ (-6 -4329)))) (-1793 (((-112) $ (-547)) NIL)) (-2867 (((-547) (-112) $ (-547)) NIL (|has| (-112) (-1063))) (((-547) (-112) $) NIL (|has| (-112) (-1063))) (((-547) (-1 (-112) (-112)) $) NIL)) (-2973 (((-619 (-112)) $) NIL (|has| $ (-6 -4328)))) (-4197 (($ $ $) 33)) (-3998 (($ $) NIL)) (-2786 (($ $ $) NIL)) (-3732 (($ (-745) (-112)) 23)) (-4265 (($ $ $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 8 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL)) (-1294 (($ $ $) NIL (|has| (-112) (-821))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3666 (((-619 (-112)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL)) (-1850 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-2599 (($ $ $ (-547)) NIL) (($ (-112) $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-112) $) NIL (|has| (-547) (-821)))) (-3461 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2418 (($ $ (-112)) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-112)) (-619 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-285 (-112))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063)))) (($ $ (-619 (-285 (-112)))) NIL (-12 (|has| (-112) (-300 (-112))) (|has| (-112) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063))))) (-1758 (((-619 (-112)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 24)) (-3329 (($ $ (-1185 (-547))) NIL) (((-112) $ (-547)) 18) (((-112) $ (-547) (-112)) NIL)) (-2151 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-3987 (((-745) (-112) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-112) (-1063)))) (((-745) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) 25)) (-2829 (((-523) $) NIL (|has| (-112) (-592 (-523))))) (-3841 (($ (-619 (-112))) NIL)) (-1935 (($ (-619 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3834 (((-832) $) 22)) (-2583 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4328)))) (-1806 (($ $ $) 31)) (-3696 (($ $ $) NIL)) (-3787 (($ $ $) 39)) (-3797 (($ $) 37)) (-3777 (($ $ $) 38)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 26)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 27)) (-3683 (($ $ $) NIL)) (-3763 (((-745) $) 10 (|has| $ (-6 -4328))))) +(((-489 |#1|) (-13 (-123) (-10 -8 (-15 -3797 ($ $)) (-15 -3787 ($ $ $)) (-15 -3777 ($ $ $)))) (-547)) (T -489)) +((-3797 (*1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) (-3787 (*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) (-3777 (*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547))))) +(-13 (-123) (-10 -8 (-15 -3797 ($ $)) (-15 -3787 ($ $ $)) (-15 -3777 ($ $ $)))) +((-3279 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|)) 35)) (-1251 (((-1131 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1131 |#4|)) 22)) (-3395 (((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|))) 46)) (-3506 (((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-490 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1251 (|#2| (-1 |#1| |#4|) (-1131 |#4|))) (-15 -1251 ((-1131 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3279 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|))) (-15 -3395 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|)))) (-15 -3506 ((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|))) (-1016) (-1194 |#1|) (-1194 |#2|) (-1016)) (T -490)) +((-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *7))) (-5 *1 (-490 *5 *6 *4 *7)) (-4 *4 (-1194 *6)))) (-3395 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-663 (-1131 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-1194 *5)) (-5 *2 (-663 *6)) (-5 *1 (-490 *5 *6 *7 *8)) (-4 *7 (-1194 *6)))) (-3279 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-490 *5 *2 *6 *7)) (-4 *6 (-1194 *2)))) (-1251 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *4 (-1194 *5)) (-5 *2 (-1131 *7)) (-5 *1 (-490 *5 *4 *6 *7)) (-4 *6 (-1194 *4)))) (-1251 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-490 *5 *2 *6 *7)) (-4 *6 (-1194 *2))))) +(-10 -7 (-15 -1251 (|#2| (-1 |#1| |#4|) (-1131 |#4|))) (-15 -1251 ((-1131 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3279 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1131 |#4|))) (-15 -3395 ((-3 (-663 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-663 (-1131 |#4|)))) (-15 -3506 ((-1131 (-1131 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3821 (((-112) $ $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3617 (((-1223) $) 19)) (-3329 (((-1118) $ (-1135)) 23)) (-2683 (((-1223) $) 15)) (-3834 (((-832) $) 21) (($ (-1118)) 20)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 9)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 8))) +(((-491) (-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $)) (-15 -3834 ($ (-1118)))))) (T -491)) +((-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1118)) (-5 *1 (-491)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-491)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-491)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-491))))) +(-13 (-821) (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) (-15 -3617 ((-1223) $)) (-15 -3834 ($ (-1118))))) +((-3393 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3201 ((|#1| |#4|) 10)) (-3295 ((|#3| |#4|) 17))) +(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3201 (|#1| |#4|)) (-15 -3295 (|#3| |#4|)) (-15 -3393 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-539) (-961 |#1|) (-364 |#1|) (-364 |#2|)) (T -492)) +((-3393 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *6 (-364 *4)) (-4 *3 (-364 *5)))) (-3295 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-4 *2 (-364 *4)) (-5 *1 (-492 *4 *5 *2 *3)) (-4 *3 (-364 *5)))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *5 (-364 *2)) (-4 *3 (-364 *4))))) +(-10 -7 (-15 -3201 (|#1| |#4|)) (-15 -3295 (|#3| |#4|)) (-15 -3393 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3821 (((-112) $ $) NIL)) (-2370 (((-112) $ (-619 |#3|)) 105) (((-112) $) 106)) (-4046 (((-112) $) 149)) (-3827 (($ $ |#4|) 97) (($ $ |#4| (-619 |#3|)) 101)) (-3723 (((-1125 (-619 (-921 |#1|)) (-619 (-285 (-921 |#1|)))) (-619 |#4|)) 142 (|has| |#3| (-592 (-1135))))) (-2225 (($ $ $) 91) (($ $ |#4|) 89)) (-4114 (((-112) $) 148)) (-3080 (($ $) 109)) (-1917 (((-1118) $) NIL)) (-1711 (($ $ $) 83) (($ (-619 $)) 85)) (-2493 (((-112) |#4| $) 108)) (-2611 (((-112) $ $) 72)) (-2989 (($ (-619 |#4|)) 90)) (-3979 (((-1082) $) NIL)) (-2904 (($ (-619 |#4|)) 146)) (-2807 (((-112) $) 147)) (-3760 (($ $) 74)) (-1925 (((-619 |#4|) $) 63)) (-2093 (((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|)) NIL)) (-2707 (((-112) |#4| $) 77)) (-3512 (((-547) $ (-619 |#3|)) 110) (((-547) $) 111)) (-3834 (((-832) $) 145) (($ (-619 |#4|)) 86)) (-3175 (($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $))) NIL)) (-2371 (((-112) $ $) 73)) (-2470 (($ $ $) 93)) (** (($ $ (-745)) 96)) (* (($ $ $) 95))) +(((-493 |#1| |#2| |#3| |#4|) (-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2470 ($ $ $)) (-15 -4114 ((-112) $)) (-15 -4046 ((-112) $)) (-15 -2707 ((-112) |#4| $)) (-15 -2611 ((-112) $ $)) (-15 -2493 ((-112) |#4| $)) (-15 -2370 ((-112) $ (-619 |#3|))) (-15 -2370 ((-112) $)) (-15 -1711 ($ $ $)) (-15 -1711 ($ (-619 $))) (-15 -2225 ($ $ $)) (-15 -2225 ($ $ |#4|)) (-15 -3760 ($ $)) (-15 -2093 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3175 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3512 ((-547) $ (-619 |#3|))) (-15 -3512 ((-547) $)) (-15 -3080 ($ $)) (-15 -2989 ($ (-619 |#4|))) (-15 -2904 ($ (-619 |#4|))) (-15 -2807 ((-112) $)) (-15 -1925 ((-619 |#4|) $)) (-15 -3834 ($ (-619 |#4|))) (-15 -3827 ($ $ |#4|)) (-15 -3827 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-592 (-1135))) (-15 -3723 ((-1125 (-619 (-921 |#1|)) (-619 (-285 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) (-354) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -493)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-4046 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2707 (*1 *2 *3 *1) (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-2611 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2493 (*1 *2 *3 *1) (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6)))) (-2370 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-2370 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-619 (-493 *3 *4 *5 *6))) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-2225 (*1 *1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2225 (*1 *1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-3760 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2093 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) (|:| |genIdeal| (-493 *4 *5 *6 *7)))) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3175 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) (|:| |genIdeal| (-493 *3 *4 *5 *6)))) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 (-547)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) (-3512 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3080 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-2989 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-1925 (*1 *2 *1) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) (-3827 (*1 *1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) (-3827 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *1 (-493 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-592 (-1135))) (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1125 (-619 (-921 *4)) (-619 (-285 (-921 *4))))) (-5 *1 (-493 *4 *5 *6 *7))))) +(-13 (-1063) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 -2470 ($ $ $)) (-15 -4114 ((-112) $)) (-15 -4046 ((-112) $)) (-15 -2707 ((-112) |#4| $)) (-15 -2611 ((-112) $ $)) (-15 -2493 ((-112) |#4| $)) (-15 -2370 ((-112) $ (-619 |#3|))) (-15 -2370 ((-112) $)) (-15 -1711 ($ $ $)) (-15 -1711 ($ (-619 $))) (-15 -2225 ($ $ $)) (-15 -2225 ($ $ |#4|)) (-15 -3760 ($ $)) (-15 -2093 ((-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)) $ (-619 |#3|))) (-15 -3175 ($ (-2 (|:| |mval| (-663 |#1|)) (|:| |invmval| (-663 |#1|)) (|:| |genIdeal| $)))) (-15 -3512 ((-547) $ (-619 |#3|))) (-15 -3512 ((-547) $)) (-15 -3080 ($ $)) (-15 -2989 ($ (-619 |#4|))) (-15 -2904 ($ (-619 |#4|))) (-15 -2807 ((-112) $)) (-15 -1925 ((-619 |#4|) $)) (-15 -3834 ($ (-619 |#4|))) (-15 -3827 ($ $ |#4|)) (-15 -3827 ($ $ |#4| (-619 |#3|))) (IF (|has| |#3| (-592 (-1135))) (-15 -3723 ((-1125 (-619 (-921 |#1|)) (-619 (-285 (-921 |#1|)))) (-619 |#4|))) |%noBranch|))) +((-1489 (((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 150)) (-1613 (((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 151)) (-1615 (((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 108)) (-3674 (((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) NIL)) (-1730 (((-619 (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) 153)) (-1843 (((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-619 (-834 |#1|))) 165))) +(((-494 |#1| |#2|) (-10 -7 (-15 -1489 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1613 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -3674 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1615 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1730 ((-619 (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1843 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-619 (-834 |#1|))))) (-619 (-1135)) (-745)) (T -494)) +((-1843 (*1 *2 *2 *3) (-12 (-5 *2 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *1 (-494 *4 *5)))) (-1730 (*1 *2 *3) (-12 (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-619 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547)))))) (-5 *1 (-494 *4 *5)) (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-493 (-398 (-547)) (-232 *4 (-745)) (-834 *3) (-239 *3 (-398 (-547))))) (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-494 *3 *4)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) (-239 *4 (-398 (-547))))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) (-5 *1 (-494 *4 *5))))) +(-10 -7 (-15 -1489 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1613 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -3674 ((-112) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1615 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1730 ((-619 (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547))))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))))) (-15 -1843 ((-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-493 (-398 (-547)) (-232 |#2| (-745)) (-834 |#1|) (-239 |#1| (-398 (-547)))) (-619 (-834 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 11) (((-1140) $) NIL) (((-1135) $) 8)) (-2371 (((-112) $ $) NIL))) +(((-495) (-13 (-1047) (-591 (-1135)))) (T -495)) +NIL +(-13 (-1047) (-591 (-1135))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2229 (($ |#1| |#2|) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1954 ((|#2| $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3267 (($) 12 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) 11) (($ $ $) 24)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 18))) +(((-496 |#1| |#2|) (-13 (-21) (-498 |#1| |#2|)) (-21) (-821)) (T -496)) +NIL +(-13 (-21) (-498 |#1| |#2|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 12)) (-3219 (($) NIL T CONST)) (-2054 (($ $) 28)) (-2229 (($ |#1| |#2|) 25)) (-2781 (($ (-1 |#1| |#1|) $) 27)) (-1954 ((|#2| $) NIL)) (-2027 ((|#1| $) 29)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3267 (($) 10 T CONST)) (-2371 (((-112) $ $) NIL)) (-2470 (($ $ $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) 23))) +(((-497 |#1| |#2|) (-13 (-23) (-498 |#1| |#2|)) (-23) (-821)) (T -497)) +NIL +(-13 (-23) (-498 |#1| |#2|)) +((-3821 (((-112) $ $) 7)) (-2054 (($ $) 13)) (-2229 (($ |#1| |#2|) 16)) (-2781 (($ (-1 |#1| |#1|) $) 17)) (-1954 ((|#2| $) 14)) (-2027 ((|#1| $) 15)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) +(((-498 |#1| |#2|) (-138) (-1063) (-821)) (T -498)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-821)))) (-2229 (*1 *1 *2 *3) (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-498 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821)))) (-2054 (*1 *1 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821))))) +(-13 (-1063) (-10 -8 (-15 -2781 ($ (-1 |t#1| |t#1|) $)) (-15 -2229 ($ |t#1| |t#2|)) (-15 -2027 (|t#1| $)) (-15 -1954 (|t#2| $)) (-15 -2054 ($ $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2229 (($ |#1| |#2|) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1954 ((|#2| $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3267 (($) NIL T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 13)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) +(((-499 |#1| |#2|) (-13 (-766) (-498 |#1| |#2|)) (-766) (-821)) (T -499)) +NIL +(-13 (-766) (-498 |#1| |#2|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-1991 (($ $ $) 16)) (-3013 (((-3 $ "failed") $ $) 13)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2229 (($ |#1| |#2|) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1954 ((|#2| $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL)) (-3267 (($) NIL T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) +(((-500 |#1| |#2|) (-13 (-767) (-498 |#1| |#2|)) (-767) (-821)) (T -500)) +NIL +(-13 (-767) (-498 |#1| |#2|)) +((-3821 (((-112) $ $) NIL)) (-2054 (($ $) 25)) (-2229 (($ |#1| |#2|) 22)) (-2781 (($ (-1 |#1| |#1|) $) 24)) (-1954 ((|#2| $) 27)) (-2027 ((|#1| $) 26)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 21)) (-2371 (((-112) $ $) 14))) +(((-501 |#1| |#2|) (-498 |#1| |#2|) (-1063) (-821)) (T -501)) +NIL +(-498 |#1| |#2|) +((-2670 (($ $ (-619 |#2|) (-619 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-502 |#1| |#2| |#3|) (-10 -8 (-15 -2670 (|#1| |#1| |#2| |#3|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) (-503 |#2| |#3|) (-1063) (-1172)) (T -502)) +NIL +(-10 -8 (-15 -2670 (|#1| |#1| |#2| |#3|)) (-15 -2670 (|#1| |#1| (-619 |#2|) (-619 |#3|)))) +((-2670 (($ $ (-619 |#1|) (-619 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-503 |#1| |#2|) (-138) (-1063) (-1172)) (T -503)) +((-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-503 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1172)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1172))))) +(-13 (-10 -8 (-15 -2670 ($ $ |t#1| |t#2|)) (-15 -2670 ($ $ (-619 |t#1|) (-619 |t#2|))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 16)) (-2674 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))) $) 18)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3603 (((-745) $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2598 ((|#1| $ (-547)) 23)) (-1865 ((|#2| $ (-547)) 21)) (-3270 (($ (-1 |#1| |#1|) $) 46)) (-1748 (($ (-1 |#2| |#2|) $) 43)) (-1917 (((-1118) $) NIL)) (-1630 (($ $ $) 53 (|has| |#2| (-766)))) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 42) (($ |#1|) NIL)) (-3338 ((|#2| |#1| $) 49)) (-3267 (($) 11 T CONST)) (-2371 (((-112) $ $) 29)) (-2470 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-890) $) NIL) (($ (-745) $) 36) (($ |#2| |#1|) 31))) +(((-504 |#1| |#2| |#3|) (-314 |#1| |#2|) (-1063) (-130) |#2|) (T -504)) +NIL +(-314 |#1| |#2|) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-3900 (((-112) (-112)) 25)) (-2238 ((|#1| $ (-547) |#1|) 28 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) |#1|) $) 52)) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3796 (($ $) 56 (|has| |#1| (-1063)))) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 44)) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-4004 (($ $ (-547)) 13)) (-4096 (((-745) $) 11)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 23)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 21 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3756 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) 20 (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1885 (($ $ $ (-547)) 51) (($ |#1| $ (-547)) 37)) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4192 (($ (-619 |#1|)) 29)) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) 19 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 40)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 16)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 33) (($ $ (-1185 (-547))) NIL)) (-3769 (($ $ (-1185 (-547))) 50) (($ $ (-547)) 45)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) 41 (|has| $ (-6 -4329)))) (-2265 (($ $) 32)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-4187 (($ $ $) 42) (($ $ |#1|) 39)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) 17 (|has| $ (-6 -4328))))) +(((-505 |#1| |#2|) (-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -4192 ($ (-619 |#1|))) (-15 -4096 ((-745) $)) (-15 -4004 ($ $ (-547))) (-15 -3900 ((-112) (-112))))) (-1172) (-547)) (T -505)) +((-4192 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-505 *3 *4)) (-14 *4 (-547)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1172)) (-14 *4 (-547)))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1172)) (-14 *4 *2))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1172)) (-14 *4 (-547))))) +(-13 (-19 |#1|) (-273 |#1|) (-10 -8 (-15 -4192 ($ (-619 |#1|))) (-15 -4096 ((-745) $)) (-15 -4004 ($ $ (-547))) (-15 -3900 ((-112) (-112))))) +((-3821 (((-112) $ $) NIL)) (-1341 (((-1140) $) 11)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-4287 (((-1140) $) 13)) (-1911 (((-1140) $) 9)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-506) (-13 (-1047) (-10 -8 (-15 -1911 ((-1140) $)) (-15 -1341 ((-1140) $)) (-15 -4287 ((-1140) $))))) (T -506)) +((-1911 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-506)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-506)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-506))))) +(-13 (-1047) (-10 -8 (-15 -1911 ((-1140) $)) (-15 -1341 ((-1140) $)) (-15 -4287 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 (((-561 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-561 |#1|) (-359)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL (|has| (-561 |#1|) (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-561 |#1|) "failed") $) NIL)) (-2643 (((-561 |#1|) $) NIL)) (-2402 (($ (-1218 (-561 |#1|))) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-561 |#1|) (-359)))) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-561 |#1|) (-359)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL (|has| (-561 |#1|) (-359)))) (-3661 (((-112) $) NIL (|has| (-561 |#1|) (-359)))) (-1771 (($ $ (-745)) NIL (-1524 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359)))) (($ $) NIL (-1524 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-3674 (((-112) $) NIL)) (-3707 (((-890) $) NIL (|has| (-561 |#1|) (-359))) (((-807 (-890)) $) NIL (-1524 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| (-561 |#1|) (-359)))) (-3908 (((-112) $) NIL (|has| (-561 |#1|) (-359)))) (-1684 (((-561 |#1|) $) NIL) (($ $ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-3652 (((-3 $ "failed") $) NIL (|has| (-561 |#1|) (-359)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 (-561 |#1|)) $) NIL) (((-1131 $) $ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-1966 (((-890) $) NIL (|has| (-561 |#1|) (-359)))) (-4218 (((-1131 (-561 |#1|)) $) NIL (|has| (-561 |#1|) (-359)))) (-4122 (((-1131 (-561 |#1|)) $) NIL (|has| (-561 |#1|) (-359))) (((-3 (-1131 (-561 |#1|)) "failed") $ $) NIL (|has| (-561 |#1|) (-359)))) (-1277 (($ $ (-1131 (-561 |#1|))) NIL (|has| (-561 |#1|) (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-561 |#1|) (-359)) CONST)) (-3479 (($ (-890)) NIL (|has| (-561 |#1|) (-359)))) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4240 (($) NIL (|has| (-561 |#1|) (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-561 |#1|) (-359)))) (-2106 (((-409 $) $) NIL)) (-2832 (((-807 (-890))) NIL) (((-890)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-745) $) NIL (|has| (-561 |#1|) (-359))) (((-3 (-745) "failed") $ $) NIL (-1524 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-3512 (((-133)) NIL)) (-3443 (($ $) NIL (|has| (-561 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-561 |#1|) (-359)))) (-1618 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-1901 (((-1131 (-561 |#1|))) NIL)) (-4150 (($) NIL (|has| (-561 |#1|) (-359)))) (-3164 (($) NIL (|has| (-561 |#1|) (-359)))) (-2301 (((-1218 (-561 |#1|)) $) NIL) (((-663 (-561 |#1|)) (-1218 $)) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-561 |#1|) (-359)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-561 |#1|)) NIL)) (-3336 (($ $) NIL (|has| (-561 |#1|) (-359))) (((-3 $ "failed") $) NIL (-1524 (|has| (-561 |#1|) (-143)) (|has| (-561 |#1|) (-359))))) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL) (((-1218 $) (-890)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $) NIL (|has| (-561 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-561 |#1|) (-359)))) (-1686 (($ $) NIL (|has| (-561 |#1|) (-359))) (($ $ (-745)) NIL (|has| (-561 |#1|) (-359)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL) (($ $ (-561 |#1|)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-561 |#1|)) NIL) (($ (-561 |#1|) $) NIL))) +(((-507 |#1| |#2|) (-320 (-561 |#1|)) (-890) (-890)) (T -507)) +NIL +(-320 (-561 |#1|)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) (-547) |#1|) 35)) (-2183 (($ $ (-547) |#4|) NIL)) (-3251 (($ $ (-547) |#5|) NIL)) (-3219 (($) NIL T CONST)) (-3578 ((|#4| $ (-547)) NIL)) (-1861 ((|#1| $ (-547) (-547) |#1|) 34)) (-1793 ((|#1| $ (-547) (-547)) 32)) (-2973 (((-619 |#1|) $) NIL)) (-2126 (((-745) $) 28)) (-3732 (($ (-745) (-745) |#1|) 25)) (-2139 (((-745) $) 30)) (-4161 (((-112) $ (-745)) NIL)) (-2865 (((-547) $) 26)) (-3790 (((-547) $) 27)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2769 (((-547) $) 29)) (-3684 (((-547) $) 31)) (-1850 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) 38 (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 14)) (-4011 (($) 16)) (-3329 ((|#1| $ (-547) (-547)) 33) ((|#1| $ (-547) (-547) |#1|) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3456 ((|#5| $ (-547)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-508 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1172) (-547) (-547) (-364 |#1|) (-364 |#1|)) (T -508)) NIL (-56 |#1| |#4| |#5|) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 59 (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) 23 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 21 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4328))) (($ $ "rest" $) 24 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3499 (($ $) 28 (|has| $ (-6 -4328)))) (-2796 (($ $) 29)) (-3465 (($ $) 18) (($ $ (-745)) 32)) (-2969 (($ $) 55 (|has| |#1| (-1063)))) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063))) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) NIL)) (-1934 (((-619 |#1|) $) 27 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 31 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2913 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (($ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) 51 (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) 13) (($ $ (-745)) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 12)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) 17)) (-3319 (($) 16)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) NIL) ((|#1| $ (-548) |#1|) NIL)) (-4234 (((-548) $ $) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2740 (((-112) $) 34)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) 36)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) 35)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 26)) (-3659 (($ $ $) 54) (($ $ |#1|) NIL)) (-1831 (($ $ $) NIL) (($ |#1| $) 10) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3743 (((-832) $) 46 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 48 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 9 (|has| $ (-6 -4327))))) -(((-510 |#1| |#2|) (-640 |#1|) (-1172) (-548)) (T -510)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) NIL)) (-2823 ((|#1| $) NIL)) (-1335 (($ $) NIL)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) 59 (|has| $ (-6 -4329)))) (-2951 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2765 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4329)))) (-3180 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3861 (($ $ $) 23 (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) 21 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4329))) (($ $ "rest" $) 24 (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) |#1|) $) NIL)) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2814 ((|#1| $) NIL)) (-3219 (($) NIL T CONST)) (-2034 (($ $) 28 (|has| $ (-6 -4329)))) (-3048 (($ $) 29)) (-3645 (($ $) 18) (($ $ (-745)) 32)) (-3796 (($ $) 55 (|has| |#1| (-1063)))) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3801 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-3425 (((-112) $) NIL)) (-2867 (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063))) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) NIL)) (-2973 (((-619 |#1|) $) 27 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 31 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3756 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-1294 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3511 (($ |#1|) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) NIL)) (-1917 (((-1118) $) 51 (|has| |#1| (-1063)))) (-3817 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-1885 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2599 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) 13) (($ $ (-745)) NIL)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-3541 (((-112) $) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 12)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) 17)) (-4011 (($) 16)) (-3329 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1185 (-547))) NIL) ((|#1| $ (-547)) NIL) ((|#1| $ (-547) |#1|) NIL)) (-1887 (((-547) $ $) NIL)) (-3769 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-2151 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-2094 (((-112) $) 34)) (-4291 (($ $) NIL)) (-4080 (($ $) NIL (|has| $ (-6 -4329)))) (-3257 (((-745) $) NIL)) (-3360 (($ $) 36)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) 35)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 26)) (-4187 (($ $ $) 54) (($ $ |#1|) NIL)) (-1935 (($ $ $) NIL) (($ |#1| $) 10) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3834 (((-832) $) 46 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 48 (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) 9 (|has| $ (-6 -4328))))) +(((-509 |#1| |#2|) (-640 |#1|) (-1172) (-547)) (T -509)) NIL (-640 |#1|) -((-3691 ((|#4| |#4|) 27)) (-2103 (((-745) |#4|) 32)) (-3681 (((-745) |#4|) 33)) (-3669 (((-619 |#3|) |#4|) 40 (|has| |#3| (-6 -4328)))) (-2369 (((-3 |#4| "failed") |#4|) 51)) (-4020 ((|#4| |#4|) 44)) (-2068 ((|#1| |#4|) 43))) -(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3691 (|#4| |#4|)) (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (IF (|has| |#3| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -2068 (|#1| |#4|)) (-15 -4020 (|#4| |#4|)) (-15 -2369 ((-3 |#4| "failed") |#4|))) (-355) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -511)) -((-2369 (*1 *2 *2) (|partial| -12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-355)) (-5 *1 (-511 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-3669 (*1 *2 *3) (-12 (|has| *6 (-6 -4328)) (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2103 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(-10 -7 (-15 -3691 (|#4| |#4|)) (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (IF (|has| |#3| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -2068 (|#1| |#4|)) (-15 -4020 (|#4| |#4|)) (-15 -2369 ((-3 |#4| "failed") |#4|))) -((-3691 ((|#8| |#4|) 20)) (-3669 (((-619 |#3|) |#4|) 29 (|has| |#7| (-6 -4328)))) (-2369 (((-3 |#8| "failed") |#4|) 23))) -(((-512 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3691 (|#8| |#4|)) (-15 -2369 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|)) (-540) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|) (-961 |#1|) (-365 |#5|) (-365 |#5|) (-661 |#5| |#6| |#7|)) (T -512)) -((-3669 (*1 *2 *3) (-12 (|has| *9 (-6 -4328)) (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-619 *6)) (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) (-4 *10 (-661 *7 *8 *9)))) (-2369 (*1 *2 *3) (|partial| -12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))) -(-10 -7 (-15 -3691 (|#8| |#4|)) (-15 -2369 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4328)) (-15 -3669 ((-619 |#3|) |#4|)) |%noBranch|)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) NIL)) (-4025 (($ $ $) NIL)) (-3508 (($ (-581 |#1| |#3|)) NIL) (($ $) NIL)) (-3785 (((-112) $) NIL)) (-4015 (($ $ (-548) (-548)) 12)) (-4004 (($ $ (-548) (-548)) NIL)) (-3992 (($ $ (-548) (-548) (-548) (-548)) NIL)) (-4048 (($ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3982 (($ $ (-548) (-548) $) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) NIL)) (-4141 (($ $ (-548) (-581 |#1| |#3|)) NIL)) (-4131 (($ $ (-548) (-581 |#1| |#2|)) NIL)) (-2114 (($ (-745) |#1|) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 21 (|has| |#1| (-299)))) (-3717 (((-581 |#1| |#3|) $ (-548)) NIL)) (-2103 (((-745) $) 24 (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) NIL)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-3681 (((-745) $) 26 (|has| |#1| (-540)))) (-3669 (((-619 (-581 |#1| |#2|)) $) 29 (|has| |#1| (-540)))) (-4205 (((-745) $) NIL)) (-3550 (($ (-745) (-745) |#1|) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#1| $) 19 (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) 10)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) 11)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#1|))) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2401 (((-619 (-619 |#1|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) 33 (|has| |#1| (-355)))) (-4036 (($ $ $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548))) NIL)) (-2102 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3797 (((-112) $) NIL)) (-2068 ((|#1| $) 17 (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3704 (((-581 |#1| |#2|) $ (-548)) NIL)) (-3743 (($ (-581 |#1| |#2|)) NIL) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-548) $) NIL) (((-581 |#1| |#2|) $ (-581 |#1| |#2|)) NIL) (((-581 |#1| |#3|) (-581 |#1| |#3|) $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-513 |#1| |#2| |#3|) (-661 |#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) (-1016) (-548) (-548)) (T -513)) -NIL -(-661 |#1| (-581 |#1| |#3|) (-581 |#1| |#2|)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-4031 (((-619 (-1171)) $) 13)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (($ (-619 (-1171))) 11)) (-2214 (((-112) $ $) NIL))) -(((-514) (-13 (-1047) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -4031 ((-619 (-1171)) $))))) (T -514)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514))))) -(-13 (-1047) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -4031 ((-619 (-1171)) $)))) -((-3730 (((-112) $ $) NIL)) (-4042 (((-1140) $) 13)) (-2546 (((-1118) $) NIL)) (-2770 (((-1135) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-515) (-13 (-1047) (-10 -8 (-15 -2770 ((-1135) $)) (-15 -4042 ((-1140) $))))) (T -515)) -((-2770 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-515)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-515))))) -(-13 (-1047) (-10 -8 (-15 -2770 ((-1135) $)) (-15 -4042 ((-1140) $)))) -((-2778 (((-1082) $ (-128)) 17))) -(((-516 |#1|) (-10 -8 (-15 -2778 ((-1082) |#1| (-128)))) (-517)) (T -516)) -NIL -(-10 -8 (-15 -2778 ((-1082) |#1| (-128)))) -((-2778 (((-1082) $ (-128)) 7)) (-2786 (((-1082) $) 8)) (-3972 (($ $) 6))) -(((-517) (-138)) (T -517)) -((-2786 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-1082)))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-517)) (-5 *3 (-128)) (-5 *2 (-1082))))) -(-13 (-170) (-10 -8 (-15 -2786 ((-1082) $)) (-15 -2778 ((-1082) $ (-128))))) +((-3340 ((|#4| |#4|) 27)) (-3107 (((-745) |#4|) 32)) (-1318 (((-745) |#4|) 33)) (-4273 (((-619 |#3|) |#4|) 40 (|has| |#3| (-6 -4329)))) (-2793 (((-3 |#4| "failed") |#4|) 51)) (-3367 ((|#4| |#4|) 44)) (-3096 ((|#1| |#4|) 43))) +(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3340 (|#4| |#4|)) (-15 -3107 ((-745) |#4|)) (-15 -1318 ((-745) |#4|)) (IF (|has| |#3| (-6 -4329)) (-15 -4273 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -3096 (|#1| |#4|)) (-15 -3367 (|#4| |#4|)) (-15 -2793 ((-3 |#4| "failed") |#4|))) (-354) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -510)) +((-2793 (*1 *2 *2) (|partial| -12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3096 (*1 *2 *3) (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-354)) (-5 *1 (-510 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-4273 (*1 *2 *3) (-12 (|has| *6 (-6 -4329)) (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-1318 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3340 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(-10 -7 (-15 -3340 (|#4| |#4|)) (-15 -3107 ((-745) |#4|)) (-15 -1318 ((-745) |#4|)) (IF (|has| |#3| (-6 -4329)) (-15 -4273 ((-619 |#3|) |#4|)) |%noBranch|) (-15 -3096 (|#1| |#4|)) (-15 -3367 (|#4| |#4|)) (-15 -2793 ((-3 |#4| "failed") |#4|))) +((-3340 ((|#8| |#4|) 20)) (-4273 (((-619 |#3|) |#4|) 29 (|has| |#7| (-6 -4329)))) (-2793 (((-3 |#8| "failed") |#4|) 23))) +(((-511 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3340 (|#8| |#4|)) (-15 -2793 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4329)) (-15 -4273 ((-619 |#3|) |#4|)) |%noBranch|)) (-539) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|) (-961 |#1|) (-364 |#5|) (-364 |#5|) (-661 |#5| |#6| |#7|)) (T -511)) +((-4273 (*1 *2 *3) (-12 (|has| *9 (-6 -4329)) (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *8 (-364 *7)) (-4 *9 (-364 *7)) (-5 *2 (-619 *6)) (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) (-4 *10 (-661 *7 *8 *9)))) (-2793 (*1 *2 *3) (|partial| -12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-364 *7)) (-4 *9 (-364 *7)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) (-4 *8 (-364 *7)) (-4 *9 (-364 *7))))) +(-10 -7 (-15 -3340 (|#8| |#4|)) (-15 -2793 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4329)) (-15 -4273 ((-619 |#3|) |#4|)) |%noBranch|)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3757 (($ (-745) (-745)) NIL)) (-3420 (($ $ $) NIL)) (-2150 (($ (-580 |#1| |#3|)) NIL) (($ $) NIL)) (-3047 (((-112) $) NIL)) (-3313 (($ $ (-547) (-547)) 12)) (-1293 (($ $ (-547) (-547)) NIL)) (-4241 (($ $ (-547) (-547) (-547) (-547)) NIL)) (-3636 (($ $) NIL)) (-3237 (((-112) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-4146 (($ $ (-547) (-547) $) NIL)) (-2238 ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) NIL)) (-2183 (($ $ (-547) (-580 |#1| |#3|)) NIL)) (-3251 (($ $ (-547) (-580 |#1| |#2|)) NIL)) (-2294 (($ (-745) |#1|) NIL)) (-3219 (($) NIL T CONST)) (-3340 (($ $) 21 (|has| |#1| (-298)))) (-3578 (((-580 |#1| |#3|) $ (-547)) NIL)) (-3107 (((-745) $) 24 (|has| |#1| (-539)))) (-1861 ((|#1| $ (-547) (-547) |#1|) NIL)) (-1793 ((|#1| $ (-547) (-547)) NIL)) (-2973 (((-619 |#1|) $) NIL)) (-1318 (((-745) $) 26 (|has| |#1| (-539)))) (-4273 (((-619 (-580 |#1| |#2|)) $) 29 (|has| |#1| (-539)))) (-2126 (((-745) $) NIL)) (-3732 (($ (-745) (-745) |#1|) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-3015 ((|#1| $) 19 (|has| |#1| (-6 (-4330 "*"))))) (-2865 (((-547) $) 10)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2769 (((-547) $) 11)) (-3684 (((-547) $) NIL)) (-3933 (($ (-619 (-619 |#1|))) NIL)) (-1850 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3051 (((-619 (-619 |#1|)) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2793 (((-3 $ "failed") $) 33 (|has| |#1| (-354)))) (-3525 (($ $ $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547))) NIL)) (-2192 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL)) (-3137 (((-112) $) NIL)) (-3096 ((|#1| $) 17 (|has| |#1| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3456 (((-580 |#1| |#2|) $ (-547)) NIL)) (-3834 (($ (-580 |#1| |#2|)) NIL) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2955 (((-112) $) NIL)) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-547) $) NIL) (((-580 |#1| |#2|) $ (-580 |#1| |#2|)) NIL) (((-580 |#1| |#3|) (-580 |#1| |#3|) $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-512 |#1| |#2| |#3|) (-661 |#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) (-1016) (-547) (-547)) (T -512)) +NIL +(-661 |#1| (-580 |#1| |#3|) (-580 |#1| |#2|)) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3471 (((-619 (-1171)) $) 13)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL) (($ (-619 (-1171))) 11)) (-2371 (((-112) $ $) NIL))) +(((-513) (-13 (-1047) (-10 -8 (-15 -3834 ($ (-619 (-1171)))) (-15 -3471 ((-619 (-1171)) $))))) (T -513)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-513)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-513))))) +(-13 (-1047) (-10 -8 (-15 -3834 ($ (-619 (-1171)))) (-15 -3471 ((-619 (-1171)) $)))) +((-3821 (((-112) $ $) NIL)) (-3585 (((-1140) $) 13)) (-1917 (((-1118) $) NIL)) (-2435 (((-1135) $) 11)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-514) (-13 (-1047) (-10 -8 (-15 -2435 ((-1135) $)) (-15 -3585 ((-1140) $))))) (T -514)) +((-2435 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-514)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-514))))) +(-13 (-1047) (-10 -8 (-15 -2435 ((-1135) $)) (-15 -3585 ((-1140) $)))) +((-2536 (((-1082) $ (-128)) 17))) +(((-515 |#1|) (-10 -8 (-15 -2536 ((-1082) |#1| (-128)))) (-516)) (T -515)) +NIL +(-10 -8 (-15 -2536 ((-1082) |#1| (-128)))) +((-2536 (((-1082) $ (-128)) 7)) (-2623 (((-1082) $) 8)) (-4048 (($ $) 6))) +(((-516) (-138)) (T -516)) +((-2623 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-1082)))) (-2536 (*1 *2 *1 *3) (-12 (-4 *1 (-516)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(-13 (-170) (-10 -8 (-15 -2623 ((-1082) $)) (-15 -2536 ((-1082) $ (-128))))) (((-170) . T)) -((-2811 (((-1131 |#1|) (-745)) 76)) (-2707 (((-1218 |#1|) (-1218 |#1|) (-890)) 69)) (-2792 (((-1223) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) |#1|) 84)) (-2827 (((-1218 |#1|) (-1218 |#1|) (-745)) 36)) (-2545 (((-1218 |#1|) (-890)) 71)) (-2847 (((-1218 |#1|) (-1218 |#1|) (-548)) 24)) (-2802 (((-1131 |#1|) (-1218 |#1|)) 77)) (-2887 (((-1218 |#1|) (-890)) 95)) (-2866 (((-112) (-1218 |#1|)) 80)) (-3910 (((-1218 |#1|) (-1218 |#1|) (-890)) 62)) (-2898 (((-1131 |#1|) (-1218 |#1|)) 89)) (-2855 (((-890) (-1218 |#1|)) 59)) (-2153 (((-1218 |#1|) (-1218 |#1|)) 30)) (-3337 (((-1218 |#1|) (-890) (-890)) 97)) (-2837 (((-1218 |#1|) (-1218 |#1|) (-1082) (-1082)) 23)) (-2821 (((-1218 |#1|) (-1218 |#1|) (-745) (-1082)) 37)) (-2877 (((-1218 (-1218 |#1|)) (-890)) 94)) (-2309 (((-1218 |#1|) (-1218 |#1|) (-1218 |#1|)) 81)) (** (((-1218 |#1|) (-1218 |#1|) (-548)) 45)) (* (((-1218 |#1|) (-1218 |#1|) (-1218 |#1|)) 25))) -(((-518 |#1|) (-10 -7 (-15 -2792 ((-1223) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) |#1|)) (-15 -2545 ((-1218 |#1|) (-890))) (-15 -3337 ((-1218 |#1|) (-890) (-890))) (-15 -2802 ((-1131 |#1|) (-1218 |#1|))) (-15 -2811 ((-1131 |#1|) (-745))) (-15 -2821 ((-1218 |#1|) (-1218 |#1|) (-745) (-1082))) (-15 -2827 ((-1218 |#1|) (-1218 |#1|) (-745))) (-15 -2837 ((-1218 |#1|) (-1218 |#1|) (-1082) (-1082))) (-15 -2847 ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 ** ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 * ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -2309 ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -3910 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2707 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2153 ((-1218 |#1|) (-1218 |#1|))) (-15 -2855 ((-890) (-1218 |#1|))) (-15 -2866 ((-112) (-1218 |#1|))) (-15 -2877 ((-1218 (-1218 |#1|)) (-890))) (-15 -2887 ((-1218 |#1|) (-890))) (-15 -2898 ((-1131 |#1|) (-1218 |#1|)))) (-341)) (T -518)) -((-2898 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 *4))) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-518 *4)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-890)) (-5 *1 (-518 *4)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2309 (*1 *2 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2847 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2837 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1082)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2827 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-518 *4)))) (-2821 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1218 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-341)) (-5 *1 (-518 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)))) (-3337 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) (-4 *4 (-341)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) (-4 *4 (-341)) (-5 *2 (-1223)) (-5 *1 (-518 *4))))) -(-10 -7 (-15 -2792 ((-1223) (-1218 (-619 (-2 (|:| -4056 |#1|) (|:| -3337 (-1082))))) |#1|)) (-15 -2545 ((-1218 |#1|) (-890))) (-15 -3337 ((-1218 |#1|) (-890) (-890))) (-15 -2802 ((-1131 |#1|) (-1218 |#1|))) (-15 -2811 ((-1131 |#1|) (-745))) (-15 -2821 ((-1218 |#1|) (-1218 |#1|) (-745) (-1082))) (-15 -2827 ((-1218 |#1|) (-1218 |#1|) (-745))) (-15 -2837 ((-1218 |#1|) (-1218 |#1|) (-1082) (-1082))) (-15 -2847 ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 ** ((-1218 |#1|) (-1218 |#1|) (-548))) (-15 * ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -2309 ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -3910 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2707 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2153 ((-1218 |#1|) (-1218 |#1|))) (-15 -2855 ((-890) (-1218 |#1|))) (-15 -2866 ((-112) (-1218 |#1|))) (-15 -2877 ((-1218 (-1218 |#1|)) (-890))) (-15 -2887 ((-1218 |#1|) (-890))) (-15 -2898 ((-1131 |#1|) (-1218 |#1|)))) -((-1370 (((-1 |#1| |#1|) |#1|) 11)) (-2910 (((-1 |#1| |#1|)) 10))) -(((-519 |#1|) (-10 -7 (-15 -2910 ((-1 |#1| |#1|))) (-15 -1370 ((-1 |#1| |#1|) |#1|))) (-13 (-701) (-25))) (T -519)) -((-1370 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25))))) (-2910 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25)))))) -(-10 -7 (-15 -2910 ((-1 |#1| |#1|))) (-15 -1370 ((-1 |#1| |#1|) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2857 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-2024 (($ (-745) |#1|) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 (-745) (-745)) $) NIL)) (-3938 ((|#1| $) NIL)) (-2197 (((-745) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20)) (-3107 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) -(((-520 |#1|) (-13 (-767) (-499 (-745) |#1|)) (-821)) (T -520)) -NIL -(-13 (-767) (-499 (-745) |#1|)) -((-2931 (((-619 |#2|) (-1131 |#1|) |#3|) 83)) (-2942 (((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-410 (-1131 |#1|)) (-1131 |#1|))) 100)) (-2920 (((-1131 |#1|) (-663 |#1|)) 95))) -(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -2920 ((-1131 |#1|) (-663 |#1|))) (-15 -2931 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2942 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-410 (-1131 |#1|)) (-1131 |#1|))))) (-355) (-355) (-13 (-355) (-819))) (T -521)) -((-2942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-410 (-1131 *6)) (-1131 *6))) (-4 *6 (-355)) (-5 *2 (-619 (-2 (|:| |outval| *7) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 *7)))))) (-5 *1 (-521 *6 *7 *4)) (-4 *7 (-355)) (-4 *4 (-13 (-355) (-819))))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *5)) (-4 *5 (-355)) (-5 *2 (-619 *6)) (-5 *1 (-521 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819))))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-355)) (-5 *2 (-1131 *4)) (-5 *1 (-521 *4 *5 *6)) (-4 *5 (-355)) (-4 *6 (-13 (-355) (-819)))))) -(-10 -7 (-15 -2920 ((-1131 |#1|) (-663 |#1|))) (-15 -2931 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2942 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-410 (-1131 |#1|)) (-1131 |#1|))))) -((-2835 (((-814 (-548))) 12)) (-2845 (((-814 (-548))) 14)) (-1377 (((-807 (-548))) 9))) -(((-522) (-10 -7 (-15 -1377 ((-807 (-548)))) (-15 -2835 ((-814 (-548)))) (-15 -2845 ((-814 (-548)))))) (T -522)) -((-2845 (*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) (-2835 (*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) (-1377 (*1 *2) (-12 (-5 *2 (-807 (-548))) (-5 *1 (-522))))) -(-10 -7 (-15 -1377 ((-807 (-548)))) (-15 -2835 ((-814 (-548)))) (-15 -2845 ((-814 (-548))))) -((-2975 (((-524) (-1135)) 15)) (-2607 ((|#1| (-524)) 20))) -(((-523 |#1|) (-10 -7 (-15 -2975 ((-524) (-1135))) (-15 -2607 (|#1| (-524)))) (-1172)) (T -523)) -((-2607 (*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-523 *2)) (-4 *2 (-1172)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-524)) (-5 *1 (-523 *4)) (-4 *4 (-1172))))) -(-10 -7 (-15 -2975 ((-524) (-1135))) (-15 -2607 (|#1| (-524)))) -((-3730 (((-112) $ $) NIL)) (-2953 (((-1118) $) 48)) (-2633 (((-112) $) 43)) (-3803 (((-1135) $) 44)) (-2643 (((-112) $) 41)) (-1504 (((-1118) $) 42)) (-3740 (($ (-1118)) 49)) (-2666 (((-112) $) NIL)) (-2684 (((-112) $) NIL)) (-2654 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-2860 (($ $ (-619 (-1135))) 20)) (-2607 (((-52) $) 22)) (-2624 (((-112) $) NIL)) (-3829 (((-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3418 (($ $ (-619 (-1135)) (-1135)) 61)) (-2614 (((-112) $) NIL)) (-1335 (((-218) $) NIL)) (-3827 (($ $) 38)) (-2720 (((-832) $) NIL)) (-2383 (((-112) $ $) NIL)) (-3171 (($ $ (-548)) NIL) (($ $ (-619 (-548))) NIL)) (-1981 (((-619 $) $) 28)) (-3334 (((-1135) (-619 $)) 50)) (-2591 (($ (-619 $)) 54) (($ (-1118)) NIL) (($ (-1135)) 18) (($ (-548)) 8) (($ (-218)) 25) (($ (-832)) NIL) (((-1067) $) 11) (($ (-1067)) 12)) (-1899 (((-1135) (-1135) (-619 $)) 53)) (-3743 (((-832) $) 46)) (-3336 (($ $) 52)) (-3322 (($ $) 51)) (-2964 (($ $ (-619 $)) 58)) (-2675 (((-112) $) 27)) (-3107 (($) 9 T CONST)) (-3118 (($) 10 T CONST)) (-2214 (((-112) $ $) 62)) (-2309 (($ $ $) 67)) (-2290 (($ $ $) 63)) (** (($ $ (-745)) 66) (($ $ (-548)) 65)) (* (($ $ $) 64)) (-3643 (((-548) $) NIL))) -(((-524) (-13 (-1066 (-1118) (-1135) (-548) (-218) (-832)) (-593 (-1067)) (-10 -8 (-15 -2607 ((-52) $)) (-15 -2591 ($ (-1067))) (-15 -2964 ($ $ (-619 $))) (-15 -3418 ($ $ (-619 (-1135)) (-1135))) (-15 -2860 ($ $ (-619 (-1135)))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-548))) (-15 0 ($) -2325) (-15 1 ($) -2325) (-15 -3827 ($ $)) (-15 -2953 ((-1118) $)) (-15 -3740 ($ (-1118))) (-15 -3334 ((-1135) (-619 $))) (-15 -1899 ((-1135) (-1135) (-619 $)))))) (T -524)) -((-2607 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-524)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-524)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-524))) (-5 *1 (-524)))) (-3418 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1135)) (-5 *1 (-524)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-524)))) (-2290 (*1 *1 *1 *1) (-5 *1 (-524))) (* (*1 *1 *1 *1) (-5 *1 (-524))) (-2309 (*1 *1 *1 *1) (-5 *1 (-524))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-524)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-524)))) (-3107 (*1 *1) (-5 *1 (-524))) (-3118 (*1 *1) (-5 *1 (-524))) (-3827 (*1 *1 *1) (-5 *1 (-524))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-524)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-524)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-619 (-524))) (-5 *2 (-1135)) (-5 *1 (-524)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-524))) (-5 *1 (-524))))) -(-13 (-1066 (-1118) (-1135) (-548) (-218) (-832)) (-593 (-1067)) (-10 -8 (-15 -2607 ((-52) $)) (-15 -2591 ($ (-1067))) (-15 -2964 ($ $ (-619 $))) (-15 -3418 ($ $ (-619 (-1135)) (-1135))) (-15 -2860 ($ $ (-619 (-1135)))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-548))) (-15 (-3107) ($) -2325) (-15 (-3118) ($) -2325) (-15 -3827 ($ $)) (-15 -2953 ((-1118) $)) (-15 -3740 ($ (-1118))) (-15 -3334 ((-1135) (-619 $))) (-15 -1899 ((-1135) (-1135) (-619 $))))) -((-3761 ((|#2| |#2|) 17)) (-3738 ((|#2| |#2|) 13)) (-3771 ((|#2| |#2| (-548) (-548)) 20)) (-3750 ((|#2| |#2|) 15))) -(((-525 |#1| |#2|) (-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) (-13 (-540) (-145)) (-1209 |#1|)) (T -525)) -((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-525 *4 *2)) (-4 *2 (-1209 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) (-4 *2 (-1209 *3)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) (-4 *2 (-1209 *3)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) (-4 *2 (-1209 *3))))) -(-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) -((-3007 (((-619 (-286 (-921 |#2|))) (-619 |#2|) (-619 (-1135))) 32)) (-2986 (((-619 |#2|) (-921 |#1|) |#3|) 53) (((-619 |#2|) (-1131 |#1|) |#3|) 52)) (-2996 (((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|) 91))) -(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -2986 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2986 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -2996 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|)) (-15 -3007 ((-619 (-286 (-921 |#2|))) (-619 |#2|) (-619 (-1135))))) (-443) (-355) (-13 (-355) (-819))) (T -526)) -((-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1135))) (-4 *6 (-355)) (-5 *2 (-619 (-286 (-921 *6)))) (-5 *1 (-526 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-13 (-355) (-819))))) (-2996 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-526 *6 *7 *5)) (-4 *7 (-355)) (-4 *5 (-13 (-355) (-819))))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819))))) (-2986 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819)))))) -(-10 -7 (-15 -2986 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2986 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -2996 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|)) (-15 -3007 ((-619 (-286 (-921 |#2|))) (-619 |#2|) (-619 (-1135))))) -((-3037 ((|#2| |#2| |#1|) 17)) (-3017 ((|#2| (-619 |#2|)) 27)) (-3027 ((|#2| (-619 |#2|)) 46))) -(((-527 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3017 (|#2| (-619 |#2|))) (-15 -3027 (|#2| (-619 |#2|))) (-15 -3037 (|#2| |#2| |#1|))) (-299) (-1194 |#1|) |#1| (-1 |#1| |#1| (-745))) (T -527)) -((-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) (-5 *1 (-527 *3 *2 *4 *5)) (-4 *2 (-1194 *3)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) -(-10 -7 (-15 -3017 (|#2| (-619 |#2|))) (-15 -3027 (|#2| (-619 |#2|))) (-15 -3037 (|#2| |#2| |#1|))) -((-1915 (((-410 (-1131 |#4|)) (-1131 |#4|) (-1 (-410 (-1131 |#3|)) (-1131 |#3|))) 80) (((-410 |#4|) |#4| (-1 (-410 (-1131 |#3|)) (-1131 |#3|))) 169))) -(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 (-1131 |#3|)) (-1131 |#3|)))) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|) (-1 (-410 (-1131 |#3|)) (-1131 |#3|))))) (-821) (-767) (-13 (-299) (-145)) (-918 |#3| |#2| |#1|)) (T -528)) -((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-410 (-1131 *8))) (-5 *1 (-528 *5 *6 *7 *8)) (-5 *3 (-1131 *8)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-410 *3)) (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-918 *7 *6 *5))))) -(-10 -7 (-15 -1915 ((-410 |#4|) |#4| (-1 (-410 (-1131 |#3|)) (-1131 |#3|)))) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|) (-1 (-410 (-1131 |#3|)) (-1131 |#3|))))) -((-3761 ((|#4| |#4|) 74)) (-3738 ((|#4| |#4|) 70)) (-3771 ((|#4| |#4| (-548) (-548)) 76)) (-3750 ((|#4| |#4|) 72))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3750 (|#4| |#4|)) (-15 -3761 (|#4| |#4|)) (-15 -3771 (|#4| |#4| (-548) (-548)))) (-13 (-355) (-360) (-593 (-548))) (-1194 |#1|) (-699 |#1| |#2|) (-1209 |#3|)) (T -529)) -((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) (-4 *5 (-1194 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-529 *4 *5 *6 *2)) (-4 *2 (-1209 *6)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5))))) -(-10 -7 (-15 -3738 (|#4| |#4|)) (-15 -3750 (|#4| |#4|)) (-15 -3761 (|#4| |#4|)) (-15 -3771 (|#4| |#4| (-548) (-548)))) -((-3761 ((|#2| |#2|) 27)) (-3738 ((|#2| |#2|) 23)) (-3771 ((|#2| |#2| (-548) (-548)) 29)) (-3750 ((|#2| |#2|) 25))) -(((-530 |#1| |#2|) (-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) (-13 (-355) (-360) (-593 (-548))) (-1209 |#1|)) (T -530)) -((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) (-5 *1 (-530 *4 *2)) (-4 *2 (-1209 *4)))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1209 *3)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1209 *3)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) (-4 *2 (-1209 *3))))) -(-10 -7 (-15 -3738 (|#2| |#2|)) (-15 -3750 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3771 (|#2| |#2| (-548) (-548)))) -((-3050 (((-3 (-548) "failed") |#2| |#1| (-1 (-3 (-548) "failed") |#1|)) 14) (((-3 (-548) "failed") |#2| |#1| (-548) (-1 (-3 (-548) "failed") |#1|)) 13) (((-3 (-548) "failed") |#2| (-548) (-1 (-3 (-548) "failed") |#1|)) 26))) -(((-531 |#1| |#2|) (-10 -7 (-15 -3050 ((-3 (-548) "failed") |#2| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-1 (-3 (-548) "failed") |#1|)))) (-1016) (-1194 |#1|)) (T -531)) -((-3050 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4)))) (-3050 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4)))) (-3050 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-548) "failed") *5)) (-4 *5 (-1016)) (-5 *2 (-548)) (-5 *1 (-531 *5 *3)) (-4 *3 (-1194 *5))))) -(-10 -7 (-15 -3050 ((-3 (-548) "failed") |#2| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-548) (-1 (-3 (-548) "failed") |#1|))) (-15 -3050 ((-3 (-548) "failed") |#2| |#1| (-1 (-3 (-548) "failed") |#1|)))) -((-3119 (($ $ $) 79)) (-2634 (((-410 $) $) 47)) (-2441 (((-3 (-548) "failed") $) 59)) (-2375 (((-548) $) 37)) (-4182 (((-3 (-399 (-548)) "failed") $) 74)) (-4172 (((-112) $) 24)) (-4161 (((-399 (-548)) $) 72)) (-1271 (((-112) $) 50)) (-3071 (($ $ $ $) 86)) (-3298 (((-112) $) 16)) (-4206 (($ $ $) 57)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 69)) (-3725 (((-3 $ "failed") $) 64)) (-2742 (($ $) 23)) (-3060 (($ $ $) 84)) (-3410 (($) 60)) (-4185 (($ $) 53)) (-1915 (((-410 $) $) 45)) (-3718 (((-112) $) 14)) (-4077 (((-745) $) 28)) (-4050 (($ $ (-745)) NIL) (($ $) 10)) (-2113 (($ $) 17)) (-2591 (((-548) $) NIL) (((-524) $) 36) (((-861 (-548)) $) 40) (((-371) $) 31) (((-218) $) 33)) (-3835 (((-745)) 8)) (-3139 (((-112) $ $) 20)) (-3612 (($ $ $) 55))) -(((-532 |#1|) (-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1| |#1| |#1|)) (-15 -2742 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -3139 ((-112) |#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2591 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3298 ((-112) |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -3835 ((-745)))) (-533)) (T -532)) -((-3835 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-532 *3)) (-4 *3 (-533))))) -(-10 -8 (-15 -3060 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1| |#1| |#1|)) (-15 -2742 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -3139 ((-112) |#1| |#1|)) (-15 -3718 ((-112) |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -4206 (|#1| |#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2591 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3298 ((-112) |#1|)) (-15 -4077 ((-745) |#1|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1271 ((-112) |#1|)) (-15 -3835 ((-745)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-3119 (($ $ $) 82)) (-4104 (((-3 $ "failed") $ $) 19)) (-3096 (($ $ $ $) 71)) (-1688 (($ $) 49)) (-2634 (((-410 $) $) 50)) (-4087 (((-112) $ $) 122)) (-2672 (((-548) $) 111)) (-2970 (($ $ $) 85)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 103)) (-2375 (((-548) $) 102)) (-1945 (($ $ $) 126)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 101) (((-663 (-548)) (-663 $)) 100)) (-3859 (((-3 $ "failed") $) 32)) (-4182 (((-3 (-399 (-548)) "failed") $) 79)) (-4172 (((-112) $) 81)) (-4161 (((-399 (-548)) $) 80)) (-2545 (($) 78) (($ $) 77)) (-1922 (($ $ $) 125)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 120)) (-1271 (((-112) $) 51)) (-3071 (($ $ $ $) 69)) (-3129 (($ $ $) 83)) (-3298 (((-112) $) 113)) (-4206 (($ $ $) 94)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 97)) (-2266 (((-112) $) 30)) (-3705 (((-112) $) 89)) (-3725 (((-3 $ "failed") $) 91)) (-3312 (((-112) $) 112)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 129)) (-3082 (($ $ $ $) 70)) (-1795 (($ $ $) 114)) (-3091 (($ $ $) 115)) (-2742 (($ $) 73)) (-3198 (($ $) 86)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3060 (($ $ $) 68)) (-3410 (($) 90 T CONST)) (-3595 (($ $) 75)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4185 (($ $) 95)) (-1915 (((-410 $) $) 48)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 127)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 121)) (-3718 (((-112) $) 88)) (-4077 (((-745) $) 123)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 124)) (-4050 (($ $ (-745)) 108) (($ $) 106)) (-2445 (($ $) 74)) (-2113 (($ $) 76)) (-2591 (((-548) $) 105) (((-524) $) 99) (((-861 (-548)) $) 98) (((-371) $) 93) (((-218) $) 92)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-548)) 104)) (-3835 (((-745)) 28)) (-3139 (((-112) $ $) 84)) (-3612 (($ $ $) 96)) (-3957 (($) 87)) (-3290 (((-112) $ $) 37)) (-3106 (($ $ $ $) 72)) (-1446 (($ $) 110)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-745)) 109) (($ $) 107)) (-2262 (((-112) $ $) 117)) (-2241 (((-112) $ $) 118)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 116)) (-2234 (((-112) $ $) 119)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-533) (-138)) (T -533)) -((-3705 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-3957 (*1 *1) (-4 *1 (-533))) (-3198 (*1 *1 *1) (-4 *1 (-533))) (-2970 (*1 *1 *1 *1) (-4 *1 (-533))) (-3139 (*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-3129 (*1 *1 *1 *1) (-4 *1 (-533))) (-3119 (*1 *1 *1 *1) (-4 *1 (-533))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) (-2545 (*1 *1) (-4 *1 (-533))) (-2545 (*1 *1 *1) (-4 *1 (-533))) (-2113 (*1 *1 *1) (-4 *1 (-533))) (-3595 (*1 *1 *1) (-4 *1 (-533))) (-2445 (*1 *1 *1) (-4 *1 (-533))) (-2742 (*1 *1 *1) (-4 *1 (-533))) (-3106 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3096 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3082 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3071 (*1 *1 *1 *1 *1) (-4 *1 (-533))) (-3060 (*1 *1 *1 *1) (-4 *1 (-533)))) -(-13 (-1176) (-299) (-794) (-226) (-593 (-548)) (-1007 (-548)) (-615 (-548)) (-593 (-524)) (-593 (-861 (-548))) (-855 (-548)) (-141) (-991) (-145) (-1111) (-10 -8 (-15 -3705 ((-112) $)) (-15 -3718 ((-112) $)) (-6 -4326) (-15 -3957 ($)) (-15 -3198 ($ $)) (-15 -2970 ($ $ $)) (-15 -3139 ((-112) $ $)) (-15 -3129 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $)) (-15 -2545 ($)) (-15 -2545 ($ $)) (-15 -2113 ($ $)) (-15 -3595 ($ $)) (-15 -2445 ($ $)) (-15 -2742 ($ $)) (-15 -3106 ($ $ $ $)) (-15 -3096 ($ $ $ $)) (-15 -3082 ($ $ $ $)) (-15 -3071 ($ $ $ $)) (-15 -3060 ($ $ $)) (-6 -4325))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-141) . T) ((-169) . T) ((-593 (-218)) . T) ((-593 (-371)) . T) ((-593 (-524)) . T) ((-593 (-548)) . T) ((-593 (-861 (-548))) . T) ((-226) . T) ((-282) . T) ((-299) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-615 (-548)) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-794) . T) ((-819) . T) ((-821) . T) ((-855 (-548)) . T) ((-889) . T) ((-991) . T) ((-1007 (-548)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) . T) ((-1176) . T)) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-534 |#1| |#2| |#3|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327)))) (T -534)) -NIL -(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) -((-3149 (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))) 51))) -(((-535 |#1| |#2|) (-10 -7 (-15 -3149 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))))) (-13 (-821) (-540)) (-13 (-27) (-422 |#1|))) (T -535)) -((-3149 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1131 *3) (-1131 *3))) (-4 *3 (-13 (-27) (-422 *6))) (-4 *6 (-13 (-821) (-540))) (-5 *2 (-566 *3)) (-5 *1 (-535 *6 *3))))) -(-10 -7 (-15 -3149 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))))) -((-3170 (((-566 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3183 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3160 (((-566 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-536 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3160 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3170 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3183 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-821) (-540) (-1007 (-548))) (-13 (-27) (-422 |#1|)) (-1194 |#2|) (-1194 (-399 |#3|)) (-334 |#2| |#3| |#4|)) (T -536)) -((-3183 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-27) (-422 *4))) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-4 *7 (-1194 (-399 *6))) (-5 *1 (-536 *4 *5 *6 *7 *2)) (-4 *2 (-334 *5 *6 *7)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-27) (-422 *5))) (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-27) (-422 *5))) (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8))))) -(-10 -7 (-15 -3160 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3170 ((-566 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3183 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3222 (((-112) (-548) (-548)) 10)) (-3195 (((-548) (-548)) 7)) (-3208 (((-548) (-548) (-548)) 8))) -(((-537) (-10 -7 (-15 -3195 ((-548) (-548))) (-15 -3208 ((-548) (-548) (-548))) (-15 -3222 ((-112) (-548) (-548))))) (T -537)) -((-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-537)))) (-3208 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537))))) -(-10 -7 (-15 -3195 ((-548) (-548))) (-15 -3208 ((-548) (-548) (-548))) (-15 -3222 ((-112) (-548) (-548)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2094 ((|#1| $) 59)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-2074 (($ $) 89)) (-1940 (($ $) 72)) (-2857 ((|#1| $) 60)) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $) 71)) (-2054 (($ $) 88)) (-1918 (($ $) 73)) (-2098 (($ $) 87)) (-1963 (($ $) 74)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 67)) (-2375 (((-548) $) 66)) (-3859 (((-3 $ "failed") $) 32)) (-3254 (($ |#1| |#1|) 64)) (-3298 (((-112) $) 58)) (-1365 (($) 99)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 70)) (-3312 (((-112) $) 57)) (-1795 (($ $ $) 105)) (-3091 (($ $ $) 104)) (-3496 (($ $) 96)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3267 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-399 (-548))) 62)) (-3243 ((|#1| $) 61)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1900 (((-3 $ "failed") $ $) 40)) (-2458 (($ $) 97)) (-2110 (($ $) 86)) (-1973 (($ $) 75)) (-2086 (($ $) 85)) (-1952 (($ $) 76)) (-2065 (($ $) 84)) (-1929 (($ $) 77)) (-3233 (((-112) $ |#1|) 56)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-548)) 68)) (-3835 (((-745)) 28)) (-2145 (($ $) 95)) (-2006 (($ $) 83)) (-3290 (((-112) $ $) 37)) (-2122 (($ $) 94)) (-1986 (($ $) 82)) (-2170 (($ $) 93)) (-2029 (($ $) 81)) (-4026 (($ $) 92)) (-2040 (($ $) 80)) (-2158 (($ $) 91)) (-2017 (($ $) 79)) (-2132 (($ $) 90)) (-1996 (($ $) 78)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 102)) (-2241 (((-112) $ $) 101)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 103)) (-2234 (((-112) $ $) 100)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 98) (($ $ (-399 (-548))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-538 |#1|) (-138) (-13 (-396) (-1157))) (T -538)) -((-3267 (*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3254 (*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3267 (*1 *1 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) (-3233 (*1 *2 *1 *3) (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112))))) -(-13 (-443) (-821) (-1157) (-971) (-1007 (-548)) (-10 -8 (-6 -2439) (-15 -3267 ($ |t#1| |t#1|)) (-15 -3254 ($ |t#1| |t#1|)) (-15 -3267 ($ |t#1|)) (-15 -3267 ($ (-399 (-548)))) (-15 -3243 (|t#1| $)) (-15 -2857 (|t#1| $)) (-15 -2094 (|t#1| $)) (-15 -3298 ((-112) $)) (-15 -3312 ((-112) $)) (-15 -3233 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-276) . T) ((-282) . T) ((-443) . T) ((-483) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-971) . T) ((-1007 (-548)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) . T) ((-1160) . T)) -((-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 9)) (-3303 (($ $) 11)) (-3279 (((-112) $) 18)) (-3859 (((-3 $ "failed") $) 16)) (-3290 (((-112) $ $) 20))) -(((-539 |#1|) (-10 -8 (-15 -3279 ((-112) |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) (-540)) (T -539)) -NIL -(-10 -8 (-15 -3279 ((-112) |#1|)) (-15 -3290 ((-112) |#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3316 ((-2 (|:| -2265 |#1|) (|:| -4314 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-540) (-138)) (T -540)) -((-1900 (*1 *1 *1 *1) (|partial| -4 *1 (-540))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2265 *1) (|:| -4314 *1) (|:| |associate| *1))) (-4 *1 (-540)))) (-3303 (*1 *1 *1) (-4 *1 (-540))) (-3290 (*1 *2 *1 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112)))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112))))) -(-13 (-169) (-38 $) (-282) (-10 -8 (-15 -1900 ((-3 $ "failed") $ $)) (-15 -3316 ((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $)) (-15 -3303 ($ $)) (-15 -3290 ((-112) $ $)) (-15 -3279 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3343 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|)) 37)) (-3375 (((-566 |#2|) |#2| (-1135)) 62)) (-3358 (((-3 |#2| "failed") |#2| (-1135)) 152)) (-2212 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-591 |#2|) (-619 (-591 |#2|))) 155)) (-3329 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|) 40))) -(((-541 |#1| |#2|) (-10 -7 (-15 -3329 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|)) (-15 -3343 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|))) (-15 -3358 ((-3 |#2| "failed") |#2| (-1135))) (-15 -3375 ((-566 |#2|) |#2| (-1135))) (-15 -2212 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-591 |#2|) (-619 (-591 |#2|))))) (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -541)) -((-2212 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1135)) (-5 *6 (-619 (-591 *3))) (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *7))) (-4 *7 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-541 *7 *3)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-541 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-3358 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-3343 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-541 *6 *3)))) (-3329 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-541 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) -(-10 -7 (-15 -3329 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|)) (-15 -3343 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|))) (-15 -3358 ((-3 |#2| "failed") |#2| (-1135))) (-15 -3375 ((-566 |#2|) |#2| (-1135))) (-15 -2212 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-591 |#2|) (-619 (-591 |#2|))))) -((-2634 (((-410 |#1|) |#1|) 18)) (-1915 (((-410 |#1|) |#1|) 33)) (-2231 (((-3 |#1| "failed") |#1|) 44)) (-2222 (((-410 |#1|) |#1|) 51))) -(((-542 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -2222 ((-410 |#1|) |#1|)) (-15 -2231 ((-3 |#1| "failed") |#1|))) (-533)) (T -542)) -((-2231 (*1 *2 *2) (|partial| -12 (-5 *1 (-542 *2)) (-4 *2 (-533)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533))))) -(-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -2222 ((-410 |#1|) |#1|)) (-15 -2231 ((-3 |#1| "failed") |#1|))) -((-2239 (($) 9)) (-2559 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 35)) (-4043 (((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $) 32)) (-2539 (($ (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2260 (($ (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1657 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 39)) (-4223 (((-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2249 (((-1223)) 12))) -(((-543) (-10 -8 (-15 -2239 ($)) (-15 -2249 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2260 ($ (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2559 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4223 ((-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1657 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -543)) -((-1657 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-543)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-543)))) (-2559 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-543)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-543)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-543)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-5 *1 (-543)))) (-2249 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-543)))) (-2239 (*1 *1) (-5 *1 (-543)))) -(-10 -8 (-15 -2239 ($)) (-15 -2249 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2260 ($ (-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2559 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4223 ((-619 (-2 (|:| -3156 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1657 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-218))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3094 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) -((-1884 (((-1131 (-399 (-1131 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1131 |#2|)) 32)) (-2288 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) |#2| (-1131 |#2|)) 110)) (-2270 (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 80) (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|)) 52)) (-2279 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-399 (-1131 |#2|))) 87) (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1131 |#2|)) 109)) (-2297 (((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|)) 111)) (-2307 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))) 128 (|has| |#3| (-630 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|)) 127 (|has| |#3| (-630 |#2|)))) (-2036 ((|#2| (-1131 (-399 (-1131 |#2|))) (-591 |#2|) |#2|) 50)) (-2050 (((-1131 (-399 (-1131 |#2|))) (-1131 |#2|) (-591 |#2|)) 31))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1131 |#2|))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) |#2| (-1131 |#2|))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -1884 ((-1131 (-399 (-1131 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1131 |#2|))) (-15 -2036 (|#2| (-1131 (-399 (-1131 |#2|))) (-591 |#2|) |#2|)) (-15 -2050 ((-1131 (-399 (-1131 |#2|))) (-1131 |#2|) (-591 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))))) |%noBranch|)) (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548))) (-13 (-422 |#1|) (-27) (-1157)) (-1063)) (T -544)) -((-2307 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-399 (-1131 *4))) (-4 *4 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2307 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1131 *4)) (-4 *4 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-1131 (-399 (-1131 *6)))) (-5 *1 (-544 *5 *6 *7)) (-5 *3 (-1131 *6)) (-4 *7 (-1063)))) (-2036 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1131 (-399 (-1131 *2)))) (-5 *4 (-591 *2)) (-4 *2 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-544 *5 *2 *6)) (-4 *6 (-1063)))) (-1884 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-1131 (-399 (-1131 *3)))) (-5 *1 (-544 *6 *3 *7)) (-5 *5 (-1131 *3)) (-4 *7 (-1063)))) (-2297 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-399 (-1131 *2))) (-4 *2 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063)))) (-2297 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-1131 *2)) (-4 *2 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063)))) (-2288 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-5 *6 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063)))) (-2288 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1131 *3)) (-4 *3 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063)))) (-2279 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) (-2279 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) (-2270 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) (-2270 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063))))) -(-10 -7 (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2270 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| |#2| (-1131 |#2|))) (-15 -2279 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2| (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) |#2| (-1131 |#2|))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|))) (-15 -2297 ((-3 |#2| "failed") |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-591 |#2|) |#2| (-399 (-1131 |#2|)))) (-15 -1884 ((-1131 (-399 (-1131 |#2|))) |#2| (-591 |#2|) (-591 |#2|) (-1131 |#2|))) (-15 -2036 (|#2| (-1131 (-399 (-1131 |#2|))) (-591 |#2|) |#2|)) (-15 -2050 ((-1131 (-399 (-1131 |#2|))) (-1131 |#2|) (-591 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) |#2| (-1131 |#2|))) (-15 -2307 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-591 |#2|) |#2| (-399 (-1131 |#2|))))) |%noBranch|)) -((-2408 (((-548) (-548) (-745)) 66)) (-2398 (((-548) (-548)) 65)) (-2386 (((-548) (-548)) 64)) (-2376 (((-548) (-548)) 69)) (-3736 (((-548) (-548) (-548)) 49)) (-2366 (((-548) (-548) (-548)) 46)) (-2357 (((-399 (-548)) (-548)) 20)) (-2346 (((-548) (-548)) 21)) (-2337 (((-548) (-548)) 58)) (-3698 (((-548) (-548)) 32)) (-2328 (((-619 (-548)) (-548)) 63)) (-2318 (((-548) (-548) (-548) (-548) (-548)) 44)) (-3651 (((-399 (-548)) (-548)) 41))) -(((-545) (-10 -7 (-15 -3651 ((-399 (-548)) (-548))) (-15 -2318 ((-548) (-548) (-548) (-548) (-548))) (-15 -2328 ((-619 (-548)) (-548))) (-15 -3698 ((-548) (-548))) (-15 -2337 ((-548) (-548))) (-15 -2346 ((-548) (-548))) (-15 -2357 ((-399 (-548)) (-548))) (-15 -2366 ((-548) (-548) (-548))) (-15 -3736 ((-548) (-548) (-548))) (-15 -2376 ((-548) (-548))) (-15 -2386 ((-548) (-548))) (-15 -2398 ((-548) (-548))) (-15 -2408 ((-548) (-548) (-745))))) (T -545)) -((-2408 (*1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-745)) (-5 *1 (-545)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-3736 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2366 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2357 (*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2337 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-2328 (*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-545)) (-5 *3 (-548)))) (-2318 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548))))) -(-10 -7 (-15 -3651 ((-399 (-548)) (-548))) (-15 -2318 ((-548) (-548) (-548) (-548) (-548))) (-15 -2328 ((-619 (-548)) (-548))) (-15 -3698 ((-548) (-548))) (-15 -2337 ((-548) (-548))) (-15 -2346 ((-548) (-548))) (-15 -2357 ((-399 (-548)) (-548))) (-15 -2366 ((-548) (-548) (-548))) (-15 -3736 ((-548) (-548) (-548))) (-15 -2376 ((-548) (-548))) (-15 -2386 ((-548) (-548))) (-15 -2398 ((-548) (-548))) (-15 -2408 ((-548) (-548) (-745)))) -((-2418 (((-2 (|:| |answer| |#4|) (|:| -1693 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2418 ((-2 (|:| |answer| |#4|) (|:| -1693 |#4|)) |#4| (-1 |#2| |#2|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -546)) -((-2418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-4 *7 (-1194 (-399 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1693 *3))) (-5 *1 (-546 *5 *6 *7 *3)) (-4 *3 (-334 *5 *6 *7))))) -(-10 -7 (-15 -2418 ((-2 (|:| |answer| |#4|) (|:| -1693 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2418 (((-2 (|:| |answer| (-399 |#2|)) (|:| -1693 (-399 |#2|)) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)) 18))) -(((-547 |#1| |#2|) (-10 -7 (-15 -2418 ((-2 (|:| |answer| (-399 |#2|)) (|:| -1693 (-399 |#2|)) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)))) (-355) (-1194 |#1|)) (T -547)) -((-2418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |answer| (-399 *6)) (|:| -1693 (-399 *6)) (|:| |specpart| (-399 *6)) (|:| |polypart| *6))) (-5 *1 (-547 *5 *6)) (-5 *3 (-399 *6))))) -(-10 -7 (-15 -2418 ((-2 (|:| |answer| (-399 |#2|)) (|:| -1693 (-399 |#2|)) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 25)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 88)) (-3303 (($ $) 89)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) 43)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) 82)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL)) (-2375 (((-548) $) NIL)) (-1945 (($ $ $) 81)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 62) (((-663 (-548)) (-663 $)) 58)) (-3859 (((-3 $ "failed") $) 85)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($) 64) (($ $) 65)) (-1922 (($ $ $) 80)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) 55)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) 26)) (-3705 (((-112) $) 75)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) 35)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) 44)) (-1795 (($ $ $) 77)) (-3091 (($ $ $) 76)) (-2742 (($ $) NIL)) (-3198 (($ $) 41)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) 54)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) 31)) (-3932 (((-1082) $) 34)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 119)) (-3587 (($ $ $) 86) (($ (-619 $)) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) 105)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) 84)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 79)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2445 (($ $) 32)) (-2113 (($ $) 30)) (-2591 (((-548) $) 40) (((-524) $) 52) (((-861 (-548)) $) NIL) (((-371) $) 47) (((-218) $) 49) (((-1118) $) 53)) (-3743 (((-832) $) 38) (($ (-548)) 39) (($ $) NIL) (($ (-548)) 39)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) 29)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) 42)) (-1446 (($ $) 63)) (-3107 (($) 27 T CONST)) (-3118 (($) 28 T CONST)) (-2739 (((-1118) $) 20) (((-1118) $ (-112)) 22) (((-1223) (-796) $) 23) (((-1223) (-796) $ (-112)) 24)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 66)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 67)) (-2299 (($ $) 68) (($ $ $) 70)) (-2290 (($ $ $) 69)) (** (($ $ (-890)) NIL) (($ $ (-745)) 74)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 72) (($ $ $) 71))) -(((-548) (-13 (-533) (-593 (-1118)) (-802) (-10 -8 (-15 -2545 ($ $)) (-6 -4314) (-6 -4319) (-6 -4315) (-6 -4309)))) (T -548)) -((-2545 (*1 *1 *1) (-5 *1 (-548)))) -(-13 (-533) (-593 (-1118)) (-802) (-10 -8 (-15 -2545 ($ $)) (-6 -4314) (-6 -4319) (-6 -4315) (-6 -4309))) -((-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028)) 108) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743)) 110)) (-3810 (((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1135)) 172) (((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1118)) 171) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371) (-1028)) 176) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371)) 177) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371)) 178) (((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371))))) 179) (((-1004) (-308 (-371)) (-1058 (-814 (-371)))) 167) (((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371)) 166) (((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371)) 162) (((-1004) (-743)) 155) (((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371) (-1028)) 161))) -(((-549) (-10 -7 (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371) (-1028))) (-15 -3810 ((-1004) (-743))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371) (-1028))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1118))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1135))))) (T -549)) -((-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) (-5 *5 (-1135)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) (-5 *5 (-1118)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-743)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *1 (-549)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-549)))) (-3810 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549))))) -(-10 -7 (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371) (-1028))) (-15 -3810 ((-1004) (-743))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-1058 (-814 (-371))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371))) (-15 -3810 ((-1004) (-308 (-371)) (-619 (-1058 (-814 (-371)))) (-371) (-371) (-1028))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1118))) (-15 -3810 ((-3 (-1004) "failed") (-308 (-371)) (-1056 (-814 (-371))) (-1135)))) -((-2450 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|)) 184)) (-2427 (((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|)) 98)) (-2437 (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|) 180)) (-2462 (((-3 |#2| "failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135))) 189)) (-2473 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1135)) 197 (|has| |#3| (-630 |#2|))))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2437 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2450 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|))) (-15 -2462 ((-3 |#2| "failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2473 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1135))) |%noBranch|)) (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548))) (-13 (-422 |#1|) (-27) (-1157)) (-1063)) (T -550)) -((-2473 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-591 *4)) (-5 *6 (-1135)) (-4 *4 (-13 (-422 *7) (-27) (-1157))) (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2462 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-591 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-4 *2 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1063)))) (-2450 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1063)))) (-2437 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063)))) (-2427 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *5) (-27) (-1157))) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) (-5 *2 (-566 *3)) (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063))))) -(-10 -7 (-15 -2427 ((-566 |#2|) |#2| (-591 |#2|) (-591 |#2|))) (-15 -2437 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-591 |#2|) (-591 |#2|) |#2|)) (-15 -2450 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-591 |#2|) (-591 |#2|) (-619 |#2|))) (-15 -2462 ((-3 |#2| "failed") |#2| |#2| |#2| (-591 |#2|) (-591 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2473 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2877 (-619 |#2|))) |#3| |#2| (-591 |#2|) (-591 |#2|) (-1135))) |%noBranch|)) -((-2483 (((-2 (|:| -3886 |#2|) (|:| |nconst| |#2|)) |#2| (-1135)) 64)) (-2505 (((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|)) 164 (-12 (|has| |#2| (-1099)) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-855 (-548))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)) 147 (-12 (|has| |#2| (-605)) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-855 (-548)))))) (-2495 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)) 148 (-12 (|has| |#2| (-605)) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-855 (-548))))))) -(((-551 |#1| |#2|) (-10 -7 (-15 -2483 ((-2 (|:| -3886 |#2|) (|:| |nconst| |#2|)) |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -2495 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) (-15 -2505 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) (IF (|has| |#2| (-1099)) (-15 -2505 ((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-821) (-1007 (-548)) (-443) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -551)) -((-2505 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1135)) (-5 *4 (-814 *2)) (-4 *2 (-1099)) (-4 *2 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *1 (-551 *5 *2)))) (-2505 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-2483 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) (-5 *2 (-2 (|:| -3886 *3) (|:| |nconst| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) -(-10 -7 (-15 -2483 ((-2 (|:| -3886 |#2|) (|:| |nconst| |#2|)) |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -2495 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) (-15 -2505 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) (IF (|has| |#2| (-1099)) (-15 -2505 ((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2536 (((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-619 (-399 |#2|))) 41)) (-3810 (((-566 (-399 |#2|)) (-399 |#2|)) 28)) (-2514 (((-3 (-399 |#2|) "failed") (-399 |#2|)) 17)) (-2524 (((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-399 |#2|)) 48))) -(((-552 |#1| |#2|) (-10 -7 (-15 -3810 ((-566 (-399 |#2|)) (-399 |#2|))) (-15 -2514 ((-3 (-399 |#2|) "failed") (-399 |#2|))) (-15 -2524 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-399 |#2|))) (-15 -2536 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-619 (-399 |#2|))))) (-13 (-355) (-145) (-1007 (-548))) (-1194 |#1|)) (T -552)) -((-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-619 (-399 *6))) (-5 *3 (-399 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-552 *5 *6)))) (-2524 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -1699 (-399 *5)) (|:| |coeff| (-399 *5)))) (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5)))) (-2514 (*1 *2 *2) (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145) (-1007 (-548)))) (-5 *1 (-552 *3 *4)))) (-3810 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-566 (-399 *5))) (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5))))) -(-10 -7 (-15 -3810 ((-566 (-399 |#2|)) (-399 |#2|))) (-15 -2514 ((-3 (-399 |#2|) "failed") (-399 |#2|))) (-15 -2524 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-399 |#2|))) (-15 -2536 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-619 (-399 |#2|))))) -((-2549 (((-3 (-548) "failed") |#1|) 14)) (-2624 (((-112) |#1|) 13)) (-3829 (((-548) |#1|) 9))) -(((-553 |#1|) (-10 -7 (-15 -3829 ((-548) |#1|)) (-15 -2624 ((-112) |#1|)) (-15 -2549 ((-3 (-548) "failed") |#1|))) (-1007 (-548))) (T -553)) -((-2549 (*1 *2 *3) (|partial| -12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2)))) (-2624 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-553 *3)) (-4 *3 (-1007 (-548))))) (-3829 (*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2))))) -(-10 -7 (-15 -3829 ((-548) |#1|)) (-15 -2624 ((-112) |#1|)) (-15 -2549 ((-3 (-548) "failed") |#1|))) -((-2578 (((-3 (-2 (|:| |mainpart| (-399 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 (-921 |#1|))) (|:| |logand| (-399 (-921 |#1|))))))) "failed") (-399 (-921 |#1|)) (-1135) (-619 (-399 (-921 |#1|)))) 48)) (-2560 (((-566 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-1135)) 28)) (-2569 (((-3 (-399 (-921 |#1|)) "failed") (-399 (-921 |#1|)) (-1135)) 23)) (-2587 (((-3 (-2 (|:| -1699 (-399 (-921 |#1|))) (|:| |coeff| (-399 (-921 |#1|)))) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))) 35))) -(((-554 |#1|) (-10 -7 (-15 -2560 ((-566 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -2569 ((-3 (-399 (-921 |#1|)) "failed") (-399 (-921 |#1|)) (-1135))) (-15 -2578 ((-3 (-2 (|:| |mainpart| (-399 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 (-921 |#1|))) (|:| |logand| (-399 (-921 |#1|))))))) "failed") (-399 (-921 |#1|)) (-1135) (-619 (-399 (-921 |#1|))))) (-15 -2587 ((-3 (-2 (|:| -1699 (-399 (-921 |#1|))) (|:| |coeff| (-399 (-921 |#1|)))) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))))) (-13 (-540) (-1007 (-548)) (-145))) (T -554)) -((-2587 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) (-5 *2 (-2 (|:| -1699 (-399 (-921 *5))) (|:| |coeff| (-399 (-921 *5))))) (-5 *1 (-554 *5)) (-5 *3 (-399 (-921 *5))))) (-2578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 (-399 (-921 *6)))) (-5 *3 (-399 (-921 *6))) (-4 *6 (-13 (-540) (-1007 (-548)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6)))) (-2569 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-1007 (-548)) (-145))) (-5 *1 (-554 *4)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) (-5 *2 (-566 (-399 (-921 *5)))) (-5 *1 (-554 *5)) (-5 *3 (-399 (-921 *5)))))) -(-10 -7 (-15 -2560 ((-566 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -2569 ((-3 (-399 (-921 |#1|)) "failed") (-399 (-921 |#1|)) (-1135))) (-15 -2578 ((-3 (-2 (|:| |mainpart| (-399 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 (-921 |#1|))) (|:| |logand| (-399 (-921 |#1|))))))) "failed") (-399 (-921 |#1|)) (-1135) (-619 (-399 (-921 |#1|))))) (-15 -2587 ((-3 (-2 (|:| -1699 (-399 (-921 |#1|))) (|:| |coeff| (-399 (-921 |#1|)))) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))))) -((-3730 (((-112) $ $) 58)) (-3324 (((-112) $) 36)) (-2094 ((|#1| $) 30)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) 62)) (-2074 (($ $) 122)) (-1940 (($ $) 102)) (-2857 ((|#1| $) 28)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL)) (-2054 (($ $) 124)) (-1918 (($ $) 98)) (-2098 (($ $) 126)) (-1963 (($ $) 106)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) 77)) (-2375 (((-548) $) 79)) (-3859 (((-3 $ "failed") $) 61)) (-3254 (($ |#1| |#1|) 26)) (-3298 (((-112) $) 33)) (-1365 (($) 88)) (-2266 (((-112) $) 43)) (-2154 (($ $ (-548)) NIL)) (-3312 (((-112) $) 34)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3496 (($ $) 90)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3267 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-399 (-548))) 76)) (-3243 ((|#1| $) 27)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) 64) (($ (-619 $)) NIL)) (-1900 (((-3 $ "failed") $ $) 63)) (-2458 (($ $) 92)) (-2110 (($ $) 130)) (-1973 (($ $) 104)) (-2086 (($ $) 132)) (-1952 (($ $) 108)) (-2065 (($ $) 128)) (-1929 (($ $) 100)) (-3233 (((-112) $ |#1|) 31)) (-3743 (((-832) $) 84) (($ (-548)) 66) (($ $) NIL) (($ (-548)) 66)) (-3835 (((-745)) 86)) (-2145 (($ $) 144)) (-2006 (($ $) 114)) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) 142)) (-1986 (($ $) 110)) (-2170 (($ $) 140)) (-2029 (($ $) 120)) (-4026 (($ $) 138)) (-2040 (($ $) 118)) (-2158 (($ $) 136)) (-2017 (($ $) 116)) (-2132 (($ $) 134)) (-1996 (($ $) 112)) (-3107 (($) 21 T CONST)) (-3118 (($) 10 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 37)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 35)) (-2299 (($ $) 41) (($ $ $) 42)) (-2290 (($ $ $) 40)) (** (($ $ (-890)) 54) (($ $ (-745)) NIL) (($ $ $) 94) (($ $ (-399 (-548))) 146)) (* (($ (-890) $) 51) (($ (-745) $) NIL) (($ (-548) $) 50) (($ $ $) 48))) -(((-555 |#1|) (-538 |#1|) (-13 (-396) (-1157))) (T -555)) -NIL -(-538 |#1|) -((-4039 (((-3 (-619 (-1131 (-548))) "failed") (-619 (-1131 (-548))) (-1131 (-548))) 24))) -(((-556) (-10 -7 (-15 -4039 ((-3 (-619 (-1131 (-548))) "failed") (-619 (-1131 (-548))) (-1131 (-548)))))) (T -556)) -((-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 (-548)))) (-5 *3 (-1131 (-548))) (-5 *1 (-556))))) -(-10 -7 (-15 -4039 ((-3 (-619 (-1131 (-548))) "failed") (-619 (-1131 (-548))) (-1131 (-548))))) -((-2598 (((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-1135)) 19)) (-2627 (((-619 (-591 |#2|)) (-619 |#2|) (-1135)) 23)) (-1434 (((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-619 (-591 |#2|))) 11)) (-2636 ((|#2| |#2| (-1135)) 54 (|has| |#1| (-540)))) (-2647 ((|#2| |#2| (-1135)) 78 (-12 (|has| |#2| (-276)) (|has| |#1| (-443))))) (-2617 (((-591 |#2|) (-591 |#2|) (-619 (-591 |#2|)) (-1135)) 25)) (-2608 (((-591 |#2|) (-619 (-591 |#2|))) 24)) (-2658 (((-566 |#2|) |#2| (-1135) (-1 (-566 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) 103 (-12 (|has| |#2| (-276)) (|has| |#2| (-605)) (|has| |#2| (-1007 (-1135))) (|has| |#1| (-593 (-861 (-548)))) (|has| |#1| (-443)) (|has| |#1| (-855 (-548))))))) -(((-557 |#1| |#2|) (-10 -7 (-15 -2598 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-1135))) (-15 -2608 ((-591 |#2|) (-619 (-591 |#2|)))) (-15 -2617 ((-591 |#2|) (-591 |#2|) (-619 (-591 |#2|)) (-1135))) (-15 -1434 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-619 (-591 |#2|)))) (-15 -2627 ((-619 (-591 |#2|)) (-619 |#2|) (-1135))) (IF (|has| |#1| (-540)) (-15 -2636 (|#2| |#2| (-1135))) |%noBranch|) (IF (|has| |#1| (-443)) (IF (|has| |#2| (-276)) (PROGN (-15 -2647 (|#2| |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1135))) (-15 -2658 ((-566 |#2|) |#2| (-1135) (-1 (-566 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-821) (-422 |#1|)) (T -557)) -((-2658 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-566 *3) *3 (-1135))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1135))) (-4 *3 (-276)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-422 *7)) (-5 *4 (-1135)) (-4 *7 (-593 (-861 (-548)))) (-4 *7 (-443)) (-4 *7 (-855 (-548))) (-4 *7 (-821)) (-5 *2 (-566 *3)) (-5 *1 (-557 *7 *3)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-443)) (-4 *4 (-821)) (-5 *1 (-557 *4 *2)) (-4 *2 (-276)) (-4 *2 (-422 *4)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-540)) (-4 *4 (-821)) (-5 *1 (-557 *4 *2)) (-4 *2 (-422 *4)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-1135)) (-4 *6 (-422 *5)) (-4 *5 (-821)) (-5 *2 (-619 (-591 *6))) (-5 *1 (-557 *5 *6)))) (-1434 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-591 *4))) (-4 *4 (-422 *3)) (-4 *3 (-821)) (-5 *1 (-557 *3 *4)))) (-2617 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-591 *6))) (-5 *4 (-1135)) (-5 *2 (-591 *6)) (-4 *6 (-422 *5)) (-4 *5 (-821)) (-5 *1 (-557 *5 *6)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-619 (-591 *5))) (-4 *4 (-821)) (-5 *2 (-591 *5)) (-5 *1 (-557 *4 *5)) (-4 *5 (-422 *4)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-591 *5))) (-5 *3 (-1135)) (-4 *5 (-422 *4)) (-4 *4 (-821)) (-5 *1 (-557 *4 *5))))) -(-10 -7 (-15 -2598 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-1135))) (-15 -2608 ((-591 |#2|) (-619 (-591 |#2|)))) (-15 -2617 ((-591 |#2|) (-591 |#2|) (-619 (-591 |#2|)) (-1135))) (-15 -1434 ((-619 (-591 |#2|)) (-619 (-591 |#2|)) (-619 (-591 |#2|)))) (-15 -2627 ((-619 (-591 |#2|)) (-619 |#2|) (-1135))) (IF (|has| |#1| (-540)) (-15 -2636 (|#2| |#2| (-1135))) |%noBranch|) (IF (|has| |#1| (-443)) (IF (|has| |#2| (-276)) (PROGN (-15 -2647 (|#2| |#2| (-1135))) (IF (|has| |#1| (-593 (-861 (-548)))) (IF (|has| |#1| (-855 (-548))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1135))) (-15 -2658 ((-566 |#2|) |#2| (-1135) (-1 (-566 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2687 (((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-548) |#1| |#1|)) 172)) (-2712 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-399 |#2|))) 148)) (-2737 (((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-619 (-399 |#2|))) 145)) (-2746 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2669 (((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2729 (((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-399 |#2|)) 175)) (-2696 (((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-399 |#2|)) 178)) (-1645 (((-2 (|:| |ir| (-566 (-399 |#2|))) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|)) 84)) (-1653 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2721 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-619 (-399 |#2|))) 152)) (-2755 (((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|)) 137)) (-2677 (((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|)) 162)) (-2703 (((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-399 |#2|)) 183))) -(((-558 |#1| |#2|) (-10 -7 (-15 -2669 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2677 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -2687 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-548) |#1| |#1|))) (-15 -2696 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-399 |#2|))) (-15 -2703 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-399 |#2|))) (-15 -2712 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-399 |#2|)))) (-15 -2721 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-619 (-399 |#2|)))) (-15 -2729 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-399 |#2|))) (-15 -2737 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-619 (-399 |#2|)))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2755 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -1645 ((-2 (|:| |ir| (-566 (-399 |#2|))) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1653 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-355) (-1194 |#1|)) (T -558)) -((-1653 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-558 *5 *3)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |ir| (-566 (-399 *6))) (|:| |specpart| (-399 *6)) (|:| |polypart| *6))) (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6)))) (-2755 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112))) (-548) *4)) (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *1 (-558 *4 *5)))) (-2746 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-355)) (-5 *1 (-558 *4 *2)) (-4 *2 (-1194 *4)))) (-2737 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-399 *7))) (-4 *7 (-1194 *6)) (-5 *3 (-399 *7)) (-4 *6 (-355)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6 *7)))) (-2729 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -1699 (-399 *6)) (|:| |coeff| (-399 *6)))) (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6)))) (-2721 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3676 *7) (|:| |sol?| (-112))) (-548) *7)) (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) (-5 *3 (-399 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-558 *7 *8)))) (-2712 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1699 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) (-5 *3 (-399 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-558 *7 *8)))) (-2703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2696 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2687 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-619 *6) "failed") (-548) *6 *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2677 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7)))) (-2669 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) -(-10 -7 (-15 -2669 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2677 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -2687 ((-2 (|:| |answer| (-566 (-399 |#2|))) (|:| |a0| |#1|)) (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-548) |#1| |#1|))) (-15 -2696 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-399 |#2|))) (-15 -2703 ((-3 (-2 (|:| |answer| (-399 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-399 |#2|))) (-15 -2712 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-399 |#2|)))) (-15 -2721 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|))))))) (|:| |a0| |#1|)) "failed") (-399 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|) (-619 (-399 |#2|)))) (-15 -2729 ((-3 (-2 (|:| -1699 (-399 |#2|)) (|:| |coeff| (-399 |#2|))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-399 |#2|))) (-15 -2737 ((-3 (-2 (|:| |mainpart| (-399 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-399 |#2|)) (|:| |logand| (-399 |#2|)))))) "failed") (-399 |#2|) (-1 |#2| |#2|) (-619 (-399 |#2|)))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2755 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3676 |#1|) (|:| |sol?| (-112))) (-548) |#1|))) (-15 -1645 ((-2 (|:| |ir| (-566 (-399 |#2|))) (|:| |specpart| (-399 |#2|)) (|:| |polypart| |#2|)) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1653 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1662 (((-3 |#2| "failed") |#2| (-1135) (-1135)) 10))) -(((-559 |#1| |#2|) (-10 -7 (-15 -1662 ((-3 |#2| "failed") |#2| (-1135) (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-1099) (-29 |#1|))) (T -559)) -((-1662 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-1099) (-29 *4)))))) -(-10 -7 (-15 -1662 ((-3 |#2| "failed") |#2| (-1135) (-1135)))) -((-2072 (((-1082) $ (-128)) 12)) (-2081 (((-1082) $ (-129)) 11)) (-2778 (((-1082) $ (-128)) 7)) (-2786 (((-1082) $) 8)) (-3972 (($ $) 6))) -(((-560) (-138)) (T -560)) -NIL -(-13 (-517) (-831)) -(((-170) . T) ((-517) . T) ((-831) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $ (-548)) 66)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1294 (($ (-1131 (-548)) (-548)) 72)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 58)) (-1305 (($ $) 34)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1672 (((-745) $) 15)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 (((-548)) 29)) (-1317 (((-548) $) 32)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1656 (($ $ (-548)) 21)) (-1900 (((-3 $ "failed") $ $) 59)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) 16)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 61)) (-1340 (((-1116 (-548)) $) 18)) (-3330 (($ $) 23)) (-3743 (((-832) $) 87) (($ (-548)) 52) (($ $) NIL)) (-3835 (((-745)) 14)) (-3290 (((-112) $ $) NIL)) (-2439 (((-548) $ (-548)) 36)) (-3107 (($) 35 T CONST)) (-3118 (($) 19 T CONST)) (-2214 (((-112) $ $) 39)) (-2299 (($ $) 51) (($ $ $) 37)) (-2290 (($ $ $) 50)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 54) (($ $ $) 55))) -(((-561 |#1| |#2|) (-838 |#1|) (-548) (-112)) (T -561)) +((-1527 (((-1131 |#1|) (-745)) 76)) (-2890 (((-1218 |#1|) (-1218 |#1|) (-890)) 69)) (-2680 (((-1223) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) |#1|) 84)) (-1695 (((-1218 |#1|) (-1218 |#1|) (-745)) 36)) (-3229 (((-1218 |#1|) (-890)) 71)) (-1880 (((-1218 |#1|) (-1218 |#1|) (-547)) 24)) (-1416 (((-1131 |#1|) (-1218 |#1|)) 77)) (-4116 (((-1218 |#1|) (-890)) 95)) (-3908 (((-112) (-1218 |#1|)) 80)) (-1684 (((-1218 |#1|) (-1218 |#1|) (-890)) 62)) (-4213 (((-1131 |#1|) (-1218 |#1|)) 89)) (-1966 (((-890) (-1218 |#1|)) 59)) (-1976 (((-1218 |#1|) (-1218 |#1|)) 30)) (-3479 (((-1218 |#1|) (-890) (-890)) 97)) (-1786 (((-1218 |#1|) (-1218 |#1|) (-1082) (-1082)) 23)) (-1625 (((-1218 |#1|) (-1218 |#1|) (-745) (-1082)) 37)) (-4013 (((-1218 (-1218 |#1|)) (-890)) 94)) (-2497 (((-1218 |#1|) (-1218 |#1|) (-1218 |#1|)) 81)) (** (((-1218 |#1|) (-1218 |#1|) (-547)) 45)) (* (((-1218 |#1|) (-1218 |#1|) (-1218 |#1|)) 25))) +(((-517 |#1|) (-10 -7 (-15 -2680 ((-1223) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) |#1|)) (-15 -3229 ((-1218 |#1|) (-890))) (-15 -3479 ((-1218 |#1|) (-890) (-890))) (-15 -1416 ((-1131 |#1|) (-1218 |#1|))) (-15 -1527 ((-1131 |#1|) (-745))) (-15 -1625 ((-1218 |#1|) (-1218 |#1|) (-745) (-1082))) (-15 -1695 ((-1218 |#1|) (-1218 |#1|) (-745))) (-15 -1786 ((-1218 |#1|) (-1218 |#1|) (-1082) (-1082))) (-15 -1880 ((-1218 |#1|) (-1218 |#1|) (-547))) (-15 ** ((-1218 |#1|) (-1218 |#1|) (-547))) (-15 * ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -2497 ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -1684 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2890 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -1976 ((-1218 |#1|) (-1218 |#1|))) (-15 -1966 ((-890) (-1218 |#1|))) (-15 -3908 ((-112) (-1218 |#1|))) (-15 -4013 ((-1218 (-1218 |#1|)) (-890))) (-15 -4116 ((-1218 |#1|) (-890))) (-15 -4213 ((-1131 |#1|) (-1218 |#1|)))) (-340)) (T -517)) +((-4213 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-1131 *4)) (-5 *1 (-517 *4)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 *4))) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-517 *4)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-890)) (-5 *1 (-517 *4)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) (-2890 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-1684 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-2497 (*1 *2 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-547)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-1880 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-547)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-1786 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1082)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-1695 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-517 *4)))) (-1625 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1218 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-340)) (-5 *1 (-517 *5)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1131 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-1131 *4)) (-5 *1 (-517 *4)))) (-3479 (*1 *2 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-517 *4)) (-4 *4 (-340)))) (-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) (-4 *4 (-340)) (-5 *2 (-1223)) (-5 *1 (-517 *4))))) +(-10 -7 (-15 -2680 ((-1223) (-1218 (-619 (-2 (|:| -4152 |#1|) (|:| -3479 (-1082))))) |#1|)) (-15 -3229 ((-1218 |#1|) (-890))) (-15 -3479 ((-1218 |#1|) (-890) (-890))) (-15 -1416 ((-1131 |#1|) (-1218 |#1|))) (-15 -1527 ((-1131 |#1|) (-745))) (-15 -1625 ((-1218 |#1|) (-1218 |#1|) (-745) (-1082))) (-15 -1695 ((-1218 |#1|) (-1218 |#1|) (-745))) (-15 -1786 ((-1218 |#1|) (-1218 |#1|) (-1082) (-1082))) (-15 -1880 ((-1218 |#1|) (-1218 |#1|) (-547))) (-15 ** ((-1218 |#1|) (-1218 |#1|) (-547))) (-15 * ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -2497 ((-1218 |#1|) (-1218 |#1|) (-1218 |#1|))) (-15 -1684 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -2890 ((-1218 |#1|) (-1218 |#1|) (-890))) (-15 -1976 ((-1218 |#1|) (-1218 |#1|))) (-15 -1966 ((-890) (-1218 |#1|))) (-15 -3908 ((-112) (-1218 |#1|))) (-15 -4013 ((-1218 (-1218 |#1|)) (-890))) (-15 -4116 ((-1218 |#1|) (-890))) (-15 -4213 ((-1131 |#1|) (-1218 |#1|)))) +((-1421 (((-1 |#1| |#1|) |#1|) 11)) (-1260 (((-1 |#1| |#1|)) 10))) +(((-518 |#1|) (-10 -7 (-15 -1260 ((-1 |#1| |#1|))) (-15 -1421 ((-1 |#1| |#1|) |#1|))) (-13 (-701) (-25))) (T -518)) +((-1421 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25))))) (-1260 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25)))))) +(-10 -7 (-15 -1260 ((-1 |#1| |#1|))) (-15 -1421 ((-1 |#1| |#1|) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-1991 (($ $ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2229 (($ (-745) |#1|) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 (-745) (-745)) $) NIL)) (-1954 ((|#1| $) NIL)) (-2027 (((-745) $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 20)) (-3267 (($) NIL T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL))) +(((-519 |#1|) (-13 (-767) (-498 (-745) |#1|)) (-821)) (T -519)) +NIL +(-13 (-767) (-498 (-745) |#1|)) +((-3401 (((-619 |#2|) (-1131 |#1|) |#3|) 83)) (-3514 (((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-409 (-1131 |#1|)) (-1131 |#1|))) 100)) (-1361 (((-1131 |#1|) (-663 |#1|)) 95))) +(((-520 |#1| |#2| |#3|) (-10 -7 (-15 -1361 ((-1131 |#1|) (-663 |#1|))) (-15 -3401 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -3514 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-409 (-1131 |#1|)) (-1131 |#1|))))) (-354) (-354) (-13 (-354) (-819))) (T -520)) +((-3514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-409 (-1131 *6)) (-1131 *6))) (-4 *6 (-354)) (-5 *2 (-619 (-2 (|:| |outval| *7) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 *7)))))) (-5 *1 (-520 *6 *7 *4)) (-4 *7 (-354)) (-4 *4 (-13 (-354) (-819))))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *5)) (-4 *5 (-354)) (-5 *2 (-619 *6)) (-5 *1 (-520 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-354)) (-5 *2 (-1131 *4)) (-5 *1 (-520 *4 *5 *6)) (-4 *5 (-354)) (-4 *6 (-13 (-354) (-819)))))) +(-10 -7 (-15 -1361 ((-1131 |#1|) (-663 |#1|))) (-15 -3401 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -3514 ((-619 (-2 (|:| |outval| |#2|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#2|))))) (-663 |#1|) |#3| (-1 (-409 (-1131 |#1|)) (-1131 |#1|))))) +((-3030 (((-814 (-547))) 12)) (-3043 (((-814 (-547))) 14)) (-1425 (((-807 (-547))) 9))) +(((-521) (-10 -7 (-15 -1425 ((-807 (-547)))) (-15 -3030 ((-814 (-547)))) (-15 -3043 ((-814 (-547)))))) (T -521)) +((-3043 (*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521)))) (-3030 (*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521)))) (-1425 (*1 *2) (-12 (-5 *2 (-807 (-547))) (-5 *1 (-521))))) +(-10 -7 (-15 -1425 ((-807 (-547)))) (-15 -3030 ((-814 (-547)))) (-15 -3043 ((-814 (-547))))) +((-3840 (((-523) (-1135)) 15)) (-2845 ((|#1| (-523)) 20))) +(((-522 |#1|) (-10 -7 (-15 -3840 ((-523) (-1135))) (-15 -2845 (|#1| (-523)))) (-1172)) (T -522)) +((-2845 (*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-522 *2)) (-4 *2 (-1172)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-523)) (-5 *1 (-522 *4)) (-4 *4 (-1172))))) +(-10 -7 (-15 -3840 ((-523) (-1135))) (-15 -2845 (|#1| (-523)))) +((-3821 (((-112) $ $) NIL)) (-3635 (((-1118) $) 48)) (-3447 (((-112) $) 43)) (-3932 (((-1135) $) 44)) (-3540 (((-112) $) 41)) (-1512 (((-1118) $) 42)) (-3770 (($ (-1118)) 49)) (-3747 (((-112) $) NIL)) (-2798 (((-112) $) NIL)) (-3651 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-2708 (($ $ (-619 (-1135))) 20)) (-2845 (((-52) $) 22)) (-3350 (((-112) $) NIL)) (-3953 (((-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3556 (($ $ (-619 (-1135)) (-1135)) 61)) (-3256 (((-112) $) NIL)) (-1347 (((-217) $) NIL)) (-3928 (($ $) 38)) (-2961 (((-832) $) NIL)) (-2636 (((-112) $ $) NIL)) (-3329 (($ $ (-547)) NIL) (($ $ (-619 (-547))) NIL)) (-2179 (((-619 $) $) 28)) (-3532 (((-1135) (-619 $)) 50)) (-2829 (($ (-619 $)) 54) (($ (-1118)) NIL) (($ (-1135)) 18) (($ (-547)) 8) (($ (-217)) 25) (($ (-832)) NIL) (((-1067) $) 11) (($ (-1067)) 12)) (-2076 (((-1135) (-1135) (-619 $)) 53)) (-3834 (((-832) $) 46)) (-3535 (($ $) 52)) (-3524 (($ $) 51)) (-3745 (($ $ (-619 $)) 58)) (-2724 (((-112) $) 27)) (-3267 (($) 9 T CONST)) (-3277 (($) 10 T CONST)) (-2371 (((-112) $ $) 62)) (-2497 (($ $ $) 67)) (-2470 (($ $ $) 63)) (** (($ $ (-745)) 66) (($ $ (-547)) 65)) (* (($ $ $) 64)) (-3763 (((-547) $) NIL))) +(((-523) (-13 (-1066 (-1118) (-1135) (-547) (-217) (-832)) (-592 (-1067)) (-10 -8 (-15 -2845 ((-52) $)) (-15 -2829 ($ (-1067))) (-15 -3745 ($ $ (-619 $))) (-15 -3556 ($ $ (-619 (-1135)) (-1135))) (-15 -2708 ($ $ (-619 (-1135)))) (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 -2497 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-547))) (-15 0 ($) -2573) (-15 1 ($) -2573) (-15 -3928 ($ $)) (-15 -3635 ((-1118) $)) (-15 -3770 ($ (-1118))) (-15 -3532 ((-1135) (-619 $))) (-15 -2076 ((-1135) (-1135) (-619 $)))))) (T -523)) +((-2845 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-523)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-523)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-523))) (-5 *1 (-523)))) (-3556 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1135)) (-5 *1 (-523)))) (-2708 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-523)))) (-2470 (*1 *1 *1 *1) (-5 *1 (-523))) (* (*1 *1 *1 *1) (-5 *1 (-523))) (-2497 (*1 *1 *1 *1) (-5 *1 (-523))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-523)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-523)))) (-3267 (*1 *1) (-5 *1 (-523))) (-3277 (*1 *1) (-5 *1 (-523))) (-3928 (*1 *1 *1) (-5 *1 (-523))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-523)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-523)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-619 (-523))) (-5 *2 (-1135)) (-5 *1 (-523)))) (-2076 (*1 *2 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-523))) (-5 *1 (-523))))) +(-13 (-1066 (-1118) (-1135) (-547) (-217) (-832)) (-592 (-1067)) (-10 -8 (-15 -2845 ((-52) $)) (-15 -2829 ($ (-1067))) (-15 -3745 ($ $ (-619 $))) (-15 -3556 ($ $ (-619 (-1135)) (-1135))) (-15 -2708 ($ $ (-619 (-1135)))) (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 -2497 ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ (-547))) (-15 (-3267) ($) -2573) (-15 (-3277) ($) -2573) (-15 -3928 ($ $)) (-15 -3635 ((-1118) $)) (-15 -3770 ($ (-1118))) (-15 -3532 ((-1135) (-619 $))) (-15 -2076 ((-1135) (-1135) (-619 $))))) +((-2837 ((|#2| |#2|) 17)) (-3749 ((|#2| |#2|) 13)) (-2929 ((|#2| |#2| (-547) (-547)) 20)) (-2744 ((|#2| |#2|) 15))) +(((-524 |#1| |#2|) (-10 -7 (-15 -3749 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -2837 (|#2| |#2|)) (-15 -2929 (|#2| |#2| (-547) (-547)))) (-13 (-539) (-145)) (-1209 |#1|)) (T -524)) +((-2929 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-524 *4 *2)) (-4 *2 (-1209 *4)))) (-2837 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) (-4 *2 (-1209 *3)))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) (-4 *2 (-1209 *3)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) (-4 *2 (-1209 *3))))) +(-10 -7 (-15 -3749 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -2837 (|#2| |#2|)) (-15 -2929 (|#2| |#2| (-547) (-547)))) +((-3004 (((-619 (-285 (-921 |#2|))) (-619 |#2|) (-619 (-1135))) 32)) (-2824 (((-619 |#2|) (-921 |#1|) |#3|) 53) (((-619 |#2|) (-1131 |#1|) |#3|) 52)) (-2918 (((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|) 91))) +(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -2824 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2824 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -2918 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|)) (-15 -3004 ((-619 (-285 (-921 |#2|))) (-619 |#2|) (-619 (-1135))))) (-442) (-354) (-13 (-354) (-819))) (T -525)) +((-3004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1135))) (-4 *6 (-354)) (-5 *2 (-619 (-285 (-921 *6)))) (-5 *1 (-525 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-13 (-354) (-819))))) (-2918 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-442)) (-5 *2 (-619 (-619 *7))) (-5 *1 (-525 *6 *7 *5)) (-4 *7 (-354)) (-4 *5 (-13 (-354) (-819))))) (-2824 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))) (-2824 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819)))))) +(-10 -7 (-15 -2824 ((-619 |#2|) (-1131 |#1|) |#3|)) (-15 -2824 ((-619 |#2|) (-921 |#1|) |#3|)) (-15 -2918 ((-619 (-619 |#2|)) (-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)) |#3|)) (-15 -3004 ((-619 (-285 (-921 |#2|))) (-619 |#2|) (-619 (-1135))))) +((-2112 ((|#2| |#2| |#1|) 17)) (-3095 ((|#2| (-619 |#2|)) 27)) (-3190 ((|#2| (-619 |#2|)) 46))) +(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3095 (|#2| (-619 |#2|))) (-15 -3190 (|#2| (-619 |#2|))) (-15 -2112 (|#2| |#2| |#1|))) (-298) (-1194 |#1|) |#1| (-1 |#1| |#1| (-745))) (T -526)) +((-2112 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) (-5 *1 (-526 *3 *2 *4 *5)) (-4 *2 (-1194 *3)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-526 *4 *2 *5 *6)) (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745))))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-526 *4 *2 *5 *6)) (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) +(-10 -7 (-15 -3095 (|#2| (-619 |#2|))) (-15 -3190 (|#2| (-619 |#2|))) (-15 -2112 (|#2| |#2| |#1|))) +((-2106 (((-409 (-1131 |#4|)) (-1131 |#4|) (-1 (-409 (-1131 |#3|)) (-1131 |#3|))) 80) (((-409 |#4|) |#4| (-1 (-409 (-1131 |#3|)) (-1131 |#3|))) 169))) +(((-527 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 |#4|) |#4| (-1 (-409 (-1131 |#3|)) (-1131 |#3|)))) (-15 -2106 ((-409 (-1131 |#4|)) (-1131 |#4|) (-1 (-409 (-1131 |#3|)) (-1131 |#3|))))) (-821) (-767) (-13 (-298) (-145)) (-918 |#3| |#2| |#1|)) (T -527)) +((-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 (-1131 *7)) (-1131 *7))) (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-409 (-1131 *8))) (-5 *1 (-527 *5 *6 *7 *8)) (-5 *3 (-1131 *8)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 (-1131 *7)) (-1131 *7))) (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *2 (-409 *3)) (-5 *1 (-527 *5 *6 *7 *3)) (-4 *3 (-918 *7 *6 *5))))) +(-10 -7 (-15 -2106 ((-409 |#4|) |#4| (-1 (-409 (-1131 |#3|)) (-1131 |#3|)))) (-15 -2106 ((-409 (-1131 |#4|)) (-1131 |#4|) (-1 (-409 (-1131 |#3|)) (-1131 |#3|))))) +((-2837 ((|#4| |#4|) 74)) (-3749 ((|#4| |#4|) 70)) (-2929 ((|#4| |#4| (-547) (-547)) 76)) (-2744 ((|#4| |#4|) 72))) +(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3749 (|#4| |#4|)) (-15 -2744 (|#4| |#4|)) (-15 -2837 (|#4| |#4|)) (-15 -2929 (|#4| |#4| (-547) (-547)))) (-13 (-354) (-359) (-592 (-547))) (-1194 |#1|) (-699 |#1| |#2|) (-1209 |#3|)) (T -528)) +((-2929 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3))) (-4 *5 (-1194 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-528 *4 *5 *6 *2)) (-4 *2 (-1209 *6)))) (-2837 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1194 *3)) (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1209 *5))))) +(-10 -7 (-15 -3749 (|#4| |#4|)) (-15 -2744 (|#4| |#4|)) (-15 -2837 (|#4| |#4|)) (-15 -2929 (|#4| |#4| (-547) (-547)))) +((-2837 ((|#2| |#2|) 27)) (-3749 ((|#2| |#2|) 23)) (-2929 ((|#2| |#2| (-547) (-547)) 29)) (-2744 ((|#2| |#2|) 25))) +(((-529 |#1| |#2|) (-10 -7 (-15 -3749 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -2837 (|#2| |#2|)) (-15 -2929 (|#2| |#2| (-547) (-547)))) (-13 (-354) (-359) (-592 (-547))) (-1209 |#1|)) (T -529)) +((-2929 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1209 *4)))) (-2837 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1209 *3)))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1209 *3)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1209 *3))))) +(-10 -7 (-15 -3749 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -2837 (|#2| |#2|)) (-15 -2929 (|#2| |#2| (-547) (-547)))) +((-2237 (((-3 (-547) "failed") |#2| |#1| (-1 (-3 (-547) "failed") |#1|)) 14) (((-3 (-547) "failed") |#2| |#1| (-547) (-1 (-3 (-547) "failed") |#1|)) 13) (((-3 (-547) "failed") |#2| (-547) (-1 (-3 (-547) "failed") |#1|)) 26))) +(((-530 |#1| |#2|) (-10 -7 (-15 -2237 ((-3 (-547) "failed") |#2| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -2237 ((-3 (-547) "failed") |#2| |#1| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -2237 ((-3 (-547) "failed") |#2| |#1| (-1 (-3 (-547) "failed") |#1|)))) (-1016) (-1194 |#1|)) (T -530)) +((-2237 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1194 *4)))) (-2237 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1194 *4)))) (-2237 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-547) "failed") *5)) (-4 *5 (-1016)) (-5 *2 (-547)) (-5 *1 (-530 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -2237 ((-3 (-547) "failed") |#2| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -2237 ((-3 (-547) "failed") |#2| |#1| (-547) (-1 (-3 (-547) "failed") |#1|))) (-15 -2237 ((-3 (-547) "failed") |#2| |#1| (-1 (-3 (-547) "failed") |#1|)))) +((-1605 (($ $ $) 79)) (-3457 (((-409 $) $) 47)) (-2698 (((-3 (-547) "failed") $) 59)) (-2643 (((-547) $) 37)) (-2653 (((-3 (-398 (-547)) "failed") $) 74)) (-2543 (((-112) $) 24)) (-2430 (((-398 (-547)) $) 72)) (-3674 (((-112) $) 50)) (-2490 (($ $ $ $) 86)) (-3848 (((-112) $) 16)) (-1569 (($ $ $) 57)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 69)) (-3652 (((-3 $ "failed") $) 64)) (-2417 (($ $) 23)) (-2368 (($ $ $) 84)) (-3045 (($) 60)) (-2677 (($ $) 53)) (-2106 (((-409 $) $) 45)) (-3590 (((-112) $) 14)) (-2776 (((-745) $) 28)) (-3443 (($ $ (-745)) NIL) (($ $) 10)) (-2265 (($ $) 17)) (-2829 (((-547) $) NIL) (((-523) $) 36) (((-861 (-547)) $) 40) (((-370) $) 31) (((-217) $) 33)) (-2311 (((-745)) 8)) (-1837 (((-112) $ $) 20)) (-1884 (($ $ $) 55))) +(((-531 |#1|) (-10 -8 (-15 -2368 (|#1| |#1| |#1|)) (-15 -2490 (|#1| |#1| |#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -1605 (|#1| |#1| |#1|)) (-15 -1837 ((-112) |#1| |#1|)) (-15 -3590 ((-112) |#1|)) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -2829 ((-217) |#1|)) (-15 -2829 ((-370) |#1|)) (-15 -1569 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2829 ((-547) |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3848 ((-112) |#1|)) (-15 -2776 ((-745) |#1|)) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -3674 ((-112) |#1|)) (-15 -2311 ((-745)))) (-532)) (T -531)) +((-2311 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-531 *3)) (-4 *3 (-532))))) +(-10 -8 (-15 -2368 (|#1| |#1| |#1|)) (-15 -2490 (|#1| |#1| |#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -1605 (|#1| |#1| |#1|)) (-15 -1837 ((-112) |#1| |#1|)) (-15 -3590 ((-112) |#1|)) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -2829 ((-217) |#1|)) (-15 -2829 ((-370) |#1|)) (-15 -1569 (|#1| |#1| |#1|)) (-15 -2677 (|#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2829 ((-547) |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3848 ((-112) |#1|)) (-15 -2776 ((-745) |#1|)) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -3674 ((-112) |#1|)) (-15 -2311 ((-745)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-1605 (($ $ $) 82)) (-3013 (((-3 $ "failed") $ $) 19)) (-2702 (($ $ $ $) 71)) (-2745 (($ $) 49)) (-3457 (((-409 $) $) 50)) (-2873 (((-112) $ $) 122)) (-3807 (((-547) $) 111)) (-1302 (($ $ $) 85)) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 103)) (-2643 (((-547) $) 102)) (-2079 (($ $ $) 126)) (-4238 (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 101) (((-663 (-547)) (-663 $)) 100)) (-2537 (((-3 $ "failed") $) 32)) (-2653 (((-3 (-398 (-547)) "failed") $) 79)) (-2543 (((-112) $) 81)) (-2430 (((-398 (-547)) $) 80)) (-3229 (($) 78) (($ $) 77)) (-2052 (($ $ $) 125)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 120)) (-3674 (((-112) $) 51)) (-2490 (($ $ $ $) 69)) (-1723 (($ $ $) 83)) (-3848 (((-112) $) 113)) (-1569 (($ $ $) 94)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 97)) (-4114 (((-112) $) 30)) (-3466 (((-112) $) 89)) (-3652 (((-3 $ "failed") $) 91)) (-3937 (((-112) $) 112)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 129)) (-2605 (($ $ $ $) 70)) (-2847 (($ $ $) 114)) (-3563 (($ $ $) 115)) (-2417 (($ $) 73)) (-4202 (($ $) 86)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-2368 (($ $ $) 68)) (-3045 (($) 90 T CONST)) (-3771 (($ $) 75)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2677 (($ $) 95)) (-2106 (((-409 $) $) 48)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 127)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 121)) (-3590 (((-112) $) 88)) (-2776 (((-745) $) 123)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 124)) (-3443 (($ $ (-745)) 108) (($ $) 106)) (-1882 (($ $) 74)) (-2265 (($ $) 76)) (-2829 (((-547) $) 105) (((-523) $) 99) (((-861 (-547)) $) 98) (((-370) $) 93) (((-217) $) 92)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-547)) 104)) (-2311 (((-745)) 28)) (-1837 (((-112) $ $) 84)) (-1884 (($ $ $) 96)) (-1849 (($) 87)) (-1932 (((-112) $ $) 37)) (-1482 (($ $ $ $) 72)) (-2040 (($ $) 110)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-745)) 109) (($ $) 107)) (-2433 (((-112) $ $) 117)) (-2408 (((-112) $ $) 118)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 116)) (-2396 (((-112) $ $) 119)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-532) (-138)) (T -532)) +((-3466 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-1849 (*1 *1) (-4 *1 (-532))) (-4202 (*1 *1 *1) (-4 *1 (-532))) (-1302 (*1 *1 *1 *1) (-4 *1 (-532))) (-1837 (*1 *2 *1 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-1723 (*1 *1 *1 *1) (-4 *1 (-532))) (-1605 (*1 *1 *1 *1) (-4 *1 (-532))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-398 (-547))))) (-2653 (*1 *2 *1) (|partial| -12 (-4 *1 (-532)) (-5 *2 (-398 (-547))))) (-3229 (*1 *1) (-4 *1 (-532))) (-3229 (*1 *1 *1) (-4 *1 (-532))) (-2265 (*1 *1 *1) (-4 *1 (-532))) (-3771 (*1 *1 *1) (-4 *1 (-532))) (-1882 (*1 *1 *1) (-4 *1 (-532))) (-2417 (*1 *1 *1) (-4 *1 (-532))) (-1482 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-2702 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-2605 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-2490 (*1 *1 *1 *1 *1) (-4 *1 (-532))) (-2368 (*1 *1 *1 *1) (-4 *1 (-532)))) +(-13 (-1176) (-298) (-794) (-225) (-592 (-547)) (-1007 (-547)) (-615 (-547)) (-592 (-523)) (-592 (-861 (-547))) (-855 (-547)) (-141) (-991) (-145) (-1111) (-10 -8 (-15 -3466 ((-112) $)) (-15 -3590 ((-112) $)) (-6 -4327) (-15 -1849 ($)) (-15 -4202 ($ $)) (-15 -1302 ($ $ $)) (-15 -1837 ((-112) $ $)) (-15 -1723 ($ $ $)) (-15 -1605 ($ $ $)) (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $)) (-15 -3229 ($)) (-15 -3229 ($ $)) (-15 -2265 ($ $)) (-15 -3771 ($ $)) (-15 -1882 ($ $)) (-15 -2417 ($ $)) (-15 -1482 ($ $ $ $)) (-15 -2702 ($ $ $ $)) (-15 -2605 ($ $ $ $)) (-15 -2490 ($ $ $ $)) (-15 -2368 ($ $ $)) (-6 -4326))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-141) . T) ((-169) . T) ((-592 (-217)) . T) ((-592 (-370)) . T) ((-592 (-523)) . T) ((-592 (-547)) . T) ((-592 (-861 (-547))) . T) ((-225) . T) ((-281) . T) ((-298) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-615 (-547)) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-794) . T) ((-819) . T) ((-821) . T) ((-855 (-547)) . T) ((-889) . T) ((-991) . T) ((-1007 (-547)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) . T) ((-1176) . T)) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#2| $ |#1| |#2|) NIL)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) NIL)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3437 (((-619 |#1|) $) NIL)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1520 (((-619 |#1|) $) NIL)) (-1641 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-533 |#1| |#2| |#3|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) (-1063) (-1063) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328)))) (T -533)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) +((-1950 (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))) 51))) +(((-534 |#1| |#2|) (-10 -7 (-15 -1950 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))))) (-13 (-821) (-539)) (-13 (-27) (-421 |#1|))) (T -534)) +((-1950 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-590 *3)) (-5 *5 (-1 (-1131 *3) (-1131 *3))) (-4 *3 (-13 (-27) (-421 *6))) (-4 *6 (-13 (-821) (-539))) (-5 *2 (-565 *3)) (-5 *1 (-534 *6 *3))))) +(-10 -7 (-15 -1950 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-1 (-1131 |#2|) (-1131 |#2|))))) +((-2081 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2203 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2077 (((-565 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-535 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2077 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2081 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2203 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-821) (-539) (-1007 (-547))) (-13 (-27) (-421 |#1|)) (-1194 |#2|) (-1194 (-398 |#3|)) (-333 |#2| |#3| |#4|)) (T -535)) +((-2203 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-27) (-421 *4))) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-4 *7 (-1194 (-398 *6))) (-5 *1 (-535 *4 *5 *6 *7 *2)) (-4 *2 (-333 *5 *6 *7)))) (-2081 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-27) (-421 *5))) (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1194 (-398 *7))) (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3)) (-4 *3 (-333 *6 *7 *8)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-27) (-421 *5))) (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1194 (-398 *7))) (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3)) (-4 *3 (-333 *6 *7 *8))))) +(-10 -7 (-15 -2077 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2081 ((-565 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2203 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2576 (((-112) (-547) (-547)) 10)) (-2334 (((-547) (-547)) 7)) (-2453 (((-547) (-547) (-547)) 8))) +(((-536) (-10 -7 (-15 -2334 ((-547) (-547))) (-15 -2453 ((-547) (-547) (-547))) (-15 -2576 ((-112) (-547) (-547))))) (T -536)) +((-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-536)))) (-2453 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536))))) +(-10 -7 (-15 -2334 ((-547) (-547))) (-15 -2453 ((-547) (-547) (-547))) (-15 -2576 ((-112) (-547) (-547)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2326 ((|#1| $) 59)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-1648 (($ $) 89)) (-1498 (($ $) 72)) (-1991 ((|#1| $) 60)) (-3013 (((-3 $ "failed") $ $) 19)) (-2118 (($ $) 71)) (-1624 (($ $) 88)) (-1473 (($ $) 73)) (-1670 (($ $) 87)) (-1526 (($ $) 74)) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 67)) (-2643 (((-547) $) 66)) (-2537 (((-3 $ "failed") $) 32)) (-1571 (($ |#1| |#1|) 64)) (-3848 (((-112) $) 58)) (-1413 (($) 99)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 70)) (-3937 (((-112) $) 57)) (-2847 (($ $ $) 105)) (-3563 (($ $ $) 104)) (-3620 (($ $) 96)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1705 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-398 (-547))) 62)) (-1444 ((|#1| $) 61)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2025 (((-3 $ "failed") $ $) 40)) (-2703 (($ $) 97)) (-1681 (($ $) 86)) (-1539 (($ $) 75)) (-1659 (($ $) 85)) (-1513 (($ $) 76)) (-1635 (($ $) 84)) (-1488 (($ $) 77)) (-1340 (((-112) $ |#1|) 56)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-547)) 68)) (-2311 (((-745)) 28)) (-1717 (($ $) 95)) (-1574 (($ $) 83)) (-1932 (((-112) $ $) 37)) (-1693 (($ $) 94)) (-1550 (($ $) 82)) (-1741 (($ $) 93)) (-1597 (($ $) 81)) (-1918 (($ $) 92)) (-1610 (($ $) 80)) (-1729 (($ $) 91)) (-1586 (($ $) 79)) (-1706 (($ $) 90)) (-1563 (($ $) 78)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 102)) (-2408 (((-112) $ $) 101)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 103)) (-2396 (((-112) $ $) 100)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 98) (($ $ (-398 (-547))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-537 |#1|) (-138) (-13 (-395) (-1157))) (T -537)) +((-1705 (*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) (-1571 (*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) (-1705 (*1 *1 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) (-1705 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))) (-5 *2 (-112)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))) (-5 *2 (-112)))) (-1340 (*1 *2 *1 *3) (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))) (-5 *2 (-112))))) +(-13 (-442) (-821) (-1157) (-971) (-1007 (-547)) (-10 -8 (-6 -2645) (-15 -1705 ($ |t#1| |t#1|)) (-15 -1571 ($ |t#1| |t#1|)) (-15 -1705 ($ |t#1|)) (-15 -1705 ($ (-398 (-547)))) (-15 -1444 (|t#1| $)) (-15 -1991 (|t#1| $)) (-15 -2326 (|t#1| $)) (-15 -3848 ((-112) $)) (-15 -3937 ((-112) $)) (-15 -1340 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-275) . T) ((-281) . T) ((-442) . T) ((-482) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-821) . T) ((-971) . T) ((-1007 (-547)) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) . T) ((-1160) . T)) +((-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 9)) (-3881 (($ $) 11)) (-1832 (((-112) $) 18)) (-2537 (((-3 $ "failed") $) 16)) (-1932 (((-112) $ $) 20))) +(((-538 |#1|) (-10 -8 (-15 -1832 ((-112) |#1|)) (-15 -1932 ((-112) |#1| |#1|)) (-15 -3881 (|#1| |#1|)) (-15 -3977 ((-2 (|:| -4104 |#1|) (|:| -4315 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|))) (-539)) (T -538)) +NIL +(-10 -8 (-15 -1832 ((-112) |#1|)) (-15 -1932 ((-112) |#1| |#1|)) (-15 -3881 (|#1| |#1|)) (-15 -3977 ((-2 (|:| -4104 |#1|) (|:| -4315 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ $) 40)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-539) (-138)) (T -539)) +((-2025 (*1 *1 *1 *1) (|partial| -4 *1 (-539))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4104 *1) (|:| -4315 *1) (|:| |associate| *1))) (-4 *1 (-539)))) (-3881 (*1 *1 *1) (-4 *1 (-539))) (-1932 (*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))) +(-13 (-169) (-38 $) (-281) (-10 -8 (-15 -2025 ((-3 $ "failed") $ $)) (-15 -3977 ((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $)) (-15 -3881 ($ $)) (-15 -1932 ((-112) $ $)) (-15 -1832 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4199 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|)) 37)) (-3302 (((-565 |#2|) |#2| (-1135)) 62)) (-4303 (((-3 |#2| "failed") |#2| (-1135)) 152)) (-1821 (((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-590 |#2|) (-619 (-590 |#2|))) 155)) (-4094 (((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|) 40))) +(((-540 |#1| |#2|) (-10 -7 (-15 -4094 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|)) (-15 -4199 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|))) (-15 -4303 ((-3 |#2| "failed") |#2| (-1135))) (-15 -3302 ((-565 |#2|) |#2| (-1135))) (-15 -1821 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-590 |#2|) (-619 (-590 |#2|))))) (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -540)) +((-1821 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1135)) (-5 *6 (-619 (-590 *3))) (-5 *5 (-590 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *7))) (-4 *7 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) (-5 *1 (-540 *7 *3)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-540 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-4303 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-540 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) (-4199 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-540 *6 *3)))) (-4094 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(-10 -7 (-15 -4094 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) |#2|)) (-15 -4199 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1135) (-619 |#2|))) (-15 -4303 ((-3 |#2| "failed") |#2| (-1135))) (-15 -3302 ((-565 |#2|) |#2| (-1135))) (-15 -1821 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1135) (-590 |#2|) (-619 (-590 |#2|))))) +((-3457 (((-409 |#1|) |#1|) 18)) (-2106 (((-409 |#1|) |#1|) 33)) (-3847 (((-3 |#1| "failed") |#1|) 44)) (-1912 (((-409 |#1|) |#1|) 51))) +(((-541 |#1|) (-10 -7 (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -1912 ((-409 |#1|) |#1|)) (-15 -3847 ((-3 |#1| "failed") |#1|))) (-532)) (T -541)) +((-3847 (*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-532)))) (-1912 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))) (-3457 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532))))) +(-10 -7 (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -1912 ((-409 |#1|) |#1|)) (-15 -3847 ((-3 |#1| "failed") |#1|))) +((-3897 (($) 9)) (-2749 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 35)) (-3437 (((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $) 32)) (-1885 (($ (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-4065 (($ (-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1777 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 39)) (-1758 (((-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3978 (((-1223)) 12))) +(((-542) (-10 -8 (-15 -3897 ($)) (-15 -3978 ((-1223))) (-15 -3437 ((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -4065 ($ (-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1885 ($ (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2749 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -1758 ((-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1777 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -542)) +((-1777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-542)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-542)))) (-2749 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-542)))) (-1885 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-542)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-542)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-5 *1 (-542)))) (-3978 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-542)))) (-3897 (*1 *1) (-5 *1 (-542)))) +(-10 -8 (-15 -3897 ($)) (-15 -3978 ((-1223))) (-15 -3437 ((-619 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -4065 ($ (-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1885 ($ (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2749 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -1758 ((-619 (-2 (|:| -3326 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1777 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) +((-2067 (((-1131 (-398 (-1131 |#2|))) |#2| (-590 |#2|) (-590 |#2|) (-1131 |#2|)) 32)) (-4277 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) |#2| (-1131 |#2|)) 110)) (-4144 (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|))) 80) (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) |#2| (-1131 |#2|)) 52)) (-4201 (((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| (-590 |#2|) |#2| (-398 (-1131 |#2|))) 87) (((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| |#2| (-1131 |#2|)) 109)) (-3217 (((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-590 |#2|) |#2| (-398 (-1131 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|)) 111)) (-3310 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|))) 128 (|has| |#3| (-630 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) |#2| (-1131 |#2|)) 127 (|has| |#3| (-630 |#2|)))) (-2245 ((|#2| (-1131 (-398 (-1131 |#2|))) (-590 |#2|) |#2|) 50)) (-2531 (((-1131 (-398 (-1131 |#2|))) (-1131 |#2|) (-590 |#2|)) 31))) +(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -4144 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) |#2| (-1131 |#2|))) (-15 -4144 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -4201 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| |#2| (-1131 |#2|))) (-15 -4201 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -4277 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) |#2| (-1131 |#2|))) (-15 -4277 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -2067 ((-1131 (-398 (-1131 |#2|))) |#2| (-590 |#2|) (-590 |#2|) (-1131 |#2|))) (-15 -2245 (|#2| (-1131 (-398 (-1131 |#2|))) (-590 |#2|) |#2|)) (-15 -2531 ((-1131 (-398 (-1131 |#2|))) (-1131 |#2|) (-590 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -3310 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) |#2| (-1131 |#2|))) (-15 -3310 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|))))) |%noBranch|)) (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))) (-13 (-421 |#1|) (-27) (-1157)) (-1063)) (T -543)) +((-3310 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-590 *4)) (-5 *6 (-398 (-1131 *4))) (-4 *4 (-13 (-421 *7) (-27) (-1157))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-3310 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-590 *4)) (-5 *6 (-1131 *4)) (-4 *4 (-13 (-421 *7) (-27) (-1157))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *4 (-590 *6)) (-4 *6 (-13 (-421 *5) (-27) (-1157))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-1131 (-398 (-1131 *6)))) (-5 *1 (-543 *5 *6 *7)) (-5 *3 (-1131 *6)) (-4 *7 (-1063)))) (-2245 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1131 (-398 (-1131 *2)))) (-5 *4 (-590 *2)) (-4 *2 (-13 (-421 *5) (-27) (-1157))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-543 *5 *2 *6)) (-4 *6 (-1063)))) (-2067 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-1131 (-398 (-1131 *3)))) (-5 *1 (-543 *6 *3 *7)) (-5 *5 (-1131 *3)) (-4 *7 (-1063)))) (-3217 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-590 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-398 (-1131 *2))) (-4 *2 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063)))) (-3217 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-590 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-1131 *2)) (-4 *2 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063)))) (-4277 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-5 *6 (-398 (-1131 *3))) (-4 *3 (-13 (-421 *7) (-27) (-1157))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063)))) (-4277 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1131 *3)) (-4 *3 (-13 (-421 *7) (-27) (-1157))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063)))) (-4201 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1131 *3))) (-4 *3 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) (-4201 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-1131 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) (-4144 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1131 *3))) (-4 *3 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) (-4144 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-590 *3)) (-5 *5 (-1131 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063))))) +(-10 -7 (-15 -4144 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) |#2| (-1131 |#2|))) (-15 -4144 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -4201 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| |#2| (-1131 |#2|))) (-15 -4201 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2| (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -4277 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) |#2| (-1131 |#2|))) (-15 -4277 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) |#2| (-1131 |#2|))) (-15 -3217 ((-3 |#2| "failed") |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)) (-590 |#2|) |#2| (-398 (-1131 |#2|)))) (-15 -2067 ((-1131 (-398 (-1131 |#2|))) |#2| (-590 |#2|) (-590 |#2|) (-1131 |#2|))) (-15 -2245 (|#2| (-1131 (-398 (-1131 |#2|))) (-590 |#2|) |#2|)) (-15 -2531 ((-1131 (-398 (-1131 |#2|))) (-1131 |#2|) (-590 |#2|))) (IF (|has| |#3| (-630 |#2|)) (PROGN (-15 -3310 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) |#2| (-1131 |#2|))) (-15 -3310 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-590 |#2|) |#2| (-398 (-1131 |#2|))))) |%noBranch|)) +((-3100 (((-547) (-547) (-745)) 66)) (-3020 (((-547) (-547)) 65)) (-2933 (((-547) (-547)) 64)) (-2849 (((-547) (-547)) 69)) (-3734 (((-547) (-547) (-547)) 49)) (-2761 (((-547) (-547) (-547)) 46)) (-3794 (((-398 (-547)) (-547)) 20)) (-3708 (((-547) (-547)) 21)) (-3612 (((-547) (-547)) 58)) (-3414 (((-547) (-547)) 32)) (-3510 (((-619 (-547)) (-547)) 63)) (-3419 (((-547) (-547) (-547) (-547) (-547)) 44)) (-4110 (((-398 (-547)) (-547)) 41))) +(((-544) (-10 -7 (-15 -4110 ((-398 (-547)) (-547))) (-15 -3419 ((-547) (-547) (-547) (-547) (-547))) (-15 -3510 ((-619 (-547)) (-547))) (-15 -3414 ((-547) (-547))) (-15 -3612 ((-547) (-547))) (-15 -3708 ((-547) (-547))) (-15 -3794 ((-398 (-547)) (-547))) (-15 -2761 ((-547) (-547) (-547))) (-15 -3734 ((-547) (-547) (-547))) (-15 -2849 ((-547) (-547))) (-15 -2933 ((-547) (-547))) (-15 -3020 ((-547) (-547))) (-15 -3100 ((-547) (-547) (-745))))) (T -544)) +((-3100 (*1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-745)) (-5 *1 (-544)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-2849 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3734 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-2761 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3794 (*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-3510 (*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))) (-3419 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) (-4110 (*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547))))) +(-10 -7 (-15 -4110 ((-398 (-547)) (-547))) (-15 -3419 ((-547) (-547) (-547) (-547) (-547))) (-15 -3510 ((-619 (-547)) (-547))) (-15 -3414 ((-547) (-547))) (-15 -3612 ((-547) (-547))) (-15 -3708 ((-547) (-547))) (-15 -3794 ((-398 (-547)) (-547))) (-15 -2761 ((-547) (-547) (-547))) (-15 -3734 ((-547) (-547) (-547))) (-15 -2849 ((-547) (-547))) (-15 -2933 ((-547) (-547))) (-15 -3020 ((-547) (-547))) (-15 -3100 ((-547) (-547) (-745)))) +((-3188 (((-2 (|:| |answer| |#4|) (|:| -2791 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3188 ((-2 (|:| |answer| |#4|) (|:| -2791 |#4|)) |#4| (-1 |#2| |#2|)))) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -545)) +((-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-4 *7 (-1194 (-398 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2791 *3))) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-333 *5 *6 *7))))) +(-10 -7 (-15 -3188 ((-2 (|:| |answer| |#4|) (|:| -2791 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3188 (((-2 (|:| |answer| (-398 |#2|)) (|:| -2791 (-398 |#2|)) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)) 18))) +(((-546 |#1| |#2|) (-10 -7 (-15 -3188 ((-2 (|:| |answer| (-398 |#2|)) (|:| -2791 (-398 |#2|)) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)))) (-354) (-1194 |#1|)) (T -546)) +((-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |answer| (-398 *6)) (|:| -2791 (-398 *6)) (|:| |specpart| (-398 *6)) (|:| |polypart| *6))) (-5 *1 (-546 *5 *6)) (-5 *3 (-398 *6))))) +(-10 -7 (-15 -3188 ((-2 (|:| |answer| (-398 |#2|)) (|:| -2791 (-398 |#2|)) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 25)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 88)) (-3881 (($ $) 89)) (-1832 (((-112) $) NIL)) (-1605 (($ $ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2702 (($ $ $ $) 43)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL)) (-1302 (($ $ $) 82)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL)) (-2643 (((-547) $) NIL)) (-2079 (($ $ $) 81)) (-4238 (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 62) (((-663 (-547)) (-663 $)) 58)) (-2537 (((-3 $ "failed") $) 85)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL)) (-2543 (((-112) $) NIL)) (-2430 (((-398 (-547)) $) NIL)) (-3229 (($) 64) (($ $) 65)) (-2052 (($ $ $) 80)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2490 (($ $ $ $) NIL)) (-1723 (($ $ $) 55)) (-3848 (((-112) $) NIL)) (-1569 (($ $ $) NIL)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-4114 (((-112) $) 26)) (-3466 (((-112) $) 75)) (-3652 (((-3 $ "failed") $) NIL)) (-3937 (((-112) $) 35)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2605 (($ $ $ $) 44)) (-2847 (($ $ $) 77)) (-3563 (($ $ $) 76)) (-2417 (($ $) NIL)) (-4202 (($ $) 41)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) 54)) (-2368 (($ $ $) NIL)) (-3045 (($) NIL T CONST)) (-3771 (($ $) 31)) (-3979 (((-1082) $) 34)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 119)) (-3715 (($ $ $) 86) (($ (-619 $)) NIL)) (-2677 (($ $) NIL)) (-2106 (((-409 $) $) 105)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-2025 (((-3 $ "failed") $ $) 84)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3590 (((-112) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 79)) (-3443 (($ $ (-745)) NIL) (($ $) NIL)) (-1882 (($ $) 32)) (-2265 (($ $) 30)) (-2829 (((-547) $) 40) (((-523) $) 52) (((-861 (-547)) $) NIL) (((-370) $) 47) (((-217) $) 49) (((-1118) $) 53)) (-3834 (((-832) $) 38) (($ (-547)) 39) (($ $) NIL) (($ (-547)) 39)) (-2311 (((-745)) NIL)) (-1837 (((-112) $ $) NIL)) (-1884 (($ $ $) NIL)) (-1849 (($) 29)) (-1932 (((-112) $ $) NIL)) (-1482 (($ $ $ $) 42)) (-2040 (($ $) 63)) (-3267 (($) 27 T CONST)) (-3277 (($) 28 T CONST)) (-2083 (((-1118) $) 20) (((-1118) $ (-112)) 22) (((-1223) (-796) $) 23) (((-1223) (-796) $ (-112)) 24)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 66)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 67)) (-2484 (($ $) 68) (($ $ $) 70)) (-2470 (($ $ $) 69)) (** (($ $ (-890)) NIL) (($ $ (-745)) 74)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 72) (($ $ $) 71))) +(((-547) (-13 (-532) (-592 (-1118)) (-802) (-10 -8 (-15 -3229 ($ $)) (-6 -4315) (-6 -4320) (-6 -4316) (-6 -4310)))) (T -547)) +((-3229 (*1 *1 *1) (-5 *1 (-547)))) +(-13 (-532) (-592 (-1118)) (-802) (-10 -8 (-15 -3229 ($ $)) (-6 -4315) (-6 -4320) (-6 -4316) (-6 -4310))) +((-4283 (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028)) 108) (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743)) 110)) (-2069 (((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1135)) 172) (((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1118)) 171) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370) (-1028)) 176) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370)) 177) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370)) 178) (((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370))))) 179) (((-1004) (-307 (-370)) (-1058 (-814 (-370)))) 167) (((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370)) 166) (((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370)) 162) (((-1004) (-743)) 155) (((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370) (-1028)) 161))) +(((-548) (-10 -7 (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370) (-1028))) (-15 -2069 ((-1004) (-743))) (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370) (-1028))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -2069 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1118))) (-15 -2069 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1135))))) (T -548)) +((-2069 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370)))) (-5 *5 (-1135)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370)))) (-5 *5 (-1118)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-743)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *1 (-548)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-548)))) (-2069 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548))))) +(-10 -7 (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370) (-1028))) (-15 -2069 ((-1004) (-743))) (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-1058 (-814 (-370))))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370))) (-15 -2069 ((-1004) (-307 (-370)) (-619 (-1058 (-814 (-370)))) (-370) (-370) (-1028))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004))) (-743) (-1028))) (-15 -2069 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1118))) (-15 -2069 ((-3 (-1004) "failed") (-307 (-370)) (-1056 (-814 (-370))) (-1135)))) +((-2342 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|)) 184)) (-2098 (((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|)) 98)) (-2209 (((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2|) 180)) (-2463 (((-3 |#2| "failed") |#2| |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135))) 189)) (-2572 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-1135)) 197 (|has| |#3| (-630 |#2|))))) +(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2098 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|))) (-15 -2209 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2|)) (-15 -2342 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|))) (-15 -2463 ((-3 |#2| "failed") |#2| |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2572 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-1135))) |%noBranch|)) (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547))) (-13 (-421 |#1|) (-27) (-1157)) (-1063)) (T -549)) +((-2572 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-590 *4)) (-5 *6 (-1135)) (-4 *4 (-13 (-421 *7) (-27) (-1157))) (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) (-2463 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-590 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-4 *2 (-13 (-421 *5) (-27) (-1157))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1063)))) (-2342 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1157))) (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1063)))) (-2209 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1157))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063)))) (-2098 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1157))) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 (-565 *3)) (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063))))) +(-10 -7 (-15 -2098 ((-565 |#2|) |#2| (-590 |#2|) (-590 |#2|))) (-15 -2209 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-590 |#2|) (-590 |#2|) |#2|)) (-15 -2342 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-590 |#2|) (-590 |#2|) (-619 |#2|))) (-15 -2463 ((-3 |#2| "failed") |#2| |#2| |#2| (-590 |#2|) (-590 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1135)))) (IF (|has| |#3| (-630 |#2|)) (-15 -2572 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4013 (-619 |#2|))) |#3| |#2| (-590 |#2|) (-590 |#2|) (-1135))) |%noBranch|)) +((-2666 (((-2 (|:| -1422 |#2|) (|:| |nconst| |#2|)) |#2| (-1135)) 64)) (-1531 (((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|)) 164 (-12 (|has| |#2| (-1099)) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-855 (-547))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)) 147 (-12 (|has| |#2| (-605)) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-855 (-547)))))) (-1410 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)) 148 (-12 (|has| |#2| (-605)) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-855 (-547))))))) +(((-550 |#1| |#2|) (-10 -7 (-15 -2666 ((-2 (|:| -1422 |#2|) (|:| |nconst| |#2|)) |#2| (-1135))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -1410 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) (-15 -1531 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) (IF (|has| |#2| (-1099)) (-15 -1531 ((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-821) (-1007 (-547)) (-442) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -550)) +((-1531 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1135)) (-5 *4 (-814 *2)) (-4 *2 (-1099)) (-4 *2 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *1 (-550 *5 *2)))) (-1531 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-550 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-1410 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-550 *5 *3)) (-4 *3 (-605)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-2666 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) (-5 *2 (-2 (|:| -1422 *3) (|:| |nconst| *3))) (-5 *1 (-550 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(-10 -7 (-15 -2666 ((-2 (|:| -1422 |#2|) (|:| |nconst| |#2|)) |#2| (-1135))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (PROGN (IF (|has| |#2| (-605)) (PROGN (-15 -1410 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) (-15 -1531 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) (IF (|has| |#2| (-1099)) (-15 -1531 ((-3 |#2| "failed") |#2| (-1135) (-814 |#2|) (-814 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1852 (((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-619 (-398 |#2|))) 41)) (-2069 (((-565 (-398 |#2|)) (-398 |#2|)) 28)) (-1639 (((-3 (-398 |#2|) "failed") (-398 |#2|)) 17)) (-1747 (((-3 (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-398 |#2|)) 48))) +(((-551 |#1| |#2|) (-10 -7 (-15 -2069 ((-565 (-398 |#2|)) (-398 |#2|))) (-15 -1639 ((-3 (-398 |#2|) "failed") (-398 |#2|))) (-15 -1747 ((-3 (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-398 |#2|))) (-15 -1852 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-619 (-398 |#2|))))) (-13 (-354) (-145) (-1007 (-547))) (-1194 |#1|)) (T -551)) +((-1852 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-619 (-398 *6))) (-5 *3 (-398 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *5 *6)))) (-1747 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2848 (-398 *5)) (|:| |coeff| (-398 *5)))) (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5)))) (-1639 (*1 *2 *2) (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-354) (-145) (-1007 (-547)))) (-5 *1 (-551 *3 *4)))) (-2069 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1194 *4)) (-5 *2 (-565 (-398 *5))) (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5))))) +(-10 -7 (-15 -2069 ((-565 (-398 |#2|)) (-398 |#2|))) (-15 -1639 ((-3 (-398 |#2|) "failed") (-398 |#2|))) (-15 -1747 ((-3 (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-398 |#2|))) (-15 -1852 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-619 (-398 |#2|))))) +((-1948 (((-3 (-547) "failed") |#1|) 14)) (-3350 (((-112) |#1|) 13)) (-3953 (((-547) |#1|) 9))) +(((-552 |#1|) (-10 -7 (-15 -3953 ((-547) |#1|)) (-15 -3350 ((-112) |#1|)) (-15 -1948 ((-3 (-547) "failed") |#1|))) (-1007 (-547))) (T -552)) +((-1948 (*1 *2 *3) (|partial| -12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2)))) (-3350 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-552 *3)) (-4 *3 (-1007 (-547))))) (-3953 (*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2))))) +(-10 -7 (-15 -3953 ((-547) |#1|)) (-15 -3350 ((-112) |#1|)) (-15 -1948 ((-3 (-547) "failed") |#1|))) +((-4070 (((-3 (-2 (|:| |mainpart| (-398 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 (-921 |#1|))) (|:| |logand| (-398 (-921 |#1|))))))) "failed") (-398 (-921 |#1|)) (-1135) (-619 (-398 (-921 |#1|)))) 48)) (-3886 (((-565 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-1135)) 28)) (-3970 (((-3 (-398 (-921 |#1|)) "failed") (-398 (-921 |#1|)) (-1135)) 23)) (-4159 (((-3 (-2 (|:| -2848 (-398 (-921 |#1|))) (|:| |coeff| (-398 (-921 |#1|)))) "failed") (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|))) 35))) +(((-553 |#1|) (-10 -7 (-15 -3886 ((-565 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-1135))) (-15 -3970 ((-3 (-398 (-921 |#1|)) "failed") (-398 (-921 |#1|)) (-1135))) (-15 -4070 ((-3 (-2 (|:| |mainpart| (-398 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 (-921 |#1|))) (|:| |logand| (-398 (-921 |#1|))))))) "failed") (-398 (-921 |#1|)) (-1135) (-619 (-398 (-921 |#1|))))) (-15 -4159 ((-3 (-2 (|:| -2848 (-398 (-921 |#1|))) (|:| |coeff| (-398 (-921 |#1|)))) "failed") (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|))))) (-13 (-539) (-1007 (-547)) (-145))) (T -553)) +((-4159 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-1007 (-547)) (-145))) (-5 *2 (-2 (|:| -2848 (-398 (-921 *5))) (|:| |coeff| (-398 (-921 *5))))) (-5 *1 (-553 *5)) (-5 *3 (-398 (-921 *5))))) (-4070 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 (-398 (-921 *6)))) (-5 *3 (-398 (-921 *6))) (-4 *6 (-13 (-539) (-1007 (-547)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-553 *6)))) (-3970 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-1007 (-547)) (-145))) (-5 *1 (-553 *4)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-1007 (-547)) (-145))) (-5 *2 (-565 (-398 (-921 *5)))) (-5 *1 (-553 *5)) (-5 *3 (-398 (-921 *5)))))) +(-10 -7 (-15 -3886 ((-565 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-1135))) (-15 -3970 ((-3 (-398 (-921 |#1|)) "failed") (-398 (-921 |#1|)) (-1135))) (-15 -4070 ((-3 (-2 (|:| |mainpart| (-398 (-921 |#1|))) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 (-921 |#1|))) (|:| |logand| (-398 (-921 |#1|))))))) "failed") (-398 (-921 |#1|)) (-1135) (-619 (-398 (-921 |#1|))))) (-15 -4159 ((-3 (-2 (|:| -2848 (-398 (-921 |#1|))) (|:| |coeff| (-398 (-921 |#1|)))) "failed") (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|))))) +((-3821 (((-112) $ $) 58)) (-4046 (((-112) $) 36)) (-2326 ((|#1| $) 30)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) 62)) (-1648 (($ $) 122)) (-1498 (($ $) 102)) (-1991 ((|#1| $) 28)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $) NIL)) (-1624 (($ $) 124)) (-1473 (($ $) 98)) (-1670 (($ $) 126)) (-1526 (($ $) 106)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) 77)) (-2643 (((-547) $) 79)) (-2537 (((-3 $ "failed") $) 61)) (-1571 (($ |#1| |#1|) 26)) (-3848 (((-112) $) 33)) (-1413 (($) 88)) (-4114 (((-112) $) 43)) (-1311 (($ $ (-547)) NIL)) (-3937 (((-112) $) 34)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-3620 (($ $) 90)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1705 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-398 (-547))) 76)) (-1444 ((|#1| $) 27)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) 64) (($ (-619 $)) NIL)) (-2025 (((-3 $ "failed") $ $) 63)) (-2703 (($ $) 92)) (-1681 (($ $) 130)) (-1539 (($ $) 104)) (-1659 (($ $) 132)) (-1513 (($ $) 108)) (-1635 (($ $) 128)) (-1488 (($ $) 100)) (-1340 (((-112) $ |#1|) 31)) (-3834 (((-832) $) 84) (($ (-547)) 66) (($ $) NIL) (($ (-547)) 66)) (-2311 (((-745)) 86)) (-1717 (($ $) 144)) (-1574 (($ $) 114)) (-1932 (((-112) $ $) NIL)) (-1693 (($ $) 142)) (-1550 (($ $) 110)) (-1741 (($ $) 140)) (-1597 (($ $) 120)) (-1918 (($ $) 138)) (-1610 (($ $) 118)) (-1729 (($ $) 136)) (-1586 (($ $) 116)) (-1706 (($ $) 134)) (-1563 (($ $) 112)) (-3267 (($) 21 T CONST)) (-3277 (($) 10 T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 37)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 35)) (-2484 (($ $) 41) (($ $ $) 42)) (-2470 (($ $ $) 40)) (** (($ $ (-890)) 54) (($ $ (-745)) NIL) (($ $ $) 94) (($ $ (-398 (-547))) 146)) (* (($ (-890) $) 51) (($ (-745) $) NIL) (($ (-547) $) 50) (($ $ $) 48))) +(((-554 |#1|) (-537 |#1|) (-13 (-395) (-1157))) (T -554)) +NIL +(-537 |#1|) +((-3548 (((-3 (-619 (-1131 (-547))) "failed") (-619 (-1131 (-547))) (-1131 (-547))) 24))) +(((-555) (-10 -7 (-15 -3548 ((-3 (-619 (-1131 (-547))) "failed") (-619 (-1131 (-547))) (-1131 (-547)))))) (T -555)) +((-3548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 (-547)))) (-5 *3 (-1131 (-547))) (-5 *1 (-555))))) +(-10 -7 (-15 -3548 ((-3 (-619 (-1131 (-547))) "failed") (-619 (-1131 (-547))) (-1131 (-547))))) +((-4245 (((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-1135)) 19)) (-3384 (((-619 (-590 |#2|)) (-619 |#2|) (-1135)) 23)) (-1428 (((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-619 (-590 |#2|))) 11)) (-3475 ((|#2| |#2| (-1135)) 54 (|has| |#1| (-539)))) (-3589 ((|#2| |#2| (-1135)) 78 (-12 (|has| |#2| (-275)) (|has| |#1| (-442))))) (-3286 (((-590 |#2|) (-590 |#2|) (-619 (-590 |#2|)) (-1135)) 25)) (-1274 (((-590 |#2|) (-619 (-590 |#2|))) 24)) (-3694 (((-565 |#2|) |#2| (-1135) (-1 (-565 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135))) 103 (-12 (|has| |#2| (-275)) (|has| |#2| (-605)) (|has| |#2| (-1007 (-1135))) (|has| |#1| (-592 (-861 (-547)))) (|has| |#1| (-442)) (|has| |#1| (-855 (-547))))))) +(((-556 |#1| |#2|) (-10 -7 (-15 -4245 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-1135))) (-15 -1274 ((-590 |#2|) (-619 (-590 |#2|)))) (-15 -3286 ((-590 |#2|) (-590 |#2|) (-619 (-590 |#2|)) (-1135))) (-15 -1428 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-619 (-590 |#2|)))) (-15 -3384 ((-619 (-590 |#2|)) (-619 |#2|) (-1135))) (IF (|has| |#1| (-539)) (-15 -3475 (|#2| |#2| (-1135))) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-275)) (PROGN (-15 -3589 (|#2| |#2| (-1135))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1135))) (-15 -3694 ((-565 |#2|) |#2| (-1135) (-1 (-565 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-821) (-421 |#1|)) (T -556)) +((-3694 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-565 *3) *3 (-1135))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1135))) (-4 *3 (-275)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-421 *7)) (-5 *4 (-1135)) (-4 *7 (-592 (-861 (-547)))) (-4 *7 (-442)) (-4 *7 (-855 (-547))) (-4 *7 (-821)) (-5 *2 (-565 *3)) (-5 *1 (-556 *7 *3)))) (-3589 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-442)) (-4 *4 (-821)) (-5 *1 (-556 *4 *2)) (-4 *2 (-275)) (-4 *2 (-421 *4)))) (-3475 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-539)) (-4 *4 (-821)) (-5 *1 (-556 *4 *2)) (-4 *2 (-421 *4)))) (-3384 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-1135)) (-4 *6 (-421 *5)) (-4 *5 (-821)) (-5 *2 (-619 (-590 *6))) (-5 *1 (-556 *5 *6)))) (-1428 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-590 *4))) (-4 *4 (-421 *3)) (-4 *3 (-821)) (-5 *1 (-556 *3 *4)))) (-3286 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-590 *6))) (-5 *4 (-1135)) (-5 *2 (-590 *6)) (-4 *6 (-421 *5)) (-4 *5 (-821)) (-5 *1 (-556 *5 *6)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-619 (-590 *5))) (-4 *4 (-821)) (-5 *2 (-590 *5)) (-5 *1 (-556 *4 *5)) (-4 *5 (-421 *4)))) (-4245 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-590 *5))) (-5 *3 (-1135)) (-4 *5 (-421 *4)) (-4 *4 (-821)) (-5 *1 (-556 *4 *5))))) +(-10 -7 (-15 -4245 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-1135))) (-15 -1274 ((-590 |#2|) (-619 (-590 |#2|)))) (-15 -3286 ((-590 |#2|) (-590 |#2|) (-619 (-590 |#2|)) (-1135))) (-15 -1428 ((-619 (-590 |#2|)) (-619 (-590 |#2|)) (-619 (-590 |#2|)))) (-15 -3384 ((-619 (-590 |#2|)) (-619 |#2|) (-1135))) (IF (|has| |#1| (-539)) (-15 -3475 (|#2| |#2| (-1135))) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-275)) (PROGN (-15 -3589 (|#2| |#2| (-1135))) (IF (|has| |#1| (-592 (-861 (-547)))) (IF (|has| |#1| (-855 (-547))) (IF (|has| |#2| (-605)) (IF (|has| |#2| (-1007 (-1135))) (-15 -3694 ((-565 |#2|) |#2| (-1135) (-1 (-565 |#2|) |#2| (-1135)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1135)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2818 (((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-547) |#1| |#1|)) 172)) (-3025 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-398 |#2|))) 148)) (-2055 (((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-619 (-398 |#2|))) 145)) (-2157 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-3779 (((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3176 (((-3 (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-398 |#2|)) 175)) (-2897 (((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-398 |#2|)) 178)) (-3439 (((-2 (|:| |ir| (-565 (-398 |#2|))) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|)) 84)) (-3522 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3097 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-619 (-398 |#2|))) 152)) (-2256 (((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|)) 137)) (-2743 (((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|)) 162)) (-2954 (((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-398 |#2|)) 183))) +(((-557 |#1| |#2|) (-10 -7 (-15 -3779 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2743 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -2818 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-547) |#1| |#1|))) (-15 -2897 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-398 |#2|))) (-15 -2954 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-398 |#2|))) (-15 -3025 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-398 |#2|)))) (-15 -3097 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-619 (-398 |#2|)))) (-15 -3176 ((-3 (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-398 |#2|))) (-15 -2055 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-619 (-398 |#2|)))) (-15 -2157 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2256 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -3439 ((-2 (|:| |ir| (-565 (-398 |#2|))) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3522 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-354) (-1194 |#1|)) (T -557)) +((-3522 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-557 *5 *3)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |ir| (-565 (-398 *6))) (|:| |specpart| (-398 *6)) (|:| |polypart| *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6)))) (-2256 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-599 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3836 *4) (|:| |sol?| (-112))) (-547) *4)) (-4 *4 (-354)) (-4 *5 (-1194 *4)) (-5 *1 (-557 *4 *5)))) (-2157 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2848 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-354)) (-5 *1 (-557 *4 *2)) (-4 *2 (-1194 *4)))) (-2055 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-398 *7))) (-4 *7 (-1194 *6)) (-5 *3 (-398 *7)) (-4 *6 (-354)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *7)))) (-3176 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -2848 (-398 *6)) (|:| |coeff| (-398 *6)))) (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6)))) (-3097 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3836 *7) (|:| |sol?| (-112))) (-547) *7)) (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1194 *7)) (-5 *3 (-398 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-557 *7 *8)))) (-3025 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2848 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1194 *7)) (-5 *3 (-398 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-557 *7 *8)))) (-2954 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3836 *6) (|:| |sol?| (-112))) (-547) *6)) (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6)) (-2 (|:| -2848 (-398 *7)) (|:| |coeff| (-398 *7))) "failed")) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-2897 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2848 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6)) (-2 (|:| -2848 (-398 *7)) (|:| |coeff| (-398 *7))) "failed")) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-2818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-619 *6) "failed") (-547) *6 *6)) (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3836 *6) (|:| |sol?| (-112))) (-547) *6)) (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7)))) (-3779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2848 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7))))) +(-10 -7 (-15 -3779 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2743 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -2818 ((-2 (|:| |answer| (-565 (-398 |#2|))) (|:| |a0| |#1|)) (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-619 |#1|) "failed") (-547) |#1| |#1|))) (-15 -2897 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-398 |#2|))) (-15 -2954 ((-3 (-2 (|:| |answer| (-398 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-398 |#2|))) (-15 -3025 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-619 (-398 |#2|)))) (-15 -3097 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|))))))) (|:| |a0| |#1|)) "failed") (-398 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|) (-619 (-398 |#2|)))) (-15 -3176 ((-3 (-2 (|:| -2848 (-398 |#2|)) (|:| |coeff| (-398 |#2|))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-398 |#2|))) (-15 -2055 ((-3 (-2 (|:| |mainpart| (-398 |#2|)) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| (-398 |#2|)) (|:| |logand| (-398 |#2|)))))) "failed") (-398 |#2|) (-1 |#2| |#2|) (-619 (-398 |#2|)))) (-15 -2157 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2256 ((-3 (-599 |#1| |#2|) "failed") (-599 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3836 |#1|) (|:| |sol?| (-112))) (-547) |#1|))) (-15 -3439 ((-2 (|:| |ir| (-565 (-398 |#2|))) (|:| |specpart| (-398 |#2|)) (|:| |polypart| |#2|)) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3522 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3611 (((-3 |#2| "failed") |#2| (-1135) (-1135)) 10))) +(((-558 |#1| |#2|) (-10 -7 (-15 -3611 ((-3 |#2| "failed") |#2| (-1135) (-1135)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-928) (-1099) (-29 |#1|))) (T -558)) +((-3611 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-558 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-1099) (-29 *4)))))) +(-10 -7 (-15 -3611 ((-3 |#2| "failed") |#2| (-1135) (-1135)))) +((-3135 (((-1082) $ (-128)) 12)) (-2012 (((-1082) $ (-129)) 11)) (-2536 (((-1082) $ (-128)) 7)) (-2623 (((-1082) $) 8)) (-4048 (($ $) 6))) +(((-559) (-138)) (T -559)) +NIL +(-13 (-516) (-831)) +(((-170) . T) ((-516) . T) ((-831) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $ (-547)) 66)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2048 (($ (-1131 (-547)) (-547)) 72)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) 58)) (-2189 (($ $) 34)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3707 (((-745) $) 15)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3148 (((-547)) 29)) (-2333 (((-547) $) 32)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3558 (($ $ (-547)) 21)) (-2025 (((-3 $ "failed") $ $) 59)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) 16)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 61)) (-2871 (((-1116 (-547)) $) 18)) (-4105 (($ $) 23)) (-3834 (((-832) $) 87) (($ (-547)) 52) (($ $) NIL)) (-2311 (((-745)) 14)) (-1932 (((-112) $ $) NIL)) (-2645 (((-547) $ (-547)) 36)) (-3267 (($) 35 T CONST)) (-3277 (($) 19 T CONST)) (-2371 (((-112) $ $) 39)) (-2484 (($ $) 51) (($ $ $) 37)) (-2470 (($ $ $) 50)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 54) (($ $ $) 55))) +(((-560 |#1| |#2|) (-838 |#1|) (-547) (-112)) (T -560)) NIL (-838 |#1|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 21)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) 47)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 $ "failed") $) 75)) (-2375 (($ $) 74)) (-2455 (($ (-1218 $)) 73)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) 49)) (-3727 (((-112) $) NIL)) (-2208 (($ $) NIL) (($ $ (-745)) NIL)) (-1271 (((-112) $) NIL)) (-1672 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-2266 (((-112) $) NIL)) (-2887 (($) 37 (|has| $ (-360)))) (-2866 (((-112) $) NIL (|has| $ (-360)))) (-3910 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 $) $ (-890)) NIL (|has| $ (-360))) (((-1131 $) $) 83)) (-2855 (((-890) $) 55)) (-4288 (((-1131 $) $) NIL (|has| $ (-360)))) (-4278 (((-3 (-1131 $) "failed") $ $) NIL (|has| $ (-360))) (((-1131 $) $) NIL (|has| $ (-360)))) (-4300 (($ $ (-1131 $)) NIL (|has| $ (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL T CONST)) (-3337 (($ (-890)) 48)) (-2384 (((-112) $) 67)) (-3932 (((-1082) $) NIL)) (-4160 (($) 19 (|has| $ (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 42)) (-1915 (((-410 $) $) NIL)) (-2373 (((-890)) 66) (((-807 (-890))) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3402 (((-133)) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2512 (((-890) $) 65) (((-807 (-890)) $) NIL)) (-3287 (((-1131 $)) 82)) (-3655 (($) 54)) (-1255 (($) 38 (|has| $ (-360)))) (-2447 (((-663 $) (-1218 $)) NIL) (((-1218 $) $) 71)) (-2591 (((-548) $) 28)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) 30) (($ $) NIL) (($ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3835 (((-745)) 39)) (-2877 (((-1218 $) (-890)) 77) (((-1218 $)) 76)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) 22 T CONST)) (-3118 (($) 18 T CONST)) (-2354 (($ $ (-745)) NIL (|has| $ (-360))) (($ $) NIL (|has| $ (-360)))) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 61) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-562 |#1|) (-13 (-341) (-321 $) (-593 (-548))) (-890)) (T -562)) -NIL -(-13 (-341) (-321 $) (-593 (-548))) -((-1669 (((-1223) (-1118)) 10))) -(((-563) (-10 -7 (-15 -1669 ((-1223) (-1118))))) (T -563)) -((-1669 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-563))))) -(-10 -7 (-15 -1669 ((-1223) (-1118)))) -((-3530 (((-566 |#2|) (-566 |#2|)) 40)) (-1384 (((-619 |#2|) (-566 |#2|)) 42)) (-1779 ((|#2| (-566 |#2|)) 48))) -(((-564 |#1| |#2|) (-10 -7 (-15 -3530 ((-566 |#2|) (-566 |#2|))) (-15 -1384 ((-619 |#2|) (-566 |#2|))) (-15 -1779 (|#2| (-566 |#2|)))) (-13 (-443) (-1007 (-548)) (-821) (-615 (-548))) (-13 (-29 |#1|) (-1157))) (T -564)) -((-1779 (*1 *2 *3) (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-29 *4) (-1157))) (-5 *1 (-564 *4 *2)) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-566 *5)) (-4 *5 (-13 (-29 *4) (-1157))) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-619 *5)) (-5 *1 (-564 *4 *5)))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-566 *4)) (-4 *4 (-13 (-29 *3) (-1157))) (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *1 (-564 *3 *4))))) -(-10 -7 (-15 -3530 ((-566 |#2|) (-566 |#2|))) (-15 -1384 ((-619 |#2|) (-566 |#2|))) (-15 -1779 (|#2| (-566 |#2|)))) -((-2540 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-566 |#2|) (-1 |#2| |#1|) (-566 |#1|)) 30))) -(((-565 |#1| |#2|) (-10 -7 (-15 -2540 ((-566 |#2|) (-1 |#2| |#1|) (-566 |#1|))) (-15 -2540 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2540 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2540 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-355) (-355)) (T -565)) -((-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-355)) (-4 *6 (-355)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-565 *5 *6)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-355)) (-4 *2 (-355)) (-5 *1 (-565 *5 *2)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1699 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-355)) (-4 *6 (-355)) (-5 *2 (-2 (|:| -1699 *6) (|:| |coeff| *6))) (-5 *1 (-565 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-566 *5)) (-4 *5 (-355)) (-4 *6 (-355)) (-5 *2 (-566 *6)) (-5 *1 (-565 *5 *6))))) -(-10 -7 (-15 -2540 ((-566 |#2|) (-1 |#2| |#1|) (-566 |#1|))) (-15 -2540 ((-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1699 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2540 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2540 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 69)) (-2375 ((|#1| $) NIL)) (-1699 ((|#1| $) 26)) (-1685 (((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1707 (($ |#1| (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1693 (((-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $) 27)) (-2546 (((-1118) $) NIL)) (-4044 (($ |#1| |#1|) 33) (($ |#1| (-1135)) 44 (|has| |#1| (-1007 (-1135))))) (-3932 (((-1082) $) NIL)) (-1677 (((-112) $) 30)) (-4050 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1135)) 82 (|has| |#1| (-869 (-1135))))) (-3743 (((-832) $) 96) (($ |#1|) 25)) (-3107 (($) 16 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) 15) (($ $ $) NIL)) (-2290 (($ $ $) 78)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 14) (($ (-399 (-548)) $) 36) (($ $ (-399 (-548))) NIL))) -(((-566 |#1|) (-13 (-692 (-399 (-548))) (-1007 |#1|) (-10 -8 (-15 -1707 ($ |#1| (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1699 (|#1| $)) (-15 -1693 ((-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $)) (-15 -1685 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1677 ((-112) $)) (-15 -4044 ($ |#1| |#1|)) (-15 -4050 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1135))) (-15 -4050 (|#1| $ (-1135))) |%noBranch|) (IF (|has| |#1| (-1007 (-1135))) (-15 -4044 ($ |#1| (-1135))) |%noBranch|))) (-355)) (T -566)) -((-1707 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *2)) (|:| |logand| (-1131 *2))))) (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-355)) (-5 *1 (-566 *2)))) (-1699 (*1 *2 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *3)) (|:| |logand| (-1131 *3))))) (-5 *1 (-566 *3)) (-4 *3 (-355)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-566 *3)) (-4 *3 (-355)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-355)))) (-4044 (*1 *1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355)))) (-4050 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-566 *2)) (-4 *2 (-355)))) (-4050 (*1 *2 *1 *3) (-12 (-4 *2 (-355)) (-4 *2 (-869 *3)) (-5 *1 (-566 *2)) (-5 *3 (-1135)))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *1 (-566 *2)) (-4 *2 (-1007 *3)) (-4 *2 (-355))))) -(-13 (-692 (-399 (-548))) (-1007 |#1|) (-10 -8 (-15 -1707 ($ |#1| (-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1699 (|#1| $)) (-15 -1693 ((-619 (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $)) (-15 -1685 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1677 ((-112) $)) (-15 -4044 ($ |#1| |#1|)) (-15 -4050 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1135))) (-15 -4050 (|#1| $ (-1135))) |%noBranch|) (IF (|has| |#1| (-1007 (-1135))) (-15 -4044 ($ |#1| (-1135))) |%noBranch|))) -((-1745 (((-112) |#1|) 16)) (-1754 (((-3 |#1| "failed") |#1|) 14)) (-1725 (((-2 (|:| -3957 |#1|) (|:| -3352 (-745))) |#1|) 31) (((-3 |#1| "failed") |#1| (-745)) 18)) (-1716 (((-112) |#1| (-745)) 19)) (-1763 ((|#1| |#1|) 32)) (-1735 ((|#1| |#1| (-745)) 34))) -(((-567 |#1|) (-10 -7 (-15 -1716 ((-112) |#1| (-745))) (-15 -1725 ((-3 |#1| "failed") |#1| (-745))) (-15 -1725 ((-2 (|:| -3957 |#1|) (|:| -3352 (-745))) |#1|)) (-15 -1735 (|#1| |#1| (-745))) (-15 -1745 ((-112) |#1|)) (-15 -1754 ((-3 |#1| "failed") |#1|)) (-15 -1763 (|#1| |#1|))) (-533)) (T -567)) -((-1763 (*1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1754 (*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1745 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533)))) (-1735 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1725 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3957 *3) (|:| -3352 (-745)))) (-5 *1 (-567 *3)) (-4 *3 (-533)))) (-1725 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533)))) (-1716 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533))))) -(-10 -7 (-15 -1716 ((-112) |#1| (-745))) (-15 -1725 ((-3 |#1| "failed") |#1| (-745))) (-15 -1725 ((-2 (|:| -3957 |#1|) (|:| -3352 (-745))) |#1|)) (-15 -1735 (|#1| |#1| (-745))) (-15 -1745 ((-112) |#1|)) (-15 -1754 ((-3 |#1| "failed") |#1|)) (-15 -1763 (|#1| |#1|))) -((-1771 (((-1131 |#1|) (-890)) 27))) -(((-568 |#1|) (-10 -7 (-15 -1771 ((-1131 |#1|) (-890)))) (-341)) (T -568)) -((-1771 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-568 *4)) (-4 *4 (-341))))) -(-10 -7 (-15 -1771 ((-1131 |#1|) (-890)))) -((-3530 (((-566 (-399 (-921 |#1|))) (-566 (-399 (-921 |#1|)))) 27)) (-3810 (((-3 (-308 |#1|) (-619 (-308 |#1|))) (-399 (-921 |#1|)) (-1135)) 34 (|has| |#1| (-145)))) (-1384 (((-619 (-308 |#1|)) (-566 (-399 (-921 |#1|)))) 19)) (-1787 (((-308 |#1|) (-399 (-921 |#1|)) (-1135)) 32 (|has| |#1| (-145)))) (-1779 (((-308 |#1|) (-566 (-399 (-921 |#1|)))) 21))) -(((-569 |#1|) (-10 -7 (-15 -3530 ((-566 (-399 (-921 |#1|))) (-566 (-399 (-921 |#1|))))) (-15 -1384 ((-619 (-308 |#1|)) (-566 (-399 (-921 |#1|))))) (-15 -1779 ((-308 |#1|) (-566 (-399 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3810 ((-3 (-308 |#1|) (-619 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -1787 ((-308 |#1|) (-399 (-921 |#1|)) (-1135)))) |%noBranch|)) (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (T -569)) -((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-308 *5)) (-5 *1 (-569 *5)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-3 (-308 *5) (-619 (-308 *5)))) (-5 *1 (-569 *5)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-566 (-399 (-921 *4)))) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-308 *4)) (-5 *1 (-569 *4)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-566 (-399 (-921 *4)))) (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *2 (-619 (-308 *4))) (-5 *1 (-569 *4)))) (-3530 (*1 *2 *2) (-12 (-5 *2 (-566 (-399 (-921 *3)))) (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) (-5 *1 (-569 *3))))) -(-10 -7 (-15 -3530 ((-566 (-399 (-921 |#1|))) (-566 (-399 (-921 |#1|))))) (-15 -1384 ((-619 (-308 |#1|)) (-566 (-399 (-921 |#1|))))) (-15 -1779 ((-308 |#1|) (-566 (-399 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -3810 ((-3 (-308 |#1|) (-619 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -1787 ((-308 |#1|) (-399 (-921 |#1|)) (-1135)))) |%noBranch|)) -((-1807 (((-619 (-663 (-548))) (-619 (-548)) (-619 (-874 (-548)))) 46) (((-619 (-663 (-548))) (-619 (-548))) 47) (((-663 (-548)) (-619 (-548)) (-874 (-548))) 42)) (-1797 (((-745) (-619 (-548))) 40))) -(((-570) (-10 -7 (-15 -1797 ((-745) (-619 (-548)))) (-15 -1807 ((-663 (-548)) (-619 (-548)) (-874 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)) (-619 (-874 (-548))))))) (T -570)) -((-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-548))) (-5 *4 (-619 (-874 (-548)))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-570)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-570)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-548))) (-5 *4 (-874 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-570)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-745)) (-5 *1 (-570))))) -(-10 -7 (-15 -1797 ((-745) (-619 (-548)))) (-15 -1807 ((-663 (-548)) (-619 (-548)) (-874 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1807 ((-619 (-663 (-548))) (-619 (-548)) (-619 (-874 (-548)))))) -((-2352 (((-619 |#5|) |#5| (-112)) 73)) (-1818 (((-112) |#5| (-619 |#5|)) 30))) -(((-571 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2352 ((-619 |#5|) |#5| (-112))) (-15 -1818 ((-112) |#5| (-619 |#5|)))) (-13 (-299) (-145)) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -571)) -((-1818 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-571 *5 *6 *7 *8 *3)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) (-5 *1 (-571 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8))))) -(-10 -7 (-15 -2352 ((-619 |#5|) |#5| (-112))) (-15 -1818 ((-112) |#5| (-619 |#5|)))) -((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-572) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -572)) -((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572))))) -(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) -((-3730 (((-112) $ $) NIL (|has| (-142) (-1063)))) (-3541 (($ $) 34)) (-3552 (($ $) NIL)) (-3517 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) 51)) (-2642 (((-112) $ $ (-548)) 46)) (-3530 (((-619 $) $ (-142)) 60) (((-619 $) $ (-139)) 61)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-821))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-142) $ (-548) (-142)) 45 (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3377 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2541 (($ $ (-1185 (-548)) $) 44)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-3699 (($ (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) NIL (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) NIL)) (-2683 (((-112) $ $) 72)) (-2621 (((-548) (-1 (-112) (-142)) $) NIL) (((-548) (-142) $) NIL (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) 48 (|has| (-142) (-1063))) (((-548) $ $ (-548)) 47) (((-548) (-139) $ (-548)) 50)) (-1934 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) 9)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 28 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4181 (((-548) $) 42 (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) 73)) (-3407 (((-745) $ $ (-142)) 70)) (-3960 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3563 (($ $) 37)) (-3574 (($ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3392 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-2546 (((-1118) $) 38 (|has| (-142) (-1063)))) (-2387 (($ (-142) $ (-548)) NIL) (($ $ $ (-548)) 23)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-548) $) 69) (((-1082) $) NIL (|has| (-142) (-1063)))) (-3453 (((-142) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-4159 (($ $ (-142)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) NIL)) (-1616 (((-112) $) 12)) (-3319 (($) 10)) (-3171 (((-142) $ (-548) (-142)) NIL) (((-142) $ (-548)) 52) (($ $ (-1185 (-548))) 21) (($ $ $) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2990 (($ $ $ (-548)) 66 (|has| $ (-6 -4328)))) (-2113 (($ $) 17)) (-2591 (((-524) $) NIL (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) NIL)) (-1831 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-619 $)) 67)) (-3743 (($ (-142)) NIL) (((-832) $) 27 (|has| (-142) (-592 (-832))))) (-3548 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2214 (((-112) $ $) 14 (|has| (-142) (-1063)))) (-2252 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2234 (((-112) $ $) 15 (|has| (-142) (-821)))) (-3643 (((-745) $) 13 (|has| $ (-6 -4327))))) -(((-573 |#1|) (-13 (-1104) (-10 -8 (-15 -3932 ((-548) $)))) (-548)) (T -573)) -((-3932 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-573 *3)) (-14 *3 *2)))) -(-13 (-1104) (-10 -8 (-15 -3932 ((-548) $)))) -((-3087 (((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2| (-1058 |#4|)) 32))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2| (-1058 |#4|))) (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2|))) (-767) (-821) (-540) (-918 |#3| |#1| |#2|)) (T -574)) -((-3087 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-540)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) (-5 *1 (-574 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-3087 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) (-4 *4 (-821)) (-4 *7 (-540)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) (-5 *1 (-574 *6 *4 *7 *3))))) -(-10 -7 (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2| (-1058 |#4|))) (-15 -3087 ((-2 (|:| |num| |#4|) (|:| |den| (-548))) |#4| |#2|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 63)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 54) (($ $ (-548) (-548)) 55)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 60)) (-2152 (($ $) 100)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2127 (((-832) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) (-995 (-814 (-548))) (-1135) |#1| (-399 (-548))) 224)) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 34)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3345 (((-112) $) NIL)) (-1672 (((-548) $) 58) (((-548) $ (-548)) 59)) (-2266 (((-112) $) NIL)) (-3535 (($ $ (-890)) 76)) (-3823 (($ (-1 |#1| (-548)) $) 73)) (-2435 (((-112) $) 25)) (-2024 (($ |#1| (-548)) 22) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 67)) (-2195 (($ (-995 (-814 (-548))) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 13)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $) 150 (|has| |#1| (-38 (-399 (-548)))))) (-2165 (((-3 $ "failed") $ $ (-112)) 99)) (-2139 (($ $ $) 108)) (-3932 (((-1082) $) NIL)) (-2176 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 15)) (-2184 (((-995 (-814 (-548))) $) 14)) (-1656 (($ $ (-548)) 45)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-548)))))) (-3171 ((|#1| $ (-548)) 57) (($ $ $) NIL (|has| (-548) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2512 (((-548) $) NIL)) (-3330 (($ $) 46)) (-3743 (((-832) $) NIL) (($ (-548)) 28) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 27 (|has| |#1| (-169)))) (-1951 ((|#1| $ (-548)) 56)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 37)) (-2278 ((|#1| $) NIL)) (-1913 (($ $) 186 (|has| |#1| (-38 (-399 (-548)))))) (-2047 (($ $) 158 (|has| |#1| (-38 (-399 (-548)))))) (-1935 (($ $) 190 (|has| |#1| (-38 (-399 (-548)))))) (-2070 (($ $) 163 (|has| |#1| (-38 (-399 (-548)))))) (-1892 (($ $) 189 (|has| |#1| (-38 (-399 (-548)))))) (-2023 (($ $) 162 (|has| |#1| (-38 (-399 (-548)))))) (-2105 (($ $ (-399 (-548))) 166 (|has| |#1| (-38 (-399 (-548)))))) (-2117 (($ $ |#1|) 146 (|has| |#1| (-38 (-399 (-548)))))) (-2079 (($ $) 192 (|has| |#1| (-38 (-399 (-548)))))) (-2092 (($ $) 149 (|has| |#1| (-38 (-399 (-548)))))) (-1882 (($ $) 191 (|has| |#1| (-38 (-399 (-548)))))) (-2012 (($ $) 164 (|has| |#1| (-38 (-399 (-548)))))) (-1903 (($ $) 187 (|has| |#1| (-38 (-399 (-548)))))) (-2034 (($ $) 160 (|has| |#1| (-38 (-399 (-548)))))) (-1924 (($ $) 188 (|has| |#1| (-38 (-399 (-548)))))) (-2059 (($ $) 161 (|has| |#1| (-38 (-399 (-548)))))) (-1853 (($ $) 197 (|has| |#1| (-38 (-399 (-548)))))) (-1979 (($ $) 173 (|has| |#1| (-38 (-399 (-548)))))) (-1873 (($ $) 194 (|has| |#1| (-38 (-399 (-548)))))) (-2001 (($ $) 168 (|has| |#1| (-38 (-399 (-548)))))) (-1836 (($ $) 201 (|has| |#1| (-38 (-399 (-548)))))) (-1959 (($ $) 177 (|has| |#1| (-38 (-399 (-548)))))) (-1827 (($ $) 203 (|has| |#1| (-38 (-399 (-548)))))) (-1946 (($ $) 179 (|has| |#1| (-38 (-399 (-548)))))) (-1845 (($ $) 199 (|has| |#1| (-38 (-399 (-548)))))) (-1968 (($ $) 175 (|has| |#1| (-38 (-399 (-548)))))) (-1863 (($ $) 196 (|has| |#1| (-38 (-399 (-548)))))) (-1992 (($ $) 171 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2439 ((|#1| $ (-548)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-3107 (($) 29 T CONST)) (-3118 (($) 38 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2214 (((-112) $ $) 65)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) 84) (($ $ $) 64)) (-2290 (($ $ $) 81)) (** (($ $ (-890)) NIL) (($ $ (-745)) 103)) (* (($ (-890) $) 89) (($ (-745) $) 87) (($ (-548) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-575 |#1|) (-13 (-1196 |#1| (-548)) (-10 -8 (-15 -2195 ($ (-995 (-814 (-548))) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2184 ((-995 (-814 (-548))) $)) (-15 -2176 ((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $)) (-15 -1761 ($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2435 ((-112) $)) (-15 -3823 ($ (-1 |#1| (-548)) $)) (-15 -2165 ((-3 $ "failed") $ $ (-112))) (-15 -2152 ($ $)) (-15 -2139 ($ $ $)) (-15 -2127 ((-832) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) (-995 (-814 (-548))) (-1135) |#1| (-399 (-548)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (-15 -2117 ($ $ |#1|)) (-15 -2105 ($ $ (-399 (-548)))) (-15 -2092 ($ $)) (-15 -2079 ($ $)) (-15 -2070 ($ $)) (-15 -2059 ($ $)) (-15 -2047 ($ $)) (-15 -2034 ($ $)) (-15 -2023 ($ $)) (-15 -2012 ($ $)) (-15 -2001 ($ $)) (-15 -1992 ($ $)) (-15 -1979 ($ $)) (-15 -1968 ($ $)) (-15 -1959 ($ $)) (-15 -1946 ($ $)) (-15 -1935 ($ $)) (-15 -1924 ($ $)) (-15 -1913 ($ $)) (-15 -1903 ($ $)) (-15 -1892 ($ $)) (-15 -1882 ($ $)) (-15 -1873 ($ $)) (-15 -1863 ($ $)) (-15 -1853 ($ $)) (-15 -1845 ($ $)) (-15 -1836 ($ $)) (-15 -1827 ($ $))) |%noBranch|))) (-1016)) (T -575)) -((-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2195 (*1 *1 *2 *3) (-12 (-5 *2 (-995 (-814 (-548)))) (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *4)))) (-4 *4 (-1016)) (-5 *1 (-575 *4)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-995 (-814 (-548)))) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) (-2165 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (-2139 (*1 *1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (-2127 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *6)))) (-5 *4 (-995 (-814 (-548)))) (-5 *5 (-1135)) (-5 *7 (-399 (-548))) (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-575 *6)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-575 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1016)))) (-2092 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2079 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2070 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2059 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2047 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2034 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2023 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2012 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-2001 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1992 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1979 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1968 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1959 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1946 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1935 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1903 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1892 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1882 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1873 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1863 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1845 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1836 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) (-1827 (*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(-13 (-1196 |#1| (-548)) (-10 -8 (-15 -2195 ($ (-995 (-814 (-548))) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2184 ((-995 (-814 (-548))) $)) (-15 -2176 ((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $)) (-15 -1761 ($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))))) (-15 -2435 ((-112) $)) (-15 -3823 ($ (-1 |#1| (-548)) $)) (-15 -2165 ((-3 $ "failed") $ $ (-112))) (-15 -2152 ($ $)) (-15 -2139 ($ $ $)) (-15 -2127 ((-832) (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) (-995 (-814 (-548))) (-1135) |#1| (-399 (-548)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (-15 -2117 ($ $ |#1|)) (-15 -2105 ($ $ (-399 (-548)))) (-15 -2092 ($ $)) (-15 -2079 ($ $)) (-15 -2070 ($ $)) (-15 -2059 ($ $)) (-15 -2047 ($ $)) (-15 -2034 ($ $)) (-15 -2023 ($ $)) (-15 -2012 ($ $)) (-15 -2001 ($ $)) (-15 -1992 ($ $)) (-15 -1979 ($ $)) (-15 -1968 ($ $)) (-15 -1959 ($ $)) (-15 -1946 ($ $)) (-15 -1935 ($ $)) (-15 -1924 ($ $)) (-15 -1913 ($ $)) (-15 -1903 ($ $)) (-15 -1892 ($ $)) (-15 -1882 ($ $)) (-15 -1873 ($ $)) (-15 -1863 ($ $)) (-15 -1853 ($ $)) (-15 -1845 ($ $)) (-15 -1836 ($ $)) (-15 -1827 ($ $))) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1761 (($ (-1116 |#1|)) 9)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) 42)) (-3345 (((-112) $) 52)) (-1672 (((-745) $) 55) (((-745) $ (-745)) 54)) (-2266 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ $) 44 (|has| |#1| (-540)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-1116 |#1|) $) 23)) (-3835 (((-745)) 51)) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 10 T CONST)) (-3118 (($) 14 T CONST)) (-2214 (((-112) $ $) 22)) (-2299 (($ $) 30) (($ $ $) 16)) (-2290 (($ $ $) 25)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-548)) 36))) -(((-576 |#1|) (-13 (-1016) (-10 -8 (-15 -3852 ((-1116 |#1|) $)) (-15 -1761 ($ (-1116 |#1|))) (-15 -3345 ((-112) $)) (-15 -1672 ((-745) $)) (-15 -1672 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-548))) (IF (|has| |#1| (-540)) (-6 (-540)) |%noBranch|))) (-1016)) (T -576)) -((-3852 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-576 *3)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (-1672 (*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-576 *3)) (-4 *3 (-1016))))) -(-13 (-1016) (-10 -8 (-15 -3852 ((-1116 |#1|) $)) (-15 -1761 ($ (-1116 |#1|))) (-15 -3345 ((-112) $)) (-15 -1672 ((-745) $)) (-15 -1672 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-548))) (IF (|has| |#1| (-540)) (-6 (-540)) |%noBranch|))) -((-2540 (((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)) 15))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2540 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)))) (-1172) (-1172)) (T -577)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-580 *6)) (-5 *1 (-577 *5 *6))))) -(-10 -7 (-15 -2540 ((-580 |#2|) (-1 |#2| |#1|) (-580 |#1|)))) -((-2540 (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-1116 |#2|)) 20) (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-580 |#2|)) 19) (((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|)) 18))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-1116 |#2|)))) (-1172) (-1172) (-1172)) (T -578)) -((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-578 *6 *7 *8)))) (-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-580 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-578 *6 *7 *8)))) (-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-580 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-580 *8)) (-5 *1 (-578 *6 *7 *8))))) -(-10 -7 (-15 -2540 ((-580 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-580 |#2|))) (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-580 |#1|) (-1116 |#2|)))) -((-4139 ((|#3| |#3| (-619 (-591 |#3|)) (-619 (-1135))) 55)) (-4129 (((-166 |#2|) |#3|) 117)) (-4096 ((|#3| (-166 |#2|)) 44)) (-4109 ((|#2| |#3|) 19)) (-4121 ((|#3| |#2|) 33))) -(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -4096 (|#3| (-166 |#2|))) (-15 -4109 (|#2| |#3|)) (-15 -4121 (|#3| |#2|)) (-15 -4129 ((-166 |#2|) |#3|)) (-15 -4139 (|#3| |#3| (-619 (-591 |#3|)) (-619 (-1135))))) (-13 (-540) (-821)) (-13 (-422 |#1|) (-971) (-1157)) (-13 (-422 (-166 |#1|)) (-971) (-1157))) (T -579)) -((-4139 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-619 (-1135))) (-4 *2 (-13 (-422 (-166 *5)) (-971) (-1157))) (-4 *5 (-13 (-540) (-821))) (-5 *1 (-579 *5 *6 *2)) (-4 *6 (-13 (-422 *5) (-971) (-1157))))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821))) (-5 *2 (-166 *5)) (-5 *1 (-579 *4 *5 *3)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157))))) (-4121 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821))) (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) (-5 *1 (-579 *4 *3 *2)) (-4 *3 (-13 (-422 *4) (-971) (-1157))))) (-4109 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-821))) (-4 *2 (-13 (-422 *4) (-971) (-1157))) (-5 *1 (-579 *4 *2 *3)) (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157))))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) (-4 *4 (-13 (-540) (-821))) (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) (-5 *1 (-579 *4 *5 *2))))) -(-10 -7 (-15 -4096 (|#3| (-166 |#2|))) (-15 -4109 (|#2| |#3|)) (-15 -4121 (|#3| |#2|)) (-15 -4129 ((-166 |#2|) |#3|)) (-15 -4139 (|#3| |#3| (-619 (-591 |#3|)) (-619 (-1135))))) -((-1415 (($ (-1 (-112) |#1|) $) 17)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1350 (($ (-1 |#1| |#1|) |#1|) 9)) (-1394 (($ (-1 (-112) |#1|) $) 13)) (-1404 (($ (-1 (-112) |#1|) $) 15)) (-3754 (((-1116 |#1|) $) 18)) (-3743 (((-832) $) NIL))) -(((-580 |#1|) (-13 (-592 (-832)) (-10 -8 (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)) (-15 -1415 ($ (-1 (-112) |#1|) $)) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -3754 ((-1116 |#1|) $)))) (-1172)) (T -580)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-580 *3)) (-4 *3 (-1172))))) -(-13 (-592 (-832)) (-10 -8 (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)) (-15 -1415 ($ (-1 (-112) |#1|) $)) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -3754 ((-1116 |#1|) $)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745)) NIL (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4007 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-4248 (((-112) $ (-745)) NIL)) (-3198 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4029 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4018 (($ $ $) NIL (|has| |#1| (-1016)))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2290 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-548) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-581 |#1| |#2|) (-1216 |#1|) (-1172) (-548)) (T -581)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 21)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-4253 (((-1145 (-890) (-745)) (-547)) 47)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 $ "failed") $) 75)) (-2643 (($ $) 74)) (-2402 (($ (-1218 $)) 73)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) 32)) (-3229 (($) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) 49)) (-3661 (((-112) $) NIL)) (-1771 (($ $) NIL) (($ $ (-745)) NIL)) (-3674 (((-112) $) NIL)) (-3707 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-4114 (((-112) $) NIL)) (-4116 (($) 37 (|has| $ (-359)))) (-3908 (((-112) $) NIL (|has| $ (-359)))) (-1684 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-3652 (((-3 $ "failed") $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 $) $ (-890)) NIL (|has| $ (-359))) (((-1131 $) $) 83)) (-1966 (((-890) $) 55)) (-4218 (((-1131 $) $) NIL (|has| $ (-359)))) (-4122 (((-3 (-1131 $) "failed") $ $) NIL (|has| $ (-359))) (((-1131 $) $) NIL (|has| $ (-359)))) (-1277 (($ $ (-1131 $)) NIL (|has| $ (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL T CONST)) (-3479 (($ (-890)) 48)) (-2916 (((-112) $) 67)) (-3979 (((-1082) $) NIL)) (-4240 (($) 19 (|has| $ (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 42)) (-2106 (((-409 $) $) NIL)) (-2832 (((-890)) 66) (((-807 (-890))) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3512 (((-133)) NIL)) (-3443 (($ $ (-745)) NIL) (($ $) NIL)) (-1618 (((-890) $) 65) (((-807 (-890)) $) NIL)) (-1901 (((-1131 $)) 82)) (-4150 (($) 54)) (-3164 (($) 38 (|has| $ (-359)))) (-2301 (((-663 $) (-1218 $)) NIL) (((-1218 $) $) 71)) (-2829 (((-547) $) 28)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) 30) (($ $) NIL) (($ (-398 (-547))) NIL)) (-3336 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2311 (((-745)) 39)) (-4013 (((-1218 $) (-890)) 77) (((-1218 $)) 76)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) 22 T CONST)) (-3277 (($) 18 T CONST)) (-3774 (($ $ (-745)) NIL (|has| $ (-359))) (($ $) NIL (|has| $ (-359)))) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 61) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-561 |#1|) (-13 (-340) (-320 $) (-592 (-547))) (-890)) (T -561)) +NIL +(-13 (-340) (-320 $) (-592 (-547))) +((-3675 (((-1223) (-1118)) 10))) +(((-562) (-10 -7 (-15 -3675 ((-1223) (-1118))))) (T -562)) +((-3675 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-562))))) +(-10 -7 (-15 -3675 ((-1223) (-1118)))) +((-2378 (((-565 |#2|) (-565 |#2|)) 40)) (-1436 (((-619 |#2|) (-565 |#2|)) 42)) (-2425 ((|#2| (-565 |#2|)) 48))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2378 ((-565 |#2|) (-565 |#2|))) (-15 -1436 ((-619 |#2|) (-565 |#2|))) (-15 -2425 (|#2| (-565 |#2|)))) (-13 (-442) (-1007 (-547)) (-821) (-615 (-547))) (-13 (-29 |#1|) (-1157))) (T -563)) +((-2425 (*1 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1157))) (-5 *1 (-563 *4 *2)) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1157))) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-619 *5)) (-5 *1 (-563 *4 *5)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1157))) (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *1 (-563 *3 *4))))) +(-10 -7 (-15 -2378 ((-565 |#2|) (-565 |#2|))) (-15 -1436 ((-619 |#2|) (-565 |#2|))) (-15 -2425 (|#2| (-565 |#2|)))) +((-2781 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|)) 30))) +(((-564 |#1| |#2|) (-10 -7 (-15 -2781 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -2781 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2781 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2781 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-354) (-354)) (T -564)) +((-2781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-564 *5 *6)))) (-2781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-354)) (-4 *2 (-354)) (-5 *1 (-564 *5 *2)))) (-2781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2848 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-2 (|:| -2848 *6) (|:| |coeff| *6))) (-5 *1 (-564 *5 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-565 *6)) (-5 *1 (-564 *5 *6))))) +(-10 -7 (-15 -2781 ((-565 |#2|) (-1 |#2| |#1|) (-565 |#1|))) (-15 -2781 ((-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2848 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2781 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2781 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 69)) (-2643 ((|#1| $) NIL)) (-2848 ((|#1| $) 26)) (-2717 (((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2922 (($ |#1| (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2791 (((-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $) 27)) (-1917 (((-1118) $) NIL)) (-3595 (($ |#1| |#1|) 33) (($ |#1| (-1135)) 44 (|has| |#1| (-1007 (-1135))))) (-3979 (((-1082) $) NIL)) (-2648 (((-112) $) 30)) (-3443 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1135)) 82 (|has| |#1| (-869 (-1135))))) (-3834 (((-832) $) 96) (($ |#1|) 25)) (-3267 (($) 16 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) 15) (($ $ $) NIL)) (-2470 (($ $ $) 78)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 14) (($ (-398 (-547)) $) 36) (($ $ (-398 (-547))) NIL))) +(((-565 |#1|) (-13 (-692 (-398 (-547))) (-1007 |#1|) (-10 -8 (-15 -2922 ($ |#1| (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2848 (|#1| $)) (-15 -2791 ((-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $)) (-15 -2717 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2648 ((-112) $)) (-15 -3595 ($ |#1| |#1|)) (-15 -3443 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1135))) (-15 -3443 (|#1| $ (-1135))) |%noBranch|) (IF (|has| |#1| (-1007 (-1135))) (-15 -3595 ($ |#1| (-1135))) |%noBranch|))) (-354)) (T -565)) +((-2922 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 *2)) (|:| |logand| (-1131 *2))))) (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-354)) (-5 *1 (-565 *2)))) (-2848 (*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 *3)) (|:| |logand| (-1131 *3))))) (-5 *1 (-565 *3)) (-4 *3 (-354)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-565 *3)) (-4 *3 (-354)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-354)))) (-3595 (*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354)))) (-3443 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-354)))) (-3443 (*1 *2 *1 *3) (-12 (-4 *2 (-354)) (-4 *2 (-869 *3)) (-5 *1 (-565 *2)) (-5 *3 (-1135)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *1 (-565 *2)) (-4 *2 (-1007 *3)) (-4 *2 (-354))))) +(-13 (-692 (-398 (-547))) (-1007 |#1|) (-10 -8 (-15 -2922 ($ |#1| (-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) (-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2848 (|#1| $)) (-15 -2791 ((-619 (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 |#1|)) (|:| |logand| (-1131 |#1|)))) $)) (-15 -2717 ((-619 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2648 ((-112) $)) (-15 -3595 ($ |#1| |#1|)) (-15 -3443 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-869 (-1135))) (-15 -3443 (|#1| $ (-1135))) |%noBranch|) (IF (|has| |#1| (-1007 (-1135))) (-15 -3595 ($ |#1| (-1135))) |%noBranch|))) +((-2018 (((-112) |#1|) 16)) (-2120 (((-3 |#1| "failed") |#1|) 14)) (-3066 (((-2 (|:| -1849 |#1|) (|:| -4248 (-745))) |#1|) 31) (((-3 |#1| "failed") |#1| (-745)) 18)) (-2990 (((-112) |#1| (-745)) 19)) (-2218 ((|#1| |#1|) 32)) (-1926 ((|#1| |#1| (-745)) 34))) +(((-566 |#1|) (-10 -7 (-15 -2990 ((-112) |#1| (-745))) (-15 -3066 ((-3 |#1| "failed") |#1| (-745))) (-15 -3066 ((-2 (|:| -1849 |#1|) (|:| -4248 (-745))) |#1|)) (-15 -1926 (|#1| |#1| (-745))) (-15 -2018 ((-112) |#1|)) (-15 -2120 ((-3 |#1| "failed") |#1|)) (-15 -2218 (|#1| |#1|))) (-532)) (T -566)) +((-2218 (*1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-2120 (*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-2018 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532)))) (-1926 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-3066 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1849 *3) (|:| -4248 (-745)))) (-5 *1 (-566 *3)) (-4 *3 (-532)))) (-3066 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532))))) +(-10 -7 (-15 -2990 ((-112) |#1| (-745))) (-15 -3066 ((-3 |#1| "failed") |#1| (-745))) (-15 -3066 ((-2 (|:| -1849 |#1|) (|:| -4248 (-745))) |#1|)) (-15 -1926 (|#1| |#1| (-745))) (-15 -2018 ((-112) |#1|)) (-15 -2120 ((-3 |#1| "failed") |#1|)) (-15 -2218 (|#1| |#1|))) +((-2329 (((-1131 |#1|) (-890)) 27))) +(((-567 |#1|) (-10 -7 (-15 -2329 ((-1131 |#1|) (-890)))) (-340)) (T -567)) +((-2329 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-567 *4)) (-4 *4 (-340))))) +(-10 -7 (-15 -2329 ((-1131 |#1|) (-890)))) +((-2378 (((-565 (-398 (-921 |#1|))) (-565 (-398 (-921 |#1|)))) 27)) (-2069 (((-3 (-307 |#1|) (-619 (-307 |#1|))) (-398 (-921 |#1|)) (-1135)) 34 (|has| |#1| (-145)))) (-1436 (((-619 (-307 |#1|)) (-565 (-398 (-921 |#1|)))) 19)) (-2527 (((-307 |#1|) (-398 (-921 |#1|)) (-1135)) 32 (|has| |#1| (-145)))) (-2425 (((-307 |#1|) (-565 (-398 (-921 |#1|)))) 21))) +(((-568 |#1|) (-10 -7 (-15 -2378 ((-565 (-398 (-921 |#1|))) (-565 (-398 (-921 |#1|))))) (-15 -1436 ((-619 (-307 |#1|)) (-565 (-398 (-921 |#1|))))) (-15 -2425 ((-307 |#1|) (-565 (-398 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2069 ((-3 (-307 |#1|) (-619 (-307 |#1|))) (-398 (-921 |#1|)) (-1135))) (-15 -2527 ((-307 |#1|) (-398 (-921 |#1|)) (-1135)))) |%noBranch|)) (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (T -568)) +((-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-307 *5)) (-5 *1 (-568 *5)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-3 (-307 *5) (-619 (-307 *5)))) (-5 *1 (-568 *5)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-565 (-398 (-921 *4)))) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-307 *4)) (-5 *1 (-568 *4)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-565 (-398 (-921 *4)))) (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *2 (-619 (-307 *4))) (-5 *1 (-568 *4)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-565 (-398 (-921 *3)))) (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) (-5 *1 (-568 *3))))) +(-10 -7 (-15 -2378 ((-565 (-398 (-921 |#1|))) (-565 (-398 (-921 |#1|))))) (-15 -1436 ((-619 (-307 |#1|)) (-565 (-398 (-921 |#1|))))) (-15 -2425 ((-307 |#1|) (-565 (-398 (-921 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2069 ((-3 (-307 |#1|) (-619 (-307 |#1|))) (-398 (-921 |#1|)) (-1135))) (-15 -2527 ((-307 |#1|) (-398 (-921 |#1|)) (-1135)))) |%noBranch|)) +((-1364 (((-619 (-663 (-547))) (-619 (-547)) (-619 (-874 (-547)))) 46) (((-619 (-663 (-547))) (-619 (-547))) 47) (((-663 (-547)) (-619 (-547)) (-874 (-547))) 42)) (-1273 (((-745) (-619 (-547))) 40))) +(((-569) (-10 -7 (-15 -1273 ((-745) (-619 (-547)))) (-15 -1364 ((-663 (-547)) (-619 (-547)) (-874 (-547)))) (-15 -1364 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -1364 ((-619 (-663 (-547))) (-619 (-547)) (-619 (-874 (-547))))))) (T -569)) +((-1364 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-547))) (-5 *4 (-619 (-874 (-547)))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-569)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-569)))) (-1364 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-547))) (-5 *4 (-874 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-569)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-745)) (-5 *1 (-569))))) +(-10 -7 (-15 -1273 ((-745) (-619 (-547)))) (-15 -1364 ((-663 (-547)) (-619 (-547)) (-874 (-547)))) (-15 -1364 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -1364 ((-619 (-663 (-547))) (-619 (-547)) (-619 (-874 (-547)))))) +((-3766 (((-619 |#5|) |#5| (-112)) 73)) (-1478 (((-112) |#5| (-619 |#5|)) 30))) +(((-570 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3766 ((-619 |#5|) |#5| (-112))) (-15 -1478 ((-112) |#5| (-619 |#5|)))) (-13 (-298) (-145)) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -570)) +((-1478 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-570 *5 *6 *7 *8 *3)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) (-5 *1 (-570 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8))))) +(-10 -7 (-15 -3766 ((-619 |#5|) |#5| (-112))) (-15 -1478 ((-112) |#5| (-619 |#5|)))) +((-3821 (((-112) $ $) NIL)) (-2186 (((-1140) $) 11)) (-2174 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-571) (-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $))))) (T -571)) +((-2174 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-571)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-571))))) +(-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $)))) +((-3821 (((-112) $ $) NIL (|has| (-142) (-1063)))) (-2502 (($ $) 34)) (-2617 (($ $) NIL)) (-2250 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2305 (((-112) $ $) 51)) (-2277 (((-112) $ $ (-547)) 46)) (-2378 (((-619 $) $ (-142)) 60) (((-619 $) $ (-139)) 61)) (-2951 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2765 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-821))))) (-3180 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 (((-142) $ (-547) (-142)) 45 (|has| $ (-6 -4329))) (((-142) $ (-1185 (-547)) (-142)) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3577 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-4118 (($ $ (-1185 (-547)) $) 44)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-3801 (($ (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4328))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4328)))) (-1861 (((-142) $ (-547) (-142)) NIL (|has| $ (-6 -4329)))) (-1793 (((-142) $ (-547)) NIL)) (-2332 (((-112) $ $) 72)) (-2867 (((-547) (-1 (-112) (-142)) $) NIL) (((-547) (-142) $) NIL (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) 48 (|has| (-142) (-1063))) (((-547) $ $ (-547)) 47) (((-547) (-139) $ (-547)) 50)) (-2973 (((-619 (-142)) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) (-142)) 9)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 28 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| (-142) (-821)))) (-1294 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-3666 (((-619 (-142)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-2638 (((-547) $) 42 (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-142) (-821)))) (-2295 (((-112) $ $ (-142)) 73)) (-2459 (((-745) $ $ (-142)) 70)) (-1850 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-1372 (($ $) 37)) (-1493 (($ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3591 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-1917 (((-1118) $) 38 (|has| (-142) (-1063)))) (-2599 (($ (-142) $ (-547)) NIL) (($ $ $ (-547)) 23)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-547) $) 69) (((-1082) $) NIL (|has| (-142) (-1063)))) (-3634 (((-142) $) NIL (|has| (-547) (-821)))) (-3461 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2418 (($ $ (-142)) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-142)))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-1758 (((-619 (-142)) $) NIL)) (-3169 (((-112) $) 12)) (-4011 (($) 10)) (-3329 (((-142) $ (-547) (-142)) NIL) (((-142) $ (-547)) 52) (($ $ (-1185 (-547))) 21) (($ $ $) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-2861 (($ $ $ (-547)) 66 (|has| $ (-6 -4329)))) (-2265 (($ $) 17)) (-2829 (((-523) $) NIL (|has| (-142) (-592 (-523))))) (-3841 (($ (-619 (-142))) NIL)) (-1935 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-619 $)) 67)) (-3834 (($ (-142)) NIL) (((-832) $) 27 (|has| (-142) (-591 (-832))))) (-2583 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2371 (((-112) $ $) 14 (|has| (-142) (-1063)))) (-2421 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2396 (((-112) $ $) 15 (|has| (-142) (-821)))) (-3763 (((-745) $) 13 (|has| $ (-6 -4328))))) +(((-572 |#1|) (-13 (-1104) (-10 -8 (-15 -3979 ((-547) $)))) (-547)) (T -572)) +((-3979 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-572 *3)) (-14 *3 *2)))) +(-13 (-1104) (-10 -8 (-15 -3979 ((-547) $)))) +((-2805 (((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2| (-1058 |#4|)) 32))) +(((-573 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2805 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2| (-1058 |#4|))) (-15 -2805 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2|))) (-767) (-821) (-539) (-918 |#3| |#1| |#2|)) (T -573)) +((-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-539)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547)))) (-5 *1 (-573 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) (-4 *4 (-821)) (-4 *7 (-539)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547)))) (-5 *1 (-573 *6 *4 *7 *3))))) +(-10 -7 (-15 -2805 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2| (-1058 |#4|))) (-15 -2805 ((-2 (|:| |num| |#4|) (|:| |den| (-547))) |#4| |#2|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 63)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-547)) 54) (($ $ (-547) (-547)) 55)) (-2674 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 60)) (-2640 (($ $) 100)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2432 (((-832) (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) (-995 (-814 (-547))) (-1135) |#1| (-398 (-547))) 224)) (-2810 (($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 34)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-4211 (((-112) $) NIL)) (-3707 (((-547) $) 58) (((-547) $ (-547)) 59)) (-4114 (((-112) $) NIL)) (-2438 (($ $ (-890)) 76)) (-2194 (($ (-1 |#1| (-547)) $) 73)) (-2187 (((-112) $) 25)) (-2229 (($ |#1| (-547)) 22) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) 67)) (-1657 (($ (-995 (-814 (-547))) (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 13)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-2069 (($ $) 150 (|has| |#1| (-38 (-398 (-547)))))) (-1376 (((-3 $ "failed") $ $ (-112)) 99)) (-2545 (($ $ $) 108)) (-3979 (((-1082) $) NIL)) (-1455 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 15)) (-1562 (((-995 (-814 (-547))) $) 14)) (-3558 (($ $ (-547)) 45)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-547)))))) (-3329 ((|#1| $ (-547)) 57) (($ $ $) NIL (|has| (-547) (-1075)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-1618 (((-547) $) NIL)) (-4105 (($ $) 46)) (-3834 (((-832) $) NIL) (($ (-547)) 28) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 27 (|has| |#1| (-169)))) (-3338 ((|#1| $ (-547)) 56)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) 37)) (-2582 ((|#1| $) NIL)) (-4205 (($ $) 186 (|has| |#1| (-38 (-398 (-547)))))) (-2953 (($ $) 158 (|has| |#1| (-38 (-398 (-547)))))) (-3221 (($ $) 190 (|has| |#1| (-38 (-398 (-547)))))) (-3115 (($ $) 163 (|has| |#1| (-38 (-398 (-547)))))) (-4050 (($ $) 189 (|has| |#1| (-38 (-398 (-547)))))) (-2788 (($ $) 162 (|has| |#1| (-38 (-398 (-547)))))) (-2213 (($ $ (-398 (-547))) 166 (|has| |#1| (-38 (-398 (-547)))))) (-2336 (($ $ |#1|) 146 (|has| |#1| (-38 (-398 (-547)))))) (-1989 (($ $) 192 (|has| |#1| (-38 (-398 (-547)))))) (-2103 (($ $) 149 (|has| |#1| (-38 (-398 (-547)))))) (-3960 (($ $) 191 (|has| |#1| (-38 (-398 (-547)))))) (-2706 (($ $) 164 (|has| |#1| (-38 (-398 (-547)))))) (-4128 (($ $) 187 (|has| |#1| (-38 (-398 (-547)))))) (-2875 (($ $) 160 (|has| |#1| (-38 (-398 (-547)))))) (-4281 (($ $) 188 (|has| |#1| (-38 (-398 (-547)))))) (-3034 (($ $) 161 (|has| |#1| (-38 (-398 (-547)))))) (-1872 (($ $) 197 (|has| |#1| (-38 (-398 (-547)))))) (-3565 (($ $) 173 (|has| |#1| (-38 (-398 (-547)))))) (-3884 (($ $) 194 (|has| |#1| (-38 (-398 (-547)))))) (-3731 (($ $) 168 (|has| |#1| (-38 (-398 (-547)))))) (-1685 (($ $) 201 (|has| |#1| (-38 (-398 (-547)))))) (-3394 (($ $) 177 (|has| |#1| (-38 (-398 (-547)))))) (-1589 (($ $) 203 (|has| |#1| (-38 (-398 (-547)))))) (-3306 (($ $) 179 (|has| |#1| (-38 (-398 (-547)))))) (-1778 (($ $) 199 (|has| |#1| (-38 (-398 (-547)))))) (-3474 (($ $) 175 (|has| |#1| (-38 (-398 (-547)))))) (-3814 (($ $) 196 (|has| |#1| (-38 (-398 (-547)))))) (-3649 (($ $) 171 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-2645 ((|#1| $ (-547)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-3267 (($) 29 T CONST)) (-3277 (($) 38 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-2371 (((-112) $ $) 65)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) 84) (($ $ $) 64)) (-2470 (($ $ $) 81)) (** (($ $ (-890)) NIL) (($ $ (-745)) 103)) (* (($ (-890) $) 89) (($ (-745) $) 87) (($ (-547) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-574 |#1|) (-13 (-1196 |#1| (-547)) (-10 -8 (-15 -1657 ($ (-995 (-814 (-547))) (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -1562 ((-995 (-814 (-547))) $)) (-15 -1455 ((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $)) (-15 -2810 ($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -2187 ((-112) $)) (-15 -2194 ($ (-1 |#1| (-547)) $)) (-15 -1376 ((-3 $ "failed") $ $ (-112))) (-15 -2640 ($ $)) (-15 -2545 ($ $ $)) (-15 -2432 ((-832) (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) (-995 (-814 (-547))) (-1135) |#1| (-398 (-547)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $)) (-15 -2336 ($ $ |#1|)) (-15 -2213 ($ $ (-398 (-547)))) (-15 -2103 ($ $)) (-15 -1989 ($ $)) (-15 -3115 ($ $)) (-15 -3034 ($ $)) (-15 -2953 ($ $)) (-15 -2875 ($ $)) (-15 -2788 ($ $)) (-15 -2706 ($ $)) (-15 -3731 ($ $)) (-15 -3649 ($ $)) (-15 -3565 ($ $)) (-15 -3474 ($ $)) (-15 -3394 ($ $)) (-15 -3306 ($ $)) (-15 -3221 ($ $)) (-15 -4281 ($ $)) (-15 -4205 ($ $)) (-15 -4128 ($ $)) (-15 -4050 ($ $)) (-15 -3960 ($ $)) (-15 -3884 ($ $)) (-15 -3814 ($ $)) (-15 -1872 ($ $)) (-15 -1778 ($ $)) (-15 -1685 ($ $)) (-15 -1589 ($ $))) |%noBranch|))) (-1016)) (T -574)) +((-2187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-1657 (*1 *1 *2 *3) (-12 (-5 *2 (-995 (-814 (-547)))) (-5 *3 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *4)))) (-4 *4 (-1016)) (-5 *1 (-574 *4)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-995 (-814 (-547)))) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *3)))) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *3)))) (-4 *3 (-1016)) (-5 *1 (-574 *3)))) (-2194 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-574 *3)))) (-1376 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) (-2640 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016)))) (-2545 (*1 *1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016)))) (-2432 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *6)))) (-5 *4 (-995 (-814 (-547)))) (-5 *5 (-1135)) (-5 *7 (-398 (-547))) (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-574 *6)))) (-2069 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2336 (*1 *1 *1 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-574 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1016)))) (-2103 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3115 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3034 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2953 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2875 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2788 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-2706 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3565 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3474 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3306 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3221 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4281 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4205 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4128 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3884 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1778 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) (-1589 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(-13 (-1196 |#1| (-547)) (-10 -8 (-15 -1657 ($ (-995 (-814 (-547))) (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -1562 ((-995 (-814 (-547))) $)) (-15 -1455 ((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $)) (-15 -2810 ($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))))) (-15 -2187 ((-112) $)) (-15 -2194 ($ (-1 |#1| (-547)) $)) (-15 -1376 ((-3 $ "failed") $ $ (-112))) (-15 -2640 ($ $)) (-15 -2545 ($ $ $)) (-15 -2432 ((-832) (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) (-995 (-814 (-547))) (-1135) |#1| (-398 (-547)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $)) (-15 -2336 ($ $ |#1|)) (-15 -2213 ($ $ (-398 (-547)))) (-15 -2103 ($ $)) (-15 -1989 ($ $)) (-15 -3115 ($ $)) (-15 -3034 ($ $)) (-15 -2953 ($ $)) (-15 -2875 ($ $)) (-15 -2788 ($ $)) (-15 -2706 ($ $)) (-15 -3731 ($ $)) (-15 -3649 ($ $)) (-15 -3565 ($ $)) (-15 -3474 ($ $)) (-15 -3394 ($ $)) (-15 -3306 ($ $)) (-15 -3221 ($ $)) (-15 -4281 ($ $)) (-15 -4205 ($ $)) (-15 -4128 ($ $)) (-15 -4050 ($ $)) (-15 -3960 ($ $)) (-15 -3884 ($ $)) (-15 -3814 ($ $)) (-15 -1872 ($ $)) (-15 -1778 ($ $)) (-15 -1685 ($ $)) (-15 -1589 ($ $))) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2810 (($ (-1116 |#1|)) 9)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) 42)) (-4211 (((-112) $) 52)) (-3707 (((-745) $) 55) (((-745) $ (-745)) 54)) (-4114 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ $) 44 (|has| |#1| (-539)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-1116 |#1|) $) 23)) (-2311 (((-745)) 51)) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) 10 T CONST)) (-3277 (($) 14 T CONST)) (-2371 (((-112) $ $) 22)) (-2484 (($ $) 30) (($ $ $) 16)) (-2470 (($ $ $) 25)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-547)) 36))) +(((-575 |#1|) (-13 (-1016) (-10 -8 (-15 -2472 ((-1116 |#1|) $)) (-15 -2810 ($ (-1116 |#1|))) (-15 -4211 ((-112) $)) (-15 -3707 ((-745) $)) (-15 -3707 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-547))) (IF (|has| |#1| (-539)) (-6 (-539)) |%noBranch|))) (-1016)) (T -575)) +((-2472 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (-3707 (*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))) +(-13 (-1016) (-10 -8 (-15 -2472 ((-1116 |#1|) $)) (-15 -2810 ($ (-1116 |#1|))) (-15 -4211 ((-112) $)) (-15 -3707 ((-745) $)) (-15 -3707 ((-745) $ (-745))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-547))) (IF (|has| |#1| (-539)) (-6 (-539)) |%noBranch|))) +((-2781 (((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)) 15))) +(((-576 |#1| |#2|) (-10 -7 (-15 -2781 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)))) (-1172) (-1172)) (T -576)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-579 *6)) (-5 *1 (-576 *5 *6))))) +(-10 -7 (-15 -2781 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)))) +((-2781 (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-1116 |#2|)) 20) (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-579 |#2|)) 19) (((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|)) 18))) +(((-577 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|))) (-15 -2781 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-579 |#2|))) (-15 -2781 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-1116 |#2|)))) (-1172) (-1172) (-1172)) (T -577)) +((-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-577 *6 *7 *8)))) (-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-579 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-577 *6 *7 *8)))) (-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-579 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-579 *8)) (-5 *1 (-577 *6 *7 *8))))) +(-10 -7 (-15 -2781 ((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|))) (-15 -2781 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-579 |#2|))) (-15 -2781 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-1116 |#2|)))) +((-2163 ((|#3| |#3| (-619 (-590 |#3|)) (-619 (-1135))) 55)) (-3231 (((-166 |#2|) |#3|) 117)) (-2952 ((|#3| (-166 |#2|)) 44)) (-3052 ((|#2| |#3|) 19)) (-3152 ((|#3| |#2|) 33))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2952 (|#3| (-166 |#2|))) (-15 -3052 (|#2| |#3|)) (-15 -3152 (|#3| |#2|)) (-15 -3231 ((-166 |#2|) |#3|)) (-15 -2163 (|#3| |#3| (-619 (-590 |#3|)) (-619 (-1135))))) (-13 (-539) (-821)) (-13 (-421 |#1|) (-971) (-1157)) (-13 (-421 (-166 |#1|)) (-971) (-1157))) (T -578)) +((-2163 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-619 (-1135))) (-4 *2 (-13 (-421 (-166 *5)) (-971) (-1157))) (-4 *5 (-13 (-539) (-821))) (-5 *1 (-578 *5 *6 *2)) (-4 *6 (-13 (-421 *5) (-971) (-1157))))) (-3231 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821))) (-5 *2 (-166 *5)) (-5 *1 (-578 *4 *5 *3)) (-4 *5 (-13 (-421 *4) (-971) (-1157))) (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1157))))) (-3152 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821))) (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1157))) (-5 *1 (-578 *4 *3 *2)) (-4 *3 (-13 (-421 *4) (-971) (-1157))))) (-3052 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-821))) (-4 *2 (-13 (-421 *4) (-971) (-1157))) (-5 *1 (-578 *4 *2 *3)) (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1157))))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1157))) (-4 *4 (-13 (-539) (-821))) (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1157))) (-5 *1 (-578 *4 *5 *2))))) +(-10 -7 (-15 -2952 (|#3| (-166 |#2|))) (-15 -3052 (|#2| |#3|)) (-15 -3152 (|#3| |#2|)) (-15 -3231 ((-166 |#2|) |#3|)) (-15 -2163 (|#3| |#3| (-619 (-590 |#3|)) (-619 (-1135))))) +((-1476 (($ (-1 (-112) |#1|) $) 17)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1399 (($ (-1 |#1| |#1|) |#1|) 9)) (-1447 (($ (-1 (-112) |#1|) $) 13)) (-1461 (($ (-1 (-112) |#1|) $) 15)) (-3841 (((-1116 |#1|) $) 18)) (-3834 (((-832) $) NIL))) +(((-579 |#1|) (-13 (-591 (-832)) (-10 -8 (-15 -2781 ($ (-1 |#1| |#1|) $)) (-15 -1447 ($ (-1 (-112) |#1|) $)) (-15 -1461 ($ (-1 (-112) |#1|) $)) (-15 -1476 ($ (-1 (-112) |#1|) $)) (-15 -1399 ($ (-1 |#1| |#1|) |#1|)) (-15 -3841 ((-1116 |#1|) $)))) (-1172)) (T -579)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) (-1447 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) (-1461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) (-1476 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) (-1399 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1172))))) +(-13 (-591 (-832)) (-10 -8 (-15 -2781 ($ (-1 |#1| |#1|) $)) (-15 -1447 ($ (-1 (-112) |#1|) $)) (-15 -1461 ($ (-1 (-112) |#1|) $)) (-15 -1476 ($ (-1 (-112) |#1|) $)) (-15 -1399 ($ (-1 |#1| |#1|) |#1|)) (-15 -3841 ((-1116 |#1|) $)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3757 (($ (-745)) NIL (|has| |#1| (-23)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4042 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1324 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2024 (((-112) $ (-745)) NIL)) (-4202 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3453 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3346 (($ $ $) NIL (|has| |#1| (-1016)))) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2484 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2470 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-547) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-580 |#1| |#2|) (-1216 |#1|) (-1172) (-547)) (T -580)) NIL (-1216 |#1|) -((-4149 (((-1223) $ |#2| |#2|) 36)) (-4171 ((|#2| $) 23)) (-4181 ((|#2| $) 21)) (-3960 (($ (-1 |#3| |#3|) $) 32)) (-2540 (($ (-1 |#3| |#3|) $) 30)) (-3453 ((|#3| $) 26)) (-4159 (($ $ |#3|) 33)) (-4191 (((-112) |#3| $) 17)) (-4223 (((-619 |#3|) $) 15)) (-3171 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-582 |#1| |#2| |#3|) (-10 -8 (-15 -4149 ((-1223) |#1| |#2| |#2|)) (-15 -4159 (|#1| |#1| |#3|)) (-15 -3453 (|#3| |#1|)) (-15 -4171 (|#2| |#1|)) (-15 -4181 (|#2| |#1|)) (-15 -4191 ((-112) |#3| |#1|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|))) (-583 |#2| |#3|) (-1063) (-1172)) (T -582)) -NIL -(-10 -8 (-15 -4149 ((-1223) |#1| |#2| |#2|)) (-15 -4159 (|#1| |#1| |#3|)) (-15 -3453 (|#3| |#1|)) (-15 -4171 (|#2| |#1|)) (-15 -4181 (|#2| |#1|)) (-15 -4191 ((-112) |#3| |#1|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-4149 (((-1223) $ |#1| |#1|) 40 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-3971 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 51)) (-1934 (((-619 |#2|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-4171 ((|#1| $) 43 (|has| |#1| (-821)))) (-2342 (((-619 |#2|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-4181 ((|#1| $) 44 (|has| |#1| (-821)))) (-3960 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#2| (-1063)))) (-4201 (((-619 |#1|) $) 46)) (-4212 (((-112) |#1| $) 47)) (-3932 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3453 ((|#2| $) 42 (|has| |#1| (-821)))) (-4159 (($ $ |#2|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) 26 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3945 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4327))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#2| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-583 |#1| |#2|) (-138) (-1063) (-1172)) (T -583)) -((-4223 (*1 *2 *1) (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-619 *4)))) (-4212 (*1 *2 *3 *1) (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-619 *3)))) (-4191 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-583 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-4171 (*1 *2 *1) (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) (-4 *2 (-1172)))) (-4159 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-4149 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-1223))))) -(-13 (-480 |t#2|) (-280 |t#1| |t#2|) (-10 -8 (-15 -4223 ((-619 |t#2|) $)) (-15 -4212 ((-112) |t#1| $)) (-15 -4201 ((-619 |t#1|) $)) (IF (|has| |t#2| (-1063)) (IF (|has| $ (-6 -4327)) (-15 -4191 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -4181 (|t#1| $)) (-15 -4171 (|t#1| $)) (-15 -3453 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -4159 ($ $ |t#2|)) (-15 -4149 ((-1223) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1063)) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-592 (-832)))) ((-278 |#1| |#2|) . T) ((-280 |#1| |#2|) . T) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-480 |#2|) . T) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-1063) |has| |#2| (-1063)) ((-1172) . T)) -((-3743 (((-832) $) 19) (((-129) $) 14) (($ (-129)) 13))) -(((-584) (-13 (-592 (-832)) (-592 (-129)) (-10 -8 (-15 -3743 ($ (-129)))))) (T -584)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-584))))) -(-13 (-592 (-832)) (-592 (-129)) (-10 -8 (-15 -3743 ($ (-129))))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (((-1171) $) 14) (($ (-619 (-1171))) 13)) (-3108 (((-619 (-1171)) $) 10)) (-2214 (((-112) $ $) NIL))) -(((-585) (-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -3108 ((-619 (-1171)) $))))) (T -585)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585))))) -(-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-619 (-1171)))) (-15 -3108 ((-619 (-1171)) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-1218 (-663 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2968 (((-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3991 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2413 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2947 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2391 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3399 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4307 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2741 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2432 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2903 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2842 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2455 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (($ (-1218 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2103 (((-890)) NIL (|has| |#2| (-359 |#1|)))) (-2815 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2766 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2797 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4003 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2422 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2958 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2402 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3411 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-1298 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2750 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2444 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2914 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2851 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2790 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2806 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3171 ((|#1| $ (-548)) NIL (|has| |#2| (-409 |#1|)))) (-2447 (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $) (-1218 $)) NIL (|has| |#2| (-359 |#1|))) (((-1218 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2591 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-4218 (((-619 (-921 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-619 (-921 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3743 (((-832) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2877 (((-1218 $)) NIL (|has| |#2| (-409 |#1|)))) (-2759 (((-619 (-1218 |#1|))) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3398 (($ (-663 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2859 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2823 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 24)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-586 |#1| |#2|) (-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -586)) -((-3743 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-586 *3 *2)) (-4 *2 (-719 *3))))) -(-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3930 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) 33)) (-3539 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL) (($) NIL)) (-4149 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-1118) |#1|) 43)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#1| "failed") (-1118) $) 46)) (-3030 (($) NIL T CONST)) (-3981 (($ $ (-1118)) 24)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-1636 (((-3 |#1| "failed") (-1118) $) 47) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (|has| $ (-6 -4327)))) (-3699 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-2061 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-3943 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) 32)) (-3971 ((|#1| $ (-1118) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-1118)) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-1554 (($ $) 48)) (-1280 (($ (-380)) 22) (($ (-380) (-1118)) 21)) (-2275 (((-380) $) 34)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1118) $) NIL (|has| (-1118) (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327))) (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (((-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-4181 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-4043 (((-619 (-1118)) $) 39)) (-4233 (((-112) (-1118) $) NIL)) (-3959 (((-1118) $) 35)) (-1346 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-4201 (((-619 (-1118)) $) NIL)) (-4212 (((-112) (-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 ((|#1| $) NIL (|has| (-1118) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) "failed") (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-619 (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 37)) (-3171 ((|#1| $ (-1118) |#1|) NIL) ((|#1| $ (-1118)) 42)) (-2801 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL) (($) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (((-745) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3743 (((-832) $) 20)) (-3972 (($ $) 25)) (-1368 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 19)) (-3643 (((-745) $) 41 (|has| $ (-6 -4327))))) -(((-587 |#1|) (-13 (-356 (-380) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-1148 (-1118) |#1|) (-10 -8 (-6 -4327) (-15 -1554 ($ $)))) (-1063)) (T -587)) -((-1554 (*1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1063))))) -(-13 (-356 (-380) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-1148 (-1118) |#1|) (-10 -8 (-6 -4327) (-15 -1554 ($ $)))) -((-2556 (((-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 15)) (-4043 (((-619 |#2|) $) 19)) (-4233 (((-112) |#2| $) 12))) -(((-588 |#1| |#2| |#3|) (-10 -8 (-15 -4043 ((-619 |#2|) |#1|)) (-15 -4233 ((-112) |#2| |#1|)) (-15 -2556 ((-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|))) (-589 |#2| |#3|) (-1063) (-1063)) (T -588)) -NIL -(-10 -8 (-15 -4043 ((-619 |#2|) |#1|)) (-15 -4233 ((-112) |#2| |#1|)) (-15 -2556 ((-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|))) -((-3730 (((-112) $ $) 19 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 55 (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 61)) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 46 (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 62)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 54 (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 56 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 53 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-4043 (((-619 |#1|) $) 63)) (-4233 (((-112) |#1| $) 64)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 39)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 40)) (-3932 (((-1082) $) 21 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 51)) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 41)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 26 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 25 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 24 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 23 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2801 (($) 49) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 48)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 31 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 50)) (-3743 (((-832) $) 18 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 42)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-589 |#1| |#2|) (-138) (-1063) (-1063)) (T -589)) -((-4233 (*1 *2 *3 *1) (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-1636 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3255 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) -(-13 (-222 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|))) (-10 -8 (-15 -4233 ((-112) |t#1| $)) (-15 -4043 ((-619 |t#1|) $)) (-15 -1636 ((-3 |t#2| "failed") |t#1| $)) (-15 -3255 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-101) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) ((-592 (-832)) -1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))) ((-149 #0#) . T) ((-593 (-524)) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) ((-222 #0#) . T) ((-228 #0#) . T) ((-301 #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-480 #0#) . T) ((-504 #0# #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-1063) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) ((-1172) . T)) -((-4268 (((-591 |#2|) |#1|) 15)) (-4279 (((-3 |#1| "failed") (-591 |#2|)) 19))) -(((-590 |#1| |#2|) (-10 -7 (-15 -4268 ((-591 |#2|) |#1|)) (-15 -4279 ((-3 |#1| "failed") (-591 |#2|)))) (-821) (-821)) (T -590)) -((-4279 (*1 *2 *3) (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-821)) (-4 *2 (-821)) (-5 *1 (-590 *2 *4)))) (-4268 (*1 *2 *3) (-12 (-5 *2 (-591 *4)) (-5 *1 (-590 *3 *4)) (-4 *3 (-821)) (-4 *4 (-821))))) -(-10 -7 (-15 -4268 ((-591 |#2|) |#1|)) (-15 -4279 ((-3 |#1| "failed") (-591 |#2|)))) -((-3730 (((-112) $ $) NIL)) (-4244 (((-3 (-1135) "failed") $) 37)) (-4116 (((-1223) $ (-745)) 26)) (-2621 (((-745) $) 25)) (-1402 (((-114) $) 12)) (-2275 (((-1135) $) 20)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-1409 (($ (-114) (-619 |#1|) (-745)) 30) (($ (-1135)) 31)) (-1518 (((-112) $ (-114)) 18) (((-112) $ (-1135)) 16)) (-3926 (((-745) $) 22)) (-3932 (((-1082) $) NIL)) (-2591 (((-861 (-548)) $) 77 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 84 (|has| |#1| (-593 (-861 (-371))))) (((-524) $) 69 (|has| |#1| (-593 (-524))))) (-3743 (((-832) $) 55)) (-4257 (((-619 |#1|) $) 24)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 41)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 42))) -(((-591 |#1|) (-13 (-131) (-853 |#1|) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -1402 ((-114) $)) (-15 -4257 ((-619 |#1|) $)) (-15 -3926 ((-745) $)) (-15 -1409 ($ (-114) (-619 |#1|) (-745))) (-15 -1409 ($ (-1135))) (-15 -4244 ((-3 (-1135) "failed") $)) (-15 -1518 ((-112) $ (-114))) (-15 -1518 ((-112) $ (-1135))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) (-821)) (T -591)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-1409 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821)) (-5 *1 (-591 *5)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-4244 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) (-1518 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821)))) (-1518 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821))))) -(-13 (-131) (-853 |#1|) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -1402 ((-114) $)) (-15 -4257 ((-619 |#1|) $)) (-15 -3926 ((-745) $)) (-15 -1409 ($ (-114) (-619 |#1|) (-745))) (-15 -1409 ($ (-1135))) (-15 -4244 ((-3 (-1135) "failed") $)) (-15 -1518 ((-112) $ (-114))) (-15 -1518 ((-112) $ (-1135))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) -((-3743 ((|#1| $) 6))) +((-2290 (((-1223) $ |#2| |#2|) 36)) (-2528 ((|#2| $) 23)) (-2638 ((|#2| $) 21)) (-1850 (($ (-1 |#3| |#3|) $) 32)) (-2781 (($ (-1 |#3| |#3|) $) 30)) (-3634 ((|#3| $) 26)) (-2418 (($ $ |#3|) 33)) (-2729 (((-112) |#3| $) 17)) (-1758 (((-619 |#3|) $) 15)) (-3329 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-581 |#1| |#2| |#3|) (-10 -8 (-15 -2290 ((-1223) |#1| |#2| |#2|)) (-15 -2418 (|#1| |#1| |#3|)) (-15 -3634 (|#3| |#1|)) (-15 -2528 (|#2| |#1|)) (-15 -2638 (|#2| |#1|)) (-15 -2729 ((-112) |#3| |#1|)) (-15 -1758 ((-619 |#3|) |#1|)) (-15 -3329 (|#3| |#1| |#2|)) (-15 -3329 (|#3| |#1| |#2| |#3|)) (-15 -1850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2781 (|#1| (-1 |#3| |#3|) |#1|))) (-582 |#2| |#3|) (-1063) (-1172)) (T -581)) +NIL +(-10 -8 (-15 -2290 ((-1223) |#1| |#2| |#2|)) (-15 -2418 (|#1| |#1| |#3|)) (-15 -3634 (|#3| |#1|)) (-15 -2528 (|#2| |#1|)) (-15 -2638 (|#2| |#1|)) (-15 -2729 ((-112) |#3| |#1|)) (-15 -1758 ((-619 |#3|) |#1|)) (-15 -3329 (|#3| |#1| |#2|)) (-15 -3329 (|#3| |#1| |#2| |#3|)) (-15 -1850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2781 (|#1| (-1 |#3| |#3|) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#2| (-1063)))) (-2290 (((-1223) $ |#1| |#1|) 40 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4329)))) (-3219 (($) 7 T CONST)) (-1861 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) 51)) (-2973 (((-619 |#2|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-2528 ((|#1| $) 43 (|has| |#1| (-821)))) (-3666 (((-619 |#2|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2638 ((|#1| $) 44 (|has| |#1| (-821)))) (-1850 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#2| (-1063)))) (-1520 (((-619 |#1|) $) 46)) (-1641 (((-112) |#1| $) 47)) (-3979 (((-1082) $) 21 (|has| |#2| (-1063)))) (-3634 ((|#2| $) 42 (|has| |#1| (-821)))) (-2418 (($ $ |#2|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) 26 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 25 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 23 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3987 (((-745) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4328))) (((-745) |#2| $) 28 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#2| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#2| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-582 |#1| |#2|) (-138) (-1063) (-1172)) (T -582)) +((-1758 (*1 *2 *1) (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-619 *4)))) (-1641 (*1 *2 *3 *1) (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-619 *3)))) (-2729 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-582 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-2638 (*1 *2 *1) (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) (-4 *2 (-821)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) (-4 *2 (-1172)))) (-2418 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) (-2290 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) (-5 *2 (-1223))))) +(-13 (-479 |t#2|) (-279 |t#1| |t#2|) (-10 -8 (-15 -1758 ((-619 |t#2|) $)) (-15 -1641 ((-112) |t#1| $)) (-15 -1520 ((-619 |t#1|) $)) (IF (|has| |t#2| (-1063)) (IF (|has| $ (-6 -4328)) (-15 -2729 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821)) (PROGN (-15 -2638 (|t#1| $)) (-15 -2528 (|t#1| $)) (-15 -3634 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4329)) (PROGN (-15 -2418 ($ $ |t#2|)) (-15 -2290 ((-1223) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1063)) ((-591 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-591 (-832)))) ((-277 |#1| |#2|) . T) ((-279 |#1| |#2|) . T) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-479 |#2|) . T) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-1063) |has| |#2| (-1063)) ((-1172) . T)) +((-3834 (((-832) $) 19) (((-129) $) 14) (($ (-129)) 13))) +(((-583) (-13 (-591 (-832)) (-591 (-129)) (-10 -8 (-15 -3834 ($ (-129)))))) (T -583)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-583))))) +(-13 (-591 (-832)) (-591 (-129)) (-10 -8 (-15 -3834 ($ (-129))))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL) (((-1171) $) 14) (($ (-619 (-1171))) 13)) (-3318 (((-619 (-1171)) $) 10)) (-2371 (((-112) $ $) NIL))) +(((-584) (-13 (-1047) (-591 (-1171)) (-10 -8 (-15 -3834 ($ (-619 (-1171)))) (-15 -3318 ((-619 (-1171)) $))))) (T -584)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-584)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-584))))) +(-13 (-1047) (-591 (-1171)) (-10 -8 (-15 -3834 ($ (-619 (-1171)))) (-15 -3318 ((-619 (-1171)) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4104 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2173 (((-1218 (-663 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-1218 (-663 |#1|)) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3785 (((-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3219 (($) NIL T CONST)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4231 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3140 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3573 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2966 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3480 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1346 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3946 (($ $ (-890)) NIL)) (-3335 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2101 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2149 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-4250 (((-1131 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2402 (($ (-1218 |#1|)) NIL (|has| |#2| (-408 |#1|))) (($ (-1218 |#1|) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-2537 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3107 (((-890)) NIL (|has| |#2| (-358 |#1|)))) (-1575 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2530 (($ $ (-890)) NIL)) (-2578 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2385 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1377 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1283 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2033 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3690 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-3058 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3593 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2100 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3699 (($ $ (-890)) NIL)) (-3452 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2205 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2275 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-1303 (((-1131 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-1924 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1917 (((-1118) $) NIL)) (-2486 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2662 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1475 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3979 (((-1082) $) NIL)) (-1739 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3329 ((|#1| $ (-547)) NIL (|has| |#2| (-408 |#1|)))) (-2301 (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-408 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1218 $) (-1218 $)) NIL (|has| |#2| (-358 |#1|))) (((-1218 |#1|) $ (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-2829 (($ (-1218 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-1701 (((-619 (-921 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-619 (-921 |#1|)) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-4121 (($ $ $) NIL)) (-4156 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3834 (((-832) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4013 (((-1218 $)) NIL (|has| |#2| (-408 |#1|)))) (-2310 (((-619 (-1218 |#1|))) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4225 (($ $ $ $) NIL)) (-3948 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3583 (($ (-663 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-4007 (($ $ $) NIL)) (-4057 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2014 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1649 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3267 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) 24)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-585 |#1| |#2|) (-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3834 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -585)) +((-3834 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-585 *3 *2)) (-4 *2 (-719 *3))))) +(-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3834 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-1891 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) 33)) (-3722 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL) (($) NIL)) (-2290 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-1118) |#1|) 43)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#1| "failed") (-1118) $) 46)) (-3219 (($) NIL T CONST)) (-4135 (($ $ (-1118)) 24)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063))))) (-3342 (((-3 |#1| "failed") (-1118) $) 47) (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (($ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (|has| $ (-6 -4328)))) (-3801 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (($ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063))))) (-2542 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063))))) (-2002 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) 32)) (-1861 ((|#1| $ (-1118) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-1118)) NIL)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328))) (((-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-3742 (($ $) 48)) (-1351 (($ (-379)) 22) (($ (-379) (-1118)) 21)) (-2464 (((-379) $) 34)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328))) (((-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (((-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063))))) (-2638 (((-1118) $) NIL (|has| (-1118) (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3437 (((-619 (-1118)) $) 39)) (-1876 (((-112) (-1118) $) NIL)) (-3938 (((-1118) $) 35)) (-1959 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL)) (-1520 (((-619 (-1118)) $) NIL)) (-1641 (((-112) (-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 ((|#1| $) NIL (|has| (-1118) (-821)))) (-3461 (((-3 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) "failed") (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-619 (-285 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 37)) (-3329 ((|#1| $ (-1118) |#1|) NIL) ((|#1| $ (-1118)) 42)) (-1404 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL) (($) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (((-745) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (((-745) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL)) (-3834 (((-832) $) 20)) (-4048 (($ $) 25)) (-2731 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 19)) (-3763 (((-745) $) 41 (|has| $ (-6 -4328))))) +(((-586 |#1|) (-13 (-355 (-379) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) (-1148 (-1118) |#1|) (-10 -8 (-6 -4328) (-15 -3742 ($ $)))) (-1063)) (T -586)) +((-3742 (*1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1063))))) +(-13 (-355 (-379) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) (-1148 (-1118) |#1|) (-10 -8 (-6 -4328) (-15 -3742 ($ $)))) +((-3860 (((-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) $) 15)) (-3437 (((-619 |#2|) $) 19)) (-1876 (((-112) |#2| $) 12))) +(((-587 |#1| |#2| |#3|) (-10 -8 (-15 -3437 ((-619 |#2|) |#1|)) (-15 -1876 ((-112) |#2| |#1|)) (-15 -3860 ((-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|))) (-588 |#2| |#3|) (-1063) (-1063)) (T -587)) +NIL +(-10 -8 (-15 -3437 ((-619 |#2|) |#1|)) (-15 -1876 ((-112) |#2| |#1|)) (-15 -3860 ((-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|))) +((-3821 (((-112) $ $) 19 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 55 (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) 61)) (-3219 (($) 7 T CONST)) (-3664 (($ $) 58 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 46 (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) 62)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 54 (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 56 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 53 (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 52 (|has| $ (-6 -4328)))) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3437 (((-619 |#1|) $) 63)) (-1876 (((-112) |#1| $) 64)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 39)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 40)) (-3979 (((-1082) $) 21 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 51)) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 41)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) 26 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 25 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 24 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 23 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-1404 (($) 49) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 48)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 31 (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 50)) (-3834 (((-832) $) 18 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 42)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-588 |#1| |#2|) (-138) (-1063) (-1063)) (T -588)) +((-1876 (*1 *2 *3 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-619 *3)))) (-3342 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3477 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(-13 (-221 (-2 (|:| -3326 |t#1|) (|:| -1777 |t#2|))) (-10 -8 (-15 -1876 ((-112) |t#1| $)) (-15 -3437 ((-619 |t#1|) $)) (-15 -3342 ((-3 |t#2| "failed") |t#1| $)) (-15 -3477 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((-101) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) ((-591 (-832)) -1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832)))) ((-149 #0#) . T) ((-592 (-523)) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))) ((-221 #0#) . T) ((-227 #0#) . T) ((-300 #0#) -12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-479 #0#) . T) ((-503 #0# #0#) -12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-1063) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) ((-1172) . T)) +((-4031 (((-590 |#2|) |#1|) 15)) (-4131 (((-3 |#1| "failed") (-590 |#2|)) 19))) +(((-589 |#1| |#2|) (-10 -7 (-15 -4031 ((-590 |#2|) |#1|)) (-15 -4131 ((-3 |#1| "failed") (-590 |#2|)))) (-821) (-821)) (T -589)) +((-4131 (*1 *2 *3) (|partial| -12 (-5 *3 (-590 *4)) (-4 *4 (-821)) (-4 *2 (-821)) (-5 *1 (-589 *2 *4)))) (-4031 (*1 *2 *3) (-12 (-5 *2 (-590 *4)) (-5 *1 (-589 *3 *4)) (-4 *3 (-821)) (-4 *4 (-821))))) +(-10 -7 (-15 -4031 ((-590 |#2|) |#1|)) (-15 -4131 ((-3 |#1| "failed") (-590 |#2|)))) +((-3821 (((-112) $ $) NIL)) (-1985 (((-3 (-1135) "failed") $) 37)) (-3112 (((-1223) $ (-745)) 26)) (-2867 (((-745) $) 25)) (-3454 (((-114) $) 12)) (-2464 (((-1135) $) 20)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-1465 (($ (-114) (-619 |#1|) (-745)) 30) (($ (-1135)) 31)) (-1469 (((-112) $ (-114)) 18) (((-112) $ (-1135)) 16)) (-4029 (((-745) $) 22)) (-3979 (((-1082) $) NIL)) (-2829 (((-861 (-547)) $) 77 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 84 (|has| |#1| (-592 (-861 (-370))))) (((-523) $) 69 (|has| |#1| (-592 (-523))))) (-3834 (((-832) $) 55)) (-3922 (((-619 |#1|) $) 24)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 41)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 42))) +(((-590 |#1|) (-13 (-131) (-853 |#1|) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -3454 ((-114) $)) (-15 -3922 ((-619 |#1|) $)) (-15 -4029 ((-745) $)) (-15 -1465 ($ (-114) (-619 |#1|) (-745))) (-15 -1465 ($ (-1135))) (-15 -1985 ((-3 (-1135) "failed") $)) (-15 -1469 ((-112) $ (-114))) (-15 -1469 ((-112) $ (-1135))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) (-821)) (T -590)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-1465 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821)) (-5 *1 (-590 *5)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-1985 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) (-1469 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821)))) (-1469 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821))))) +(-13 (-131) (-853 |#1|) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -3454 ((-114) $)) (-15 -3922 ((-619 |#1|) $)) (-15 -4029 ((-745) $)) (-15 -1465 ($ (-114) (-619 |#1|) (-745))) (-15 -1465 ($ (-1135))) (-15 -1985 ((-3 (-1135) "failed") $)) (-15 -1469 ((-112) $ (-114))) (-15 -1469 ((-112) $ (-1135))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) +((-3834 ((|#1| $) 6))) +(((-591 |#1|) (-138) (-1172)) (T -591)) +((-3834 (*1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -3834 (|t#1| $)))) +((-2829 ((|#1| $) 6))) (((-592 |#1|) (-138) (-1172)) (T -592)) -((-3743 (*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1172))))) -(-13 (-10 -8 (-15 -3743 (|t#1| $)))) -((-2591 ((|#1| $) 6))) -(((-593 |#1|) (-138) (-1172)) (T -593)) -((-2591 (*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1172))))) -(-13 (-10 -8 (-15 -2591 (|t#1| $)))) -((-4289 (((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 (-410 |#2|) |#2|)) 15) (((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)) 16))) -(((-594 |#1| |#2|) (-10 -7 (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|))) (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 (-410 |#2|) |#2|)))) (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -594)) -((-4289 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-1131 (-399 *6))) (-5 *1 (-594 *5 *6)) (-5 *3 (-399 *6)))) (-4289 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-1131 (-399 *5))) (-5 *1 (-594 *4 *5)) (-5 *3 (-399 *5))))) -(-10 -7 (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|))) (-15 -4289 ((-3 (-1131 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 (-410 |#2|) |#2|)))) -((-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) 10))) -(((-595 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-596 |#2|) (-1016)) (T -595)) -NIL -(-10 -8 (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 34)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +((-2829 (*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -2829 (|t#1| $)))) +((-4227 (((-3 (-1131 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 (-409 |#2|) |#2|)) 15) (((-3 (-1131 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)) 16))) +(((-593 |#1| |#2|) (-10 -7 (-15 -4227 ((-3 (-1131 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|))) (-15 -4227 ((-3 (-1131 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 (-409 |#2|) |#2|)))) (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547)))) (-1194 |#1|)) (T -593)) +((-4227 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-1131 (-398 *6))) (-5 *1 (-593 *5 *6)) (-5 *3 (-398 *6)))) (-4227 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *2 (-1131 (-398 *5))) (-5 *1 (-593 *4 *5)) (-5 *3 (-398 *5))))) +(-10 -7 (-15 -4227 ((-3 (-1131 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|))) (-15 -4227 ((-3 (-1131 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 (-409 |#2|) |#2|)))) +((-3821 (((-112) $ $) NIL)) (-1734 (($) 11 T CONST)) (-1789 (($) 12 T CONST)) (-4197 (($ $ $) 24)) (-3998 (($ $) 22)) (-1917 (((-1118) $) NIL)) (-2426 (($ $ $) 25)) (-3979 (((-1082) $) NIL)) (-3725 (($) 10 T CONST)) (-3646 (($ $ $) 26)) (-3834 (((-832) $) 30)) (-3254 (((-112) $ (|[\|\|]| -3725)) 19) (((-112) $ (|[\|\|]| -1734)) 21) (((-112) $ (|[\|\|]| -1789)) 17)) (-1806 (($ $ $) 23)) (-2371 (((-112) $ $) 15))) +(((-594) (-13 (-936) (-10 -8 (-15 -3725 ($) -2573) (-15 -1734 ($) -2573) (-15 -1789 ($) -2573) (-15 -3254 ((-112) $ (|[\|\|]| -3725))) (-15 -3254 ((-112) $ (|[\|\|]| -1734))) (-15 -3254 ((-112) $ (|[\|\|]| -1789)))))) (T -594)) +((-3725 (*1 *1) (-5 *1 (-594))) (-1734 (*1 *1) (-5 *1 (-594))) (-1789 (*1 *1) (-5 *1 (-594))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3725)) (-5 *2 (-112)) (-5 *1 (-594)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1734)) (-5 *2 (-112)) (-5 *1 (-594)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1789)) (-5 *2 (-112)) (-5 *1 (-594))))) +(-13 (-936) (-10 -8 (-15 -3725 ($) -2573) (-15 -1734 ($) -2573) (-15 -1789 ($) -2573) (-15 -3254 ((-112) $ (|[\|\|]| -3725))) (-15 -3254 ((-112) $ (|[\|\|]| -1734))) (-15 -3254 ((-112) $ (|[\|\|]| -1789))))) +((-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) 10))) +(((-595 |#1| |#2|) (-10 -8 (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-596 |#2|) (-1016)) (T -595)) +NIL +(-10 -8 (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 34)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ |#1| $) 35))) (((-596 |#1|) (-138) (-1016)) (T -596)) -((-3743 (*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016))))) -(-13 (-1016) (-622 |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2672 (((-548) $) NIL (|has| |#1| (-819)))) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-3298 (((-112) $) NIL (|has| |#1| (-819)))) (-2266 (((-112) $) NIL)) (-2470 ((|#1| $) 13)) (-3312 (((-112) $) NIL (|has| |#1| (-819)))) (-1795 (($ $ $) NIL (|has| |#1| (-819)))) (-3091 (($ $ $) NIL (|has| |#1| (-819)))) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2480 ((|#3| $) 15)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL)) (-3835 (((-745)) 20)) (-1446 (($ $) NIL (|has| |#1| (-819)))) (-3107 (($) NIL T CONST)) (-3118 (($) 12 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2309 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-597 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -597)) -((-2309 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2309 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-2480 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) -((-4301 ((|#2| |#2| (-1135) (-1135)) 18))) -(((-598 |#1| |#2|) (-10 -7 (-15 -4301 (|#2| |#2| (-1135) (-1135)))) (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-928) (-29 |#1|))) (T -598)) -((-4301 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-29 *4)))))) -(-10 -7 (-15 -4301 (|#2| |#2| (-1135) (-1135)))) -((-3730 (((-112) $ $) 56)) (-3324 (((-112) $) 52)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1256 ((|#1| $) 49)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-1508 (((-2 (|:| -2189 $) (|:| -2180 (-399 |#2|))) (-399 |#2|)) 97 (|has| |#1| (-355)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 24)) (-3859 (((-3 $ "failed") $) 75)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1672 (((-548) $) 19)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) 36)) (-2024 (($ |#1| (-548)) 21)) (-2197 ((|#1| $) 51)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) 87 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ $) 79)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-4077 (((-745) $) 99 (|has| |#1| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 98 (|has| |#1| (-355)))) (-4050 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2512 (((-548) $) 34)) (-2591 (((-399 |#2|) $) 42)) (-3743 (((-832) $) 62) (($ (-548)) 32) (($ $) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 31) (($ |#2|) 22)) (-1951 ((|#1| $ (-548)) 63)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 29)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 9 T CONST)) (-3118 (($) 12 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2214 (((-112) $ $) 17)) (-2299 (($ $) 46) (($ $ $) NIL)) (-2290 (($ $ $) 76)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 26) (($ $ $) 44))) -(((-599 |#1| |#2|) (-13 (-224 |#2|) (-540) (-593 (-399 |#2|)) (-403 |#1|) (-1007 |#2|) (-10 -8 (-15 -2435 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -1672 ((-548) $)) (-15 -1872 ($ $)) (-15 -2197 (|#1| $)) (-15 -1256 (|#1| $)) (-15 -1951 (|#1| $ (-548))) (-15 -2024 ($ |#1| (-548))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-299)) (-15 -1508 ((-2 (|:| -2189 $) (|:| -2180 (-399 |#2|))) (-399 |#2|)))) |%noBranch|))) (-540) (-1194 |#1|)) (T -599)) -((-2435 (*1 *2 *1) (-12 (-4 *3 (-540)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-1672 (*1 *2 *1) (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-1872 (*1 *1 *1) (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-2197 (*1 *2 *1) (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-1256 (*1 *2 *1) (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) (-1508 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *4 (-540)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2189 (-599 *4 *5)) (|:| -2180 (-399 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-399 *5))))) -(-13 (-224 |#2|) (-540) (-593 (-399 |#2|)) (-403 |#1|) (-1007 |#2|) (-10 -8 (-15 -2435 ((-112) $)) (-15 -2512 ((-548) $)) (-15 -1672 ((-548) $)) (-15 -1872 ($ $)) (-15 -2197 (|#1| $)) (-15 -1256 (|#1| $)) (-15 -1951 (|#1| $ (-548))) (-15 -2024 ($ |#1| (-548))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-6 (-299)) (-15 -1508 ((-2 (|:| -2189 $) (|:| -2180 (-399 |#2|))) (-399 |#2|)))) |%noBranch|))) -((-2004 (((-619 |#6|) (-619 |#4|) (-112)) 47)) (-1268 ((|#6| |#6|) 40))) -(((-600 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1268 (|#6| |#6|)) (-15 -2004 ((-619 |#6|) (-619 |#4|) (-112)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|) (-1072 |#1| |#2| |#3| |#4|)) (T -600)) -((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *10 (-1072 *5 *6 *7 *8)))) (-1268 (*1 *2 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6))))) -(-10 -7 (-15 -1268 (|#6| |#6|)) (-15 -2004 ((-619 |#6|) (-619 |#4|) (-112)))) -((-1281 (((-112) |#3| (-745) (-619 |#3|)) 23)) (-1292 (((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3213 (-619 (-2 (|:| |irr| |#4|) (|:| -3286 (-548)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)) 55))) -(((-601 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1281 ((-112) |#3| (-745) (-619 |#3|))) (-15 -1292 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3213 (-619 (-2 (|:| |irr| |#4|) (|:| -3286 (-548)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) (-821) (-767) (-299) (-918 |#3| |#2| |#1|)) (T -601)) -((-1292 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3213 (-619 (-2 (|:| |irr| *10) (|:| -3286 (-548))))))) (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-299)) (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) (-5 *2 (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) (|:| |corrfact| (-619 (-1131 *3))))) (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1131 *3))))) (-1281 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-299)) (-4 *6 (-821)) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) (-4 *8 (-918 *3 *7 *6))))) -(-10 -7 (-15 -1281 ((-112) |#3| (-745) (-619 |#3|))) (-15 -1292 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3213 (-619 (-2 (|:| |irr| |#4|) (|:| -3286 (-548)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) -((-3730 (((-112) $ $) NIL)) (-1987 (((-1140) $) 11)) (-1974 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-602) (-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $))))) (T -602)) -((-1974 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602))))) -(-13 (-1047) (-10 -8 (-15 -1974 ((-1140) $)) (-15 -1987 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2425 (($ $) 67)) (-3496 (((-638 |#1| |#2|) $) 52)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 70)) (-1303 (((-619 (-286 |#2|)) $ $) 33)) (-3932 (((-1082) $) NIL)) (-2458 (($ (-638 |#1| |#2|)) 48)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 58) (((-1233 |#1| |#2|) $) NIL) (((-1238 |#1| |#2|) $) 66)) (-3118 (($) 53 T CONST)) (-1315 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) 31)) (-1326 (((-619 (-638 |#1| |#2|)) (-619 |#1|)) 65)) (-3623 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) 37)) (-2214 (((-112) $ $) 54)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ $ $) 44))) -(((-603 |#1| |#2| |#3|) (-13 (-464) (-10 -8 (-15 -2458 ($ (-638 |#1| |#2|))) (-15 -3496 ((-638 |#1| |#2|) $)) (-15 -3623 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1238 |#1| |#2|) $)) (-15 -2425 ($ $)) (-15 -3065 ((-619 |#1|) $)) (-15 -1326 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -1315 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -1303 ((-619 (-286 |#2|)) $ $)))) (-821) (-13 (-169) (-692 (-399 (-548)))) (-890)) (T -603)) -((-2458 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-5 *1 (-603 *3 *4 *5)) (-14 *5 (-890)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1238 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-13 (-169) (-692 (-399 (-548))))) (-14 *4 (-890)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-399 (-548))))) (-14 *6 (-890)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) (-1303 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-286 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890))))) -(-13 (-464) (-10 -8 (-15 -2458 ($ (-638 |#1| |#2|))) (-15 -3496 ((-638 |#1| |#2|) $)) (-15 -3623 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1238 |#1| |#2|) $)) (-15 -2425 ($ $)) (-15 -3065 ((-619 |#1|) $)) (-15 -1326 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -1315 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -1303 ((-619 (-286 |#2|)) $ $)))) -((-2004 (((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 58)) (-1338 (((-112) (-619 (-754 |#1| (-834 |#2|)))) 23)) (-1381 (((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 71)) (-1371 (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 57)) (-1359 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) 27)) (-1348 (((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|)))) 26))) -(((-604 |#1| |#2|) (-10 -7 (-15 -1338 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1348 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -1359 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1371 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -1381 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) (-443) (-619 (-1135))) (T -604)) -((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4)))) (-1348 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-443)) (-14 *5 (-619 (-1135))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5))))) -(-10 -7 (-15 -1338 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1348 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -1359 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -1371 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -1381 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -2004 ((-619 (-1106 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) -((-2074 (($ $) 38)) (-1940 (($ $) 21)) (-2054 (($ $) 37)) (-1918 (($ $) 22)) (-2098 (($ $) 36)) (-1963 (($ $) 23)) (-1365 (($) 48)) (-3496 (($ $) 45)) (-1613 (($ $) 17)) (-4044 (($ $ (-1056 $)) 7) (($ $ (-1135)) 6)) (-2458 (($ $) 46)) (-1877 (($ $) 15)) (-1907 (($ $) 16)) (-2110 (($ $) 35)) (-1973 (($ $) 24)) (-2086 (($ $) 34)) (-1952 (($ $) 25)) (-2065 (($ $) 33)) (-1929 (($ $) 26)) (-2145 (($ $) 44)) (-2006 (($ $) 32)) (-2122 (($ $) 43)) (-1986 (($ $) 31)) (-2170 (($ $) 42)) (-2029 (($ $) 30)) (-4026 (($ $) 41)) (-2040 (($ $) 29)) (-2158 (($ $) 40)) (-2017 (($ $) 28)) (-2132 (($ $) 39)) (-1996 (($ $) 27)) (-1424 (($ $) 19)) (-1437 (($ $) 20)) (-1413 (($ $) 18)) (** (($ $ $) 47))) +((-3834 (*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-622 |t#1|) (-10 -8 (-15 -3834 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3807 (((-547) $) NIL (|has| |#1| (-819)))) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-3848 (((-112) $) NIL (|has| |#1| (-819)))) (-4114 (((-112) $) NIL)) (-1382 ((|#1| $) 13)) (-3937 (((-112) $) NIL (|has| |#1| (-819)))) (-2847 (($ $ $) NIL (|has| |#1| (-819)))) (-3563 (($ $ $) NIL (|has| |#1| (-819)))) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1392 ((|#3| $) 15)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL)) (-2311 (((-745)) 20)) (-2040 (($ $) NIL (|has| |#1| (-819)))) (-3267 (($) NIL T CONST)) (-3277 (($) 12 T CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2497 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-597 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2497 ($ $ |#3|)) (-15 -2497 ($ |#1| |#3|)) (-15 -1382 (|#1| $)) (-15 -1392 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -597)) +((-2497 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2497 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-1382 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-1392 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (-15 -2497 ($ $ |#3|)) (-15 -2497 ($ |#1| |#3|)) (-15 -1382 (|#1| $)) (-15 -1392 (|#3| $)))) +((-1289 ((|#2| |#2| (-1135) (-1135)) 18))) +(((-598 |#1| |#2|) (-10 -7 (-15 -1289 (|#2| |#2| (-1135) (-1135)))) (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-928) (-29 |#1|))) (T -598)) +((-1289 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-29 *4)))))) +(-10 -7 (-15 -1289 (|#2| |#2| (-1135) (-1135)))) +((-3821 (((-112) $ $) 56)) (-4046 (((-112) $) 52)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3174 ((|#1| $) 49)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1374 (((-2 (|:| -1609 $) (|:| -1508 (-398 |#2|))) (-398 |#2|)) 97 (|has| |#1| (-354)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) 24)) (-2537 (((-3 $ "failed") $) 75)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3707 (((-547) $) 19)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) 36)) (-2229 (($ |#1| (-547)) 21)) (-2027 ((|#1| $) 51)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) 87 (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ $) 79)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2776 (((-745) $) 99 (|has| |#1| (-354)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 98 (|has| |#1| (-354)))) (-3443 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-1618 (((-547) $) 34)) (-2829 (((-398 |#2|) $) 42)) (-3834 (((-832) $) 62) (($ (-547)) 32) (($ $) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 31) (($ |#2|) 22)) (-3338 ((|#1| $ (-547)) 63)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) 29)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 9 T CONST)) (-3277 (($) 12 T CONST)) (-1686 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2371 (((-112) $ $) 17)) (-2484 (($ $) 46) (($ $ $) NIL)) (-2470 (($ $ $) 76)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 26) (($ $ $) 44))) +(((-599 |#1| |#2|) (-13 (-223 |#2|) (-539) (-592 (-398 |#2|)) (-402 |#1|) (-1007 |#2|) (-10 -8 (-15 -2187 ((-112) $)) (-15 -1618 ((-547) $)) (-15 -3707 ((-547) $)) (-15 -2054 ($ $)) (-15 -2027 (|#1| $)) (-15 -3174 (|#1| $)) (-15 -3338 (|#1| $ (-547))) (-15 -2229 ($ |#1| (-547))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-298)) (-15 -1374 ((-2 (|:| -1609 $) (|:| -1508 (-398 |#2|))) (-398 |#2|)))) |%noBranch|))) (-539) (-1194 |#1|)) (T -599)) +((-2187 (*1 *2 *1) (-12 (-4 *3 (-539)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-1618 (*1 *2 *1) (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-3707 (*1 *2 *1) (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4)) (-4 *4 (-1194 *3)))) (-2054 (*1 *1 *1) (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-2027 (*1 *2 *1) (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *4 (-539)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -1609 (-599 *4 *5)) (|:| -1508 (-398 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-398 *5))))) +(-13 (-223 |#2|) (-539) (-592 (-398 |#2|)) (-402 |#1|) (-1007 |#2|) (-10 -8 (-15 -2187 ((-112) $)) (-15 -1618 ((-547) $)) (-15 -3707 ((-547) $)) (-15 -2054 ($ $)) (-15 -2027 (|#1| $)) (-15 -3174 (|#1| $)) (-15 -3338 (|#1| $ (-547))) (-15 -2229 ($ |#1| (-547))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-6 (-298)) (-15 -1374 ((-2 (|:| -1609 $) (|:| -1508 (-398 |#2|))) (-398 |#2|)))) |%noBranch|))) +((-3759 (((-619 |#6|) (-619 |#4|) (-112)) 47)) (-3118 ((|#6| |#6|) 40))) +(((-600 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3118 (|#6| |#6|)) (-15 -3759 ((-619 |#6|) (-619 |#4|) (-112)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|) (-1072 |#1| |#2| |#3| |#4|)) (T -600)) +((-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *10 (-1072 *5 *6 *7 *8)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6))))) +(-10 -7 (-15 -3118 (|#6| |#6|)) (-15 -3759 ((-619 |#6|) (-619 |#4|) (-112)))) +((-2494 (((-112) |#3| (-745) (-619 |#3|)) 23)) (-2021 (((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2483 (-619 (-2 (|:| |irr| |#4|) (|:| -1889 (-547)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)) 55))) +(((-601 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-112) |#3| (-745) (-619 |#3|))) (-15 -2021 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2483 (-619 (-2 (|:| |irr| |#4|) (|:| -1889 (-547)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) (-821) (-767) (-298) (-918 |#3| |#2| |#1|)) (T -601)) +((-2021 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2483 (-619 (-2 (|:| |irr| *10) (|:| -1889 (-547))))))) (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-298)) (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) (-5 *2 (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) (|:| |corrfact| (-619 (-1131 *3))))) (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1131 *3))))) (-2494 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-298)) (-4 *6 (-821)) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) (-4 *8 (-918 *3 *7 *6))))) +(-10 -7 (-15 -2494 ((-112) |#3| (-745) (-619 |#3|))) (-15 -2021 ((-3 (-2 (|:| |polfac| (-619 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-619 (-1131 |#3|)))) "failed") |#3| (-619 (-1131 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2483 (-619 (-2 (|:| |irr| |#4|) (|:| -1889 (-547)))))) (-619 |#3|) (-619 |#1|) (-619 |#3|)))) +((-3821 (((-112) $ $) NIL)) (-2186 (((-1140) $) 11)) (-2174 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-602) (-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $))))) (T -602)) +((-2174 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602))))) +(-13 (-1047) (-10 -8 (-15 -2174 ((-1140) $)) (-15 -2186 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-3292 (((-619 |#1|) $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-2074 (($ $) 67)) (-3620 (((-638 |#1| |#2|) $) 52)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 70)) (-2164 (((-619 (-285 |#2|)) $ $) 33)) (-3979 (((-1082) $) NIL)) (-2703 (($ (-638 |#1| |#2|)) 48)) (-2444 (($ $ $) NIL)) (-4121 (($ $ $) NIL)) (-3834 (((-832) $) 58) (((-1233 |#1| |#2|) $) NIL) (((-1238 |#1| |#2|) $) 66)) (-3277 (($) 53 T CONST)) (-2298 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) 31)) (-2613 (((-619 (-638 |#1| |#2|)) (-619 |#1|)) 65)) (-3853 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) 37)) (-2371 (((-112) $ $) 54)) (-2497 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ $ $) 44))) +(((-603 |#1| |#2| |#3|) (-13 (-463) (-10 -8 (-15 -2703 ($ (-638 |#1| |#2|))) (-15 -3620 ((-638 |#1| |#2|) $)) (-15 -3853 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3834 ((-1233 |#1| |#2|) $)) (-15 -3834 ((-1238 |#1| |#2|) $)) (-15 -2074 ($ $)) (-15 -3292 ((-619 |#1|) $)) (-15 -2613 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -2298 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -2164 ((-619 (-285 |#2|)) $ $)))) (-821) (-13 (-169) (-692 (-398 (-547)))) (-890)) (T -603)) +((-2703 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-5 *1 (-603 *3 *4 *5)) (-14 *5 (-890)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1238 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-2074 (*1 *1 *1) (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-13 (-169) (-692 (-398 (-547))))) (-14 *4 (-890)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-398 (-547))))) (-14 *6 (-890)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) (-2164 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-285 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))) +(-13 (-463) (-10 -8 (-15 -2703 ($ (-638 |#1| |#2|))) (-15 -3620 ((-638 |#1| |#2|) $)) (-15 -3853 ((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $)) (-15 -3834 ((-1233 |#1| |#2|) $)) (-15 -3834 ((-1238 |#1| |#2|) $)) (-15 -2074 ($ $)) (-15 -3292 ((-619 |#1|) $)) (-15 -2613 ((-619 (-638 |#1| |#2|)) (-619 |#1|))) (-15 -2298 ((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $)) (-15 -2164 ((-619 (-285 |#2|)) $ $)))) +((-3759 (((-619 (-1106 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 58)) (-2508 (((-112) (-619 (-754 |#1| (-834 |#2|)))) 23)) (-3265 (((-619 (-1106 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)) 71)) (-3119 (((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112)) 57)) (-3760 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) 27)) (-2224 (((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|)))) 26))) +(((-604 |#1| |#2|) (-10 -7 (-15 -2508 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -2224 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -3760 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -3119 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -3265 ((-619 (-1106 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -3759 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -3759 ((-619 (-1106 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) (-442) (-619 (-1135))) (T -604)) +((-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1106 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1106 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) (-5 *1 (-604 *5 *6)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-604 *5 *6)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442)) (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4)))) (-2224 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442)) (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-442)) (-14 *5 (-619 (-1135))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5))))) +(-10 -7 (-15 -2508 ((-112) (-619 (-754 |#1| (-834 |#2|))))) (-15 -2224 ((-3 (-619 (-754 |#1| (-834 |#2|))) "failed") (-619 (-754 |#1| (-834 |#2|))))) (-15 -3760 ((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))))) (-15 -3119 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -3265 ((-619 (-1106 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -3759 ((-619 (-1013 |#1| |#2|)) (-619 (-754 |#1| (-834 |#2|))) (-112))) (-15 -3759 ((-619 (-1106 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|)))) (-619 (-754 |#1| (-834 |#2|))) (-112)))) +((-1648 (($ $) 38)) (-1498 (($ $) 21)) (-1624 (($ $) 37)) (-1473 (($ $) 22)) (-1670 (($ $) 36)) (-1526 (($ $) 23)) (-1413 (($) 48)) (-3620 (($ $) 45)) (-1697 (($ $) 17)) (-3595 (($ $ (-1056 $)) 7) (($ $ (-1135)) 6)) (-2703 (($ $) 46)) (-1417 (($ $) 15)) (-1456 (($ $) 16)) (-1681 (($ $) 35)) (-1539 (($ $) 24)) (-1659 (($ $) 34)) (-1513 (($ $) 25)) (-1635 (($ $) 33)) (-1488 (($ $) 26)) (-1717 (($ $) 44)) (-1574 (($ $) 32)) (-1693 (($ $) 43)) (-1550 (($ $) 31)) (-1741 (($ $) 42)) (-1597 (($ $) 30)) (-1918 (($ $) 41)) (-1610 (($ $) 29)) (-1729 (($ $) 40)) (-1586 (($ $) 28)) (-1706 (($ $) 39)) (-1563 (($ $) 27)) (-3648 (($ $) 19)) (-1942 (($ $) 20)) (-3550 (($ $) 18)) (** (($ $ $) 47))) (((-605) (-138)) (T -605)) -((-1437 (*1 *1 *1) (-4 *1 (-605))) (-1424 (*1 *1 *1) (-4 *1 (-605))) (-1413 (*1 *1 *1) (-4 *1 (-605))) (-1613 (*1 *1 *1) (-4 *1 (-605))) (-1907 (*1 *1 *1) (-4 *1 (-605))) (-1877 (*1 *1 *1) (-4 *1 (-605)))) -(-13 (-928) (-1157) (-10 -8 (-15 -1437 ($ $)) (-15 -1424 ($ $)) (-15 -1413 ($ $)) (-15 -1613 ($ $)) (-15 -1907 ($ $)) (-15 -1877 ($ $)))) -(((-35) . T) ((-94) . T) ((-276) . T) ((-483) . T) ((-928) . T) ((-1157) . T) ((-1160) . T)) -((-1402 (((-114) (-114)) 83)) (-1613 ((|#2| |#2|) 30)) (-4044 ((|#2| |#2| (-1056 |#2|)) 79) ((|#2| |#2| (-1135)) 52)) (-1877 ((|#2| |#2|) 29)) (-1907 ((|#2| |#2|) 31)) (-1392 (((-112) (-114)) 34)) (-1424 ((|#2| |#2|) 26)) (-1437 ((|#2| |#2|) 28)) (-1413 ((|#2| |#2|) 27))) -(((-606 |#1| |#2|) (-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1437 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -4044 (|#2| |#2| (-1135))) (-15 -4044 (|#2| |#2| (-1056 |#2|)))) (-13 (-821) (-540)) (-13 (-422 |#1|) (-971) (-1157))) (T -606)) -((-4044 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-971) (-1157))) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)))) (-4044 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-422 *4) (-971) (-1157))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-422 *3) (-971) (-1157))))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *4)) (-4 *4 (-13 (-422 *3) (-971) (-1157))))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157)))))) -(-10 -7 (-15 -1392 ((-112) (-114))) (-15 -1402 ((-114) (-114))) (-15 -1437 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -4044 (|#2| |#2| (-1135))) (-15 -4044 (|#2| |#2| (-1056 |#2|)))) -((-1545 (((-472 |#1| |#2|) (-240 |#1| |#2|)) 53)) (-1470 (((-619 (-240 |#1| |#2|)) (-619 (-472 |#1| |#2|))) 68)) (-1480 (((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-834 |#1|)) 70) (((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)) (-834 |#1|)) 69)) (-1448 (((-2 (|:| |gblist| (-619 (-240 |#1| |#2|))) (|:| |gvlist| (-619 (-548)))) (-619 (-472 |#1| |#2|))) 108)) (-1526 (((-619 (-472 |#1| |#2|)) (-834 |#1|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|))) 83)) (-1458 (((-2 (|:| |glbase| (-619 (-240 |#1| |#2|))) (|:| |glval| (-619 (-548)))) (-619 (-240 |#1| |#2|))) 118)) (-1505 (((-1218 |#2|) (-472 |#1| |#2|) (-619 (-472 |#1| |#2|))) 58)) (-1493 (((-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|))) 41)) (-1536 (((-240 |#1| |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|))) 50)) (-1516 (((-240 |#1| |#2|) (-619 |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|))) 91))) -(((-607 |#1| |#2|) (-10 -7 (-15 -1448 ((-2 (|:| |gblist| (-619 (-240 |#1| |#2|))) (|:| |gvlist| (-619 (-548)))) (-619 (-472 |#1| |#2|)))) (-15 -1458 ((-2 (|:| |glbase| (-619 (-240 |#1| |#2|))) (|:| |glval| (-619 (-548)))) (-619 (-240 |#1| |#2|)))) (-15 -1470 ((-619 (-240 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1493 ((-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1505 ((-1218 |#2|) (-472 |#1| |#2|) (-619 (-472 |#1| |#2|)))) (-15 -1516 ((-240 |#1| |#2|) (-619 |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1526 ((-619 (-472 |#1| |#2|)) (-834 |#1|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1536 ((-240 |#1| |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1545 ((-472 |#1| |#2|) (-240 |#1| |#2|)))) (-619 (-1135)) (-443)) (T -607)) -((-1545 (*1 *2 *3) (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-472 *4 *5)) (-5 *1 (-607 *4 *5)))) (-1536 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-240 *4 *5))) (-5 *2 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5)))) (-1526 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-834 *4)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5)))) (-1516 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-240 *5 *6))) (-4 *6 (-443)) (-5 *2 (-240 *5 *6)) (-14 *5 (-619 (-1135))) (-5 *1 (-607 *5 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-472 *5 *6))) (-5 *3 (-472 *5 *6)) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-1218 *6)) (-5 *1 (-607 *5 *6)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-619 (-472 *3 *4))) (-14 *3 (-619 (-1135))) (-4 *4 (-443)) (-5 *1 (-607 *3 *4)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-443)))) (-1480 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-443)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-619 (-240 *4 *5))) (-5 *1 (-607 *4 *5)))) (-1458 (*1 *2 *3) (-12 (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-2 (|:| |glbase| (-619 (-240 *4 *5))) (|:| |glval| (-619 (-548))))) (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-240 *4 *5))))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *2 (-2 (|:| |gblist| (-619 (-240 *4 *5))) (|:| |gvlist| (-619 (-548))))) (-5 *1 (-607 *4 *5))))) -(-10 -7 (-15 -1448 ((-2 (|:| |gblist| (-619 (-240 |#1| |#2|))) (|:| |gvlist| (-619 (-548)))) (-619 (-472 |#1| |#2|)))) (-15 -1458 ((-2 (|:| |glbase| (-619 (-240 |#1| |#2|))) (|:| |glval| (-619 (-548)))) (-619 (-240 |#1| |#2|)))) (-15 -1470 ((-619 (-240 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1480 ((-472 |#1| |#2|) (-619 (-472 |#1| |#2|)) (-834 |#1|))) (-15 -1493 ((-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1505 ((-1218 |#2|) (-472 |#1| |#2|) (-619 (-472 |#1| |#2|)))) (-15 -1516 ((-240 |#1| |#2|) (-619 |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1526 ((-619 (-472 |#1| |#2|)) (-834 |#1|) (-619 (-472 |#1| |#2|)) (-619 (-472 |#1| |#2|)))) (-15 -1536 ((-240 |#1| |#2|) (-240 |#1| |#2|) (-619 (-240 |#1| |#2|)))) (-15 -1545 ((-472 |#1| |#2|) (-240 |#1| |#2|)))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-4149 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-52) $ (-1118) (-52)) 16) (((-52) $ (-1135) (-52)) 17)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 (-52) "failed") (-1118) $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-3 (-52) "failed") (-1118) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-52) $ (-1118) (-52)) NIL (|has| $ (-6 -4328)))) (-3899 (((-52) $ (-1118)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-1554 (($ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1118) $) NIL (|has| (-1118) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4181 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2553 (($ (-380)) 9)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-4043 (((-619 (-1118)) $) NIL)) (-4233 (((-112) (-1118) $) NIL)) (-1346 (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL)) (-4201 (((-619 (-1118)) $) NIL)) (-4212 (((-112) (-1118) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-3453 (((-52) $) NIL (|has| (-1118) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) "failed") (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL)) (-4159 (($ $ (-52)) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-286 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-286 (-52)))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4223 (((-619 (-52)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-52) $ (-1118)) 14) (((-52) $ (-1118) (-52)) NIL) (((-52) $ (-1135)) 15)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-52) (-592 (-832))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 (-52))) (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-608) (-13 (-1148 (-1118) (-52)) (-10 -8 (-15 -2553 ($ (-380))) (-15 -1554 ($ $)) (-15 -3171 ((-52) $ (-1135))) (-15 -2089 ((-52) $ (-1135) (-52)))))) (T -608)) -((-2553 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-608)))) (-1554 (*1 *1 *1) (-5 *1 (-608))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-52)) (-5 *1 (-608)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1135)) (-5 *1 (-608))))) -(-13 (-1148 (-1118) (-52)) (-10 -8 (-15 -2553 ($ (-380))) (-15 -1554 ($ $)) (-15 -3171 ((-52) $ (-1135))) (-15 -2089 ((-52) $ (-1135) (-52))))) -((-2309 (($ $ |#2|) 10))) -(((-609 |#1| |#2|) (-10 -8 (-15 -2309 (|#1| |#1| |#2|))) (-610 |#2|) (-169)) (T -609)) -NIL -(-10 -8 (-15 -2309 (|#1| |#1| |#2|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3754 (($ $ $) 29)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 28 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-1942 (*1 *1 *1) (-4 *1 (-605))) (-3648 (*1 *1 *1) (-4 *1 (-605))) (-3550 (*1 *1 *1) (-4 *1 (-605))) (-1697 (*1 *1 *1) (-4 *1 (-605))) (-1456 (*1 *1 *1) (-4 *1 (-605))) (-1417 (*1 *1 *1) (-4 *1 (-605)))) +(-13 (-928) (-1157) (-10 -8 (-15 -1942 ($ $)) (-15 -3648 ($ $)) (-15 -3550 ($ $)) (-15 -1697 ($ $)) (-15 -1456 ($ $)) (-15 -1417 ($ $)))) +(((-35) . T) ((-94) . T) ((-275) . T) ((-482) . T) ((-928) . T) ((-1157) . T) ((-1160) . T)) +((-3454 (((-114) (-114)) 83)) (-1697 ((|#2| |#2|) 30)) (-3595 ((|#2| |#2| (-1056 |#2|)) 79) ((|#2| |#2| (-1135)) 52)) (-1417 ((|#2| |#2|) 29)) (-1456 ((|#2| |#2|) 31)) (-3358 (((-112) (-114)) 34)) (-3648 ((|#2| |#2|) 26)) (-1942 ((|#2| |#2|) 28)) (-3550 ((|#2| |#2|) 27))) +(((-606 |#1| |#2|) (-10 -7 (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -1942 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -3595 (|#2| |#2| (-1135))) (-15 -3595 (|#2| |#2| (-1056 |#2|)))) (-13 (-821) (-539)) (-13 (-421 |#1|) (-971) (-1157))) (T -606)) +((-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-971) (-1157))) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-421 *4) (-971) (-1157))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1157))))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1157))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1157))))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1157))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1157))))) (-1942 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) (-4 *2 (-13 (-421 *3) (-971) (-1157))))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *4)) (-4 *4 (-13 (-421 *3) (-971) (-1157))))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1157)))))) +(-10 -7 (-15 -3358 ((-112) (-114))) (-15 -3454 ((-114) (-114))) (-15 -1942 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -3595 (|#2| |#2| (-1135))) (-15 -3595 (|#2| |#2| (-1056 |#2|)))) +((-1772 (((-471 |#1| |#2|) (-239 |#1| |#2|)) 53)) (-2321 (((-619 (-239 |#1| |#2|)) (-619 (-471 |#1| |#2|))) 68)) (-2442 (((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-834 |#1|)) 70) (((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)) (-834 |#1|)) 69)) (-2065 (((-2 (|:| |gblist| (-619 (-239 |#1| |#2|))) (|:| |gvlist| (-619 (-547)))) (-619 (-471 |#1| |#2|))) 108)) (-1561 (((-619 (-471 |#1| |#2|)) (-834 |#1|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|))) 83)) (-2190 (((-2 (|:| |glbase| (-619 (-239 |#1| |#2|))) (|:| |glval| (-619 (-547)))) (-619 (-239 |#1| |#2|))) 118)) (-1348 (((-1218 |#2|) (-471 |#1| |#2|) (-619 (-471 |#1| |#2|))) 58)) (-4293 (((-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|))) 41)) (-1667 (((-239 |#1| |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|))) 50)) (-1443 (((-239 |#1| |#2|) (-619 |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|))) 91))) +(((-607 |#1| |#2|) (-10 -7 (-15 -2065 ((-2 (|:| |gblist| (-619 (-239 |#1| |#2|))) (|:| |gvlist| (-619 (-547)))) (-619 (-471 |#1| |#2|)))) (-15 -2190 ((-2 (|:| |glbase| (-619 (-239 |#1| |#2|))) (|:| |glval| (-619 (-547)))) (-619 (-239 |#1| |#2|)))) (-15 -2321 ((-619 (-239 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -2442 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -2442 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -4293 ((-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -1348 ((-1218 |#2|) (-471 |#1| |#2|) (-619 (-471 |#1| |#2|)))) (-15 -1443 ((-239 |#1| |#2|) (-619 |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -1561 ((-619 (-471 |#1| |#2|)) (-834 |#1|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -1667 ((-239 |#1| |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -1772 ((-471 |#1| |#2|) (-239 |#1| |#2|)))) (-619 (-1135)) (-442)) (T -607)) +((-1772 (*1 *2 *3) (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *2 (-471 *4 *5)) (-5 *1 (-607 *4 *5)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-239 *4 *5))) (-5 *2 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5)))) (-1561 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-834 *4)) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5)))) (-1443 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-239 *5 *6))) (-4 *6 (-442)) (-5 *2 (-239 *5 *6)) (-14 *5 (-619 (-1135))) (-5 *1 (-607 *5 *6)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-471 *5 *6))) (-5 *3 (-471 *5 *6)) (-14 *5 (-619 (-1135))) (-4 *6 (-442)) (-5 *2 (-1218 *6)) (-5 *1 (-607 *5 *6)))) (-4293 (*1 *2 *2) (-12 (-5 *2 (-619 (-471 *3 *4))) (-14 *3 (-619 (-1135))) (-4 *4 (-442)) (-5 *1 (-607 *3 *4)))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1135))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-442)))) (-2442 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5)) (-14 *5 (-619 (-1135))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6)) (-4 *6 (-442)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *2 (-619 (-239 *4 *5))) (-5 *1 (-607 *4 *5)))) (-2190 (*1 *2 *3) (-12 (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *2 (-2 (|:| |glbase| (-619 (-239 *4 *5))) (|:| |glval| (-619 (-547))))) (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-239 *4 *5))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *2 (-2 (|:| |gblist| (-619 (-239 *4 *5))) (|:| |gvlist| (-619 (-547))))) (-5 *1 (-607 *4 *5))))) +(-10 -7 (-15 -2065 ((-2 (|:| |gblist| (-619 (-239 |#1| |#2|))) (|:| |gvlist| (-619 (-547)))) (-619 (-471 |#1| |#2|)))) (-15 -2190 ((-2 (|:| |glbase| (-619 (-239 |#1| |#2|))) (|:| |glval| (-619 (-547)))) (-619 (-239 |#1| |#2|)))) (-15 -2321 ((-619 (-239 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -2442 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -2442 ((-471 |#1| |#2|) (-619 (-471 |#1| |#2|)) (-834 |#1|))) (-15 -4293 ((-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -1348 ((-1218 |#2|) (-471 |#1| |#2|) (-619 (-471 |#1| |#2|)))) (-15 -1443 ((-239 |#1| |#2|) (-619 |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -1561 ((-619 (-471 |#1| |#2|)) (-834 |#1|) (-619 (-471 |#1| |#2|)) (-619 (-471 |#1| |#2|)))) (-15 -1667 ((-239 |#1| |#2|) (-239 |#1| |#2|) (-619 (-239 |#1| |#2|)))) (-15 -1772 ((-471 |#1| |#2|) (-239 |#1| |#2|)))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) NIL)) (-2290 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 (((-52) $ (-1118) (-52)) 16) (((-52) $ (-1135) (-52)) 17)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 (-52) "failed") (-1118) $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063))))) (-3342 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-3 (-52) "failed") (-1118) $) NIL)) (-3801 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $ (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (((-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $ (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-1861 (((-52) $ (-1118) (-52)) NIL (|has| $ (-6 -4329)))) (-1793 (((-52) $ (-1118)) NIL)) (-2973 (((-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-619 (-52)) $) NIL (|has| $ (-6 -4328)))) (-3742 (($ $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3666 (((-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-619 (-52)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063))))) (-2638 (((-1118) $) NIL (|has| (-1118) (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2736 (($ (-379)) 9)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063))))) (-3437 (((-619 (-1118)) $) NIL)) (-1876 (((-112) (-1118) $) NIL)) (-1959 (((-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL)) (-1885 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL)) (-1520 (((-619 (-1118)) $) NIL)) (-1641 (((-112) (-1118) $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063))))) (-3634 (((-52) $) NIL (|has| (-1118) (-821)))) (-3461 (((-3 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) "failed") (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL)) (-2418 (($ $ (-52)) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (($ $ (-285 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (($ $ (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-285 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-285 (-52)))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063))))) (-1758 (((-619 (-52)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 (((-52) $ (-1118)) 14) (((-52) $ (-1118) (-52)) NIL) (((-52) $ (-1135)) 15)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-52) (-591 (-832))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 (-52))) (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-608) (-13 (-1148 (-1118) (-52)) (-10 -8 (-15 -2736 ($ (-379))) (-15 -3742 ($ $)) (-15 -3329 ((-52) $ (-1135))) (-15 -2238 ((-52) $ (-1135) (-52)))))) (T -608)) +((-2736 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-608)))) (-3742 (*1 *1 *1) (-5 *1 (-608))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-52)) (-5 *1 (-608)))) (-2238 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1135)) (-5 *1 (-608))))) +(-13 (-1148 (-1118) (-52)) (-10 -8 (-15 -2736 ($ (-379))) (-15 -3742 ($ $)) (-15 -3329 ((-52) $ (-1135))) (-15 -2238 ((-52) $ (-1135) (-52))))) +((-2497 (($ $ |#2|) 10))) +(((-609 |#1| |#2|) (-10 -8 (-15 -2497 (|#1| |#1| |#2|))) (-610 |#2|) (-169)) (T -609)) +NIL +(-10 -8 (-15 -2497 (|#1| |#1| |#2|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3841 (($ $ $) 29)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 28 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-610 |#1|) (-138) (-169)) (T -610)) -((-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-355))))) -(-13 (-692 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3754 ($ $ $)) (IF (|has| |t#1| (-355)) (-15 -2309 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-1218 (-663 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2968 (((-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3030 (($) NIL T CONST)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3991 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2413 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2947 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2391 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3399 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4307 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2741 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2432 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2903 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2842 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2455 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (($ (-1218 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2103 (((-890)) NIL (|has| |#2| (-359 |#1|)))) (-2815 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2468 (($ $ (-890)) NIL)) (-2782 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2766 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2797 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-4003 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2422 (((-663 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2958 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2402 (((-663 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3411 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-1298 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-355))))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#1| $) NIL (|has| |#2| (-359 |#1|)))) (-2750 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-2444 ((|#1|) NIL (|has| |#2| (-409 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2914 (((-1131 |#1|) $) NIL (|has| |#2| (-359 |#1|)))) (-2851 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2790 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2806 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3171 ((|#1| $ (-548)) NIL (|has| |#2| (-409 |#1|)))) (-2447 (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|))) (((-663 |#1|) (-1218 $) (-1218 $)) NIL (|has| |#2| (-359 |#1|))) (((-1218 |#1|) $ (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-2591 (($ (-1218 |#1|)) NIL (|has| |#2| (-409 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-4218 (((-619 (-921 |#1|))) NIL (|has| |#2| (-409 |#1|))) (((-619 (-921 |#1|)) (-1218 $)) NIL (|has| |#2| (-359 |#1|)))) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3743 (((-832) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2877 (((-1218 $)) NIL (|has| |#2| (-409 |#1|)))) (-2759 (((-619 (-1218 |#1|))) NIL (-1524 (-12 (|has| |#2| (-359 |#1|)) (|has| |#1| (-540))) (-12 (|has| |#2| (-409 |#1|)) (|has| |#1| (-540)))))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3398 (($ (-663 |#1|) $) NIL (|has| |#2| (-409 |#1|)))) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2859 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-2823 (((-112)) NIL (|has| |#2| (-359 |#1|)))) (-3107 (($) 15 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 17)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-611 |#1| |#2|) (-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -611)) -((-3743 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3))))) -(-13 (-719 |#1|) (-592 |#2|) (-10 -8 (-15 -3743 ($ |#2|)) (IF (|has| |#2| (-409 |#1|)) (-6 (-409 |#1|)) |%noBranch|) (IF (|has| |#2| (-359 |#1|)) (-6 (-359 |#1|)) |%noBranch|))) -((-1571 (((-3 (-814 |#2|) "failed") |#2| (-286 |#2|) (-1118)) 82) (((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-286 (-814 |#2|))) 104)) (-1563 (((-3 (-807 |#2|) "failed") |#2| (-286 (-807 |#2|))) 109))) -(((-612 |#1| |#2|) (-10 -7 (-15 -1571 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-286 (-814 |#2|)))) (-15 -1563 ((-3 (-807 |#2|) "failed") |#2| (-286 (-807 |#2|)))) (-15 -1571 ((-3 (-814 |#2|) "failed") |#2| (-286 |#2|) (-1118)))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -612)) -((-1571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1118)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) (-1563 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-286 (-807 *3))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-814 *3))) (-4 *3 (-13 (-27) (-1157) (-422 *5))) (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-612 *5 *3))))) -(-10 -7 (-15 -1571 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-286 (-814 |#2|)))) (-15 -1563 ((-3 (-807 |#2|) "failed") |#2| (-286 (-807 |#2|)))) (-15 -1571 ((-3 (-814 |#2|) "failed") |#2| (-286 |#2|) (-1118)))) -((-1571 (((-3 (-814 (-399 (-921 |#1|))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))) (-1118)) 80) (((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|)))) 20) (((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-814 (-921 |#1|)))) 35)) (-1563 (((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|)))) 23) (((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-807 (-921 |#1|)))) 43))) -(((-613 |#1|) (-10 -7 (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-814 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-807 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))) (-1118)))) (-443)) (T -613)) -((-1571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 (-399 (-921 *6)))) (-5 *5 (-1118)) (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-814 *3)) (-5 *1 (-613 *6)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-443)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-807 (-921 *5)))) (-4 *5 (-443)) (-5 *2 (-807 (-399 (-921 *5)))) (-5 *1 (-613 *5)) (-5 *3 (-399 (-921 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-443)) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-613 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-814 (-921 *5)))) (-4 *5 (-443)) (-5 *2 (-3 (-814 (-399 (-921 *5))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 *5))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 *5))) "failed"))) "failed")) (-5 *1 (-613 *5)) (-5 *3 (-399 (-921 *5)))))) -(-10 -7 (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-814 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-399 (-921 |#1|))) "failed"))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-807 (-921 |#1|))))) (-15 -1563 ((-807 (-399 (-921 |#1|))) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -1571 ((-3 (-814 (-399 (-921 |#1|))) "failed") (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))) (-1118)))) -((-1599 (((-3 (-1218 (-399 |#1|)) "failed") (-1218 |#2|) |#2|) 57 (-3958 (|has| |#1| (-355)))) (((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|) 42 (|has| |#1| (-355)))) (-1581 (((-112) (-1218 |#2|)) 30)) (-1591 (((-3 (-1218 |#1|) "failed") (-1218 |#2|)) 33))) -(((-614 |#1| |#2|) (-10 -7 (-15 -1581 ((-112) (-1218 |#2|))) (-15 -1591 ((-3 (-1218 |#1|) "failed") (-1218 |#2|))) (IF (|has| |#1| (-355)) (-15 -1599 ((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|)) (-15 -1599 ((-3 (-1218 (-399 |#1|)) "failed") (-1218 |#2|) |#2|)))) (-540) (-615 |#1|)) (T -614)) -((-1599 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-3958 (-4 *5 (-355))) (-4 *5 (-540)) (-5 *2 (-1218 (-399 *5))) (-5 *1 (-614 *5 *4)))) (-1599 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-4 *5 (-355)) (-4 *5 (-540)) (-5 *2 (-1218 *5)) (-5 *1 (-614 *5 *4)))) (-1591 (*1 *2 *3) (|partial| -12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) (-5 *2 (-1218 *4)) (-5 *1 (-614 *4 *5)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) (-5 *2 (-112)) (-5 *1 (-614 *4 *5))))) -(-10 -7 (-15 -1581 ((-112) (-1218 |#2|))) (-15 -1591 ((-3 (-1218 |#1|) "failed") (-1218 |#2|))) (IF (|has| |#1| (-355)) (-15 -1599 ((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|)) (-15 -1599 ((-3 (-1218 (-399 |#1|)) "failed") (-1218 |#2|) |#2|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1608 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 33)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)))) (-2497 (*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-354))))) +(-13 (-692 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3841 ($ $ $)) (IF (|has| |t#1| (-354)) (-15 -2497 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4104 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2173 (((-1218 (-663 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-1218 (-663 |#1|)) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3785 (((-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3219 (($) NIL T CONST)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4231 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3140 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3573 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2966 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3480 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1346 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3946 (($ $ (-890)) NIL)) (-3335 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2101 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2149 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-4250 (((-1131 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2402 (($ (-1218 |#1|)) NIL (|has| |#2| (-408 |#1|))) (($ (-1218 |#1|) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-2537 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-3107 (((-890)) NIL (|has| |#2| (-358 |#1|)))) (-1575 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2530 (($ $ (-890)) NIL)) (-2578 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2385 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1377 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-1283 (((-3 $ "failed")) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2033 (((-663 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3690 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-3058 (((-663 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) $ (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-3593 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2100 (((-1131 (-921 |#1|))) NIL (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-354))))) (-3699 (($ $ (-890)) NIL)) (-3452 ((|#1| $) NIL (|has| |#2| (-358 |#1|)))) (-2205 (((-1131 |#1|) $) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-2275 ((|#1|) NIL (|has| |#2| (-408 |#1|))) ((|#1| (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-1303 (((-1131 |#1|) $) NIL (|has| |#2| (-358 |#1|)))) (-1924 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1917 (((-1118) $) NIL)) (-2486 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2662 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1475 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3979 (((-1082) $) NIL)) (-1739 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3329 ((|#1| $ (-547)) NIL (|has| |#2| (-408 |#1|)))) (-2301 (((-663 |#1|) (-1218 $)) NIL (|has| |#2| (-408 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-408 |#1|))) (((-663 |#1|) (-1218 $) (-1218 $)) NIL (|has| |#2| (-358 |#1|))) (((-1218 |#1|) $ (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-2829 (($ (-1218 |#1|)) NIL (|has| |#2| (-408 |#1|))) (((-1218 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-1701 (((-619 (-921 |#1|))) NIL (|has| |#2| (-408 |#1|))) (((-619 (-921 |#1|)) (-1218 $)) NIL (|has| |#2| (-358 |#1|)))) (-4121 (($ $ $) NIL)) (-4156 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3834 (((-832) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4013 (((-1218 $)) NIL (|has| |#2| (-408 |#1|)))) (-2310 (((-619 (-1218 |#1|))) NIL (-1524 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-539))) (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-539)))))) (-4225 (($ $ $ $) NIL)) (-3948 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3583 (($ (-663 |#1|) $) NIL (|has| |#2| (-408 |#1|)))) (-4007 (($ $ $) NIL)) (-4057 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-2014 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-1649 (((-112)) NIL (|has| |#2| (-358 |#1|)))) (-3267 (($) 15 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) 17)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-611 |#1| |#2|) (-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3834 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|))) (-169) (-719 |#1|)) (T -611)) +((-3834 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3))))) +(-13 (-719 |#1|) (-591 |#2|) (-10 -8 (-15 -3834 ($ |#2|)) (IF (|has| |#2| (-408 |#1|)) (-6 (-408 |#1|)) |%noBranch|) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|))) +((-3887 (((-3 (-814 |#2|) "failed") |#2| (-285 |#2|) (-1118)) 82) (((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-285 (-814 |#2|))) 104)) (-3818 (((-3 (-807 |#2|) "failed") |#2| (-285 (-807 |#2|))) 109))) +(((-612 |#1| |#2|) (-10 -7 (-15 -3887 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-285 (-814 |#2|)))) (-15 -3818 ((-3 (-807 |#2|) "failed") |#2| (-285 (-807 |#2|)))) (-15 -3887 ((-3 (-814 |#2|) "failed") |#2| (-285 |#2|) (-1118)))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -612)) +((-3887 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-285 *3)) (-5 *5 (-1118)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) (-3818 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-285 (-807 *3))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-814 *3))) (-4 *3 (-13 (-27) (-1157) (-421 *5))) (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-612 *5 *3))))) +(-10 -7 (-15 -3887 ((-3 (-814 |#2|) (-2 (|:| |leftHandLimit| (-3 (-814 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-814 |#2|) "failed"))) "failed") |#2| (-285 (-814 |#2|)))) (-15 -3818 ((-3 (-807 |#2|) "failed") |#2| (-285 (-807 |#2|)))) (-15 -3887 ((-3 (-814 |#2|) "failed") |#2| (-285 |#2|) (-1118)))) +((-3887 (((-3 (-814 (-398 (-921 |#1|))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))) (-1118)) 80) (((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|)))) 20) (((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-814 (-921 |#1|)))) 35)) (-3818 (((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|)))) 23) (((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-807 (-921 |#1|)))) 43))) +(((-613 |#1|) (-10 -7 (-15 -3887 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-814 (-921 |#1|))))) (-15 -3887 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -3818 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-807 (-921 |#1|))))) (-15 -3818 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -3887 ((-3 (-814 (-398 (-921 |#1|))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))) (-1118)))) (-442)) (T -613)) +((-3887 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-285 (-398 (-921 *6)))) (-5 *5 (-1118)) (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-814 *3)) (-5 *1 (-613 *6)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-442)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-807 (-921 *5)))) (-4 *5 (-442)) (-5 *2 (-807 (-398 (-921 *5)))) (-5 *1 (-613 *5)) (-5 *3 (-398 (-921 *5))))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-442)) (-5 *2 (-3 (-814 *3) (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) "failed")) (-5 *1 (-613 *5)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-285 (-814 (-921 *5)))) (-4 *5 (-442)) (-5 *2 (-3 (-814 (-398 (-921 *5))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 *5))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 *5))) "failed"))) "failed")) (-5 *1 (-613 *5)) (-5 *3 (-398 (-921 *5)))))) +(-10 -7 (-15 -3887 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-814 (-921 |#1|))))) (-15 -3887 ((-3 (-814 (-398 (-921 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-814 (-398 (-921 |#1|))) "failed"))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -3818 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-807 (-921 |#1|))))) (-15 -3818 ((-807 (-398 (-921 |#1|))) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -3887 ((-3 (-814 (-398 (-921 |#1|))) "failed") (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))) (-1118)))) +((-4162 (((-3 (-1218 (-398 |#1|)) "failed") (-1218 |#2|) |#2|) 57 (-3998 (|has| |#1| (-354)))) (((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|) 42 (|has| |#1| (-354)))) (-3988 (((-112) (-1218 |#2|)) 30)) (-4082 (((-3 (-1218 |#1|) "failed") (-1218 |#2|)) 33))) +(((-614 |#1| |#2|) (-10 -7 (-15 -3988 ((-112) (-1218 |#2|))) (-15 -4082 ((-3 (-1218 |#1|) "failed") (-1218 |#2|))) (IF (|has| |#1| (-354)) (-15 -4162 ((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|)) (-15 -4162 ((-3 (-1218 (-398 |#1|)) "failed") (-1218 |#2|) |#2|)))) (-539) (-615 |#1|)) (T -614)) +((-4162 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-3998 (-4 *5 (-354))) (-4 *5 (-539)) (-5 *2 (-1218 (-398 *5))) (-5 *1 (-614 *5 *4)))) (-4162 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-4 *5 (-354)) (-4 *5 (-539)) (-5 *2 (-1218 *5)) (-5 *1 (-614 *5 *4)))) (-4082 (*1 *2 *3) (|partial| -12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539)) (-5 *2 (-1218 *4)) (-5 *1 (-614 *4 *5)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539)) (-5 *2 (-112)) (-5 *1 (-614 *4 *5))))) +(-10 -7 (-15 -3988 ((-112) (-1218 |#2|))) (-15 -4082 ((-3 (-1218 |#1|) "failed") (-1218 |#2|))) (IF (|has| |#1| (-354)) (-15 -4162 ((-3 (-1218 |#1|) "failed") (-1218 |#2|) |#2|)) (-15 -4162 ((-3 (-1218 (-398 |#1|)) "failed") (-1218 |#2|) |#2|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-4238 (((-663 |#1|) (-663 $)) 34) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 33)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-615 |#1|) (-138) (-1016)) (T -615)) -((-1608 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) (-5 *2 (-663 *4)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *1)) (-5 *4 (-1218 *1)) (-4 *1 (-615 *5)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 *5))))))) -(-13 (-1016) (-10 -8 (-15 -1608 ((-663 |t#1|) (-663 $))) (-15 -1608 ((-2 (|:| -4035 (-663 |t#1|)) (|:| |vec| (-1218 |t#1|))) (-663 $) (-1218 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3407 ((|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|) 17) ((|#2| (-619 |#1|) (-619 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|)) 12))) -(((-616 |#1| |#2|) (-10 -7 (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) (-1063) (-1172)) (T -616)) -((-3407 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-3407 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-616 *5 *6)))) (-3407 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-3407 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) (-4 *5 (-1172)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) (-3407 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6))))) -(-10 -7 (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -3407 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -3407 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) -((-4040 (((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 16)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 18)) (-2540 (((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)) 13))) -(((-617 |#1| |#2|) (-10 -7 (-15 -4040 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) (-1172) (-1172)) (T -617)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-617 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5))))) -(-10 -7 (-15 -4040 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) -((-2540 (((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)) 13))) -(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) (-1172) (-1172) (-1172)) (T -618)) -((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-619 *6)) (-5 *5 (-619 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-619 *8)) (-5 *1 (-618 *6 *7 *8))))) -(-10 -7 (-15 -2540 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2980 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2490 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) NIL (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "rest" $) NIL (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3384 (($ $ $) 32 (|has| |#1| (-1063)))) (-3367 (($ $ $) 34 (|has| |#1| (-1063)))) (-3351 (($ $ $) 37 (|has| |#1| (-1063)))) (-2657 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3465 (($ $) NIL) (($ $ (-745)) NIL)) (-2969 (($ $) NIL (|has| |#1| (-1063)))) (-3484 (($ $) 31 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3699 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-2621 (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063))) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3081 (((-112) $) 9)) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2409 (($) 7)) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2965 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2913 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3309 (($ |#1|) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2539 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3712 (((-112) $) NIL)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) 36) ((|#1| $ (-548) |#1|) NIL)) (-4234 (((-548) $ $) NIL)) (-2668 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-2740 (((-112) $) NIL)) (-3672 (($ $) NIL)) (-3648 (($ $) NIL (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 45 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-2979 (($ |#1| $) 10)) (-3659 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1831 (($ $ $) 30) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3575 (($ $ $) 11)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2739 (((-1118) $) 26 (|has| |#1| (-802))) (((-1118) $ (-112)) 27 (|has| |#1| (-802))) (((-1223) (-796) $) 28 (|has| |#1| (-802))) (((-1223) (-796) $ (-112)) 29 (|has| |#1| (-802)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-619 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -2409 ($)) (-15 -3081 ((-112) $)) (-15 -2979 ($ |#1| $)) (-15 -3575 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3384 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3351 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-1172)) (T -619)) -((-2409 (*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1172)))) (-2979 (*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3575 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3384 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)))) (-3367 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)))) (-3351 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) -(-13 (-640 |#1|) (-10 -8 (-15 -2409 ($)) (-15 -3081 ((-112) $)) (-15 -2979 ($ |#1| $)) (-15 -3575 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3384 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3351 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11) (((-1140) $) NIL) ((|#1| $) 8)) (-2214 (((-112) $ $) NIL))) -(((-620 |#1|) (-13 (-1047) (-592 |#1|)) (-1063)) (T -620)) -NIL -(-13 (-1047) (-592 |#1|)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3474 (($ |#1| |#1| $) 43)) (-2028 (((-112) $ (-745)) NIL)) (-2657 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-2969 (($ $) 45)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) 52 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 9 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 37)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 46)) (-2539 (($ |#1| $) 26) (($ |#1| $ (-745)) 42)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 48)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 21)) (-3319 (($) 25)) (-1620 (((-112) $) 50)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 59)) (-2801 (($) 23) (($ (-619 |#1|)) 18)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) 56 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 19)) (-2591 (((-524) $) 34 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-3743 (((-832) $) 14 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 22)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 61 (|has| |#1| (-1063)))) (-3643 (((-745) $) 16 (|has| $ (-6 -4327))))) -(((-621 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4327) (-15 -1620 ((-112) $)) (-15 -3474 ($ |#1| |#1| $)))) (-1063)) (T -621)) -((-1620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063)))) (-3474 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063))))) -(-13 (-669 |#1|) (-10 -8 (-6 -4327) (-15 -1620 ((-112) $)) (-15 -3474 ($ |#1| |#1| $)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23))) +((-4238 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) (-5 *2 (-663 *4)))) (-4238 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *1)) (-5 *4 (-1218 *1)) (-4 *1 (-615 *5)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3509 (-663 *5)) (|:| |vec| (-1218 *5))))))) +(-13 (-1016) (-10 -8 (-15 -4238 ((-663 |t#1|) (-663 $))) (-15 -4238 ((-2 (|:| -3509 (-663 |t#1|)) (|:| |vec| (-1218 |t#1|))) (-663 $) (-1218 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2459 ((|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|) 17) ((|#2| (-619 |#1|) (-619 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|)) 12))) +(((-616 |#1| |#2|) (-10 -7 (-15 -2459 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -2459 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -2459 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -2459 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -2459 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -2459 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) (-1063) (-1172)) (T -616)) +((-2459 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-2459 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-616 *5 *6)))) (-2459 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-2459 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) (-4 *5 (-1172)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) (-2459 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6))))) +(-10 -7 (-15 -2459 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|))) (-15 -2459 (|#2| (-619 |#1|) (-619 |#2|) |#1|)) (-15 -2459 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) |#2|)) (-15 -2459 (|#2| (-619 |#1|) (-619 |#2|) |#1| |#2|)) (-15 -2459 ((-1 |#2| |#1|) (-619 |#1|) (-619 |#2|) (-1 |#2| |#1|))) (-15 -2459 (|#2| (-619 |#1|) (-619 |#2|) |#1| (-1 |#2| |#1|)))) +((-3562 (((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 16)) (-2542 ((|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|) 18)) (-2781 (((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)) 13))) +(((-617 |#1| |#2|) (-10 -7 (-15 -3562 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2781 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) (-1172) (-1172)) (T -617)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-617 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5))))) +(-10 -7 (-15 -3562 ((-619 |#2|) (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-619 |#1|) |#2|)) (-15 -2781 ((-619 |#2|) (-1 |#2| |#1|) (-619 |#1|)))) +((-2781 (((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)) 13))) +(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) (-1172) (-1172) (-1172)) (T -618)) +((-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-619 *6)) (-5 *5 (-619 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-619 *8)) (-5 *1 (-618 *6 *7 *8))))) +(-10 -7 (-15 -2781 ((-619 |#3|) (-1 |#3| |#1| |#2|) (-619 |#1|) (-619 |#2|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) NIL)) (-2823 ((|#1| $) NIL)) (-1335 (($ $) NIL)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) $) NIL (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2765 (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-3180 (($ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3861 (($ $ $) NIL (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "rest" $) NIL (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3569 (($ $ $) 32 (|has| |#1| (-1063)))) (-3559 (($ $ $) 34 (|has| |#1| (-1063)))) (-3544 (($ $ $) 37 (|has| |#1| (-1063)))) (-3681 (($ (-1 (-112) |#1|) $) NIL)) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2814 ((|#1| $) NIL)) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3645 (($ $) NIL) (($ $ (-745)) NIL)) (-3796 (($ $) NIL (|has| |#1| (-1063)))) (-3664 (($ $) 31 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) NIL (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) NIL)) (-3801 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-3425 (((-112) $) NIL)) (-2867 (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063))) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) NIL)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3246 (((-112) $) 9)) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2608 (($) 7)) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3756 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1294 (($ $ $) NIL (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3511 (($ |#1|) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3817 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-1885 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-2599 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-3541 (((-112) $) NIL)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-547))) NIL) ((|#1| $ (-547)) 36) ((|#1| $ (-547) |#1|) NIL)) (-1887 (((-547) $ $) NIL)) (-3769 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-2151 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-2094 (((-112) $) NIL)) (-4291 (($ $) NIL)) (-4080 (($ $) NIL (|has| $ (-6 -4329)))) (-3257 (((-745) $) NIL)) (-3360 (($ $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) 45 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-3156 (($ |#1| $) 10)) (-4187 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1935 (($ $ $) 30) (($ |#1| $) NIL) (($ (-619 $)) NIL) (($ $ |#1|) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3706 (($ $ $) 11)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2083 (((-1118) $) 26 (|has| |#1| (-802))) (((-1118) $ (-112)) 27 (|has| |#1| (-802))) (((-1223) (-796) $) 28 (|has| |#1| (-802))) (((-1223) (-796) $ (-112)) 29 (|has| |#1| (-802)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-619 |#1|) (-13 (-640 |#1|) (-10 -8 (-15 -2608 ($)) (-15 -3246 ((-112) $)) (-15 -3156 ($ |#1| $)) (-15 -3706 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3569 ($ $ $)) (-15 -3559 ($ $ $)) (-15 -3544 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) (-1172)) (T -619)) +((-2608 (*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1172)))) (-3156 (*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3706 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) (-3569 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)))) (-3559 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)))) (-3544 (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(-13 (-640 |#1|) (-10 -8 (-15 -2608 ($)) (-15 -3246 ((-112) $)) (-15 -3156 ($ |#1| $)) (-15 -3706 ($ $ $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -3569 ($ $ $)) (-15 -3559 ($ $ $)) (-15 -3544 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 11) (((-1140) $) NIL) ((|#1| $) 8)) (-2371 (((-112) $ $) NIL))) +(((-620 |#1|) (-13 (-1047) (-591 |#1|)) (-1063)) (T -620)) +NIL +(-13 (-1047) (-591 |#1|)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3655 (($ |#1| |#1| $) 43)) (-2826 (((-112) $ (-745)) NIL)) (-3681 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3796 (($ $) 45)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) 52 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 9 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 37)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1959 ((|#1| $) 46)) (-1885 (($ |#1| $) 26) (($ |#1| $ (-745)) 42)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1373 ((|#1| $) 48)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 21)) (-4011 (($) 25)) (-3187 (((-112) $) 50)) (-3700 (((-619 (-2 (|:| -1777 |#1|) (|:| -3987 (-745)))) $) 59)) (-1404 (($) 23) (($ (-619 |#1|)) 18)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) 56 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 19)) (-2829 (((-523) $) 34 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-3834 (((-832) $) 14 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 22)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 61 (|has| |#1| (-1063)))) (-3763 (((-745) $) 16 (|has| $ (-6 -4328))))) +(((-621 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4328) (-15 -3187 ((-112) $)) (-15 -3655 ($ |#1| |#1| $)))) (-1063)) (T -621)) +((-3187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063)))) (-3655 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063))))) +(-13 (-669 |#1|) (-10 -8 (-6 -4328) (-15 -3187 ((-112) $)) (-15 -3655 ($ |#1| |#1| $)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23))) (((-622 |#1|) (-138) (-1023)) (T -622)) ((* (*1 *1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1023))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3423 (((-745) $) 15)) (-3475 (($ $ |#1|) 56)) (-3499 (($ $) 32)) (-2796 (($ $) 31)) (-2441 (((-3 |#1| "failed") $) 48)) (-2375 ((|#1| $) NIL)) (-3216 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3020 (((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-548)) 46)) (-3224 ((|#1| $ (-548)) 30)) (-3235 ((|#2| $ (-548)) 29)) (-1628 (($ (-1 |#1| |#1|) $) 34)) (-3442 (($ (-1 |#2| |#2|) $) 38)) (-3486 (($) 10)) (-3519 (($ |#1| |#2|) 22)) (-3510 (($ (-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|)))) 23)) (-3532 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $) 13)) (-3464 (($ |#1| $) 57)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3452 (((-112) $ $) 60)) (-3743 (((-832) $) 19) (($ |#1|) 16)) (-2214 (((-112) $ $) 25))) -(((-623 |#1| |#2| |#3|) (-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-548))) (-15 -3532 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $)) (-15 -3519 ($ |#1| |#2|)) (-15 -3510 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))))) (-15 -3235 (|#2| $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2796 ($ $)) (-15 -3499 ($ $)) (-15 -3423 ((-745) $)) (-15 -3486 ($)) (-15 -3475 ($ $ |#1|)) (-15 -3464 ($ |#1| $)) (-15 -3216 ($ |#1| |#2| $)) (-15 -3216 ($ $ $)) (-15 -3452 ((-112) $ $)) (-15 -3442 ($ (-1 |#2| |#2|) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)))) (-1063) (-23) |#2|) (T -623)) -((-3020 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-548)) (-5 *2 (-832)) (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3519 (*1 *1 *2 *3) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) (-4 *4 (-1063)) (-14 *5 *2))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2796 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3499 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3486 (*1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3475 (*1 *1 *1 *2) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3464 (*1 *1 *2 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3216 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3452 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-548))) (-15 -3532 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))) $)) (-15 -3519 ($ |#1| |#2|)) (-15 -3510 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2458 |#2|))))) (-15 -3235 (|#2| $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -2796 ($ $)) (-15 -3499 ($ $)) (-15 -3423 ((-745) $)) (-15 -3486 ($)) (-15 -3475 ($ $ |#1|)) (-15 -3464 ($ |#1| $)) (-15 -3216 ($ |#1| |#2| $)) (-15 -3216 ($ $ $)) (-15 -3452 ((-112) $ $)) (-15 -3442 ($ (-1 |#2| |#2|) $)) (-15 -1628 ($ (-1 |#1| |#1|) $)))) -((-4181 (((-548) $) 24)) (-2387 (($ |#2| $ (-548)) 22) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) 12)) (-4212 (((-112) (-548) $) 15)) (-1831 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-619 $)) NIL))) -(((-624 |#1| |#2|) (-10 -8 (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -4181 ((-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4212 ((-112) (-548) |#1|))) (-625 |#2|) (-1172)) (T -624)) -NIL -(-10 -8 (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -1831 (|#1| (-619 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -4181 ((-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4212 ((-112) (-548) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-3603 (((-745) $) 15)) (-3029 (($ $ |#1|) 56)) (-2034 (($ $) 32)) (-3048 (($ $) 31)) (-2698 (((-3 |#1| "failed") $) 48)) (-2643 ((|#1| $) NIL)) (-3428 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3124 (((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-547)) 46)) (-2598 ((|#1| $ (-547)) 30)) (-1359 ((|#2| $ (-547)) 29)) (-3270 (($ (-1 |#1| |#1|) $) 34)) (-2754 (($ (-1 |#2| |#2|) $) 38)) (-3121 (($) 10)) (-2276 (($ |#1| |#2|) 22)) (-2171 (($ (-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|)))) 23)) (-2403 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))) $) 13)) (-2949 (($ |#1| $) 57)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2850 (((-112) $ $) 60)) (-3834 (((-832) $) 19) (($ |#1|) 16)) (-2371 (((-112) $ $) 25))) +(((-623 |#1| |#2| |#3|) (-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -3124 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-547))) (-15 -2403 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))) $)) (-15 -2276 ($ |#1| |#2|)) (-15 -2171 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))))) (-15 -1359 (|#2| $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -3048 ($ $)) (-15 -2034 ($ $)) (-15 -3603 ((-745) $)) (-15 -3121 ($)) (-15 -3029 ($ $ |#1|)) (-15 -2949 ($ |#1| $)) (-15 -3428 ($ |#1| |#2| $)) (-15 -3428 ($ $ $)) (-15 -2850 ((-112) $ $)) (-15 -2754 ($ (-1 |#2| |#2|) $)) (-15 -3270 ($ (-1 |#1| |#1|) $)))) (-1063) (-23) |#2|) (T -623)) +((-3124 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-547)) (-5 *2 (-832)) (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 *4)))) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-2171 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 *4)))) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) (-4 *4 (-1063)) (-14 *5 *2))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3048 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-2034 (*1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-3121 (*1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3029 (*1 *1 *1 *2) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-2949 (*1 *1 *2 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3428 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-3428 (*1 *1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) (-2850 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) (-2754 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)))) (-3270 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1063) (-1007 |#1|) (-10 -8 (-15 -3124 ((-832) $ (-1 (-832) (-832) (-832)) (-1 (-832) (-832) (-832)) (-547))) (-15 -2403 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))) $)) (-15 -2276 ($ |#1| |#2|)) (-15 -2171 ($ (-619 (-2 (|:| |gen| |#1|) (|:| -2703 |#2|))))) (-15 -1359 (|#2| $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -3048 ($ $)) (-15 -2034 ($ $)) (-15 -3603 ((-745) $)) (-15 -3121 ($)) (-15 -3029 ($ $ |#1|)) (-15 -2949 ($ |#1| $)) (-15 -3428 ($ |#1| |#2| $)) (-15 -3428 ($ $ $)) (-15 -2850 ((-112) $ $)) (-15 -2754 ($ (-1 |#2| |#2|) $)) (-15 -3270 ($ (-1 |#1| |#1|) $)))) +((-2638 (((-547) $) 24)) (-2599 (($ |#2| $ (-547)) 22) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) 12)) (-1641 (((-112) (-547) $) 15)) (-1935 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-619 $)) NIL))) +(((-624 |#1| |#2|) (-10 -8 (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -1935 (|#1| (-619 |#1|))) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -2638 ((-547) |#1|)) (-15 -1520 ((-619 (-547)) |#1|)) (-15 -1641 ((-112) (-547) |#1|))) (-625 |#2|) (-1172)) (T -624)) +NIL +(-10 -8 (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -1935 (|#1| (-619 |#1|))) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -2638 ((-547) |#1|)) (-15 -1520 ((-619 (-547)) |#1|)) (-15 -1641 ((-112) (-547) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3664 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 51)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 42 (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2418 (($ $ |#1|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1185 (-547))) 63)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 70)) (-1935 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-625 |#1|) (-138) (-1172)) (T -625)) -((-3550 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-1831 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2387 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-2387 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1185 (-548))) (|has| *1 (-6 -4328)) (-4 *1 (-625 *2)) (-4 *2 (-1172))))) -(-13 (-583 (-548) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3550 ($ (-745) |t#1|)) (-15 -1831 ($ $ |t#1|)) (-15 -1831 ($ |t#1| $)) (-15 -1831 ($ $ $)) (-15 -1831 ($ (-619 $))) (-15 -2540 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3171 ($ $ (-1185 (-548)))) (-15 -2008 ($ $ (-548))) (-15 -2008 ($ $ (-1185 (-548)))) (-15 -2387 ($ |t#1| $ (-548))) (-15 -2387 ($ $ $ (-548))) (IF (|has| $ (-6 -4328)) (-15 -2089 (|t#1| $ (-1185 (-548)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3408 (((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) "failed") |#3| |#2| (-1135)) 44))) -(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) "failed") |#3| |#2| (-1135))) (-15 -3408 ((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928)) (-630 |#2|)) (T -626)) -((-3408 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4))))) -(-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) "failed") |#3| |#2| (-1135))) (-15 -3408 ((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3543 (($ $) NIL (|has| |#1| (-355)))) (-3565 (($ $ $) NIL (|has| |#1| (-355)))) (-3577 (($ $ (-745)) NIL (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) NIL)) (-3589 (($ $ $) NIL (|has| |#1| (-355)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) NIL)) (-1773 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($) NIL)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-627 |#1|) (-630 |#1|) (-226)) (T -627)) +((-3732 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-1935 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1935 (*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1935 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2781 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2151 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2151 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2599 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-625 *2)) (-4 *2 (-1172)))) (-2599 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) (-2238 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1185 (-547))) (|has| *1 (-6 -4329)) (-4 *1 (-625 *2)) (-4 *2 (-1172))))) +(-13 (-582 (-547) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3732 ($ (-745) |t#1|)) (-15 -1935 ($ $ |t#1|)) (-15 -1935 ($ |t#1| $)) (-15 -1935 ($ $ $)) (-15 -1935 ($ (-619 $))) (-15 -2781 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3329 ($ $ (-1185 (-547)))) (-15 -2151 ($ $ (-547))) (-15 -2151 ($ $ (-1185 (-547)))) (-15 -2599 ($ |t#1| $ (-547))) (-15 -2599 ($ $ $ (-547))) (IF (|has| $ (-6 -4329)) (-15 -2238 (|t#1| $ (-1185 (-547)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-3571 (((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) "failed") |#3| |#2| (-1135)) 44))) +(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) "failed") |#3| |#2| (-1135))) (-15 -3571 ((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1157) (-928)) (-630 |#2|)) (T -626)) +((-3571 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-619 *4)))) (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4))))) +(-10 -7 (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) "failed") |#3| |#2| (-1135))) (-15 -3571 ((-3 |#2| "failed") |#3| |#2| (-1135) |#2| (-619 |#2|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2529 (($ $) NIL (|has| |#1| (-354)))) (-1390 (($ $ $) NIL (|has| |#1| (-354)))) (-1519 (($ $ (-745)) NIL (|has| |#1| (-354)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-4148 (($ $ $) NIL (|has| |#1| (-354)))) (-4224 (($ $ $) NIL (|has| |#1| (-354)))) (-4298 (($ $ $) NIL (|has| |#1| (-354)))) (-3982 (($ $ $) NIL (|has| |#1| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-4069 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442)))) (-4114 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) NIL)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-1626 (((-745) $) NIL)) (-3494 (($ $ $) NIL (|has| |#1| (-354)))) (-3588 (($ $ $) NIL (|has| |#1| (-354)))) (-3835 (($ $ $) NIL (|has| |#1| (-354)))) (-3328 (($ $ $) NIL (|has| |#1| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3413 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3329 ((|#1| $ |#1|) NIL)) (-1640 (($ $ $) NIL (|has| |#1| (-354)))) (-1618 (((-745) $) NIL)) (-1378 ((|#1| $) NIL (|has| |#1| (-442)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) NIL)) (-2311 (((-745)) NIL)) (-3583 ((|#1| $ |#1| |#1|) NIL)) (-2353 (($ $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($) NIL)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-627 |#1|) (-630 |#1|) (-225)) (T -627)) NIL (-630 |#1|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3543 (($ $) NIL (|has| |#1| (-355)))) (-3565 (($ $ $) NIL (|has| |#1| (-355)))) (-3577 (($ $ (-745)) NIL (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3589 (($ $ $) NIL (|has| |#1| (-355)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) NIL)) (-1773 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($) NIL)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-628 |#1| |#2|) (-13 (-630 |#1|) (-278 |#2| |#2|)) (-226) (-13 (-622 |#1|) (-10 -8 (-15 -4050 ($ $))))) (T -628)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2529 (($ $) NIL (|has| |#1| (-354)))) (-1390 (($ $ $) NIL (|has| |#1| (-354)))) (-1519 (($ $ (-745)) NIL (|has| |#1| (-354)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-4148 (($ $ $) NIL (|has| |#1| (-354)))) (-4224 (($ $ $) NIL (|has| |#1| (-354)))) (-4298 (($ $ $) NIL (|has| |#1| (-354)))) (-3982 (($ $ $) NIL (|has| |#1| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-4069 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442)))) (-4114 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) NIL)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-1626 (((-745) $) NIL)) (-3494 (($ $ $) NIL (|has| |#1| (-354)))) (-3588 (($ $ $) NIL (|has| |#1| (-354)))) (-3835 (($ $ $) NIL (|has| |#1| (-354)))) (-3328 (($ $ $) NIL (|has| |#1| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3413 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3329 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1640 (($ $ $) NIL (|has| |#1| (-354)))) (-1618 (((-745) $) NIL)) (-1378 ((|#1| $) NIL (|has| |#1| (-442)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) NIL)) (-2311 (((-745)) NIL)) (-3583 ((|#1| $ |#1| |#1|) NIL)) (-2353 (($ $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($) NIL)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-628 |#1| |#2|) (-13 (-630 |#1|) (-277 |#2| |#2|)) (-225) (-13 (-622 |#1|) (-10 -8 (-15 -3443 ($ $))))) (T -628)) NIL -(-13 (-630 |#1|) (-278 |#2| |#2|)) -((-3543 (($ $) 26)) (-1773 (($ $) 24)) (-3296 (($) 12))) -(((-629 |#1| |#2|) (-10 -8 (-15 -3543 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3296 (|#1|))) (-630 |#2|) (-1016)) (T -629)) +(-13 (-630 |#1|) (-277 |#2| |#2|)) +((-2529 (($ $) 26)) (-2353 (($ $) 24)) (-1686 (($) 12))) +(((-629 |#1| |#2|) (-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -1686 (|#1|))) (-630 |#2|) (-1016)) (T -629)) NIL -(-10 -8 (-15 -3543 (|#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3296 (|#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3543 (($ $) 80 (|has| |#1| (-355)))) (-3565 (($ $ $) 82 (|has| |#1| (-355)))) (-3577 (($ $ (-745)) 81 (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1905 (($ $ $) 43 (|has| |#1| (-355)))) (-1916 (($ $ $) 44 (|has| |#1| (-355)))) (-1927 (($ $ $) 46 (|has| |#1| (-355)))) (-1885 (($ $ $) 41 (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 40 (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) 42 (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 45 (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) 72 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 70 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 67)) (-2375 (((-548) $) 73 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 71 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 66)) (-1872 (($ $) 62)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 53 (|has| |#1| (-443)))) (-2266 (((-112) $) 30)) (-2024 (($ |#1| (-745)) 60)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 56 (|has| |#1| (-540)))) (-3904 (((-745) $) 64)) (-1970 (($ $ $) 50 (|has| |#1| (-355)))) (-1982 (($ $ $) 51 (|has| |#1| (-355)))) (-1865 (($ $ $) 39 (|has| |#1| (-355)))) (-1950 (($ $ $) 48 (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 47 (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) 49 (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 52 (|has| |#1| (-355)))) (-2197 ((|#1| $) 63)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) 85)) (-3589 (($ $ $) 79 (|has| |#1| (-355)))) (-2512 (((-745) $) 65)) (-3881 ((|#1| $) 54 (|has| |#1| (-443)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 69 (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 68)) (-3852 (((-619 |#1|) $) 59)) (-1951 ((|#1| $ (-745)) 61)) (-3835 (((-745)) 28)) (-3398 ((|#1| $ |#1| |#1|) 58)) (-1773 (($ $) 83)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($) 84)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -1686 (|#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2529 (($ $) 80 (|has| |#1| (-354)))) (-1390 (($ $ $) 82 (|has| |#1| (-354)))) (-1519 (($ $ (-745)) 81 (|has| |#1| (-354)))) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-4148 (($ $ $) 43 (|has| |#1| (-354)))) (-4224 (($ $ $) 44 (|has| |#1| (-354)))) (-4298 (($ $ $) 46 (|has| |#1| (-354)))) (-3982 (($ $ $) 41 (|has| |#1| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 40 (|has| |#1| (-354)))) (-4069 (((-3 $ "failed") $ $) 42 (|has| |#1| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 45 (|has| |#1| (-354)))) (-2698 (((-3 (-547) "failed") $) 72 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 70 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 67)) (-2643 (((-547) $) 73 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 71 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 66)) (-2054 (($ $) 62)) (-2537 (((-3 $ "failed") $) 32)) (-3786 (($ $) 53 (|has| |#1| (-442)))) (-4114 (((-112) $) 30)) (-2229 (($ |#1| (-745)) 60)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55 (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 56 (|has| |#1| (-539)))) (-1626 (((-745) $) 64)) (-3494 (($ $ $) 50 (|has| |#1| (-354)))) (-3588 (($ $ $) 51 (|has| |#1| (-354)))) (-3835 (($ $ $) 39 (|has| |#1| (-354)))) (-3328 (($ $ $) 48 (|has| |#1| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 47 (|has| |#1| (-354)))) (-3413 (((-3 $ "failed") $ $) 49 (|has| |#1| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 52 (|has| |#1| (-354)))) (-2027 ((|#1| $) 63)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-539)))) (-3329 ((|#1| $ |#1|) 85)) (-1640 (($ $ $) 79 (|has| |#1| (-354)))) (-1618 (((-745) $) 65)) (-1378 ((|#1| $) 54 (|has| |#1| (-442)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 69 (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 68)) (-2472 (((-619 |#1|) $) 59)) (-3338 ((|#1| $ (-745)) 61)) (-2311 (((-745)) 28)) (-3583 ((|#1| $ |#1| |#1|) 58)) (-2353 (($ $) 83)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($) 84)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) (((-630 |#1|) (-138) (-1016)) (T -630)) -((-3296 (*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-1773 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-3565 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3577 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-355)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(-13 (-823 |t#1|) (-278 |t#1| |t#1|) (-10 -8 (-15 -3296 ($)) (-15 -1773 ($ $)) (IF (|has| |t#1| (-355)) (PROGN (-15 -3565 ($ $ $)) (-15 -3577 ($ $ (-745))) (-15 -3543 ($ $)) (-15 -3589 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-278 |#1| |#1|) . T) ((-403 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-823 |#1|) . T)) -((-3555 (((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))) 74 (|has| |#1| (-27)))) (-1915 (((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))) 73 (|has| |#1| (-27))) (((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 17))) -(((-631 |#1| |#2|) (-10 -7 (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)))) (-15 -3555 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))))) |%noBranch|)) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -631)) -((-3555 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-627 (-399 *6)))) (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-399 *6)))))) -(-10 -7 (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1915 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|)))) (-15 -3555 ((-619 (-627 (-399 |#2|))) (-627 (-399 |#2|))))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3543 (($ $) NIL (|has| |#1| (-355)))) (-3565 (($ $ $) 28 (|has| |#1| (-355)))) (-3577 (($ $ (-745)) 31 (|has| |#1| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3171 ((|#1| $ |#1|) 24)) (-3589 (($ $ $) 33 (|has| |#1| (-355)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) 20) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) 23)) (-1773 (($ $) NIL)) (-3107 (($) 21 T CONST)) (-3118 (($) 8 T CONST)) (-3296 (($) NIL)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-1686 (*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) (-1390 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-354)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-1640 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(-13 (-823 |t#1|) (-277 |t#1| |t#1|) (-10 -8 (-15 -1686 ($)) (-15 -2353 ($ $)) (IF (|has| |t#1| (-354)) (PROGN (-15 -1390 ($ $ $)) (-15 -1519 ($ $ (-745))) (-15 -2529 ($ $)) (-15 -1640 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-277 |#1| |#1|) . T) ((-402 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-823 |#1|) . T)) +((-2635 (((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))) 74 (|has| |#1| (-27)))) (-2106 (((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))) 73 (|has| |#1| (-27))) (((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 17))) +(((-631 |#1| |#2|) (-10 -7 (-15 -2106 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2106 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)))) (-15 -2635 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))))) |%noBranch|)) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1194 |#1|)) (T -631)) +((-2635 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-398 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5))))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-398 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5))))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-627 (-398 *6)))) (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-398 *6)))))) +(-10 -7 (-15 -2106 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2106 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|)))) (-15 -2635 ((-619 (-627 (-398 |#2|))) (-627 (-398 |#2|))))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2529 (($ $) NIL (|has| |#1| (-354)))) (-1390 (($ $ $) 28 (|has| |#1| (-354)))) (-1519 (($ $ (-745)) 31 (|has| |#1| (-354)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-4148 (($ $ $) NIL (|has| |#1| (-354)))) (-4224 (($ $ $) NIL (|has| |#1| (-354)))) (-4298 (($ $ $) NIL (|has| |#1| (-354)))) (-3982 (($ $ $) NIL (|has| |#1| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-4069 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442)))) (-4114 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) NIL)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-1626 (((-745) $) NIL)) (-3494 (($ $ $) NIL (|has| |#1| (-354)))) (-3588 (($ $ $) NIL (|has| |#1| (-354)))) (-3835 (($ $ $) NIL (|has| |#1| (-354)))) (-3328 (($ $ $) NIL (|has| |#1| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3413 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-3329 ((|#1| $ |#1|) 24)) (-1640 (($ $ $) 33 (|has| |#1| (-354)))) (-1618 (((-745) $) NIL)) (-1378 ((|#1| $) NIL (|has| |#1| (-442)))) (-3834 (((-832) $) 20) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) NIL)) (-2311 (((-745)) NIL)) (-3583 ((|#1| $ |#1| |#1|) 23)) (-2353 (($ $) NIL)) (-3267 (($) 21 T CONST)) (-3277 (($) 8 T CONST)) (-1686 (($) NIL)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-632 |#1| |#2|) (-630 |#1|) (-1016) (-1 |#1| |#1|)) (T -632)) NIL (-630 |#1|) -((-3565 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-3577 ((|#2| |#2| (-745) (-1 |#1| |#1|)) 40)) (-3589 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-633 |#1| |#2|) (-10 -7 (-15 -3565 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3577 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -3589 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-355) (-630 |#1|)) (T -633)) -((-3589 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4)))) (-3577 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5)))) (-3565 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4))))) -(-10 -7 (-15 -3565 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3577 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -3589 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2818 (($ $ $) 9))) -(((-634 |#1|) (-10 -8 (-15 -2818 (|#1| |#1| |#1|))) (-635)) (T -634)) -NIL -(-10 -8 (-15 -2818 (|#1| |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-1258 (($ $) 10)) (-2818 (($ $ $) 8)) (-2214 (((-112) $ $) 6)) (-2809 (($ $ $) 9))) +((-1390 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1519 ((|#2| |#2| (-745) (-1 |#1| |#1|)) 40)) (-1640 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-633 |#1| |#2|) (-10 -7 (-15 -1390 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1519 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -1640 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-354) (-630 |#1|)) (T -633)) +((-1640 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4)))) (-1519 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5)))) (-1390 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2)) (-4 *2 (-630 *4))))) +(-10 -7 (-15 -1390 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1519 (|#2| |#2| (-745) (-1 |#1| |#1|))) (-15 -1640 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3696 (($ $ $) 9))) +(((-634 |#1|) (-10 -8 (-15 -3696 (|#1| |#1| |#1|))) (-635)) (T -634)) +NIL +(-10 -8 (-15 -3696 (|#1| |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-1332 (($ $) 10)) (-3696 (($ $ $) 8)) (-2371 (((-112) $ $) 6)) (-3683 (($ $ $) 9))) (((-635) (-138)) (T -635)) -((-1258 (*1 *1 *1) (-4 *1 (-635))) (-2809 (*1 *1 *1 *1) (-4 *1 (-635))) (-2818 (*1 *1 *1 *1) (-4 *1 (-635)))) -(-13 (-101) (-10 -8 (-15 -1258 ($ $)) (-15 -2809 ($ $ $)) (-15 -2818 ($ $ $)))) +((-1332 (*1 *1 *1) (-4 *1 (-635))) (-3683 (*1 *1 *1 *1) (-4 *1 (-635))) (-3696 (*1 *1 *1 *1) (-4 *1 (-635)))) +(-13 (-101) (-10 -8 (-15 -1332 ($ $)) (-15 -3683 ($ $ $)) (-15 -3696 ($ $ $)))) (((-101) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 15)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2470 ((|#1| $) 21)) (-1795 (($ $ $) NIL (|has| |#1| (-765)))) (-3091 (($ $ $) NIL (|has| |#1| (-765)))) (-2546 (((-1118) $) 46)) (-3932 (((-1082) $) NIL)) (-2480 ((|#3| $) 22)) (-3743 (((-832) $) 42)) (-3107 (($) 10 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2234 (((-112) $ $) 24 (|has| |#1| (-765)))) (-2309 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2299 (($ $) 17) (($ $ $) NIL)) (-2290 (($ $ $) 27)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-636 |#1| |#2| |#3|) (-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) (-692 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -636)) -((-2309 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2309 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-2480 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4))))) -(-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2309 ($ $ |#3|)) (-15 -2309 ($ |#1| |#3|)) (-15 -2470 (|#1| $)) (-15 -2480 (|#3| $)))) -((-3601 (((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)) 33))) -(((-637 |#1|) (-10 -7 (-15 -3601 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)))) (-878)) (T -637)) -((-3601 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *4))) (-5 *3 (-1131 *4)) (-4 *4 (-878)) (-5 *1 (-637 *4))))) -(-10 -7 (-15 -3601 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 82)) (-2502 (($ $ (-745)) 90)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2448 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 48)) (-2441 (((-3 (-646 |#1|) "failed") $) NIL)) (-2375 (((-646 |#1|) $) NIL)) (-1872 (($ $) 89)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-646 |#1|) |#2|) 68)) (-2425 (($ $) 86)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2459 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 47)) (-3176 (((-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2185 (((-646 |#1|) $) NIL)) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2460 (($ $ |#1| $) 30) (($ $ (-619 |#1|) (-619 $)) 32)) (-2512 (((-745) $) 88)) (-3754 (($ $ $) 20) (($ (-646 |#1|) (-646 |#1|)) 77) (($ (-646 |#1|) $) 75) (($ $ (-646 |#1|)) 76)) (-3743 (((-832) $) NIL) (($ |#1|) 74) (((-1233 |#1| |#2|) $) 58) (((-1242 |#1| |#2|) $) 41) (($ (-646 |#1|)) 25)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-646 |#1|)) NIL)) (-1489 ((|#2| (-1242 |#1| |#2|) $) 43)) (-3107 (($) 23 T CONST)) (-3623 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2493 (((-3 $ "failed") (-1233 |#1| |#2|)) 60)) (-3011 (($ (-646 |#1|)) 14)) (-2214 (((-112) $ $) 44)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) 66) (($ $ $) NIL)) (-2290 (($ $ $) 29)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-646 |#1|)) NIL))) -(((-638 |#1| |#2|) (-13 (-366 |#1| |#2|) (-374 |#2| (-646 |#1|)) (-10 -8 (-15 -2493 ((-3 $ "failed") (-1233 |#1| |#2|))) (-15 -3754 ($ (-646 |#1|) (-646 |#1|))) (-15 -3754 ($ (-646 |#1|) $)) (-15 -3754 ($ $ (-646 |#1|))))) (-821) (-169)) (T -638)) -((-2493 (*1 *1 *2) (|partial| -12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-638 *3 *4)))) (-3754 (*1 *1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3754 (*1 *1 *2 *1) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169))))) -(-13 (-366 |#1| |#2|) (-374 |#2| (-646 |#1|)) (-10 -8 (-15 -2493 ((-3 $ "failed") (-1233 |#1| |#2|))) (-15 -3754 ($ (-646 |#1|) (-646 |#1|))) (-15 -3754 ($ (-646 |#1|) $)) (-15 -3754 ($ $ (-646 |#1|))))) -((-3001 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2980 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2657 (($ (-1 (-112) |#2|) $) 28)) (-3499 (($ $) 56)) (-2969 (($ $) 64)) (-1636 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2061 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2621 (((-548) |#2| $ (-548)) 61) (((-548) |#2| $) NIL) (((-548) (-1 (-112) |#2|) $) 47)) (-3550 (($ (-745) |#2|) 54)) (-2965 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2913 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2540 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3309 (($ |#2|) 15)) (-2539 (($ $ $ (-548)) 36) (($ |#2| $ (-548)) 34)) (-4030 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-2668 (($ $ (-1185 (-548))) 44) (($ $ (-548)) 38)) (-2990 (($ $ $ (-548)) 60)) (-2113 (($ $) 58)) (-2234 (((-112) $ $) 66))) -(((-639 |#1| |#2|) (-10 -8 (-15 -3309 (|#1| |#2|)) (-15 -2668 (|#1| |#1| (-548))) (-15 -2668 (|#1| |#1| (-1185 (-548)))) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1| (-548))) (-15 -2539 (|#1| |#1| |#1| (-548))) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2913 (|#1| |#1| |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3499 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3550 (|#1| (-745) |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) (-640 |#2|) (-1172)) (T -639)) -NIL -(-10 -8 (-15 -3309 (|#1| |#2|)) (-15 -2668 (|#1| |#1| (-548))) (-15 -2668 (|#1| |#1| (-1185 (-548)))) (-15 -1636 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2539 (|#1| |#2| |#1| (-548))) (-15 -2539 (|#1| |#1| |#1| (-548))) (-15 -2965 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2657 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1636 (|#1| |#2| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -2965 (|#1| |#1| |#1|)) (-15 -2913 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3001 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2621 ((-548) (-1 (-112) |#2|) |#1|)) (-15 -2621 ((-548) |#2| |#1|)) (-15 -2621 ((-548) |#2| |#1| (-548))) (-15 -2913 (|#1| |#1| |#1|)) (-15 -3001 ((-112) |#1|)) (-15 -2990 (|#1| |#1| |#1| (-548))) (-15 -3499 (|#1| |#1|)) (-15 -2980 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2061 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4030 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3550 (|#1| (-745) |#2|)) (-15 -2540 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2113 (|#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-4149 (((-1223) $ (-548) (-548)) 97 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-3001 (((-112) $) 142 (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2980 (($ $) 146 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4328)))) (-2490 (($ $) 141 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 117 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 86 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-2657 (($ (-1 (-112) |#1|) $) 129)) (-1415 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4327)))) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3499 (($ $) 144 (|has| $ (-6 -4328)))) (-2796 (($ $) 134)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-2969 (($ $) 131 (|has| |#1| (-1063)))) (-3484 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 130 (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 125)) (-3699 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4327))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3971 ((|#1| $ (-548) |#1|) 85 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 87)) (-3700 (((-112) $) 83)) (-2621 (((-548) |#1| $ (-548)) 139 (|has| |#1| (-1063))) (((-548) |#1| $) 138 (|has| |#1| (-1063))) (((-548) (-1 (-112) |#1|) $) 137)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) 108)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 95 (|has| (-548) (-821)))) (-1795 (($ $ $) 147 (|has| |#1| (-821)))) (-2965 (($ $ $) 132 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2913 (($ $ $) 140 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 94 (|has| (-548) (-821)))) (-3091 (($ $ $) 148 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3309 (($ |#1|) 122)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-2539 (($ $ $ (-548)) 127) (($ |#1| $ (-548)) 126)) (-2387 (($ $ $ (-548)) 116) (($ |#1| $ (-548)) 115)) (-4201 (((-619 (-548)) $) 92)) (-4212 (((-112) (-548) $) 91)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4159 (($ $ |#1|) 96 (|has| $ (-6 -4328)))) (-3712 (((-112) $) 84)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 90)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-548))) 112) ((|#1| $ (-548)) 89) ((|#1| $ (-548) |#1|) 88)) (-4234 (((-548) $ $) 44)) (-2668 (($ $ (-1185 (-548))) 124) (($ $ (-548)) 123)) (-2008 (($ $ (-1185 (-548))) 114) (($ $ (-548)) 113)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 143 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 98 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 107)) (-3659 (($ $ $) 61) (($ $ |#1|) 60)) (-1831 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 150 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 151 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 149 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 152 (|has| |#1| (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 15)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-1382 ((|#1| $) 21)) (-2847 (($ $ $) NIL (|has| |#1| (-765)))) (-3563 (($ $ $) NIL (|has| |#1| (-765)))) (-1917 (((-1118) $) 46)) (-3979 (((-1082) $) NIL)) (-1392 ((|#3| $) 22)) (-3834 (((-832) $) 42)) (-3267 (($) 10 T CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2371 (((-112) $ $) 20)) (-2421 (((-112) $ $) NIL (|has| |#1| (-765)))) (-2396 (((-112) $ $) 24 (|has| |#1| (-765)))) (-2497 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2484 (($ $) 17) (($ $ $) NIL)) (-2470 (($ $ $) 27)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-636 |#1| |#2| |#3|) (-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2497 ($ $ |#3|)) (-15 -2497 ($ |#1| |#3|)) (-15 -1382 (|#1| $)) (-15 -1392 (|#3| $)))) (-692 |#2|) (-169) (|SubsetCategory| (-701) |#2|)) (T -636)) +((-2497 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) (-2497 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) (-1382 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-701) *3)))) (-1392 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4))))) +(-13 (-692 |#2|) (-10 -8 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) (-15 -2497 ($ $ |#3|)) (-15 -2497 ($ |#1| |#3|)) (-15 -1382 (|#1| $)) (-15 -1392 (|#3| $)))) +((-1756 (((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)) 33))) +(((-637 |#1|) (-10 -7 (-15 -1756 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)))) (-878)) (T -637)) +((-1756 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *4))) (-5 *3 (-1131 *4)) (-4 *4 (-878)) (-5 *1 (-637 *4))))) +(-10 -7 (-15 -1756 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3292 (((-619 |#1|) $) 82)) (-1505 (($ $ (-745)) 90)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2317 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 48)) (-2698 (((-3 (-646 |#1|) "failed") $) NIL)) (-2643 (((-646 |#1|) $) NIL)) (-2054 (($ $) 89)) (-3570 (((-745) $) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-3513 (($ (-646 |#1|) |#2|) 68)) (-2074 (($ $) 86)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2439 (((-1242 |#1| |#2|) (-1242 |#1| |#2|) $) 47)) (-2128 (((-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2013 (((-646 |#1|) $) NIL)) (-2027 ((|#2| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2670 (($ $ |#1| $) 30) (($ $ (-619 |#1|) (-619 $)) 32)) (-1618 (((-745) $) 88)) (-3841 (($ $ $) 20) (($ (-646 |#1|) (-646 |#1|)) 77) (($ (-646 |#1|) $) 75) (($ $ (-646 |#1|)) 76)) (-3834 (((-832) $) NIL) (($ |#1|) 74) (((-1233 |#1| |#2|) $) 58) (((-1242 |#1| |#2|) $) 41) (($ (-646 |#1|)) 25)) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-646 |#1|)) NIL)) (-1557 ((|#2| (-1242 |#1| |#2|) $) 43)) (-3267 (($) 23 T CONST)) (-3853 (((-619 (-2 (|:| |k| (-646 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1393 (((-3 $ "failed") (-1233 |#1| |#2|)) 60)) (-3042 (($ (-646 |#1|)) 14)) (-2371 (((-112) $ $) 44)) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) 66) (($ $ $) NIL)) (-2470 (($ $ $) 29)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-646 |#1|)) NIL))) +(((-638 |#1| |#2|) (-13 (-365 |#1| |#2|) (-373 |#2| (-646 |#1|)) (-10 -8 (-15 -1393 ((-3 $ "failed") (-1233 |#1| |#2|))) (-15 -3841 ($ (-646 |#1|) (-646 |#1|))) (-15 -3841 ($ (-646 |#1|) $)) (-15 -3841 ($ $ (-646 |#1|))))) (-821) (-169)) (T -638)) +((-1393 (*1 *1 *2) (|partial| -12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-638 *3 *4)))) (-3841 (*1 *1 *2 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) (-4 *4 (-169))))) +(-13 (-365 |#1| |#2|) (-373 |#2| (-646 |#1|)) (-10 -8 (-15 -1393 ((-3 $ "failed") (-1233 |#1| |#2|))) (-15 -3841 ($ (-646 |#1|) (-646 |#1|))) (-15 -3841 ($ (-646 |#1|) $)) (-15 -3841 ($ $ (-646 |#1|))))) +((-2951 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-2765 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3681 (($ (-1 (-112) |#2|) $) 28)) (-2034 (($ $) 56)) (-3796 (($ $) 64)) (-3342 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2542 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2867 (((-547) |#2| $ (-547)) 61) (((-547) |#2| $) NIL) (((-547) (-1 (-112) |#2|) $) 47)) (-3732 (($ (-745) |#2|) 54)) (-3756 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-1294 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2781 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3511 (($ |#2|) 15)) (-1885 (($ $ $ (-547)) 36) (($ |#2| $ (-547)) 34)) (-3461 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-3769 (($ $ (-1185 (-547))) 44) (($ $ (-547)) 38)) (-2861 (($ $ $ (-547)) 60)) (-2265 (($ $) 58)) (-2396 (((-112) $ $) 66))) +(((-639 |#1| |#2|) (-10 -8 (-15 -3511 (|#1| |#2|)) (-15 -3769 (|#1| |#1| (-547))) (-15 -3769 (|#1| |#1| (-1185 (-547)))) (-15 -3342 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1885 (|#1| |#2| |#1| (-547))) (-15 -1885 (|#1| |#1| |#1| (-547))) (-15 -3756 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3681 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -1294 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2951 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2867 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2867 ((-547) |#2| |#1|)) (-15 -2867 ((-547) |#2| |#1| (-547))) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -2861 (|#1| |#1| |#1| (-547))) (-15 -2034 (|#1| |#1|)) (-15 -2765 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2765 (|#1| |#1|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3461 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3732 (|#1| (-745) |#2|)) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2265 (|#1| |#1|))) (-640 |#2|) (-1172)) (T -639)) +NIL +(-10 -8 (-15 -3511 (|#1| |#2|)) (-15 -3769 (|#1| |#1| (-547))) (-15 -3769 (|#1| |#1| (-1185 (-547)))) (-15 -3342 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1885 (|#1| |#2| |#1| (-547))) (-15 -1885 (|#1| |#1| |#1| (-547))) (-15 -3756 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3681 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -1294 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2951 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2867 ((-547) (-1 (-112) |#2|) |#1|)) (-15 -2867 ((-547) |#2| |#1|)) (-15 -2867 ((-547) |#2| |#1| (-547))) (-15 -1294 (|#1| |#1| |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -2861 (|#1| |#1| |#1| (-547))) (-15 -2034 (|#1| |#1|)) (-15 -2765 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2765 (|#1| |#1|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2542 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3461 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3732 (|#1| (-745) |#2|)) (-15 -2781 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2265 (|#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2823 ((|#1| $) 65)) (-1335 (($ $) 67)) (-2290 (((-1223) $ (-547) (-547)) 97 (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) 52 (|has| $ (-6 -4329)))) (-2951 (((-112) $) 142 (|has| |#1| (-821))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2765 (($ $) 146 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4329)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4329)))) (-3180 (($ $) 141 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-3861 (($ $ $) 56 (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) 58 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4329))) (($ $ "rest" $) 55 (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 117 (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) 86 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-3681 (($ (-1 (-112) |#1|) $) 129)) (-1476 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4328)))) (-2814 ((|#1| $) 66)) (-3219 (($) 7 T CONST)) (-2034 (($ $) 144 (|has| $ (-6 -4329)))) (-3048 (($ $) 134)) (-3645 (($ $) 73) (($ $ (-745)) 71)) (-3796 (($ $) 131 (|has| |#1| (-1063)))) (-3664 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 130 (|has| |#1| (-1063))) (($ (-1 (-112) |#1|) $) 125)) (-3801 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4328))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1861 ((|#1| $ (-547) |#1|) 85 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 87)) (-3425 (((-112) $) 83)) (-2867 (((-547) |#1| $ (-547)) 139 (|has| |#1| (-1063))) (((-547) |#1| $) 138 (|has| |#1| (-1063))) (((-547) (-1 (-112) |#1|) $) 137)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3732 (($ (-745) |#1|) 108)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 95 (|has| (-547) (-821)))) (-2847 (($ $ $) 147 (|has| |#1| (-821)))) (-3756 (($ $ $) 132 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-1294 (($ $ $) 140 (|has| |#1| (-821))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 94 (|has| (-547) (-821)))) (-3563 (($ $ $) 148 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3511 (($ |#1|) 122)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3817 ((|#1| $) 70) (($ $ (-745)) 68)) (-1885 (($ $ $ (-547)) 127) (($ |#1| $ (-547)) 126)) (-2599 (($ $ $ (-547)) 116) (($ |#1| $ (-547)) 115)) (-1520 (((-619 (-547)) $) 92)) (-1641 (((-112) (-547) $) 91)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 76) (($ $ (-745)) 74)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2418 (($ $ |#1|) 96 (|has| $ (-6 -4329)))) (-3541 (((-112) $) 84)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 90)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-547))) 112) ((|#1| $ (-547)) 89) ((|#1| $ (-547) |#1|) 88)) (-1887 (((-547) $ $) 44)) (-3769 (($ $ (-1185 (-547))) 124) (($ $ (-547)) 123)) (-2151 (($ $ (-1185 (-547))) 114) (($ $ (-547)) 113)) (-2094 (((-112) $) 46)) (-4291 (($ $) 62)) (-4080 (($ $) 59 (|has| $ (-6 -4329)))) (-3257 (((-745) $) 63)) (-3360 (($ $) 64)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 143 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 98 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 107)) (-4187 (($ $ $) 61) (($ $ |#1|) 60)) (-1935 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 150 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 151 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2421 (((-112) $ $) 149 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 152 (|has| |#1| (-821)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-640 |#1|) (-138) (-1172)) (T -640)) -((-3309 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1172))))) -(-13 (-1109 |t#1|) (-365 |t#1|) (-274 |t#1|) (-10 -8 (-15 -3309 ($ |t#1|)))) -(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-274 |#1|) . T) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-979 |#1|) . T) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1109 |#1|) . T) ((-1172) . T) ((-1206 |#1|) . T)) -((-3408 (((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|))) 22) (((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)) 14)) (-2103 (((-745) (-663 |#1|) (-1218 |#1|)) 30)) (-2192 (((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|)) 24)) (-3611 (((-112) (-663 |#1|) (-1218 |#1|)) 27))) -(((-641 |#1|) (-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|))) (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|)))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|)))) (-15 -2192 ((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|))) (-15 -3611 ((-112) (-663 |#1|) (-1218 |#1|))) (-15 -2103 ((-745) (-663 |#1|) (-1218 |#1|)))) (-355)) (T -641)) -((-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-5 *2 (-745)) (-5 *1 (-641 *5)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-5 *2 (-112)) (-5 *1 (-641 *5)))) (-2192 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1218 *4)) (-5 *3 (-663 *4)) (-4 *4 (-355)) (-5 *1 (-641 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -2877 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5))))) -(-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|))) (-15 -3408 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|)))) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|)))) (-15 -2192 ((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|))) (-15 -3611 ((-112) (-663 |#1|) (-1218 |#1|))) (-15 -2103 ((-745) (-663 |#1|) (-1218 |#1|)))) -((-3408 (((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|)))) |#4| (-619 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|) 45)) (-2103 (((-745) |#4| |#3|) 17)) (-2192 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3611 (((-112) |#4| |#3|) 13))) -(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|)) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -2192 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3611 ((-112) |#4| |#3|)) (-15 -2103 ((-745) |#4| |#3|))) (-355) (-13 (-365 |#1|) (-10 -7 (-6 -4328))) (-13 (-365 |#1|) (-10 -7 (-6 -4328))) (-661 |#1| |#2| |#3|)) (T -642)) -((-2103 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-745)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-3611 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-112)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-2192 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-355)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4328)))) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))) (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-619 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2877 (-619 *7))))) (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7)) (-4 *3 (-661 *5 *6 *7)))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) -(-10 -7 (-15 -3408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|)) (-15 -3408 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -2192 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3611 ((-112) |#4| |#3|)) (-15 -2103 ((-745) |#4| |#3|))) -((-3621 (((-2 (|:| |particular| (-3 (-1218 (-399 |#4|)) "failed")) (|:| -2877 (-619 (-1218 (-399 |#4|))))) (-619 |#4|) (-619 |#3|)) 45))) -(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3621 ((-2 (|:| |particular| (-3 (-1218 (-399 |#4|)) "failed")) (|:| -2877 (-619 (-1218 (-399 |#4|))))) (-619 |#4|) (-619 |#3|)))) (-540) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -643)) -((-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 (-399 *8)) "failed")) (|:| -2877 (-619 (-1218 (-399 *8)))))) (-5 *1 (-643 *5 *6 *7 *8))))) -(-10 -7 (-15 -3621 ((-2 (|:| |particular| (-3 (-1218 (-399 |#4|)) "failed")) (|:| -2877 (-619 (-1218 (-399 |#4|))))) (-619 |#4|) (-619 |#3|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2265 (((-3 $ "failed")) NIL (|has| |#2| (-540)))) (-2707 ((|#2| $) NIL)) (-3785 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2434 (((-1218 (-663 |#2|))) NIL) (((-1218 (-663 |#2|)) (-1218 $)) NIL)) (-3808 (((-112) $) NIL)) (-2968 (((-1218 $)) 37)) (-2028 (((-112) $ (-745)) NIL)) (-2114 (($ |#2|) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) NIL (|has| |#2| (-299)))) (-3717 (((-233 |#1| |#2|) $ (-548)) NIL)) (-1321 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#2| (-540)))) (-3991 (((-3 $ "failed")) NIL (|has| |#2| (-540)))) (-2413 (((-663 |#2|)) NIL) (((-663 |#2|) (-1218 $)) NIL)) (-2947 ((|#2| $) NIL)) (-2391 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1218 $)) NIL)) (-3399 (((-3 $ "failed") $) NIL (|has| |#2| (-540)))) (-4307 (((-1131 (-921 |#2|))) NIL (|has| |#2| (-355)))) (-2246 (($ $ (-890)) NIL)) (-2925 ((|#2| $) NIL)) (-2741 (((-1131 |#2|) $) NIL (|has| |#2| (-540)))) (-2432 ((|#2|) NIL) ((|#2| (-1218 $)) NIL)) (-2903 (((-1131 |#2|) $) NIL)) (-2842 (((-112)) NIL)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) NIL)) (-2455 (($ (-1218 |#2|)) NIL) (($ (-1218 |#2|) (-1218 $)) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2103 (((-745) $) NIL (|has| |#2| (-540))) (((-890)) 38)) (-3899 ((|#2| $ (-548) (-548)) NIL)) (-2815 (((-112)) NIL)) (-2468 (($ $ (-890)) NIL)) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL)) (-3681 (((-745) $) NIL (|has| |#2| (-540)))) (-3669 (((-619 (-233 |#1| |#2|)) $) NIL (|has| |#2| (-540)))) (-4205 (((-745) $) NIL)) (-2782 (((-112)) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#2| $) NIL (|has| |#2| (-6 (-4329 "*"))))) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#2|))) NIL)) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2401 (((-619 (-619 |#2|)) $) NIL)) (-2766 (((-112)) NIL)) (-2797 (((-112)) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-1332 (((-3 (-2 (|:| |particular| $) (|:| -2877 (-619 $))) "failed")) NIL (|has| |#2| (-540)))) (-4003 (((-3 $ "failed")) NIL (|has| |#2| (-540)))) (-2422 (((-663 |#2|)) NIL) (((-663 |#2|) (-1218 $)) NIL)) (-2958 ((|#2| $) NIL)) (-2402 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1218 $)) NIL)) (-3411 (((-3 $ "failed") $) NIL (|has| |#2| (-540)))) (-1298 (((-1131 (-921 |#2|))) NIL (|has| |#2| (-355)))) (-3424 (($ $ (-890)) NIL)) (-2936 ((|#2| $) NIL)) (-2750 (((-1131 |#2|) $) NIL (|has| |#2| (-540)))) (-2444 ((|#2|) NIL) ((|#2| (-1218 $)) NIL)) (-2914 (((-1131 |#2|) $) NIL)) (-2851 (((-112)) NIL)) (-2546 (((-1118) $) NIL)) (-2774 (((-112)) NIL)) (-2790 (((-112)) NIL)) (-2806 (((-112)) NIL)) (-2369 (((-3 $ "failed") $) NIL (|has| |#2| (-355)))) (-3932 (((-1082) $) NIL)) (-2832 (((-112)) NIL)) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) (-548) |#2|) NIL) ((|#2| $ (-548) (-548)) 22) ((|#2| $ (-548)) NIL)) (-4050 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2077 ((|#2| $) NIL)) (-2102 (($ (-619 |#2|)) NIL)) (-3797 (((-112) $) NIL)) (-2090 (((-233 |#1| |#2|) $) NIL)) (-2068 ((|#2| $) NIL (|has| |#2| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-2447 (((-663 |#2|) (-1218 $)) NIL) (((-1218 |#2|) $) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $ (-1218 $)) 25)) (-2591 (($ (-1218 |#2|)) NIL) (((-1218 |#2|) $) NIL)) (-4218 (((-619 (-921 |#2|))) NIL) (((-619 (-921 |#2|)) (-1218 $)) NIL)) (-3652 (($ $ $) NIL)) (-2891 (((-112)) NIL)) (-3704 (((-233 |#1| |#2|) $ (-548)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) NIL) (((-663 |#2|) $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) 36)) (-2759 (((-619 (-1218 |#2|))) NIL (|has| |#2| (-540)))) (-3664 (($ $ $ $) NIL)) (-2871 (((-112)) NIL)) (-3398 (($ (-663 |#2|) $) NIL)) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-3639 (($ $ $) NIL)) (-2881 (((-112)) NIL)) (-2859 (((-112)) NIL)) (-2823 (((-112)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#2| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) NIL) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-644 |#1| |#2|) (-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-409 |#2|)) (-890) (-169)) (T -644)) -NIL -(-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-409 |#2|)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2584 (((-619 (-1140)) $) 10)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-645) (-13 (-1047) (-10 -8 (-15 -2584 ((-619 (-1140)) $))))) (T -645)) -((-2584 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-645))))) -(-13 (-1047) (-10 -8 (-15 -2584 ((-619 (-1140)) $)))) -((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) NIL)) (-3676 (($ $) 52)) (-3613 (((-112) $) NIL)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3656 (((-3 $ "failed") (-793 |#1|)) 23)) (-3680 (((-112) (-793 |#1|)) 15)) (-3668 (($ (-793 |#1|)) 24)) (-3281 (((-112) $ $) 30)) (-3198 (((-890) $) 37)) (-3663 (($ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1915 (((-619 $) (-793 |#1|)) 17)) (-3743 (((-832) $) 43) (($ |#1|) 34) (((-793 |#1|) $) 39) (((-651 |#1|) $) 44)) (-3645 (((-58 (-619 $)) (-619 |#1|) (-890)) 57)) (-3632 (((-619 $) (-619 |#1|) (-890)) 60)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 53)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 38))) -(((-646 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 -3613 ((-112) $)) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ((-651 |#1|) $)) (-15 -1915 ((-619 $) (-793 |#1|))) (-15 -3680 ((-112) (-793 |#1|))) (-15 -3668 ($ (-793 |#1|))) (-15 -3656 ((-3 $ "failed") (-793 |#1|))) (-15 -3065 ((-619 |#1|) $)) (-15 -3645 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -3632 ((-619 $) (-619 |#1|) (-890))))) (-821)) (T -646)) -((-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-3676 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4))) (-5 *1 (-646 *4)))) (-3680 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) (-5 *1 (-646 *4)))) (-3668 (*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3656 (*1 *1 *2) (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5))))) -(-13 (-821) (-1007 |#1|) (-10 -8 (-15 -3613 ((-112) $)) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ((-651 |#1|) $)) (-15 -1915 ((-619 $) (-793 |#1|))) (-15 -3680 ((-112) (-793 |#1|))) (-15 -3668 ($ (-793 |#1|))) (-15 -3656 ((-3 $ "failed") (-793 |#1|))) (-15 -3065 ((-619 |#1|) $)) (-15 -3645 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -3632 ((-619 $) (-619 |#1|) (-890))))) -((-4056 ((|#2| $) 76)) (-1272 (($ $) 96)) (-2028 (((-112) $ (-745)) 26)) (-3465 (($ $) 85) (($ $ (-745)) 88)) (-3700 (((-112) $) 97)) (-4245 (((-619 $) $) 72)) (-4213 (((-112) $ $) 71)) (-4282 (((-112) $ (-745)) 24)) (-4171 (((-548) $) 46)) (-4181 (((-548) $) 45)) (-4248 (((-112) $ (-745)) 22)) (-3010 (((-112) $) 74)) (-3724 ((|#2| $) 89) (($ $ (-745)) 92)) (-2387 (($ $ $ (-548)) 62) (($ |#2| $ (-548)) 61)) (-4201 (((-619 (-548)) $) 44)) (-4212 (((-112) (-548) $) 42)) (-3453 ((|#2| $) NIL) (($ $ (-745)) 84)) (-1656 (($ $ (-548)) 100)) (-3712 (((-112) $) 99)) (-3537 (((-112) (-1 (-112) |#2|) $) 32)) (-4223 (((-619 |#2|) $) 33)) (-3171 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1185 (-548))) 58) ((|#2| $ (-548)) 40) ((|#2| $ (-548) |#2|) 41)) (-4234 (((-548) $ $) 70)) (-2008 (($ $ (-1185 (-548))) 57) (($ $ (-548)) 51)) (-2740 (((-112) $) 66)) (-3672 (($ $) 81)) (-3683 (((-745) $) 80)) (-3693 (($ $) 79)) (-3754 (($ (-619 |#2|)) 37)) (-3330 (($ $) 101)) (-2956 (((-619 $) $) 69)) (-4224 (((-112) $ $) 68)) (-3548 (((-112) (-1 (-112) |#2|) $) 31)) (-2214 (((-112) $ $) 18)) (-3643 (((-745) $) 29))) -(((-647 |#1| |#2|) (-10 -8 (-15 -3330 (|#1| |#1|)) (-15 -1656 (|#1| |#1| (-548))) (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4223 ((-619 |#2|) |#1|)) (-15 -4212 ((-112) (-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4181 ((-548) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -4234 ((-548) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) (-648 |#2|) (-1172)) (T -647)) -NIL -(-10 -8 (-15 -3330 (|#1| |#1|)) (-15 -1656 (|#1| |#1| (-548))) (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4223 ((-619 |#2|) |#1|)) (-15 -4212 ((-112) (-548) |#1|)) (-15 -4201 ((-619 (-548)) |#1|)) (-15 -4181 ((-548) |#1|)) (-15 -4171 ((-548) |#1|)) (-15 -3754 (|#1| (-619 |#2|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2008 (|#1| |#1| (-548))) (-15 -2008 (|#1| |#1| (-1185 (-548)))) (-15 -2387 (|#1| |#2| |#1| (-548))) (-15 -2387 (|#1| |#1| |#1| (-548))) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -4213 ((-112) |#1| |#1|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -4234 ((-548) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3537 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-4149 (((-1223) $ (-548) (-548)) 97 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 117 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 86 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 102)) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3703 (($ $) 124)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-3484 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 103)) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3971 ((|#1| $ (-548) |#1|) 85 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 87)) (-3700 (((-112) $) 83)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3690 (((-745) $) 123)) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) 108)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 95 (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 94 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-3728 (($ $) 126)) (-3741 (((-112) $) 127)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-2387 (($ $ $ (-548)) 116) (($ |#1| $ (-548)) 115)) (-4201 (((-619 (-548)) $) 92)) (-4212 (((-112) (-548) $) 91)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3716 ((|#1| $) 125)) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4159 (($ $ |#1|) 96 (|has| $ (-6 -4328)))) (-1656 (($ $ (-548)) 122)) (-3712 (((-112) $) 84)) (-3752 (((-112) $) 128)) (-3763 (((-112) $) 129)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 90)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-548))) 112) ((|#1| $ (-548)) 89) ((|#1| $ (-548) |#1|) 88)) (-4234 (((-548) $ $) 44)) (-2008 (($ $ (-1185 (-548))) 114) (($ $ (-548)) 113)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 98 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 107)) (-3659 (($ $ $) 61 (|has| $ (-6 -4328))) (($ $ |#1|) 60 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3330 (($ $) 121)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3511 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1172))))) +(-13 (-1109 |t#1|) (-364 |t#1|) (-273 |t#1|) (-10 -8 (-15 -3511 ($ |t#1|)))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-273 |#1|) . T) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-821) |has| |#1| (-821)) ((-979 |#1|) . T) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1109 |#1|) . T) ((-1172) . T) ((-1206 |#1|) . T)) +((-3571 (((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|))) 22) (((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)) 14)) (-3107 (((-745) (-663 |#1|) (-1218 |#1|)) 30)) (-1634 (((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|)) 24)) (-1874 (((-112) (-663 |#1|) (-1218 |#1|)) 27))) +(((-641 |#1|) (-10 -7 (-15 -3571 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|))) (-15 -3571 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|))) (-15 -3571 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|)))) (-15 -3571 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|)))) (-15 -1634 ((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|))) (-15 -1874 ((-112) (-663 |#1|) (-1218 |#1|))) (-15 -3107 ((-745) (-663 |#1|) (-1218 |#1|)))) (-354)) (T -641)) +((-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-354)) (-5 *2 (-745)) (-5 *1 (-641 *5)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-354)) (-5 *2 (-112)) (-5 *1 (-641 *5)))) (-1634 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1218 *4)) (-5 *3 (-663 *4)) (-4 *4 (-354)) (-5 *1 (-641 *4)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -4013 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -4013 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -4013 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) (|:| -4013 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5))))) +(-10 -7 (-15 -3571 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|))) (-15 -3571 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-619 (-619 |#1|)) (-1218 |#1|))) (-15 -3571 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|))))) (-663 |#1|) (-619 (-1218 |#1|)))) (-15 -3571 ((-619 (-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|))))) (-619 (-619 |#1|)) (-619 (-1218 |#1|)))) (-15 -1634 ((-3 (-1218 |#1|) "failed") (-663 |#1|) (-1218 |#1|))) (-15 -1874 ((-112) (-663 |#1|) (-1218 |#1|))) (-15 -3107 ((-745) (-663 |#1|) (-1218 |#1|)))) +((-3571 (((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|)))) |#4| (-619 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|))) |#4| |#3|) 45)) (-3107 (((-745) |#4| |#3|) 17)) (-1634 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1874 (((-112) |#4| |#3|) 13))) +(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3571 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|))) |#4| |#3|)) (-15 -3571 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -1634 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1874 ((-112) |#4| |#3|)) (-15 -3107 ((-745) |#4| |#3|))) (-354) (-13 (-364 |#1|) (-10 -7 (-6 -4329))) (-13 (-364 |#1|) (-10 -7 (-6 -4329))) (-661 |#1| |#2| |#3|)) (T -642)) +((-3107 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-745)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-1874 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-112)) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-1634 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-354)) (-4 *5 (-13 (-364 *4) (-10 -7 (-6 -4329)))) (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329)))) (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) (-3571 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-4 *7 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-619 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4013 (-619 *7))))) (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7)) (-4 *3 (-661 *5 *6 *7)))) (-3571 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) +(-10 -7 (-15 -3571 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|))) |#4| |#3|)) (-15 -3571 ((-619 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|)))) |#4| (-619 |#3|))) (-15 -1634 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1874 ((-112) |#4| |#3|)) (-15 -3107 ((-745) |#4| |#3|))) +((-1981 (((-2 (|:| |particular| (-3 (-1218 (-398 |#4|)) "failed")) (|:| -4013 (-619 (-1218 (-398 |#4|))))) (-619 |#4|) (-619 |#3|)) 45))) +(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1981 ((-2 (|:| |particular| (-3 (-1218 (-398 |#4|)) "failed")) (|:| -4013 (-619 (-1218 (-398 |#4|))))) (-619 |#4|) (-619 |#3|)))) (-539) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -643)) +((-1981 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 (-398 *8)) "failed")) (|:| -4013 (-619 (-1218 (-398 *8)))))) (-5 *1 (-643 *5 *6 *7 *8))))) +(-10 -7 (-15 -1981 ((-2 (|:| |particular| (-3 (-1218 (-398 |#4|)) "failed")) (|:| -4013 (-619 (-1218 (-398 |#4|))))) (-619 |#4|) (-619 |#3|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-4104 (((-3 $ "failed")) NIL (|has| |#2| (-539)))) (-2890 ((|#2| $) NIL)) (-3047 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2173 (((-1218 (-663 |#2|))) NIL) (((-1218 (-663 |#2|)) (-1218 $)) NIL)) (-3237 (((-112) $) NIL)) (-3785 (((-1218 $)) 37)) (-2826 (((-112) $ (-745)) NIL)) (-2294 (($ |#2|) NIL)) (-3219 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| |#2| (-298)))) (-3578 (((-232 |#1| |#2|) $ (-547)) NIL)) (-2377 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (|has| |#2| (-539)))) (-4231 (((-3 $ "failed")) NIL (|has| |#2| (-539)))) (-3140 (((-663 |#2|)) NIL) (((-663 |#2|) (-1218 $)) NIL)) (-3573 ((|#2| $) NIL)) (-2966 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1218 $)) NIL)) (-3480 (((-3 $ "failed") $) NIL (|has| |#2| (-539)))) (-1346 (((-1131 (-921 |#2|))) NIL (|has| |#2| (-354)))) (-3946 (($ $ (-890)) NIL)) (-3335 ((|#2| $) NIL)) (-2101 (((-1131 |#2|) $) NIL (|has| |#2| (-539)))) (-2149 ((|#2|) NIL) ((|#2| (-1218 $)) NIL)) (-4250 (((-1131 |#2|) $) NIL)) (-1834 (((-112)) NIL)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) NIL)) (-2402 (($ (-1218 |#2|)) NIL) (($ (-1218 |#2|) (-1218 $)) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3107 (((-745) $) NIL (|has| |#2| (-539))) (((-890)) 38)) (-1793 ((|#2| $ (-547) (-547)) NIL)) (-1575 (((-112)) NIL)) (-2530 (($ $ (-890)) NIL)) (-2973 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL)) (-1318 (((-745) $) NIL (|has| |#2| (-539)))) (-4273 (((-619 (-232 |#1| |#2|)) $) NIL (|has| |#2| (-539)))) (-2126 (((-745) $) NIL)) (-2578 (((-112)) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-3015 ((|#2| $) NIL (|has| |#2| (-6 (-4330 "*"))))) (-2865 (((-547) $) NIL)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2769 (((-547) $) NIL)) (-3684 (((-547) $) NIL)) (-3933 (($ (-619 (-619 |#2|))) NIL)) (-1850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3051 (((-619 (-619 |#2|)) $) NIL)) (-2385 (((-112)) NIL)) (-1377 (((-112)) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-2580 (((-3 (-2 (|:| |particular| $) (|:| -4013 (-619 $))) "failed")) NIL (|has| |#2| (-539)))) (-1283 (((-3 $ "failed")) NIL (|has| |#2| (-539)))) (-2033 (((-663 |#2|)) NIL) (((-663 |#2|) (-1218 $)) NIL)) (-3690 ((|#2| $) NIL)) (-3058 (((-663 |#2|) $) NIL) (((-663 |#2|) $ (-1218 $)) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| |#2| (-539)))) (-2100 (((-1131 (-921 |#2|))) NIL (|has| |#2| (-354)))) (-3699 (($ $ (-890)) NIL)) (-3452 ((|#2| $) NIL)) (-2205 (((-1131 |#2|) $) NIL (|has| |#2| (-539)))) (-2275 ((|#2|) NIL) ((|#2| (-1218 $)) NIL)) (-1303 (((-1131 |#2|) $) NIL)) (-1924 (((-112)) NIL)) (-1917 (((-1118) $) NIL)) (-2486 (((-112)) NIL)) (-2662 (((-112)) NIL)) (-1475 (((-112)) NIL)) (-2793 (((-3 $ "failed") $) NIL (|has| |#2| (-354)))) (-3979 (((-1082) $) NIL)) (-1739 (((-112)) NIL)) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539)))) (-2462 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ (-547) (-547) |#2|) NIL) ((|#2| $ (-547) (-547)) 22) ((|#2| $ (-547)) NIL)) (-3443 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-1963 ((|#2| $) NIL)) (-2192 (($ (-619 |#2|)) NIL)) (-3137 (((-112) $) NIL)) (-2082 (((-232 |#1| |#2|) $) NIL)) (-3096 ((|#2| $) NIL (|has| |#2| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2265 (($ $) NIL)) (-2301 (((-663 |#2|) (-1218 $)) NIL) (((-1218 |#2|) $) NIL) (((-663 |#2|) (-1218 $) (-1218 $)) NIL) (((-1218 |#2|) $ (-1218 $)) 25)) (-2829 (($ (-1218 |#2|)) NIL) (((-1218 |#2|) $) NIL)) (-1701 (((-619 (-921 |#2|))) NIL) (((-619 (-921 |#2|)) (-1218 $)) NIL)) (-4121 (($ $ $) NIL)) (-4156 (((-112)) NIL)) (-3456 (((-232 |#1| |#2|) $ (-547)) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) NIL) (((-663 |#2|) $) NIL)) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) 36)) (-2310 (((-619 (-1218 |#2|))) NIL (|has| |#2| (-539)))) (-4225 (($ $ $ $) NIL)) (-3948 (((-112)) NIL)) (-3583 (($ (-663 |#2|) $) NIL)) (-2583 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2955 (((-112) $) NIL)) (-4007 (($ $ $) NIL)) (-4057 (((-112)) NIL)) (-2014 (((-112)) NIL)) (-1649 (((-112)) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#2| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-232 |#1| |#2|) $ (-232 |#1| |#2|)) NIL) (((-232 |#1| |#2|) (-232 |#1| |#2|) $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-644 |#1| |#2|) (-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-408 |#2|)) (-890) (-169)) (T -644)) +NIL +(-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-408 |#2|)) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-4129 (((-619 (-1140)) $) 10)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-645) (-13 (-1047) (-10 -8 (-15 -4129 ((-619 (-1140)) $))))) (T -645)) +((-4129 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-645))))) +(-13 (-1047) (-10 -8 (-15 -4129 ((-619 (-1140)) $)))) +((-3821 (((-112) $ $) NIL)) (-3292 (((-619 |#1|) $) NIL)) (-3836 (($ $) 52)) (-1896 (((-112) $) NIL)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-4160 (((-3 $ "failed") (-793 |#1|)) 23)) (-1306 (((-112) (-793 |#1|)) 15)) (-4263 (($ (-793 |#1|)) 24)) (-1857 (((-112) $ $) 30)) (-4202 (((-890) $) 37)) (-3826 (($ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2106 (((-619 $) (-793 |#1|)) 17)) (-3834 (((-832) $) 43) (($ |#1|) 34) (((-793 |#1|) $) 39) (((-651 |#1|) $) 44)) (-4051 (((-58 (-619 $)) (-619 |#1|) (-890)) 57)) (-3929 (((-619 $) (-619 |#1|) (-890)) 60)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 53)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 38))) +(((-646 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 -1896 ((-112) $)) (-15 -3826 ($ $)) (-15 -3836 ($ $)) (-15 -4202 ((-890) $)) (-15 -1857 ((-112) $ $)) (-15 -3834 ((-793 |#1|) $)) (-15 -3834 ((-651 |#1|) $)) (-15 -2106 ((-619 $) (-793 |#1|))) (-15 -1306 ((-112) (-793 |#1|))) (-15 -4263 ($ (-793 |#1|))) (-15 -4160 ((-3 $ "failed") (-793 |#1|))) (-15 -3292 ((-619 |#1|) $)) (-15 -4051 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -3929 ((-619 $) (-619 |#1|) (-890))))) (-821)) (T -646)) +((-1896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-1857 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4))) (-5 *1 (-646 *4)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) (-5 *1 (-646 *4)))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-4160 (*1 *1 *2) (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) (-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5))))) +(-13 (-821) (-1007 |#1|) (-10 -8 (-15 -1896 ((-112) $)) (-15 -3826 ($ $)) (-15 -3836 ($ $)) (-15 -4202 ((-890) $)) (-15 -1857 ((-112) $ $)) (-15 -3834 ((-793 |#1|) $)) (-15 -3834 ((-651 |#1|) $)) (-15 -2106 ((-619 $) (-793 |#1|))) (-15 -1306 ((-112) (-793 |#1|))) (-15 -4263 ($ (-793 |#1|))) (-15 -4160 ((-3 $ "failed") (-793 |#1|))) (-15 -3292 ((-619 |#1|) $)) (-15 -4051 ((-58 (-619 $)) (-619 |#1|) (-890))) (-15 -3929 ((-619 $) (-619 |#1|) (-890))))) +((-4152 ((|#2| $) 76)) (-1335 (($ $) 96)) (-2826 (((-112) $ (-745)) 26)) (-3645 (($ $) 85) (($ $ (-745)) 88)) (-3425 (((-112) $) 97)) (-1996 (((-619 $) $) 72)) (-1655 (((-112) $ $) 71)) (-4161 (((-112) $ (-745)) 24)) (-2528 (((-547) $) 46)) (-2638 (((-547) $) 45)) (-2024 (((-112) $ (-745)) 22)) (-3033 (((-112) $) 74)) (-3817 ((|#2| $) 89) (($ $ (-745)) 92)) (-2599 (($ $ $ (-547)) 62) (($ |#2| $ (-547)) 61)) (-1520 (((-619 (-547)) $) 44)) (-1641 (((-112) (-547) $) 42)) (-3634 ((|#2| $) NIL) (($ $ (-745)) 84)) (-3558 (($ $ (-547)) 100)) (-3541 (((-112) $) 99)) (-2462 (((-112) (-1 (-112) |#2|) $) 32)) (-1758 (((-619 |#2|) $) 33)) (-3329 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1185 (-547))) 58) ((|#2| $ (-547)) 40) ((|#2| $ (-547) |#2|) 41)) (-1887 (((-547) $ $) 70)) (-2151 (($ $ (-1185 (-547))) 57) (($ $ (-547)) 51)) (-2094 (((-112) $) 66)) (-4291 (($ $) 81)) (-3257 (((-745) $) 80)) (-3360 (($ $) 79)) (-3841 (($ (-619 |#2|)) 37)) (-4105 (($ $) 101)) (-3668 (((-619 $) $) 69)) (-1770 (((-112) $ $) 68)) (-2583 (((-112) (-1 (-112) |#2|) $) 31)) (-2371 (((-112) $ $) 18)) (-3763 (((-745) $) 29))) +(((-647 |#1| |#2|) (-10 -8 (-15 -4105 (|#1| |#1|)) (-15 -3558 (|#1| |#1| (-547))) (-15 -3425 ((-112) |#1|)) (-15 -3541 ((-112) |#1|)) (-15 -3329 (|#2| |#1| (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547))) (-15 -1758 ((-619 |#2|) |#1|)) (-15 -1641 ((-112) (-547) |#1|)) (-15 -1520 ((-619 (-547)) |#1|)) (-15 -2638 ((-547) |#1|)) (-15 -2528 ((-547) |#1|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -2151 (|#1| |#1| (-547))) (-15 -2151 (|#1| |#1| (-1185 (-547)))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -4291 (|#1| |#1|)) (-15 -3257 ((-745) |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -1335 (|#1| |#1|)) (-15 -3817 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "last")) (-15 -3817 (|#2| |#1|)) (-15 -3645 (|#1| |#1| (-745))) (-15 -3329 (|#1| |#1| "rest")) (-15 -3645 (|#1| |#1|)) (-15 -3634 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "first")) (-15 -3634 (|#2| |#1|)) (-15 -1655 ((-112) |#1| |#1|)) (-15 -1770 ((-112) |#1| |#1|)) (-15 -1887 ((-547) |#1| |#1|)) (-15 -2094 ((-112) |#1|)) (-15 -3329 (|#2| |#1| "value")) (-15 -4152 (|#2| |#1|)) (-15 -3033 ((-112) |#1|)) (-15 -1996 ((-619 |#1|) |#1|)) (-15 -3668 ((-619 |#1|) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745)))) (-648 |#2|) (-1172)) (T -647)) +NIL +(-10 -8 (-15 -4105 (|#1| |#1|)) (-15 -3558 (|#1| |#1| (-547))) (-15 -3425 ((-112) |#1|)) (-15 -3541 ((-112) |#1|)) (-15 -3329 (|#2| |#1| (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547))) (-15 -1758 ((-619 |#2|) |#1|)) (-15 -1641 ((-112) (-547) |#1|)) (-15 -1520 ((-619 (-547)) |#1|)) (-15 -2638 ((-547) |#1|)) (-15 -2528 ((-547) |#1|)) (-15 -3841 (|#1| (-619 |#2|))) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -2151 (|#1| |#1| (-547))) (-15 -2151 (|#1| |#1| (-1185 (-547)))) (-15 -2599 (|#1| |#2| |#1| (-547))) (-15 -2599 (|#1| |#1| |#1| (-547))) (-15 -4291 (|#1| |#1|)) (-15 -3257 ((-745) |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -1335 (|#1| |#1|)) (-15 -3817 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "last")) (-15 -3817 (|#2| |#1|)) (-15 -3645 (|#1| |#1| (-745))) (-15 -3329 (|#1| |#1| "rest")) (-15 -3645 (|#1| |#1|)) (-15 -3634 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "first")) (-15 -3634 (|#2| |#1|)) (-15 -1655 ((-112) |#1| |#1|)) (-15 -1770 ((-112) |#1| |#1|)) (-15 -1887 ((-547) |#1| |#1|)) (-15 -2094 ((-112) |#1|)) (-15 -3329 (|#2| |#1| "value")) (-15 -4152 (|#2| |#1|)) (-15 -3033 ((-112) |#1|)) (-15 -1996 ((-619 |#1|) |#1|)) (-15 -3668 ((-619 |#1|) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -2462 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2823 ((|#1| $) 65)) (-1335 (($ $) 67)) (-2290 (((-1223) $ (-547) (-547)) 97 (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) 52 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-3861 (($ $ $) 56 (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) 58 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4329))) (($ $ "rest" $) 55 (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 117 (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) 86 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 102)) (-2814 ((|#1| $) 66)) (-3219 (($) 7 T CONST)) (-3446 (($ $) 124)) (-3645 (($ $) 73) (($ $ (-745)) 71)) (-3664 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 103)) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1861 ((|#1| $ (-547) |#1|) 85 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 87)) (-3425 (((-112) $) 83)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-3331 (((-745) $) 123)) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3732 (($ (-745) |#1|) 108)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 95 (|has| (-547) (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 94 (|has| (-547) (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-3673 (($ $) 126)) (-3780 (((-112) $) 127)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3817 ((|#1| $) 70) (($ $ (-745)) 68)) (-2599 (($ $ $ (-547)) 116) (($ |#1| $ (-547)) 115)) (-1520 (((-619 (-547)) $) 92)) (-1641 (((-112) (-547) $) 91)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3567 ((|#1| $) 125)) (-3634 ((|#1| $) 76) (($ $ (-745)) 74)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2418 (($ $ |#1|) 96 (|has| $ (-6 -4329)))) (-3558 (($ $ (-547)) 122)) (-3541 (((-112) $) 84)) (-2759 (((-112) $) 128)) (-2855 (((-112) $) 129)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 90)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-547))) 112) ((|#1| $ (-547)) 89) ((|#1| $ (-547) |#1|) 88)) (-1887 (((-547) $ $) 44)) (-2151 (($ $ (-1185 (-547))) 114) (($ $ (-547)) 113)) (-2094 (((-112) $) 46)) (-4291 (($ $) 62)) (-4080 (($ $) 59 (|has| $ (-6 -4329)))) (-3257 (((-745) $) 63)) (-3360 (($ $) 64)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 98 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 107)) (-4187 (($ $ $) 61 (|has| $ (-6 -4329))) (($ $ |#1|) 60 (|has| $ (-6 -4329)))) (-1935 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-4105 (($ $) 121)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-648 |#1|) (-138) (-1172)) (T -648)) -((-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) -(-13 (-1109 |t#1|) (-10 -8 (-15 -3699 ($ (-1 (-112) |t#1|) $)) (-15 -1415 ($ (-1 (-112) |t#1|) $)) (-15 -3763 ((-112) $)) (-15 -3752 ((-112) $)) (-15 -3741 ((-112) $)) (-15 -3728 ($ $)) (-15 -3716 (|t#1| $)) (-15 -3703 ($ $)) (-15 -3690 ((-745) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1109 |#1|) . T) ((-1172) . T) ((-1206 |#1|) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3820 (($ (-745) (-745) (-745)) 33 (|has| |#1| (-1016)))) (-2028 (((-112) $ (-745)) NIL)) (-3796 ((|#1| $ (-745) (-745) (-745) |#1|) 27)) (-3030 (($) NIL T CONST)) (-3216 (($ $ $) 37 (|has| |#1| (-1016)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3773 (((-1218 (-745)) $) 9)) (-3784 (($ (-1135) $ $) 22)) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3807 (($ (-745)) 35 (|has| |#1| (-1016)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-745) (-745) (-745)) 25)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3754 (($ (-619 (-619 (-619 |#1|)))) 44)) (-3743 (($ (-927 (-927 (-927 |#1|)))) 15) (((-927 (-927 (-927 |#1|))) $) 12) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-649 |#1|) (-13 (-480 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -3820 ($ (-745) (-745) (-745))) (-15 -3807 ($ (-745))) (-15 -3216 ($ $ $))) |%noBranch|) (-15 -3754 ($ (-619 (-619 (-619 |#1|))))) (-15 -3171 (|#1| $ (-745) (-745) (-745))) (-15 -3796 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3743 ($ (-927 (-927 (-927 |#1|))))) (-15 -3743 ((-927 (-927 (-927 |#1|))) $)) (-15 -3784 ($ (-1135) $ $)) (-15 -3773 ((-1218 (-745)) $)))) (-1063)) (T -649)) -((-3820 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-619 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3171 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3796 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-3784 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-1218 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) -(-13 (-480 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -3820 ($ (-745) (-745) (-745))) (-15 -3807 ($ (-745))) (-15 -3216 ($ $ $))) |%noBranch|) (-15 -3754 ($ (-619 (-619 (-619 |#1|))))) (-15 -3171 (|#1| $ (-745) (-745) (-745))) (-15 -3796 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3743 ($ (-927 (-927 (-927 |#1|))))) (-15 -3743 ((-927 (-927 (-927 |#1|))) $)) (-15 -3784 ($ (-1135) $ $)) (-15 -3773 ((-1218 (-745)) $)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3218 (((-619 (-496)) $) 11)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 13)) (-2214 (((-112) $ $) NIL))) -(((-650) (-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -2286 ((-1140) $))))) (T -650)) -((-3218 (*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-650)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-650))))) -(-13 (-1047) (-10 -8 (-15 -3218 ((-619 (-496)) $)) (-15 -2286 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) 14)) (-3676 (($ $) 18)) (-3613 (((-112) $) 19)) (-2441 (((-3 |#1| "failed") $) 22)) (-2375 ((|#1| $) 20)) (-3465 (($ $) 36)) (-2425 (($ $) 24)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3281 (((-112) $ $) 42)) (-3198 (((-890) $) 38)) (-3663 (($ $) 17)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 ((|#1| $) 35)) (-3743 (((-832) $) 31) (($ |#1|) 23) (((-793 |#1|) $) 27)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 12)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-651 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3453 (|#1| $)) (-15 -3663 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -2425 ($ $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3676 ($ $)) (-15 -3065 ((-619 |#1|) $)))) (-821)) (T -651)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3453 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3676 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821))))) -(-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3743 ((-793 |#1|) $)) (-15 -3453 (|#1| $)) (-15 -3663 ($ $)) (-15 -3198 ((-890) $)) (-15 -3281 ((-112) $ $)) (-15 -2425 ($ $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3676 ($ $)) (-15 -3065 ((-619 |#1|) $)))) -((-3874 ((|#1| (-1 |#1| (-745) |#1|) (-745) |#1|) 11)) (-2392 ((|#1| (-1 |#1| |#1|) (-745) |#1|) 9))) -(((-652 |#1|) (-10 -7 (-15 -2392 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -3874 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) (-1063)) (T -652)) -((-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2)))) (-2392 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2))))) -(-10 -7 (-15 -2392 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -3874 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) -((-3359 ((|#2| |#1| |#2|) 9)) (-3344 ((|#1| |#1| |#2|) 8))) -(((-653 |#1| |#2|) (-10 -7 (-15 -3344 (|#1| |#1| |#2|)) (-15 -3359 (|#2| |#1| |#2|))) (-1063) (-1063)) (T -653)) -((-3359 (*1 *2 *3 *2) (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3344 (*1 *2 *2 *3) (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) -(-10 -7 (-15 -3344 (|#1| |#1| |#2|)) (-15 -3359 (|#2| |#1| |#2|))) -((-3586 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-654 |#1| |#2| |#3|) (-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1063) (-1063) (-1063)) (T -654)) -((-3586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2))))) -(-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3730 (((-112) $ $) NIL)) (-1949 (((-1171) $) 20)) (-3041 (((-619 (-1171)) $) 18)) (-3834 (($ (-619 (-1171)) (-1171)) 13)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (((-1171) $) 21) (($ (-1080)) 10)) (-2214 (((-112) $ $) NIL))) -(((-655) (-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-1080))) (-15 -3834 ($ (-619 (-1171)) (-1171))) (-15 -3041 ((-619 (-1171)) $)) (-15 -1949 ((-1171) $))))) (T -655)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655)))) (-3834 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1171))) (-5 *3 (-1171)) (-5 *1 (-655)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-655)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-655))))) -(-13 (-1047) (-592 (-1171)) (-10 -8 (-15 -3743 ($ (-1080))) (-15 -3834 ($ (-619 (-1171)) (-1171))) (-15 -3041 ((-619 (-1171)) $)) (-15 -1949 ((-1171) $)))) -((-3874 (((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)) 23)) (-3848 (((-1 |#1|) |#1|) 8)) (-3514 ((|#1| |#1|) 16)) (-3861 (((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-548)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3743 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-745)) 20))) -(((-656 |#1|) (-10 -7 (-15 -3848 ((-1 |#1|) |#1|)) (-15 -3743 ((-1 |#1|) |#1|)) (-15 -3861 (|#1| (-1 |#1| |#1|))) (-15 -3861 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-548))) (-15 -3514 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -3874 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) (-1063)) (T -656)) -((-3874 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063)) (-5 *1 (-656 *4)))) (-3514 (*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-548)) (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))) -(-10 -7 (-15 -3848 ((-1 |#1|) |#1|)) (-15 -3743 ((-1 |#1|) |#1|)) (-15 -3861 (|#1| (-1 |#1| |#1|))) (-15 -3861 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-548))) (-15 -3514 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -3874 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) -((-3909 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3896 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2325 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3886 (((-1 |#2| |#1|) |#2|) 11))) -(((-657 |#1| |#2|) (-10 -7 (-15 -3886 ((-1 |#2| |#1|) |#2|)) (-15 -3896 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2325 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3909 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1063) (-1063)) (T -657)) -((-3909 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)) (-4 *4 (-1063)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5)))) (-3886 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1063))))) -(-10 -7 (-15 -3886 ((-1 |#2| |#1|) |#2|)) (-15 -3896 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2325 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3909 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3973 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3919 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3931 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3946 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3961 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3931 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3946 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3961 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3973 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1063) (-1063) (-1063)) (T -658)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5)) (-5 *1 (-658 *5 *6 *7)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6))))) -(-10 -7 (-15 -3919 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3931 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3946 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3961 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3973 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2061 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2540 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-659 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2540 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2061 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1016) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|) (-1016) (-365 |#5|) (-365 |#5|) (-661 |#5| |#6| |#7|)) (T -659)) -((-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) (-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))) -(-10 -7 (-15 -2540 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2540 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2061 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3320 (($ (-745) (-745)) 33)) (-4025 (($ $ $) 56)) (-3508 (($ |#3|) 52) (($ $) 53)) (-3785 (((-112) $) 28)) (-4015 (($ $ (-548) (-548)) 58)) (-4004 (($ $ (-548) (-548)) 59)) (-3992 (($ $ (-548) (-548) (-548) (-548)) 63)) (-4048 (($ $) 54)) (-3808 (((-112) $) 14)) (-3982 (($ $ (-548) (-548) $) 64)) (-2089 ((|#2| $ (-548) (-548) |#2|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) 62)) (-2114 (($ (-745) |#2|) 39)) (-3817 (($ (-619 (-619 |#2|))) 37)) (-2401 (((-619 (-619 |#2|)) $) 57)) (-4036 (($ $ $) 55)) (-1900 (((-3 $ "failed") $ |#2|) 91)) (-3171 ((|#2| $ (-548) (-548)) NIL) ((|#2| $ (-548) (-548) |#2|) NIL) (($ $ (-619 (-548)) (-619 (-548))) 61)) (-2102 (($ (-619 |#2|)) 40) (($ (-619 $)) 42)) (-3797 (((-112) $) 24)) (-3743 (($ |#4|) 47) (((-832) $) NIL)) (-3774 (((-112) $) 30)) (-2309 (($ $ |#2|) 93)) (-2299 (($ $ $) 68) (($ $) 71)) (-2290 (($ $ $) 66)) (** (($ $ (-745)) 80) (($ $ (-548)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-548) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-660 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#2|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| (-548) (-548) |#1|)) (-15 -3992 (|#1| |#1| (-548) (-548) (-548) (-548))) (-15 -4004 (|#1| |#1| (-548) (-548))) (-15 -4015 (|#1| |#1| (-548) (-548))) (-15 -2089 (|#1| |#1| (-619 (-548)) (-619 (-548)) |#1|)) (-15 -3171 (|#1| |#1| (-619 (-548)) (-619 (-548)))) (-15 -2401 ((-619 (-619 |#2|)) |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -3508 (|#1| |#1|)) (-15 -3508 (|#1| |#3|)) (-15 -3743 (|#1| |#4|)) (-15 -2102 (|#1| (-619 |#1|))) (-15 -2102 (|#1| (-619 |#2|))) (-15 -2114 (|#1| (-745) |#2|)) (-15 -3817 (|#1| (-619 (-619 |#2|)))) (-15 -3320 (|#1| (-745) (-745))) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548)))) (-661 |#2| |#3| |#4|) (-1016) (-365 |#2|) (-365 |#2|)) (T -660)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -2309 (|#1| |#1| |#2|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| (-548) (-548) |#1|)) (-15 -3992 (|#1| |#1| (-548) (-548) (-548) (-548))) (-15 -4004 (|#1| |#1| (-548) (-548))) (-15 -4015 (|#1| |#1| (-548) (-548))) (-15 -2089 (|#1| |#1| (-619 (-548)) (-619 (-548)) |#1|)) (-15 -3171 (|#1| |#1| (-619 (-548)) (-619 (-548)))) (-15 -2401 ((-619 (-619 |#2|)) |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -3508 (|#1| |#1|)) (-15 -3508 (|#1| |#3|)) (-15 -3743 (|#1| |#4|)) (-15 -2102 (|#1| (-619 |#1|))) (-15 -2102 (|#1| (-619 |#2|))) (-15 -2114 (|#1| (-745) |#2|)) (-15 -3817 (|#1| (-619 (-619 |#2|)))) (-15 -3320 (|#1| (-745) (-745))) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) (-548)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) 97)) (-4025 (($ $ $) 87)) (-3508 (($ |#2|) 91) (($ $) 90)) (-3785 (((-112) $) 99)) (-4015 (($ $ (-548) (-548)) 83)) (-4004 (($ $ (-548) (-548)) 82)) (-3992 (($ $ (-548) (-548) (-548) (-548)) 81)) (-4048 (($ $) 89)) (-3808 (((-112) $) 101)) (-2028 (((-112) $ (-745)) 8)) (-3982 (($ $ (-548) (-548) $) 80)) (-2089 ((|#1| $ (-548) (-548) |#1|) 44) (($ $ (-619 (-548)) (-619 (-548)) $) 84)) (-4141 (($ $ (-548) |#2|) 42)) (-4131 (($ $ (-548) |#3|) 41)) (-2114 (($ (-745) |#1|) 95)) (-3030 (($) 7 T CONST)) (-3691 (($ $) 67 (|has| |#1| (-299)))) (-3717 ((|#2| $ (-548)) 46)) (-2103 (((-745) $) 66 (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) 43)) (-3899 ((|#1| $ (-548) (-548)) 48)) (-1934 (((-619 |#1|) $) 30)) (-3681 (((-745) $) 65 (|has| |#1| (-540)))) (-3669 (((-619 |#3|) $) 64 (|has| |#1| (-540)))) (-4205 (((-745) $) 51)) (-3550 (($ (-745) (-745) |#1|) 57)) (-4216 (((-745) $) 50)) (-4282 (((-112) $ (-745)) 9)) (-2057 ((|#1| $) 62 (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) 55)) (-3742 (((-548) $) 53)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 54)) (-3729 (((-548) $) 52)) (-3817 (($ (-619 (-619 |#1|))) 96)) (-3960 (($ (-1 |#1| |#1|) $) 34)) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2401 (((-619 (-619 |#1|)) $) 86)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) 61 (|has| |#1| (-355)))) (-4036 (($ $ $) 88)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) 56)) (-1900 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) (-548)) 49) ((|#1| $ (-548) (-548) |#1|) 47) (($ $ (-619 (-548)) (-619 (-548))) 85)) (-2102 (($ (-619 |#1|)) 94) (($ (-619 $)) 93)) (-3797 (((-112) $) 100)) (-2068 ((|#1| $) 63 (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3704 ((|#3| $ (-548)) 45)) (-3743 (($ |#3|) 92) (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-3774 (((-112) $) 98)) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) 68 (|has| |#1| (-355)))) (-2299 (($ $ $) 78) (($ $) 77)) (-2290 (($ $ $) 79)) (** (($ $ (-745)) 70) (($ $ (-548)) 60 (|has| |#1| (-355)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-548) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) -(((-661 |#1| |#2| |#3|) (-138) (-1016) (-365 |t#1|) (-365 |t#1|)) (T -661)) -((-3808 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3320 (*1 *1 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2114 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (-3508 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (-3508 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4036 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-619 (-619 *3))))) (-3171 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2089 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4015 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4004 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3992 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3982 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-540)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-355)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-299)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-619 *5)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2369 (*1 *1 *1) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-355)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-355))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3808 ((-112) $)) (-15 -3797 ((-112) $)) (-15 -3785 ((-112) $)) (-15 -3774 ((-112) $)) (-15 -3320 ($ (-745) (-745))) (-15 -3817 ($ (-619 (-619 |t#1|)))) (-15 -2114 ($ (-745) |t#1|)) (-15 -2102 ($ (-619 |t#1|))) (-15 -2102 ($ (-619 $))) (-15 -3743 ($ |t#3|)) (-15 -3508 ($ |t#2|)) (-15 -3508 ($ $)) (-15 -4048 ($ $)) (-15 -4036 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2401 ((-619 (-619 |t#1|)) $)) (-15 -3171 ($ $ (-619 (-548)) (-619 (-548)))) (-15 -2089 ($ $ (-619 (-548)) (-619 (-548)) $)) (-15 -4015 ($ $ (-548) (-548))) (-15 -4004 ($ $ (-548) (-548))) (-15 -3992 ($ $ (-548) (-548) (-548) (-548))) (-15 -3982 ($ $ (-548) (-548) $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2299 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-548) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-745))) (IF (|has| |t#1| (-540)) (-15 -1900 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-355)) (-15 -2309 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-299)) (-15 -3691 ($ $)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-15 -2103 ((-745) $)) (-15 -3681 ((-745) $)) (-15 -3669 ((-619 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4329 "*"))) (PROGN (-15 -2068 (|t#1| $)) (-15 -2057 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-15 -2369 ((-3 $ "failed") $)) (-15 ** ($ $ (-548)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-56 |#1| |#2| |#3|) . T) ((-1172) . T)) -((-3691 ((|#4| |#4|) 72 (|has| |#1| (-299)))) (-2103 (((-745) |#4|) 99 (|has| |#1| (-540)))) (-3681 (((-745) |#4|) 76 (|has| |#1| (-540)))) (-3669 (((-619 |#3|) |#4|) 83 (|has| |#1| (-540)))) (-3124 (((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|) 111 (|has| |#1| (-299)))) (-2057 ((|#1| |#4|) 35)) (-2807 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-540)))) (-2369 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-355)))) (-2798 ((|#4| |#4|) 68 (|has| |#1| (-540)))) (-4068 ((|#4| |#4| |#1| (-548) (-548)) 43)) (-4058 ((|#4| |#4| (-548) (-548)) 38)) (-4079 ((|#4| |#4| |#1| (-548) (-548)) 48)) (-2068 ((|#1| |#4|) 78)) (-1773 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-540))))) -(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2068 (|#1| |#4|)) (-15 -2057 (|#1| |#4|)) (-15 -4058 (|#4| |#4| (-548) (-548))) (-15 -4068 (|#4| |#4| |#1| (-548) (-548))) (-15 -4079 (|#4| |#4| |#1| (-548) (-548))) (IF (|has| |#1| (-540)) (PROGN (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (-15 -3669 ((-619 |#3|) |#4|)) (-15 -2798 (|#4| |#4|)) (-15 -2807 ((-3 |#4| "failed") |#4|)) (-15 -1773 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-299)) (PROGN (-15 -3691 (|#4| |#4|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -662)) -((-2369 (*1 *2 *2) (|partial| -12 (-4 *3 (-355)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3124 (*1 *2 *3 *3) (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1773 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2807 (*1 *2 *2) (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-3669 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2103 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-4079 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-4068 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-4058 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-548)) (-4 *4 (-169)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *1 (-662 *4 *5 *6 *2)) (-4 *2 (-661 *4 *5 *6)))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5))))) -(-10 -7 (-15 -2068 (|#1| |#4|)) (-15 -2057 (|#1| |#4|)) (-15 -4058 (|#4| |#4| (-548) (-548))) (-15 -4068 (|#4| |#4| |#1| (-548) (-548))) (-15 -4079 (|#4| |#4| |#1| (-548) (-548))) (IF (|has| |#1| (-540)) (PROGN (-15 -2103 ((-745) |#4|)) (-15 -3681 ((-745) |#4|)) (-15 -3669 ((-619 |#3|) |#4|)) (-15 -2798 (|#4| |#4|)) (-15 -2807 ((-3 |#4| "failed") |#4|)) (-15 -1773 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-299)) (PROGN (-15 -3691 (|#4| |#4|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745) (-745)) 47)) (-4025 (($ $ $) NIL)) (-3508 (($ (-1218 |#1|)) NIL) (($ $) NIL)) (-3785 (((-112) $) NIL)) (-4015 (($ $ (-548) (-548)) 12)) (-4004 (($ $ (-548) (-548)) NIL)) (-3992 (($ $ (-548) (-548) (-548) (-548)) NIL)) (-4048 (($ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3982 (($ $ (-548) (-548) $) NIL)) (-2089 ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548)) $) NIL)) (-4141 (($ $ (-548) (-1218 |#1|)) NIL)) (-4131 (($ $ (-548) (-1218 |#1|)) NIL)) (-2114 (($ (-745) |#1|) 22)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 31 (|has| |#1| (-299)))) (-3717 (((-1218 |#1|) $ (-548)) NIL)) (-2103 (((-745) $) 33 (|has| |#1| (-540)))) (-3971 ((|#1| $ (-548) (-548) |#1|) 51)) (-3899 ((|#1| $ (-548) (-548)) NIL)) (-1934 (((-619 |#1|) $) NIL)) (-3681 (((-745) $) 35 (|has| |#1| (-540)))) (-3669 (((-619 (-1218 |#1|)) $) 38 (|has| |#1| (-540)))) (-4205 (((-745) $) 20)) (-3550 (($ (-745) (-745) |#1|) 16)) (-4216 (((-745) $) 21)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#1| $) 29 (|has| |#1| (-6 (-4329 "*"))))) (-3764 (((-548) $) 9)) (-3742 (((-548) $) 10)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3753 (((-548) $) 11)) (-3729 (((-548) $) 48)) (-3817 (($ (-619 (-619 |#1|))) NIL)) (-3960 (($ (-1 |#1| |#1|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2401 (((-619 (-619 |#1|)) $) 60)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2369 (((-3 $ "failed") $) 45 (|has| |#1| (-355)))) (-4036 (($ $ $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4159 (($ $ |#1|) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) (-548)) NIL) ((|#1| $ (-548) (-548) |#1|) NIL) (($ $ (-619 (-548)) (-619 (-548))) NIL)) (-2102 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL) (($ (-1218 |#1|)) 52)) (-3797 (((-112) $) NIL)) (-2068 ((|#1| $) 27 (|has| |#1| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 64 (|has| |#1| (-593 (-524))))) (-3704 (((-1218 |#1|) $ (-548)) NIL)) (-3743 (($ (-1218 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $ $) NIL) (($ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) 23) (($ $ (-548)) 46 (|has| |#1| (-355)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-548) $) NIL) (((-1218 |#1|) $ (-1218 |#1|)) NIL) (((-1218 |#1|) (-1218 |#1|) $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-663 |#1|) (-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 -2102 ($ (-1218 |#1|))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 $ "failed") $)) |%noBranch|))) (-1016)) (T -663)) -((-2369 (*1 *1 *1) (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-355)) (-4 *2 (-1016)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3))))) -(-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 -2102 ($ (-1218 |#1|))) (IF (|has| |#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |#1| (-355)) (-15 -2369 ((-3 $ "failed") $)) |%noBranch|))) -((-2861 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 25)) (-2852 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 21)) (-2872 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745)) 26)) (-2824 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 14)) (-2833 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 18) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 16)) (-2843 (((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|)) 20)) (-2816 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 12)) (** (((-663 |#1|) (-663 |#1|) (-745)) 30))) -(((-664 |#1|) (-10 -7 (-15 -2816 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2824 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2843 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -2852 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2861 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2872 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) (-1016)) (T -664)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-2872 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-2861 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2852 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2843 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2833 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2833 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2824 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) -(-10 -7 (-15 -2816 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2824 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2833 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2843 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -2852 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2861 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -2872 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) -((-2085 (($) 8 T CONST)) (-3743 (((-832) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3095 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2085)) 16)) (-2148 ((|#1| $) 11))) -(((-665 |#1|) (-13 (-1213) (-592 (-832)) (-10 -8 (-15 -3095 ((-112) $ (|[\|\|]| |#1|))) (-15 -3095 ((-112) $ (|[\|\|]| -2085))) (-15 -3743 ($ |#1|)) (-15 -3743 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -2085 ($) -2325))) (-592 (-832))) (T -665)) -((-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-592 (-832))) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2085)) (-5 *2 (-112)) (-5 *1 (-665 *4)) (-4 *4 (-592 (-832))))) (-3743 (*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) (-3743 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) (-2148 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) (-2085 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832)))))) -(-13 (-1213) (-592 (-832)) (-10 -8 (-15 -3095 ((-112) $ (|[\|\|]| |#1|))) (-15 -3095 ((-112) $ (|[\|\|]| -2085))) (-15 -3743 ($ |#1|)) (-15 -3743 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -2085 ($) -2325))) -((-2904 ((|#2| |#2| |#4|) 25)) (-2937 (((-663 |#2|) |#3| |#4|) 31)) (-2915 (((-663 |#2|) |#2| |#4|) 30)) (-2882 (((-1218 |#2|) |#2| |#4|) 16)) (-2892 ((|#2| |#3| |#4|) 24)) (-2948 (((-663 |#2|) |#3| |#4| (-745) (-745)) 38)) (-2926 (((-663 |#2|) |#2| |#4| (-745)) 37))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2882 ((-1218 |#2|) |#2| |#4|)) (-15 -2892 (|#2| |#3| |#4|)) (-15 -2904 (|#2| |#2| |#4|)) (-15 -2915 ((-663 |#2|) |#2| |#4|)) (-15 -2926 ((-663 |#2|) |#2| |#4| (-745))) (-15 -2937 ((-663 |#2|) |#3| |#4|)) (-15 -2948 ((-663 |#2|) |#3| |#4| (-745) (-745)))) (-1063) (-869 |#1|) (-365 |#2|) (-13 (-365 |#1|) (-10 -7 (-6 -4327)))) (T -666)) -((-2948 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-365 *7)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327)))))) (-2937 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-365 *6)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327)))))) (-2926 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-365 *3)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327)))))) (-2915 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327)))))) (-2904 (*1 *2 *2 *3) (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4327)))))) (-2892 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327)))))) (-2882 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1218 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) -(-10 -7 (-15 -2882 ((-1218 |#2|) |#2| |#4|)) (-15 -2892 (|#2| |#3| |#4|)) (-15 -2904 (|#2| |#2| |#4|)) (-15 -2915 ((-663 |#2|) |#2| |#4|)) (-15 -2926 ((-663 |#2|) |#2| |#4| (-745))) (-15 -2937 ((-663 |#2|) |#3| |#4|)) (-15 -2948 ((-663 |#2|) |#3| |#4| (-745) (-745)))) -((-1396 (((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)) 20)) (-1374 ((|#1| (-663 |#2|)) 9)) (-1386 (((-663 |#1|) (-663 |#2|)) 18))) -(((-667 |#1| |#2|) (-10 -7 (-15 -1374 (|#1| (-663 |#2|))) (-15 -1386 ((-663 |#1|) (-663 |#2|))) (-15 -1396 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) (-540) (-961 |#1|)) (T -667)) -((-1396 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) (-5 *1 (-667 *4 *5)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-667 *2 *4))))) -(-10 -7 (-15 -1374 (|#1| (-663 |#2|))) (-15 -1386 ((-663 |#1|) (-663 |#2|))) (-15 -1396 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2350 (((-663 (-673))) NIL) (((-663 (-673)) (-1218 $)) NIL)) (-2707 (((-673) $) NIL)) (-2074 (($ $) NIL (|has| (-673) (-1157)))) (-1940 (($ $) NIL (|has| (-673) (-1157)))) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-673) (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-1688 (($ $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-2634 (((-410 $) $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-1926 (($ $) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-4087 (((-112) $ $) NIL (|has| (-673) (-299)))) (-3423 (((-745)) NIL (|has| (-673) (-360)))) (-2054 (($ $) NIL (|has| (-673) (-1157)))) (-1918 (($ $) NIL (|has| (-673) (-1157)))) (-2098 (($ $) NIL (|has| (-673) (-1157)))) (-1963 (($ $) NIL (|has| (-673) (-1157)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-673) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-673) (-1007 (-399 (-548)))))) (-2375 (((-548) $) NIL) (((-673) $) NIL) (((-399 (-548)) $) NIL (|has| (-673) (-1007 (-399 (-548)))))) (-2455 (($ (-1218 (-673))) NIL) (($ (-1218 (-673)) (-1218 $)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-673) (-341)))) (-1945 (($ $ $) NIL (|has| (-673) (-299)))) (-2341 (((-663 (-673)) $) NIL) (((-663 (-673)) $ (-1218 $)) NIL)) (-1608 (((-663 (-673)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-673))) (|:| |vec| (-1218 (-673)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-673) (-615 (-548)))) (((-663 (-548)) (-663 $)) NIL (|has| (-673) (-615 (-548))))) (-2061 (((-3 $ "failed") (-399 (-1131 (-673)))) NIL (|has| (-673) (-355))) (($ (-1131 (-673))) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1937 (((-673) $) 29)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| (-673) (-533)))) (-4172 (((-112) $) NIL (|has| (-673) (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| (-673) (-533)))) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| (-673) (-360)))) (-1922 (($ $ $) NIL (|has| (-673) (-299)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| (-673) (-299)))) (-2771 (($) NIL (|has| (-673) (-341)))) (-3727 (((-112) $) NIL (|has| (-673) (-341)))) (-2208 (($ $) NIL (|has| (-673) (-341))) (($ $ (-745)) NIL (|has| (-673) (-341)))) (-1271 (((-112) $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-4273 (((-2 (|:| |r| (-673)) (|:| |phi| (-673))) $) NIL (-12 (|has| (-673) (-1025)) (|has| (-673) (-1157))))) (-1365 (($) NIL (|has| (-673) (-1157)))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-673) (-855 (-371)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-673) (-855 (-548))))) (-1672 (((-807 (-890)) $) NIL (|has| (-673) (-341))) (((-890) $) NIL (|has| (-673) (-341)))) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157))))) (-3910 (((-673) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-673) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-299)))) (-2898 (((-1131 (-673)) $) NIL (|has| (-673) (-355)))) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2540 (($ (-1 (-673) (-673)) $) NIL)) (-2855 (((-890) $) NIL (|has| (-673) (-360)))) (-3496 (($ $) NIL (|has| (-673) (-1157)))) (-2050 (((-1131 (-673)) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| (-673) (-299))) (($ $ $) NIL (|has| (-673) (-299)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| (-673) (-355)))) (-3410 (($) NIL (|has| (-673) (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| (-673) (-360)))) (-4283 (($) NIL)) (-1948 (((-673) $) 31)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-673) (-299)))) (-3587 (($ (-619 $)) NIL (|has| (-673) (-299))) (($ $ $) NIL (|has| (-673) (-299)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-673) (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-299)) (|has| (-673) (-878))))) (-1915 (((-410 $) $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| (-673) (-878))) (|has| (-673) (-355))))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-673) (-299))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| (-673) (-299)))) (-1900 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-673)) NIL (|has| (-673) (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-299)))) (-2458 (($ $) NIL (|has| (-673) (-1157)))) (-2460 (($ $ (-1135) (-673)) NIL (|has| (-673) (-504 (-1135) (-673)))) (($ $ (-619 (-1135)) (-619 (-673))) NIL (|has| (-673) (-504 (-1135) (-673)))) (($ $ (-619 (-286 (-673)))) NIL (|has| (-673) (-301 (-673)))) (($ $ (-286 (-673))) NIL (|has| (-673) (-301 (-673)))) (($ $ (-673) (-673)) NIL (|has| (-673) (-301 (-673)))) (($ $ (-619 (-673)) (-619 (-673))) NIL (|has| (-673) (-301 (-673))))) (-4077 (((-745) $) NIL (|has| (-673) (-299)))) (-3171 (($ $ (-673)) NIL (|has| (-673) (-278 (-673) (-673))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| (-673) (-299)))) (-1566 (((-673)) NIL) (((-673) (-1218 $)) NIL)) (-2217 (((-3 (-745) "failed") $ $) NIL (|has| (-673) (-341))) (((-745) $) NIL (|has| (-673) (-341)))) (-4050 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-745)) NIL (|has| (-673) (-226))) (($ $) NIL (|has| (-673) (-226)))) (-2257 (((-663 (-673)) (-1218 $) (-1 (-673) (-673))) NIL (|has| (-673) (-355)))) (-3287 (((-1131 (-673))) NIL)) (-2110 (($ $) NIL (|has| (-673) (-1157)))) (-1973 (($ $) NIL (|has| (-673) (-1157)))) (-3655 (($) NIL (|has| (-673) (-341)))) (-2086 (($ $) NIL (|has| (-673) (-1157)))) (-1952 (($ $) NIL (|has| (-673) (-1157)))) (-2065 (($ $) NIL (|has| (-673) (-1157)))) (-1929 (($ $) NIL (|has| (-673) (-1157)))) (-2447 (((-663 (-673)) (-1218 $)) NIL) (((-1218 (-673)) $) NIL) (((-663 (-673)) (-1218 $) (-1218 $)) NIL) (((-1218 (-673)) $ (-1218 $)) NIL)) (-2591 (((-524) $) NIL (|has| (-673) (-593 (-524)))) (((-166 (-218)) $) NIL (|has| (-673) (-991))) (((-166 (-371)) $) NIL (|has| (-673) (-991))) (((-861 (-371)) $) NIL (|has| (-673) (-593 (-861 (-371))))) (((-861 (-548)) $) NIL (|has| (-673) (-593 (-861 (-548))))) (($ (-1131 (-673))) NIL) (((-1131 (-673)) $) NIL) (($ (-1218 (-673))) NIL) (((-1218 (-673)) $) NIL)) (-2128 (($ $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-341))))) (-3247 (($ (-673) (-673)) 12)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-548)) NIL) (($ (-673)) NIL) (($ (-166 (-371))) 13) (($ (-166 (-548))) 19) (($ (-166 (-673))) 28) (($ (-166 (-675))) 25) (((-166 (-371)) $) 33) (($ (-399 (-548))) NIL (-1524 (|has| (-673) (-1007 (-399 (-548)))) (|has| (-673) (-355))))) (-4017 (($ $) NIL (|has| (-673) (-341))) (((-3 $ "failed") $) NIL (-1524 (-12 (|has| (-673) (-299)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-143))))) (-3780 (((-1131 (-673)) $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $)) NIL)) (-2145 (($ $) NIL (|has| (-673) (-1157)))) (-2006 (($ $) NIL (|has| (-673) (-1157)))) (-3290 (((-112) $ $) NIL)) (-2122 (($ $) NIL (|has| (-673) (-1157)))) (-1986 (($ $) NIL (|has| (-673) (-1157)))) (-2170 (($ $) NIL (|has| (-673) (-1157)))) (-2029 (($ $) NIL (|has| (-673) (-1157)))) (-4257 (((-673) $) NIL (|has| (-673) (-1157)))) (-4026 (($ $) NIL (|has| (-673) (-1157)))) (-2040 (($ $) NIL (|has| (-673) (-1157)))) (-2158 (($ $) NIL (|has| (-673) (-1157)))) (-2017 (($ $) NIL (|has| (-673) (-1157)))) (-2132 (($ $) NIL (|has| (-673) (-1157)))) (-1996 (($ $) NIL (|has| (-673) (-1157)))) (-1446 (($ $) NIL (|has| (-673) (-1025)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-745)) NIL (|has| (-673) (-226))) (($ $) NIL (|has| (-673) (-226)))) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL (|has| (-673) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| (-673) (-1157))) (($ $ (-399 (-548))) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157)))) (($ $ (-548)) NIL (|has| (-673) (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ (-673) $) NIL) (($ $ (-673)) NIL) (($ (-399 (-548)) $) NIL (|has| (-673) (-355))) (($ $ (-399 (-548))) NIL (|has| (-673) (-355))))) -(((-668) (-13 (-379) (-163 (-673)) (-10 -8 (-15 -3743 ($ (-166 (-371)))) (-15 -3743 ($ (-166 (-548)))) (-15 -3743 ($ (-166 (-673)))) (-15 -3743 ($ (-166 (-675)))) (-15 -3743 ((-166 (-371)) $))))) (T -668)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-548))) (-5 *1 (-668)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668))))) -(-13 (-379) (-163 (-673)) (-10 -8 (-15 -3743 ($ (-166 (-371)))) (-15 -3743 ($ (-166 (-548)))) (-15 -3743 ($ (-166 (-673)))) (-15 -3743 ($ (-166 (-675)))) (-15 -3743 ((-166 (-371)) $)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 62)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 61)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-1476 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-3558 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) (-4105 (*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(-13 (-1109 |t#1|) (-10 -8 (-15 -3801 ($ (-1 (-112) |t#1|) $)) (-15 -1476 ($ (-1 (-112) |t#1|) $)) (-15 -2855 ((-112) $)) (-15 -2759 ((-112) $)) (-15 -3780 ((-112) $)) (-15 -3673 ($ $)) (-15 -3567 (|t#1| $)) (-15 -3446 ($ $)) (-15 -3331 ((-745) $)) (-15 -3558 ($ $ (-547))) (-15 -4105 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1109 |#1|) . T) ((-1172) . T) ((-1206 |#1|) . T)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2158 (($ (-745) (-745) (-745)) 33 (|has| |#1| (-1016)))) (-2826 (((-112) $ (-745)) NIL)) (-3126 ((|#1| $ (-745) (-745) (-745) |#1|) 27)) (-3219 (($) NIL T CONST)) (-3428 (($ $ $) 37 (|has| |#1| (-1016)))) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2946 (((-1218 (-745)) $) 9)) (-3035 (($ (-1135) $ $) 22)) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3222 (($ (-745)) 35 (|has| |#1| (-1016)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-745) (-745) (-745)) 25)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3841 (($ (-619 (-619 (-619 |#1|)))) 44)) (-3834 (($ (-927 (-927 (-927 |#1|)))) 15) (((-927 (-927 (-927 |#1|))) $) 12) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-649 |#1|) (-13 (-479 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -2158 ($ (-745) (-745) (-745))) (-15 -3222 ($ (-745))) (-15 -3428 ($ $ $))) |%noBranch|) (-15 -3841 ($ (-619 (-619 (-619 |#1|))))) (-15 -3329 (|#1| $ (-745) (-745) (-745))) (-15 -3126 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3834 ($ (-927 (-927 (-927 |#1|))))) (-15 -3834 ((-927 (-927 (-927 |#1|))) $)) (-15 -3035 ($ (-1135) $ $)) (-15 -2946 ((-1218 (-745)) $)))) (-1063)) (T -649)) +((-2158 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) (-4 *3 (-1063)))) (-3428 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-619 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3329 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3126 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-4 *3 (-1063)) (-5 *1 (-649 *3)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-927 (-927 (-927 *3)))) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-3035 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-649 *3)) (-4 *3 (-1063)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1218 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) +(-13 (-479 |#1|) (-10 -8 (IF (|has| |#1| (-1016)) (PROGN (-15 -2158 ($ (-745) (-745) (-745))) (-15 -3222 ($ (-745))) (-15 -3428 ($ $ $))) |%noBranch|) (-15 -3841 ($ (-619 (-619 (-619 |#1|))))) (-15 -3329 (|#1| $ (-745) (-745) (-745))) (-15 -3126 (|#1| $ (-745) (-745) (-745) |#1|)) (-15 -3834 ($ (-927 (-927 (-927 |#1|))))) (-15 -3834 ((-927 (-927 (-927 |#1|))) $)) (-15 -3035 ($ (-1135) $ $)) (-15 -2946 ((-1218 (-745)) $)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-2535 (((-619 (-495)) $) 11)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-1140) $) 13)) (-2371 (((-112) $ $) NIL))) +(((-650) (-13 (-1047) (-10 -8 (-15 -2535 ((-619 (-495)) $)) (-15 -2478 ((-1140) $))))) (T -650)) +((-2535 (*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-650)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-650))))) +(-13 (-1047) (-10 -8 (-15 -2535 ((-619 (-495)) $)) (-15 -2478 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-3292 (((-619 |#1|) $) 14)) (-3836 (($ $) 18)) (-1896 (((-112) $) 19)) (-2698 (((-3 |#1| "failed") $) 22)) (-2643 ((|#1| $) 20)) (-3645 (($ $) 36)) (-2074 (($ $) 24)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1857 (((-112) $ $) 42)) (-4202 (((-890) $) 38)) (-3826 (($ $) 17)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 ((|#1| $) 35)) (-3834 (((-832) $) 31) (($ |#1|) 23) (((-793 |#1|) $) 27)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 12)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-651 |#1|) (-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3834 ((-793 |#1|) $)) (-15 -3634 (|#1| $)) (-15 -3826 ($ $)) (-15 -4202 ((-890) $)) (-15 -1857 ((-112) $ $)) (-15 -2074 ($ $)) (-15 -3645 ($ $)) (-15 -1896 ((-112) $)) (-15 -3836 ($ $)) (-15 -3292 ((-619 |#1|) $)))) (-821)) (T -651)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3634 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-1857 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-2074 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821))))) +(-13 (-821) (-1007 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3834 ((-793 |#1|) $)) (-15 -3634 (|#1| $)) (-15 -3826 ($ $)) (-15 -4202 ((-890) $)) (-15 -1857 ((-112) $ $)) (-15 -2074 ($ $)) (-15 -3645 ($ $)) (-15 -1896 ((-112) $)) (-15 -3836 ($ $)) (-15 -3292 ((-619 |#1|) $)))) +((-2663 ((|#1| (-1 |#1| (-745) |#1|) (-745) |#1|) 11)) (-2649 ((|#1| (-1 |#1| |#1|) (-745) |#1|) 9))) +(((-652 |#1|) (-10 -7 (-15 -2649 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -2663 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) (-1063)) (T -652)) +((-2663 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2)))) (-2649 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2))))) +(-10 -7 (-15 -2649 (|#1| (-1 |#1| |#1|) (-745) |#1|)) (-15 -2663 (|#1| (-1 |#1| (-745) |#1|) (-745) |#1|))) +((-3555 ((|#2| |#1| |#2|) 9)) (-3542 ((|#1| |#1| |#2|) 8))) +(((-653 |#1| |#2|) (-10 -7 (-15 -3542 (|#1| |#1| |#2|)) (-15 -3555 (|#2| |#1| |#2|))) (-1063) (-1063)) (T -653)) +((-3555 (*1 *2 *3 *2) (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3542 (*1 *2 *2 *3) (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3542 (|#1| |#1| |#2|)) (-15 -3555 (|#2| |#1| |#2|))) +((-3762 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-654 |#1| |#2| |#3|) (-10 -7 (-15 -3762 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1063) (-1063) (-1063)) (T -654)) +((-3762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2))))) +(-10 -7 (-15 -3762 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3821 (((-112) $ $) NIL)) (-2084 (((-1171) $) 20)) (-3214 (((-619 (-1171)) $) 18)) (-2291 (($ (-619 (-1171)) (-1171)) 13)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL) (((-1171) $) 21) (($ (-1080)) 10)) (-2371 (((-112) $ $) NIL))) +(((-655) (-13 (-1047) (-591 (-1171)) (-10 -8 (-15 -3834 ($ (-1080))) (-15 -2291 ($ (-619 (-1171)) (-1171))) (-15 -3214 ((-619 (-1171)) $)) (-15 -2084 ((-1171) $))))) (T -655)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655)))) (-2291 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1171))) (-5 *3 (-1171)) (-5 *1 (-655)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-655)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-655))))) +(-13 (-1047) (-591 (-1171)) (-10 -8 (-15 -3834 ($ (-1080))) (-15 -2291 ($ (-619 (-1171)) (-1171))) (-15 -3214 ((-619 (-1171)) $)) (-15 -2084 ((-1171) $)))) +((-2663 (((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)) 23)) (-2436 (((-1 |#1|) |#1|) 8)) (-3702 ((|#1| |#1|) 16)) (-2557 (((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-547)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3834 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-745)) 20))) +(((-656 |#1|) (-10 -7 (-15 -2436 ((-1 |#1|) |#1|)) (-15 -3834 ((-1 |#1|) |#1|)) (-15 -2557 (|#1| (-1 |#1| |#1|))) (-15 -2557 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-547))) (-15 -3702 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -2663 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) (-1063)) (T -656)) +((-2663 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063)) (-5 *1 (-656 *4)))) (-3702 (*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-547)) (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))) (-2436 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))) +(-10 -7 (-15 -2436 ((-1 |#1|) |#1|)) (-15 -3834 ((-1 |#1|) |#1|)) (-15 -2557 (|#1| (-1 |#1| |#1|))) (-15 -2557 ((-619 |#1|) (-1 (-619 |#1|) (-619 |#1|)) (-547))) (-15 -3702 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-745))) (-15 -2663 ((-1 |#1| (-745) |#1|) (-1 |#1| (-745) |#1|)))) +((-1671 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1549 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2573 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1422 (((-1 |#2| |#1|) |#2|) 11))) +(((-657 |#1| |#2|) (-10 -7 (-15 -1422 ((-1 |#2| |#1|) |#2|)) (-15 -1549 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2573 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1671 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1063) (-1063)) (T -657)) +((-1671 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)) (-4 *4 (-1063)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5)))) (-1422 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) (-4 *3 (-1063))))) +(-10 -7 (-15 -1422 ((-1 |#2| |#1|) |#2|)) (-15 -1549 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2573 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1671 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-4058 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1787 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1902 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2016 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3949 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1902 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2016 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3949 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4058 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1063) (-1063) (-1063)) (T -658)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5)) (-5 *1 (-658 *5 *6 *7)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6))))) +(-10 -7 (-15 -1787 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1902 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2016 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3949 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4058 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2542 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2781 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-659 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2781 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2781 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2542 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1016) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|) (-1016) (-364 |#5|) (-364 |#5|) (-661 |#5| |#6| |#7|)) (T -659)) +((-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *8 (-364 *2)) (-4 *9 (-364 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) (-2781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-364 *8)) (-4 *10 (-364 *8)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-364 *8)) (-4 *10 (-364 *8))))) +(-10 -7 (-15 -2781 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2781 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2542 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3757 (($ (-745) (-745)) 33)) (-3420 (($ $ $) 56)) (-2150 (($ |#3|) 52) (($ $) 53)) (-3047 (((-112) $) 28)) (-3313 (($ $ (-547) (-547)) 58)) (-1293 (($ $ (-547) (-547)) 59)) (-4241 (($ $ (-547) (-547) (-547) (-547)) 63)) (-3636 (($ $) 54)) (-3237 (((-112) $) 14)) (-4146 (($ $ (-547) (-547) $) 64)) (-2238 ((|#2| $ (-547) (-547) |#2|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) 62)) (-2294 (($ (-745) |#2|) 39)) (-3933 (($ (-619 (-619 |#2|))) 37)) (-3051 (((-619 (-619 |#2|)) $) 57)) (-3525 (($ $ $) 55)) (-2025 (((-3 $ "failed") $ |#2|) 91)) (-3329 ((|#2| $ (-547) (-547)) NIL) ((|#2| $ (-547) (-547) |#2|) NIL) (($ $ (-619 (-547)) (-619 (-547))) 61)) (-2192 (($ (-619 |#2|)) 40) (($ (-619 $)) 42)) (-3137 (((-112) $) 24)) (-3834 (($ |#4|) 47) (((-832) $) NIL)) (-2955 (((-112) $) 30)) (-2497 (($ $ |#2|) 93)) (-2484 (($ $ $) 68) (($ $) 71)) (-2470 (($ $ $) 66)) (** (($ $ (-745)) 80) (($ $ (-547)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-547) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-660 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2497 (|#1| |#1| |#2|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -4146 (|#1| |#1| (-547) (-547) |#1|)) (-15 -4241 (|#1| |#1| (-547) (-547) (-547) (-547))) (-15 -1293 (|#1| |#1| (-547) (-547))) (-15 -3313 (|#1| |#1| (-547) (-547))) (-15 -2238 (|#1| |#1| (-619 (-547)) (-619 (-547)) |#1|)) (-15 -3329 (|#1| |#1| (-619 (-547)) (-619 (-547)))) (-15 -3051 ((-619 (-619 |#2|)) |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3525 (|#1| |#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2150 (|#1| |#3|)) (-15 -3834 (|#1| |#4|)) (-15 -2192 (|#1| (-619 |#1|))) (-15 -2192 (|#1| (-619 |#2|))) (-15 -2294 (|#1| (-745) |#2|)) (-15 -3933 (|#1| (-619 (-619 |#2|)))) (-15 -3757 (|#1| (-745) (-745))) (-15 -2955 ((-112) |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -2238 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) (-547)))) (-661 |#2| |#3| |#4|) (-1016) (-364 |#2|) (-364 |#2|)) (T -660)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2497 (|#1| |#1| |#2|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-745))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -4146 (|#1| |#1| (-547) (-547) |#1|)) (-15 -4241 (|#1| |#1| (-547) (-547) (-547) (-547))) (-15 -1293 (|#1| |#1| (-547) (-547))) (-15 -3313 (|#1| |#1| (-547) (-547))) (-15 -2238 (|#1| |#1| (-619 (-547)) (-619 (-547)) |#1|)) (-15 -3329 (|#1| |#1| (-619 (-547)) (-619 (-547)))) (-15 -3051 ((-619 (-619 |#2|)) |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3525 (|#1| |#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2150 (|#1| |#3|)) (-15 -3834 (|#1| |#4|)) (-15 -2192 (|#1| (-619 |#1|))) (-15 -2192 (|#1| (-619 |#2|))) (-15 -2294 (|#1| (-745) |#2|)) (-15 -3933 (|#1| (-619 (-619 |#2|)))) (-15 -3757 (|#1| (-745) (-745))) (-15 -2955 ((-112) |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -2238 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) (-547)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3757 (($ (-745) (-745)) 97)) (-3420 (($ $ $) 87)) (-2150 (($ |#2|) 91) (($ $) 90)) (-3047 (((-112) $) 99)) (-3313 (($ $ (-547) (-547)) 83)) (-1293 (($ $ (-547) (-547)) 82)) (-4241 (($ $ (-547) (-547) (-547) (-547)) 81)) (-3636 (($ $) 89)) (-3237 (((-112) $) 101)) (-2826 (((-112) $ (-745)) 8)) (-4146 (($ $ (-547) (-547) $) 80)) (-2238 ((|#1| $ (-547) (-547) |#1|) 44) (($ $ (-619 (-547)) (-619 (-547)) $) 84)) (-2183 (($ $ (-547) |#2|) 42)) (-3251 (($ $ (-547) |#3|) 41)) (-2294 (($ (-745) |#1|) 95)) (-3219 (($) 7 T CONST)) (-3340 (($ $) 67 (|has| |#1| (-298)))) (-3578 ((|#2| $ (-547)) 46)) (-3107 (((-745) $) 66 (|has| |#1| (-539)))) (-1861 ((|#1| $ (-547) (-547) |#1|) 43)) (-1793 ((|#1| $ (-547) (-547)) 48)) (-2973 (((-619 |#1|) $) 30)) (-1318 (((-745) $) 65 (|has| |#1| (-539)))) (-4273 (((-619 |#3|) $) 64 (|has| |#1| (-539)))) (-2126 (((-745) $) 51)) (-3732 (($ (-745) (-745) |#1|) 57)) (-2139 (((-745) $) 50)) (-4161 (((-112) $ (-745)) 9)) (-3015 ((|#1| $) 62 (|has| |#1| (-6 (-4330 "*"))))) (-2865 (((-547) $) 55)) (-3790 (((-547) $) 53)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2769 (((-547) $) 54)) (-3684 (((-547) $) 52)) (-3933 (($ (-619 (-619 |#1|))) 96)) (-1850 (($ (-1 |#1| |#1|) $) 34)) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3051 (((-619 (-619 |#1|)) $) 86)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2793 (((-3 $ "failed") $) 61 (|has| |#1| (-354)))) (-3525 (($ $ $) 88)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) 56)) (-2025 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-539)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) (-547)) 49) ((|#1| $ (-547) (-547) |#1|) 47) (($ $ (-619 (-547)) (-619 (-547))) 85)) (-2192 (($ (-619 |#1|)) 94) (($ (-619 $)) 93)) (-3137 (((-112) $) 100)) (-3096 ((|#1| $) 63 (|has| |#1| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3456 ((|#3| $ (-547)) 45)) (-3834 (($ |#3|) 92) (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2955 (((-112) $) 98)) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2497 (($ $ |#1|) 68 (|has| |#1| (-354)))) (-2484 (($ $ $) 78) (($ $) 77)) (-2470 (($ $ $) 79)) (** (($ $ (-745)) 70) (($ $ (-547)) 60 (|has| |#1| (-354)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-547) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) +(((-661 |#1| |#2| |#3|) (-138) (-1016) (-364 |t#1|) (-364 |t#1|)) (T -661)) +((-3237 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-3047 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-112)))) (-3757 (*1 *1 *2 *2) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-364 *3)) (-4 *2 (-364 *3)))) (-2150 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-364 *3)) (-4 *4 (-364 *3)))) (-2150 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-3636 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-3525 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-3420 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-619 (-619 *3))))) (-3329 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2238 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-3313 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-1293 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-4241 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-4146 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *2 (-364 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-364 *3)) (-4 *4 (-364 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) (-2025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-539)))) (-2497 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-354)))) (-3340 (*1 *1 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-298)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-619 *5)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016)))) (-2793 (*1 *1 *1) (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-354)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-354))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4329) (-6 -4328) (-15 -3237 ((-112) $)) (-15 -3137 ((-112) $)) (-15 -3047 ((-112) $)) (-15 -2955 ((-112) $)) (-15 -3757 ($ (-745) (-745))) (-15 -3933 ($ (-619 (-619 |t#1|)))) (-15 -2294 ($ (-745) |t#1|)) (-15 -2192 ($ (-619 |t#1|))) (-15 -2192 ($ (-619 $))) (-15 -3834 ($ |t#3|)) (-15 -2150 ($ |t#2|)) (-15 -2150 ($ $)) (-15 -3636 ($ $)) (-15 -3525 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3051 ((-619 (-619 |t#1|)) $)) (-15 -3329 ($ $ (-619 (-547)) (-619 (-547)))) (-15 -2238 ($ $ (-619 (-547)) (-619 (-547)) $)) (-15 -3313 ($ $ (-547) (-547))) (-15 -1293 ($ $ (-547) (-547))) (-15 -4241 ($ $ (-547) (-547) (-547) (-547))) (-15 -4146 ($ $ (-547) (-547) $)) (-15 -2470 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -2484 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-547) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-745))) (IF (|has| |t#1| (-539)) (-15 -2025 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-354)) (-15 -2497 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-298)) (-15 -3340 ($ $)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -3107 ((-745) $)) (-15 -1318 ((-745) $)) (-15 -4273 ((-619 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4330 "*"))) (PROGN (-15 -3096 (|t#1| $)) (-15 -3015 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-15 -2793 ((-3 $ "failed") $)) (-15 ** ($ $ (-547)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-56 |#1| |#2| |#3|) . T) ((-1172) . T)) +((-3340 ((|#4| |#4|) 72 (|has| |#1| (-298)))) (-3107 (((-745) |#4|) 99 (|has| |#1| (-539)))) (-1318 (((-745) |#4|) 76 (|has| |#1| (-539)))) (-4273 (((-619 |#3|) |#4|) 83 (|has| |#1| (-539)))) (-1665 (((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|) 111 (|has| |#1| (-298)))) (-3015 ((|#1| |#4|) 35)) (-1490 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-539)))) (-2793 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-354)))) (-1388 ((|#4| |#4|) 68 (|has| |#1| (-539)))) (-3812 ((|#4| |#4| |#1| (-547) (-547)) 43)) (-3719 ((|#4| |#4| (-547) (-547)) 38)) (-2794 ((|#4| |#4| |#1| (-547) (-547)) 48)) (-3096 ((|#1| |#4|) 78)) (-2353 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-539))))) +(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3096 (|#1| |#4|)) (-15 -3015 (|#1| |#4|)) (-15 -3719 (|#4| |#4| (-547) (-547))) (-15 -3812 (|#4| |#4| |#1| (-547) (-547))) (-15 -2794 (|#4| |#4| |#1| (-547) (-547))) (IF (|has| |#1| (-539)) (PROGN (-15 -3107 ((-745) |#4|)) (-15 -1318 ((-745) |#4|)) (-15 -4273 ((-619 |#3|) |#4|)) (-15 -1388 (|#4| |#4|)) (-15 -1490 ((-3 |#4| "failed") |#4|)) (-15 -2353 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-298)) (PROGN (-15 -3340 (|#4| |#4|)) (-15 -1665 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -2793 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -662)) +((-2793 (*1 *2 *2) (|partial| -12 (-4 *3 (-354)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) (-3340 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-1490 (*1 *2 *2) (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-1388 (*1 *2 *2) (-12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-4273 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-1318 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2794 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3)) (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-3812 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3)) (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2)) (-4 *2 (-661 *3 *5 *6)))) (-3719 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-547)) (-4 *4 (-169)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *1 (-662 *4 *5 *6 *2)) (-4 *2 (-661 *4 *5 *6)))) (-3015 (*1 *2 *3) (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) (-3096 (*1 *2 *3) (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169)) (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5))))) +(-10 -7 (-15 -3096 (|#1| |#4|)) (-15 -3015 (|#1| |#4|)) (-15 -3719 (|#4| |#4| (-547) (-547))) (-15 -3812 (|#4| |#4| |#1| (-547) (-547))) (-15 -2794 (|#4| |#4| |#1| (-547) (-547))) (IF (|has| |#1| (-539)) (PROGN (-15 -3107 ((-745) |#4|)) (-15 -1318 ((-745) |#4|)) (-15 -4273 ((-619 |#3|) |#4|)) (-15 -1388 (|#4| |#4|)) (-15 -1490 ((-3 |#4| "failed") |#4|)) (-15 -2353 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-298)) (PROGN (-15 -3340 (|#4| |#4|)) (-15 -1665 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -2793 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3757 (($ (-745) (-745)) 47)) (-3420 (($ $ $) NIL)) (-2150 (($ (-1218 |#1|)) NIL) (($ $) NIL)) (-3047 (((-112) $) NIL)) (-3313 (($ $ (-547) (-547)) 12)) (-1293 (($ $ (-547) (-547)) NIL)) (-4241 (($ $ (-547) (-547) (-547) (-547)) NIL)) (-3636 (($ $) NIL)) (-3237 (((-112) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-4146 (($ $ (-547) (-547) $) NIL)) (-2238 ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547)) $) NIL)) (-2183 (($ $ (-547) (-1218 |#1|)) NIL)) (-3251 (($ $ (-547) (-1218 |#1|)) NIL)) (-2294 (($ (-745) |#1|) 22)) (-3219 (($) NIL T CONST)) (-3340 (($ $) 31 (|has| |#1| (-298)))) (-3578 (((-1218 |#1|) $ (-547)) NIL)) (-3107 (((-745) $) 33 (|has| |#1| (-539)))) (-1861 ((|#1| $ (-547) (-547) |#1|) 51)) (-1793 ((|#1| $ (-547) (-547)) NIL)) (-2973 (((-619 |#1|) $) NIL)) (-1318 (((-745) $) 35 (|has| |#1| (-539)))) (-4273 (((-619 (-1218 |#1|)) $) 38 (|has| |#1| (-539)))) (-2126 (((-745) $) 20)) (-3732 (($ (-745) (-745) |#1|) 16)) (-2139 (((-745) $) 21)) (-4161 (((-112) $ (-745)) NIL)) (-3015 ((|#1| $) 29 (|has| |#1| (-6 (-4330 "*"))))) (-2865 (((-547) $) 9)) (-3790 (((-547) $) 10)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2769 (((-547) $) 11)) (-3684 (((-547) $) 48)) (-3933 (($ (-619 (-619 |#1|))) NIL)) (-1850 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3051 (((-619 (-619 |#1|)) $) 60)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2793 (((-3 $ "failed") $) 45 (|has| |#1| (-354)))) (-3525 (($ $ $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2418 (($ $ |#1|) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) (-547)) NIL) ((|#1| $ (-547) (-547) |#1|) NIL) (($ $ (-619 (-547)) (-619 (-547))) NIL)) (-2192 (($ (-619 |#1|)) NIL) (($ (-619 $)) NIL) (($ (-1218 |#1|)) 52)) (-3137 (((-112) $) NIL)) (-3096 ((|#1| $) 27 (|has| |#1| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-2829 (((-523) $) 64 (|has| |#1| (-592 (-523))))) (-3456 (((-1218 |#1|) $ (-547)) NIL)) (-3834 (($ (-1218 |#1|)) NIL) (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2955 (((-112) $) NIL)) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $ $) NIL) (($ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) 23) (($ $ (-547)) 46 (|has| |#1| (-354)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-547) $) NIL) (((-1218 |#1|) $ (-1218 |#1|)) NIL) (((-1218 |#1|) (-1218 |#1|) $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-663 |#1|) (-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 -2192 ($ (-1218 |#1|))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -2793 ((-3 $ "failed") $)) |%noBranch|))) (-1016)) (T -663)) +((-2793 (*1 *1 *1) (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-354)) (-4 *2 (-1016)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3))))) +(-13 (-661 |#1| (-1218 |#1|) (-1218 |#1|)) (-10 -8 (-15 -2192 ($ (-1218 |#1|))) (IF (|has| |#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |#1| (-354)) (-15 -2793 ((-3 $ "failed") $)) |%noBranch|))) +((-2030 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 25)) (-1933 (((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|) 21)) (-3958 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745)) 26)) (-1661 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 14)) (-1753 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|)) 18) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 16)) (-1848 (((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|)) 20)) (-1587 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 12)) (** (((-663 |#1|) (-663 |#1|) (-745)) 30))) +(((-664 |#1|) (-10 -7 (-15 -1587 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1661 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1753 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1753 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1848 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -1933 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2030 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3958 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) (-1016)) (T -664)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-3958 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) (-2030 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1933 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1848 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1753 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1753 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1661 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) (-1587 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(-10 -7 (-15 -1587 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1661 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1753 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1753 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1848 ((-663 |#1|) (-663 |#1|) |#1| (-663 |#1|))) (-15 -1933 ((-663 |#1|) (-663 |#1|) (-663 |#1|) |#1|)) (-15 -2030 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3958 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-663 |#1|) (-745))) (-15 ** ((-663 |#1|) (-663 |#1|) (-745)))) +((-4088 (($) 8 T CONST)) (-3834 (((-832) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3254 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -4088)) 16)) (-2306 ((|#1| $) 11))) +(((-665 |#1|) (-13 (-1213) (-591 (-832)) (-10 -8 (-15 -3254 ((-112) $ (|[\|\|]| |#1|))) (-15 -3254 ((-112) $ (|[\|\|]| -4088))) (-15 -3834 ($ |#1|)) (-15 -3834 (|#1| $)) (-15 -2306 (|#1| $)) (-15 -4088 ($) -2573))) (-591 (-832))) (T -665)) +((-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-591 (-832))) (-5 *2 (-112)) (-5 *1 (-665 *4)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4088)) (-5 *2 (-112)) (-5 *1 (-665 *4)) (-4 *4 (-591 (-832))))) (-3834 (*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) (-3834 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) (-2306 (*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) (-4088 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832)))))) +(-13 (-1213) (-591 (-832)) (-10 -8 (-15 -3254 ((-112) $ (|[\|\|]| |#1|))) (-15 -3254 ((-112) $ (|[\|\|]| -4088))) (-15 -3834 ($ |#1|)) (-15 -3834 (|#1| $)) (-15 -2306 (|#1| $)) (-15 -4088 ($) -2573))) +((-4260 ((|#2| |#2| |#4|) 25)) (-3462 (((-663 |#2|) |#3| |#4|) 31)) (-1314 (((-663 |#2|) |#2| |#4|) 30)) (-4067 (((-1218 |#2|) |#2| |#4|) 16)) (-4165 ((|#2| |#3| |#4|) 24)) (-3586 (((-663 |#2|) |#3| |#4| (-745) (-745)) 38)) (-3345 (((-663 |#2|) |#2| |#4| (-745)) 37))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4067 ((-1218 |#2|) |#2| |#4|)) (-15 -4165 (|#2| |#3| |#4|)) (-15 -4260 (|#2| |#2| |#4|)) (-15 -1314 ((-663 |#2|) |#2| |#4|)) (-15 -3345 ((-663 |#2|) |#2| |#4| (-745))) (-15 -3462 ((-663 |#2|) |#3| |#4|)) (-15 -3586 ((-663 |#2|) |#3| |#4| (-745) (-745)))) (-1063) (-869 |#1|) (-364 |#2|) (-13 (-364 |#1|) (-10 -7 (-6 -4328)))) (T -666)) +((-3586 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-364 *7)) (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4328)))))) (-3462 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-364 *6)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328)))))) (-3345 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-364 *3)) (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4328)))))) (-1314 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328)))))) (-4260 (*1 *2 *2 *3) (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) (-4 *5 (-364 *2)) (-4 *3 (-13 (-364 *4) (-10 -7 (-6 -4328)))))) (-4165 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328)))))) (-4067 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1218 *3)) (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328))))))) +(-10 -7 (-15 -4067 ((-1218 |#2|) |#2| |#4|)) (-15 -4165 (|#2| |#3| |#4|)) (-15 -4260 (|#2| |#2| |#4|)) (-15 -1314 ((-663 |#2|) |#2| |#4|)) (-15 -3345 ((-663 |#2|) |#2| |#4| (-745))) (-15 -3462 ((-663 |#2|) |#3| |#4|)) (-15 -3586 ((-663 |#2|) |#3| |#4| (-745) (-745)))) +((-3393 (((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)) 20)) (-3201 ((|#1| (-663 |#2|)) 9)) (-3295 (((-663 |#1|) (-663 |#2|)) 18))) +(((-667 |#1| |#2|) (-10 -7 (-15 -3201 (|#1| (-663 |#2|))) (-15 -3295 ((-663 |#1|) (-663 |#2|))) (-15 -3393 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) (-539) (-961 |#1|)) (T -667)) +((-3393 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) (-5 *1 (-667 *4 *5)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539)) (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-667 *2 *4))))) +(-10 -7 (-15 -3201 (|#1| (-663 |#2|))) (-15 -3295 ((-663 |#1|) (-663 |#2|))) (-15 -3393 ((-2 (|:| |num| (-663 |#1|)) (|:| |den| |#1|)) (-663 |#2|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3743 (((-663 (-673))) NIL) (((-663 (-673)) (-1218 $)) NIL)) (-2890 (((-673) $) NIL)) (-1648 (($ $) NIL (|has| (-673) (-1157)))) (-1498 (($ $) NIL (|has| (-673) (-1157)))) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-673) (-340)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-2745 (($ $) NIL (-1524 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-3457 (((-409 $) $) NIL (-1524 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-2118 (($ $) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-2873 (((-112) $ $) NIL (|has| (-673) (-298)))) (-3603 (((-745)) NIL (|has| (-673) (-359)))) (-1624 (($ $) NIL (|has| (-673) (-1157)))) (-1473 (($ $) NIL (|has| (-673) (-1157)))) (-1670 (($ $) NIL (|has| (-673) (-1157)))) (-1526 (($ $) NIL (|has| (-673) (-1157)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-673) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-673) (-1007 (-398 (-547)))))) (-2643 (((-547) $) NIL) (((-673) $) NIL) (((-398 (-547)) $) NIL (|has| (-673) (-1007 (-398 (-547)))))) (-2402 (($ (-1218 (-673))) NIL) (($ (-1218 (-673)) (-1218 $)) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-673) (-340)))) (-2079 (($ $ $) NIL (|has| (-673) (-298)))) (-3653 (((-663 (-673)) $) NIL) (((-663 (-673)) $ (-1218 $)) NIL)) (-4238 (((-663 (-673)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-673))) (|:| |vec| (-1218 (-673)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-673) (-615 (-547)))) (((-663 (-547)) (-663 $)) NIL (|has| (-673) (-615 (-547))))) (-2542 (((-3 $ "failed") (-398 (-1131 (-673)))) NIL (|has| (-673) (-354))) (($ (-1131 (-673))) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2129 (((-673) $) 29)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL (|has| (-673) (-532)))) (-2543 (((-112) $) NIL (|has| (-673) (-532)))) (-2430 (((-398 (-547)) $) NIL (|has| (-673) (-532)))) (-3107 (((-890)) NIL)) (-3229 (($) NIL (|has| (-673) (-359)))) (-2052 (($ $ $) NIL (|has| (-673) (-298)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| (-673) (-298)))) (-2445 (($) NIL (|has| (-673) (-340)))) (-3661 (((-112) $) NIL (|has| (-673) (-340)))) (-1771 (($ $) NIL (|has| (-673) (-340))) (($ $ (-745)) NIL (|has| (-673) (-340)))) (-3674 (((-112) $) NIL (-1524 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-4072 (((-2 (|:| |r| (-673)) (|:| |phi| (-673))) $) NIL (-12 (|has| (-673) (-1025)) (|has| (-673) (-1157))))) (-1413 (($) NIL (|has| (-673) (-1157)))) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-673) (-855 (-370)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-673) (-855 (-547))))) (-3707 (((-807 (-890)) $) NIL (|has| (-673) (-340))) (((-890) $) NIL (|has| (-673) (-340)))) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157))))) (-1684 (((-673) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| (-673) (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-298)))) (-4213 (((-1131 (-673)) $) NIL (|has| (-673) (-354)))) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2781 (($ (-1 (-673) (-673)) $) NIL)) (-1966 (((-890) $) NIL (|has| (-673) (-359)))) (-3620 (($ $) NIL (|has| (-673) (-1157)))) (-2531 (((-1131 (-673)) $) NIL)) (-3685 (($ (-619 $)) NIL (|has| (-673) (-298))) (($ $ $) NIL (|has| (-673) (-298)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| (-673) (-354)))) (-3045 (($) NIL (|has| (-673) (-340)) CONST)) (-3479 (($ (-890)) NIL (|has| (-673) (-359)))) (-4170 (($) NIL)) (-2145 (((-673) $) 31)) (-3979 (((-1082) $) NIL)) (-4240 (($) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-673) (-298)))) (-3715 (($ (-619 $)) NIL (|has| (-673) (-298))) (($ $ $) NIL (|has| (-673) (-298)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-673) (-340)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-673) (-298)) (|has| (-673) (-878))))) (-2106 (((-409 $) $) NIL (-1524 (-12 (|has| (-673) (-298)) (|has| (-673) (-878))) (|has| (-673) (-354))))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-673) (-298))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| (-673) (-298)))) (-2025 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-673)) NIL (|has| (-673) (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-673) (-298)))) (-2703 (($ $) NIL (|has| (-673) (-1157)))) (-2670 (($ $ (-1135) (-673)) NIL (|has| (-673) (-503 (-1135) (-673)))) (($ $ (-619 (-1135)) (-619 (-673))) NIL (|has| (-673) (-503 (-1135) (-673)))) (($ $ (-619 (-285 (-673)))) NIL (|has| (-673) (-300 (-673)))) (($ $ (-285 (-673))) NIL (|has| (-673) (-300 (-673)))) (($ $ (-673) (-673)) NIL (|has| (-673) (-300 (-673)))) (($ $ (-619 (-673)) (-619 (-673))) NIL (|has| (-673) (-300 (-673))))) (-2776 (((-745) $) NIL (|has| (-673) (-298)))) (-3329 (($ $ (-673)) NIL (|has| (-673) (-277 (-673) (-673))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| (-673) (-298)))) (-3846 (((-673)) NIL) (((-673) (-1218 $)) NIL)) (-1868 (((-3 (-745) "failed") $ $) NIL (|has| (-673) (-340))) (((-745) $) NIL (|has| (-673) (-340)))) (-3443 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-745)) NIL (|has| (-673) (-225))) (($ $) NIL (|has| (-673) (-225)))) (-4035 (((-663 (-673)) (-1218 $) (-1 (-673) (-673))) NIL (|has| (-673) (-354)))) (-1901 (((-1131 (-673))) NIL)) (-1681 (($ $) NIL (|has| (-673) (-1157)))) (-1539 (($ $) NIL (|has| (-673) (-1157)))) (-4150 (($) NIL (|has| (-673) (-340)))) (-1659 (($ $) NIL (|has| (-673) (-1157)))) (-1513 (($ $) NIL (|has| (-673) (-1157)))) (-1635 (($ $) NIL (|has| (-673) (-1157)))) (-1488 (($ $) NIL (|has| (-673) (-1157)))) (-2301 (((-663 (-673)) (-1218 $)) NIL) (((-1218 (-673)) $) NIL) (((-663 (-673)) (-1218 $) (-1218 $)) NIL) (((-1218 (-673)) $ (-1218 $)) NIL)) (-2829 (((-523) $) NIL (|has| (-673) (-592 (-523)))) (((-166 (-217)) $) NIL (|has| (-673) (-991))) (((-166 (-370)) $) NIL (|has| (-673) (-991))) (((-861 (-370)) $) NIL (|has| (-673) (-592 (-861 (-370))))) (((-861 (-547)) $) NIL (|has| (-673) (-592 (-861 (-547))))) (($ (-1131 (-673))) NIL) (((-1131 (-673)) $) NIL) (($ (-1218 (-673))) NIL) (((-1218 (-673)) $) NIL)) (-2444 (($ $) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-1524 (-12 (|has| (-673) (-298)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-340))))) (-3397 (($ (-673) (-673)) 12)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-547)) NIL) (($ (-673)) NIL) (($ (-166 (-370))) 13) (($ (-166 (-547))) 19) (($ (-166 (-673))) 28) (($ (-166 (-675))) 25) (((-166 (-370)) $) 33) (($ (-398 (-547))) NIL (-1524 (|has| (-673) (-1007 (-398 (-547)))) (|has| (-673) (-354))))) (-3336 (($ $) NIL (|has| (-673) (-340))) (((-3 $ "failed") $) NIL (-1524 (-12 (|has| (-673) (-298)) (|has| $ (-143)) (|has| (-673) (-878))) (|has| (-673) (-143))))) (-3008 (((-1131 (-673)) $) NIL)) (-2311 (((-745)) NIL)) (-4013 (((-1218 $)) NIL)) (-1717 (($ $) NIL (|has| (-673) (-1157)))) (-1574 (($ $) NIL (|has| (-673) (-1157)))) (-1932 (((-112) $ $) NIL)) (-1693 (($ $) NIL (|has| (-673) (-1157)))) (-1550 (($ $) NIL (|has| (-673) (-1157)))) (-1741 (($ $) NIL (|has| (-673) (-1157)))) (-1597 (($ $) NIL (|has| (-673) (-1157)))) (-3922 (((-673) $) NIL (|has| (-673) (-1157)))) (-1918 (($ $) NIL (|has| (-673) (-1157)))) (-1610 (($ $) NIL (|has| (-673) (-1157)))) (-1729 (($ $) NIL (|has| (-673) (-1157)))) (-1586 (($ $) NIL (|has| (-673) (-1157)))) (-1706 (($ $) NIL (|has| (-673) (-1157)))) (-1563 (($ $) NIL (|has| (-673) (-1157)))) (-2040 (($ $) NIL (|has| (-673) (-1025)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-1 (-673) (-673))) NIL) (($ $ (-1 (-673) (-673)) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-1135)) NIL (|has| (-673) (-869 (-1135)))) (($ $ (-745)) NIL (|has| (-673) (-225))) (($ $) NIL (|has| (-673) (-225)))) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL (|has| (-673) (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| (-673) (-1157))) (($ $ (-398 (-547))) NIL (-12 (|has| (-673) (-971)) (|has| (-673) (-1157)))) (($ $ (-547)) NIL (|has| (-673) (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ (-673) $) NIL) (($ $ (-673)) NIL) (($ (-398 (-547)) $) NIL (|has| (-673) (-354))) (($ $ (-398 (-547))) NIL (|has| (-673) (-354))))) +(((-668) (-13 (-378) (-163 (-673)) (-10 -8 (-15 -3834 ($ (-166 (-370)))) (-15 -3834 ($ (-166 (-547)))) (-15 -3834 ($ (-166 (-673)))) (-15 -3834 ($ (-166 (-675)))) (-15 -3834 ((-166 (-370)) $))))) (T -668)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-166 (-547))) (-5 *1 (-668)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668))))) +(-13 (-378) (-163 (-673)) (-10 -8 (-15 -3834 ($ (-166 (-370)))) (-15 -3834 ($ (-166 (-547)))) (-15 -3834 ($ (-166 (-673)))) (-15 -3834 ($ (-166 (-675)))) (-15 -3834 ((-166 (-370)) $)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3681 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3796 (($ $) 62)) (-3664 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3700 (((-619 (-2 (|:| -1777 |#1|) (|:| -3987 (-745)))) $) 61)) (-1404 (($) 49) (($ (-619 |#1|)) 48)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 50)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-669 |#1|) (-138) (-1063)) (T -669)) -((-2539 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-2969 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) (-5 *2 (-619 (-2 (|:| -1657 *3) (|:| -3945 (-745)))))))) -(-13 (-228 |t#1|) (-10 -8 (-15 -2539 ($ |t#1| $ (-745))) (-15 -2969 ($ $)) (-15 -2959 ((-619 (-2 (|:| -1657 |t#1|) (|:| -3945 (-745)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3002 (((-619 |#1|) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) (-548)) 47)) (-2981 ((|#1| |#1| (-548)) 46)) (-3587 ((|#1| |#1| |#1| (-548)) 36)) (-1915 (((-619 |#1|) |#1| (-548)) 39)) (-3012 ((|#1| |#1| (-548) |#1| (-548)) 32)) (-2991 (((-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) |#1| (-548)) 45))) -(((-670 |#1|) (-10 -7 (-15 -3587 (|#1| |#1| |#1| (-548))) (-15 -2981 (|#1| |#1| (-548))) (-15 -1915 ((-619 |#1|) |#1| (-548))) (-15 -2991 ((-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) |#1| (-548))) (-15 -3002 ((-619 |#1|) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) (-548))) (-15 -3012 (|#1| |#1| (-548) |#1| (-548)))) (-1194 (-548))) (T -670)) -((-3012 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| -1915 *5) (|:| -2512 (-548))))) (-5 *4 (-548)) (-4 *5 (-1194 *4)) (-5 *2 (-619 *5)) (-5 *1 (-670 *5)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -2512 *4)))) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) (-3587 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) -(-10 -7 (-15 -3587 (|#1| |#1| |#1| (-548))) (-15 -2981 (|#1| |#1| (-548))) (-15 -1915 ((-619 |#1|) |#1| (-548))) (-15 -2991 ((-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) |#1| (-548))) (-15 -3002 ((-619 |#1|) (-619 (-2 (|:| -1915 |#1|) (|:| -2512 (-548)))) (-548))) (-15 -3012 (|#1| |#1| (-548) |#1| (-548)))) -((-3055 (((-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))) 17)) (-3022 (((-1095 (-218)) (-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 40) (((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 42) (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 44)) (-3043 (((-1095 (-218)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-619 (-255))) NIL)) (-3032 (((-1095 (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255))) 45))) -(((-671) (-10 -7 (-15 -3022 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3032 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3043 ((-1095 (-218)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3055 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218) (-218)))))) (T -671)) -((-3055 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1 (-218) (-218) (-218) (-218))) (-5 *2 (-1 (-912 (-218)) (-218) (-218))) (-5 *1 (-671)))) (-3043 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) (-3032 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) (-3022 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-218))) (-5 *5 (-619 (-255))) (-5 *1 (-671)))) (-3022 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-218))) (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) (-3022 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671))))) -(-10 -7 (-15 -3022 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3022 ((-1095 (-218)) (-1095 (-218)) (-1 (-912 (-218)) (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3032 ((-1095 (-218)) (-1 (-218) (-218) (-218)) (-3 (-1 (-218) (-218) (-218) (-218)) "undefined") (-1058 (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3043 ((-1095 (-218)) (-308 (-548)) (-308 (-548)) (-308 (-548)) (-1 (-218) (-218)) (-1058 (-218)) (-619 (-255)))) (-15 -3055 ((-1 (-912 (-218)) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218)) (-1 (-218) (-218) (-218) (-218))))) -((-1915 (((-410 (-1131 |#4|)) (-1131 |#4|)) 73) (((-410 |#4|) |#4|) 221))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) (-821) (-767) (-341) (-918 |#3| |#2| |#1|)) (T -672)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) -(-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 84)) (-3875 (((-548) $) 30)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-1665 (($ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-3030 (($) NIL T CONST)) (-3849 (($ $) NIL)) (-2441 (((-3 (-548) "failed") $) 73) (((-3 (-399 (-548)) "failed") $) 26) (((-3 (-371) "failed") $) 70)) (-2375 (((-548) $) 75) (((-399 (-548)) $) 67) (((-371) $) 68)) (-1945 (($ $ $) 96)) (-3859 (((-3 $ "failed") $) 87)) (-1922 (($ $ $) 95)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2232 (((-890)) 77) (((-890) (-890)) 76)) (-3298 (((-112) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL)) (-1672 (((-548) $) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3910 (($ $) NIL)) (-3312 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3066 (((-548) (-548)) 81) (((-548)) 82)) (-1795 (($ $ $) NIL) (($) NIL (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-3076 (((-548) (-548)) 79) (((-548)) 80)) (-3091 (($ $ $) NIL) (($) NIL (-12 (-3958 (|has| $ (-6 -4310))) (-3958 (|has| $ (-6 -4318)))))) (-1382 (((-548) $) 16)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 91)) (-2237 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL)) (-3887 (($ $) NIL)) (-1335 (($ (-548) (-548)) NIL) (($ (-548) (-548) (-890)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) 92)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3352 (((-548) $) 22)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 94)) (-1340 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-2226 (((-890) (-548)) NIL (|has| $ (-6 -4318)))) (-2591 (((-371) $) NIL) (((-218) $) NIL) (((-861 (-371)) $) NIL)) (-3743 (((-832) $) 52) (($ (-548)) 63) (($ $) NIL) (($ (-399 (-548))) 66) (($ (-548)) 63) (($ (-399 (-548))) 66) (($ (-371)) 60) (((-371) $) 50) (($ (-675)) 55)) (-3835 (((-745)) 103)) (-2678 (($ (-548) (-548) (-890)) 44)) (-3897 (($ $) NIL)) (-2245 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4318)))) (-3957 (((-890)) 35) (((-890) (-890)) 78)) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) 32 T CONST)) (-3118 (($) 17 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 83)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 101)) (-2309 (($ $ $) 65)) (-2299 (($ $) 99) (($ $ $) 100)) (-2290 (($ $ $) 98)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ $ (-399 (-548))) 90)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 97) (($ $ $) 88) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-673) (-13 (-396) (-379) (-355) (-1007 (-371)) (-1007 (-399 (-548))) (-145) (-10 -8 (-15 -2232 ((-890) (-890))) (-15 -2232 ((-890))) (-15 -3957 ((-890) (-890))) (-15 -3957 ((-890))) (-15 -3076 ((-548) (-548))) (-15 -3076 ((-548))) (-15 -3066 ((-548) (-548))) (-15 -3066 ((-548))) (-15 -3743 ((-371) $)) (-15 -3743 ($ (-675))) (-15 -1382 ((-548) $)) (-15 -3352 ((-548) $)) (-15 -2678 ($ (-548) (-548) (-890)))))) (T -673)) -((-3957 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-2232 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3076 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3076 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3066 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-673)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673)))) (-2678 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-5 *1 (-673))))) -(-13 (-396) (-379) (-355) (-1007 (-371)) (-1007 (-399 (-548))) (-145) (-10 -8 (-15 -2232 ((-890) (-890))) (-15 -2232 ((-890))) (-15 -3957 ((-890) (-890))) (-15 -3957 ((-890))) (-15 -3076 ((-548) (-548))) (-15 -3076 ((-548))) (-15 -3066 ((-548) (-548))) (-15 -3066 ((-548))) (-15 -3743 ((-371) $)) (-15 -3743 ($ (-675))) (-15 -1382 ((-548) $)) (-15 -3352 ((-548) $)) (-15 -2678 ($ (-548) (-548) (-890))))) -((-3113 (((-663 |#1|) (-663 |#1|) |#1| |#1|) 65)) (-3691 (((-663 |#1|) (-663 |#1|) |#1|) 48)) (-3101 (((-663 |#1|) (-663 |#1|) |#1|) 66)) (-3088 (((-663 |#1|) (-663 |#1|)) 49)) (-3124 (((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|) 64))) -(((-674 |#1|) (-10 -7 (-15 -3088 ((-663 |#1|) (-663 |#1|))) (-15 -3691 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3101 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3113 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) (-299)) (T -674)) -((-3124 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-674 *3)) (-4 *3 (-299)))) (-3113 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) (-3101 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) (-3691 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) -(-10 -7 (-15 -3088 ((-663 |#1|) (-663 |#1|))) (-15 -3691 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3101 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -3113 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -3124 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) 27)) (-2375 (((-548) $) 25)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($ $) NIL) (($) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) NIL)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) NIL)) (-1795 (($ $ $) NIL)) (-3134 (((-890) (-890)) 10) (((-890)) 9)) (-3091 (($ $ $) NIL)) (-2742 (($ $) NIL)) (-3198 (($ $) NIL)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) NIL)) (-3932 (((-1082) $) NIL) (($ $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL) (($ $ (-745)) NIL)) (-2445 (($ $) NIL)) (-2113 (($ $) NIL)) (-2591 (((-218) $) NIL) (((-371) $) NIL) (((-861 (-548)) $) NIL) (((-524) $) NIL) (((-548) $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) 24) (($ $) NIL) (($ (-548)) 24) (((-308 $) (-308 (-548))) 18)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) NIL)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL) (($ $ (-745)) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) -(((-675) (-13 (-379) (-533) (-10 -8 (-15 -3134 ((-890) (-890))) (-15 -3134 ((-890))) (-15 -3743 ((-308 $) (-308 (-548))))))) (T -675)) -((-3134 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3134 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-308 (-548))) (-5 *2 (-308 (-675))) (-5 *1 (-675))))) -(-13 (-379) (-533) (-10 -8 (-15 -3134 ((-890) (-890))) (-15 -3134 ((-890))) (-15 -3743 ((-308 $) (-308 (-548)))))) -((-3178 (((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)) 19)) (-3144 (((-1 |#4| |#2| |#3|) (-1135)) 12))) -(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 ((-1 |#4| |#2| |#3|) (-1135))) (-15 -3178 ((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)))) (-593 (-524)) (-1172) (-1172) (-1172)) (T -676)) -((-3178 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *7 (-1172)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *7 (-1172))))) -(-10 -7 (-15 -3144 ((-1 |#4| |#2| |#3|) (-1135))) (-15 -3178 ((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)))) -((-3730 (((-112) $ $) NIL)) (-4116 (((-1223) $ (-745)) 14)) (-2621 (((-745) $) 12)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 25)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 24))) -(((-677 |#1|) (-13 (-131) (-592 |#1|) (-10 -8 (-15 -3743 ($ |#1|)))) (-1063)) (T -677)) -((-3743 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063))))) -(-13 (-131) (-592 |#1|) (-10 -8 (-15 -3743 ($ |#1|)))) -((-3154 (((-1 (-218) (-218) (-218)) |#1| (-1135) (-1135)) 34) (((-1 (-218) (-218)) |#1| (-1135)) 39))) -(((-678 |#1|) (-10 -7 (-15 -3154 ((-1 (-218) (-218)) |#1| (-1135))) (-15 -3154 ((-1 (-218) (-218) (-218)) |#1| (-1135) (-1135)))) (-593 (-524))) (T -678)) -((-3154 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218) (-218))) (-5 *1 (-678 *3)) (-4 *3 (-593 (-524))))) (-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218))) (-5 *1 (-678 *3)) (-4 *3 (-593 (-524)))))) -(-10 -7 (-15 -3154 ((-1 (-218) (-218)) |#1| (-1135))) (-15 -3154 ((-1 (-218) (-218) (-218)) |#1| (-1135) (-1135)))) -((-3418 (((-1135) |#1| (-1135) (-619 (-1135))) 9) (((-1135) |#1| (-1135) (-1135) (-1135)) 12) (((-1135) |#1| (-1135) (-1135)) 11) (((-1135) |#1| (-1135)) 10))) -(((-679 |#1|) (-10 -7 (-15 -3418 ((-1135) |#1| (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-619 (-1135))))) (-593 (-524))) (T -679)) -((-3418 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) (-3418 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) (-3418 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524)))))) -(-10 -7 (-15 -3418 ((-1135) |#1| (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-1135) (-1135))) (-15 -3418 ((-1135) |#1| (-1135) (-619 (-1135))))) -((-1481 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-680 |#1| |#2|) (-10 -7 (-15 -1481 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1172) (-1172)) (T -680)) -((-1481 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-680 *3 *4)) (-4 *3 (-1172)) (-4 *4 (-1172))))) -(-10 -7 (-15 -1481 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3165 (((-1 |#3| |#2|) (-1135)) 11)) (-3178 (((-1 |#3| |#2|) |#1| (-1135)) 21))) -(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-1 |#3| |#2|) (-1135))) (-15 -3178 ((-1 |#3| |#2|) |#1| (-1135)))) (-593 (-524)) (-1172) (-1172)) (T -681)) -((-3178 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172))))) -(-10 -7 (-15 -3165 ((-1 |#3| |#2|) (-1135))) (-15 -3178 ((-1 |#3| |#2|) |#1| (-1135)))) -((-3217 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|) 62)) (-3202 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|) 75)) (-3189 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|) 34))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3189 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|)) (-15 -3202 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -3217 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|))) (-767) (-821) (-299) (-918 |#3| |#1| |#2|)) (T -682)) -((-3217 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-619 (-1131 *13))) (-5 *3 (-1131 *13)) (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) (-5 *7 (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *13))))) (-5 *8 (-619 (-745))) (-5 *9 (-1218 (-619 (-1131 *10)))) (-4 *12 (-821)) (-4 *10 (-299)) (-4 *13 (-918 *10 *11 *12)) (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13)))) (-3202 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1131 *9))) (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) (-4 *11 (-821)) (-4 *9 (-299)) (-4 *12 (-918 *9 *10 *11)) (-4 *10 (-767)) (-5 *2 (-619 (-1131 *12))) (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1131 *12)))) (-3189 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-619 (-1131 *11))) (-5 *3 (-1131 *11)) (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) (-5 *7 (-1218 (-619 (-1131 *8)))) (-4 *10 (-821)) (-4 *8 (-299)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) (-5 *1 (-682 *9 *10 *8 *11))))) -(-10 -7 (-15 -3189 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|)) (-15 -3202 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -3217 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 39)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2024 (($ |#1| (-745)) 37)) (-3904 (((-745) $) 41)) (-2197 ((|#1| $) 40)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 (((-745) $) 42)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-1951 ((|#1| $ (-745)) 38)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +((-1885 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) (-5 *2 (-619 (-2 (|:| -1777 *3) (|:| -3987 (-745)))))))) +(-13 (-227 |t#1|) (-10 -8 (-15 -1885 ($ |t#1| $ (-745))) (-15 -3796 ($ $)) (-15 -3700 ((-619 (-2 (|:| -1777 |t#1|) (|:| -3987 (-745)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2959 (((-619 |#1|) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))) (-547)) 47)) (-2777 ((|#1| |#1| (-547)) 46)) (-3715 ((|#1| |#1| |#1| (-547)) 36)) (-2106 (((-619 |#1|) |#1| (-547)) 39)) (-3053 ((|#1| |#1| (-547) |#1| (-547)) 32)) (-2874 (((-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))) |#1| (-547)) 45))) +(((-670 |#1|) (-10 -7 (-15 -3715 (|#1| |#1| |#1| (-547))) (-15 -2777 (|#1| |#1| (-547))) (-15 -2106 ((-619 |#1|) |#1| (-547))) (-15 -2874 ((-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))) |#1| (-547))) (-15 -2959 ((-619 |#1|) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))) (-547))) (-15 -3053 (|#1| |#1| (-547) |#1| (-547)))) (-1194 (-547))) (T -670)) +((-3053 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| -2106 *5) (|:| -1618 (-547))))) (-5 *4 (-547)) (-4 *5 (-1194 *4)) (-5 *2 (-619 *5)) (-5 *1 (-670 *5)))) (-2874 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-5 *2 (-619 (-2 (|:| -2106 *3) (|:| -1618 *4)))) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) (-2777 (*1 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) (-3715 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -3715 (|#1| |#1| |#1| (-547))) (-15 -2777 (|#1| |#1| (-547))) (-15 -2106 ((-619 |#1|) |#1| (-547))) (-15 -2874 ((-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))) |#1| (-547))) (-15 -2959 ((-619 |#1|) (-619 (-2 (|:| -2106 |#1|) (|:| -1618 (-547)))) (-547))) (-15 -3053 (|#1| |#1| (-547) |#1| (-547)))) +((-2299 (((-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217) (-217))) 17)) (-3143 (((-1095 (-217)) (-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 40) (((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 42) (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 44)) (-2172 (((-1095 (-217)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-619 (-254))) NIL)) (-3242 (((-1095 (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254))) 45))) +(((-671) (-10 -7 (-15 -3143 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3143 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3143 ((-1095 (-217)) (-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3242 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -2172 ((-1095 (-217)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -2299 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217) (-217)))))) (T -671)) +((-2299 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1 (-217) (-217) (-217) (-217))) (-5 *2 (-1 (-912 (-217)) (-217) (-217))) (-5 *1 (-671)))) (-2172 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) (-3242 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined")) (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) (-3143 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-217))) (-5 *5 (-619 (-254))) (-5 *1 (-671)))) (-3143 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-217))) (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) (-3143 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined")) (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671))))) +(-10 -7 (-15 -3143 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3143 ((-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3143 ((-1095 (-217)) (-1095 (-217)) (-1 (-912 (-217)) (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -3242 ((-1095 (-217)) (-1 (-217) (-217) (-217)) (-3 (-1 (-217) (-217) (-217) (-217)) "undefined") (-1058 (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -2172 ((-1095 (-217)) (-307 (-547)) (-307 (-547)) (-307 (-547)) (-1 (-217) (-217)) (-1058 (-217)) (-619 (-254)))) (-15 -2299 ((-1 (-912 (-217)) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217)) (-1 (-217) (-217) (-217) (-217))))) +((-2106 (((-409 (-1131 |#4|)) (-1131 |#4|)) 73) (((-409 |#4|) |#4|) 221))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 |#4|) |#4|)) (-15 -2106 ((-409 (-1131 |#4|)) (-1131 |#4|)))) (-821) (-767) (-340) (-918 |#3| |#2| |#1|)) (T -672)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(-10 -7 (-15 -2106 ((-409 |#4|) |#4|)) (-15 -2106 ((-409 (-1131 |#4|)) (-1131 |#4|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 84)) (-2673 (((-547) $) 30)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3643 (($ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2118 (($ $) NIL)) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL)) (-3219 (($) NIL T CONST)) (-2446 (($ $) NIL)) (-2698 (((-3 (-547) "failed") $) 73) (((-3 (-398 (-547)) "failed") $) 26) (((-3 (-370) "failed") $) 70)) (-2643 (((-547) $) 75) (((-398 (-547)) $) 67) (((-370) $) 68)) (-2079 (($ $ $) 96)) (-2537 (((-3 $ "failed") $) 87)) (-2052 (($ $ $) 95)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3225 (((-890)) 77) (((-890) (-890)) 76)) (-3848 (((-112) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL)) (-3707 (((-547) $) NIL)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL)) (-1684 (($ $) NIL)) (-3937 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2429 (((-547) (-547)) 81) (((-547)) 82)) (-2847 (($ $ $) NIL) (($) NIL (-12 (-3998 (|has| $ (-6 -4311))) (-3998 (|has| $ (-6 -4319)))))) (-2552 (((-547) (-547)) 79) (((-547)) 80)) (-3563 (($ $ $) NIL) (($) NIL (-12 (-3998 (|has| $ (-6 -4311))) (-3998 (|has| $ (-6 -4319)))))) (-1448 (((-547) $) 16)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 91)) (-3880 (((-890) (-547)) NIL (|has| $ (-6 -4319)))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL)) (-1435 (($ $) NIL)) (-1347 (($ (-547) (-547)) NIL) (($ (-547) (-547) (-890)) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) 92)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4248 (((-547) $) 22)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 94)) (-2871 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4319)))) (-3810 (((-890) (-547)) NIL (|has| $ (-6 -4319)))) (-2829 (((-370) $) NIL) (((-217) $) NIL) (((-861 (-370)) $) NIL)) (-3834 (((-832) $) 52) (($ (-547)) 63) (($ $) NIL) (($ (-398 (-547))) 66) (($ (-547)) 63) (($ (-398 (-547))) 66) (($ (-370)) 60) (((-370) $) 50) (($ (-675)) 55)) (-2311 (((-745)) 103)) (-2751 (($ (-547) (-547) (-890)) 44)) (-1564 (($ $) NIL)) (-3936 (((-890)) NIL) (((-890) (-890)) NIL (|has| $ (-6 -4319)))) (-1849 (((-890)) 35) (((-890) (-890)) 78)) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL)) (-3267 (($) 32 T CONST)) (-3277 (($) 17 T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 83)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 101)) (-2497 (($ $ $) 65)) (-2484 (($ $) 99) (($ $ $) 100)) (-2470 (($ $ $) 98)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ $ (-398 (-547))) 90)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 97) (($ $ $) 88) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-673) (-13 (-395) (-378) (-354) (-1007 (-370)) (-1007 (-398 (-547))) (-145) (-10 -8 (-15 -3225 ((-890) (-890))) (-15 -3225 ((-890))) (-15 -1849 ((-890) (-890))) (-15 -1849 ((-890))) (-15 -2552 ((-547) (-547))) (-15 -2552 ((-547))) (-15 -2429 ((-547) (-547))) (-15 -2429 ((-547))) (-15 -3834 ((-370) $)) (-15 -3834 ($ (-675))) (-15 -1448 ((-547) $)) (-15 -4248 ((-547) $)) (-15 -2751 ($ (-547) (-547) (-890)))))) (T -673)) +((-1849 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-3225 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-3225 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) (-2552 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-2552 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-2429 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-370)) (-5 *1 (-673)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673)))) (-2751 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-5 *1 (-673))))) +(-13 (-395) (-378) (-354) (-1007 (-370)) (-1007 (-398 (-547))) (-145) (-10 -8 (-15 -3225 ((-890) (-890))) (-15 -3225 ((-890))) (-15 -1849 ((-890) (-890))) (-15 -1849 ((-890))) (-15 -2552 ((-547) (-547))) (-15 -2552 ((-547))) (-15 -2429 ((-547) (-547))) (-15 -2429 ((-547))) (-15 -3834 ((-370) $)) (-15 -3834 ($ (-675))) (-15 -1448 ((-547) $)) (-15 -4248 ((-547) $)) (-15 -2751 ($ (-547) (-547) (-890))))) +((-1545 (((-663 |#1|) (-663 |#1|) |#1| |#1|) 65)) (-3340 (((-663 |#1|) (-663 |#1|) |#1|) 48)) (-1414 (((-663 |#1|) (-663 |#1|) |#1|) 66)) (-2659 (((-663 |#1|) (-663 |#1|)) 49)) (-1665 (((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|) 64))) +(((-674 |#1|) (-10 -7 (-15 -2659 ((-663 |#1|) (-663 |#1|))) (-15 -3340 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -1414 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -1545 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -1665 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|))) (-298)) (T -674)) +((-1665 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-674 *3)) (-4 *3 (-298)))) (-1545 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) (-1414 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) (-3340 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3))))) +(-10 -7 (-15 -2659 ((-663 |#1|) (-663 |#1|))) (-15 -3340 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -1414 ((-663 |#1|) (-663 |#1|) |#1|)) (-15 -1545 ((-663 |#1|) (-663 |#1|) |#1| |#1|)) (-15 -1665 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1605 (($ $ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2702 (($ $ $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL)) (-1302 (($ $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) 27)) (-2643 (((-547) $) 25)) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL)) (-2543 (((-112) $) NIL)) (-2430 (((-398 (-547)) $) NIL)) (-3229 (($ $) NIL) (($) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2490 (($ $ $ $) NIL)) (-1723 (($ $ $) NIL)) (-3848 (((-112) $) NIL)) (-1569 (($ $ $) NIL)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-4114 (((-112) $) NIL)) (-3466 (((-112) $) NIL)) (-3652 (((-3 $ "failed") $) NIL)) (-3937 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2605 (($ $ $ $) NIL)) (-2847 (($ $ $) NIL)) (-1781 (((-890) (-890)) 10) (((-890)) 9)) (-3563 (($ $ $) NIL)) (-2417 (($ $) NIL)) (-4202 (($ $) NIL)) (-3685 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-2368 (($ $ $) NIL)) (-3045 (($) NIL T CONST)) (-3771 (($ $) NIL)) (-3979 (((-1082) $) NIL) (($ $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2677 (($ $) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3590 (((-112) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL) (($ $ (-745)) NIL)) (-1882 (($ $) NIL)) (-2265 (($ $) NIL)) (-2829 (((-217) $) NIL) (((-370) $) NIL) (((-861 (-547)) $) NIL) (((-523) $) NIL) (((-547) $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) 24) (($ $) NIL) (($ (-547)) 24) (((-307 $) (-307 (-547))) 18)) (-2311 (((-745)) NIL)) (-1837 (((-112) $ $) NIL)) (-1884 (($ $ $) NIL)) (-1849 (($) NIL)) (-1932 (((-112) $ $) NIL)) (-1482 (($ $ $ $) NIL)) (-2040 (($ $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL) (($ $ (-745)) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL))) +(((-675) (-13 (-378) (-532) (-10 -8 (-15 -1781 ((-890) (-890))) (-15 -1781 ((-890))) (-15 -3834 ((-307 $) (-307 (-547))))))) (T -675)) +((-1781 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-1781 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) (-3834 (*1 *2 *3) (-12 (-5 *3 (-307 (-547))) (-5 *2 (-307 (-675))) (-5 *1 (-675))))) +(-13 (-378) (-532) (-10 -8 (-15 -1781 ((-890) (-890))) (-15 -1781 ((-890))) (-15 -3834 ((-307 $) (-307 (-547)))))) +((-2142 (((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)) 19)) (-1895 (((-1 |#4| |#2| |#3|) (-1135)) 12))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1895 ((-1 |#4| |#2| |#3|) (-1135))) (-15 -2142 ((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)))) (-592 (-523)) (-1172) (-1172) (-1172)) (T -676)) +((-2142 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) (-4 *3 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *7 (-1172)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) (-4 *4 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172)) (-4 *7 (-1172))))) +(-10 -7 (-15 -1895 ((-1 |#4| |#2| |#3|) (-1135))) (-15 -2142 ((-1 |#4| |#2| |#3|) |#1| (-1135) (-1135)))) +((-3821 (((-112) $ $) NIL)) (-3112 (((-1223) $ (-745)) 14)) (-2867 (((-745) $) 12)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 25)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 24))) +(((-677 |#1|) (-13 (-131) (-591 |#1|) (-10 -8 (-15 -3834 ($ |#1|)))) (-1063)) (T -677)) +((-3834 (*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063))))) +(-13 (-131) (-591 |#1|) (-10 -8 (-15 -3834 ($ |#1|)))) +((-2008 (((-1 (-217) (-217) (-217)) |#1| (-1135) (-1135)) 34) (((-1 (-217) (-217)) |#1| (-1135)) 39))) +(((-678 |#1|) (-10 -7 (-15 -2008 ((-1 (-217) (-217)) |#1| (-1135))) (-15 -2008 ((-1 (-217) (-217) (-217)) |#1| (-1135) (-1135)))) (-592 (-523))) (T -678)) +((-2008 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-217) (-217) (-217))) (-5 *1 (-678 *3)) (-4 *3 (-592 (-523))))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-217) (-217))) (-5 *1 (-678 *3)) (-4 *3 (-592 (-523)))))) +(-10 -7 (-15 -2008 ((-1 (-217) (-217)) |#1| (-1135))) (-15 -2008 ((-1 (-217) (-217) (-217)) |#1| (-1135) (-1135)))) +((-3556 (((-1135) |#1| (-1135) (-619 (-1135))) 9) (((-1135) |#1| (-1135) (-1135) (-1135)) 12) (((-1135) |#1| (-1135) (-1135)) 11) (((-1135) |#1| (-1135)) 10))) +(((-679 |#1|) (-10 -7 (-15 -3556 ((-1135) |#1| (-1135))) (-15 -3556 ((-1135) |#1| (-1135) (-1135))) (-15 -3556 ((-1135) |#1| (-1135) (-1135) (-1135))) (-15 -3556 ((-1135) |#1| (-1135) (-619 (-1135))))) (-592 (-523))) (T -679)) +((-3556 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) (-3556 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) (-3556 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) (-3556 (*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523)))))) +(-10 -7 (-15 -3556 ((-1135) |#1| (-1135))) (-15 -3556 ((-1135) |#1| (-1135) (-1135))) (-15 -3556 ((-1135) |#1| (-1135) (-1135) (-1135))) (-15 -3556 ((-1135) |#1| (-1135) (-619 (-1135))))) +((-1552 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-680 |#1| |#2|) (-10 -7 (-15 -1552 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1172) (-1172)) (T -680)) +((-1552 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-680 *3 *4)) (-4 *3 (-1172)) (-4 *4 (-1172))))) +(-10 -7 (-15 -1552 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2011 (((-1 |#3| |#2|) (-1135)) 11)) (-2142 (((-1 |#3| |#2|) |#1| (-1135)) 21))) +(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -2011 ((-1 |#3| |#2|) (-1135))) (-15 -2142 ((-1 |#3| |#2|) |#1| (-1135)))) (-592 (-523)) (-1172) (-1172)) (T -681)) +((-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) (-4 *3 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) (-4 *4 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172))))) +(-10 -7 (-15 -2011 ((-1 |#3| |#2|) (-1135))) (-15 -2142 ((-1 |#3| |#2|) |#1| (-1135)))) +((-2523 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|) 62)) (-2394 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|) 75)) (-2269 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|) 34))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2269 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|)) (-15 -2394 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -2523 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|))) (-767) (-821) (-298) (-918 |#3| |#1| |#2|)) (T -682)) +((-2523 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-619 (-1131 *13))) (-5 *3 (-1131 *13)) (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) (-5 *7 (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| *13))))) (-5 *8 (-619 (-745))) (-5 *9 (-1218 (-619 (-1131 *10)))) (-4 *12 (-821)) (-4 *10 (-298)) (-4 *13 (-918 *10 *11 *12)) (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13)))) (-2394 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1131 *9))) (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) (-4 *11 (-821)) (-4 *9 (-298)) (-4 *12 (-918 *9 *10 *11)) (-4 *10 (-767)) (-5 *2 (-619 (-1131 *12))) (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1131 *12)))) (-2269 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-619 (-1131 *11))) (-5 *3 (-1131 *11)) (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) (-5 *7 (-1218 (-619 (-1131 *8)))) (-4 *10 (-821)) (-4 *8 (-298)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) (-5 *1 (-682 *9 *10 *8 *11))))) +(-10 -7 (-15 -2269 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 |#3|) (-619 (-745)) (-619 (-1131 |#4|)) (-1218 (-619 (-1131 |#3|))) |#3|)) (-15 -2394 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#3|)) (-619 |#3|) (-619 |#4|) (-619 (-745)) |#3|)) (-15 -2523 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-619 |#2|) (-619 (-1131 |#4|)) (-619 |#3|) (-619 |#4|) (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| |#4|)))) (-619 (-745)) (-1218 (-619 (-1131 |#3|))) |#3|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2054 (($ $) 39)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-2229 (($ |#1| (-745)) 37)) (-1626 (((-745) $) 41)) (-2027 ((|#1| $) 40)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1618 (((-745) $) 42)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-3338 ((|#1| $ (-745)) 38)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) (((-683 |#1|) (-138) (-1016)) (T -683)) -((-2512 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016))))) -(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2512 ((-745) $)) (-15 -3904 ((-745) $)) (-15 -2197 (|t#1| $)) (-15 -1872 ($ $)) (-15 -1951 (|t#1| $ (-745))) (-15 -2024 ($ |t#1| (-745))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2540 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-684 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2540 (|#6| (-1 |#4| |#1|) |#3|))) (-540) (-1194 |#1|) (-1194 (-399 |#2|)) (-540) (-1194 |#4|) (-1194 (-399 |#5|))) (T -684)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-540)) (-4 *7 (-540)) (-4 *6 (-1194 *5)) (-4 *2 (-1194 (-399 *8))) (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1194 (-399 *6))) (-4 *8 (-1194 *7))))) -(-10 -7 (-15 -2540 (|#6| (-1 |#4| |#1|) |#3|))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3228 (((-1118) (-832)) 31)) (-2487 (((-1223) (-1118)) 28)) (-3249 (((-1118) (-832)) 24)) (-3238 (((-1118) (-832)) 25)) (-3743 (((-832) $) NIL) (((-1118) (-832)) 23)) (-2214 (((-112) $ $) NIL))) -(((-685) (-13 (-1063) (-10 -7 (-15 -3743 ((-1118) (-832))) (-15 -3249 ((-1118) (-832))) (-15 -3238 ((-1118) (-832))) (-15 -3228 ((-1118) (-832))) (-15 -2487 ((-1223) (-1118)))))) (T -685)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-685))))) -(-13 (-1063) (-10 -7 (-15 -3743 ((-1118) (-832))) (-15 -3249 ((-1118) (-832))) (-15 -3238 ((-1118) (-832))) (-15 -3228 ((-1118) (-832))) (-15 -2487 ((-1223) (-1118))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-2061 (($ |#1| |#2|) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 ((|#2| $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3368 (((-3 $ "failed") $ $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) ((|#1| $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-686 |#1| |#2| |#3| |#4| |#5|) (-13 (-355) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -686)) -((-1328 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2061 (*1 *1 *2 *3) (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3368 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-355) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)))) -((-3730 (((-112) $ $) 78)) (-3324 (((-112) $) 30)) (-1648 (((-1218 |#1|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#1|)) NIL)) (-1884 (((-1131 $) $ (-1045)) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) NIL (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-3423 (((-745)) 47 (|has| |#1| (-360)))) (-1594 (($ $ (-745)) NIL)) (-1584 (($ $ (-745)) NIL)) (-3335 ((|#2| |#2|) 44)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1045) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 34)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2061 (($ |#2|) 42)) (-3859 (((-3 $ "failed") $) 86)) (-2545 (($) 51 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-1574 (($ $ $) NIL)) (-1529 (($ $ $) NIL (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-3286 (((-927 $)) 80)) (-4256 (($ $ |#1| (-745) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ $) NIL (|has| |#1| (-540)))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-3535 (($ $ (-745)) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 77) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1328 ((|#2|) 45)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1639 (((-1131 |#1|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-2050 ((|#2| $) 41)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) 28)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-3262 (($ $) 79 (|has| |#1| (-341)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) NIL (|has| |#1| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 87 (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2512 (((-745) $) 32) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3273 (((-927 $)) 36)) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#1| (-540)))) (-3743 (((-832) $) 61) (($ (-548)) NIL) (($ |#1|) 58) (($ (-1045)) NIL) (($ |#2|) 68) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 20 T CONST)) (-3323 (((-1218 |#1|) $) 75)) (-3311 (($ (-1218 |#1|)) 50)) (-3118 (($) 8 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3297 (((-1218 |#1|) $) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 69)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) 72) (($ $ $) NIL)) (-2290 (($ $ $) 33)) (** (($ $ (-890)) NIL) (($ $ (-745)) 81)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 57) (($ $ $) 74) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-687 |#1| |#2|) (-13 (-1194 |#1|) (-10 -8 (-15 -3335 (|#2| |#2|)) (-15 -1328 (|#2|)) (-15 -2061 ($ |#2|)) (-15 -2050 (|#2| $)) (-15 -3743 ($ |#2|)) (-15 -3323 ((-1218 |#1|) $)) (-15 -3311 ($ (-1218 |#1|))) (-15 -3297 ((-1218 |#1|) $)) (-15 -3286 ((-927 $))) (-15 -3273 ((-927 $))) (IF (|has| |#1| (-341)) (-15 -3262 ($ $)) |%noBranch|) (IF (|has| |#1| (-360)) (-6 (-360)) |%noBranch|))) (-1016) (-1194 |#1|)) (T -687)) -((-3335 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-1328 (*1 *2) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-2061 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-2050 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3297 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3273 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3262 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) (-4 *3 (-1194 *2))))) -(-13 (-1194 |#1|) (-10 -8 (-15 -3335 (|#2| |#2|)) (-15 -1328 (|#2|)) (-15 -2061 ($ |#2|)) (-15 -2050 (|#2| $)) (-15 -3743 ($ |#2|)) (-15 -3323 ((-1218 |#1|) $)) (-15 -3311 ($ (-1218 |#1|))) (-15 -3297 ((-1218 |#1|) $)) (-15 -3286 ((-927 $))) (-15 -3273 ((-927 $))) (IF (|has| |#1| (-341)) (-15 -3262 ($ $)) |%noBranch|) (IF (|has| |#1| (-360)) (-6 (-360)) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3337 ((|#1| $) 13)) (-3932 (((-1082) $) NIL)) (-3352 ((|#2| $) 12)) (-3754 (($ |#1| |#2|) 16)) (-3743 (((-832) $) NIL) (($ (-2 (|:| -3337 |#1|) (|:| -3352 |#2|))) 15) (((-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) $) 14)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 11))) -(((-688 |#1| |#2| |#3|) (-13 (-821) (-10 -8 (-15 -3352 (|#2| $)) (-15 -3337 (|#1| $)) (-15 -3743 ($ (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)))) (-15 -3743 ((-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) $)) (-15 -3754 ($ |#1| |#2|)))) (-821) (-1063) (-1 (-112) (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)))) (T -688)) -((-3352 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) (-14 *4 (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *2)) (-2 (|:| -3337 *3) (|:| -3352 *2)))))) (-3337 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) (-2 (|:| -3337 *2) (|:| -3352 *3)))))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) (-4 *3 (-821)) (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063)) (-14 *5 (-1 (-112) *2 *2)))) (-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) (-2 (|:| -3337 *2) (|:| -3352 *3))))))) -(-13 (-821) (-10 -8 (-15 -3352 (|#2| $)) (-15 -3337 (|#1| $)) (-15 -3743 ($ (-2 (|:| -3337 |#1|) (|:| -3352 |#2|)))) (-15 -3743 ((-2 (|:| -3337 |#1|) (|:| -3352 |#2|)) $)) (-15 -3754 ($ |#1| |#2|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 59)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2375 ((|#1| $) NIL) (((-114) $) 39)) (-3859 (((-3 $ "failed") $) 90)) (-1737 ((|#2| (-114) |#2|) 82)) (-2266 (((-112) $) NIL)) (-1727 (($ |#1| (-353 (-114))) 14)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1747 (($ $ (-1 |#2| |#2|)) 58)) (-1756 (($ $ (-1 |#2| |#2|)) 44)) (-3171 ((|#2| $ |#2|) 33)) (-1765 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-3743 (((-832) $) 66) (($ (-548)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 37)) (-1773 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-3107 (($) 21 T CONST)) (-3118 (($) 9 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) 48) (($ $ $) NIL)) (-2290 (($ $ $) 73)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-548)) NIL) (($ $ (-548)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) -(((-689 |#1| |#2|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#2| |#2|))) (-15 -1747 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#2| (-114) |#2|)) (-15 -1727 ($ |#1| (-353 (-114)))))) (-1016) (-622 |#1|)) (T -689)) -((-1773 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1773 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1765 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) (-4 *4 (-622 *3)))) (-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2)) (-4 *2 (-622 *4)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-353 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) (-4 *4 (-622 *2))))) -(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#2| |#2|))) (-15 -1747 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#2| (-114) |#2|)) (-15 -1727 ($ |#1| (-353 (-114)))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 33)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ |#1| |#2|) 25)) (-3859 (((-3 $ "failed") $) 48)) (-2266 (((-112) $) 35)) (-1328 ((|#2| $) 12)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 49)) (-3932 (((-1082) $) NIL)) (-3368 (((-3 $ "failed") $ $) 47)) (-3743 (((-832) $) 24) (($ (-548)) 19) ((|#1| $) 13)) (-3835 (((-745)) 28)) (-3107 (($) 16 T CONST)) (-3118 (($) 30 T CONST)) (-2214 (((-112) $ $) 38)) (-2299 (($ $) 43) (($ $ $) 37)) (-2290 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 21) (($ $ $) 20))) -(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-1016) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) -((-3859 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1328 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2061 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3368 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1016) (-10 -8 (-15 -1328 (|#2| $)) (-15 -3743 (|#1| $)) (-15 -2061 ($ |#1| |#2|)) (-15 -3368 ((-3 $ "failed") $ $)) (-15 -3859 ((-3 $ "failed") $)) (-15 -2153 ($ $)))) -((* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-691 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-692 |#2|) (-169)) (T -691)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +((-1618 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2054 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1618 ((-745) $)) (-15 -1626 ((-745) $)) (-15 -2027 (|t#1| $)) (-15 -2054 ($ $)) (-15 -3338 (|t#1| $ (-745))) (-15 -2229 ($ |t#1| (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2781 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-684 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2781 (|#6| (-1 |#4| |#1|) |#3|))) (-539) (-1194 |#1|) (-1194 (-398 |#2|)) (-539) (-1194 |#4|) (-1194 (-398 |#5|))) (T -684)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-539)) (-4 *7 (-539)) (-4 *6 (-1194 *5)) (-4 *2 (-1194 (-398 *8))) (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1194 (-398 *6))) (-4 *8 (-1194 *7))))) +(-10 -7 (-15 -2781 (|#6| (-1 |#4| |#1|) |#3|))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2631 (((-1118) (-832)) 31)) (-2683 (((-1223) (-1118)) 28)) (-1510 (((-1118) (-832)) 24)) (-1386 (((-1118) (-832)) 25)) (-3834 (((-832) $) NIL) (((-1118) (-832)) 23)) (-2371 (((-112) $ $) NIL))) +(((-685) (-13 (-1063) (-10 -7 (-15 -3834 ((-1118) (-832))) (-15 -1510 ((-1118) (-832))) (-15 -1386 ((-1118) (-832))) (-15 -2631 ((-1118) (-832))) (-15 -2683 ((-1223) (-1118)))))) (T -685)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-685))))) +(-13 (-1063) (-10 -7 (-15 -3834 ((-1118) (-832))) (-15 -1510 ((-1118) (-832))) (-15 -1386 ((-1118) (-832))) (-15 -2631 ((-1118) (-832))) (-15 -2683 ((-1223) (-1118))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL)) (-2542 (($ |#1| |#2|) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3148 ((|#2| $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3226 (((-3 $ "failed") $ $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) ((|#1| $) NIL)) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-686 |#1| |#2| |#3| |#4| |#5|) (-13 (-354) (-10 -8 (-15 -3148 (|#2| $)) (-15 -3834 (|#1| $)) (-15 -2542 ($ |#1| |#2|)) (-15 -3226 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -686)) +((-3148 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3834 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2542 (*1 *1 *2 *3) (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3226 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-354) (-10 -8 (-15 -3148 (|#2| $)) (-15 -3834 (|#1| $)) (-15 -2542 ($ |#1| |#2|)) (-15 -3226 ((-3 $ "failed") $ $)))) +((-3821 (((-112) $ $) 78)) (-4046 (((-112) $) 30)) (-3468 (((-1218 |#1|) $ (-745)) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-3300 (($ (-1131 |#1|)) NIL)) (-2067 (((-1131 $) $ (-1045)) NIL) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $) NIL (|has| |#1| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-3603 (((-745)) 47 (|has| |#1| (-359)))) (-4113 (($ $ (-745)) NIL)) (-4021 (($ $ (-745)) NIL)) (-4145 ((|#2| |#2|) 44)) (-1374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-442)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1045) $) NIL)) (-3772 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) 34)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2542 (($ |#2|) 42)) (-2537 (((-3 $ "failed") $) 86)) (-3229 (($) 51 (|has| |#1| (-359)))) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-3914 (($ $ $) NIL)) (-1595 (($ $ $) NIL (|has| |#1| (-539)))) (-1484 (((-2 (|:| -1557 |#1|) (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-1889 (((-927 $)) 80)) (-3913 (($ $ |#1| (-745) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3707 (((-745) $ $) NIL (|has| |#1| (-539)))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2245 (($ (-1131 |#1|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-2438 (($ $ (-745)) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) 77) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1045)) NIL) (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3148 ((|#2|) 45)) (-1626 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-745) (-745)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3376 (((-1131 |#1|) $) NIL)) (-2185 (((-3 (-1045) "failed") $) NIL)) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-2531 ((|#2| $) 41)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) 28)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-4189 (((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745)) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1045)) (|:| -4248 (-745))) "failed") $) NIL)) (-2069 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3045 (($) NIL (|has| |#1| (-1111)) CONST)) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1647 (($ $) 79 (|has| |#1| (-340)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) NIL (|has| |#1| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#1| (-539)))) (-3215 (((-3 $ "failed") $ (-745)) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 87 (|has| |#1| (-354)))) (-3846 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-3443 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1618 (((-745) $) 32) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1774 (((-927 $)) 36)) (-1704 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#1| (-539)))) (-3834 (((-832) $) 61) (($ (-547)) NIL) (($ |#1|) 58) (($ (-1045)) NIL) (($ |#2|) 68) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) 20 T CONST)) (-4034 (((-1218 |#1|) $) 75)) (-3924 (($ (-1218 |#1|)) 50)) (-3277 (($) 8 T CONST)) (-1686 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3839 (((-1218 |#1|) $) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 69)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) 72) (($ $ $) NIL)) (-2470 (($ $ $) 33)) (** (($ $ (-890)) NIL) (($ $ (-745)) 81)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 57) (($ $ $) 74) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-687 |#1| |#2|) (-13 (-1194 |#1|) (-10 -8 (-15 -4145 (|#2| |#2|)) (-15 -3148 (|#2|)) (-15 -2542 ($ |#2|)) (-15 -2531 (|#2| $)) (-15 -3834 ($ |#2|)) (-15 -4034 ((-1218 |#1|) $)) (-15 -3924 ($ (-1218 |#1|))) (-15 -3839 ((-1218 |#1|) $)) (-15 -1889 ((-927 $))) (-15 -1774 ((-927 $))) (IF (|has| |#1| (-340)) (-15 -1647 ($ $)) |%noBranch|) (IF (|has| |#1| (-359)) (-6 (-359)) |%noBranch|))) (-1016) (-1194 |#1|)) (T -687)) +((-4145 (*1 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-3148 (*1 *2) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-2542 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) (-4034 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-3839 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-1889 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-1774 (*1 *2) (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) (-4 *4 (-1194 *3)))) (-1647 (*1 *1 *1) (-12 (-4 *2 (-340)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) (-4 *3 (-1194 *2))))) +(-13 (-1194 |#1|) (-10 -8 (-15 -4145 (|#2| |#2|)) (-15 -3148 (|#2|)) (-15 -2542 ($ |#2|)) (-15 -2531 (|#2| $)) (-15 -3834 ($ |#2|)) (-15 -4034 ((-1218 |#1|) $)) (-15 -3924 ($ (-1218 |#1|))) (-15 -3839 ((-1218 |#1|) $)) (-15 -1889 ((-927 $))) (-15 -1774 ((-927 $))) (IF (|has| |#1| (-340)) (-15 -1647 ($ $)) |%noBranch|) (IF (|has| |#1| (-359)) (-6 (-359)) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3479 ((|#1| $) 13)) (-3979 (((-1082) $) NIL)) (-4248 ((|#2| $) 12)) (-3841 (($ |#1| |#2|) 16)) (-3834 (((-832) $) NIL) (($ (-2 (|:| -3479 |#1|) (|:| -4248 |#2|))) 15) (((-2 (|:| -3479 |#1|) (|:| -4248 |#2|)) $) 14)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 11))) +(((-688 |#1| |#2| |#3|) (-13 (-821) (-10 -8 (-15 -4248 (|#2| $)) (-15 -3479 (|#1| $)) (-15 -3834 ($ (-2 (|:| -3479 |#1|) (|:| -4248 |#2|)))) (-15 -3834 ((-2 (|:| -3479 |#1|) (|:| -4248 |#2|)) $)) (-15 -3841 ($ |#1| |#2|)))) (-821) (-1063) (-1 (-112) (-2 (|:| -3479 |#1|) (|:| -4248 |#2|)) (-2 (|:| -3479 |#1|) (|:| -4248 |#2|)))) (T -688)) +((-4248 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) (-14 *4 (-1 (-112) (-2 (|:| -3479 *3) (|:| -4248 *2)) (-2 (|:| -3479 *3) (|:| -4248 *2)))))) (-3479 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *3)) (-2 (|:| -3479 *2) (|:| -4248 *3)))))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3479 *3) (|:| -4248 *4))) (-4 *3 (-821)) (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3479 *3) (|:| -4248 *4))) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063)) (-14 *5 (-1 (-112) *2 *2)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063)) (-14 *4 (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *3)) (-2 (|:| -3479 *2) (|:| -4248 *3))))))) +(-13 (-821) (-10 -8 (-15 -4248 (|#2| $)) (-15 -3479 (|#1| $)) (-15 -3834 ($ (-2 (|:| -3479 |#1|) (|:| -4248 |#2|)))) (-15 -3834 ((-2 (|:| -3479 |#1|) (|:| -4248 |#2|)) $)) (-15 -3841 ($ |#1| |#2|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 59)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-2643 ((|#1| $) NIL) (((-114) $) 39)) (-2537 (((-3 $ "failed") $) 90)) (-1947 ((|#2| (-114) |#2|) 82)) (-4114 (((-112) $) NIL)) (-3082 (($ |#1| (-352 (-114))) 14)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2044 (($ $ (-1 |#2| |#2|)) 58)) (-2148 (($ $ (-1 |#2| |#2|)) 44)) (-3329 ((|#2| $ |#2|) 33)) (-2249 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-3834 (((-832) $) 66) (($ (-547)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) 37)) (-2353 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-3267 (($) 21 T CONST)) (-3277 (($) 9 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) 48) (($ $ $) NIL)) (-2470 (($ $ $) 73)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-547)) NIL) (($ $ (-547)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) +(((-689 |#1| |#2|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2353 ($ $)) (-15 -2353 ($ $ $)) (-15 -2249 (|#1| |#1|))) |%noBranch|) (-15 -2148 ($ $ (-1 |#2| |#2|))) (-15 -2044 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -1947 (|#2| (-114) |#2|)) (-15 -3082 ($ |#1| (-352 (-114)))))) (-1016) (-622 |#1|)) (T -689)) +((-2353 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-2353 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-2249 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) (-4 *3 (-622 *2)))) (-2148 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (-2044 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) (-4 *4 (-622 *3)))) (-1947 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2)) (-4 *2 (-622 *4)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *3 (-352 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) (-4 *4 (-622 *2))))) +(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2353 ($ $)) (-15 -2353 ($ $ $)) (-15 -2249 (|#1| |#1|))) |%noBranch|) (-15 -2148 ($ $ (-1 |#2| |#2|))) (-15 -2044 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -1947 (|#2| (-114) |#2|)) (-15 -3082 ($ |#1| (-352 (-114)))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 33)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2542 (($ |#1| |#2|) 25)) (-2537 (((-3 $ "failed") $) 48)) (-4114 (((-112) $) 35)) (-3148 ((|#2| $) 12)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 49)) (-3979 (((-1082) $) NIL)) (-3226 (((-3 $ "failed") $ $) 47)) (-3834 (((-832) $) 24) (($ (-547)) 19) ((|#1| $) 13)) (-2311 (((-745)) 28)) (-3267 (($) 16 T CONST)) (-3277 (($) 30 T CONST)) (-2371 (((-112) $ $) 38)) (-2484 (($ $) 43) (($ $ $) 37)) (-2470 (($ $ $) 40)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 21) (($ $ $) 20))) +(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-1016) (-10 -8 (-15 -3148 (|#2| $)) (-15 -3834 (|#1| $)) (-15 -2542 ($ |#1| |#2|)) (-15 -3226 ((-3 $ "failed") $ $)) (-15 -2537 ((-3 $ "failed") $)) (-15 -1976 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) +((-2537 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3148 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3834 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2542 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3226 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1976 (*1 *1 *1) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1016) (-10 -8 (-15 -3148 (|#2| $)) (-15 -3834 (|#1| $)) (-15 -2542 ($ |#1| |#2|)) (-15 -3226 ((-3 $ "failed") $ $)) (-15 -2537 ((-3 $ "failed") $)) (-15 -1976 ($ $)))) +((* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-691 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-692 |#2|) (-169)) (T -691)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) (((-692 |#1|) (-138) (-169)) (T -692)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-2970 (($ |#1|) 17) (($ $ |#1|) 20)) (-4071 (($ |#1|) 18) (($ $ |#1|) 21)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2266 (((-112) $) NIL)) (-3385 (($ |#1| |#1| |#1| |#1|) 8)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 16)) (-3932 (((-1082) $) NIL)) (-2460 ((|#1| $ |#1|) 24) (((-807 |#1|) $ (-807 |#1|)) 32)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3743 (((-832) $) 39)) (-3118 (($) 9 T CONST)) (-2214 (((-112) $ $) 44)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ $ $) 14))) -(((-693 |#1|) (-13 (-464) (-10 -8 (-15 -3385 ($ |#1| |#1| |#1| |#1|)) (-15 -2970 ($ |#1|)) (-15 -4071 ($ |#1|)) (-15 -3859 ($)) (-15 -2970 ($ $ |#1|)) (-15 -4071 ($ $ |#1|)) (-15 -3859 ($ $)) (-15 -2460 (|#1| $ |#1|)) (-15 -2460 ((-807 |#1|) $ (-807 |#1|))))) (-355)) (T -693)) -((-3385 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2970 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-4071 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-3859 (*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2970 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-4071 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-3859 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2460 (*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) (-2460 (*1 *2 *1 *2) (-12 (-5 *2 (-807 *3)) (-4 *3 (-355)) (-5 *1 (-693 *3))))) -(-13 (-464) (-10 -8 (-15 -3385 ($ |#1| |#1| |#1| |#1|)) (-15 -2970 ($ |#1|)) (-15 -4071 ($ |#1|)) (-15 -3859 ($)) (-15 -2970 ($ $ |#1|)) (-15 -4071 ($ $ |#1|)) (-15 -3859 ($ $)) (-15 -2460 (|#1| $ |#1|)) (-15 -2460 ((-807 |#1|) $ (-807 |#1|))))) -((-2246 (($ $ (-890)) 12)) (-3424 (($ $ (-890)) 13)) (** (($ $ (-890)) 10))) -(((-694 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) (-695)) (T -694)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-2246 (($ $ (-890)) 15)) (-3424 (($ $ (-890)) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 16))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-1302 (($ |#1|) 17) (($ $ |#1|) 20)) (-3842 (($ |#1|) 18) (($ $ |#1|) 21)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4114 (((-112) $) NIL)) (-3377 (($ |#1| |#1| |#1| |#1|) 8)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 16)) (-3979 (((-1082) $) NIL)) (-2670 ((|#1| $ |#1|) 24) (((-807 |#1|) $ (-807 |#1|)) 32)) (-2444 (($ $ $) NIL)) (-4121 (($ $ $) NIL)) (-3834 (((-832) $) 39)) (-3277 (($) 9 T CONST)) (-2371 (((-112) $ $) 44)) (-2497 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ $ $) 14))) +(((-693 |#1|) (-13 (-463) (-10 -8 (-15 -3377 ($ |#1| |#1| |#1| |#1|)) (-15 -1302 ($ |#1|)) (-15 -3842 ($ |#1|)) (-15 -2537 ($)) (-15 -1302 ($ $ |#1|)) (-15 -3842 ($ $ |#1|)) (-15 -2537 ($ $)) (-15 -2670 (|#1| $ |#1|)) (-15 -2670 ((-807 |#1|) $ (-807 |#1|))))) (-354)) (T -693)) +((-3377 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-1302 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-3842 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-2537 (*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-1302 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-3842 (*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-2537 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-2670 (*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) (-2670 (*1 *2 *1 *2) (-12 (-5 *2 (-807 *3)) (-4 *3 (-354)) (-5 *1 (-693 *3))))) +(-13 (-463) (-10 -8 (-15 -3377 ($ |#1| |#1| |#1| |#1|)) (-15 -1302 ($ |#1|)) (-15 -3842 ($ |#1|)) (-15 -2537 ($)) (-15 -1302 ($ $ |#1|)) (-15 -3842 ($ $ |#1|)) (-15 -2537 ($ $)) (-15 -2670 (|#1| $ |#1|)) (-15 -2670 ((-807 |#1|) $ (-807 |#1|))))) +((-3946 (($ $ (-890)) 12)) (-3699 (($ $ (-890)) 13)) (** (($ $ (-890)) 10))) +(((-694 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3699 (|#1| |#1| (-890))) (-15 -3946 (|#1| |#1| (-890)))) (-695)) (T -694)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-890))) (-15 -3699 (|#1| |#1| (-890))) (-15 -3946 (|#1| |#1| (-890)))) +((-3821 (((-112) $ $) 7)) (-3946 (($ $ (-890)) 15)) (-3699 (($ $ (-890)) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 16))) (((-695) (-138)) (T -695)) -((* (*1 *1 *1 *1) (-4 *1 (-695))) (-2246 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (-3424 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890))))) -(-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 -2246 ($ $ (-890))) (-15 -3424 ($ $ (-890))) (-15 ** ($ $ (-890))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-2246 (($ $ (-890)) NIL) (($ $ (-745)) 17)) (-2266 (((-112) $) 10)) (-3424 (($ $ (-890)) NIL) (($ $ (-745)) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15))) -(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3424 (|#1| |#1| (-745))) (-15 -2246 (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) (-697)) (T -696)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3424 (|#1| |#1| (-745))) (-15 -2246 (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3424 (|#1| |#1| (-890))) (-15 -2246 (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-3399 (((-3 $ "failed") $) 17)) (-2246 (($ $ (-890)) 15) (($ $ (-745)) 22)) (-3859 (((-3 $ "failed") $) 19)) (-2266 (((-112) $) 23)) (-3411 (((-3 $ "failed") $) 18)) (-3424 (($ $ (-890)) 14) (($ $ (-745)) 21)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3118 (($) 24 T CONST)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 20)) (* (($ $ $) 16))) +((* (*1 *1 *1 *1) (-4 *1 (-695))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (-3699 (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890))))) +(-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 -3946 ($ $ (-890))) (-15 -3699 ($ $ (-890))) (-15 ** ($ $ (-890))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3946 (($ $ (-890)) NIL) (($ $ (-745)) 17)) (-4114 (((-112) $) 10)) (-3699 (($ $ (-890)) NIL) (($ $ (-745)) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15))) +(((-696 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3699 (|#1| |#1| (-745))) (-15 -3946 (|#1| |#1| (-745))) (-15 -4114 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3699 (|#1| |#1| (-890))) (-15 -3946 (|#1| |#1| (-890)))) (-697)) (T -696)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-745))) (-15 -3699 (|#1| |#1| (-745))) (-15 -3946 (|#1| |#1| (-745))) (-15 -4114 ((-112) |#1|)) (-15 ** (|#1| |#1| (-890))) (-15 -3699 (|#1| |#1| (-890))) (-15 -3946 (|#1| |#1| (-890)))) +((-3821 (((-112) $ $) 7)) (-3480 (((-3 $ "failed") $) 17)) (-3946 (($ $ (-890)) 15) (($ $ (-745)) 22)) (-2537 (((-3 $ "failed") $) 19)) (-4114 (((-112) $) 23)) (-3593 (((-3 $ "failed") $) 18)) (-3699 (($ $ (-890)) 14) (($ $ (-745)) 21)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3277 (($) 24 T CONST)) (-2371 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 20)) (* (($ $ $) 16))) (((-697) (-138)) (T -697)) -((-3118 (*1 *1) (-4 *1 (-697))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) (-2246 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3424 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3859 (*1 *1 *1) (|partial| -4 *1 (-697))) (-3411 (*1 *1 *1) (|partial| -4 *1 (-697))) (-3399 (*1 *1 *1) (|partial| -4 *1 (-697)))) -(-13 (-695) (-10 -8 (-15 (-3118) ($) -2325) (-15 -2266 ((-112) $)) (-15 -2246 ($ $ (-745))) (-15 -3424 ($ $ (-745))) (-15 ** ($ $ (-745))) (-15 -3859 ((-3 $ "failed") $)) (-15 -3411 ((-3 $ "failed") $)) (-15 -3399 ((-3 $ "failed") $)))) -(((-101) . T) ((-592 (-832)) . T) ((-695) . T) ((-1063) . T)) -((-3423 (((-745)) 34)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 22)) (-2061 (($ |#3|) NIL) (((-3 $ "failed") (-399 |#3|)) 44)) (-3859 (((-3 $ "failed") $) 64)) (-2545 (($) 38)) (-3910 ((|#2| $) 20)) (-4160 (($) 17)) (-4050 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-2257 (((-663 |#2|) (-1218 $) (-1 |#2| |#2|)) 59)) (-2591 (((-1218 |#2|) $) NIL) (($ (-1218 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3780 ((|#3| $) 32)) (-2877 (((-1218 $)) 29))) -(((-698 |#1| |#2| |#3|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2545 (|#1|)) (-15 -3423 ((-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2257 ((-663 |#2|) (-1218 |#1|) (-1 |#2| |#2|))) (-15 -2061 ((-3 |#1| "failed") (-399 |#3|))) (-15 -2591 (|#1| |#3|)) (-15 -2061 (|#1| |#3|)) (-15 -4160 (|#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 (|#3| |#1|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2877 ((-1218 |#1|))) (-15 -3780 (|#3| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) (-699 |#2| |#3|) (-169) (-1194 |#2|)) (T -698)) -((-3423 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-745)) (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5))))) -(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -2545 (|#1|)) (-15 -3423 ((-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -2257 ((-663 |#2|) (-1218 |#1|) (-1 |#2| |#2|))) (-15 -2061 ((-3 |#1| "failed") (-399 |#3|))) (-15 -2591 (|#1| |#3|)) (-15 -2061 (|#1| |#3|)) (-15 -4160 (|#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2591 (|#3| |#1|)) (-15 -2591 (|#1| (-1218 |#2|))) (-15 -2591 ((-1218 |#2|) |#1|)) (-15 -2877 ((-1218 |#1|))) (-15 -3780 (|#3| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -3859 ((-3 |#1| "failed") |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 91 (|has| |#1| (-355)))) (-3303 (($ $) 92 (|has| |#1| (-355)))) (-3279 (((-112) $) 94 (|has| |#1| (-355)))) (-2350 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2707 ((|#1| $) 50)) (-3667 (((-1145 (-890) (-745)) (-548)) 144 (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 111 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 112 (|has| |#1| (-355)))) (-4087 (((-112) $ $) 102 (|has| |#1| (-355)))) (-3423 (((-745)) 85 (|has| |#1| (-360)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 166 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 164 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 163)) (-2375 (((-548) $) 167 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 165 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 162)) (-2455 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-341)))) (-1945 (($ $ $) 106 (|has| |#1| (-355)))) (-2341 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-1608 (((-663 (-548)) (-663 $)) 161 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 160 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2061 (($ |#2|) 155) (((-3 $ "failed") (-399 |#2|)) 152 (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-890)) 52)) (-2545 (($) 88 (|has| |#1| (-360)))) (-1922 (($ $ $) 105 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 100 (|has| |#1| (-355)))) (-2771 (($) 146 (|has| |#1| (-341)))) (-3727 (((-112) $) 147 (|has| |#1| (-341)))) (-2208 (($ $ (-745)) 138 (|has| |#1| (-341))) (($ $) 137 (|has| |#1| (-341)))) (-1271 (((-112) $) 113 (|has| |#1| (-355)))) (-1672 (((-890) $) 149 (|has| |#1| (-341))) (((-807 (-890)) $) 135 (|has| |#1| (-341)))) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 49)) (-3725 (((-3 $ "failed") $) 139 (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-355)))) (-2898 ((|#2| $) 42 (|has| |#1| (-355)))) (-2855 (((-890) $) 87 (|has| |#1| (-360)))) (-2050 ((|#2| $) 153)) (-3553 (($ (-619 $)) 98 (|has| |#1| (-355))) (($ $ $) 97 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 114 (|has| |#1| (-355)))) (-3410 (($) 140 (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) 86 (|has| |#1| (-360)))) (-3932 (((-1082) $) 10)) (-4160 (($) 157)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 99 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 96 (|has| |#1| (-355))) (($ $ $) 95 (|has| |#1| (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) 143 (|has| |#1| (-341)))) (-1915 (((-410 $) $) 110 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 107 (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ $) 90 (|has| |#1| (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-355)))) (-4077 (((-745) $) 103 (|has| |#1| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 104 (|has| |#1| (-355)))) (-1566 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-2217 (((-745) $) 148 (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-341)))) (-4050 (($ $) 134 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) 132 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) 130 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135))) 129 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1135) (-745)) 128 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-745))) 127 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1 |#1| |#1|) (-745)) 120 (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-355)))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-355)))) (-3287 ((|#2|) 156)) (-3655 (($) 145 (|has| |#1| (-341)))) (-2447 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2591 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 142 (|has| |#1| (-341)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-355))) (($ (-399 (-548))) 84 (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (($ $) 141 (|has| |#1| (-341))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3780 ((|#2| $) 43)) (-3835 (((-745)) 28)) (-2877 (((-1218 $)) 65)) (-3290 (((-112) $ $) 93 (|has| |#1| (-355)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 133 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) 131 (-1524 (-1723 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) 126 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135))) 125 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1135) (-745)) 124 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-745))) 123 (-1723 (|has| |#1| (-869 (-1135))) (|has| |#1| (-355)))) (($ $ (-1 |#1| |#1|) (-745)) 122 (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-355)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 118 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 115 (|has| |#1| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-399 (-548)) $) 117 (|has| |#1| (-355))) (($ $ (-399 (-548))) 116 (|has| |#1| (-355))))) +((-3277 (*1 *1) (-4 *1 (-697))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-3699 (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) (-2537 (*1 *1 *1) (|partial| -4 *1 (-697))) (-3593 (*1 *1 *1) (|partial| -4 *1 (-697))) (-3480 (*1 *1 *1) (|partial| -4 *1 (-697)))) +(-13 (-695) (-10 -8 (-15 (-3277) ($) -2573) (-15 -4114 ((-112) $)) (-15 -3946 ($ $ (-745))) (-15 -3699 ($ $ (-745))) (-15 ** ($ $ (-745))) (-15 -2537 ((-3 $ "failed") $)) (-15 -3593 ((-3 $ "failed") $)) (-15 -3480 ((-3 $ "failed") $)))) +(((-101) . T) ((-591 (-832)) . T) ((-695) . T) ((-1063) . T)) +((-3603 (((-745)) 34)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2643 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 22)) (-2542 (($ |#3|) NIL) (((-3 $ "failed") (-398 |#3|)) 44)) (-2537 (((-3 $ "failed") $) 64)) (-3229 (($) 38)) (-1684 ((|#2| $) 20)) (-4240 (($) 17)) (-3443 (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-4035 (((-663 |#2|) (-1218 $) (-1 |#2| |#2|)) 59)) (-2829 (((-1218 |#2|) $) NIL) (($ (-1218 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3008 ((|#3| $) 32)) (-4013 (((-1218 $)) 29))) +(((-698 |#1| |#2| |#3|) (-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3229 (|#1|)) (-15 -3603 ((-745))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4035 ((-663 |#2|) (-1218 |#1|) (-1 |#2| |#2|))) (-15 -2542 ((-3 |#1| "failed") (-398 |#3|))) (-15 -2829 (|#1| |#3|)) (-15 -2542 (|#1| |#3|)) (-15 -4240 (|#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2829 (|#3| |#1|)) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -4013 ((-1218 |#1|))) (-15 -3008 (|#3| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|))) (-699 |#2| |#3|) (-169) (-1194 |#2|)) (T -698)) +((-3603 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-745)) (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5))))) +(-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3229 (|#1|)) (-15 -3603 ((-745))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4035 ((-663 |#2|) (-1218 |#1|) (-1 |#2| |#2|))) (-15 -2542 ((-3 |#1| "failed") (-398 |#3|))) (-15 -2829 (|#1| |#3|)) (-15 -2542 (|#1| |#3|)) (-15 -4240 (|#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2829 (|#3| |#1|)) (-15 -2829 (|#1| (-1218 |#2|))) (-15 -2829 ((-1218 |#2|) |#1|)) (-15 -4013 ((-1218 |#1|))) (-15 -3008 (|#3| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 91 (|has| |#1| (-354)))) (-3881 (($ $) 92 (|has| |#1| (-354)))) (-1832 (((-112) $) 94 (|has| |#1| (-354)))) (-3743 (((-663 |#1|) (-1218 $)) 44) (((-663 |#1|)) 59)) (-2890 ((|#1| $) 50)) (-4253 (((-1145 (-890) (-745)) (-547)) 144 (|has| |#1| (-340)))) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 111 (|has| |#1| (-354)))) (-3457 (((-409 $) $) 112 (|has| |#1| (-354)))) (-2873 (((-112) $ $) 102 (|has| |#1| (-354)))) (-3603 (((-745)) 85 (|has| |#1| (-359)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 166 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 164 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 163)) (-2643 (((-547) $) 167 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 165 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 162)) (-2402 (($ (-1218 |#1|) (-1218 $)) 46) (($ (-1218 |#1|)) 62)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-340)))) (-2079 (($ $ $) 106 (|has| |#1| (-354)))) (-3653 (((-663 |#1|) $ (-1218 $)) 51) (((-663 |#1|) $) 57)) (-4238 (((-663 (-547)) (-663 $)) 161 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 160 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 159) (((-663 |#1|) (-663 $)) 158)) (-2542 (($ |#2|) 155) (((-3 $ "failed") (-398 |#2|)) 152 (|has| |#1| (-354)))) (-2537 (((-3 $ "failed") $) 32)) (-3107 (((-890)) 52)) (-3229 (($) 88 (|has| |#1| (-359)))) (-2052 (($ $ $) 105 (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 100 (|has| |#1| (-354)))) (-2445 (($) 146 (|has| |#1| (-340)))) (-3661 (((-112) $) 147 (|has| |#1| (-340)))) (-1771 (($ $ (-745)) 138 (|has| |#1| (-340))) (($ $) 137 (|has| |#1| (-340)))) (-3674 (((-112) $) 113 (|has| |#1| (-354)))) (-3707 (((-890) $) 149 (|has| |#1| (-340))) (((-807 (-890)) $) 135 (|has| |#1| (-340)))) (-4114 (((-112) $) 30)) (-1684 ((|#1| $) 49)) (-3652 (((-3 $ "failed") $) 139 (|has| |#1| (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 109 (|has| |#1| (-354)))) (-4213 ((|#2| $) 42 (|has| |#1| (-354)))) (-1966 (((-890) $) 87 (|has| |#1| (-359)))) (-2531 ((|#2| $) 153)) (-3685 (($ (-619 $)) 98 (|has| |#1| (-354))) (($ $ $) 97 (|has| |#1| (-354)))) (-1917 (((-1118) $) 9)) (-1976 (($ $) 114 (|has| |#1| (-354)))) (-3045 (($) 140 (|has| |#1| (-340)) CONST)) (-3479 (($ (-890)) 86 (|has| |#1| (-359)))) (-3979 (((-1082) $) 10)) (-4240 (($) 157)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 99 (|has| |#1| (-354)))) (-3715 (($ (-619 $)) 96 (|has| |#1| (-354))) (($ $ $) 95 (|has| |#1| (-354)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) 143 (|has| |#1| (-340)))) (-2106 (((-409 $) $) 110 (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 107 (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ $) 90 (|has| |#1| (-354)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 101 (|has| |#1| (-354)))) (-2776 (((-745) $) 103 (|has| |#1| (-354)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 104 (|has| |#1| (-354)))) (-3846 ((|#1| (-1218 $)) 45) ((|#1|) 58)) (-1868 (((-745) $) 148 (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) 136 (|has| |#1| (-340)))) (-3443 (($ $) 134 (-1524 (-1806 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) 132 (-1524 (-1806 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1135)) 130 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-619 (-1135))) 129 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-1135) (-745)) 128 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-619 (-1135)) (-619 (-745))) 127 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-1 |#1| |#1|) (-745)) 120 (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-354)))) (-4035 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-354)))) (-1901 ((|#2|) 156)) (-4150 (($) 145 (|has| |#1| (-340)))) (-2301 (((-1218 |#1|) $ (-1218 $)) 48) (((-663 |#1|) (-1218 $) (-1218 $)) 47) (((-1218 |#1|) $) 64) (((-663 |#1|) (-1218 $)) 63)) (-2829 (((-1218 |#1|) $) 61) (($ (-1218 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 142 (|has| |#1| (-340)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-354))) (($ (-398 (-547))) 84 (-1524 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-3336 (($ $) 141 (|has| |#1| (-340))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3008 ((|#2| $) 43)) (-2311 (((-745)) 28)) (-4013 (((-1218 $)) 65)) (-1932 (((-112) $ $) 93 (|has| |#1| (-354)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $) 133 (-1524 (-1806 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) 131 (-1524 (-1806 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1135)) 126 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-619 (-1135))) 125 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-1135) (-745)) 124 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-619 (-1135)) (-619 (-745))) 123 (-1806 (|has| |#1| (-869 (-1135))) (|has| |#1| (-354)))) (($ $ (-1 |#1| |#1|) (-745)) 122 (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-354)))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 118 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 115 (|has| |#1| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-398 (-547)) $) 117 (|has| |#1| (-354))) (($ $ (-398 (-547))) 116 (|has| |#1| (-354))))) (((-699 |#1| |#2|) (-138) (-169) (-1194 |t#1|)) (T -699)) -((-4160 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1194 *2)))) (-3287 (*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2061 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) (-2591 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2061 (*1 *1 *2) (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-355)) (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1194 *5)) (-5 *2 (-663 *5))))) -(-13 (-401 |t#1| |t#2|) (-169) (-593 |t#2|) (-403 |t#1|) (-369 |t#1|) (-10 -8 (-15 -4160 ($)) (-15 -3287 (|t#2|)) (-15 -2061 ($ |t#2|)) (-15 -2591 ($ |t#2|)) (-15 -2050 (|t#2| $)) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-6 (-355)) (-6 (-224 |t#1|)) (-15 -2061 ((-3 $ "failed") (-399 |t#2|))) (-15 -2257 ((-663 |t#1|) (-1218 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-38 |#1|) . T) ((-38 $) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-101) . T) ((-111 #0# #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-341)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 |#2|) . T) ((-224 |#1|) |has| |#1| (-355)) ((-226) -1524 (|has| |#1| (-341)) (-12 (|has| |#1| (-226)) (|has| |#1| (-355)))) ((-236) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-282) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-299) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-355) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-394) |has| |#1| (-341)) ((-360) -1524 (|has| |#1| (-360)) (|has| |#1| (-341))) ((-341) |has| |#1| (-341)) ((-362 |#1| |#2|) . T) ((-401 |#1| |#2|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-540) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-622 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-692 |#1|) . T) ((-692 $) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135)))) ((-889) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) -1524 (|has| |#1| (-341)) (|has| |#1| (-355))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-341)) ((-1176) -1524 (|has| |#1| (-341)) (|has| |#1| (-355)))) -((-3030 (($) 11)) (-3859 (((-3 $ "failed") $) 13)) (-2266 (((-112) $) 10)) (** (($ $ (-890)) NIL) (($ $ (-745)) 18))) -(((-700 |#1|) (-10 -8 (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 ** (|#1| |#1| (-890)))) (-701)) (T -700)) -NIL -(-10 -8 (-15 -3859 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -2266 ((-112) |#1|)) (-15 -3030 (|#1|)) (-15 ** (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-3030 (($) 18 T CONST)) (-3859 (((-3 $ "failed") $) 15)) (-2266 (((-112) $) 17)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3118 (($) 19 T CONST)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 16)) (* (($ $ $) 14))) +((-4240 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1194 *2)))) (-1901 (*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2542 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) (-2829 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) (-2542 (*1 *1 *2) (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-354)) (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-1218 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1194 *5)) (-5 *2 (-663 *5))))) +(-13 (-400 |t#1| |t#2|) (-169) (-592 |t#2|) (-402 |t#1|) (-368 |t#1|) (-10 -8 (-15 -4240 ($)) (-15 -1901 (|t#2|)) (-15 -2542 ($ |t#2|)) (-15 -2829 ($ |t#2|)) (-15 -2531 (|t#2| $)) (IF (|has| |t#1| (-359)) (-6 (-359)) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-6 (-354)) (-6 (-223 |t#1|)) (-15 -2542 ((-3 $ "failed") (-398 |t#2|))) (-15 -4035 ((-663 |t#1|) (-1218 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-340)) (-6 (-340)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-38 |#1|) . T) ((-38 $) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-101) . T) ((-111 #0# #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-340)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 |#2|) . T) ((-223 |#1|) |has| |#1| (-354)) ((-225) -1524 (|has| |#1| (-340)) (-12 (|has| |#1| (-225)) (|has| |#1| (-354)))) ((-235) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-281) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-298) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-354) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-393) |has| |#1| (-340)) ((-359) -1524 (|has| |#1| (-359)) (|has| |#1| (-340))) ((-340) |has| |#1| (-340)) ((-361 |#1| |#2|) . T) ((-400 |#1| |#2|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-539) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-622 #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-692 |#1|) . T) ((-692 $) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135)))) ((-889) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) -1524 (|has| |#1| (-340)) (|has| |#1| (-354))) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-340)) ((-1176) -1524 (|has| |#1| (-340)) (|has| |#1| (-354)))) +((-3219 (($) 11)) (-2537 (((-3 $ "failed") $) 13)) (-4114 (((-112) $) 10)) (** (($ $ (-890)) NIL) (($ $ (-745)) 18))) +(((-700 |#1|) (-10 -8 (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -4114 ((-112) |#1|)) (-15 -3219 (|#1|)) (-15 ** (|#1| |#1| (-890)))) (-701)) (T -700)) +NIL +(-10 -8 (-15 -2537 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-745))) (-15 -4114 ((-112) |#1|)) (-15 -3219 (|#1|)) (-15 ** (|#1| |#1| (-890)))) +((-3821 (((-112) $ $) 7)) (-3219 (($) 18 T CONST)) (-2537 (((-3 $ "failed") $) 15)) (-4114 (((-112) $) 17)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3277 (($) 19 T CONST)) (-2371 (((-112) $ $) 6)) (** (($ $ (-890)) 13) (($ $ (-745)) 16)) (* (($ $ $) 14))) (((-701) (-138)) (T -701)) -((-3118 (*1 *1) (-4 *1 (-701))) (-3030 (*1 *1) (-4 *1 (-701))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745)))) (-3859 (*1 *1 *1) (|partial| -4 *1 (-701)))) -(-13 (-1075) (-10 -8 (-15 (-3118) ($) -2325) (-15 -3030 ($) -2325) (-15 -2266 ((-112) $)) (-15 ** ($ $ (-745))) (-15 -3859 ((-3 $ "failed") $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1075) . T) ((-1063) . T)) -((-2273 (((-2 (|:| -3944 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3530 (((-2 (|:| -3944 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2284 ((|#2| (-399 |#2|) (-1 |#2| |#2|)) 13)) (-3642 (((-2 (|:| |poly| |#2|) (|:| -3944 (-399 |#2|)) (|:| |special| (-399 |#2|))) (-399 |#2|) (-1 |#2| |#2|)) 47))) -(((-702 |#1| |#2|) (-10 -7 (-15 -3530 ((-2 (|:| -3944 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2273 ((-2 (|:| -3944 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2284 (|#2| (-399 |#2|) (-1 |#2| |#2|))) (-15 -3642 ((-2 (|:| |poly| |#2|) (|:| -3944 (-399 |#2|)) (|:| |special| (-399 |#2|))) (-399 |#2|) (-1 |#2| |#2|)))) (-355) (-1194 |#1|)) (T -702)) -((-3642 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3944 (-399 *6)) (|:| |special| (-399 *6)))) (-5 *1 (-702 *5 *6)) (-5 *3 (-399 *6)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-702 *5 *2)) (-4 *5 (-355)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -3944 (-410 *3)) (|:| |special| (-410 *3)))) (-5 *1 (-702 *5 *3)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -3944 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3))))) -(-10 -7 (-15 -3530 ((-2 (|:| -3944 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2273 ((-2 (|:| -3944 (-410 |#2|)) (|:| |special| (-410 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2284 (|#2| (-399 |#2|) (-1 |#2| |#2|))) (-15 -3642 ((-2 (|:| |poly| |#2|) (|:| -3944 (-399 |#2|)) (|:| |special| (-399 |#2|))) (-399 |#2|) (-1 |#2| |#2|)))) -((-3726 ((|#7| (-619 |#5|) |#6|) NIL)) (-2540 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-703 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2540 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3726 (|#7| (-619 |#5|) |#6|))) (-821) (-767) (-767) (-1016) (-1016) (-918 |#4| |#2| |#1|) (-918 |#5| |#3| |#1|)) (T -703)) -((-3726 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5))))) -(-10 -7 (-15 -2540 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3726 (|#7| (-619 |#5|) |#6|))) -((-2540 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-704 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2540 (|#7| (-1 |#2| |#1|) |#6|))) (-821) (-821) (-767) (-767) (-1016) (-918 |#5| |#3| |#1|) (-918 |#5| |#4| |#2|)) (T -704)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-4 *7 (-767)) (-4 *9 (-1016)) (-4 *2 (-918 *9 *8 *6)) (-5 *1 (-704 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-767)) (-4 *4 (-918 *9 *7 *5))))) -(-10 -7 (-15 -2540 (|#7| (-1 |#2| |#1|) |#6|))) -((-1915 (((-410 |#4|) |#4|) 41))) -(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135))))) (-299) (-918 (-921 |#3|) |#1| |#2|)) (T -705)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-705 *4 *5 *6 *3)) (-4 *3 (-918 (-921 *6) *4 *5))))) -(-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-834 |#1|)) $) NIL)) (-1884 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-834 |#1|) $) NIL)) (-1557 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-520 (-834 |#1|)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-520 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-834 |#1|)) NIL)) (-3904 (((-520 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-520 (-834 |#1|)) (-520 (-834 |#1|))) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3511 (((-3 (-834 |#1|) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-1566 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2512 (((-520 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-834 |#1|) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-834 |#1|) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ $) NIL (|has| |#2| (-540))) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548))))))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-520 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-706 |#1| |#2|) (-918 |#2| (-520 (-834 |#1|)) (-834 |#1|)) (-619 (-1135)) (-1016)) (T -706)) -NIL -(-918 |#2| (-520 (-834 |#1|)) (-834 |#1|)) -((-2294 (((-2 (|:| -2857 (-921 |#3|)) (|:| -3243 (-921 |#3|))) |#4|) 14)) (-1904 ((|#4| |#4| |#2|) 33)) (-2323 ((|#4| (-399 (-921 |#3|)) |#2|) 64)) (-2313 ((|#4| (-1131 (-921 |#3|)) |#2|) 77)) (-2303 ((|#4| (-1131 |#4|) |#2|) 51)) (-1893 ((|#4| |#4| |#2|) 54)) (-1915 (((-410 |#4|) |#4|) 40))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2294 ((-2 (|:| -2857 (-921 |#3|)) (|:| -3243 (-921 |#3|))) |#4|)) (-15 -1893 (|#4| |#4| |#2|)) (-15 -2303 (|#4| (-1131 |#4|) |#2|)) (-15 -1904 (|#4| |#4| |#2|)) (-15 -2313 (|#4| (-1131 (-921 |#3|)) |#2|)) (-15 -2323 (|#4| (-399 (-921 |#3|)) |#2|)) (-15 -1915 ((-410 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)))) (-540) (-918 (-399 (-921 |#3|)) |#1| |#2|)) (T -707)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-399 (-921 *6)) *4 *5)))) (-2323 (*1 *2 *3 *4) (-12 (-4 *6 (-540)) (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-399 (-921 *6))) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 (-921 *6))) (-4 *6 (-540)) (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))))) (-1904 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *2)) (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)))) (-1893 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) (-5 *2 (-2 (|:| -2857 (-921 *6)) (|:| -3243 (-921 *6)))) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-399 (-921 *6)) *4 *5))))) -(-10 -7 (-15 -2294 ((-2 (|:| -2857 (-921 |#3|)) (|:| -3243 (-921 |#3|))) |#4|)) (-15 -1893 (|#4| |#4| |#2|)) (-15 -2303 (|#4| (-1131 |#4|) |#2|)) (-15 -1904 (|#4| |#4| |#2|)) (-15 -2313 (|#4| (-1131 (-921 |#3|)) |#2|)) (-15 -2323 (|#4| (-399 (-921 |#3|)) |#2|)) (-15 -1915 ((-410 |#4|) |#4|))) -((-1915 (((-410 |#4|) |#4|) 52))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) (-767) (-821) (-13 (-299) (-145)) (-918 (-399 |#3|) |#1| |#2|)) (T -708)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-299) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-918 (-399 *6) *4 *5))))) -(-10 -7 (-15 -1915 ((-410 |#4|) |#4|))) -((-2540 (((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)) 18))) -(((-709 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) (-1016) (-1016) (-701)) (T -709)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5 *7)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-701)) (-5 *2 (-710 *6 *7)) (-5 *1 (-709 *5 *6 *7))))) -(-10 -7 (-15 -2540 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 28)) (-1680 (((-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))) $) 29)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745)) 20 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2375 ((|#2| $) NIL) ((|#1| $) NIL)) (-1872 (($ $) 79 (|has| |#2| (-821)))) (-3859 (((-3 $ "failed") $) 65)) (-2545 (($) 35 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 55)) (-3915 (((-619 $) $) 39)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| |#2|) 16)) (-2540 (($ (-1 |#1| |#1|) $) 54)) (-2855 (((-890) $) 32 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-2185 ((|#2| $) 78 (|has| |#2| (-821)))) (-2197 ((|#1| $) 77 (|has| |#2| (-821)))) (-2546 (((-1118) $) NIL)) (-3337 (($ (-890)) 27 (-12 (|has| |#2| (-360)) (|has| |#1| (-360))))) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 76) (($ (-548)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|)))) 11)) (-3852 (((-619 |#1|) $) 41)) (-1951 ((|#1| $ |#2|) 88)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-3107 (($) 12 T CONST)) (-3118 (($) 33 T CONST)) (-2214 (((-112) $ $) 80)) (-2299 (($ $) 47) (($ $ $) NIL)) (-2290 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-710 |#1| |#2|) (-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2024 ($ |#1| |#2|)) (-15 -1951 (|#1| $ |#2|)) (-15 -3743 ($ (-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))))) (-15 -1680 ((-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -2435 ((-112) $)) (-15 -3852 ((-619 |#1|) $)) (-15 -3915 ((-619 $) $)) (-15 -2333 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2185 (|#2| $)) (-15 -2197 (|#1| $)) (-15 -1872 ($ $))) |%noBranch|))) (-1016) (-701)) (T -710)) -((-2024 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-701)))) (-1951 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-710 *3 *4)) (-4 *4 (-701)))) (-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2185 (*1 *2 *1) (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1016)))) (-2197 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *3 (-701)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016)) (-4 *3 (-701))))) -(-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2024 ($ |#1| |#2|)) (-15 -1951 (|#1| $ |#2|)) (-15 -3743 ($ (-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))))) (-15 -1680 ((-619 (-2 (|:| -1489 |#1|) (|:| -3310 |#2|))) $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (-15 -2435 ((-112) $)) (-15 -3852 ((-619 |#1|) $)) (-15 -3915 ((-619 $) $)) (-15 -2333 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2185 (|#2| $)) (-15 -2197 (|#1| $)) (-15 -1872 ($ $))) |%noBranch|))) -((-3730 (((-112) $ $) 19)) (-1434 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2501 (($ $ $) 72)) (-2491 (((-112) $ $) 73)) (-2028 (((-112) $ (-745)) 8)) (-2592 (($ (-619 |#1|)) 68) (($) 67)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 62)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 64)) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22)) (-2520 (($ $ $) 69)) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3932 (((-1082) $) 21)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 61)) (-2511 (($ $ |#1|) 71) (($ $ $) 70)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18)) (-4013 (($ (-619 |#1|)) 66) (($) 65)) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3277 (*1 *1) (-4 *1 (-701))) (-3219 (*1 *1) (-4 *1 (-701))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745)))) (-2537 (*1 *1 *1) (|partial| -4 *1 (-701)))) +(-13 (-1075) (-10 -8 (-15 (-3277) ($) -2573) (-15 -3219 ($) -2573) (-15 -4114 ((-112) $)) (-15 ** ($ $ (-745))) (-15 -2537 ((-3 $ "failed") $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1075) . T) ((-1063) . T)) +((-4172 (((-2 (|:| -4033 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2378 (((-2 (|:| -4033 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4249 ((|#2| (-398 |#2|) (-1 |#2| |#2|)) 13)) (-4030 (((-2 (|:| |poly| |#2|) (|:| -4033 (-398 |#2|)) (|:| |special| (-398 |#2|))) (-398 |#2|) (-1 |#2| |#2|)) 47))) +(((-702 |#1| |#2|) (-10 -7 (-15 -2378 ((-2 (|:| -4033 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4172 ((-2 (|:| -4033 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4249 (|#2| (-398 |#2|) (-1 |#2| |#2|))) (-15 -4030 ((-2 (|:| |poly| |#2|) (|:| -4033 (-398 |#2|)) (|:| |special| (-398 |#2|))) (-398 |#2|) (-1 |#2| |#2|)))) (-354) (-1194 |#1|)) (T -702)) +((-4030 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4033 (-398 *6)) (|:| |special| (-398 *6)))) (-5 *1 (-702 *5 *6)) (-5 *3 (-398 *6)))) (-4249 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-702 *5 *2)) (-4 *5 (-354)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -4033 (-409 *3)) (|:| |special| (-409 *3)))) (-5 *1 (-702 *5 *3)))) (-2378 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -4033 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3))))) +(-10 -7 (-15 -2378 ((-2 (|:| -4033 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4172 ((-2 (|:| -4033 (-409 |#2|)) (|:| |special| (-409 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4249 (|#2| (-398 |#2|) (-1 |#2| |#2|))) (-15 -4030 ((-2 (|:| |poly| |#2|) (|:| -4033 (-398 |#2|)) (|:| |special| (-398 |#2|))) (-398 |#2|) (-1 |#2| |#2|)))) +((-3869 ((|#7| (-619 |#5|) |#6|) NIL)) (-2781 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-703 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2781 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3869 (|#7| (-619 |#5|) |#6|))) (-821) (-767) (-767) (-1016) (-1016) (-918 |#4| |#2| |#1|) (-918 |#5| |#3| |#1|)) (T -703)) +((-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-4 *2 (-918 *9 *7 *5)) (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) (-4 *4 (-918 *8 *6 *5))))) +(-10 -7 (-15 -2781 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3869 (|#7| (-619 |#5|) |#6|))) +((-2781 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-704 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2781 (|#7| (-1 |#2| |#1|) |#6|))) (-821) (-821) (-767) (-767) (-1016) (-918 |#5| |#3| |#1|) (-918 |#5| |#4| |#2|)) (T -704)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-821)) (-4 *6 (-821)) (-4 *7 (-767)) (-4 *9 (-1016)) (-4 *2 (-918 *9 *8 *6)) (-5 *1 (-704 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-767)) (-4 *4 (-918 *9 *7 *5))))) +(-10 -7 (-15 -2781 (|#7| (-1 |#2| |#1|) |#6|))) +((-2106 (((-409 |#4|) |#4|) 41))) +(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135))))) (-298) (-918 (-921 |#3|) |#1| |#2|)) (T -705)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-705 *4 *5 *6 *3)) (-4 *3 (-918 (-921 *6) *4 *5))))) +(-10 -7 (-15 -2106 ((-409 |#4|) |#4|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-834 |#1|)) $) NIL)) (-2067 (((-1131 $) $ (-834 |#1|)) NIL) (((-1131 |#2|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3881 (($ $) NIL (|has| |#2| (-539)))) (-1832 (((-112) $) NIL (|has| |#2| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-834 |#1|))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2745 (($ $) NIL (|has| |#2| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#2| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-834 |#1|) "failed") $) NIL)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-834 |#1|) $) NIL)) (-3772 (($ $ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#2| (-878)))) (-3913 (($ $ |#2| (-519 (-834 |#1|)) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-834 |#1|) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#2|) (-834 |#1|)) NIL) (($ (-1131 $) (-834 |#1|)) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#2| (-519 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-834 |#1|)) NIL)) (-1626 (((-519 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2847 (($ $ $) NIL (|has| |#2| (-821)))) (-3563 (($ $ $) NIL (|has| |#2| (-821)))) (-4019 (($ (-1 (-519 (-834 |#1|)) (-519 (-834 |#1|))) $) NIL)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2185 (((-3 (-834 |#1|) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#2| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-834 |#1|)) (|:| -4248 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#2| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#2| (-878)))) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-834 |#1|) |#2|) NIL) (($ $ (-619 (-834 |#1|)) (-619 |#2|)) NIL) (($ $ (-834 |#1|) $) NIL) (($ $ (-619 (-834 |#1|)) (-619 $)) NIL)) (-3846 (($ $ (-834 |#1|)) NIL (|has| |#2| (-169)))) (-3443 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-1618 (((-519 (-834 |#1|)) $) NIL) (((-745) $ (-834 |#1|)) NIL) (((-619 (-745)) $ (-619 (-834 |#1|))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-834 |#1|) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-834 |#1|) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-1378 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-834 |#1|)) NIL (|has| |#2| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-834 |#1|)) NIL) (($ $) NIL (|has| |#2| (-539))) (($ (-398 (-547))) NIL (-1524 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547))))))) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-519 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-834 |#1|)) NIL) (($ $ (-619 (-834 |#1|))) NIL) (($ $ (-834 |#1|) (-745)) NIL) (($ $ (-619 (-834 |#1|)) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-706 |#1| |#2|) (-918 |#2| (-519 (-834 |#1|)) (-834 |#1|)) (-619 (-1135)) (-1016)) (T -706)) +NIL +(-918 |#2| (-519 (-834 |#1|)) (-834 |#1|)) +((-1268 (((-2 (|:| -1991 (-921 |#3|)) (|:| -1444 (-921 |#3|))) |#4|) 14)) (-4137 ((|#4| |#4| |#2|) 33)) (-3469 ((|#4| (-398 (-921 |#3|)) |#2|) 64)) (-3368 ((|#4| (-1131 (-921 |#3|)) |#2|) 77)) (-3272 ((|#4| (-1131 |#4|) |#2|) 51)) (-4059 ((|#4| |#4| |#2|) 54)) (-2106 (((-409 |#4|) |#4|) 40))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1268 ((-2 (|:| -1991 (-921 |#3|)) (|:| -1444 (-921 |#3|))) |#4|)) (-15 -4059 (|#4| |#4| |#2|)) (-15 -3272 (|#4| (-1131 |#4|) |#2|)) (-15 -4137 (|#4| |#4| |#2|)) (-15 -3368 (|#4| (-1131 (-921 |#3|)) |#2|)) (-15 -3469 (|#4| (-398 (-921 |#3|)) |#2|)) (-15 -2106 ((-409 |#4|) |#4|))) (-767) (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)))) (-539) (-918 (-398 (-921 |#3|)) |#1| |#2|)) (T -707)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *6 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-398 (-921 *6)) *4 *5)))) (-3469 (*1 *2 *3 *4) (-12 (-4 *6 (-539)) (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-398 (-921 *6))) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 (-921 *6))) (-4 *6 (-539)) (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))))) (-4137 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *5 (-539)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-1131 *2)) (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *6 (-539)))) (-4059 (*1 *2 *2 *3) (-12 (-4 *4 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *5 (-539)) (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3)))) (-1268 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *6 (-539)) (-5 *2 (-2 (|:| -1991 (-921 *6)) (|:| -1444 (-921 *6)))) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-398 (-921 *6)) *4 *5))))) +(-10 -7 (-15 -1268 ((-2 (|:| -1991 (-921 |#3|)) (|:| -1444 (-921 |#3|))) |#4|)) (-15 -4059 (|#4| |#4| |#2|)) (-15 -3272 (|#4| (-1131 |#4|) |#2|)) (-15 -4137 (|#4| |#4| |#2|)) (-15 -3368 (|#4| (-1131 (-921 |#3|)) |#2|)) (-15 -3469 (|#4| (-398 (-921 |#3|)) |#2|)) (-15 -2106 ((-409 |#4|) |#4|))) +((-2106 (((-409 |#4|) |#4|) 52))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 |#4|) |#4|))) (-767) (-821) (-13 (-298) (-145)) (-918 (-398 |#3|) |#1| |#2|)) (T -708)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-298) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-918 (-398 *6) *4 *5))))) +(-10 -7 (-15 -2106 ((-409 |#4|) |#4|))) +((-2781 (((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)) 18))) +(((-709 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) (-1016) (-1016) (-701)) (T -709)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5 *7)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *7 (-701)) (-5 *2 (-710 *6 *7)) (-5 *1 (-709 *5 *6 *7))))) +(-10 -7 (-15 -2781 ((-710 |#2| |#3|) (-1 |#2| |#1|) (-710 |#1| |#3|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 28)) (-2674 (((-619 (-2 (|:| -1557 |#1|) (|:| -3513 |#2|))) $) 29)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3603 (((-745)) 20 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2643 ((|#2| $) NIL) ((|#1| $) NIL)) (-2054 (($ $) 79 (|has| |#2| (-821)))) (-2537 (((-3 $ "failed") $) 65)) (-3229 (($) 35 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) 55)) (-1744 (((-619 $) $) 39)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| |#2|) 16)) (-2781 (($ (-1 |#1| |#1|) $) 54)) (-1966 (((-890) $) 32 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-2013 ((|#2| $) 78 (|has| |#2| (-821)))) (-2027 ((|#1| $) 77 (|has| |#2| (-821)))) (-1917 (((-1118) $) NIL)) (-3479 (($ (-890)) 27 (-12 (|has| |#2| (-359)) (|has| |#1| (-359))))) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 76) (($ (-547)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-619 (-2 (|:| -1557 |#1|) (|:| -3513 |#2|)))) 11)) (-2472 (((-619 |#1|) $) 41)) (-3338 ((|#1| $ |#2|) 88)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-3267 (($) 12 T CONST)) (-3277 (($) 33 T CONST)) (-2371 (((-112) $ $) 80)) (-2484 (($ $) 47) (($ $ $) NIL)) (-2470 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-710 |#1| |#2|) (-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2229 ($ |#1| |#2|)) (-15 -3338 (|#1| $ |#2|)) (-15 -3834 ($ (-619 (-2 (|:| -1557 |#1|) (|:| -3513 |#2|))))) (-15 -2674 ((-619 (-2 (|:| -1557 |#1|) (|:| -3513 |#2|))) $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (-15 -2187 ((-112) $)) (-15 -2472 ((-619 |#1|) $)) (-15 -1744 ((-619 $) $)) (-15 -3570 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2013 (|#2| $)) (-15 -2027 (|#1| $)) (-15 -2054 ($ $))) |%noBranch|))) (-1016) (-701)) (T -710)) +((-2229 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-701)))) (-3338 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -1557 *3) (|:| -3513 *4)))) (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -1557 *3) (|:| -3513 *4)))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-710 *3 *4)) (-4 *4 (-701)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) (-2013 (*1 *2 *1) (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) (-4 *3 (-1016)))) (-2027 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *3 (-701)))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016)) (-4 *3 (-701))))) +(-13 (-1016) (-1007 |#2|) (-1007 |#1|) (-10 -8 (-15 -2229 ($ |#1| |#2|)) (-15 -3338 (|#1| $ |#2|)) (-15 -3834 ($ (-619 (-2 (|:| -1557 |#1|) (|:| -3513 |#2|))))) (-15 -2674 ((-619 (-2 (|:| -1557 |#1|) (|:| -3513 |#2|))) $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (-15 -2187 ((-112) $)) (-15 -2472 ((-619 |#1|) $)) (-15 -1744 ((-619 $) $)) (-15 -3570 ((-745) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-821)) (PROGN (-15 -2013 (|#2| $)) (-15 -2027 (|#1| $)) (-15 -2054 ($ $))) |%noBranch|))) +((-3821 (((-112) $ $) 19)) (-1428 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1492 (($ $ $) 72)) (-1383 (((-112) $ $) 73)) (-2826 (((-112) $ (-745)) 8)) (-2771 (($ (-619 |#1|)) 68) (($) 67)) (-3681 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3796 (($ $) 62)) (-3664 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) 64)) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22)) (-1711 (($ $ $) 69)) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3979 (((-1082) $) 21)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3700 (((-619 (-2 (|:| -1777 |#1|) (|:| -3987 (-745)))) $) 61)) (-1604 (($ $ |#1|) 71) (($ $ $) 70)) (-1404 (($) 49) (($ (-619 |#1|)) 48)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 50)) (-3834 (((-832) $) 18)) (-4112 (($ (-619 |#1|)) 66) (($) 65)) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20)) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-711 |#1|) (-138) (-1063)) (T -711)) NIL (-13 (-669 |t#1|) (-1061 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-1434 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2501 (($ $ $) 79)) (-2491 (((-112) $ $) 83)) (-2028 (((-112) $ (-745)) NIL)) (-2592 (($ (-619 |#1|)) 24) (($) 16)) (-2657 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-2969 (($ $) 71)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) 61 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4327))) (($ |#1| $ (-548)) 62) (($ (-1 (-112) |#1|) $ (-548)) 65)) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (($ |#1| $ (-548)) 67) (($ (-1 (-112) |#1|) $ (-548)) 68)) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 32 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 82)) (-2351 (($) 14) (($ |#1|) 26) (($ (-619 |#1|)) 21)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) 38)) (-2556 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 75)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 77)) (-1346 ((|#1| $) 55)) (-2539 (($ |#1| $) 56) (($ |#1| $ (-745)) 72)) (-3932 (((-1082) $) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1357 ((|#1| $) 54)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 50)) (-3319 (($) 13)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 48)) (-2511 (($ $ |#1|) NIL) (($ $ $) 78)) (-2801 (($) 15) (($ (-619 |#1|)) 23)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) 60 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 66)) (-2591 (((-524) $) 36 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 20)) (-3743 (((-832) $) 44)) (-4013 (($ (-619 |#1|)) 25) (($) 17)) (-1368 (($ (-619 |#1|)) 22)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 81)) (-3643 (((-745) $) 59 (|has| $ (-6 -4327))))) -(((-712 |#1|) (-13 (-711 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2351 ($)) (-15 -2351 ($ |#1|)) (-15 -2351 ($ (-619 |#1|))) (-15 -2342 ((-619 |#1|) $)) (-15 -3699 ($ |#1| $ (-548))) (-15 -3699 ($ (-1 (-112) |#1|) $ (-548))) (-15 -1636 ($ |#1| $ (-548))) (-15 -1636 ($ (-1 (-112) |#1|) $ (-548))))) (-1063)) (T -712)) -((-2351 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-2351 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-2351 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063)))) (-3699 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3699 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) (-5 *1 (-712 *4)))) (-1636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-1636 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) (-5 *1 (-712 *4))))) -(-13 (-711 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2351 ($)) (-15 -2351 ($ |#1|)) (-15 -2351 ($ (-619 |#1|))) (-15 -2342 ((-619 |#1|) $)) (-15 -3699 ($ |#1| $ (-548))) (-15 -3699 ($ (-1 (-112) |#1|) $ (-548))) (-15 -1636 ($ |#1| $ (-548))) (-15 -1636 ($ (-1 (-112) |#1|) $ (-548))))) -((-3907 (((-1223) (-1118)) 8))) -(((-713) (-10 -7 (-15 -3907 ((-1223) (-1118))))) (T -713)) -((-3907 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-713))))) -(-10 -7 (-15 -3907 ((-1223) (-1118)))) -((-2362 (((-619 |#1|) (-619 |#1|) (-619 |#1|)) 10))) -(((-714 |#1|) (-10 -7 (-15 -2362 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) (-821)) (T -714)) -((-2362 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3))))) -(-10 -7 (-15 -2362 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#2|) $) 134)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 127 (|has| |#1| (-540)))) (-3303 (($ $) 126 (|has| |#1| (-540)))) (-3279 (((-112) $) 124 (|has| |#1| (-540)))) (-2074 (($ $) 83 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 66 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $) 65 (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 82 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 67 (|has| |#1| (-38 (-399 (-548)))))) (-2098 (($ $) 81 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 68 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1872 (($ $) 118)) (-3859 (((-3 $ "failed") $) 32)) (-3520 (((-921 |#1|) $ (-745)) 96) (((-921 |#1|) $ (-745) (-745)) 95)) (-3345 (((-112) $) 135)) (-1365 (($) 93 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $ |#2|) 98) (((-745) $ |#2| (-745)) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 64 (|has| |#1| (-38 (-399 (-548)))))) (-2435 (((-112) $) 116)) (-2024 (($ $ (-619 |#2|) (-619 (-520 |#2|))) 133) (($ $ |#2| (-520 |#2|)) 132) (($ |#1| (-520 |#2|)) 117) (($ $ |#2| (-745)) 100) (($ $ (-619 |#2|) (-619 (-745))) 99)) (-2540 (($ (-1 |#1| |#1|) $) 115)) (-3496 (($ $) 90 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 113)) (-2197 ((|#1| $) 112)) (-2546 (((-1118) $) 9)) (-3810 (($ $ |#2|) 94 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) 10)) (-1656 (($ $ (-745)) 101)) (-1900 (((-3 $ "failed") $ $) 128 (|has| |#1| (-540)))) (-2458 (($ $) 91 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (($ $ |#2| $) 109) (($ $ (-619 |#2|) (-619 $)) 108) (($ $ (-619 (-286 $))) 107) (($ $ (-286 $)) 106) (($ $ $ $) 105) (($ $ (-619 $) (-619 $)) 104)) (-4050 (($ $ |#2|) 40) (($ $ (-619 |#2|)) 39) (($ $ |#2| (-745)) 38) (($ $ (-619 |#2|) (-619 (-745))) 37)) (-2512 (((-520 |#2|) $) 114)) (-2110 (($ $) 80 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 69 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 79 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 70 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 78 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 71 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 136)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-540))) (($ (-399 (-548))) 121 (|has| |#1| (-38 (-399 (-548)))))) (-1951 ((|#1| $ (-520 |#2|)) 119) (($ $ |#2| (-745)) 103) (($ $ (-619 |#2|) (-619 (-745))) 102)) (-4017 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2145 (($ $) 89 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 77 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 125 (|has| |#1| (-540)))) (-2122 (($ $) 88 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 76 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 87 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 75 (|has| |#1| (-38 (-399 (-548)))))) (-4026 (($ $) 86 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 74 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 85 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 73 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 84 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 72 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#2|) 36) (($ $ (-619 |#2|)) 35) (($ $ |#2| (-745)) 34) (($ $ (-619 |#2|) (-619 (-745))) 33)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 120 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 92 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 63 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 123 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 122 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-1428 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1492 (($ $ $) 79)) (-1383 (((-112) $ $) 83)) (-2826 (((-112) $ (-745)) NIL)) (-2771 (($ (-619 |#1|)) 24) (($) 16)) (-3681 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3796 (($ $) 71)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) 61 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4328))) (($ |#1| $ (-547)) 62) (($ (-1 (-112) |#1|) $ (-547)) 65)) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (($ |#1| $ (-547)) 67) (($ (-1 (-112) |#1|) $ (-547)) 68)) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 32 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) 82)) (-3754 (($) 14) (($ |#1|) 26) (($ (-619 |#1|)) 21)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) 38)) (-3860 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 75)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-1711 (($ $ $) 77)) (-1959 ((|#1| $) 55)) (-1885 (($ |#1| $) 56) (($ |#1| $ (-745)) 72)) (-3979 (((-1082) $) NIL)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1373 ((|#1| $) 54)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 50)) (-4011 (($) 13)) (-3700 (((-619 (-2 (|:| -1777 |#1|) (|:| -3987 (-745)))) $) 48)) (-1604 (($ $ |#1|) NIL) (($ $ $) 78)) (-1404 (($) 15) (($ (-619 |#1|)) 23)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) 60 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 66)) (-2829 (((-523) $) 36 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 20)) (-3834 (((-832) $) 44)) (-4112 (($ (-619 |#1|)) 25) (($) 17)) (-2731 (($ (-619 |#1|)) 22)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 81)) (-3763 (((-745) $) 59 (|has| $ (-6 -4328))))) +(((-712 |#1|) (-13 (-711 |#1|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -3754 ($)) (-15 -3754 ($ |#1|)) (-15 -3754 ($ (-619 |#1|))) (-15 -3666 ((-619 |#1|) $)) (-15 -3801 ($ |#1| $ (-547))) (-15 -3801 ($ (-1 (-112) |#1|) $ (-547))) (-15 -3342 ($ |#1| $ (-547))) (-15 -3342 ($ (-1 (-112) |#1|) $ (-547))))) (-1063)) (T -712)) +((-3754 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3754 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063)))) (-3801 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3801 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063)) (-5 *1 (-712 *4)))) (-3342 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) (-3342 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063)) (-5 *1 (-712 *4))))) +(-13 (-711 |#1|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -3754 ($)) (-15 -3754 ($ |#1|)) (-15 -3754 ($ (-619 |#1|))) (-15 -3666 ((-619 |#1|) $)) (-15 -3801 ($ |#1| $ (-547))) (-15 -3801 ($ (-1 (-112) |#1|) $ (-547))) (-15 -3342 ($ |#1| $ (-547))) (-15 -3342 ($ (-1 (-112) |#1|) $ (-547))))) +((-3999 (((-1223) (-1118)) 8))) +(((-713) (-10 -7 (-15 -3999 ((-1223) (-1118))))) (T -713)) +((-3999 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-713))))) +(-10 -7 (-15 -3999 ((-1223) (-1118)))) +((-2727 (((-619 |#1|) (-619 |#1|) (-619 |#1|)) 10))) +(((-714 |#1|) (-10 -7 (-15 -2727 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) (-821)) (T -714)) +((-2727 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3))))) +(-10 -7 (-15 -2727 ((-619 |#1|) (-619 |#1|) (-619 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 |#2|) $) 134)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 127 (|has| |#1| (-539)))) (-3881 (($ $) 126 (|has| |#1| (-539)))) (-1832 (((-112) $) 124 (|has| |#1| (-539)))) (-1648 (($ $) 83 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 66 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) 19)) (-2118 (($ $) 65 (|has| |#1| (-38 (-398 (-547)))))) (-1624 (($ $) 82 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 67 (|has| |#1| (-38 (-398 (-547)))))) (-1670 (($ $) 81 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 68 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) 17 T CONST)) (-2054 (($ $) 118)) (-2537 (((-3 $ "failed") $) 32)) (-1401 (((-921 |#1|) $ (-745)) 96) (((-921 |#1|) $ (-745) (-745)) 95)) (-4211 (((-112) $) 135)) (-1413 (($) 93 (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-745) $ |#2|) 98) (((-745) $ |#2| (-745)) 97)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 64 (|has| |#1| (-38 (-398 (-547)))))) (-2187 (((-112) $) 116)) (-2229 (($ $ (-619 |#2|) (-619 (-519 |#2|))) 133) (($ $ |#2| (-519 |#2|)) 132) (($ |#1| (-519 |#2|)) 117) (($ $ |#2| (-745)) 100) (($ $ (-619 |#2|) (-619 (-745))) 99)) (-2781 (($ (-1 |#1| |#1|) $) 115)) (-3620 (($ $) 90 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) 113)) (-2027 ((|#1| $) 112)) (-1917 (((-1118) $) 9)) (-2069 (($ $ |#2|) 94 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) 10)) (-3558 (($ $ (-745)) 101)) (-2025 (((-3 $ "failed") $ $) 128 (|has| |#1| (-539)))) (-2703 (($ $) 91 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (($ $ |#2| $) 109) (($ $ (-619 |#2|) (-619 $)) 108) (($ $ (-619 (-285 $))) 107) (($ $ (-285 $)) 106) (($ $ $ $) 105) (($ $ (-619 $) (-619 $)) 104)) (-3443 (($ $ |#2|) 40) (($ $ (-619 |#2|)) 39) (($ $ |#2| (-745)) 38) (($ $ (-619 |#2|) (-619 (-745))) 37)) (-1618 (((-519 |#2|) $) 114)) (-1681 (($ $) 80 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 69 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 79 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 70 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 78 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 71 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 136)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-539))) (($ (-398 (-547))) 121 (|has| |#1| (-38 (-398 (-547)))))) (-3338 ((|#1| $ (-519 |#2|)) 119) (($ $ |#2| (-745)) 103) (($ $ (-619 |#2|) (-619 (-745))) 102)) (-3336 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-1717 (($ $) 89 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 77 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) 125 (|has| |#1| (-539)))) (-1693 (($ $) 88 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 76 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 87 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 75 (|has| |#1| (-38 (-398 (-547)))))) (-1918 (($ $) 86 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 74 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 85 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 73 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 84 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 72 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ |#2|) 36) (($ $ (-619 |#2|)) 35) (($ $ |#2| (-745)) 34) (($ $ (-619 |#2|) (-619 (-745))) 33)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 120 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ $) 92 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 63 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 123 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 122 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 111) (($ $ |#1|) 110))) (((-715 |#1| |#2|) (-138) (-1016) (-821)) (T -715)) -((-1951 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-1672 (*1 *2 *1 *3) (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *2 (-745)))) (-1672 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-3810 (*1 *1 *1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) (-4 *3 (-38 (-399 (-548))))))) -(-13 (-869 |t#2|) (-942 |t#1| (-520 |t#2|) |t#2|) (-504 |t#2| $) (-301 $) (-10 -8 (-15 -1951 ($ $ |t#2| (-745))) (-15 -1951 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -1656 ($ $ (-745))) (-15 -2024 ($ $ |t#2| (-745))) (-15 -2024 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -1672 ((-745) $ |t#2|)) (-15 -1672 ((-745) $ |t#2| (-745))) (-15 -3520 ((-921 |t#1|) $ (-745))) (-15 -3520 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ |t#2|)) (-6 (-971)) (-6 (-1157))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-520 |#2|)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-282) |has| |#1| (-540)) ((-301 $) . T) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-504 |#2| $) . T) ((-504 $ $) . T) ((-540) |has| |#1| (-540)) ((-622 #1#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-869 |#2|) . T) ((-942 |#1| #0# |#2|) . T) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548))))) -((-1915 (((-410 (-1131 |#4|)) (-1131 |#4|)) 30) (((-410 |#4|) |#4|) 26))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) (-821) (-767) (-13 (-299) (-145)) (-918 |#3| |#2| |#1|)) (T -716)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) (-5 *2 (-410 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) -(-10 -7 (-15 -1915 ((-410 |#4|) |#4|)) (-15 -1915 ((-410 (-1131 |#4|)) (-1131 |#4|)))) -((-2393 (((-410 |#4|) |#4| |#2|) 120)) (-2371 (((-410 |#4|) |#4|) NIL)) (-2634 (((-410 (-1131 |#4|)) (-1131 |#4|)) 111) (((-410 |#4|) |#4|) 41)) (-2414 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 |#4|)) (|:| -3352 (-548)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 69)) (-2456 (((-1131 |#3|) (-1131 |#3|) (-548)) 139)) (-2446 (((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745)) 61)) (-2050 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|)) 65)) (-2423 (((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 26)) (-2403 (((-2 (|:| -2802 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-548)) 57)) (-2381 (((-548) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) 136)) (-2433 ((|#4| (-548) (-410 |#4|)) 58)) (-4254 (((-112) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) NIL))) -(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2634 ((-410 |#4|) |#4|)) (-15 -2634 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -2371 ((-410 |#4|) |#4|)) (-15 -2381 ((-548) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2393 ((-410 |#4|) |#4| |#2|)) (-15 -2403 ((-2 (|:| -2802 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-548))) (-15 -2414 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 |#4|)) (|:| -3352 (-548)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2423 ((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2433 (|#4| (-548) (-410 |#4|))) (-15 -4254 ((-112) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2050 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -2446 ((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745))) (-15 -2456 ((-1131 |#3|) (-1131 |#3|) (-548)))) (-767) (-821) (-299) (-918 |#3| |#1| |#2|)) (T -717)) -((-2456 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 *6)) (-5 *3 (-548)) (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-299)) (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745)))) (-2050 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1131 *11)) (-5 *6 (-619 *10)) (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) (-4 *11 (-299)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) (-5 *2 (-619 (-1131 *5))) (-5 *1 (-717 *9 *10 *11 *5)) (-5 *3 (-1131 *5)))) (-4254 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-548)) (-5 *4 (-410 *2)) (-4 *2 (-918 *7 *5 *6)) (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-299)))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-299)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |upol| (-1131 *8)) (|:| |Lval| (-619 *8)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 *8)) (|:| -3352 (-548))))) (|:| |ctpol| *8))) (-5 *1 (-717 *6 *7 *8 *9)))) (-2414 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-299)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 *9)) (|:| -3352 (-548))))))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)))) (-2403 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-548)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-299)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| -2802 (-1131 *9)) (|:| |polval| (-1131 *8)))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)) (-5 *4 (-1131 *8)))) (-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))) -(-10 -7 (-15 -2634 ((-410 |#4|) |#4|)) (-15 -2634 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -2371 ((-410 |#4|) |#4|)) (-15 -2381 ((-548) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2393 ((-410 |#4|) |#4| |#2|)) (-15 -2403 ((-2 (|:| -2802 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-548))) (-15 -2414 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -1915 (-1131 |#4|)) (|:| -3352 (-548)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2423 ((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2433 (|#4| (-548) (-410 |#4|))) (-15 -4254 ((-112) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))) (-619 (-2 (|:| -1915 (-1131 |#3|)) (|:| -3352 (-548)))))) (-15 -2050 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -2446 ((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745))) (-15 -2456 ((-1131 |#3|) (-1131 |#3|) (-548)))) -((-2468 (($ $ (-890)) 12))) -(((-718 |#1| |#2|) (-10 -8 (-15 -2468 (|#1| |#1| (-890)))) (-719 |#2|) (-169)) (T -718)) -NIL -(-10 -8 (-15 -2468 (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2246 (($ $ (-890)) 28)) (-2468 (($ $ (-890)) 33)) (-3424 (($ $ (-890)) 29)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3652 (($ $ $) 25)) (-3743 (((-832) $) 11)) (-3664 (($ $ $ $) 26)) (-3639 (($ $ $) 24)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-3338 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-3338 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3558 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-821)))) (-2229 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) (-4 *2 (-821)))) (-2229 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3707 (*1 *2 *1 *3) (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3707 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)))) (-1401 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-1401 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) (-4 *5 (-821)) (-5 *2 (-921 *4)))) (-2069 (*1 *1 *1 *2) (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) (-4 *3 (-38 (-398 (-547))))))) +(-13 (-869 |t#2|) (-942 |t#1| (-519 |t#2|) |t#2|) (-503 |t#2| $) (-300 $) (-10 -8 (-15 -3338 ($ $ |t#2| (-745))) (-15 -3338 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -3558 ($ $ (-745))) (-15 -2229 ($ $ |t#2| (-745))) (-15 -2229 ($ $ (-619 |t#2|) (-619 (-745)))) (-15 -3707 ((-745) $ |t#2|)) (-15 -3707 ((-745) $ |t#2| (-745))) (-15 -1401 ((-921 |t#1|) $ (-745))) (-15 -1401 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $ |t#2|)) (-6 (-971)) (-6 (-1157))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-519 |#2|)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-281) |has| |#1| (-539)) ((-300 $) . T) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-503 |#2| $) . T) ((-503 $ $) . T) ((-539) |has| |#1| (-539)) ((-622 #1#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-869 |#2|) . T) ((-942 |#1| #0# |#2|) . T) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-398 (-547)))) ((-1160) |has| |#1| (-38 (-398 (-547))))) +((-2106 (((-409 (-1131 |#4|)) (-1131 |#4|)) 30) (((-409 |#4|) |#4|) 26))) +(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 |#4|) |#4|)) (-15 -2106 ((-409 (-1131 |#4|)) (-1131 |#4|)))) (-821) (-767) (-13 (-298) (-145)) (-918 |#3| |#2| |#1|)) (T -716)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145))) (-5 *2 (-409 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(-10 -7 (-15 -2106 ((-409 |#4|) |#4|)) (-15 -2106 ((-409 (-1131 |#4|)) (-1131 |#4|)))) +((-2975 (((-409 |#4|) |#4| |#2|) 120)) (-2812 (((-409 |#4|) |#4|) NIL)) (-3457 (((-409 (-1131 |#4|)) (-1131 |#4|)) 111) (((-409 |#4|) |#4|) 41)) (-3150 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -2106 (-1131 |#4|)) (|:| -4248 (-547)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 69)) (-2415 (((-1131 |#3|) (-1131 |#3|) (-547)) 139)) (-2287 (((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745)) 61)) (-2531 (((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|)) 65)) (-2045 (((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|))) 26)) (-3068 (((-2 (|:| -1416 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-547)) 57)) (-2900 (((-547) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547))))) 136)) (-2162 ((|#4| (-547) (-409 |#4|)) 58)) (-2078 (((-112) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547))))) NIL))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 ((-409 |#4|) |#4|)) (-15 -3457 ((-409 (-1131 |#4|)) (-1131 |#4|))) (-15 -2812 ((-409 |#4|) |#4|)) (-15 -2900 ((-547) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))))) (-15 -2975 ((-409 |#4|) |#4| |#2|)) (-15 -3068 ((-2 (|:| -1416 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-547))) (-15 -3150 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -2106 (-1131 |#4|)) (|:| -4248 (-547)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2045 ((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2162 (|#4| (-547) (-409 |#4|))) (-15 -2078 ((-112) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))))) (-15 -2531 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -2287 ((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745))) (-15 -2415 ((-1131 |#3|) (-1131 |#3|) (-547)))) (-767) (-821) (-298) (-918 |#3| |#1| |#2|)) (T -717)) +((-2415 (*1 *2 *2 *3) (-12 (-5 *2 (-1131 *6)) (-5 *3 (-547)) (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2287 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-298)) (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745)))) (-2531 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1131 *11)) (-5 *6 (-619 *10)) (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) (-4 *11 (-298)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) (-5 *2 (-619 (-1131 *5))) (-5 *1 (-717 *9 *10 *11 *5)) (-5 *3 (-1131 *5)))) (-2078 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-2 (|:| -2106 (-1131 *6)) (|:| -4248 (-547))))) (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *3 (-547)) (-5 *4 (-409 *2)) (-4 *2 (-918 *7 *5 *6)) (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-298)))) (-2045 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-298)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-5 *2 (-2 (|:| |upol| (-1131 *8)) (|:| |Lval| (-619 *8)) (|:| |Lfact| (-619 (-2 (|:| -2106 (-1131 *8)) (|:| -4248 (-547))))) (|:| |ctpol| *8))) (-5 *1 (-717 *6 *7 *8 *9)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) (-4 *8 (-298)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-619 (-2 (|:| -2106 (-1131 *9)) (|:| -4248 (-547))))))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)))) (-3068 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-547)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-298)) (-4 *9 (-918 *8 *6 *7)) (-5 *2 (-2 (|:| -1416 (-1131 *9)) (|:| |polval| (-1131 *8)))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)) (-5 *4 (-1131 *8)))) (-2975 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2106 (-1131 *6)) (|:| -4248 (-547))))) (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))) +(-10 -7 (-15 -3457 ((-409 |#4|) |#4|)) (-15 -3457 ((-409 (-1131 |#4|)) (-1131 |#4|))) (-15 -2812 ((-409 |#4|) |#4|)) (-15 -2900 ((-547) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))))) (-15 -2975 ((-409 |#4|) |#4| |#2|)) (-15 -3068 ((-2 (|:| -1416 (-1131 |#4|)) (|:| |polval| (-1131 |#3|))) (-1131 |#4|) (-1131 |#3|) (-547))) (-15 -3150 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-619 (-2 (|:| -2106 (-1131 |#4|)) (|:| -4248 (-547)))))) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2045 ((-2 (|:| |upol| (-1131 |#3|)) (|:| |Lval| (-619 |#3|)) (|:| |Lfact| (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547))))) (|:| |ctpol| |#3|)) (-1131 |#4|) (-619 |#2|) (-619 (-619 |#3|)))) (-15 -2162 (|#4| (-547) (-409 |#4|))) (-15 -2078 ((-112) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))) (-619 (-2 (|:| -2106 (-1131 |#3|)) (|:| -4248 (-547)))))) (-15 -2531 ((-3 (-619 (-1131 |#4|)) "failed") (-1131 |#4|) (-1131 |#3|) (-1131 |#3|) |#4| (-619 |#2|) (-619 (-745)) (-619 |#3|))) (-15 -2287 ((-619 (-745)) (-1131 |#4|) (-619 |#2|) (-745))) (-15 -2415 ((-1131 |#3|) (-1131 |#3|) (-547)))) +((-2530 (($ $ (-890)) 12))) +(((-718 |#1| |#2|) (-10 -8 (-15 -2530 (|#1| |#1| (-890)))) (-719 |#2|) (-169)) (T -718)) +NIL +(-10 -8 (-15 -2530 (|#1| |#1| (-890)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-3946 (($ $ (-890)) 28)) (-2530 (($ $ (-890)) 33)) (-3699 (($ $ (-890)) 29)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-4121 (($ $ $) 25)) (-3834 (((-832) $) 11)) (-4225 (($ $ $ $) 26)) (-4007 (($ $ $) 24)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-719 |#1|) (-138) (-169)) (T -719)) -((-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169))))) -(-13 (-736) (-692 |t#1|) (-10 -8 (-15 -2468 ($ $ (-890))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-2489 (((-1004) (-663 (-218)) (-548) (-112) (-548)) 25)) (-2478 (((-1004) (-663 (-218)) (-548) (-112) (-548)) 24))) -(((-720) (-10 -7 (-15 -2478 ((-1004) (-663 (-218)) (-548) (-112) (-548))) (-15 -2489 ((-1004) (-663 (-218)) (-548) (-112) (-548))))) (T -720)) -((-2489 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720)))) (-2478 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720))))) -(-10 -7 (-15 -2478 ((-1004) (-663 (-218)) (-548) (-112) (-548))) (-15 -2489 ((-1004) (-663 (-218)) (-548) (-112) (-548)))) -((-2519 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))) 43)) (-2510 (((-1004) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN)))) 39)) (-2500 (((-1004) (-218) (-218) (-218) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 32))) -(((-721) (-10 -7 (-15 -2500 ((-1004) (-218) (-218) (-218) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2510 ((-1004) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN))))) (-15 -2519 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN))))))) (T -721)) -((-2519 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-2510 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-2500 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-721))))) -(-10 -7 (-15 -2500 ((-1004) (-218) (-218) (-218) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2510 ((-1004) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN))))) (-15 -2519 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))))) -((-2641 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 34)) (-2632 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 33)) (-2623 (((-1004) (-548) (-663 (-218)) (-548)) 32)) (-2613 (((-1004) (-548) (-663 (-218)) (-548)) 31)) (-2603 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 30)) (-2594 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 29)) (-2583 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548)) 28)) (-2574 (((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548)) 27)) (-2565 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 24)) (-2555 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548)) 23)) (-2544 (((-1004) (-548) (-663 (-218)) (-548)) 22)) (-2530 (((-1004) (-548) (-663 (-218)) (-548)) 21))) -(((-722) (-10 -7 (-15 -2530 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2544 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2555 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2565 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2574 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2583 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2594 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2603 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2613 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2623 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2632 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2641 ((-1004) (-548) (-548) (-663 (-218)) (-548))))) (T -722)) -((-2641 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2632 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2623 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2613 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2603 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2594 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2583 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2574 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2565 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2555 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2544 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-2530 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-722))))) -(-10 -7 (-15 -2530 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2544 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2555 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2565 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2574 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2583 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2594 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2603 ((-1004) (-548) (-548) (-1118) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2613 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2623 ((-1004) (-548) (-663 (-218)) (-548))) (-15 -2632 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2641 ((-1004) (-548) (-548) (-663 (-218)) (-548)))) -((-2751 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) 52)) (-2743 (((-1004) (-663 (-218)) (-663 (-218)) (-548) (-548)) 51)) (-2733 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2726 (((-1004) (-218) (-218) (-548) (-548) (-548) (-548)) 46)) (-2717 (((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 45)) (-2709 (((-1004) (-218) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 44)) (-2701 (((-1004) (-218) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 43)) (-2693 (((-1004) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) 42)) (-2682 (((-1004) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 38)) (-2674 (((-1004) (-218) (-218) (-548) (-663 (-218)) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 37)) (-2664 (((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 33)) (-2653 (((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) 32))) -(((-723) (-10 -7 (-15 -2653 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2664 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2674 ((-1004) (-218) (-218) (-548) (-663 (-218)) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2682 ((-1004) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2693 ((-1004) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2701 ((-1004) (-218) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2709 ((-1004) (-218) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2717 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2726 ((-1004) (-218) (-218) (-548) (-548) (-548) (-548))) (-15 -2733 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN))))) (-15 -2743 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-548))) (-15 -2751 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN))))))) (T -723)) -((-2751 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2743 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2733 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2726 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2717 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2709 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2701 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2693 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2682 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2674 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2664 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2653 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *2 (-1004)) (-5 *1 (-723))))) -(-10 -7 (-15 -2653 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2664 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2674 ((-1004) (-218) (-218) (-548) (-663 (-218)) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2682 ((-1004) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426))))) (-15 -2693 ((-1004) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2701 ((-1004) (-218) (-218) (-218) (-218) (-548) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2709 ((-1004) (-218) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2717 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G))))) (-15 -2726 ((-1004) (-218) (-218) (-548) (-548) (-548) (-548))) (-15 -2733 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN))))) (-15 -2743 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-548))) (-15 -2751 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-218) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))))) -((-1696 (((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-1690 (((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))) (-380) (-380)) 69) (((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) 68)) (-1682 (((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG)))) 57)) (-1674 (((-1004) (-663 (-218)) (-663 (-218)) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) 50)) (-2783 (((-1004) (-218) (-548) (-548) (-1118) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2775 (((-1004) (-218) (-548) (-548) (-218) (-1118) (-218) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2767 (((-1004) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) 42)) (-2760 (((-1004) (-218) (-548) (-548) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-724) (-10 -7 (-15 -2760 ((-1004) (-218) (-548) (-548) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2767 ((-1004) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -2775 ((-1004) (-218) (-548) (-548) (-218) (-1118) (-218) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2783 ((-1004) (-218) (-548) (-548) (-1118) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -1674 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -1682 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))) (-380) (-380))) (-15 -1696 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -724)) -((-1696 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1690 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-380)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1690 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1682 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-1674 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2783 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2775 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2767 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2760 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) -(-10 -7 (-15 -2760 ((-1004) (-218) (-548) (-548) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2767 ((-1004) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -2775 ((-1004) (-218) (-548) (-548) (-218) (-1118) (-218) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -2783 ((-1004) (-218) (-548) (-548) (-1118) (-548) (-218) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT))))) (-15 -1674 ((-1004) (-663 (-218)) (-663 (-218)) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN))))) (-15 -1682 ((-1004) (-218) (-218) (-548) (-218) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))))) (-15 -1690 ((-1004) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL))) (-380) (-380))) (-15 -1696 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-1721 (((-1004) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-649 (-218)) (-548)) 45)) (-1712 (((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-1118) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY)))) 41)) (-1704 (((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 23))) -(((-725) (-10 -7 (-15 -1704 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1712 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-1118) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY))))) (-15 -1721 ((-1004) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-649 (-218)) (-548))))) (T -725)) -((-1721 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-649 (-218))) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-725)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) (-5 *1 (-725)))) (-1704 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-725))))) -(-10 -7 (-15 -1704 ((-1004) (-548) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1712 ((-1004) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-1118) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY))))) (-15 -1721 ((-1004) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-649 (-218)) (-548)))) -((-1813 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-663 (-218)) (-218) (-218) (-548)) 35)) (-1802 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-218) (-218) (-548)) 34)) (-1792 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-663 (-218)) (-218) (-218) (-548)) 33)) (-1784 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 29)) (-1776 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 28)) (-1768 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548)) 27)) (-1759 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548)) 24)) (-1750 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548)) 23)) (-1742 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548)) 22)) (-1731 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)) 21))) -(((-726) (-10 -7 (-15 -1731 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1742 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1750 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1759 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1768 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1776 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1784 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1792 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1802 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-218) (-218) (-548))) (-15 -1813 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-663 (-218)) (-218) (-218) (-548))))) (T -726)) -((-1813 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1802 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1792 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1784 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1776 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1768 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1759 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1750 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1742 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1731 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-726))))) -(-10 -7 (-15 -1731 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1742 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1750 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1759 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -1768 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1776 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1784 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1792 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-663 (-218)) (-218) (-218) (-548))) (-15 -1802 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-218) (-218) (-548))) (-15 -1813 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-663 (-218)) (-218) (-218) (-548)))) -((-1998 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)) 45)) (-1989 (((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-548)) 44)) (-1976 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)) 43)) (-1965 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 42)) (-1954 (((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548)) 41)) (-1942 (((-1004) (-1118) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548)) 40)) (-1931 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548) (-548) (-548) (-218) (-663 (-218)) (-548)) 39)) (-1920 (((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548))) 38)) (-1909 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548)) 35)) (-1897 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548)) 34)) (-1889 (((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548)) 33)) (-1879 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 32)) (-1868 (((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548)) 31)) (-1859 (((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-548)) 30)) (-1850 (((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-548) (-548) (-548)) 29)) (-1842 (((-1004) (-548) (-548) (-548) (-218) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-548)) (-548) (-548) (-548)) 28)) (-1833 (((-1004) (-548) (-663 (-218)) (-218) (-548)) 24)) (-1823 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 21))) -(((-727) (-10 -7 (-15 -1823 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1833 ((-1004) (-548) (-663 (-218)) (-218) (-548))) (-15 -1842 ((-1004) (-548) (-548) (-548) (-218) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-548)) (-548) (-548) (-548))) (-15 -1850 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -1859 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-548))) (-15 -1868 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548))) (-15 -1879 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1889 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548))) (-15 -1897 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548))) (-15 -1909 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1920 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)))) (-15 -1931 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548) (-548) (-548) (-218) (-663 (-218)) (-548))) (-15 -1942 ((-1004) (-1118) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1954 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1965 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1976 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1989 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1998 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))))) (T -727)) -((-1998 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1989 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1976 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1965 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1954 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1942 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1931 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1920 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1909 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1897 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1889 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1879 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1868 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1859 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1850 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1842 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1833 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1823 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-727))))) -(-10 -7 (-15 -1823 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1833 ((-1004) (-548) (-663 (-218)) (-218) (-548))) (-15 -1842 ((-1004) (-548) (-548) (-548) (-218) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-548)) (-548) (-548) (-548))) (-15 -1850 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -1859 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548) (-548) (-548))) (-15 -1868 ((-1004) (-548) (-218) (-218) (-663 (-218)) (-548) (-548) (-218) (-548))) (-15 -1879 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1889 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548))) (-15 -1897 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548))) (-15 -1909 ((-1004) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1920 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)))) (-15 -1931 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548) (-548) (-548) (-218) (-663 (-218)) (-548))) (-15 -1942 ((-1004) (-1118) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1954 ((-1004) (-1118) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1965 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1976 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548))) (-15 -1989 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1998 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548) (-663 (-218)) (-663 (-218)) (-548) (-548) (-548)))) -((-2087 (((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-548) (-663 (-218)) (-548)) 63)) (-2076 (((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-112) (-218) (-548) (-218) (-218) (-112) (-218) (-218) (-218) (-218) (-112) (-548) (-548) (-548) (-548) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2067 (((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-112) (-112) (-548) (-548) (-663 (-218)) (-663 (-548)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS)))) 58)) (-2056 (((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-548) (-548) (-663 (-218)) (-548)) 51)) (-2042 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2031 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2019 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2009 (((-1004) (-548) (-218) (-218) (-548) (-218) (-112) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-728) (-10 -7 (-15 -2009 ((-1004) (-548) (-218) (-218) (-548) (-218) (-112) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2019 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1))))) (-15 -2031 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2))))) (-15 -2042 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1))))) (-15 -2056 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-548) (-548) (-663 (-218)) (-548))) (-15 -2067 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-112) (-112) (-548) (-548) (-663 (-218)) (-663 (-548)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS))))) (-15 -2076 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-112) (-218) (-548) (-218) (-218) (-112) (-218) (-218) (-218) (-218) (-112) (-548) (-548) (-548) (-548) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2087 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-548) (-663 (-218)) (-548))))) (T -728)) -((-2087 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2076 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *6 (-218)) (-5 *7 (-663 (-548))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2067 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-663 (-218))) (-5 *6 (-112)) (-5 *7 (-663 (-548))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2056 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2042 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2031 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2019 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2009 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728))))) -(-10 -7 (-15 -2009 ((-1004) (-548) (-218) (-218) (-548) (-218) (-112) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2019 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1))))) (-15 -2031 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2))))) (-15 -2042 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1))))) (-15 -2056 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-548) (-548) (-663 (-218)) (-548))) (-15 -2067 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-218) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-112) (-112) (-112) (-548) (-548) (-663 (-218)) (-663 (-548)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS))))) (-15 -2076 ((-1004) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-548) (-112) (-218) (-548) (-218) (-218) (-112) (-218) (-218) (-218) (-218) (-112) (-548) (-548) (-548) (-548) (-548) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-548) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN))))) (-15 -2087 ((-1004) (-548) (-548) (-548) (-218) (-663 (-218)) (-548) (-663 (-218)) (-548)))) -((-2203 (((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)) 47)) (-2191 (((-1004) (-1118) (-1118) (-548) (-548) (-663 (-166 (-218))) (-548) (-663 (-166 (-218))) (-548) (-548) (-663 (-166 (-218))) (-548)) 46)) (-2181 (((-1004) (-548) (-548) (-548) (-663 (-166 (-218))) (-548)) 45)) (-2171 (((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 40)) (-2161 (((-1004) (-1118) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)) (-548)) 39)) (-2147 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-548)) 36)) (-2135 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548)) 35)) (-2124 (((-1004) (-548) (-548) (-548) (-548) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-218) (-218) (-548)) 34)) (-2112 (((-1004) (-548) (-548) (-548) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-112) (-218) (-112) (-663 (-548)) (-663 (-218)) (-548)) 33)) (-2101 (((-1004) (-548) (-548) (-548) (-548) (-218) (-112) (-112) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-548)) 32))) -(((-729) (-10 -7 (-15 -2101 ((-1004) (-548) (-548) (-548) (-548) (-218) (-112) (-112) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-548))) (-15 -2112 ((-1004) (-548) (-548) (-548) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-112) (-218) (-112) (-663 (-548)) (-663 (-218)) (-548))) (-15 -2124 ((-1004) (-548) (-548) (-548) (-548) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-218) (-218) (-548))) (-15 -2135 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548))) (-15 -2147 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -2161 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)) (-548))) (-15 -2171 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2181 ((-1004) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2191 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-166 (-218))) (-548) (-663 (-166 (-218))) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2203 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548))))) (T -729)) -((-2203 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2191 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2181 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2171 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2161 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2147 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2135 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2124 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *7 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2112 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-663 (-548))) (-5 *5 (-112)) (-5 *7 (-663 (-218))) (-5 *3 (-548)) (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2101 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-218))) (-5 *8 (-663 (-548))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-729))))) -(-10 -7 (-15 -2101 ((-1004) (-548) (-548) (-548) (-548) (-218) (-112) (-112) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-548))) (-15 -2112 ((-1004) (-548) (-548) (-548) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-663 (-548)) (-112) (-218) (-112) (-663 (-548)) (-663 (-218)) (-548))) (-15 -2124 ((-1004) (-548) (-548) (-548) (-548) (-619 (-112)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-218) (-218) (-548))) (-15 -2135 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548))) (-15 -2147 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -2161 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)) (-548))) (-15 -2171 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -2181 ((-1004) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2191 ((-1004) (-1118) (-1118) (-548) (-548) (-663 (-166 (-218))) (-548) (-663 (-166 (-218))) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -2203 ((-1004) (-1118) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)))) -((-4251 (((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)) 65)) (-4240 (((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548)) 60)) (-4229 (((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))) (-380)) 56) (((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) 55)) (-4219 (((-1004) (-548) (-548) (-548) (-218) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548)) 37)) (-4208 (((-1004) (-548) (-548) (-218) (-218) (-548) (-548) (-663 (-218)) (-548)) 33)) (-4197 (((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548) (-548)) 30)) (-4187 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 29)) (-4177 (((-1004) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 28)) (-4166 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 27)) (-4156 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548)) 26)) (-4146 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 25)) (-4136 (((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 24)) (-2228 (((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548)) 23)) (-2219 (((-1004) (-663 (-218)) (-548) (-548) (-548) (-548)) 22)) (-2209 (((-1004) (-548) (-548) (-663 (-218)) (-548)) 21))) -(((-730) (-10 -7 (-15 -2209 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2219 ((-1004) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -2228 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4136 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4146 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -4156 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -4166 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4177 ((-1004) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4187 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4197 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -4208 ((-1004) (-548) (-548) (-218) (-218) (-548) (-548) (-663 (-218)) (-548))) (-15 -4219 ((-1004) (-548) (-548) (-548) (-218) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))) (-380))) (-15 -4240 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4251 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548))))) (T -730)) -((-4251 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4240 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4229 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-380)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4229 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4219 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4208 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4197 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4187 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4177 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4166 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4156 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4146 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-4136 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2228 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2219 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2209 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-730))))) -(-10 -7 (-15 -2209 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -2219 ((-1004) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -2228 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4136 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4146 ((-1004) (-548) (-548) (-663 (-218)) (-548))) (-15 -4156 ((-1004) (-548) (-548) (-548) (-548) (-663 (-218)) (-548))) (-15 -4166 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4177 ((-1004) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4187 ((-1004) (-548) (-548) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4197 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548) (-548))) (-15 -4208 ((-1004) (-548) (-548) (-218) (-218) (-548) (-548) (-663 (-218)) (-548))) (-15 -4219 ((-1004) (-548) (-548) (-548) (-218) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))))) (-15 -4229 ((-1004) (-548) (-548) (-218) (-548) (-548) (-548) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE))) (-380))) (-15 -4240 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -4251 ((-1004) (-548) (-548) (-548) (-548) (-548) (-112) (-548) (-112) (-548) (-663 (-166 (-218))) (-663 (-166 (-218))) (-548)))) -((-1322 (((-1004) (-548) (-548) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))) 61)) (-1310 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548)) 57)) (-1299 (((-1004) (-548) (-663 (-218)) (-112) (-218) (-548) (-548) (-548) (-548) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1287 (((-1004) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548)) 37)) (-1276 (((-1004) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-548)) 36)) (-1264 (((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548)) 33)) (-1251 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218))) 32)) (-4296 (((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548)) 28)) (-4285 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548)) 27)) (-4275 (((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548)) 26)) (-4264 (((-1004) (-548) (-663 (-166 (-218))) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-548)) 22))) -(((-731) (-10 -7 (-15 -4264 ((-1004) (-548) (-663 (-166 (-218))) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -4275 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4285 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4296 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548))) (-15 -1251 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)))) (-15 -1264 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1276 ((-1004) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1287 ((-1004) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1299 ((-1004) (-548) (-663 (-218)) (-112) (-218) (-548) (-548) (-548) (-548) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE))))) (-15 -1310 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -1322 ((-1004) (-548) (-548) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD))))))) (T -731)) -((-1322 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1310 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1299 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *6 (-218)) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1287 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1276 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1264 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1251 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4296 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4285 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4275 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4264 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) (-5 *1 (-731))))) -(-10 -7 (-15 -4264 ((-1004) (-548) (-663 (-166 (-218))) (-548) (-548) (-548) (-548) (-663 (-166 (-218))) (-548))) (-15 -4275 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4285 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-548))) (-15 -4296 ((-1004) (-663 (-218)) (-548) (-663 (-218)) (-548) (-548) (-548))) (-15 -1251 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-548)) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)))) (-15 -1264 ((-1004) (-548) (-548) (-663 (-218)) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1276 ((-1004) (-548) (-548) (-548) (-218) (-548) (-663 (-218)) (-663 (-218)) (-548))) (-15 -1287 ((-1004) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-548)) (-663 (-218)) (-663 (-548)) (-663 (-548)) (-663 (-218)) (-663 (-218)) (-663 (-548)) (-548))) (-15 -1299 ((-1004) (-548) (-663 (-218)) (-112) (-218) (-548) (-548) (-548) (-548) (-218) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE))))) (-15 -1310 ((-1004) (-548) (-663 (-218)) (-548) (-663 (-218)) (-663 (-548)) (-548) (-663 (-218)) (-548) (-548) (-548) (-548))) (-15 -1322 ((-1004) (-548) (-548) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-663 (-218)) (-548) (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))))) -((-1366 (((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-548) (-663 (-218))) 29)) (-1355 (((-1004) (-1118) (-548) (-548) (-663 (-218))) 28)) (-1344 (((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-218))) 27)) (-1333 (((-1004) (-548) (-548) (-548) (-663 (-218))) 21))) -(((-732) (-10 -7 (-15 -1333 ((-1004) (-548) (-548) (-548) (-663 (-218)))) (-15 -1344 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-218)))) (-15 -1355 ((-1004) (-1118) (-548) (-548) (-663 (-218)))) (-15 -1366 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-548) (-663 (-218)))))) (T -732)) -((-1366 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1355 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1344 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1333 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) (-5 *1 (-732))))) -(-10 -7 (-15 -1333 ((-1004) (-548) (-548) (-548) (-663 (-218)))) (-15 -1344 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-663 (-548)) (-548) (-663 (-218)))) (-15 -1355 ((-1004) (-1118) (-548) (-548) (-663 (-218)))) (-15 -1366 ((-1004) (-1118) (-548) (-548) (-663 (-218)) (-548) (-548) (-663 (-218))))) -((-3573 (((-1004) (-218) (-218) (-218) (-218) (-548)) 62)) (-3562 (((-1004) (-218) (-218) (-218) (-548)) 61)) (-3551 (((-1004) (-218) (-218) (-218) (-548)) 60)) (-3540 (((-1004) (-218) (-218) (-548)) 59)) (-3529 (((-1004) (-218) (-548)) 58)) (-3516 (((-1004) (-218) (-548)) 57)) (-3507 (((-1004) (-218) (-548)) 56)) (-3493 (((-1004) (-218) (-548)) 55)) (-3482 (((-1004) (-218) (-548)) 54)) (-1659 (((-1004) (-218) (-548)) 53)) (-1650 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 52)) (-1642 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 51)) (-1635 (((-1004) (-218) (-548)) 50)) (-1625 (((-1004) (-218) (-548)) 49)) (-1614 (((-1004) (-218) (-548)) 48)) (-1603 (((-1004) (-218) (-548)) 47)) (-1596 (((-1004) (-548) (-218) (-166 (-218)) (-548) (-1118) (-548)) 46)) (-1588 (((-1004) (-1118) (-166 (-218)) (-1118) (-548)) 45)) (-1577 (((-1004) (-1118) (-166 (-218)) (-1118) (-548)) 44)) (-1568 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 43)) (-1559 (((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548)) 42)) (-1550 (((-1004) (-218) (-548)) 39)) (-1541 (((-1004) (-218) (-548)) 38)) (-1532 (((-1004) (-218) (-548)) 37)) (-1522 (((-1004) (-218) (-548)) 36)) (-1512 (((-1004) (-218) (-548)) 35)) (-1501 (((-1004) (-218) (-548)) 34)) (-1490 (((-1004) (-218) (-548)) 33)) (-1477 (((-1004) (-218) (-548)) 32)) (-1466 (((-1004) (-218) (-548)) 31)) (-1455 (((-1004) (-218) (-548)) 30)) (-1445 (((-1004) (-218) (-218) (-218) (-548)) 29)) (-1432 (((-1004) (-218) (-548)) 28)) (-1421 (((-1004) (-218) (-548)) 27)) (-1410 (((-1004) (-218) (-548)) 26)) (-1399 (((-1004) (-218) (-548)) 25)) (-1389 (((-1004) (-218) (-548)) 24)) (-1378 (((-1004) (-166 (-218)) (-548)) 21))) -(((-733) (-10 -7 (-15 -1378 ((-1004) (-166 (-218)) (-548))) (-15 -1389 ((-1004) (-218) (-548))) (-15 -1399 ((-1004) (-218) (-548))) (-15 -1410 ((-1004) (-218) (-548))) (-15 -1421 ((-1004) (-218) (-548))) (-15 -1432 ((-1004) (-218) (-548))) (-15 -1445 ((-1004) (-218) (-218) (-218) (-548))) (-15 -1455 ((-1004) (-218) (-548))) (-15 -1466 ((-1004) (-218) (-548))) (-15 -1477 ((-1004) (-218) (-548))) (-15 -1490 ((-1004) (-218) (-548))) (-15 -1501 ((-1004) (-218) (-548))) (-15 -1512 ((-1004) (-218) (-548))) (-15 -1522 ((-1004) (-218) (-548))) (-15 -1532 ((-1004) (-218) (-548))) (-15 -1541 ((-1004) (-218) (-548))) (-15 -1550 ((-1004) (-218) (-548))) (-15 -1559 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1568 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1577 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1588 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1596 ((-1004) (-548) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1603 ((-1004) (-218) (-548))) (-15 -1614 ((-1004) (-218) (-548))) (-15 -1625 ((-1004) (-218) (-548))) (-15 -1635 ((-1004) (-218) (-548))) (-15 -1642 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1650 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1659 ((-1004) (-218) (-548))) (-15 -3482 ((-1004) (-218) (-548))) (-15 -3493 ((-1004) (-218) (-548))) (-15 -3507 ((-1004) (-218) (-548))) (-15 -3516 ((-1004) (-218) (-548))) (-15 -3529 ((-1004) (-218) (-548))) (-15 -3540 ((-1004) (-218) (-218) (-548))) (-15 -3551 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3562 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3573 ((-1004) (-218) (-218) (-218) (-218) (-548))))) (T -733)) -((-3573 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3562 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3551 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3540 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1650 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1642 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1596 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-548)) (-5 *5 (-166 (-218))) (-5 *6 (-1118)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1588 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1577 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1568 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1559 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1445 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1378 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(-10 -7 (-15 -1378 ((-1004) (-166 (-218)) (-548))) (-15 -1389 ((-1004) (-218) (-548))) (-15 -1399 ((-1004) (-218) (-548))) (-15 -1410 ((-1004) (-218) (-548))) (-15 -1421 ((-1004) (-218) (-548))) (-15 -1432 ((-1004) (-218) (-548))) (-15 -1445 ((-1004) (-218) (-218) (-218) (-548))) (-15 -1455 ((-1004) (-218) (-548))) (-15 -1466 ((-1004) (-218) (-548))) (-15 -1477 ((-1004) (-218) (-548))) (-15 -1490 ((-1004) (-218) (-548))) (-15 -1501 ((-1004) (-218) (-548))) (-15 -1512 ((-1004) (-218) (-548))) (-15 -1522 ((-1004) (-218) (-548))) (-15 -1532 ((-1004) (-218) (-548))) (-15 -1541 ((-1004) (-218) (-548))) (-15 -1550 ((-1004) (-218) (-548))) (-15 -1559 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1568 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1577 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1588 ((-1004) (-1118) (-166 (-218)) (-1118) (-548))) (-15 -1596 ((-1004) (-548) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1603 ((-1004) (-218) (-548))) (-15 -1614 ((-1004) (-218) (-548))) (-15 -1625 ((-1004) (-218) (-548))) (-15 -1635 ((-1004) (-218) (-548))) (-15 -1642 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1650 ((-1004) (-218) (-166 (-218)) (-548) (-1118) (-548))) (-15 -1659 ((-1004) (-218) (-548))) (-15 -3482 ((-1004) (-218) (-548))) (-15 -3493 ((-1004) (-218) (-548))) (-15 -3507 ((-1004) (-218) (-548))) (-15 -3516 ((-1004) (-218) (-548))) (-15 -3529 ((-1004) (-218) (-548))) (-15 -3540 ((-1004) (-218) (-218) (-548))) (-15 -3551 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3562 ((-1004) (-218) (-218) (-218) (-548))) (-15 -3573 ((-1004) (-218) (-218) (-218) (-218) (-548)))) -((-3629 (((-1223)) 18)) (-3597 (((-1118)) 22)) (-3584 (((-1118)) 21)) (-3618 (((-1067) (-1135) (-663 (-548))) 37) (((-1067) (-1135) (-663 (-218))) 32)) (-3307 (((-112)) 16)) (-3608 (((-1118) (-1118)) 25))) -(((-734) (-10 -7 (-15 -3584 ((-1118))) (-15 -3597 ((-1118))) (-15 -3608 ((-1118) (-1118))) (-15 -3618 ((-1067) (-1135) (-663 (-218)))) (-15 -3618 ((-1067) (-1135) (-663 (-548)))) (-15 -3307 ((-112))) (-15 -3629 ((-1223))))) (T -734)) -((-3629 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-734)))) (-3307 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-548))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-218))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-3608 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734)))) (-3597 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734)))) (-3584 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) -(-10 -7 (-15 -3584 ((-1118))) (-15 -3597 ((-1118))) (-15 -3608 ((-1118) (-1118))) (-15 -3618 ((-1067) (-1135) (-663 (-218)))) (-15 -3618 ((-1067) (-1135) (-663 (-548)))) (-15 -3307 ((-112))) (-15 -3629 ((-1223)))) -((-3652 (($ $ $) 10)) (-3664 (($ $ $ $) 9)) (-3639 (($ $ $) 12))) -(((-735 |#1|) (-10 -8 (-15 -3639 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1| |#1|))) (-736)) (T -735)) -NIL -(-10 -8 (-15 -3639 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3664 (|#1| |#1| |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2246 (($ $ (-890)) 28)) (-3424 (($ $ (-890)) 29)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3652 (($ $ $) 25)) (-3743 (((-832) $) 11)) (-3664 (($ $ $ $) 26)) (-3639 (($ $ $) 24)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27))) +((-2530 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169))))) +(-13 (-736) (-692 |t#1|) (-10 -8 (-15 -2530 ($ $ (-890))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-695) . T) ((-736) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-1371 (((-1004) (-663 (-217)) (-547) (-112) (-547)) 25)) (-2627 (((-1004) (-663 (-217)) (-547) (-112) (-547)) 24))) +(((-720) (-10 -7 (-15 -2627 ((-1004) (-663 (-217)) (-547) (-112) (-547))) (-15 -1371 ((-1004) (-663 (-217)) (-547) (-112) (-547))))) (T -720)) +((-1371 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720)))) (-2627 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-720))))) +(-10 -7 (-15 -2627 ((-1004) (-663 (-217)) (-547) (-112) (-547))) (-15 -1371 ((-1004) (-663 (-217)) (-547) (-112) (-547)))) +((-1700 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))) 43)) (-1590 (((-1004) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN)))) 39)) (-1479 (((-1004) (-217) (-217) (-217) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) 32))) +(((-721) (-10 -7 (-15 -1479 ((-1004) (-217) (-217) (-217) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -1590 ((-1004) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN))))) (-15 -1700 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN))))))) (T -721)) +((-1700 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-1590 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) (-5 *1 (-721)))) (-1479 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) (-5 *2 (-1004)) (-5 *1 (-721))))) +(-10 -7 (-15 -1479 ((-1004) (-217) (-217) (-217) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -1590 ((-1004) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN))))) (-15 -1700 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))))) +((-3529 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 34)) (-3436 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 33)) (-3339 (((-1004) (-547) (-663 (-217)) (-547)) 32)) (-1326 (((-1004) (-547) (-663 (-217)) (-547)) 31)) (-4290 (((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 30)) (-4207 (((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 29)) (-4120 (((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-547)) 28)) (-4027 (((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-547)) 27)) (-3931 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 24)) (-3852 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547)) 23)) (-1904 (((-1004) (-547) (-663 (-217)) (-547)) 22)) (-1804 (((-1004) (-547) (-663 (-217)) (-547)) 21))) +(((-722) (-10 -7 (-15 -1804 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -1904 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3852 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3931 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4027 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4120 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4207 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4290 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1326 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3339 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3436 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -3529 ((-1004) (-547) (-547) (-663 (-217)) (-547))))) (T -722)) +((-3529 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3436 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3339 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-1326 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-4290 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-4207 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-4120 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-4027 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3931 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-3852 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-1904 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722)))) (-1804 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-722))))) +(-10 -7 (-15 -1804 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -1904 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3852 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3931 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4027 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4120 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4207 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4290 ((-1004) (-547) (-547) (-1118) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1326 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3339 ((-1004) (-547) (-663 (-217)) (-547))) (-15 -3436 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -3529 ((-1004) (-547) (-547) (-663 (-217)) (-547)))) +((-2216 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) 52)) (-2115 (((-1004) (-663 (-217)) (-663 (-217)) (-547) (-547)) 51)) (-3213 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) 50)) (-3145 (((-1004) (-217) (-217) (-547) (-547) (-547) (-547)) 46)) (-3073 (((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 45)) (-2997 (((-1004) (-217) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 44)) (-2938 (((-1004) (-217) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 43)) (-2864 (((-1004) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) 42)) (-2789 (((-1004) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) 38)) (-3828 (((-1004) (-217) (-217) (-547) (-663 (-217)) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) 37)) (-3740 (((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) 33)) (-3639 (((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) 32))) +(((-723) (-10 -7 (-15 -3639 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -3740 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -3828 ((-1004) (-217) (-217) (-547) (-663 (-217)) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -2789 ((-1004) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -2864 ((-1004) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -2938 ((-1004) (-217) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -2997 ((-1004) (-217) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3073 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3145 ((-1004) (-217) (-217) (-547) (-547) (-547) (-547))) (-15 -3213 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))) (-15 -2115 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-547))) (-15 -2216 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))))) (T -723)) +((-2216 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2115 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3213 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3145 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3073 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2997 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2938 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2864 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-2789 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3828 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3740 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) (-5 *2 (-1004)) (-5 *1 (-723)))) (-3639 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) (-5 *2 (-1004)) (-5 *1 (-723))))) +(-10 -7 (-15 -3639 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -3740 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -3828 ((-1004) (-217) (-217) (-547) (-663 (-217)) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -2789 ((-1004) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409))))) (-15 -2864 ((-1004) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -2938 ((-1004) (-217) (-217) (-217) (-217) (-547) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -2997 ((-1004) (-217) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3073 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G))))) (-15 -3145 ((-1004) (-217) (-217) (-547) (-547) (-547) (-547))) (-15 -3213 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN))))) (-15 -2115 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-547))) (-15 -2216 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-217) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))))) +((-2820 (((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2762 (((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))) (-379) (-379)) 69) (((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2689 (((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG)))) 57)) (-3726 (((-1004) (-663 (-217)) (-663 (-217)) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) 50)) (-2589 (((-1004) (-217) (-547) (-547) (-1118) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2498 (((-1004) (-217) (-547) (-547) (-217) (-1118) (-217) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2397 (((-1004) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) 42)) (-2323 (((-1004) (-217) (-547) (-547) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-724) (-10 -7 (-15 -2323 ((-1004) (-217) (-547) (-547) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2397 ((-1004) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -2498 ((-1004) (-217) (-547) (-547) (-217) (-1118) (-217) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2589 ((-1004) (-217) (-547) (-547) (-1118) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -3726 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -2689 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG))))) (-15 -2762 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))))) (-15 -2762 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))) (-379) (-379))) (-15 -2820 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -724)) +((-2820 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2762 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-379)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2762 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2689 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-3726 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2589 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-547)) (-5 *5 (-1118)) (-5 *6 (-663 (-217))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2498 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-547)) (-5 *5 (-1118)) (-5 *6 (-663 (-217))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2397 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724)))) (-2323 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(-10 -7 (-15 -2323 ((-1004) (-217) (-547) (-547) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2397 ((-1004) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -2498 ((-1004) (-217) (-547) (-547) (-217) (-1118) (-217) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -2589 ((-1004) (-217) (-547) (-547) (-1118) (-547) (-217) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT))))) (-15 -3726 ((-1004) (-663 (-217)) (-663 (-217)) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN))))) (-15 -2689 ((-1004) (-217) (-217) (-547) (-217) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG))))) (-15 -2762 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))))) (-15 -2762 ((-1004) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL))) (-379) (-379))) (-15 -2820 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP)))))) +((-3039 (((-1004) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-649 (-217)) (-547)) 45)) (-2965 (((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-1118) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY)))) 41)) (-2898 (((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 23))) +(((-725) (-10 -7 (-15 -2898 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2965 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-1118) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY))))) (-15 -3039 ((-1004) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-649 (-217)) (-547))))) (T -725)) +((-3039 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-649 (-217))) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-725)))) (-2965 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-1118)) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) (-5 *1 (-725)))) (-2898 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-725))))) +(-10 -7 (-15 -2898 ((-1004) (-547) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2965 ((-1004) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-1118) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY))))) (-15 -3039 ((-1004) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-649 (-217)) (-547)))) +((-1411 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-663 (-217)) (-217) (-217) (-547)) 35)) (-1325 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-217) (-217) (-547)) 34)) (-2581 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-663 (-217)) (-217) (-217) (-547)) 33)) (-2487 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 29)) (-2388 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 28)) (-2286 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547)) 27)) (-2184 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547)) 24)) (-2086 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547)) 23)) (-1980 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547)) 22)) (-3109 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)) 21))) +(((-726) (-10 -7 (-15 -3109 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -1980 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2086 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -2184 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -2286 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547))) (-15 -2388 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2487 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2581 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-663 (-217)) (-217) (-217) (-547))) (-15 -1325 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-217) (-217) (-547))) (-15 -1411 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-663 (-217)) (-217) (-217) (-547))))) (T -726)) +((-1411 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1325 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2581 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2487 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2388 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2286 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2184 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-2086 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-1980 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726)))) (-3109 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-726))))) +(-10 -7 (-15 -3109 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -1980 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2086 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -2184 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -2286 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-217) (-547))) (-15 -2388 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2487 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2581 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-663 (-217)) (-217) (-217) (-547))) (-15 -1325 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-217) (-217) (-547))) (-15 -1411 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-663 (-217)) (-217) (-217) (-547)))) +((-3703 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)) 45)) (-3618 (((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-547)) 44)) (-3528 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)) 43)) (-3445 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 42)) (-3359 (((-1004) (-1118) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547)) 41)) (-3276 (((-1004) (-1118) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547)) 40)) (-3192 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547) (-547) (-547) (-217) (-663 (-217)) (-547)) 39)) (-4252 (((-1004) (-1118) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547))) 38)) (-4176 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547)) 35)) (-4098 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547)) 34)) (-4016 (((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547)) 33)) (-3930 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 32)) (-3859 (((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547)) 31)) (-3788 (((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-547)) 30)) (-1838 (((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-547) (-547) (-547)) 29)) (-1745 (((-1004) (-547) (-547) (-547) (-217) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-547)) (-547) (-547) (-547)) 28)) (-1651 (((-1004) (-547) (-663 (-217)) (-217) (-547)) 24)) (-1542 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 21))) +(((-727) (-10 -7 (-15 -1542 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1651 ((-1004) (-547) (-663 (-217)) (-217) (-547))) (-15 -1745 ((-1004) (-547) (-547) (-547) (-217) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-547)) (-547) (-547) (-547))) (-15 -1838 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -3788 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-547))) (-15 -3859 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547))) (-15 -3930 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4016 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547))) (-15 -4098 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547))) (-15 -4176 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4252 ((-1004) (-1118) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)))) (-15 -3192 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547) (-547) (-547) (-217) (-663 (-217)) (-547))) (-15 -3276 ((-1004) (-1118) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -3359 ((-1004) (-1118) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3445 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3528 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -3618 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3703 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))))) (T -727)) +((-3703 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3618 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3528 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3445 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3359 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3276 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3192 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-4252 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-4176 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-4098 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-4016 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3930 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3859 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-3788 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1838 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1745 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1651 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) (-5 *2 (-1004)) (-5 *1 (-727)))) (-1542 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-727))))) +(-10 -7 (-15 -1542 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1651 ((-1004) (-547) (-663 (-217)) (-217) (-547))) (-15 -1745 ((-1004) (-547) (-547) (-547) (-217) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-547)) (-547) (-547) (-547))) (-15 -1838 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -3788 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547) (-547) (-547))) (-15 -3859 ((-1004) (-547) (-217) (-217) (-663 (-217)) (-547) (-547) (-217) (-547))) (-15 -3930 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4016 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547))) (-15 -4098 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547))) (-15 -4176 ((-1004) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -4252 ((-1004) (-1118) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)))) (-15 -3192 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547) (-547) (-547) (-217) (-663 (-217)) (-547))) (-15 -3276 ((-1004) (-1118) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -3359 ((-1004) (-1118) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3445 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3528 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547))) (-15 -3618 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-547))) (-15 -3703 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547) (-663 (-217)) (-663 (-217)) (-547) (-547) (-547)))) +((-2066 (((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-547) (-663 (-217)) (-547)) 63)) (-3165 (((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-112) (-217) (-547) (-217) (-217) (-112) (-217) (-217) (-217) (-217) (-112) (-547) (-547) (-547) (-547) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) 62)) (-3087 (((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-112) (-112) (-547) (-547) (-663 (-217)) (-663 (-547)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS)))) 58)) (-3007 (((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-547) (-547) (-663 (-217)) (-547)) 51)) (-2927 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2844 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2758 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2679 (((-1004) (-547) (-217) (-217) (-547) (-217) (-112) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) 38))) +(((-728) (-10 -7 (-15 -2679 ((-1004) (-547) (-217) (-217) (-547) (-217) (-112) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -2758 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1))))) (-15 -2844 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2))))) (-15 -2927 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1))))) (-15 -3007 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-547) (-547) (-663 (-217)) (-547))) (-15 -3087 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-112) (-112) (-547) (-547) (-663 (-217)) (-663 (-547)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS))))) (-15 -3165 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-112) (-217) (-547) (-217) (-217) (-112) (-217) (-217) (-217) (-217) (-112) (-547) (-547) (-547) (-547) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -2066 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-547) (-663 (-217)) (-547))))) (T -728)) +((-2066 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-3165 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *6 (-217)) (-5 *7 (-663 (-547))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-3087 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-663 (-217))) (-5 *6 (-112)) (-5 *7 (-663 (-547))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-3007 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2927 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2844 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2758 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1004)) (-5 *1 (-728)))) (-2679 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(-10 -7 (-15 -2679 ((-1004) (-547) (-217) (-217) (-547) (-217) (-112) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -2758 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1))))) (-15 -2844 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2))))) (-15 -2927 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1))))) (-15 -3007 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-547) (-547) (-663 (-217)) (-547))) (-15 -3087 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-217) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-112) (-112) (-112) (-547) (-547) (-663 (-217)) (-663 (-547)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS))))) (-15 -3165 ((-1004) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-547) (-112) (-217) (-547) (-217) (-217) (-112) (-217) (-217) (-217) (-217) (-112) (-547) (-547) (-547) (-547) (-547) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-547) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN))))) (-15 -2066 ((-1004) (-547) (-547) (-547) (-217) (-663 (-217)) (-547) (-663 (-217)) (-547)))) +((-1715 (((-1004) (-1118) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547)) 47)) (-1623 (((-1004) (-1118) (-1118) (-547) (-547) (-663 (-166 (-217))) (-547) (-663 (-166 (-217))) (-547) (-547) (-663 (-166 (-217))) (-547)) 46)) (-1522 (((-1004) (-547) (-547) (-547) (-663 (-166 (-217))) (-547)) 45)) (-1419 (((-1004) (-1118) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 40)) (-1349 (((-1004) (-1118) (-1118) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)) (-547)) 39)) (-2597 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-547)) 36)) (-2495 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547)) 35)) (-2395 (((-1004) (-547) (-547) (-547) (-547) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-217) (-217) (-547)) 34)) (-2280 (((-1004) (-547) (-547) (-547) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-112) (-217) (-112) (-663 (-547)) (-663 (-217)) (-547)) 33)) (-2178 (((-1004) (-547) (-547) (-547) (-547) (-217) (-112) (-112) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-547)) 32))) +(((-729) (-10 -7 (-15 -2178 ((-1004) (-547) (-547) (-547) (-547) (-217) (-112) (-112) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-547))) (-15 -2280 ((-1004) (-547) (-547) (-547) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-112) (-217) (-112) (-663 (-547)) (-663 (-217)) (-547))) (-15 -2395 ((-1004) (-547) (-547) (-547) (-547) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-217) (-217) (-547))) (-15 -2495 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547))) (-15 -2597 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -1349 ((-1004) (-1118) (-1118) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)) (-547))) (-15 -1419 ((-1004) (-1118) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1522 ((-1004) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -1623 ((-1004) (-1118) (-1118) (-547) (-547) (-663 (-166 (-217))) (-547) (-663 (-166 (-217))) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -1715 ((-1004) (-1118) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547))))) (T -729)) +((-1715 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-1623 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-1522 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-1419 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-1349 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2597 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2495 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2395 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *7 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2280 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-663 (-547))) (-5 *5 (-112)) (-5 *7 (-663 (-217))) (-5 *3 (-547)) (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-729)))) (-2178 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-217))) (-5 *8 (-663 (-547))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *5 (-112)) (-5 *2 (-1004)) (-5 *1 (-729))))) +(-10 -7 (-15 -2178 ((-1004) (-547) (-547) (-547) (-547) (-217) (-112) (-112) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-547))) (-15 -2280 ((-1004) (-547) (-547) (-547) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-663 (-547)) (-112) (-217) (-112) (-663 (-547)) (-663 (-217)) (-547))) (-15 -2395 ((-1004) (-547) (-547) (-547) (-547) (-619 (-112)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-217) (-217) (-547))) (-15 -2495 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547))) (-15 -2597 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -1349 ((-1004) (-1118) (-1118) (-547) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)) (-547))) (-15 -1419 ((-1004) (-1118) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1522 ((-1004) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -1623 ((-1004) (-1118) (-1118) (-547) (-547) (-663 (-166 (-217))) (-547) (-663 (-166 (-217))) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -1715 ((-1004) (-1118) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547)))) +((-2063 (((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547)) 65)) (-1941 (((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547)) 60)) (-1829 (((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))) (-379)) 56) (((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) 55)) (-1713 (((-1004) (-547) (-547) (-547) (-217) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547)) 37)) (-1593 (((-1004) (-547) (-547) (-217) (-217) (-547) (-547) (-663 (-217)) (-547)) 33)) (-1468 (((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547) (-547)) 30)) (-2694 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 29)) (-2595 (((-1004) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 28)) (-2477 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 27)) (-2380 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547)) 26)) (-2248 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 25)) (-2121 (((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 24)) (-3819 (((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547)) 23)) (-1879 (((-1004) (-663 (-217)) (-547) (-547) (-547) (-547)) 22)) (-1784 (((-1004) (-547) (-547) (-663 (-217)) (-547)) 21))) +(((-730) (-10 -7 (-15 -1784 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -1879 ((-1004) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -3819 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2121 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2248 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -2380 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -2477 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2595 ((-1004) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2694 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1468 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -1593 ((-1004) (-547) (-547) (-217) (-217) (-547) (-547) (-663 (-217)) (-547))) (-15 -1713 ((-1004) (-547) (-547) (-547) (-217) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1829 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))))) (-15 -1829 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))) (-379))) (-15 -1941 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2063 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547))))) (T -730)) +((-2063 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1941 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1829 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-379)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1829 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1713 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1593 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1468 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2694 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2595 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2477 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2380 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2248 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-2121 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-3819 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1879 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-730)))) (-1784 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-730))))) +(-10 -7 (-15 -1784 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -1879 ((-1004) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -3819 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2121 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2248 ((-1004) (-547) (-547) (-663 (-217)) (-547))) (-15 -2380 ((-1004) (-547) (-547) (-547) (-547) (-663 (-217)) (-547))) (-15 -2477 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2595 ((-1004) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2694 ((-1004) (-547) (-547) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1468 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547) (-547))) (-15 -1593 ((-1004) (-547) (-547) (-217) (-217) (-547) (-547) (-663 (-217)) (-547))) (-15 -1713 ((-1004) (-547) (-547) (-547) (-217) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1829 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))))) (-15 -1829 ((-1004) (-547) (-547) (-217) (-547) (-547) (-547) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE))) (-379))) (-15 -1941 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2063 ((-1004) (-547) (-547) (-547) (-547) (-547) (-112) (-547) (-112) (-547) (-663 (-166 (-217))) (-663 (-166 (-217))) (-547)))) +((-2390 (((-1004) (-547) (-547) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))) 61)) (-2252 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547)) 57)) (-2113 (((-1004) (-547) (-663 (-217)) (-112) (-217) (-547) (-547) (-547) (-547) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2866 (((-1004) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547)) 37)) (-1743 (((-1004) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-547)) 36)) (-4304 (((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547)) 33)) (-3972 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217))) 32)) (-4292 (((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547)) 28)) (-4188 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547)) 27)) (-4091 (((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547)) 26)) (-3985 (((-1004) (-547) (-663 (-166 (-217))) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-547)) 22))) +(((-731) (-10 -7 (-15 -3985 ((-1004) (-547) (-663 (-166 (-217))) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -4091 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -4188 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -4292 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547))) (-15 -3972 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)))) (-15 -4304 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1743 ((-1004) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2866 ((-1004) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -2113 ((-1004) (-547) (-663 (-217)) (-112) (-217) (-547) (-547) (-547) (-547) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE))))) (-15 -2252 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -2390 ((-1004) (-547) (-547) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD))))))) (T -731)) +((-2390 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2252 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2113 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *6 (-217)) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-2866 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-1743 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4304 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-3972 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4292 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4188 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-4091 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731)))) (-3985 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004)) (-5 *1 (-731))))) +(-10 -7 (-15 -3985 ((-1004) (-547) (-663 (-166 (-217))) (-547) (-547) (-547) (-547) (-663 (-166 (-217))) (-547))) (-15 -4091 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -4188 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-547))) (-15 -4292 ((-1004) (-663 (-217)) (-547) (-663 (-217)) (-547) (-547) (-547))) (-15 -3972 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-547)) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)))) (-15 -4304 ((-1004) (-547) (-547) (-663 (-217)) (-663 (-217)) (-663 (-217)) (-547))) (-15 -1743 ((-1004) (-547) (-547) (-547) (-217) (-547) (-663 (-217)) (-663 (-217)) (-547))) (-15 -2866 ((-1004) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-547)) (-663 (-217)) (-663 (-547)) (-663 (-547)) (-663 (-217)) (-663 (-217)) (-663 (-547)) (-547))) (-15 -2113 ((-1004) (-547) (-663 (-217)) (-112) (-217) (-547) (-547) (-547) (-547) (-217) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE))))) (-15 -2252 ((-1004) (-547) (-663 (-217)) (-547) (-663 (-217)) (-663 (-547)) (-547) (-663 (-217)) (-547) (-547) (-547) (-547))) (-15 -2390 ((-1004) (-547) (-547) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-663 (-217)) (-547) (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))))) +((-3158 (((-1004) (-1118) (-547) (-547) (-663 (-217)) (-547) (-547) (-663 (-217))) 29)) (-1286 (((-1004) (-1118) (-547) (-547) (-663 (-217))) 28)) (-1897 (((-1004) (-1118) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-217))) 27)) (-3227 (((-1004) (-547) (-547) (-547) (-663 (-217))) 21))) +(((-732) (-10 -7 (-15 -3227 ((-1004) (-547) (-547) (-547) (-663 (-217)))) (-15 -1897 ((-1004) (-1118) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-217)))) (-15 -1286 ((-1004) (-1118) (-547) (-547) (-663 (-217)))) (-15 -3158 ((-1004) (-1118) (-547) (-547) (-663 (-217)) (-547) (-547) (-663 (-217)))))) (T -732)) +((-3158 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1286 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-732)))) (-1897 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-732)))) (-3227 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-732))))) +(-10 -7 (-15 -3227 ((-1004) (-547) (-547) (-547) (-663 (-217)))) (-15 -1897 ((-1004) (-1118) (-547) (-547) (-663 (-217)) (-547) (-663 (-547)) (-547) (-663 (-217)))) (-15 -1286 ((-1004) (-1118) (-547) (-547) (-663 (-217)))) (-15 -3158 ((-1004) (-1118) (-547) (-547) (-663 (-217)) (-547) (-547) (-663 (-217))))) +((-1480 (((-1004) (-217) (-217) (-217) (-217) (-547)) 62)) (-1366 (((-1004) (-217) (-217) (-217) (-547)) 61)) (-2603 (((-1004) (-217) (-217) (-217) (-547)) 60)) (-2488 (((-1004) (-217) (-217) (-547)) 59)) (-2365 (((-1004) (-217) (-547)) 58)) (-2233 (((-1004) (-217) (-547)) 57)) (-2135 (((-1004) (-217) (-547)) 56)) (-3189 (((-1004) (-217) (-547)) 55)) (-3093 (((-1004) (-217) (-547)) 54)) (-3582 (((-1004) (-217) (-547)) 53)) (-3488 (((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547)) 52)) (-3407 (((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547)) 51)) (-3332 (((-1004) (-217) (-547)) 50)) (-3238 (((-1004) (-217) (-547)) 49)) (-3149 (((-1004) (-217) (-547)) 48)) (-4200 (((-1004) (-217) (-547)) 47)) (-4132 (((-1004) (-547) (-217) (-166 (-217)) (-547) (-1118) (-547)) 46)) (-4054 (((-1004) (-1118) (-166 (-217)) (-1118) (-547)) 45)) (-3945 (((-1004) (-1118) (-166 (-217)) (-1118) (-547)) 44)) (-3863 (((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547)) 43)) (-3792 (((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547)) 42)) (-1831 (((-1004) (-217) (-547)) 39)) (-1726 (((-1004) (-217) (-547)) 38)) (-1633 (((-1004) (-217) (-547)) 37)) (-1523 (((-1004) (-217) (-547)) 36)) (-1405 (((-1004) (-217) (-547)) 35)) (-1320 (((-1004) (-217) (-547)) 34)) (-2544 (((-1004) (-217) (-547)) 33)) (-2407 (((-1004) (-217) (-547)) 32)) (-2279 (((-1004) (-217) (-547)) 31)) (-2154 (((-1004) (-217) (-547)) 30)) (-2022 (((-1004) (-217) (-217) (-217) (-547)) 29)) (-1910 (((-1004) (-217) (-547)) 28)) (-3616 (((-1004) (-217) (-547)) 27)) (-3516 (((-1004) (-217) (-547)) 26)) (-3422 (((-1004) (-217) (-547)) 25)) (-3327 (((-1004) (-217) (-547)) 24)) (-3232 (((-1004) (-166 (-217)) (-547)) 21))) +(((-733) (-10 -7 (-15 -3232 ((-1004) (-166 (-217)) (-547))) (-15 -3327 ((-1004) (-217) (-547))) (-15 -3422 ((-1004) (-217) (-547))) (-15 -3516 ((-1004) (-217) (-547))) (-15 -3616 ((-1004) (-217) (-547))) (-15 -1910 ((-1004) (-217) (-547))) (-15 -2022 ((-1004) (-217) (-217) (-217) (-547))) (-15 -2154 ((-1004) (-217) (-547))) (-15 -2279 ((-1004) (-217) (-547))) (-15 -2407 ((-1004) (-217) (-547))) (-15 -2544 ((-1004) (-217) (-547))) (-15 -1320 ((-1004) (-217) (-547))) (-15 -1405 ((-1004) (-217) (-547))) (-15 -1523 ((-1004) (-217) (-547))) (-15 -1633 ((-1004) (-217) (-547))) (-15 -1726 ((-1004) (-217) (-547))) (-15 -1831 ((-1004) (-217) (-547))) (-15 -3792 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3863 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3945 ((-1004) (-1118) (-166 (-217)) (-1118) (-547))) (-15 -4054 ((-1004) (-1118) (-166 (-217)) (-1118) (-547))) (-15 -4132 ((-1004) (-547) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -4200 ((-1004) (-217) (-547))) (-15 -3149 ((-1004) (-217) (-547))) (-15 -3238 ((-1004) (-217) (-547))) (-15 -3332 ((-1004) (-217) (-547))) (-15 -3407 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3488 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3582 ((-1004) (-217) (-547))) (-15 -3093 ((-1004) (-217) (-547))) (-15 -3189 ((-1004) (-217) (-547))) (-15 -2135 ((-1004) (-217) (-547))) (-15 -2233 ((-1004) (-217) (-547))) (-15 -2365 ((-1004) (-217) (-547))) (-15 -2488 ((-1004) (-217) (-217) (-547))) (-15 -2603 ((-1004) (-217) (-217) (-217) (-547))) (-15 -1366 ((-1004) (-217) (-217) (-217) (-547))) (-15 -1480 ((-1004) (-217) (-217) (-217) (-217) (-547))))) (T -733)) +((-1480 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1366 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2603 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2488 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3488 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3407 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3238 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4132 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-547)) (-5 *5 (-166 (-217))) (-5 *6 (-1118)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-4054 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3945 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3863 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3792 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1320 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2407 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-2022 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-1910 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(-10 -7 (-15 -3232 ((-1004) (-166 (-217)) (-547))) (-15 -3327 ((-1004) (-217) (-547))) (-15 -3422 ((-1004) (-217) (-547))) (-15 -3516 ((-1004) (-217) (-547))) (-15 -3616 ((-1004) (-217) (-547))) (-15 -1910 ((-1004) (-217) (-547))) (-15 -2022 ((-1004) (-217) (-217) (-217) (-547))) (-15 -2154 ((-1004) (-217) (-547))) (-15 -2279 ((-1004) (-217) (-547))) (-15 -2407 ((-1004) (-217) (-547))) (-15 -2544 ((-1004) (-217) (-547))) (-15 -1320 ((-1004) (-217) (-547))) (-15 -1405 ((-1004) (-217) (-547))) (-15 -1523 ((-1004) (-217) (-547))) (-15 -1633 ((-1004) (-217) (-547))) (-15 -1726 ((-1004) (-217) (-547))) (-15 -1831 ((-1004) (-217) (-547))) (-15 -3792 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3863 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3945 ((-1004) (-1118) (-166 (-217)) (-1118) (-547))) (-15 -4054 ((-1004) (-1118) (-166 (-217)) (-1118) (-547))) (-15 -4132 ((-1004) (-547) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -4200 ((-1004) (-217) (-547))) (-15 -3149 ((-1004) (-217) (-547))) (-15 -3238 ((-1004) (-217) (-547))) (-15 -3332 ((-1004) (-217) (-547))) (-15 -3407 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3488 ((-1004) (-217) (-166 (-217)) (-547) (-1118) (-547))) (-15 -3582 ((-1004) (-217) (-547))) (-15 -3093 ((-1004) (-217) (-547))) (-15 -3189 ((-1004) (-217) (-547))) (-15 -2135 ((-1004) (-217) (-547))) (-15 -2233 ((-1004) (-217) (-547))) (-15 -2365 ((-1004) (-217) (-547))) (-15 -2488 ((-1004) (-217) (-217) (-547))) (-15 -2603 ((-1004) (-217) (-217) (-217) (-547))) (-15 -1366 ((-1004) (-217) (-217) (-217) (-547))) (-15 -1480 ((-1004) (-217) (-217) (-217) (-217) (-547)))) +((-3902 (((-1223)) 18)) (-1721 (((-1118)) 22)) (-1603 (((-1118)) 21)) (-1949 (((-1067) (-1135) (-663 (-547))) 37) (((-1067) (-1135) (-663 (-217))) 32)) (-3551 (((-112)) 16)) (-1839 (((-1118) (-1118)) 25))) +(((-734) (-10 -7 (-15 -1603 ((-1118))) (-15 -1721 ((-1118))) (-15 -1839 ((-1118) (-1118))) (-15 -1949 ((-1067) (-1135) (-663 (-217)))) (-15 -1949 ((-1067) (-1135) (-663 (-547)))) (-15 -3551 ((-112))) (-15 -3902 ((-1223))))) (T -734)) +((-3902 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-734)))) (-3551 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-547))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-217))) (-5 *2 (-1067)) (-5 *1 (-734)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734)))) (-1721 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734)))) (-1603 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(-10 -7 (-15 -1603 ((-1118))) (-15 -1721 ((-1118))) (-15 -1839 ((-1118) (-1118))) (-15 -1949 ((-1067) (-1135) (-663 (-217)))) (-15 -1949 ((-1067) (-1135) (-663 (-547)))) (-15 -3551 ((-112))) (-15 -3902 ((-1223)))) +((-4121 (($ $ $) 10)) (-4225 (($ $ $ $) 9)) (-4007 (($ $ $) 12))) +(((-735 |#1|) (-10 -8 (-15 -4007 (|#1| |#1| |#1|)) (-15 -4121 (|#1| |#1| |#1|)) (-15 -4225 (|#1| |#1| |#1| |#1|))) (-736)) (T -735)) +NIL +(-10 -8 (-15 -4007 (|#1| |#1| |#1|)) (-15 -4121 (|#1| |#1| |#1|)) (-15 -4225 (|#1| |#1| |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-3946 (($ $ (-890)) 28)) (-3699 (($ $ (-890)) 29)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-4121 (($ $ $) 25)) (-3834 (((-832) $) 11)) (-4225 (($ $ $ $) 26)) (-4007 (($ $ $) 24)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 30)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27))) (((-736) (-138)) (T -736)) -((-3664 (*1 *1 *1 *1 *1) (-4 *1 (-736))) (-3652 (*1 *1 *1 *1) (-4 *1 (-736))) (-3639 (*1 *1 *1 *1) (-4 *1 (-736)))) -(-13 (-21) (-695) (-10 -8 (-15 -3664 ($ $ $ $)) (-15 -3652 ($ $ $)) (-15 -3639 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-695) . T) ((-1063) . T)) -((-3743 (((-832) $) NIL) (($ (-548)) 10))) -(((-737 |#1|) (-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3399 (((-3 $ "failed") $) 40)) (-2246 (($ $ (-890)) 28) (($ $ (-745)) 35)) (-3859 (((-3 $ "failed") $) 38)) (-2266 (((-112) $) 34)) (-3411 (((-3 $ "failed") $) 39)) (-3424 (($ $ (-890)) 29) (($ $ (-745)) 36)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3652 (($ $ $) 25)) (-3743 (((-832) $) 11) (($ (-548)) 31)) (-3835 (((-745)) 32)) (-3664 (($ $ $ $) 26)) (-3639 (($ $ $) 24)) (-3107 (($) 18 T CONST)) (-3118 (($) 33 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 30) (($ $ (-745)) 37)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 27))) +((-4225 (*1 *1 *1 *1 *1) (-4 *1 (-736))) (-4121 (*1 *1 *1 *1) (-4 *1 (-736))) (-4007 (*1 *1 *1 *1) (-4 *1 (-736)))) +(-13 (-21) (-695) (-10 -8 (-15 -4225 ($ $ $ $)) (-15 -4121 ($ $ $)) (-15 -4007 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-695) . T) ((-1063) . T)) +((-3834 (((-832) $) NIL) (($ (-547)) 10))) +(((-737 |#1|) (-10 -8 (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-738)) (T -737)) +NIL +(-10 -8 (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-3480 (((-3 $ "failed") $) 40)) (-3946 (($ $ (-890)) 28) (($ $ (-745)) 35)) (-2537 (((-3 $ "failed") $) 38)) (-4114 (((-112) $) 34)) (-3593 (((-3 $ "failed") $) 39)) (-3699 (($ $ (-890)) 29) (($ $ (-745)) 36)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-4121 (($ $ $) 25)) (-3834 (((-832) $) 11) (($ (-547)) 31)) (-2311 (((-745)) 32)) (-4225 (($ $ $ $) 26)) (-4007 (($ $ $) 24)) (-3267 (($) 18 T CONST)) (-3277 (($) 33 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 30) (($ $ (-745)) 37)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 27))) (((-738) (-138)) (T -738)) -((-3835 (*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-738))))) -(-13 (-736) (-697) (-10 -8 (-15 -3835 ((-745))) (-15 -3743 ($ (-548))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-695) . T) ((-697) . T) ((-736) . T) ((-1063) . T)) -((-3687 (((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-399 (-548)))) |#1|) 33)) (-3677 (((-619 (-166 |#1|)) (-663 (-166 (-399 (-548)))) |#1|) 23)) (-3780 (((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))) (-1135)) 20) (((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548))))) 19))) -(((-739 |#1|) (-10 -7 (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))))) (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))) (-1135))) (-15 -3677 ((-619 (-166 |#1|)) (-663 (-166 (-399 (-548)))) |#1|)) (-15 -3687 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-399 (-548)))) |#1|))) (-13 (-355) (-819))) (T -739)) -((-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-619 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 *4))))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819))))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *4 (-1135)) (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *5)) (-4 *5 (-13 (-355) (-819))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819)))))) -(-10 -7 (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))))) (-15 -3780 ((-921 (-166 (-399 (-548)))) (-663 (-166 (-399 (-548)))) (-1135))) (-15 -3677 ((-619 (-166 |#1|)) (-663 (-166 (-399 (-548)))) |#1|)) (-15 -3687 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-399 (-548)))) |#1|))) -((-1351 (((-171 (-548)) |#1|) 25))) -(((-740 |#1|) (-10 -7 (-15 -1351 ((-171 (-548)) |#1|))) (-396)) (T -740)) -((-1351 (*1 *2 *3) (-12 (-5 *2 (-171 (-548))) (-5 *1 (-740 *3)) (-4 *3 (-396))))) -(-10 -7 (-15 -1351 ((-171 (-548)) |#1|))) -((-1970 ((|#1| |#1| |#1|) 24)) (-1982 ((|#1| |#1| |#1|) 23)) (-1865 ((|#1| |#1| |#1|) 32)) (-1950 ((|#1| |#1| |#1|) 28)) (-1961 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2014 (((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|) 22))) -(((-741 |#1| |#2|) (-10 -7 (-15 -2014 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#1| |#1|))) (-683 |#2|) (-355)) (T -741)) -((-1865 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1950 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1961 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1970 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-1982 (*1 *2 *2 *2) (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-2014 (*1 *2 *3 *3) (-12 (-4 *4 (-355)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4))))) -(-10 -7 (-15 -2014 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1865 (|#1| |#1| |#1|))) -((-3490 (((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))) (-548)) 59)) (-3478 (((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548))))) 57)) (-1566 (((-548)) 71))) -(((-742 |#1| |#2|) (-10 -7 (-15 -1566 ((-548))) (-15 -3478 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))))) (-15 -3490 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))) (-548)))) (-1194 (-548)) (-401 (-548) |#1|)) (T -742)) -((-3490 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-742 *4 *5)) (-4 *5 (-401 *3 *4)))) (-3478 (*1 *2) (-12 (-4 *3 (-1194 (-548))) (-5 *2 (-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548))))) (-5 *1 (-742 *3 *4)) (-4 *4 (-401 (-548) *3)))) (-1566 (*1 *2) (-12 (-4 *3 (-1194 *2)) (-5 *2 (-548)) (-5 *1 (-742 *3 *4)) (-4 *4 (-401 *2 *3))))) -(-10 -7 (-15 -1566 ((-548))) (-15 -3478 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))))) (-15 -3490 ((-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) (|:| |basisInv| (-663 (-548)))) (-548)))) -((-3730 (((-112) $ $) NIL)) (-2375 (((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) $) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20) (($ (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 13) (($ (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) 18)) (-2214 (((-112) $ $) NIL))) -(((-743) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) $))))) (T -743)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-743)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-743)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) (-5 *1 (-743)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) (-5 *1 (-743))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| |mdnia| (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) $)))) -((-3174 (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))) 18) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135))) 17)) (-3408 (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))) 20) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135))) 19))) -(((-744 |#1|) (-10 -7 (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))))) (-540)) (T -744)) -((-3408 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) (-3174 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5))))) -(-10 -7 (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3174 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-921 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2857 (($ $ $) 6)) (-4104 (((-3 $ "failed") $ $) 9)) (-2970 (($ $ (-548)) 7)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($ $) NIL)) (-1922 (($ $ $) NIL)) (-2266 (((-112) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3587 (($ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ $ $) NIL))) -(((-745) (-13 (-767) (-701) (-10 -8 (-15 -1922 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -3587 ($ $ $)) (-15 -3209 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1900 ((-3 $ "failed") $ $)) (-15 -2970 ($ $ (-548))) (-15 -2545 ($ $)) (-6 (-4329 "*"))))) (T -745)) -((-1922 (*1 *1 *1 *1) (-5 *1 (-745))) (-1945 (*1 *1 *1 *1) (-5 *1 (-745))) (-3587 (*1 *1 *1 *1) (-5 *1 (-745))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3826 (-745)) (|:| -2233 (-745)))) (-5 *1 (-745)))) (-1900 (*1 *1 *1 *1) (|partial| -5 *1 (-745))) (-2970 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-745)))) (-2545 (*1 *1 *1) (-5 *1 (-745)))) -(-13 (-767) (-701) (-10 -8 (-15 -1922 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -3587 ($ $ $)) (-15 -3209 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1900 ((-3 $ "failed") $ $)) (-15 -2970 ($ $ (-548))) (-15 -2545 ($ $)) (-6 (-4329 "*")))) -((-3408 (((-3 |#2| "failed") |#2| |#2| (-114) (-1135)) 35))) -(((-746 |#1| |#2|) (-10 -7 (-15 -3408 ((-3 |#2| "failed") |#2| |#2| (-114) (-1135)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -746)) -((-3408 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1157) (-928)))))) -(-10 -7 (-15 -3408 ((-3 |#2| "failed") |#2| |#2| (-114) (-1135)))) -((-3743 (((-748) |#1|) 8))) -(((-747 |#1|) (-10 -7 (-15 -3743 ((-748) |#1|))) (-1172)) (T -747)) -((-3743 (*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1172))))) -(-10 -7 (-15 -3743 ((-748) |#1|))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 7)) (-2214 (((-112) $ $) 9))) +((-2311 (*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-738))))) +(-13 (-736) (-697) (-10 -8 (-15 -2311 ((-745))) (-15 -3834 ($ (-547))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-695) . T) ((-697) . T) ((-736) . T) ((-1063) . T)) +((-3297 (((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-398 (-547)))) |#1|) 33)) (-1275 (((-619 (-166 |#1|)) (-663 (-166 (-398 (-547)))) |#1|) 23)) (-3008 (((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))) (-1135)) 20) (((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547))))) 19))) +(((-739 |#1|) (-10 -7 (-15 -3008 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))))) (-15 -3008 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))) (-1135))) (-15 -1275 ((-619 (-166 |#1|)) (-663 (-166 (-398 (-547)))) |#1|)) (-15 -3297 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-398 (-547)))) |#1|))) (-13 (-354) (-819))) (T -739)) +((-3297 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-619 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 *4))))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))) (-1275 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-619 (-166 *4))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819))))) (-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *4 (-1135)) (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *5)) (-4 *5 (-13 (-354) (-819))))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819)))))) +(-10 -7 (-15 -3008 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))))) (-15 -3008 ((-921 (-166 (-398 (-547)))) (-663 (-166 (-398 (-547)))) (-1135))) (-15 -1275 ((-619 (-166 |#1|)) (-663 (-166 (-398 (-547)))) |#1|)) (-15 -3297 ((-619 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 (-166 |#1|)))))) (-663 (-166 (-398 (-547)))) |#1|))) +((-4026 (((-171 (-547)) |#1|) 25))) +(((-740 |#1|) (-10 -7 (-15 -4026 ((-171 (-547)) |#1|))) (-395)) (T -740)) +((-4026 (*1 *2 *3) (-12 (-5 *2 (-171 (-547))) (-5 *1 (-740 *3)) (-4 *3 (-395))))) +(-10 -7 (-15 -4026 ((-171 (-547)) |#1|))) +((-3494 ((|#1| |#1| |#1|) 24)) (-3588 ((|#1| |#1| |#1|) 23)) (-3835 ((|#1| |#1| |#1|) 32)) (-3328 ((|#1| |#1| |#1|) 28)) (-3413 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2722 (((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|) 22))) +(((-741 |#1| |#2|) (-10 -7 (-15 -2722 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -3413 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3328 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|))) (-683 |#2|) (-354)) (T -741)) +((-3835 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-3328 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-3413 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-3494 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-3588 (*1 *2 *2 *2) (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) (-2722 (*1 *2 *3 *3) (-12 (-4 *4 (-354)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4))))) +(-10 -7 (-15 -2722 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -3413 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3328 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|))) +((-3161 (((-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))) (-547)) 59)) (-3059 (((-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547))))) 57)) (-3846 (((-547)) 71))) +(((-742 |#1| |#2|) (-10 -7 (-15 -3846 ((-547))) (-15 -3059 ((-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))))) (-15 -3161 ((-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))) (-547)))) (-1194 (-547)) (-400 (-547) |#1|)) (T -742)) +((-3161 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-1194 *3)) (-5 *2 (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-742 *4 *5)) (-4 *5 (-400 *3 *4)))) (-3059 (*1 *2) (-12 (-4 *3 (-1194 (-547))) (-5 *2 (-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547))))) (-5 *1 (-742 *3 *4)) (-4 *4 (-400 (-547) *3)))) (-3846 (*1 *2) (-12 (-4 *3 (-1194 *2)) (-5 *2 (-547)) (-5 *1 (-742 *3 *4)) (-4 *4 (-400 *2 *3))))) +(-10 -7 (-15 -3846 ((-547))) (-15 -3059 ((-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))))) (-15 -3161 ((-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) (|:| |basisInv| (-663 (-547)))) (-547)))) +((-3821 (((-112) $ $) NIL)) (-2643 (((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) $) 21)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 20) (($ (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 13) (($ (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) 18)) (-2371 (((-112) $ $) NIL))) +(((-743) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3834 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3834 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) $))))) (T -743)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-743)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-743)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-5 *1 (-743)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-5 *1 (-743))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3834 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3834 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-3 (|:| |nia| (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) $)))) +((-2104 (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))) 18) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135))) 17)) (-3571 (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))) 20) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135))) 19))) +(((-744 |#1|) (-10 -7 (-15 -2104 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2104 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))))) (-539)) (T -744)) +((-3571 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5))))) +(-10 -7 (-15 -2104 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2104 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-921 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-1991 (($ $ $) 6)) (-3013 (((-3 $ "failed") $ $) 9)) (-1302 (($ $ (-547)) 7)) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($ $) NIL)) (-2052 (($ $ $) NIL)) (-4114 (((-112) $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3715 (($ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3834 (((-832) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ $ $) NIL))) +(((-745) (-13 (-767) (-701) (-10 -8 (-15 -2052 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -3715 ($ $ $)) (-15 -2468 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -2025 ((-3 $ "failed") $ $)) (-15 -1302 ($ $ (-547))) (-15 -3229 ($ $)) (-6 (-4330 "*"))))) (T -745)) +((-2052 (*1 *1 *1 *1) (-5 *1 (-745))) (-2079 (*1 *1 *1 *1) (-5 *1 (-745))) (-3715 (*1 *1 *1 *1) (-5 *1 (-745))) (-2468 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2225 (-745)) (|:| -3856 (-745)))) (-5 *1 (-745)))) (-2025 (*1 *1 *1 *1) (|partial| -5 *1 (-745))) (-1302 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-745)))) (-3229 (*1 *1 *1) (-5 *1 (-745)))) +(-13 (-767) (-701) (-10 -8 (-15 -2052 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -3715 ($ $ $)) (-15 -2468 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -2025 ((-3 $ "failed") $ $)) (-15 -1302 ($ $ (-547))) (-15 -3229 ($ $)) (-6 (-4330 "*")))) +((-3571 (((-3 |#2| "failed") |#2| |#2| (-114) (-1135)) 35))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3571 ((-3 |#2| "failed") |#2| |#2| (-114) (-1135)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -746)) +((-3571 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1157) (-928)))))) +(-10 -7 (-15 -3571 ((-3 |#2| "failed") |#2| |#2| (-114) (-1135)))) +((-3834 (((-748) |#1|) 8))) +(((-747 |#1|) (-10 -7 (-15 -3834 ((-748) |#1|))) (-1172)) (T -747)) +((-3834 (*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1172))))) +(-10 -7 (-15 -3834 ((-748) |#1|))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 7)) (-2371 (((-112) $ $) 9))) (((-748) (-1063)) (T -748)) NIL (-1063) -((-3910 ((|#2| |#4|) 35))) -(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3910 (|#2| |#4|))) (-443) (-1194 |#1|) (-699 |#1| |#2|) (-1194 |#3|)) (T -749)) -((-3910 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1194 *5))))) -(-10 -7 (-15 -3910 (|#2| |#4|))) -((-3859 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3722 (((-1223) (-1118) (-1118) |#4| |#5|) 33)) (-3697 ((|#4| |#4| |#5|) 73)) (-3711 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|) 77)) (-3737 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 16))) -(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3859 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3697 (|#4| |#4| |#5|)) (-15 -3711 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -3722 ((-1223) (-1118) (-1118) |#4| |#5|)) (-15 -3737 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -750)) -((-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3722 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1118)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1223)) (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3697 (*1 *2 *2 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) (-4 *3 (-1036 *4 *5 *6 *2)))) (-3859 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(-10 -7 (-15 -3859 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3697 (|#4| |#4| |#5|)) (-15 -3711 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -3722 ((-1223) (-1118) (-1118) |#4| |#5|)) (-15 -3737 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|))) -((-2441 (((-3 (-1131 (-1131 |#1|)) "failed") |#4|) 43)) (-3749 (((-619 |#4|) |#4|) 15)) (-2354 ((|#4| |#4|) 11))) -(((-751 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3749 ((-619 |#4|) |#4|)) (-15 -2441 ((-3 (-1131 (-1131 |#1|)) "failed") |#4|)) (-15 -2354 (|#4| |#4|))) (-341) (-321 |#1|) (-1194 |#2|) (-1194 |#3|) (-890)) (T -751)) -((-2354 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-321 *3)) (-4 *5 (-1194 *4)) (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1194 *5)) (-14 *6 (-890)))) (-2441 (*1 *2 *3) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890)))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890))))) -(-10 -7 (-15 -3749 ((-619 |#4|) |#4|)) (-15 -2441 ((-3 (-1131 (-1131 |#1|)) "failed") |#4|)) (-15 -2354 (|#4| |#4|))) -((-3760 (((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|)) 54)) (-3770 (((-619 (-745)) |#1|) 13))) -(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3760 ((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -3770 ((-619 (-745)) |#1|))) (-1194 |#4|) (-767) (-821) (-299) (-918 |#4| |#2| |#3|)) (T -752)) -((-3770 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *6)) (-4 *7 (-918 *6 *4 *5)))) (-3760 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1194 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-299)) (-4 *10 (-918 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-619 (-1131 *10))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *10))))) (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1131 *10)) (-5 *4 (-619 *6)) (-5 *5 (-619 *10))))) -(-10 -7 (-15 -3760 ((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -3770 ((-619 (-745)) |#1|))) -((-3804 (((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-399 (-548))) |#1|) 31)) (-3792 (((-619 |#1|) (-663 (-399 (-548))) |#1|) 21)) (-3780 (((-921 (-399 (-548))) (-663 (-399 (-548))) (-1135)) 18) (((-921 (-399 (-548))) (-663 (-399 (-548)))) 17))) -(((-753 |#1|) (-10 -7 (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))))) (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))) (-1135))) (-15 -3792 ((-619 |#1|) (-663 (-399 (-548))) |#1|)) (-15 -3804 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-399 (-548))) |#1|))) (-13 (-355) (-819))) (T -753)) -((-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-619 (-2 (|:| |outval| *4) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 *4)))))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819))))) (-3792 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *4 (-1135)) (-5 *2 (-921 (-399 (-548)))) (-5 *1 (-753 *5)) (-4 *5 (-13 (-355) (-819))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-921 (-399 (-548)))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819)))))) -(-10 -7 (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))))) (-15 -3780 ((-921 (-399 (-548))) (-663 (-399 (-548))) (-1135))) (-15 -3792 ((-619 |#1|) (-663 (-399 (-548))) |#1|)) (-15 -3804 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-548)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-399 (-548))) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 34)) (-2049 (((-619 |#2|) $) NIL)) (-1884 (((-1131 $) $ |#2|) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 |#2|)) NIL)) (-1272 (($ $) 28)) (-3090 (((-112) $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) 93 (|has| |#1| (-540)))) (-2916 (((-619 $) $ $) 106 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-921 (-399 (-548)))) NIL (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))))) (((-3 $ "failed") (-921 (-548))) NIL (-1524 (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548)))))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135)))))) (((-3 $ "failed") (-921 |#1|)) NIL (-1524 (-12 (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548))))) (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-533)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-961 (-548))))))) (((-3 (-1087 |#1| |#2|) "failed") $) 18)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) ((|#2| $) NIL) (($ (-921 (-399 (-548)))) NIL (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))))) (($ (-921 (-548))) NIL (-1524 (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548)))))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135)))))) (($ (-921 |#1|)) NIL (-1524 (-12 (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548))))) (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-533)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-961 (-548))))))) (((-1087 |#1| |#2|) $) NIL)) (-1557 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-540)))) (-1872 (($ $) NIL) (($ $ |#2|) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2143 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3155 (((-112) $) NIL)) (-1519 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 70)) (-2873 (($ $) 119 (|has| |#1| (-443)))) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ |#2|) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-2982 (($ $) NIL (|has| |#1| (-540)))) (-2992 (($ $) NIL (|has| |#1| (-540)))) (-3077 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3067 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-4256 (($ $ |#1| (-520 |#2|) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2157 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2883 (($ $ $ $ $) 90 (|has| |#1| (-540)))) (-3239 ((|#2| $) 19)) (-2036 (($ (-1131 |#1|) |#2|) NIL) (($ (-1131 $) |#2|) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 |#2|)) NIL) (($ $ |#2| (-745)) 36) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3013 (($ $ $) 60)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#2|) NIL)) (-3166 (((-112) $) NIL)) (-3904 (((-520 |#2|) $) NIL) (((-745) $ |#2|) NIL) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3229 (((-745) $) 20)) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 |#2|) (-520 |#2|)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3511 (((-3 |#2| "failed") $) NIL)) (-2844 (($ $) NIL (|has| |#1| (-443)))) (-2853 (($ $) NIL (|has| |#1| (-443)))) (-3114 (((-619 $) $) NIL)) (-3145 (($ $) 37)) (-2862 (($ $) NIL (|has| |#1| (-443)))) (-3125 (((-619 $) $) 41)) (-3135 (($ $) 39)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $) 82)) (-3023 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 67) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |#2|) NIL)) (-3033 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $) NIL) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |#2|) NIL)) (-3056 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3044 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2546 (((-1118) $) NIL)) (-3353 (($ $ $) 108 (|has| |#1| (-540)))) (-3190 (((-619 $) $) 30)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-745))) "failed") $) NIL)) (-2109 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2052 (($ $ $) NIL)) (-3410 (($ $) 21)) (-2199 (((-112) $ $) NIL)) (-2121 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2063 (($ $ $) NIL)) (-3218 (($ $) 23)) (-3932 (((-1082) $) NIL)) (-2927 (((-2 (|:| -3587 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-540)))) (-2938 (((-2 (|:| -3587 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-540)))) (-2164 (((-112) $) 52)) (-2175 ((|#1| $) 55)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 ((|#1| |#1| $) 116 (|has| |#1| (-443))) (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-2949 (((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2960 (($ $ |#1|) 112 (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-2971 (($ $ |#1|) 111 (|has| |#1| (-540))) (($ $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-619 |#2|) (-619 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-619 |#2|) (-619 $)) NIL)) (-1566 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-4050 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2512 (((-520 |#2|) $) NIL) (((-745) $ |#2|) 43) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-3204 (($ $) NIL)) (-3179 (($ $) 33)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524))))) (($ (-921 (-399 (-548)))) NIL (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135))))) (($ (-921 (-548))) NIL (-1524 (-12 (|has| |#1| (-38 (-548))) (|has| |#2| (-593 (-1135))) (-3958 (|has| |#1| (-38 (-399 (-548)))))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#2| (-593 (-1135)))))) (($ (-921 |#1|)) NIL (|has| |#2| (-593 (-1135)))) (((-1118) $) NIL (-12 (|has| |#1| (-1007 (-548))) (|has| |#2| (-593 (-1135))))) (((-921 |#1|) $) NIL (|has| |#2| (-593 (-1135))))) (-3881 ((|#1| $) 115 (|has| |#1| (-443))) (($ $ |#2|) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-921 |#1|) $) NIL (|has| |#2| (-593 (-1135)))) (((-1087 |#1| |#2|) $) 15) (($ (-1087 |#1| |#2|)) 16) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 |#2|)) NIL) (($ $ |#2| (-745)) 44) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 13 T CONST)) (-3102 (((-3 (-112) "failed") $ $) NIL)) (-3118 (($) 35 T CONST)) (-2893 (($ $ $ $ (-745)) 88 (|has| |#1| (-540)))) (-2905 (($ $ $ (-745)) 87 (|has| |#1| (-540)))) (-3296 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 54)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 64)) (-2290 (($ $ $) 74)) (** (($ $ (-890)) NIL) (($ $ (-745)) 61)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 59) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-754 |#1| |#2|) (-13 (-1030 |#1| (-520 |#2|) |#2|) (-592 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821)) (T -754)) -NIL -(-13 (-1030 |#1| (-520 |#2|) |#2|) (-592 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) -((-2540 (((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)) 13))) -(((-755 |#1| |#2|) (-10 -7 (-15 -2540 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) (-1016) (-1016)) (T -755)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-756 *6)) (-5 *1 (-755 *5 *6))))) -(-10 -7 (-15 -2540 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 12)) (-1648 (((-1218 |#1|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#1|)) NIL)) (-1884 (((-1131 $) $ (-1045)) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3856 (((-619 $) $ $) 39 (|has| |#1| (-540)))) (-1548 (($ $ $) 35 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-1594 (($ $ (-745)) NIL)) (-1584 (($ $ (-745)) NIL)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL) (((-3 (-1131 |#1|) "failed") $) 10)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1045) $) NIL) (((-1131 |#1|) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-1574 (($ $ $) NIL)) (-1529 (($ $ $) 71 (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) 70 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-745) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ $) NIL (|has| |#1| (-540)))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-3535 (($ $ (-745)) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3013 (($ $ $) 20)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1639 (((-1131 |#1|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4023 (-745))) $ $) 26)) (-3882 (($ $ $) 29)) (-3869 (($ $ $) 32)) (-3023 (((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 31)) (-2546 (((-1118) $) NIL)) (-3353 (($ $ $) 41 (|has| |#1| (-540)))) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-2927 (((-2 (|:| -3587 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-540)))) (-2938 (((-2 (|:| -3587 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-540)))) (-3814 (((-2 (|:| -1557 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-540)))) (-3830 (((-2 (|:| -1557 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-540)))) (-2164 (((-112) $) 13)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-1362 (($ $ (-745) |#1| $) 19)) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-2949 (((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-540)))) (-3843 (((-2 (|:| -1557 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-540)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) NIL (|has| |#1| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2512 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#1| (-540)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-1045)) NIL) (((-1131 |#1|) $) 7) (($ (-1131 |#1|)) 8) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 21 T CONST)) (-3118 (($) 24 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) 28) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-756 |#1|) (-13 (-1194 |#1|) (-592 (-1131 |#1|)) (-1007 (-1131 |#1|)) (-10 -8 (-15 -1362 ($ $ (-745) |#1| $)) (-15 -3013 ($ $ $)) (-15 -3003 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4023 (-745))) $ $)) (-15 -3882 ($ $ $)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3869 ($ $ $)) (IF (|has| |#1| (-540)) (PROGN (-15 -3856 ((-619 $) $ $)) (-15 -3353 ($ $ $)) (-15 -2949 ((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2938 ((-2 (|:| -3587 $) (|:| |coef1| $)) $ $)) (-15 -2927 ((-2 (|:| -3587 $) (|:| |coef2| $)) $ $)) (-15 -3843 ((-2 (|:| -1557 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3830 ((-2 (|:| -1557 |#1|) (|:| |coef1| $)) $ $)) (-15 -3814 ((-2 (|:| -1557 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1016)) (T -756)) -((-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3013 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3003 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -4023 (-745)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3882 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3023 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1489 *3) (|:| |gap| (-745)) (|:| -3826 (-756 *3)) (|:| -2233 (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3869 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3856 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3353 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-540)) (-4 *2 (-1016)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-2938 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-2927 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3843 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3830 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) (-3814 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) -(-13 (-1194 |#1|) (-592 (-1131 |#1|)) (-1007 (-1131 |#1|)) (-10 -8 (-15 -1362 ($ $ (-745) |#1| $)) (-15 -3013 ($ $ $)) (-15 -3003 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4023 (-745))) $ $)) (-15 -3882 ($ $ $)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3869 ($ $ $)) (IF (|has| |#1| (-540)) (PROGN (-15 -3856 ((-619 $) $ $)) (-15 -3353 ($ $ $)) (-15 -2949 ((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2938 ((-2 (|:| -3587 $) (|:| |coef1| $)) $ $)) (-15 -2927 ((-2 (|:| -3587 $) (|:| |coef2| $)) $ $)) (-15 -3843 ((-2 (|:| -1557 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3830 ((-2 (|:| -1557 |#1|) (|:| |coef1| $)) $ $)) (-15 -3814 ((-2 (|:| -1557 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3905 ((|#1| (-745) |#1|) 32 (|has| |#1| (-38 (-399 (-548)))))) (-3686 ((|#1| (-745) |#1|) 22)) (-3893 ((|#1| (-745) |#1|) 34 (|has| |#1| (-38 (-399 (-548))))))) -(((-757 |#1|) (-10 -7 (-15 -3686 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3893 (|#1| (-745) |#1|)) (-15 -3905 (|#1| (-745) |#1|))) |%noBranch|)) (-169)) (T -757)) -((-3905 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-169)))) (-3893 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-169)))) (-3686 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169))))) -(-10 -7 (-15 -3686 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3893 (|#1| (-745) |#1|)) (-15 -3905 (|#1| (-745) |#1|))) |%noBranch|)) -((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) -(((-758 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -758)) +((-1684 ((|#2| |#4|) 35))) +(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1684 (|#2| |#4|))) (-442) (-1194 |#1|) (-699 |#1| |#2|) (-1194 |#3|)) (T -749)) +((-1684 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -1684 (|#2| |#4|))) +((-2537 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3630 (((-1223) (-1118) (-1118) |#4| |#5|) 33)) (-3405 ((|#4| |#4| |#5|) 73)) (-3530 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|) 77)) (-3741 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|) 16))) +(((-750 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2537 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3405 (|#4| |#4| |#5|)) (-15 -3530 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -3630 ((-1223) (-1118) (-1118) |#4| |#5|)) (-15 -3741 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -750)) +((-3741 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1118)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1223)) (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4)))) (-3530 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3405 (*1 *2 *2 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) (-4 *3 (-1036 *4 *5 *6 *2)))) (-2537 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(-10 -7 (-15 -2537 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3405 (|#4| |#4| |#5|)) (-15 -3530 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -3630 ((-1223) (-1118) (-1118) |#4| |#5|)) (-15 -3741 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|))) +((-2698 (((-3 (-1131 (-1131 |#1|)) "failed") |#4|) 43)) (-2735 (((-619 |#4|) |#4|) 15)) (-3774 ((|#4| |#4|) 11))) +(((-751 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2735 ((-619 |#4|) |#4|)) (-15 -2698 ((-3 (-1131 (-1131 |#1|)) "failed") |#4|)) (-15 -3774 (|#4| |#4|))) (-340) (-320 |#1|) (-1194 |#2|) (-1194 |#3|) (-890)) (T -751)) +((-3774 (*1 *2 *2) (-12 (-4 *3 (-340)) (-4 *4 (-320 *3)) (-4 *5 (-1194 *4)) (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1194 *5)) (-14 *6 (-890)))) (-2698 (*1 *2 *3) (|partial| -12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890)))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890))))) +(-10 -7 (-15 -2735 ((-619 |#4|) |#4|)) (-15 -2698 ((-3 (-1131 (-1131 |#1|)) "failed") |#4|)) (-15 -3774 (|#4| |#4|))) +((-2827 (((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|)) 54)) (-2920 (((-619 (-745)) |#1|) 13))) +(((-752 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2827 ((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -2920 ((-619 (-745)) |#1|))) (-1194 |#4|) (-767) (-821) (-298) (-918 |#4| |#2| |#3|)) (T -752)) +((-2920 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) (-4 *3 (-1194 *6)) (-4 *7 (-918 *6 *4 *5)))) (-2827 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1194 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-298)) (-4 *10 (-918 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-619 (-1131 *10))) (|:| |dterm| (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| *10))))) (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1131 *10)) (-5 *4 (-619 *6)) (-5 *5 (-619 *10))))) +(-10 -7 (-15 -2827 ((-2 (|:| |deter| (-619 (-1131 |#5|))) (|:| |dterm| (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-619 |#1|)) (|:| |nlead| (-619 |#5|))) (-1131 |#5|) (-619 |#1|) (-619 |#5|))) (-15 -2920 ((-619 (-745)) |#1|))) +((-3194 (((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-398 (-547))) |#1|) 31)) (-3098 (((-619 |#1|) (-663 (-398 (-547))) |#1|) 21)) (-3008 (((-921 (-398 (-547))) (-663 (-398 (-547))) (-1135)) 18) (((-921 (-398 (-547))) (-663 (-398 (-547)))) 17))) +(((-753 |#1|) (-10 -7 (-15 -3008 ((-921 (-398 (-547))) (-663 (-398 (-547))))) (-15 -3008 ((-921 (-398 (-547))) (-663 (-398 (-547))) (-1135))) (-15 -3098 ((-619 |#1|) (-663 (-398 (-547))) |#1|)) (-15 -3194 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-398 (-547))) |#1|))) (-13 (-354) (-819))) (T -753)) +((-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-619 (-2 (|:| |outval| *4) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 *4)))))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))) (-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *4 (-1135)) (-5 *2 (-921 (-398 (-547)))) (-5 *1 (-753 *5)) (-4 *5 (-13 (-354) (-819))))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-921 (-398 (-547)))) (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819)))))) +(-10 -7 (-15 -3008 ((-921 (-398 (-547))) (-663 (-398 (-547))))) (-15 -3008 ((-921 (-398 (-547))) (-663 (-398 (-547))) (-1135))) (-15 -3098 ((-619 |#1|) (-663 (-398 (-547))) |#1|)) (-15 -3194 ((-619 (-2 (|:| |outval| |#1|) (|:| |outmult| (-547)) (|:| |outvect| (-619 (-663 |#1|))))) (-663 (-398 (-547))) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 34)) (-2259 (((-619 |#2|) $) NIL)) (-2067 (((-1131 $) $ |#2|) NIL) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 |#2|)) NIL)) (-1335 (($ $) 28)) (-2678 (((-112) $ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $) 93 (|has| |#1| (-539)))) (-1323 (((-619 $) $ $) 106 (|has| |#1| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-921 (-398 (-547)))) NIL (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135))))) (((-3 $ "failed") (-921 (-547))) NIL (-1524 (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547)))))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135)))))) (((-3 $ "failed") (-921 |#1|)) NIL (-1524 (-12 (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547))))) (-3998 (|has| |#1| (-38 (-547))))) (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547))))) (-3998 (|has| |#1| (-532)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-961 (-547))))))) (((-3 (-1087 |#1| |#2|) "failed") $) 18)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) ((|#2| $) NIL) (($ (-921 (-398 (-547)))) NIL (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135))))) (($ (-921 (-547))) NIL (-1524 (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547)))))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135)))))) (($ (-921 |#1|)) NIL (-1524 (-12 (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547))))) (-3998 (|has| |#1| (-38 (-547))))) (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547))))) (-3998 (|has| |#1| (-532)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-961 (-547))))))) (((-1087 |#1| |#2|) $) NIL)) (-3772 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-539)))) (-2054 (($ $) NIL) (($ $ |#2|) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2577 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2023 (((-112) $) NIL)) (-1484 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 70)) (-3968 (($ $) 119 (|has| |#1| (-442)))) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ |#2|) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-2787 (($ $) NIL (|has| |#1| (-539)))) (-2883 (($ $) NIL (|has| |#1| (-539)))) (-2562 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-2441 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3913 (($ $ |#1| (-519 |#2|) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-1331 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-4077 (($ $ $ $ $) 90 (|has| |#1| (-539)))) (-1397 ((|#2| $) 19)) (-2245 (($ (-1131 |#1|) |#2|) NIL) (($ (-1131 $) |#2|) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-519 |#2|)) NIL) (($ $ |#2| (-745)) 36) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3061 (($ $ $) 60)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#2|) NIL)) (-2026 (((-112) $) NIL)) (-1626 (((-519 |#2|) $) NIL) (((-745) $ |#2|) NIL) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-2644 (((-745) $) 20)) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-519 |#2|) (-519 |#2|)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2185 (((-3 |#2| "failed") $) NIL)) (-1860 (($ $) NIL (|has| |#1| (-442)))) (-1946 (($ $) NIL (|has| |#1| (-442)))) (-1558 (((-619 $) $) NIL)) (-1908 (($ $) 37)) (-3874 (($ $) NIL (|has| |#1| (-442)))) (-1677 (((-619 $) $) 41)) (-1794 (($ $) 39)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2969 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3402 (-745))) $ $) 82)) (-3153 (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $) 67) (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $ |#2|) NIL)) (-3252 (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $) NIL) (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $ |#2|) NIL)) (-2318 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2188 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1917 (((-1118) $) NIL)) (-4258 (($ $ $) 108 (|has| |#1| (-539)))) (-2281 (((-619 $) $) 30)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| |#2|) (|:| -4248 (-745))) "failed") $) NIL)) (-2257 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-2979 (($ $ $) NIL)) (-3045 (($ $) 21)) (-1694 (((-112) $ $) NIL)) (-2373 (((-112) $ $) NIL) (((-112) $ (-619 $)) NIL)) (-3062 (($ $ $) NIL)) (-2535 (($ $) 23)) (-3979 (((-1082) $) NIL)) (-3357 (((-2 (|:| -3715 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-539)))) (-3472 (((-2 (|:| -3715 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-539)))) (-1988 (((-112) $) 52)) (-1999 ((|#1| $) 55)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 ((|#1| |#1| $) 116 (|has| |#1| (-442))) (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-3596 (((-2 (|:| -3715 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-539)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-3711 (($ $ |#1|) 112 (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-3805 (($ $ |#1|) 111 (|has| |#1| (-539))) (($ $ $) NIL (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-619 |#2|) (-619 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-619 |#2|) (-619 $)) NIL)) (-3846 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-3443 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1618 (((-519 |#2|) $) NIL) (((-745) $ |#2|) 43) (((-619 (-745)) $ (-619 |#2|)) NIL)) (-2409 (($ $) NIL)) (-2156 (($ $) 33)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523))))) (($ (-921 (-398 (-547)))) NIL (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135))))) (($ (-921 (-547))) NIL (-1524 (-12 (|has| |#1| (-38 (-547))) (|has| |#2| (-592 (-1135))) (-3998 (|has| |#1| (-38 (-398 (-547)))))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#2| (-592 (-1135)))))) (($ (-921 |#1|)) NIL (|has| |#2| (-592 (-1135)))) (((-1118) $) NIL (-12 (|has| |#1| (-1007 (-547))) (|has| |#2| (-592 (-1135))))) (((-921 |#1|) $) NIL (|has| |#2| (-592 (-1135))))) (-1378 ((|#1| $) 115 (|has| |#1| (-442))) (($ $ |#2|) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-921 |#1|) $) NIL (|has| |#2| (-592 (-1135)))) (((-1087 |#1| |#2|) $) 15) (($ (-1087 |#1| |#2|)) 16) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-519 |#2|)) NIL) (($ $ |#2| (-745)) 44) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) 13 T CONST)) (-1424 (((-3 (-112) "failed") $ $) NIL)) (-3277 (($) 35 T CONST)) (-4174 (($ $ $ $ (-745)) 88 (|has| |#1| (-539)))) (-4270 (($ $ $ (-745)) 87 (|has| |#1| (-539)))) (-1686 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 54)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) 64)) (-2470 (($ $ $) 74)) (** (($ $ (-890)) NIL) (($ $ (-745)) 61)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 59) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-754 |#1| |#2|) (-13 (-1030 |#1| (-519 |#2|) |#2|) (-591 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) (-1016) (-821)) (T -754)) +NIL +(-13 (-1030 |#1| (-519 |#2|) |#2|) (-591 (-1087 |#1| |#2|)) (-1007 (-1087 |#1| |#2|))) +((-2781 (((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)) 13))) +(((-755 |#1| |#2|) (-10 -7 (-15 -2781 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) (-1016) (-1016)) (T -755)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-756 *6)) (-5 *1 (-755 *5 *6))))) +(-10 -7 (-15 -2781 ((-756 |#2|) (-1 |#2| |#1|) (-756 |#1|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 12)) (-3468 (((-1218 |#1|) $ (-745)) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-3300 (($ (-1131 |#1|)) NIL)) (-2067 (((-1131 $) $ (-1045)) NIL) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2510 (((-619 $) $ $) 39 (|has| |#1| (-539)))) (-1808 (($ $ $) 35 (|has| |#1| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-4113 (($ $ (-745)) NIL)) (-4021 (($ $ (-745)) NIL)) (-1374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-442)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL) (((-3 (-1131 |#1|) "failed") $) 10)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1045) $) NIL) (((-1131 |#1|) $) NIL)) (-3772 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-3914 (($ $ $) NIL)) (-1595 (($ $ $) 71 (|has| |#1| (-539)))) (-1484 (((-2 (|:| -1557 |#1|) (|:| -2225 $) (|:| -3856 $)) $ $) 70 (|has| |#1| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-745) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3707 (((-745) $ $) NIL (|has| |#1| (-539)))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2245 (($ (-1131 |#1|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-2438 (($ $ (-745)) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3061 (($ $ $) 20)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1045)) NIL) (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1626 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-745) (-745)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3376 (((-1131 |#1|) $) NIL)) (-2185 (((-3 (-1045) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2969 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3402 (-745))) $ $) 26)) (-1389 (($ $ $) 29)) (-2632 (($ $ $) 32)) (-3153 (((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $) 31)) (-1917 (((-1118) $) NIL)) (-4258 (($ $ $) 41 (|has| |#1| (-539)))) (-4189 (((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745)) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1045)) (|:| -4248 (-745))) "failed") $) NIL)) (-2069 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3045 (($) NIL (|has| |#1| (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-3357 (((-2 (|:| -3715 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-539)))) (-3472 (((-2 (|:| -3715 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-539)))) (-2105 (((-2 (|:| -3772 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-539)))) (-2258 (((-2 (|:| -3772 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-539)))) (-1988 (((-112) $) 13)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-2930 (($ $ (-745) |#1| $) 19)) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-3596 (((-2 (|:| -3715 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-539)))) (-2398 (((-2 (|:| -3772 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-539)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) NIL (|has| |#1| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#1| (-539)))) (-3215 (((-3 $ "failed") $ (-745)) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3846 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-3443 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1618 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1704 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#1| (-539)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-1045)) NIL) (((-1131 |#1|) $) 7) (($ (-1131 |#1|)) 8) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) 21 T CONST)) (-3277 (($) 24 T CONST)) (-1686 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) 28) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-756 |#1|) (-13 (-1194 |#1|) (-591 (-1131 |#1|)) (-1007 (-1131 |#1|)) (-10 -8 (-15 -2930 ($ $ (-745) |#1| $)) (-15 -3061 ($ $ $)) (-15 -2969 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3402 (-745))) $ $)) (-15 -1389 ($ $ $)) (-15 -3153 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -2632 ($ $ $)) (IF (|has| |#1| (-539)) (PROGN (-15 -2510 ((-619 $) $ $)) (-15 -4258 ($ $ $)) (-15 -3596 ((-2 (|:| -3715 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3472 ((-2 (|:| -3715 $) (|:| |coef1| $)) $ $)) (-15 -3357 ((-2 (|:| -3715 $) (|:| |coef2| $)) $ $)) (-15 -2398 ((-2 (|:| -3772 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2258 ((-2 (|:| -3772 |#1|) (|:| |coef1| $)) $ $)) (-15 -2105 ((-2 (|:| -3772 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1016)) (T -756)) +((-2930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-3061 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-2969 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -3402 (-745)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-1389 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |gap| (-745)) (|:| -2225 (-756 *3)) (|:| -3856 (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) (-2632 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-4258 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-539)) (-4 *2 (-1016)))) (-3596 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3715 (-756 *3)) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-3472 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3715 (-756 *3)) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-3357 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3715 (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-2398 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-2258 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| |coef1| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) (-2105 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| |coef2| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))) +(-13 (-1194 |#1|) (-591 (-1131 |#1|)) (-1007 (-1131 |#1|)) (-10 -8 (-15 -2930 ($ $ (-745) |#1| $)) (-15 -3061 ($ $ $)) (-15 -2969 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3402 (-745))) $ $)) (-15 -1389 ($ $ $)) (-15 -3153 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -2632 ($ $ $)) (IF (|has| |#1| (-539)) (PROGN (-15 -2510 ((-619 $) $ $)) (-15 -4258 ($ $ $)) (-15 -3596 ((-2 (|:| -3715 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3472 ((-2 (|:| -3715 $) (|:| |coef1| $)) $ $)) (-15 -3357 ((-2 (|:| -3715 $) (|:| |coef2| $)) $ $)) (-15 -2398 ((-2 (|:| -3772 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2258 ((-2 (|:| -3772 |#1|) (|:| |coef1| $)) $ $)) (-15 -2105 ((-2 (|:| -3772 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1636 ((|#1| (-745) |#1|) 32 (|has| |#1| (-38 (-398 (-547)))))) (-3287 ((|#1| (-745) |#1|) 22)) (-1515 ((|#1| (-745) |#1|) 34 (|has| |#1| (-38 (-398 (-547))))))) +(((-757 |#1|) (-10 -7 (-15 -3287 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -1515 (|#1| (-745) |#1|)) (-15 -1636 (|#1| (-745) |#1|))) |%noBranch|)) (-169)) (T -757)) +((-1636 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-169)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-169)))) (-3287 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -3287 (|#1| (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -1515 (|#1| (-745) |#1|)) (-15 -1636 (|#1| (-745) |#1|))) |%noBranch|)) +((-3821 (((-112) $ $) 7)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) 85)) (-3759 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2259 (((-619 |#3|) $) 33)) (-4286 (((-112) $) 26)) (-3312 (((-112) $) 17 (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) 101) (((-112) $) 97)) (-3144 ((|#4| |#4| $) 92)) (-2745 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| $) 126)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) 27)) (-2826 (((-112) $ (-745)) 44)) (-1476 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 79)) (-3219 (($) 45 T CONST)) (-3990 (((-112) $) 22 (|has| |#1| (-539)))) (-4154 (((-112) $ $) 24 (|has| |#1| (-539)))) (-4075 (((-112) $ $) 23 (|has| |#1| (-539)))) (-4212 (((-112) $) 25 (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1833 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 36)) (-2643 (($ (-619 |#4|)) 35)) (-3645 (((-3 $ "failed") $) 82)) (-2903 ((|#4| |#4| $) 89)) (-3664 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2733 ((|#4| |#4| $) 87)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) 105)) (-4047 (((-112) |#4| $) 136)) (-3709 (((-112) |#4| $) 133)) (-4124 (((-112) |#4| $) 137) (((-112) $) 134)) (-2973 (((-619 |#4|) $) 52 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) 104) (((-112) $) 103)) (-1397 ((|#3| $) 34)) (-4161 (((-112) $ (-745)) 43)) (-3666 (((-619 |#4|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 47)) (-3623 (((-619 |#3|) $) 32)) (-3523 (((-112) |#3| $) 31)) (-2024 (((-112) $ (-745)) 42)) (-1917 (((-1118) $) 9)) (-3240 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-4258 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| |#4| $) 127)) (-3817 (((-3 |#4| "failed") $) 83)) (-3389 (((-619 $) |#4| $) 129)) (-3604 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1711 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3308 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-1499 (((-619 |#4|) $) 107)) (-2257 (((-112) |#4| $) 99) (((-112) $) 95)) (-2979 ((|#4| |#4| $) 90)) (-1694 (((-112) $ $) 110)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) 100) (((-112) $) 96)) (-3062 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3634 (((-3 |#4| "failed") $) 84)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3505 (((-3 $ "failed") $ |#4|) 78)) (-3558 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-2462 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) 38)) (-3169 (((-112) $) 41)) (-4011 (($) 40)) (-1618 (((-745) $) 106)) (-3987 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4328)))) (-2265 (($ $) 39)) (-2829 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 60)) (-3228 (($ $ |#3|) 28)) (-3429 (($ $ |#3|) 30)) (-2817 (($ $) 88)) (-3324 (($ $ |#3|) 29)) (-3834 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3423 (((-745) $) 76 (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-4155 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2583 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) 81)) (-3956 (((-112) |#4| $) 135)) (-3084 (((-112) |#3| $) 80)) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 46 (|has| $ (-6 -4328))))) +(((-758 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -758)) NIL (-13 (-1036 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) -((-3916 (((-3 (-371) "failed") (-308 |#1|) (-890)) 62 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-371) "failed") (-308 |#1|)) 54 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-371) "failed") (-399 (-921 |#1|)) (-890)) 41 (|has| |#1| (-540))) (((-3 (-371) "failed") (-399 (-921 |#1|))) 40 (|has| |#1| (-540))) (((-3 (-371) "failed") (-921 |#1|) (-890)) 31 (|has| |#1| (-1016))) (((-3 (-371) "failed") (-921 |#1|)) 30 (|has| |#1| (-1016)))) (-3702 (((-371) (-308 |#1|) (-890)) 99 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-371) (-308 |#1|)) 94 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-371) (-399 (-921 |#1|)) (-890)) 91 (|has| |#1| (-540))) (((-371) (-399 (-921 |#1|))) 90 (|has| |#1| (-540))) (((-371) (-921 |#1|) (-890)) 86 (|has| |#1| (-1016))) (((-371) (-921 |#1|)) 85 (|has| |#1| (-1016))) (((-371) |#1| (-890)) 76) (((-371) |#1|) 22)) (-3928 (((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)) (-890)) 71 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-308 (-166 |#1|))) 70 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-308 |#1|) (-890)) 63 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-308 |#1|)) 61 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))) (-890)) 46 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|)))) 45 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)) (-890)) 39 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-399 (-921 |#1|))) 38 (|has| |#1| (-540))) (((-3 (-166 (-371)) "failed") (-921 |#1|) (-890)) 28 (|has| |#1| (-1016))) (((-3 (-166 (-371)) "failed") (-921 |#1|)) 26 (|has| |#1| (-1016))) (((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)) (-890)) 18 (|has| |#1| (-169))) (((-3 (-166 (-371)) "failed") (-921 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-1854 (((-166 (-371)) (-308 (-166 |#1|)) (-890)) 102 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-308 (-166 |#1|))) 101 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-308 |#1|) (-890)) 100 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-308 |#1|)) 98 (-12 (|has| |#1| (-540)) (|has| |#1| (-821)))) (((-166 (-371)) (-399 (-921 (-166 |#1|))) (-890)) 93 (|has| |#1| (-540))) (((-166 (-371)) (-399 (-921 (-166 |#1|)))) 92 (|has| |#1| (-540))) (((-166 (-371)) (-399 (-921 |#1|)) (-890)) 89 (|has| |#1| (-540))) (((-166 (-371)) (-399 (-921 |#1|))) 88 (|has| |#1| (-540))) (((-166 (-371)) (-921 |#1|) (-890)) 84 (|has| |#1| (-1016))) (((-166 (-371)) (-921 |#1|)) 83 (|has| |#1| (-1016))) (((-166 (-371)) (-921 (-166 |#1|)) (-890)) 78 (|has| |#1| (-169))) (((-166 (-371)) (-921 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-371)) (-166 |#1|) (-890)) 80 (|has| |#1| (-169))) (((-166 (-371)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-371)) |#1| (-890)) 27) (((-166 (-371)) |#1|) 25))) -(((-759 |#1|) (-10 -7 (-15 -3702 ((-371) |#1|)) (-15 -3702 ((-371) |#1| (-890))) (-15 -1854 ((-166 (-371)) |#1|)) (-15 -1854 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -1854 ((-166 (-371)) (-166 |#1|))) (-15 -1854 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3702 ((-371) (-921 |#1|))) (-15 -3702 ((-371) (-921 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 |#1|))) (-15 -1854 ((-166 (-371)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3702 ((-371) (-399 (-921 |#1|)))) (-15 -3702 ((-371) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3702 ((-371) (-308 |#1|))) (-15 -3702 ((-371) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 |#1|))) (-15 -1854 ((-166 (-371)) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-921 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-921 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)))) (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-308 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) (-593 (-371))) (T -759)) -((-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3916 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3916 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3916 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3916 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-3928 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-3928 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) (-4 *3 (-593 (-371))))) (-1854 (*1 *2 *3) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) (-4 *3 (-593 (-371))))) (-3702 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-759 *3)) (-4 *3 (-593 *2)))) (-3702 (*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-759 *3)) (-4 *3 (-593 *2))))) -(-10 -7 (-15 -3702 ((-371) |#1|)) (-15 -3702 ((-371) |#1| (-890))) (-15 -1854 ((-166 (-371)) |#1|)) (-15 -1854 ((-166 (-371)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -1854 ((-166 (-371)) (-166 |#1|))) (-15 -1854 ((-166 (-371)) (-166 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3702 ((-371) (-921 |#1|))) (-15 -3702 ((-371) (-921 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-921 |#1|))) (-15 -1854 ((-166 (-371)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3702 ((-371) (-399 (-921 |#1|)))) (-15 -3702 ((-371) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)))) (-15 -1854 ((-166 (-371)) (-399 (-921 |#1|)) (-890))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))))) (-15 -1854 ((-166 (-371)) (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3702 ((-371) (-308 |#1|))) (-15 -3702 ((-371) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 |#1|))) (-15 -1854 ((-166 (-371)) (-308 |#1|) (-890))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)))) (-15 -1854 ((-166 (-371)) (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-921 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-921 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-540)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)))) (-15 -3916 ((-3 (-371) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 |#1|)) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-399 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -3916 ((-3 (-371) "failed") (-308 |#1|))) (-15 -3916 ((-3 (-371) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 |#1|) (-890))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)))) (-15 -3928 ((-3 (-166 (-371)) "failed") (-308 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) -((-3979 (((-890) (-1118)) 66)) (-4000 (((-3 (-371) "failed") (-1118)) 33)) (-3989 (((-371) (-1118)) 31)) (-3955 (((-890) (-1118)) 54)) (-3969 (((-1118) (-890)) 56)) (-3940 (((-1118) (-890)) 53))) -(((-760) (-10 -7 (-15 -3940 ((-1118) (-890))) (-15 -3955 ((-890) (-1118))) (-15 -3969 ((-1118) (-890))) (-15 -3979 ((-890) (-1118))) (-15 -3989 ((-371) (-1118))) (-15 -4000 ((-3 (-371) "failed") (-1118))))) (T -760)) -((-4000 (*1 *2 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) -(-10 -7 (-15 -3940 ((-1118) (-890))) (-15 -3955 ((-890) (-1118))) (-15 -3969 ((-1118) (-890))) (-15 -3979 ((-890) (-1118))) (-15 -3989 ((-371) (-1118))) (-15 -4000 ((-3 (-371) "failed") (-1118)))) -((-3730 (((-112) $ $) 7)) (-4010 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 15) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004)) 13)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 16) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-1754 (((-3 (-370) "failed") (-307 |#1|) (-890)) 62 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-370) "failed") (-307 |#1|)) 54 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-370) "failed") (-398 (-921 |#1|)) (-890)) 41 (|has| |#1| (-539))) (((-3 (-370) "failed") (-398 (-921 |#1|))) 40 (|has| |#1| (-539))) (((-3 (-370) "failed") (-921 |#1|) (-890)) 31 (|has| |#1| (-1016))) (((-3 (-370) "failed") (-921 |#1|)) 30 (|has| |#1| (-1016)))) (-1601 (((-370) (-307 |#1|) (-890)) 99 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-370) (-307 |#1|)) 94 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-370) (-398 (-921 |#1|)) (-890)) 91 (|has| |#1| (-539))) (((-370) (-398 (-921 |#1|))) 90 (|has| |#1| (-539))) (((-370) (-921 |#1|) (-890)) 86 (|has| |#1| (-1016))) (((-370) (-921 |#1|)) 85 (|has| |#1| (-1016))) (((-370) |#1| (-890)) 76) (((-370) |#1|) 22)) (-1871 (((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)) (-890)) 71 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-307 (-166 |#1|))) 70 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-307 |#1|) (-890)) 63 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-307 |#1|)) 61 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))) (-890)) 46 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|)))) 45 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)) (-890)) 39 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-398 (-921 |#1|))) 38 (|has| |#1| (-539))) (((-3 (-166 (-370)) "failed") (-921 |#1|) (-890)) 28 (|has| |#1| (-1016))) (((-3 (-166 (-370)) "failed") (-921 |#1|)) 26 (|has| |#1| (-1016))) (((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)) (-890)) 18 (|has| |#1| (-169))) (((-3 (-166 (-370)) "failed") (-921 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-2029 (((-166 (-370)) (-307 (-166 |#1|)) (-890)) 102 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-307 (-166 |#1|))) 101 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-307 |#1|) (-890)) 100 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-307 |#1|)) 98 (-12 (|has| |#1| (-539)) (|has| |#1| (-821)))) (((-166 (-370)) (-398 (-921 (-166 |#1|))) (-890)) 93 (|has| |#1| (-539))) (((-166 (-370)) (-398 (-921 (-166 |#1|)))) 92 (|has| |#1| (-539))) (((-166 (-370)) (-398 (-921 |#1|)) (-890)) 89 (|has| |#1| (-539))) (((-166 (-370)) (-398 (-921 |#1|))) 88 (|has| |#1| (-539))) (((-166 (-370)) (-921 |#1|) (-890)) 84 (|has| |#1| (-1016))) (((-166 (-370)) (-921 |#1|)) 83 (|has| |#1| (-1016))) (((-166 (-370)) (-921 (-166 |#1|)) (-890)) 78 (|has| |#1| (-169))) (((-166 (-370)) (-921 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-370)) (-166 |#1|) (-890)) 80 (|has| |#1| (-169))) (((-166 (-370)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-370)) |#1| (-890)) 27) (((-166 (-370)) |#1|) 25))) +(((-759 |#1|) (-10 -7 (-15 -1601 ((-370) |#1|)) (-15 -1601 ((-370) |#1| (-890))) (-15 -2029 ((-166 (-370)) |#1|)) (-15 -2029 ((-166 (-370)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -2029 ((-166 (-370)) (-166 |#1|))) (-15 -2029 ((-166 (-370)) (-166 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-921 (-166 |#1|)))) (-15 -2029 ((-166 (-370)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -1601 ((-370) (-921 |#1|))) (-15 -1601 ((-370) (-921 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-921 |#1|))) (-15 -2029 ((-166 (-370)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -1601 ((-370) (-398 (-921 |#1|)))) (-15 -1601 ((-370) (-398 (-921 |#1|)) (-890))) (-15 -2029 ((-166 (-370)) (-398 (-921 |#1|)))) (-15 -2029 ((-166 (-370)) (-398 (-921 |#1|)) (-890))) (-15 -2029 ((-166 (-370)) (-398 (-921 (-166 |#1|))))) (-15 -2029 ((-166 (-370)) (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -1601 ((-370) (-307 |#1|))) (-15 -1601 ((-370) (-307 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-307 |#1|))) (-15 -2029 ((-166 (-370)) (-307 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-307 (-166 |#1|)))) (-15 -2029 ((-166 (-370)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -1754 ((-3 (-370) "failed") (-921 |#1|))) (-15 -1754 ((-3 (-370) "failed") (-921 |#1|) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 |#1|))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -1754 ((-3 (-370) "failed") (-398 (-921 |#1|)))) (-15 -1754 ((-3 (-370) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -1754 ((-3 (-370) "failed") (-307 |#1|))) (-15 -1754 ((-3 (-370) "failed") (-307 |#1|) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 |#1|))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 |#1|) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) (-592 (-370))) (T -759)) +((-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1754 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1754 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1754 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1754 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-1871 (*1 *2 *3) (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) (-4 *3 (-592 (-370))))) (-2029 (*1 *2 *3) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) (-4 *3 (-592 (-370))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-370)) (-5 *1 (-759 *3)) (-4 *3 (-592 *2)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-759 *3)) (-4 *3 (-592 *2))))) +(-10 -7 (-15 -1601 ((-370) |#1|)) (-15 -1601 ((-370) |#1| (-890))) (-15 -2029 ((-166 (-370)) |#1|)) (-15 -2029 ((-166 (-370)) |#1| (-890))) (IF (|has| |#1| (-169)) (PROGN (-15 -2029 ((-166 (-370)) (-166 |#1|))) (-15 -2029 ((-166 (-370)) (-166 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-921 (-166 |#1|)))) (-15 -2029 ((-166 (-370)) (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -1601 ((-370) (-921 |#1|))) (-15 -1601 ((-370) (-921 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-921 |#1|))) (-15 -2029 ((-166 (-370)) (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -1601 ((-370) (-398 (-921 |#1|)))) (-15 -1601 ((-370) (-398 (-921 |#1|)) (-890))) (-15 -2029 ((-166 (-370)) (-398 (-921 |#1|)))) (-15 -2029 ((-166 (-370)) (-398 (-921 |#1|)) (-890))) (-15 -2029 ((-166 (-370)) (-398 (-921 (-166 |#1|))))) (-15 -2029 ((-166 (-370)) (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -1601 ((-370) (-307 |#1|))) (-15 -1601 ((-370) (-307 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-307 |#1|))) (-15 -2029 ((-166 (-370)) (-307 |#1|) (-890))) (-15 -2029 ((-166 (-370)) (-307 (-166 |#1|)))) (-15 -2029 ((-166 (-370)) (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 (-166 |#1|)) (-890)))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-15 -1754 ((-3 (-370) "failed") (-921 |#1|))) (-15 -1754 ((-3 (-370) "failed") (-921 |#1|) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 |#1|))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-921 |#1|) (-890)))) |%noBranch|) (IF (|has| |#1| (-539)) (PROGN (-15 -1754 ((-3 (-370) "failed") (-398 (-921 |#1|)))) (-15 -1754 ((-3 (-370) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 |#1|)) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-398 (-921 (-166 |#1|))) (-890))) (IF (|has| |#1| (-821)) (PROGN (-15 -1754 ((-3 (-370) "failed") (-307 |#1|))) (-15 -1754 ((-3 (-370) "failed") (-307 |#1|) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 |#1|))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 |#1|) (-890))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)))) (-15 -1871 ((-3 (-166 (-370)) "failed") (-307 (-166 |#1|)) (-890)))) |%noBranch|)) |%noBranch|)) +((-4117 (((-890) (-1118)) 66)) (-4307 (((-3 (-370) "failed") (-1118)) 33)) (-4214 (((-370) (-1118)) 31)) (-3917 (((-890) (-1118)) 54)) (-4024 (((-1118) (-890)) 56)) (-1978 (((-1118) (-890)) 53))) +(((-760) (-10 -7 (-15 -1978 ((-1118) (-890))) (-15 -3917 ((-890) (-1118))) (-15 -4024 ((-1118) (-890))) (-15 -4117 ((-890) (-1118))) (-15 -4214 ((-370) (-1118))) (-15 -4307 ((-3 (-370) "failed") (-1118))))) (T -760)) +((-4307 (*1 *2 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-760)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-760)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) +(-10 -7 (-15 -1978 ((-1118) (-890))) (-15 -3917 ((-890) (-1118))) (-15 -4024 ((-1118) (-890))) (-15 -4117 ((-890) (-1118))) (-15 -4214 ((-370) (-1118))) (-15 -4307 ((-3 (-370) "failed") (-1118)))) +((-3821 (((-112) $ $) 7)) (-1353 (((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 15) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004)) 13)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 16) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) (((-761) (-138)) (T -761)) -((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004)))))) (-4010 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) (-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004)))))) (-4010 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) -(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4010 ((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -4010 ((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) (-1004))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-4045 (((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371))) 44) (((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 43)) (-4054 (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 50)) (-4033 (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 41)) (-4022 (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371))) 52) (((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))) 51))) -(((-762) (-10 -7 (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4033 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4054 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))))) (T -762)) -((-4054 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4045 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-548)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4045 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-548)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4033 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4022 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-4022 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) (-5 *1 (-762))))) -(-10 -7 (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4022 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4033 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)))) (-15 -4045 ((-1223) (-1218 (-371)) (-548) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371))) (-371) (-1218 (-371)) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)) (-1218 (-371)))) (-15 -4054 ((-1223) (-1218 (-371)) (-548) (-371) (-371) (-548) (-1 (-1223) (-1218 (-371)) (-1218 (-371)) (-371))))) -((-2849 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 53)) (-4117 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 31)) (-2839 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 52)) (-4105 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 29)) (-2829 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 51)) (-4093 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)) 19)) (-4085 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548)) 32)) (-4075 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548)) 30)) (-4064 (((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548)) 28))) -(((-763) (-10 -7 (-15 -4064 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4075 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4085 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4093 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4105 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4117 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2829 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2839 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2849 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))))) (T -763)) -((-2849 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-2839 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-2829 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4117 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4105 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4093 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4085 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4075 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548)))) (-4064 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-548))))) -(-10 -7 (-15 -4064 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4075 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4085 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548) (-548))) (-15 -4093 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4105 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -4117 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2829 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2839 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548))) (-15 -2849 ((-2 (|:| -4056 (-371)) (|:| -2831 (-371)) (|:| |totalpts| (-548)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-548) (-548)))) -((-2254 (((-1167 |#1|) |#1| (-218) (-548)) 46))) -(((-764 |#1|) (-10 -7 (-15 -2254 ((-1167 |#1|) |#1| (-218) (-548)))) (-943)) (T -764)) -((-2254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-218)) (-5 *5 (-548)) (-5 *2 (-1167 *3)) (-5 *1 (-764 *3)) (-4 *3 (-943))))) -(-10 -7 (-15 -2254 ((-1167 |#1|) |#1| (-218) (-548)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-4104 (((-3 $ "failed") $ $) 26)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2299 (($ $ $) 28) (($ $) 27)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-548) $) 29))) +((-4283 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004)))))) (-1353 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-4283 (*1 *2 *3 *4) (-12 (-4 *1 (-761)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004)))))) (-1353 (*1 *2 *3 *2) (-12 (-4 *1 (-761)) (-5 *2 (-1004)) (-5 *3 (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) +(-13 (-1063) (-10 -7 (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -1353 ((-1004) (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) (|:| |extra| (-1004))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -1353 ((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) (-1004))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3605 (((-1223) (-1218 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370))) (-370) (-1218 (-370)) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370))) 44) (((-1223) (-1218 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370))) (-370) (-1218 (-370)) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370))) 43)) (-3691 (((-1223) (-1218 (-370)) (-547) (-370) (-370) (-547) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370))) 50)) (-3491 (((-1223) (-1218 (-370)) (-547) (-370) (-370) (-370) (-370) (-547) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370))) 41)) (-3392 (((-1223) (-1218 (-370)) (-547) (-370) (-370) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370))) 52) (((-1223) (-1218 (-370)) (-547) (-370) (-370) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370))) 51))) +(((-762) (-10 -7 (-15 -3392 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))) (-15 -3392 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)))) (-15 -3491 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-370) (-370) (-547) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))) (-15 -3605 ((-1223) (-1218 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370))) (-370) (-1218 (-370)) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))) (-15 -3605 ((-1223) (-1218 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370))) (-370) (-1218 (-370)) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)))) (-15 -3691 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-547) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))))) (T -762)) +((-3691 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-3605 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-547)) (-5 *6 (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370)))) (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-3605 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-547)) (-5 *6 (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370)))) (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-3491 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-3392 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) (-5 *1 (-762)))) (-3392 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) (-5 *1 (-762))))) +(-10 -7 (-15 -3392 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))) (-15 -3392 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)))) (-15 -3491 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-370) (-370) (-547) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))) (-15 -3605 ((-1223) (-1218 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370))) (-370) (-1218 (-370)) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)))) (-15 -3605 ((-1223) (-1218 (-370)) (-547) (-370) (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370))) (-370) (-1218 (-370)) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)) (-1218 (-370)))) (-15 -3691 ((-1223) (-1218 (-370)) (-547) (-370) (-370) (-547) (-1 (-1223) (-1218 (-370)) (-1218 (-370)) (-370))))) +((-1903 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 53)) (-3123 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 31)) (-1811 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 52)) (-3021 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 29)) (-1719 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 51)) (-2925 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)) 19)) (-2851 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547)) 32)) (-2755 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547)) 30)) (-3775 (((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547)) 28))) +(((-763) (-10 -7 (-15 -3775 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -2755 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -2851 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -2925 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3021 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3123 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1719 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1811 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1903 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))))) (T -763)) +((-1903 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-1811 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-1719 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-3123 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-3021 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-2925 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-2851 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-2755 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547)))) (-3775 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) (-5 *1 (-763)) (-5 *5 (-547))))) +(-10 -7 (-15 -3775 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -2755 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -2851 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547) (-547))) (-15 -2925 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3021 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -3123 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1719 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1811 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547))) (-15 -1903 ((-2 (|:| -4152 (-370)) (|:| -3026 (-370)) (|:| |totalpts| (-547)) (|:| |success| (-112))) (-1 (-370) (-370)) (-370) (-370) (-370) (-370) (-547) (-547)))) +((-4012 (((-1167 |#1|) |#1| (-217) (-547)) 46))) +(((-764 |#1|) (-10 -7 (-15 -4012 ((-1167 |#1|) |#1| (-217) (-547)))) (-943)) (T -764)) +((-4012 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-217)) (-5 *5 (-547)) (-5 *2 (-1167 *3)) (-5 *1 (-764 *3)) (-4 *3 (-943))))) +(-10 -7 (-15 -4012 ((-1167 |#1|) |#1| (-217) (-547)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 24)) (-3013 (((-3 $ "failed") $ $) 26)) (-3219 (($) 23 T CONST)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 22 T CONST)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2484 (($ $ $) 28) (($ $) 27)) (-2470 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-547) $) 29))) (((-765) (-138)) (T -765)) NIL (-13 (-769) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 24)) (-3219 (($) 23 T CONST)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 22 T CONST)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2470 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) (((-766) (-138)) (T -766)) NIL (-13 (-768) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-768) . T) ((-821) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-2857 (($ $ $) 27)) (-4104 (((-3 $ "failed") $ $) 26)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-768) . T) ((-821) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 24)) (-1991 (($ $ $) 27)) (-3013 (((-3 $ "failed") $ $) 26)) (-3219 (($) 23 T CONST)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 22 T CONST)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2470 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) (((-767) (-138)) (T -767)) -((-2857 (*1 *1 *1 *1) (-4 *1 (-767)))) -(-13 (-769) (-10 -8 (-15 -2857 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21))) +((-1991 (*1 *1 *1 *1) (-4 *1 (-767)))) +(-13 (-769) (-10 -8 (-15 -1991 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2470 (($ $ $) 20)) (* (($ (-890) $) 21))) (((-768) (-138)) (T -768)) NIL (-13 (-821) (-25)) -(((-25) . T) ((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-4104 (((-3 $ "failed") $ $) 26)) (-3030 (($) 23 T CONST)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2290 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) +(((-25) . T) ((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 24)) (-3013 (((-3 $ "failed") $ $) 26)) (-3219 (($) 23 T CONST)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 22 T CONST)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2470 (($ $ $) 20)) (* (($ (-890) $) 21) (($ (-745) $) 25))) (((-769) (-138)) (T -769)) NIL (-13 (-766) (-130)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-766) . T) ((-768) . T) ((-821) . T) ((-1063) . T)) -((-3324 (((-112) $) 41)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 42)) (-4182 (((-3 (-399 (-548)) "failed") $) 78)) (-4172 (((-112) $) 72)) (-4161 (((-399 (-548)) $) 76)) (-3910 ((|#2| $) 26)) (-2540 (($ (-1 |#2| |#2|) $) 23)) (-2153 (($ $) 61)) (-2591 (((-524) $) 67)) (-2128 (($ $) 21)) (-3743 (((-832) $) 56) (($ (-548)) 39) (($ |#2|) 37) (($ (-399 (-548))) NIL)) (-3835 (((-745)) 10)) (-1446 ((|#2| $) 71)) (-2214 (((-112) $ $) 29)) (-2234 (((-112) $ $) 69)) (-2299 (($ $) 31) (($ $ $) NIL)) (-2290 (($ $ $) 30)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-770 |#1| |#2|) (-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-771 |#2|) (-169)) (T -770)) -((-3835 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) (-4 *3 (-771 *4))))) -(-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3423 (((-745)) 51 (|has| |#1| (-360)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 92 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 90 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 88)) (-2375 (((-548) $) 93 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 91 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 87)) (-3859 (((-3 $ "failed") $) 32)) (-1937 ((|#1| $) 77)) (-4182 (((-3 (-399 (-548)) "failed") $) 64 (|has| |#1| (-533)))) (-4172 (((-112) $) 66 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 65 (|has| |#1| (-533)))) (-2545 (($) 54 (|has| |#1| (-360)))) (-2266 (((-112) $) 30)) (-2912 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3910 ((|#1| $) 69)) (-1795 (($ $ $) 60 (|has| |#1| (-821)))) (-3091 (($ $ $) 59 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 79)) (-2855 (((-890) $) 53 (|has| |#1| (-360)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 63 (|has| |#1| (-355)))) (-3337 (($ (-890)) 52 (|has| |#1| (-360)))) (-2879 ((|#1| $) 74)) (-2889 ((|#1| $) 75)) (-2900 ((|#1| $) 76)) (-2093 ((|#1| $) 70)) (-2106 ((|#1| $) 71)) (-2118 ((|#1| $) 72)) (-2867 ((|#1| $) 73)) (-3932 (((-1082) $) 10)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 85 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 83 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 82 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 81 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 80 (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) 86 (|has| |#1| (-278 |#1| |#1|)))) (-2591 (((-524) $) 61 (|has| |#1| (-593 (-524))))) (-2128 (($ $) 78)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ (-399 (-548))) 89 (|has| |#1| (-1007 (-399 (-548)))))) (-4017 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-1446 ((|#1| $) 67 (|has| |#1| (-1025)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 57 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 56 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 58 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 55 (|has| |#1| (-821)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-766) . T) ((-768) . T) ((-821) . T) ((-1063) . T)) +((-4046 (((-112) $) 41)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2643 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 42)) (-2653 (((-3 (-398 (-547)) "failed") $) 78)) (-2543 (((-112) $) 72)) (-2430 (((-398 (-547)) $) 76)) (-1684 ((|#2| $) 26)) (-2781 (($ (-1 |#2| |#2|) $) 23)) (-1976 (($ $) 61)) (-2829 (((-523) $) 67)) (-2444 (($ $) 21)) (-3834 (((-832) $) 56) (($ (-547)) 39) (($ |#2|) 37) (($ (-398 (-547))) NIL)) (-2311 (((-745)) 10)) (-2040 ((|#2| $) 71)) (-2371 (((-112) $ $) 29)) (-2396 (((-112) $ $) 69)) (-2484 (($ $) 31) (($ $ $) NIL)) (-2470 (($ $ $) 30)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-770 |#1| |#2|) (-10 -8 (-15 -2396 ((-112) |#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -3834 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-771 |#2|) (-169)) (T -770)) +((-2311 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) (-4 *3 (-771 *4))))) +(-10 -8 (-15 -2396 ((-112) |#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -3834 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3603 (((-745)) 51 (|has| |#1| (-359)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 92 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 90 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 88)) (-2643 (((-547) $) 93 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 91 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 87)) (-2537 (((-3 $ "failed") $) 32)) (-2129 ((|#1| $) 77)) (-2653 (((-3 (-398 (-547)) "failed") $) 64 (|has| |#1| (-532)))) (-2543 (((-112) $) 66 (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) 65 (|has| |#1| (-532)))) (-3229 (($) 54 (|has| |#1| (-359)))) (-4114 (((-112) $) 30)) (-1284 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-1684 ((|#1| $) 69)) (-2847 (($ $ $) 60 (|has| |#1| (-821)))) (-3563 (($ $ $) 59 (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) 79)) (-1966 (((-890) $) 53 (|has| |#1| (-359)))) (-1917 (((-1118) $) 9)) (-1976 (($ $) 63 (|has| |#1| (-354)))) (-3479 (($ (-890)) 52 (|has| |#1| (-359)))) (-4036 ((|#1| $) 74)) (-4136 ((|#1| $) 75)) (-4232 ((|#1| $) 76)) (-2116 ((|#1| $) 70)) (-2228 ((|#1| $) 71)) (-2349 ((|#1| $) 72)) (-3918 ((|#1| $) 73)) (-3979 (((-1082) $) 10)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) 85 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 83 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 82 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 81 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) 80 (|has| |#1| (-503 (-1135) |#1|)))) (-3329 (($ $ |#1|) 86 (|has| |#1| (-277 |#1| |#1|)))) (-2829 (((-523) $) 61 (|has| |#1| (-592 (-523))))) (-2444 (($ $) 78)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ (-398 (-547))) 89 (|has| |#1| (-1007 (-398 (-547)))))) (-3336 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2040 ((|#1| $) 67 (|has| |#1| (-1025)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 57 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 56 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 58 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 55 (|has| |#1| (-821)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-771 |#1|) (-138) (-169)) (T -771)) -((-2128 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2912 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-2153 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-355))))) -(-13 (-38 |t#1|) (-403 |t#1|) (-330 |t#1|) (-10 -8 (-15 -2128 ($ $)) (-15 -1937 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -2889 (|t#1| $)) (-15 -2879 (|t#1| $)) (-15 -2867 (|t#1| $)) (-15 -2118 (|t#1| $)) (-15 -2106 (|t#1| $)) (-15 -2093 (|t#1| $)) (-15 -3910 (|t#1| $)) (-15 -2912 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -1446 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-355)) (-15 -2153 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-360) |has| |#1| (-360)) ((-330 |#1|) . T) ((-403 |#1|) . T) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2540 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) (-771 |#2|) (-169) (-771 |#4|) (-169)) (T -772)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-771 *6)) (-5 *1 (-772 *4 *5 *2 *6)) (-4 *4 (-771 *5))))) -(-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-968 |#1|) "failed") $) 35) (((-3 (-548) "failed") $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-548))) (|has| |#1| (-1007 (-548))))) (((-3 (-399 (-548)) "failed") $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-2375 ((|#1| $) NIL) (((-968 |#1|) $) 33) (((-548) $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-548))) (|has| |#1| (-1007 (-548))))) (((-399 (-548)) $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3859 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 16)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-533)))) (-4172 (((-112) $) NIL (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| |#1| (-533)))) (-2545 (($) NIL (|has| |#1| (-360)))) (-2266 (((-112) $) NIL)) (-2912 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-968 |#1|) (-968 |#1|)) 29)) (-3910 ((|#1| $) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-2879 ((|#1| $) 22)) (-2889 ((|#1| $) 20)) (-2900 ((|#1| $) 18)) (-2093 ((|#1| $) 26)) (-2106 ((|#1| $) 25)) (-2118 ((|#1| $) 24)) (-2867 ((|#1| $) 23)) (-3932 (((-1082) $) NIL)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-2128 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-968 |#1|)) 30) (($ (-399 (-548))) NIL (-1524 (|has| (-968 |#1|) (-1007 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-1446 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3107 (($) 8 T CONST)) (-3118 (($) 12 T CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-773 |#1|) (-13 (-771 |#1|) (-403 (-968 |#1|)) (-10 -8 (-15 -2912 ($ (-968 |#1|) (-968 |#1|))))) (-169)) (T -773)) -((-2912 (*1 *1 *2 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3))))) -(-13 (-771 |#1|) (-403 (-968 |#1|)) (-10 -8 (-15 -2912 ($ (-968 |#1|) (-968 |#1|))))) -((-3730 (((-112) $ $) 7)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2922 (((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 13)) (-2214 (((-112) $ $) 6))) +((-2444 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-1284 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-2653 (*1 *2 *1) (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-1976 (*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-354))))) +(-13 (-38 |t#1|) (-402 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2444 ($ $)) (-15 -2129 (|t#1| $)) (-15 -4232 (|t#1| $)) (-15 -4136 (|t#1| $)) (-15 -4036 (|t#1| $)) (-15 -3918 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -2116 (|t#1| $)) (-15 -1684 (|t#1| $)) (-15 -1284 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-359)) (-6 (-359)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2040 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-354)) (-15 -1976 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-359) |has| |#1| (-359)) ((-329 |#1|) . T) ((-402 |#1|) . T) ((-503 (-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2781 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#3| (-1 |#4| |#2|) |#1|))) (-771 |#2|) (-169) (-771 |#4|) (-169)) (T -772)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-771 *6)) (-5 *1 (-772 *4 *5 *2 *6)) (-4 *4 (-771 *5))))) +(-10 -7 (-15 -2781 (|#3| (-1 |#4| |#2|) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-968 |#1|) "failed") $) 35) (((-3 (-547) "failed") $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-547))) (|has| |#1| (-1007 (-547))))) (((-3 (-398 (-547)) "failed") $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2643 ((|#1| $) NIL) (((-968 |#1|) $) 33) (((-547) $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-547))) (|has| |#1| (-1007 (-547))))) (((-398 (-547)) $) NIL (-1524 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2537 (((-3 $ "failed") $) NIL)) (-2129 ((|#1| $) 16)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-532)))) (-2543 (((-112) $) NIL (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) NIL (|has| |#1| (-532)))) (-3229 (($) NIL (|has| |#1| (-359)))) (-4114 (((-112) $) NIL)) (-1284 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-968 |#1|) (-968 |#1|)) 29)) (-1684 ((|#1| $) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-4036 ((|#1| $) 22)) (-4136 ((|#1| $) 20)) (-4232 ((|#1| $) 18)) (-2116 ((|#1| $) 26)) (-2228 ((|#1| $) 25)) (-2349 ((|#1| $) 24)) (-3918 ((|#1| $) 23)) (-3979 (((-1082) $) NIL)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-503 (-1135) |#1|)))) (-3329 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-2444 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-968 |#1|)) 30) (($ (-398 (-547))) NIL (-1524 (|has| (-968 |#1|) (-1007 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3267 (($) 8 T CONST)) (-3277 (($) 12 T CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-773 |#1|) (-13 (-771 |#1|) (-402 (-968 |#1|)) (-10 -8 (-15 -1284 ($ (-968 |#1|) (-968 |#1|))))) (-169)) (T -773)) +((-1284 (*1 *1 *2 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3))))) +(-13 (-771 |#1|) (-402 (-968 |#1|)) (-10 -8 (-15 -1284 ($ (-968 |#1|) (-968 |#1|))))) +((-3821 (((-112) $ $) 7)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3303 (((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 13)) (-2371 (((-112) $ $) 6))) (((-774) (-138)) (T -774)) -((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-2922 (*1 *2 *3) (-12 (-4 *1 (-774)) (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-1004))))) -(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -2922 ((-1004) (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-2933 (((-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#3| |#2| (-1135)) 19))) -(((-775 |#1| |#2| |#3|) (-10 -7 (-15 -2933 ((-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#3| |#2| (-1135)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928)) (-630 |#2|)) (T -775)) -((-2933 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4))))) -(-10 -7 (-15 -2933 ((-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#3| |#2| (-1135)))) -((-3408 (((-3 |#2| "failed") |#2| (-114) (-286 |#2|) (-619 |#2|)) 28) (((-3 |#2| "failed") (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") (-286 |#2|) (-114) (-1135)) 18) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135)) 24) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 (-286 |#2|)) (-619 (-114)) (-1135)) 26) (((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135)) 37) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135)) 35))) -(((-776 |#1| |#2|) (-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135))) (-15 -3408 ((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 (-286 |#2|)) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") (-286 |#2|) (-114) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135))) (-15 -3408 ((-3 |#2| "failed") (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -3408 ((-3 |#2| "failed") |#2| (-114) (-286 |#2|) (-619 |#2|)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -776)) -((-3408 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-286 *2)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-776 *6 *2)))) (-3408 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-5 *1 (-776 *6 *2)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))))) (-3408 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2877 (-619 *3))) *3 "failed")) (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1157) (-928))))) (-3408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2877 (-619 *7))) *7 "failed")) (-5 *1 (-776 *6 *7)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) (-3408 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1135)) (-4 *6 (-13 (-29 *5) (-1157) (-928))) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-1218 *6))) (-5 *1 (-776 *5 *6)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)) (-5 *4 (-1218 *7))))) -(-10 -7 (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135))) (-15 -3408 ((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 (-286 |#2|)) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -2877 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") (-286 |#2|) (-114) (-1135))) (-15 -3408 ((-3 (-2 (|:| |particular| |#2|) (|:| -2877 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135))) (-15 -3408 ((-3 |#2| "failed") (-286 |#2|) (-114) (-286 |#2|) (-619 |#2|))) (-15 -3408 ((-3 |#2| "failed") |#2| (-114) (-286 |#2|) (-619 |#2|)))) -((-2944 (($) 9)) (-2976 (((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 31)) (-4043 (((-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $) 28)) (-2539 (($ (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) 25)) (-2966 (($ (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) 23)) (-2955 (((-1223)) 12))) -(((-777) (-10 -8 (-15 -2944 ($)) (-15 -2955 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2966 ($ (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2976 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))))) (T -777)) -((-2976 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *2 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *1 (-777)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) (-5 *1 (-777)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-5 *1 (-777)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-5 *1 (-777)))) (-2955 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-777)))) (-2944 (*1 *1) (-5 *1 (-777)))) -(-10 -8 (-15 -2944 ($)) (-15 -2955 ((-1223))) (-15 -4043 ((-619 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) $)) (-15 -2966 ($ (-619 (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -2539 ($ (-2 (|:| -3156 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (|:| -1657 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2976 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) -((-3894 ((|#2| |#2| (-1135)) 16)) (-2988 ((|#2| |#2| (-1135)) 51)) (-2997 (((-1 |#2| |#2|) (-1135)) 11))) -(((-778 |#1| |#2|) (-10 -7 (-15 -3894 (|#2| |#2| (-1135))) (-15 -2988 (|#2| |#2| (-1135))) (-15 -2997 ((-1 |#2| |#2|) (-1135)))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -778)) -((-2997 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) (-4 *5 (-13 (-29 *4) (-1157) (-928))))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928))))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928)))))) -(-10 -7 (-15 -3894 (|#2| |#2| (-1135))) (-15 -2988 (|#2| |#2| (-1135))) (-15 -2997 ((-1 |#2| |#2|) (-1135)))) -((-3408 (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371) (-371)) 116) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371)) 117) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-619 (-371)) (-371)) 119) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-371)) 120) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-371)) 121) (((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371))) 122) (((-1004) (-782) (-1028)) 108) (((-1004) (-782)) 109)) (-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028)) 75) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782)) 77))) -(((-779) (-10 -7 (-15 -3408 ((-1004) (-782))) (-15 -3408 ((-1004) (-782) (-1028))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371) (-371))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028))))) (T -779)) -((-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-779)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779))))) -(-10 -7 (-15 -3408 ((-1004) (-782))) (-15 -3408 ((-1004) (-782) (-1028))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371))) (-15 -3408 ((-1004) (-1218 (-308 (-371))) (-371) (-371) (-619 (-371)) (-308 (-371)) (-619 (-371)) (-371) (-371))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028)))) -((-3009 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2877 (-619 |#4|))) (-627 |#4|) |#4|) 35))) -(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3009 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2877 (-619 |#4|))) (-627 |#4|) |#4|))) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|)) (T -780)) -((-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *4)) (-4 *4 (-334 *5 *6 *7)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-780 *5 *6 *7 *4))))) -(-10 -7 (-15 -3009 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2877 (-619 |#4|))) (-627 |#4|) |#4|))) -((-1396 (((-2 (|:| -2383 |#3|) (|:| |rh| (-619 (-399 |#2|)))) |#4| (-619 (-399 |#2|))) 52)) (-3029 (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4| |#2|) 60) (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4|) 59) (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3| |#2|) 20) (((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3|) 21)) (-3038 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3019 ((|#2| |#3| (-619 (-399 |#2|))) 93) (((-3 |#2| "failed") |#3| (-399 |#2|)) 90))) -(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3019 ((-3 |#2| "failed") |#3| (-399 |#2|))) (-15 -3019 (|#2| |#3| (-619 (-399 |#2|)))) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3| |#2|)) (-15 -3038 (|#2| |#3| |#1|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4| |#2|)) (-15 -3038 (|#2| |#4| |#1|)) (-15 -1396 ((-2 (|:| -2383 |#3|) (|:| |rh| (-619 (-399 |#2|)))) |#4| (-619 (-399 |#2|))))) (-13 (-355) (-145) (-1007 (-399 (-548)))) (-1194 |#1|) (-630 |#2|) (-630 (-399 |#2|))) (T -781)) -((-1396 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-2 (|:| -2383 *7) (|:| |rh| (-619 (-399 *6))))) (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-399 *6))) (-4 *7 (-630 *6)) (-4 *3 (-630 (-399 *6))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *5 *3)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-630 *2)) (-4 *3 (-630 (-399 *2))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4)) (-4 *3 (-630 (-399 *4))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 (-399 *5))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *3 *5)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-399 *2))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4)) (-4 *6 (-630 (-399 *4))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-399 *5))))) (-3019 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-399 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *6 (-630 (-399 *2))))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-399 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *6 (-630 *4))))) -(-10 -7 (-15 -3019 ((-3 |#2| "failed") |#3| (-399 |#2|))) (-15 -3019 (|#2| |#3| (-619 (-399 |#2|)))) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#3| |#2|)) (-15 -3038 (|#2| |#3| |#1|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4|)) (-15 -3029 ((-619 (-2 (|:| -2278 |#2|) (|:| -2155 |#2|))) |#4| |#2|)) (-15 -3038 (|#2| |#4| |#1|)) (-15 -1396 ((-2 (|:| -2383 |#3|) (|:| |rh| (-619 (-399 |#2|)))) |#4| (-619 (-399 |#2|))))) -((-3730 (((-112) $ $) NIL)) (-2375 (((-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) $) 13)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 15) (($ (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) 12)) (-2214 (((-112) $ $) NIL))) -(((-782) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) $))))) (T -782)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-782)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218)))) (-5 *1 (-782))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) (|:| |relerr| (-218))) $)))) -((-3131 (((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-410 |#2|) |#2|)) 118)) (-3141 (((-619 (-2 (|:| |poly| |#2|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 46)) (-3062 (((-619 (-2 (|:| |deg| (-745)) (|:| -2383 |#2|))) |#3|) 95)) (-3052 ((|#2| |#3|) 37)) (-3073 (((-619 (-2 (|:| -2325 |#1|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 82)) (-3084 ((|#3| |#3| (-399 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3052 (|#2| |#3|)) (-15 -3062 ((-619 (-2 (|:| |deg| (-745)) (|:| -2383 |#2|))) |#3|)) (-15 -3073 ((-619 (-2 (|:| -2325 |#1|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3084 (|#3| |#3| |#2|)) (-15 -3084 (|#3| |#3| (-399 |#2|)))) (-13 (-355) (-145) (-1007 (-399 (-548)))) (-1194 |#1|) (-630 |#2|) (-630 (-399 |#2|))) (T -783)) -((-3084 (*1 *2 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3)))) (-3084 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-1194 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) (-4 *5 (-630 (-399 *3))))) (-3131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-619 *7) *7 (-1131 *7))) (-5 *5 (-1 (-410 *7) *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-5 *2 (-619 (-2 (|:| |frac| (-399 *7)) (|:| -2383 *3)))) (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) (-4 *8 (-630 (-399 *7))))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-399 *6))))) (-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2325 *5) (|:| -2383 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-399 *6))))) (-3062 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2383 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-399 *5))))) (-3052 (*1 *2 *3) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-399 *2)))))) -(-10 -7 (-15 -3052 (|#2| |#3|)) (-15 -3062 ((-619 (-2 (|:| |deg| (-745)) (|:| -2383 |#2|))) |#3|)) (-15 -3073 ((-619 (-2 (|:| -2325 |#1|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3084 (|#3| |#3| |#2|)) (-15 -3084 (|#3| |#3| (-399 |#2|)))) -((-3098 (((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-628 |#2| (-399 |#2|)) (-619 (-399 |#2|))) 121) (((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-628 |#2| (-399 |#2|)) (-399 |#2|)) 120) (((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-627 (-399 |#2|)) (-619 (-399 |#2|))) 115) (((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-627 (-399 |#2|)) (-399 |#2|)) 113)) (-3110 ((|#2| (-628 |#2| (-399 |#2|))) 80) ((|#2| (-627 (-399 |#2|))) 83))) -(((-784 |#1| |#2|) (-10 -7 (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-627 (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-627 (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-628 |#2| (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-628 |#2| (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3110 (|#2| (-627 (-399 |#2|)))) (-15 -3110 (|#2| (-628 |#2| (-399 |#2|))))) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -784)) -((-3110 (*1 *2 *3) (-12 (-5 *3 (-628 *2 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-627 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-784 *5 *6)))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-784 *5 *6))))) -(-10 -7 (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-627 (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-627 (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3098 ((-2 (|:| |particular| (-3 (-399 |#2|) "failed")) (|:| -2877 (-619 (-399 |#2|)))) (-628 |#2| (-399 |#2|)) (-399 |#2|))) (-15 -3098 ((-2 (|:| -2877 (-619 (-399 |#2|))) (|:| -4035 (-663 |#1|))) (-628 |#2| (-399 |#2|)) (-619 (-399 |#2|)))) (-15 -3110 (|#2| (-627 (-399 |#2|)))) (-15 -3110 (|#2| (-628 |#2| (-399 |#2|))))) -((-3121 (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|) 48))) -(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3121 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|))) (-355) (-630 |#1|) (-1194 |#1|) (-699 |#1| |#3|) (-630 |#4|)) (T -785)) -((-3121 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *7 (-1194 *5)) (-4 *4 (-699 *5 *7)) (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4))))) -(-10 -7 (-15 -3121 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|))) -((-3131 (((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)) 47)) (-3151 (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|))) 138 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-410 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-627 (-399 |#2|))) 140 (|has| |#1| (-27))) (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|)) 38) (((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 39) (((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|)) 36) (((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 37)) (-3141 (((-619 (-2 (|:| |poly| |#2|) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|)) 83))) -(((-786 |#1| |#2|) (-10 -7 (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)))) |%noBranch|)) (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))) (-1194 |#1|)) (T -786)) -((-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-628 *5 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-627 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 (-628 *6 (-399 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6))))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-5 *2 (-619 (-2 (|:| |frac| (-399 *6)) (|:| -2383 (-628 *6 (-399 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6))))) (-3151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *7 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-410 *7) *7)) (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) (-3151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-410 *7) *7)) (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6))))) -(-10 -7 (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-410 |#2|) |#2|))) (-15 -3131 ((-619 (-2 (|:| |frac| (-399 |#2|)) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3141 ((-619 (-2 (|:| |poly| |#2|) (|:| -2383 (-628 |#2| (-399 |#2|))))) (-628 |#2| (-399 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-627 (-399 |#2|)) (-1 (-410 |#2|) |#2|))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)))) (-15 -3151 ((-619 (-399 |#2|)) (-628 |#2| (-399 |#2|)) (-1 (-410 |#2|) |#2|)))) |%noBranch|)) -((-3162 (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|)) 85) (((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2383 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|)) 15)) (-3174 (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2877 (-619 |#1|))) |#2| |#1|)) 92)) (-3408 (((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -2877 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed") |#2| |#1|)) 43))) -(((-787 |#1| |#2|) (-10 -7 (-15 -3162 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2383 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|))) (-15 -3162 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -2877 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -3174 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2877 (-619 |#1|))) |#2| |#1|)))) (-355) (-630 |#1|)) (T -787)) -((-3174 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2877 (-619 *6))) *7 *6)) (-4 *6 (-355)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *6) "failed")) (|:| -2877 (-619 (-1218 *6))))) (-5 *1 (-787 *6 *7)) (-5 *4 (-1218 *6)))) (-3408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2877 (-619 *6))) "failed") *7 *6)) (-4 *6 (-355)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-1218 *6)) (|:| -2877 (-663 *6)))) (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *6)))) (-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-4 *6 (-630 *5)) (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *5)))) (-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-5 *2 (-2 (|:| A (-663 *5)) (|:| |eqs| (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5)) (|:| -2383 *6) (|:| |rh| *5)))))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *6 (-630 *5))))) -(-10 -7 (-15 -3162 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2383 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|))) (-15 -3162 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|))) (-15 -3408 ((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -2877 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2877 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -3174 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -2877 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2877 (-619 |#1|))) |#2| |#1|)))) -((-3186 (((-663 |#1|) (-619 |#1|) (-745)) 13) (((-663 |#1|) (-619 |#1|)) 14)) (-3199 (((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|)) 34)) (-2192 (((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)) 42))) -(((-788 |#1| |#2|) (-10 -7 (-15 -3186 ((-663 |#1|) (-619 |#1|))) (-15 -3186 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -3199 ((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -2192 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) (-355) (-630 |#1|)) (T -788)) -((-2192 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-355)) (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) (-3199 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-1218 *4)) (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-355)) (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-663 *4)) (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4))))) -(-10 -7 (-15 -3186 ((-663 |#1|) (-619 |#1|))) (-15 -3186 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -3199 ((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -2192 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-3324 (((-112) $) NIL (|has| |#2| (-130)))) (-2264 (($ (-890)) NIL (|has| |#2| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#2| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#2| (-360)))) (-2672 (((-548) $) NIL (|has| |#2| (-819)))) (-2089 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#2| (-1016)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-3859 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-2545 (($) NIL (|has| |#2| (-360)))) (-3971 ((|#2| $ (-548) |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ (-548)) NIL)) (-3298 (((-112) $) NIL (|has| |#2| (-819)))) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#2| (-701)))) (-3312 (((-112) $) NIL (|has| |#2| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#2| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#2| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#2| (-360)))) (-3932 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3453 ((|#2| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) |#2|) NIL) ((|#2| $ (-548)) NIL)) (-4029 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-1957 (($ (-1218 |#2|)) NIL)) (-3402 (((-133)) NIL (|has| |#2| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#2|) $) NIL) (($ (-548)) NIL (-1524 (-12 (|has| |#2| (-1007 (-548))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#2| (-1007 (-399 (-548)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#2| (-1016)))) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#2| (-819)))) (-3107 (($) NIL (|has| |#2| (-130)) CONST)) (-3118 (($) NIL (|has| |#2| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-226)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2214 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2234 (((-112) $ $) 11 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2290 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-548) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-789 |#1| |#2| |#3|) (-231 |#1| |#2|) (-745) (-767) (-1 (-112) (-1218 |#2|) (-1218 |#2|))) (T -789)) -NIL -(-231 |#1| |#2|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2919 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1135)) NIL)) (-3266 (((-745) $) NIL) (((-745) $ (-1135)) NIL)) (-2049 (((-619 (-792 (-1135))) $) NIL)) (-1884 (((-1131 $) $ (-792 (-1135))) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-792 (-1135)))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2896 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-792 (-1135)) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL) (((-3 (-1087 |#1| (-1135)) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-792 (-1135)) $) NIL) (((-1135) $) NIL) (((-1087 |#1| (-1135)) $) NIL)) (-1557 (($ $ $ (-792 (-1135))) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-792 (-1135))) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 (-792 (-1135))) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-792 (-1135)) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-792 (-1135)) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ (-1135)) NIL) (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) (-792 (-1135))) NIL) (($ (-1131 $) (-792 (-1135))) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-792 (-1135))) NIL)) (-3904 (((-520 (-792 (-1135))) $) NIL) (((-745) $ (-792 (-1135))) NIL) (((-619 (-745)) $ (-619 (-792 (-1135)))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 (-792 (-1135))) (-520 (-792 (-1135)))) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (((-1 $ (-745)) (-1135)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-226)))) (-3511 (((-3 (-792 (-1135)) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-1956 (((-792 (-1135)) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2909 (((-112) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-792 (-1135))) (|:| -3352 (-745))) "failed") $) NIL)) (-2045 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-792 (-1135)) |#1|) NIL) (($ $ (-619 (-792 (-1135))) (-619 |#1|)) NIL) (($ $ (-792 (-1135)) $) NIL) (($ $ (-619 (-792 (-1135))) (-619 $)) NIL) (($ $ (-1135) $) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 $)) NIL (|has| |#1| (-226))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-226)))) (-1566 (($ $ (-792 (-1135))) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-792 (-1135))) NIL) (($ $ (-619 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2930 (((-619 (-1135)) $) NIL)) (-2512 (((-520 (-792 (-1135))) $) NIL) (((-745) $ (-792 (-1135))) NIL) (((-619 (-745)) $ (-619 (-792 (-1135)))) NIL) (((-745) $ (-1135)) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-792 (-1135)) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-792 (-1135)) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-792 (-1135)) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-792 (-1135))) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-792 (-1135))) NIL) (($ (-1135)) NIL) (($ (-1087 |#1| (-1135))) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-792 (-1135))) NIL) (($ $ (-619 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-790 |#1|) (-13 (-245 |#1| (-1135) (-792 (-1135)) (-520 (-792 (-1135)))) (-1007 (-1087 |#1| (-1135)))) (-1016)) (T -790)) -NIL -(-13 (-245 |#1| (-1135) (-792 (-1135)) (-520 (-792 (-1135)))) (-1007 (-1087 |#1| (-1135)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-355)))) (-3303 (($ $) NIL (|has| |#2| (-355)))) (-3279 (((-112) $) NIL (|has| |#2| (-355)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#2| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-355)))) (-4087 (((-112) $ $) NIL (|has| |#2| (-355)))) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL (|has| |#2| (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#2| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#2| (-355)))) (-1271 (((-112) $) NIL (|has| |#2| (-355)))) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-3553 (($ (-619 $)) NIL (|has| |#2| (-355))) (($ $ $) NIL (|has| |#2| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 20 (|has| |#2| (-355)))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-355))) (($ $ $) NIL (|has| |#2| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#2| (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-4077 (((-745) $) NIL (|has| |#2| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-4050 (($ $ (-745)) NIL) (($ $) 13)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-399 (-548))) NIL (|has| |#2| (-355))) (($ $) NIL (|has| |#2| (-355)))) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL (|has| |#2| (-355)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) 15 (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ (-548)) 18 (|has| |#2| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-399 (-548)) $) NIL (|has| |#2| (-355))) (($ $ (-399 (-548))) NIL (|has| |#2| (-355))))) -(((-791 |#1| |#2| |#3|) (-13 (-111 $ $) (-226) (-10 -8 (IF (|has| |#2| (-355)) (-6 (-355)) |%noBranch|) (-15 -3743 ($ |#2|)) (-15 -3743 (|#2| $)))) (-1063) (-869 |#1|) |#1|) (T -791)) -((-3743 (*1 *1 *2) (-12 (-4 *3 (-1063)) (-14 *4 *3) (-5 *1 (-791 *3 *2 *4)) (-4 *2 (-869 *3)))) (-3743 (*1 *2 *1) (-12 (-4 *2 (-869 *3)) (-5 *1 (-791 *3 *2 *4)) (-4 *3 (-1063)) (-14 *4 *3)))) -(-13 (-111 $ $) (-226) (-10 -8 (IF (|has| |#2| (-355)) (-6 (-355)) |%noBranch|) (-15 -3743 ($ |#2|)) (-15 -3743 (|#2| $)))) -((-3730 (((-112) $ $) NIL)) (-3266 (((-745) $) NIL)) (-2754 ((|#1| $) 10)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-1672 (((-745) $) 11)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3278 (($ |#1| (-745)) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4050 (($ $) NIL) (($ $ (-745)) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL))) -(((-792 |#1|) (-258 |#1|) (-821)) (T -792)) -NIL -(-258 |#1|) -((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) 29)) (-3423 (((-745) $) NIL)) (-3030 (($) NIL T CONST)) (-2448 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-3465 (($ $) 31)) (-3859 (((-3 $ "failed") $) NIL)) (-3245 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2266 (((-112) $) NIL)) (-3224 ((|#1| $ (-548)) NIL)) (-3235 (((-745) $ (-548)) NIL)) (-2425 (($ $) 36)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2459 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3281 (((-112) $ $) 34)) (-3198 (((-745) $) 25)) (-2546 (((-1118) $) NIL)) (-3257 (($ $ $) NIL)) (-3269 (($ $ $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 ((|#1| $) 30)) (-3213 (((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $) NIL)) (-1911 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-3118 (($) 15 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 35)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-793 |#1|) (-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3453 (|#1| $)) (-15 -3465 ($ $)) (-15 -2425 ($ $)) (-15 -3281 ((-112) $ $)) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -2459 ((-3 $ "failed") $ |#1|)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -1911 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3198 ((-745) $)) (-15 -3065 ((-619 |#1|) $)))) (-821)) (T -793)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3453 (*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3269 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2459 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2459 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2448 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-1911 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3245 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821))))) -(-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3453 (|#1| $)) (-15 -3465 ($ $)) (-15 -2425 ($ $)) (-15 -3281 ((-112) $ $)) (-15 -3269 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2459 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -2459 ((-3 $ "failed") $ |#1|)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -1911 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3245 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3423 ((-745) $)) (-15 -3235 ((-745) $ (-548))) (-15 -3224 (|#1| $ (-548))) (-15 -3213 ((-619 (-2 (|:| |gen| |#1|) (|:| -2458 (-745)))) $)) (-15 -3198 ((-745) $)) (-15 -3065 ((-619 |#1|) $)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-2672 (((-548) $) 51)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-3298 (((-112) $) 49)) (-2266 (((-112) $) 30)) (-3312 (((-112) $) 50)) (-1795 (($ $ $) 48)) (-3091 (($ $ $) 47)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 52)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 45)) (-2241 (((-112) $ $) 44)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 46)) (-2234 (((-112) $ $) 43)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-4283 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) (-3303 (*1 *2 *3) (-12 (-4 *1 (-774)) (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-1004))))) +(-13 (-1063) (-10 -7 (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3303 ((-1004) (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3421 (((-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#3| |#2| (-1135)) 19))) +(((-775 |#1| |#2| |#3|) (-10 -7 (-15 -3421 ((-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#3| |#2| (-1135)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1157) (-928)) (-630 |#2|)) (T -775)) +((-3421 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-619 *4)))) (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4))))) +(-10 -7 (-15 -3421 ((-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#3| |#2| (-1135)))) +((-3571 (((-3 |#2| "failed") |#2| (-114) (-285 |#2|) (-619 |#2|)) 28) (((-3 |#2| "failed") (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#2| "failed") (-285 |#2|) (-114) (-1135)) 18) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135)) 24) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-619 (-285 |#2|)) (-619 (-114)) (-1135)) 26) (((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135)) 37) (((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135)) 35))) +(((-776 |#1| |#2|) (-10 -7 (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135))) (-15 -3571 ((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-619 (-285 |#2|)) (-619 (-114)) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#2| "failed") (-285 |#2|) (-114) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135))) (-15 -3571 ((-3 |#2| "failed") (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3571 ((-3 |#2| "failed") |#2| (-114) (-285 |#2|) (-619 |#2|)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -776)) +((-3571 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-285 *2)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-776 *6 *2)))) (-3571 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-285 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-5 *1 (-776 *6 *2)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))))) (-3571 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4013 (-619 *3))) *3 "failed")) (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1157) (-928))))) (-3571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4013 (-619 *7))) *7 "failed")) (-5 *1 (-776 *6 *7)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -4013 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -4013 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) (-3571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1135)) (-4 *6 (-13 (-29 *5) (-1157) (-928))) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-1218 *6))) (-5 *1 (-776 *5 *6)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-2 (|:| |particular| (-1218 *7)) (|:| -4013 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)) (-5 *4 (-1218 *7))))) +(-10 -7 (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-663 |#2|) (-1218 |#2|) (-1135))) (-15 -3571 ((-3 (-619 (-1218 |#2|)) "failed") (-663 |#2|) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-619 (-285 |#2|)) (-619 (-114)) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#2|)) (|:| -4013 (-619 (-1218 |#2|)))) "failed") (-619 |#2|) (-619 (-114)) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#2| "failed") (-285 |#2|) (-114) (-1135))) (-15 -3571 ((-3 (-2 (|:| |particular| |#2|) (|:| -4013 (-619 |#2|))) |#2| "failed") |#2| (-114) (-1135))) (-15 -3571 ((-3 |#2| "failed") (-285 |#2|) (-114) (-285 |#2|) (-619 |#2|))) (-15 -3571 ((-3 |#2| "failed") |#2| (-114) (-285 |#2|) (-619 |#2|)))) +((-3536 (($) 9)) (-3850 (((-3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))) "failed") (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 31)) (-3437 (((-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $) 28)) (-1885 (($ (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))) 25)) (-3768 (($ (-619 (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) 23)) (-3657 (((-1223)) 12))) +(((-777) (-10 -8 (-15 -3536 ($)) (-15 -3657 ((-1223))) (-15 -3437 ((-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -3768 ($ (-619 (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))))) (-15 -1885 ($ (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) (-15 -3850 ((-3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))) "failed") (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))))) (T -777)) +((-3850 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))) (-5 *1 (-777)))) (-1885 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))) (-5 *1 (-777)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) (-5 *1 (-777)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-5 *1 (-777)))) (-3657 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-777)))) (-3536 (*1 *1) (-5 *1 (-777)))) +(-10 -8 (-15 -3536 ($)) (-15 -3657 ((-1223))) (-15 -3437 ((-619 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) $)) (-15 -3768 ($ (-619 (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370)))))))) (-15 -1885 ($ (-2 (|:| -3326 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (|:| -1777 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))))))) (-15 -3850 ((-3 (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) (|:| |expense| (-370)) (|:| |accuracy| (-370)) (|:| |intermediateResults| (-370))) "failed") (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) +((-1528 ((|#2| |#2| (-1135)) 16)) (-2842 ((|#2| |#2| (-1135)) 51)) (-2926 (((-1 |#2| |#2|) (-1135)) 11))) +(((-778 |#1| |#2|) (-10 -7 (-15 -1528 (|#2| |#2| (-1135))) (-15 -2842 (|#2| |#2| (-1135))) (-15 -2926 ((-1 |#2| |#2|) (-1135)))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145)) (-13 (-29 |#1|) (-1157) (-928))) (T -778)) +((-2926 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) (-4 *5 (-13 (-29 *4) (-1157) (-928))))) (-2842 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928))))) (-1528 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928)))))) +(-10 -7 (-15 -1528 (|#2| |#2| (-1135))) (-15 -2842 (|#2| |#2| (-1135))) (-15 -2926 ((-1 |#2| |#2|) (-1135)))) +((-3571 (((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370) (-370)) 116) (((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370)) 117) (((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-619 (-370)) (-370)) 119) (((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-370)) 120) (((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-370)) 121) (((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370))) 122) (((-1004) (-782) (-1028)) 108) (((-1004) (-782)) 109)) (-4283 (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028)) 75) (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782)) 77))) +(((-779) (-10 -7 (-15 -3571 ((-1004) (-782))) (-15 -3571 ((-1004) (-782) (-1028))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-619 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370) (-370))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028))))) (T -779)) +((-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-779)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1218 (-307 *4))) (-5 *5 (-619 (-370))) (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1218 (-307 *4))) (-5 *5 (-619 (-370))) (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1218 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1218 (-307 *4))) (-5 *5 (-619 (-370))) (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1218 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1218 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779))))) +(-10 -7 (-15 -3571 ((-1004) (-782))) (-15 -3571 ((-1004) (-782) (-1028))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-619 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370))) (-15 -3571 ((-1004) (-1218 (-307 (-370))) (-370) (-370) (-619 (-370)) (-307 (-370)) (-619 (-370)) (-370) (-370))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-782) (-1028)))) +((-3022 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4013 (-619 |#4|))) (-627 |#4|) |#4|) 35))) +(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3022 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4013 (-619 |#4|))) (-627 |#4|) |#4|))) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|)) (T -780)) +((-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *4)) (-4 *4 (-333 *5 *6 *7)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-780 *5 *6 *7 *4))))) +(-10 -7 (-15 -3022 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4013 (-619 |#4|))) (-627 |#4|) |#4|))) +((-3393 (((-2 (|:| -2636 |#3|) (|:| |rh| (-619 (-398 |#2|)))) |#4| (-619 (-398 |#2|))) 52)) (-3208 (((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#4| |#2|) 60) (((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#4|) 59) (((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#3| |#2|) 20) (((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#3|) 21)) (-2124 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3113 ((|#2| |#3| (-619 (-398 |#2|))) 93) (((-3 |#2| "failed") |#3| (-398 |#2|)) 90))) +(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3113 ((-3 |#2| "failed") |#3| (-398 |#2|))) (-15 -3113 (|#2| |#3| (-619 (-398 |#2|)))) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#3|)) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#3| |#2|)) (-15 -2124 (|#2| |#3| |#1|)) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#4|)) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#4| |#2|)) (-15 -2124 (|#2| |#4| |#1|)) (-15 -3393 ((-2 (|:| -2636 |#3|) (|:| |rh| (-619 (-398 |#2|)))) |#4| (-619 (-398 |#2|))))) (-13 (-354) (-145) (-1007 (-398 (-547)))) (-1194 |#1|) (-630 |#2|) (-630 (-398 |#2|))) (T -781)) +((-3393 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-2 (|:| -2636 *7) (|:| |rh| (-619 (-398 *6))))) (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-398 *6))) (-4 *7 (-630 *6)) (-4 *3 (-630 (-398 *6))))) (-2124 (*1 *2 *3 *4) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *5 *3)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-630 *2)) (-4 *3 (-630 (-398 *2))))) (-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2582 *4) (|:| -2374 *4)))) (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4)) (-4 *3 (-630 (-398 *4))))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2582 *5) (|:| -2374 *5)))) (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 (-398 *5))))) (-2124 (*1 *2 *3 *4) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *3 *5)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-398 *2))))) (-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2582 *4) (|:| -2374 *4)))) (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4)) (-4 *6 (-630 (-398 *4))))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2582 *5) (|:| -2374 *5)))) (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-398 *5))))) (-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-398 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *6 (-630 (-398 *2))))) (-3113 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-398 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *6 (-630 *4))))) +(-10 -7 (-15 -3113 ((-3 |#2| "failed") |#3| (-398 |#2|))) (-15 -3113 (|#2| |#3| (-619 (-398 |#2|)))) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#3|)) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#3| |#2|)) (-15 -2124 (|#2| |#3| |#1|)) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#4|)) (-15 -3208 ((-619 (-2 (|:| -2582 |#2|) (|:| -2374 |#2|))) |#4| |#2|)) (-15 -2124 (|#2| |#4| |#1|)) (-15 -3393 ((-2 (|:| -2636 |#3|) (|:| |rh| (-619 (-398 |#2|)))) |#4| (-619 (-398 |#2|))))) +((-3821 (((-112) $ $) NIL)) (-2643 (((-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) $) 13)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 15) (($ (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) 12)) (-2371 (((-112) $ $) NIL))) +(((-782) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) $))))) (T -782)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-782)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-782))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) (|:| |relerr| (-217))) $)))) +((-1749 (((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2636 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-409 |#2|) |#2|)) 118)) (-1866 (((-619 (-2 (|:| |poly| |#2|) (|:| -2636 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 46)) (-2391 (((-619 (-2 (|:| |deg| (-745)) (|:| -2636 |#2|))) |#3|) 95)) (-2263 ((|#2| |#3|) 37)) (-2518 (((-619 (-2 (|:| -2573 |#1|) (|:| -2636 |#3|))) |#3| (-1 (-619 |#1|) |#2|)) 82)) (-2629 ((|#3| |#3| (-398 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2263 (|#2| |#3|)) (-15 -2391 ((-619 (-2 (|:| |deg| (-745)) (|:| -2636 |#2|))) |#3|)) (-15 -2518 ((-619 (-2 (|:| -2573 |#1|) (|:| -2636 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -1866 ((-619 (-2 (|:| |poly| |#2|) (|:| -2636 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -1749 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2636 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2629 (|#3| |#3| |#2|)) (-15 -2629 (|#3| |#3| (-398 |#2|)))) (-13 (-354) (-145) (-1007 (-398 (-547)))) (-1194 |#1|) (-630 |#2|) (-630 (-398 |#2|))) (T -783)) +((-2629 (*1 *2 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3)))) (-2629 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-1194 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) (-4 *5 (-630 (-398 *3))))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-619 *7) *7 (-1131 *7))) (-5 *5 (-1 (-409 *7) *7)) (-4 *7 (-1194 *6)) (-4 *6 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-5 *2 (-619 (-2 (|:| |frac| (-398 *7)) (|:| -2636 *3)))) (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) (-4 *8 (-630 (-398 *7))))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2636 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-398 *6))))) (-2518 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2573 *5) (|:| -2636 *3)))) (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) (-4 *7 (-630 (-398 *6))))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2636 *5)))) (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-630 (-398 *5))))) (-2263 (*1 *2 *3) (-12 (-4 *2 (-1194 *4)) (-5 *1 (-783 *4 *2 *3 *5)) (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *5 (-630 (-398 *2)))))) +(-10 -7 (-15 -2263 (|#2| |#3|)) (-15 -2391 ((-619 (-2 (|:| |deg| (-745)) (|:| -2636 |#2|))) |#3|)) (-15 -2518 ((-619 (-2 (|:| -2573 |#1|) (|:| -2636 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -1866 ((-619 (-2 (|:| |poly| |#2|) (|:| -2636 |#3|))) |#3| (-1 (-619 |#1|) |#2|))) (-15 -1749 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2636 |#3|))) |#3| (-1 (-619 |#2|) |#2| (-1131 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -2629 (|#3| |#3| |#2|)) (-15 -2629 (|#3| |#3| (-398 |#2|)))) +((-2721 (((-2 (|:| -4013 (-619 (-398 |#2|))) (|:| -3509 (-663 |#1|))) (-628 |#2| (-398 |#2|)) (-619 (-398 |#2|))) 121) (((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -4013 (-619 (-398 |#2|)))) (-628 |#2| (-398 |#2|)) (-398 |#2|)) 120) (((-2 (|:| -4013 (-619 (-398 |#2|))) (|:| -3509 (-663 |#1|))) (-627 (-398 |#2|)) (-619 (-398 |#2|))) 115) (((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -4013 (-619 (-398 |#2|)))) (-627 (-398 |#2|)) (-398 |#2|)) 113)) (-1507 ((|#2| (-628 |#2| (-398 |#2|))) 80) ((|#2| (-627 (-398 |#2|))) 83))) +(((-784 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -4013 (-619 (-398 |#2|)))) (-627 (-398 |#2|)) (-398 |#2|))) (-15 -2721 ((-2 (|:| -4013 (-619 (-398 |#2|))) (|:| -3509 (-663 |#1|))) (-627 (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -2721 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -4013 (-619 (-398 |#2|)))) (-628 |#2| (-398 |#2|)) (-398 |#2|))) (-15 -2721 ((-2 (|:| -4013 (-619 (-398 |#2|))) (|:| -3509 (-663 |#1|))) (-628 |#2| (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -1507 (|#2| (-627 (-398 |#2|)))) (-15 -1507 (|#2| (-628 |#2| (-398 |#2|))))) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1194 |#1|)) (T -784)) +((-1507 (*1 *2 *3) (-12 (-5 *3 (-628 *2 (-398 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-627 (-398 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| -4013 (-619 (-398 *6))) (|:| -3509 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6))))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-784 *5 *6)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| -4013 (-619 (-398 *6))) (|:| -3509 (-663 *5)))) (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6))))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-784 *5 *6))))) +(-10 -7 (-15 -2721 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -4013 (-619 (-398 |#2|)))) (-627 (-398 |#2|)) (-398 |#2|))) (-15 -2721 ((-2 (|:| -4013 (-619 (-398 |#2|))) (|:| -3509 (-663 |#1|))) (-627 (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -2721 ((-2 (|:| |particular| (-3 (-398 |#2|) "failed")) (|:| -4013 (-619 (-398 |#2|)))) (-628 |#2| (-398 |#2|)) (-398 |#2|))) (-15 -2721 ((-2 (|:| -4013 (-619 (-398 |#2|))) (|:| -3509 (-663 |#1|))) (-628 |#2| (-398 |#2|)) (-619 (-398 |#2|)))) (-15 -1507 (|#2| (-627 (-398 |#2|)))) (-15 -1507 (|#2| (-628 |#2| (-398 |#2|))))) +((-1631 (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|) 48))) +(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1631 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|))) (-354) (-630 |#1|) (-1194 |#1|) (-699 |#1| |#3|) (-630 |#4|)) (T -785)) +((-1631 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *7 (-1194 *5)) (-4 *4 (-699 *5 *7)) (-5 *2 (-2 (|:| -3509 (-663 *6)) (|:| |vec| (-1218 *5)))) (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4))))) +(-10 -7 (-15 -1631 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) |#5| |#4|))) +((-1749 (((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2636 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)) 47)) (-1973 (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|))) 138 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-409 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-627 (-398 |#2|))) 140 (|has| |#1| (-27))) (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|)) 38) (((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 39) (((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|)) 36) (((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 37)) (-1866 (((-619 (-2 (|:| |poly| |#2|) (|:| -2636 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|)) 83))) +(((-786 |#1| |#2|) (-10 -7 (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -1749 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2636 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -1866 ((-619 (-2 (|:| |poly| |#2|) (|:| -2636 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)))) (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)))) |%noBranch|)) (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))) (-1194 |#1|)) (T -786)) +((-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-628 *5 (-398 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-627 (-398 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2636 (-628 *6 (-398 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6))))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 (-619 (-2 (|:| |frac| (-398 *6)) (|:| -2636 (-628 *6 (-398 *6)))))) (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6))))) (-1973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *7 (-398 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-409 *7) *7)) (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *7 (-1194 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) (-1973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-398 *7))) (-5 *4 (-1 (-619 *6) *7)) (-5 *5 (-1 (-409 *7) *7)) (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *7 (-1194 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-619 *5) *6)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6))))) +(-10 -7 (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|) (-1 (-409 |#2|) |#2|))) (-15 -1749 ((-619 (-2 (|:| |frac| (-398 |#2|)) (|:| -2636 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -1866 ((-619 (-2 (|:| |poly| |#2|) (|:| -2636 (-628 |#2| (-398 |#2|))))) (-628 |#2| (-398 |#2|)) (-1 (-619 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)))) (-15 -1973 ((-619 (-398 |#2|)) (-627 (-398 |#2|)) (-1 (-409 |#2|) |#2|))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)))) (-15 -1973 ((-619 (-398 |#2|)) (-628 |#2| (-398 |#2|)) (-1 (-409 |#2|) |#2|)))) |%noBranch|)) +((-1977 (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|)) 85) (((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2636 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|)) 15)) (-2104 (((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4013 (-619 |#1|))) |#2| |#1|)) 92)) (-3571 (((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -4013 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed") |#2| |#1|)) 43))) +(((-787 |#1| |#2|) (-10 -7 (-15 -1977 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2636 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|))) (-15 -1977 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -4013 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -2104 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4013 (-619 |#1|))) |#2| |#1|)))) (-354) (-630 |#1|)) (T -787)) +((-2104 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4013 (-619 *6))) *7 *6)) (-4 *6 (-354)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *6) "failed")) (|:| -4013 (-619 (-1218 *6))))) (-5 *1 (-787 *6 *7)) (-5 *4 (-1218 *6)))) (-3571 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4013 (-619 *6))) "failed") *7 *6)) (-4 *6 (-354)) (-4 *7 (-630 *6)) (-5 *2 (-2 (|:| |particular| (-1218 *6)) (|:| -4013 (-663 *6)))) (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *6)))) (-1977 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-4 *6 (-630 *5)) (-5 *2 (-2 (|:| -3509 (-663 *6)) (|:| |vec| (-1218 *5)))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *5)))) (-1977 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-5 *2 (-2 (|:| A (-663 *5)) (|:| |eqs| (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5)) (|:| -2636 *6) (|:| |rh| *5)))))) (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *6 (-630 *5))))) +(-10 -7 (-15 -1977 ((-2 (|:| A (-663 |#1|)) (|:| |eqs| (-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)) (|:| -2636 |#2|) (|:| |rh| |#1|))))) (-663 |#1|) (-1218 |#1|))) (-15 -1977 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#1|))) (-663 |#2|) (-1218 |#1|))) (-15 -3571 ((-3 (-2 (|:| |particular| (-1218 |#1|)) (|:| -4013 (-663 |#1|))) "failed") (-663 |#1|) (-1218 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4013 (-619 |#1|))) "failed") |#2| |#1|))) (-15 -2104 ((-2 (|:| |particular| (-3 (-1218 |#1|) "failed")) (|:| -4013 (-619 (-1218 |#1|)))) (-663 |#2|) (-1218 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4013 (-619 |#1|))) |#2| |#1|)))) +((-2227 (((-663 |#1|) (-619 |#1|) (-745)) 13) (((-663 |#1|) (-619 |#1|)) 14)) (-2359 (((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|)) 34)) (-1634 (((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)) 42))) +(((-788 |#1| |#2|) (-10 -7 (-15 -2227 ((-663 |#1|) (-619 |#1|))) (-15 -2227 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -2359 ((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -1634 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) (-354) (-630 |#1|)) (T -788)) +((-1634 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-354)) (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) (-2359 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-1218 *4)) (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-354)) (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-663 *4)) (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4))))) +(-10 -7 (-15 -2227 ((-663 |#1|) (-619 |#1|))) (-15 -2227 ((-663 |#1|) (-619 |#1|) (-745))) (-15 -2359 ((-3 (-1218 |#1|) "failed") |#2| |#1| (-619 |#1|))) (-15 -1634 ((-3 |#1| "failed") |#2| |#1| (-619 |#1|) (-1 |#1| |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-4046 (((-112) $) NIL (|has| |#2| (-130)))) (-4095 (($ (-890)) NIL (|has| |#2| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1991 (($ $ $) NIL (|has| |#2| (-767)))) (-3013 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| |#2| (-359)))) (-3807 (((-547) $) NIL (|has| |#2| (-819)))) (-2238 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1063)))) (-2643 (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) ((|#2| $) NIL (|has| |#2| (-1063)))) (-4238 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#2| (-1016)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#2| (-1016))) (((-663 |#2|) (-663 $)) NIL (|has| |#2| (-1016)))) (-2537 (((-3 $ "failed") $) NIL (|has| |#2| (-701)))) (-3229 (($) NIL (|has| |#2| (-359)))) (-1861 ((|#2| $ (-547) |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ (-547)) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-819)))) (-2973 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL (|has| |#2| (-701)))) (-3937 (((-112) $) NIL (|has| |#2| (-819)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-3666 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-1850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#2| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#2| (-1063)))) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3479 (($ (-890)) NIL (|has| |#2| (-359)))) (-3979 (((-1082) $) NIL (|has| |#2| (-1063)))) (-3634 ((|#2| $) NIL (|has| (-547) (-821)))) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ (-547) |#2|) NIL) ((|#2| $ (-547)) NIL)) (-3453 ((|#2| $ $) NIL (|has| |#2| (-1016)))) (-2155 (($ (-1218 |#2|)) NIL)) (-3512 (((-133)) NIL (|has| |#2| (-354)))) (-3443 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-3987 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1218 |#2|) $) NIL) (($ (-547)) NIL (-1524 (-12 (|has| |#2| (-1007 (-547))) (|has| |#2| (-1063))) (|has| |#2| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#2| (-1007 (-398 (-547)))) (|has| |#2| (-1063)))) (($ |#2|) NIL (|has| |#2| (-1063))) (((-832) $) NIL (|has| |#2| (-591 (-832))))) (-2311 (((-745)) NIL (|has| |#2| (-1016)))) (-2583 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2040 (($ $) NIL (|has| |#2| (-819)))) (-3267 (($) NIL (|has| |#2| (-130)) CONST)) (-3277 (($) NIL (|has| |#2| (-701)) CONST)) (-1686 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#2| (-869 (-1135))) (|has| |#2| (-1016)))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#2| (-1016))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1016)))) (-2433 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2371 (((-112) $ $) NIL (|has| |#2| (-1063)))) (-2421 (((-112) $ $) NIL (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2396 (((-112) $ $) 11 (-1524 (|has| |#2| (-767)) (|has| |#2| (-819))))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $ $) NIL (|has| |#2| (-1016))) (($ $) NIL (|has| |#2| (-1016)))) (-2470 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-745)) NIL (|has| |#2| (-701))) (($ $ (-890)) NIL (|has| |#2| (-701)))) (* (($ (-547) $) NIL (|has| |#2| (-1016))) (($ $ $) NIL (|has| |#2| (-701))) (($ $ |#2|) NIL (|has| |#2| (-701))) (($ |#2| $) NIL (|has| |#2| (-701))) (($ (-745) $) NIL (|has| |#2| (-130))) (($ (-890) $) NIL (|has| |#2| (-25)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-789 |#1| |#2| |#3|) (-230 |#1| |#2|) (-745) (-767) (-1 (-112) (-1218 |#2|) (-1218 |#2|))) (T -789)) +NIL +(-230 |#1| |#2|) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-1352 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1135)) NIL)) (-1691 (((-745) $) NIL) (((-745) $ (-1135)) NIL)) (-2259 (((-619 (-792 (-1135))) $) NIL)) (-2067 (((-1131 $) $ (-792 (-1135))) NIL) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-792 (-1135)))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4203 (($ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-792 (-1135)) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL) (((-3 (-1087 |#1| (-1135)) "failed") $) NIL)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-792 (-1135)) $) NIL) (((-1135) $) NIL) (((-1087 |#1| (-1135)) $) NIL)) (-3772 (($ $ $ (-792 (-1135))) NIL (|has| |#1| (-169)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ (-792 (-1135))) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-519 (-792 (-1135))) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-792 (-1135)) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-792 (-1135)) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3707 (((-745) $ (-1135)) NIL) (((-745) $) NIL)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#1|) (-792 (-1135))) NIL) (($ (-1131 $) (-792 (-1135))) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-519 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-792 (-1135))) NIL)) (-1626 (((-519 (-792 (-1135))) $) NIL) (((-745) $ (-792 (-1135))) NIL) (((-619 (-745)) $ (-619 (-792 (-1135)))) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-519 (-792 (-1135))) (-519 (-792 (-1135)))) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (((-1 $ (-745)) (-1135)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-225)))) (-2185 (((-3 (-792 (-1135)) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-4044 (((-792 (-1135)) $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-4306 (((-112) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-792 (-1135))) (|:| -4248 (-745))) "failed") $) NIL)) (-2242 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-792 (-1135)) |#1|) NIL) (($ $ (-619 (-792 (-1135))) (-619 |#1|)) NIL) (($ $ (-792 (-1135)) $) NIL) (($ $ (-619 (-792 (-1135))) (-619 $)) NIL) (($ $ (-1135) $) NIL (|has| |#1| (-225))) (($ $ (-619 (-1135)) (-619 $)) NIL (|has| |#1| (-225))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-225))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-225)))) (-3846 (($ $ (-792 (-1135))) NIL (|has| |#1| (-169)))) (-3443 (($ $ (-792 (-1135))) NIL) (($ $ (-619 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3391 (((-619 (-1135)) $) NIL)) (-1618 (((-519 (-792 (-1135))) $) NIL) (((-745) $ (-792 (-1135))) NIL) (((-619 (-745)) $ (-619 (-792 (-1135)))) NIL) (((-745) $ (-1135)) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-792 (-1135)) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-792 (-1135)) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-792 (-1135)) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-792 (-1135))) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-792 (-1135))) NIL) (($ (-1135)) NIL) (($ (-1087 |#1| (-1135))) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-519 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-792 (-1135))) NIL) (($ $ (-619 (-792 (-1135)))) NIL) (($ $ (-792 (-1135)) (-745)) NIL) (($ $ (-619 (-792 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-790 |#1|) (-13 (-244 |#1| (-1135) (-792 (-1135)) (-519 (-792 (-1135)))) (-1007 (-1087 |#1| (-1135)))) (-1016)) (T -790)) +NIL +(-13 (-244 |#1| (-1135) (-792 (-1135)) (-519 (-792 (-1135)))) (-1007 (-1087 |#1| (-1135)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#2| (-354)))) (-3881 (($ $) NIL (|has| |#2| (-354)))) (-1832 (((-112) $) NIL (|has| |#2| (-354)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#2| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#2| (-354)))) (-2873 (((-112) $ $) NIL (|has| |#2| (-354)))) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL (|has| |#2| (-354)))) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL (|has| |#2| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#2| (-354)))) (-3674 (((-112) $) NIL (|has| |#2| (-354)))) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-3685 (($ (-619 $)) NIL (|has| |#2| (-354))) (($ $ $) NIL (|has| |#2| (-354)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 20 (|has| |#2| (-354)))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#2| (-354))) (($ $ $) NIL (|has| |#2| (-354)))) (-2106 (((-409 $) $) NIL (|has| |#2| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#2| (-354)))) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#2| (-354)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-2776 (((-745) $) NIL (|has| |#2| (-354)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-354)))) (-3443 (($ $ (-745)) NIL) (($ $) 13)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-398 (-547))) NIL (|has| |#2| (-354))) (($ $) NIL (|has| |#2| (-354)))) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL (|has| |#2| (-354)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) 15 (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL) (($ $ (-547)) 18 (|has| |#2| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-398 (-547)) $) NIL (|has| |#2| (-354))) (($ $ (-398 (-547))) NIL (|has| |#2| (-354))))) +(((-791 |#1| |#2| |#3|) (-13 (-111 $ $) (-225) (-10 -8 (IF (|has| |#2| (-354)) (-6 (-354)) |%noBranch|) (-15 -3834 ($ |#2|)) (-15 -3834 (|#2| $)))) (-1063) (-869 |#1|) |#1|) (T -791)) +((-3834 (*1 *1 *2) (-12 (-4 *3 (-1063)) (-14 *4 *3) (-5 *1 (-791 *3 *2 *4)) (-4 *2 (-869 *3)))) (-3834 (*1 *2 *1) (-12 (-4 *2 (-869 *3)) (-5 *1 (-791 *3 *2 *4)) (-4 *3 (-1063)) (-14 *4 *3)))) +(-13 (-111 $ $) (-225) (-10 -8 (IF (|has| |#2| (-354)) (-6 (-354)) |%noBranch|) (-15 -3834 ($ |#2|)) (-15 -3834 (|#2| $)))) +((-3821 (((-112) $ $) NIL)) (-1691 (((-745) $) NIL)) (-2995 ((|#1| $) 10)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-3707 (((-745) $) 11)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1820 (($ |#1| (-745)) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3443 (($ $) NIL) (($ $ (-745)) NIL)) (-3834 (((-832) $) NIL) (($ |#1|) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL))) +(((-792 |#1|) (-257 |#1|) (-821)) (T -792)) +NIL +(-257 |#1|) +((-3821 (((-112) $ $) NIL)) (-3292 (((-619 |#1|) $) 29)) (-3603 (((-745) $) NIL)) (-3219 (($) NIL T CONST)) (-2317 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-3645 (($ $) 31)) (-2537 (((-3 $ "failed") $) NIL)) (-1470 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4114 (((-112) $) NIL)) (-2598 ((|#1| $ (-547)) NIL)) (-1359 (((-745) $ (-547)) NIL)) (-2074 (($ $) 36)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2439 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-1857 (((-112) $ $) 34)) (-4202 (((-745) $) 25)) (-1917 (((-1118) $) NIL)) (-1596 (($ $ $) NIL)) (-1727 (($ $ $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 ((|#1| $) 30)) (-2483 (((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $) NIL)) (-2039 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3834 (((-832) $) NIL) (($ |#1|) NIL)) (-3277 (($) 15 T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 35)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ |#1| (-745)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-793 |#1|) (-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3634 (|#1| $)) (-15 -3645 ($ $)) (-15 -2074 ($ $)) (-15 -1857 ((-112) $ $)) (-15 -1727 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -2439 ((-3 $ "failed") $ $)) (-15 -2317 ((-3 $ "failed") $ $)) (-15 -2439 ((-3 $ "failed") $ |#1|)) (-15 -2317 ((-3 $ "failed") $ |#1|)) (-15 -2039 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1470 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3603 ((-745) $)) (-15 -1359 ((-745) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -2483 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $)) (-15 -4202 ((-745) $)) (-15 -3292 ((-619 |#1|) $)))) (-821)) (T -793)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3634 (*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2074 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-1857 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-1727 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-1596 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2439 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2317 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2439 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2317 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2039 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-1470 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 (-745))))) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(-13 (-817) (-1007 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-745))) (-15 -3634 (|#1| $)) (-15 -3645 ($ $)) (-15 -2074 ($ $)) (-15 -1857 ((-112) $ $)) (-15 -1727 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -2439 ((-3 $ "failed") $ $)) (-15 -2317 ((-3 $ "failed") $ $)) (-15 -2439 ((-3 $ "failed") $ |#1|)) (-15 -2317 ((-3 $ "failed") $ |#1|)) (-15 -2039 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1470 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3603 ((-745) $)) (-15 -1359 ((-745) $ (-547))) (-15 -2598 (|#1| $ (-547))) (-15 -2483 ((-619 (-2 (|:| |gen| |#1|) (|:| -2703 (-745)))) $)) (-15 -4202 ((-745) $)) (-15 -3292 ((-619 |#1|) $)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3807 (((-547) $) 51)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-3848 (((-112) $) 49)) (-4114 (((-112) $) 30)) (-3937 (((-112) $) 50)) (-2847 (($ $ $) 48)) (-3563 (($ $ $) 47)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ $) 40)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-2040 (($ $) 52)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 45)) (-2408 (((-112) $ $) 44)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 46)) (-2396 (((-112) $ $) 43)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-794) (-138)) (T -794)) NIL -(-13 (-540) (-819)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3292 (($ (-1082)) 7)) (-3346 (((-112) $ (-1118) (-1082)) 15)) (-3331 (((-796) $) 12)) (-3318 (((-796) $) 11)) (-3305 (((-1223) $) 9)) (-3361 (((-112) $ (-1082)) 16))) -(((-795) (-10 -8 (-15 -3292 ($ (-1082))) (-15 -3305 ((-1223) $)) (-15 -3318 ((-796) $)) (-15 -3331 ((-796) $)) (-15 -3346 ((-112) $ (-1118) (-1082))) (-15 -3361 ((-112) $ (-1082))))) (T -795)) -((-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-3346 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-795)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795))))) -(-10 -8 (-15 -3292 ($ (-1082))) (-15 -3305 ((-1223) $)) (-15 -3318 ((-796) $)) (-15 -3331 ((-796) $)) (-15 -3346 ((-112) $ (-1118) (-1082))) (-15 -3361 ((-112) $ (-1082)))) -((-3419 (((-1223) $ (-797)) 12)) (-2400 (((-1223) $ (-1135)) 32)) (-2420 (((-1223) $ (-1118) (-1118)) 34)) (-2411 (((-1223) $ (-1118)) 33)) (-2300 (((-1223) $) 19)) (-2378 (((-1223) $ (-548)) 28)) (-2389 (((-1223) $ (-218)) 30)) (-2291 (((-1223) $) 18)) (-2368 (((-1223) $) 26)) (-2359 (((-1223) $) 25)) (-2339 (((-1223) $) 23)) (-2348 (((-1223) $) 24)) (-2330 (((-1223) $) 22)) (-2320 (((-1223) $) 21)) (-2310 (((-1223) $) 20)) (-3460 (((-1223) $) 16)) (-2281 (((-1223) $) 17)) (-3449 (((-1223) $) 15)) (-3439 (((-1223) $) 14)) (-3431 (((-1223) $) 13)) (-3393 (($ (-1118) (-797)) 9)) (-3378 (($ (-1118) (-1118) (-797)) 8)) (-2600 (((-1135) $) 51)) (-2629 (((-1135) $) 55)) (-2618 (((-2 (|:| |cd| (-1118)) (|:| -2275 (-1118))) $) 54)) (-2610 (((-1118) $) 52)) (-2497 (((-1223) $) 41)) (-2580 (((-548) $) 49)) (-2588 (((-218) $) 50)) (-2485 (((-1223) $) 40)) (-2571 (((-1223) $) 48)) (-2562 (((-1223) $) 47)) (-2538 (((-1223) $) 45)) (-2551 (((-1223) $) 46)) (-2526 (((-1223) $) 44)) (-2516 (((-1223) $) 43)) (-2507 (((-1223) $) 42)) (-2464 (((-1223) $) 38)) (-2475 (((-1223) $) 39)) (-2452 (((-1223) $) 37)) (-2440 (((-1223) $) 36)) (-2430 (((-1223) $) 35)) (-3406 (((-1223) $) 11))) -(((-796) (-10 -8 (-15 -3378 ($ (-1118) (-1118) (-797))) (-15 -3393 ($ (-1118) (-797))) (-15 -3406 ((-1223) $)) (-15 -3419 ((-1223) $ (-797))) (-15 -3431 ((-1223) $)) (-15 -3439 ((-1223) $)) (-15 -3449 ((-1223) $)) (-15 -3460 ((-1223) $)) (-15 -2281 ((-1223) $)) (-15 -2291 ((-1223) $)) (-15 -2300 ((-1223) $)) (-15 -2310 ((-1223) $)) (-15 -2320 ((-1223) $)) (-15 -2330 ((-1223) $)) (-15 -2339 ((-1223) $)) (-15 -2348 ((-1223) $)) (-15 -2359 ((-1223) $)) (-15 -2368 ((-1223) $)) (-15 -2378 ((-1223) $ (-548))) (-15 -2389 ((-1223) $ (-218))) (-15 -2400 ((-1223) $ (-1135))) (-15 -2411 ((-1223) $ (-1118))) (-15 -2420 ((-1223) $ (-1118) (-1118))) (-15 -2430 ((-1223) $)) (-15 -2440 ((-1223) $)) (-15 -2452 ((-1223) $)) (-15 -2464 ((-1223) $)) (-15 -2475 ((-1223) $)) (-15 -2485 ((-1223) $)) (-15 -2497 ((-1223) $)) (-15 -2507 ((-1223) $)) (-15 -2516 ((-1223) $)) (-15 -2526 ((-1223) $)) (-15 -2538 ((-1223) $)) (-15 -2551 ((-1223) $)) (-15 -2562 ((-1223) $)) (-15 -2571 ((-1223) $)) (-15 -2580 ((-548) $)) (-15 -2588 ((-218) $)) (-15 -2600 ((-1135) $)) (-15 -2610 ((-1118) $)) (-15 -2618 ((-2 (|:| |cd| (-1118)) (|:| -2275 (-1118))) $)) (-15 -2629 ((-1135) $)))) (T -796)) -((-2629 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1118)) (|:| -2275 (-1118)))) (-5 *1 (-796)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-796)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-796)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-796)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2411 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3393 (*1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796)))) (-3378 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) -(-10 -8 (-15 -3378 ($ (-1118) (-1118) (-797))) (-15 -3393 ($ (-1118) (-797))) (-15 -3406 ((-1223) $)) (-15 -3419 ((-1223) $ (-797))) (-15 -3431 ((-1223) $)) (-15 -3439 ((-1223) $)) (-15 -3449 ((-1223) $)) (-15 -3460 ((-1223) $)) (-15 -2281 ((-1223) $)) (-15 -2291 ((-1223) $)) (-15 -2300 ((-1223) $)) (-15 -2310 ((-1223) $)) (-15 -2320 ((-1223) $)) (-15 -2330 ((-1223) $)) (-15 -2339 ((-1223) $)) (-15 -2348 ((-1223) $)) (-15 -2359 ((-1223) $)) (-15 -2368 ((-1223) $)) (-15 -2378 ((-1223) $ (-548))) (-15 -2389 ((-1223) $ (-218))) (-15 -2400 ((-1223) $ (-1135))) (-15 -2411 ((-1223) $ (-1118))) (-15 -2420 ((-1223) $ (-1118) (-1118))) (-15 -2430 ((-1223) $)) (-15 -2440 ((-1223) $)) (-15 -2452 ((-1223) $)) (-15 -2464 ((-1223) $)) (-15 -2475 ((-1223) $)) (-15 -2485 ((-1223) $)) (-15 -2497 ((-1223) $)) (-15 -2507 ((-1223) $)) (-15 -2516 ((-1223) $)) (-15 -2526 ((-1223) $)) (-15 -2538 ((-1223) $)) (-15 -2551 ((-1223) $)) (-15 -2562 ((-1223) $)) (-15 -2571 ((-1223) $)) (-15 -2580 ((-548) $)) (-15 -2588 ((-218) $)) (-15 -2600 ((-1135) $)) (-15 -2610 ((-1118) $)) (-15 -2618 ((-2 (|:| |cd| (-1118)) (|:| -2275 (-1118))) $)) (-15 -2629 ((-1135) $))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 12)) (-2660 (($) 15)) (-2671 (($) 13)) (-2650 (($) 16)) (-2638 (($) 14)) (-2214 (((-112) $ $) 8))) -(((-797) (-13 (-1063) (-10 -8 (-15 -2671 ($)) (-15 -2660 ($)) (-15 -2650 ($)) (-15 -2638 ($))))) (T -797)) -((-2671 (*1 *1) (-5 *1 (-797))) (-2660 (*1 *1) (-5 *1 (-797))) (-2650 (*1 *1) (-5 *1 (-797))) (-2638 (*1 *1) (-5 *1 (-797)))) -(-13 (-1063) (-10 -8 (-15 -2671 ($)) (-15 -2660 ($)) (-15 -2650 ($)) (-15 -2638 ($)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 21) (($ (-1135)) 17)) (-2714 (((-112) $) 10)) (-2723 (((-112) $) 9)) (-2705 (((-112) $) 11)) (-2731 (((-112) $) 8)) (-2214 (((-112) $ $) 19))) -(((-798) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -2731 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -2705 ((-112) $))))) (T -798)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-798)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -2731 ((-112) $)) (-15 -2723 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -2705 ((-112) $)))) -((-3730 (((-112) $ $) NIL)) (-2679 (($ (-798) (-619 (-1135))) 24)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2698 (((-798) $) 25)) (-2689 (((-619 (-1135)) $) 26)) (-3743 (((-832) $) 23)) (-2214 (((-112) $ $) NIL))) -(((-799) (-13 (-1063) (-10 -8 (-15 -2698 ((-798) $)) (-15 -2689 ((-619 (-1135)) $)) (-15 -2679 ($ (-798) (-619 (-1135))))))) (T -799)) -((-2698 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-799)))) (-2679 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1135))) (-5 *1 (-799))))) -(-13 (-1063) (-10 -8 (-15 -2698 ((-798) $)) (-15 -2689 ((-619 (-1135)) $)) (-15 -2679 ($ (-798) (-619 (-1135)))))) -((-2739 (((-1223) (-796) (-308 |#1|) (-112)) 23) (((-1223) (-796) (-308 |#1|)) 79) (((-1118) (-308 |#1|) (-112)) 78) (((-1118) (-308 |#1|)) 77))) -(((-800 |#1|) (-10 -7 (-15 -2739 ((-1118) (-308 |#1|))) (-15 -2739 ((-1118) (-308 |#1|) (-112))) (-15 -2739 ((-1223) (-796) (-308 |#1|))) (-15 -2739 ((-1223) (-796) (-308 |#1|) (-112)))) (-13 (-802) (-821) (-1016))) (T -800)) -((-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-796)) (-5 *4 (-308 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) (-5 *1 (-800 *6)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-796)) (-5 *4 (-308 *5)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) (-5 *1 (-800 *5)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-308 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) (-5 *1 (-800 *5)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-308 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) (-5 *1 (-800 *4))))) -(-10 -7 (-15 -2739 ((-1118) (-308 |#1|))) (-15 -2739 ((-1118) (-308 |#1|) (-112))) (-15 -2739 ((-1223) (-796) (-308 |#1|))) (-15 -2739 ((-1223) (-796) (-308 |#1|) (-112)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2748 ((|#1| $) 10)) (-2503 (($ |#1|) 9)) (-2266 (((-112) $) NIL)) (-2024 (($ |#2| (-745)) NIL)) (-3904 (((-745) $) NIL)) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4050 (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2512 (((-745) $) NIL)) (-3743 (((-832) $) 17) (($ (-548)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-1951 ((|#2| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $) NIL (|has| |#1| (-226)))) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-801 |#1| |#2|) (-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-226)) (-6 (-226)) |%noBranch|) (-15 -2503 ($ |#1|)) (-15 -2748 (|#1| $)))) (-683 |#2|) (-1016)) (T -801)) -((-2503 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3)))) (-2748 (*1 *2 *1) (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016))))) -(-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-226)) (-6 (-226)) |%noBranch|) (-15 -2503 ($ |#1|)) (-15 -2748 (|#1| $)))) -((-2739 (((-1223) (-796) $ (-112)) 9) (((-1223) (-796) $) 8) (((-1118) $ (-112)) 7) (((-1118) $) 6))) +(-13 (-539) (-819)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3811 (($ (-1082)) 7)) (-4220 (((-112) $ (-1118) (-1082)) 15)) (-4115 (((-796) $) 12)) (-4001 (((-796) $) 11)) (-3898 (((-1223) $) 9)) (-1270 (((-112) $ (-1082)) 16))) +(((-795) (-10 -8 (-15 -3811 ($ (-1082))) (-15 -3898 ((-1223) $)) (-15 -4001 ((-796) $)) (-15 -4115 ((-796) $)) (-15 -4220 ((-112) $ (-1118) (-1082))) (-15 -1270 ((-112) $ (-1082))))) (T -795)) +((-1270 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-4220 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-795)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795))))) +(-10 -8 (-15 -3811 ($ (-1082))) (-15 -3898 ((-1223) $)) (-15 -4001 ((-796) $)) (-15 -4115 ((-796) $)) (-15 -4220 ((-112) $ (-1118) (-1082))) (-15 -1270 ((-112) $ (-1082)))) +((-3667 (((-1223) $ (-797)) 12)) (-3040 (((-1223) $ (-1135)) 32)) (-2005 (((-1223) $ (-1118) (-1118)) 34)) (-3122 (((-1223) $ (-1118)) 33)) (-3239 (((-1223) $) 19)) (-2870 (((-1223) $ (-547)) 28)) (-2950 (((-1223) $ (-217)) 30)) (-4295 (((-1223) $) 18)) (-2784 (((-1223) $) 26)) (-2701 (((-1223) $) 25)) (-3633 (((-1223) $) 23)) (-3727 (((-1223) $) 24)) (-3534 (((-1223) $) 22)) (-3441 (((-1223) $) 21)) (-3333 (((-1223) $) 20)) (-2915 (((-1223) $) 16)) (-4221 (((-1223) $) 17)) (-2821 (((-1223) $) 15)) (-2728 (((-1223) $) 14)) (-3765 (((-1223) $) 13)) (-3440 (($ (-1118) (-797)) 9)) (-3323 (($ (-1118) (-1118) (-797)) 8)) (-4264 (((-1135) $) 51)) (-3406 (((-1135) $) 55)) (-3298 (((-2 (|:| |cd| (-1118)) (|:| -2464 (-1118))) $) 54)) (-1298 (((-1118) $) 52)) (-1439 (((-1223) $) 41)) (-4090 (((-547) $) 49)) (-4168 (((-217) $) 50)) (-1345 (((-1223) $) 40)) (-3995 (((-1223) $) 48)) (-3903 (((-1223) $) 47)) (-1875 (((-1223) $) 45)) (-1971 (((-1223) $) 46)) (-1767 (((-1223) $) 44)) (-1663 (((-1223) $) 43)) (-1555 (((-1223) $) 42)) (-2489 (((-1223) $) 38)) (-2592 (((-1223) $) 39)) (-2366 (((-1223) $) 37)) (-2235 (((-1223) $) 36)) (-2122 (((-1223) $) 35)) (-3560 (((-1223) $) 11))) +(((-796) (-10 -8 (-15 -3323 ($ (-1118) (-1118) (-797))) (-15 -3440 ($ (-1118) (-797))) (-15 -3560 ((-1223) $)) (-15 -3667 ((-1223) $ (-797))) (-15 -3765 ((-1223) $)) (-15 -2728 ((-1223) $)) (-15 -2821 ((-1223) $)) (-15 -2915 ((-1223) $)) (-15 -4221 ((-1223) $)) (-15 -4295 ((-1223) $)) (-15 -3239 ((-1223) $)) (-15 -3333 ((-1223) $)) (-15 -3441 ((-1223) $)) (-15 -3534 ((-1223) $)) (-15 -3633 ((-1223) $)) (-15 -3727 ((-1223) $)) (-15 -2701 ((-1223) $)) (-15 -2784 ((-1223) $)) (-15 -2870 ((-1223) $ (-547))) (-15 -2950 ((-1223) $ (-217))) (-15 -3040 ((-1223) $ (-1135))) (-15 -3122 ((-1223) $ (-1118))) (-15 -2005 ((-1223) $ (-1118) (-1118))) (-15 -2122 ((-1223) $)) (-15 -2235 ((-1223) $)) (-15 -2366 ((-1223) $)) (-15 -2489 ((-1223) $)) (-15 -2592 ((-1223) $)) (-15 -1345 ((-1223) $)) (-15 -1439 ((-1223) $)) (-15 -1555 ((-1223) $)) (-15 -1663 ((-1223) $)) (-15 -1767 ((-1223) $)) (-15 -1875 ((-1223) $)) (-15 -1971 ((-1223) $)) (-15 -3903 ((-1223) $)) (-15 -3995 ((-1223) $)) (-15 -4090 ((-547) $)) (-15 -4168 ((-217) $)) (-15 -4264 ((-1135) $)) (-15 -1298 ((-1118) $)) (-15 -3298 ((-2 (|:| |cd| (-1118)) (|:| -2464 (-1118))) $)) (-15 -3406 ((-1135) $)))) (T -796)) +((-3406 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1118)) (|:| -2464 (-1118)))) (-5 *1 (-796)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-796)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-796)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-796)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2005 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-3122 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-3040 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2950 (*1 *2 *1 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2870 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3667 (*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1223)) (-5 *1 (-796)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796)))) (-3440 (*1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796)))) (-3323 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) +(-10 -8 (-15 -3323 ($ (-1118) (-1118) (-797))) (-15 -3440 ($ (-1118) (-797))) (-15 -3560 ((-1223) $)) (-15 -3667 ((-1223) $ (-797))) (-15 -3765 ((-1223) $)) (-15 -2728 ((-1223) $)) (-15 -2821 ((-1223) $)) (-15 -2915 ((-1223) $)) (-15 -4221 ((-1223) $)) (-15 -4295 ((-1223) $)) (-15 -3239 ((-1223) $)) (-15 -3333 ((-1223) $)) (-15 -3441 ((-1223) $)) (-15 -3534 ((-1223) $)) (-15 -3633 ((-1223) $)) (-15 -3727 ((-1223) $)) (-15 -2701 ((-1223) $)) (-15 -2784 ((-1223) $)) (-15 -2870 ((-1223) $ (-547))) (-15 -2950 ((-1223) $ (-217))) (-15 -3040 ((-1223) $ (-1135))) (-15 -3122 ((-1223) $ (-1118))) (-15 -2005 ((-1223) $ (-1118) (-1118))) (-15 -2122 ((-1223) $)) (-15 -2235 ((-1223) $)) (-15 -2366 ((-1223) $)) (-15 -2489 ((-1223) $)) (-15 -2592 ((-1223) $)) (-15 -1345 ((-1223) $)) (-15 -1439 ((-1223) $)) (-15 -1555 ((-1223) $)) (-15 -1663 ((-1223) $)) (-15 -1767 ((-1223) $)) (-15 -1875 ((-1223) $)) (-15 -1971 ((-1223) $)) (-15 -3903 ((-1223) $)) (-15 -3995 ((-1223) $)) (-15 -4090 ((-547) $)) (-15 -4168 ((-217) $)) (-15 -4264 ((-1135) $)) (-15 -1298 ((-1118) $)) (-15 -3298 ((-2 (|:| |cd| (-1118)) (|:| -2464 (-1118))) $)) (-15 -3406 ((-1135) $))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 12)) (-3714 (($) 15)) (-3799 (($) 13)) (-3610 (($) 16)) (-3496 (($) 14)) (-2371 (((-112) $ $) 8))) +(((-797) (-13 (-1063) (-10 -8 (-15 -3799 ($)) (-15 -3714 ($)) (-15 -3610 ($)) (-15 -3496 ($))))) (T -797)) +((-3799 (*1 *1) (-5 *1 (-797))) (-3714 (*1 *1) (-5 *1 (-797))) (-3610 (*1 *1) (-5 *1 (-797))) (-3496 (*1 *1) (-5 *1 (-797)))) +(-13 (-1063) (-10 -8 (-15 -3799 ($)) (-15 -3714 ($)) (-15 -3610 ($)) (-15 -3496 ($)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 21) (($ (-1135)) 17)) (-3046 (((-112) $) 10)) (-3117 (((-112) $) 9)) (-2971 (((-112) $) 11)) (-3195 (((-112) $) 8)) (-2371 (((-112) $ $) 19))) +(((-798) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-1135))) (-15 -3195 ((-112) $)) (-15 -3117 ((-112) $)) (-15 -3046 ((-112) $)) (-15 -2971 ((-112) $))))) (T -798)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-798)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-1135))) (-15 -3195 ((-112) $)) (-15 -3117 ((-112) $)) (-15 -3046 ((-112) $)) (-15 -2971 ((-112) $)))) +((-3821 (((-112) $ $) NIL)) (-2760 (($ (-798) (-619 (-1135))) 24)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2912 (((-798) $) 25)) (-2836 (((-619 (-1135)) $) 26)) (-3834 (((-832) $) 23)) (-2371 (((-112) $ $) NIL))) +(((-799) (-13 (-1063) (-10 -8 (-15 -2912 ((-798) $)) (-15 -2836 ((-619 (-1135)) $)) (-15 -2760 ($ (-798) (-619 (-1135))))))) (T -799)) +((-2912 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-799)))) (-2760 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1135))) (-5 *1 (-799))))) +(-13 (-1063) (-10 -8 (-15 -2912 ((-798) $)) (-15 -2836 ((-619 (-1135)) $)) (-15 -2760 ($ (-798) (-619 (-1135)))))) +((-2083 (((-1223) (-796) (-307 |#1|) (-112)) 23) (((-1223) (-796) (-307 |#1|)) 79) (((-1118) (-307 |#1|) (-112)) 78) (((-1118) (-307 |#1|)) 77))) +(((-800 |#1|) (-10 -7 (-15 -2083 ((-1118) (-307 |#1|))) (-15 -2083 ((-1118) (-307 |#1|) (-112))) (-15 -2083 ((-1223) (-796) (-307 |#1|))) (-15 -2083 ((-1223) (-796) (-307 |#1|) (-112)))) (-13 (-802) (-821) (-1016))) (T -800)) +((-2083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-796)) (-5 *4 (-307 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) (-5 *1 (-800 *6)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-796)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) (-5 *1 (-800 *5)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) (-5 *1 (-800 *5)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) (-5 *1 (-800 *4))))) +(-10 -7 (-15 -2083 ((-1118) (-307 |#1|))) (-15 -2083 ((-1118) (-307 |#1|) (-112))) (-15 -2083 ((-1223) (-796) (-307 |#1|))) (-15 -2083 ((-1223) (-796) (-307 |#1|) (-112)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2181 ((|#1| $) 10)) (-2704 (($ |#1|) 9)) (-4114 (((-112) $) NIL)) (-2229 (($ |#2| (-745)) NIL)) (-1626 (((-745) $) NIL)) (-2027 ((|#2| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3443 (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-1618 (((-745) $) NIL)) (-3834 (((-832) $) 17) (($ (-547)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-3338 ((|#2| $ (-745)) NIL)) (-2311 (((-745)) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-801 |#1| |#2|) (-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-225)) (-6 (-225)) |%noBranch|) (-15 -2704 ($ |#1|)) (-15 -2181 (|#1| $)))) (-683 |#2|) (-1016)) (T -801)) +((-2704 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3)))) (-2181 (*1 *2 *1) (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016))))) +(-13 (-683 |#2|) (-10 -8 (IF (|has| |#1| (-225)) (-6 (-225)) |%noBranch|) (-15 -2704 ($ |#1|)) (-15 -2181 (|#1| $)))) +((-2083 (((-1223) (-796) $ (-112)) 9) (((-1223) (-796) $) 8) (((-1118) $ (-112)) 7) (((-1118) $) 6))) (((-802) (-138)) (T -802)) -((-2739 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1223)))) (-2739 (*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1223)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1118)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1118))))) -(-13 (-10 -8 (-15 -2739 ((-1118) $)) (-15 -2739 ((-1118) $ (-112))) (-15 -2739 ((-1223) (-796) $)) (-15 -2739 ((-1223) (-796) $ (-112))))) -((-2813 (((-304) (-1118) (-1118)) 12)) (-2804 (((-112) (-1118) (-1118)) 34)) (-2794 (((-112) (-1118)) 33)) (-2772 (((-52) (-1118)) 25)) (-2764 (((-52) (-1118)) 23)) (-2757 (((-52) (-796)) 17)) (-2788 (((-619 (-1118)) (-1118)) 28)) (-2780 (((-619 (-1118))) 27))) -(((-803) (-10 -7 (-15 -2757 ((-52) (-796))) (-15 -2764 ((-52) (-1118))) (-15 -2772 ((-52) (-1118))) (-15 -2780 ((-619 (-1118)))) (-15 -2788 ((-619 (-1118)) (-1118))) (-15 -2794 ((-112) (-1118))) (-15 -2804 ((-112) (-1118) (-1118))) (-15 -2813 ((-304) (-1118) (-1118))))) (T -803)) -((-2813 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-803)))) (-2804 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803)))) (-2788 (*1 *2 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)) (-5 *3 (-1118)))) (-2780 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803))))) -(-10 -7 (-15 -2757 ((-52) (-796))) (-15 -2764 ((-52) (-1118))) (-15 -2772 ((-52) (-1118))) (-15 -2780 ((-619 (-1118)))) (-15 -2788 ((-619 (-1118)) (-1118))) (-15 -2794 ((-112) (-1118))) (-15 -2804 ((-112) (-1118) (-1118))) (-15 -2813 ((-304) (-1118) (-1118)))) -((-3730 (((-112) $ $) 19)) (-1434 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2501 (($ $ $) 72)) (-2491 (((-112) $ $) 73)) (-2028 (((-112) $ (-745)) 8)) (-2592 (($ (-619 |#1|)) 68) (($) 67)) (-2657 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-2969 (($ $) 62)) (-3484 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ |#1| $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 64)) (-4282 (((-112) $ (-745)) 9)) (-1795 ((|#1| $) 78)) (-2965 (($ $ $) 81)) (-2913 (($ $ $) 80)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3091 ((|#1| $) 79)) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22)) (-2520 (($ $ $) 69)) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3932 (((-1082) $) 21)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2959 (((-619 (-2 (|:| -1657 |#1|) (|:| -3945 (-745)))) $) 61)) (-2511 (($ $ |#1|) 71) (($ $ $) 70)) (-2801 (($) 49) (($ (-619 |#1|)) 48)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 50)) (-3743 (((-832) $) 18)) (-4013 (($ (-619 |#1|)) 66) (($) 65)) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20)) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-2083 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1223)))) (-2083 (*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1223)))) (-2083 (*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1118)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1118))))) +(-13 (-10 -8 (-15 -2083 ((-1118) $)) (-15 -2083 ((-1118) $ (-112))) (-15 -2083 ((-1223) (-796) $)) (-15 -2083 ((-1223) (-796) $ (-112))))) +((-1553 (((-303) (-1118) (-1118)) 12)) (-1445 (((-112) (-1118) (-1118)) 34)) (-2697 (((-112) (-1118)) 33)) (-2454 (((-52) (-1118)) 25)) (-2362 (((-52) (-1118)) 23)) (-2283 (((-52) (-796)) 17)) (-2641 (((-619 (-1118)) (-1118)) 28)) (-2558 (((-619 (-1118))) 27))) +(((-803) (-10 -7 (-15 -2283 ((-52) (-796))) (-15 -2362 ((-52) (-1118))) (-15 -2454 ((-52) (-1118))) (-15 -2558 ((-619 (-1118)))) (-15 -2641 ((-619 (-1118)) (-1118))) (-15 -2697 ((-112) (-1118))) (-15 -1445 ((-112) (-1118) (-1118))) (-15 -1553 ((-303) (-1118) (-1118))))) (T -803)) +((-1553 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-803)))) (-1445 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803)))) (-2641 (*1 *2 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)) (-5 *3 (-1118)))) (-2558 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803))))) +(-10 -7 (-15 -2283 ((-52) (-796))) (-15 -2362 ((-52) (-1118))) (-15 -2454 ((-52) (-1118))) (-15 -2558 ((-619 (-1118)))) (-15 -2641 ((-619 (-1118)) (-1118))) (-15 -2697 ((-112) (-1118))) (-15 -1445 ((-112) (-1118) (-1118))) (-15 -1553 ((-303) (-1118) (-1118)))) +((-3821 (((-112) $ $) 19)) (-1428 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1492 (($ $ $) 72)) (-1383 (((-112) $ $) 73)) (-2826 (((-112) $ (-745)) 8)) (-2771 (($ (-619 |#1|)) 68) (($) 67)) (-3681 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3796 (($ $) 62)) (-3664 (($ $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ |#1| $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) 64)) (-4161 (((-112) $ (-745)) 9)) (-2847 ((|#1| $) 78)) (-3756 (($ $ $) 81)) (-1294 (($ $ $) 80)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3563 ((|#1| $) 79)) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22)) (-1711 (($ $ $) 69)) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40) (($ |#1| $ (-745)) 63)) (-3979 (((-1082) $) 21)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3700 (((-619 (-2 (|:| -1777 |#1|) (|:| -3987 (-745)))) $) 61)) (-1604 (($ $ |#1|) 71) (($ $ $) 70)) (-1404 (($) 49) (($ (-619 |#1|)) 48)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 50)) (-3834 (((-832) $) 18)) (-4112 (($ (-619 |#1|)) 66) (($) 65)) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20)) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-804 |#1|) (-138) (-821)) (T -804)) -((-1795 (*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821))))) -(-13 (-711 |t#1|) (-937 |t#1|) (-10 -8 (-15 -1795 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-228 |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-711 |#1|) . T) ((-937 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) -((-1718 (((-1223) (-1082) (-1082)) 47)) (-1709 (((-1223) (-795) (-52)) 44)) (-1701 (((-52) (-795)) 16))) -(((-805) (-10 -7 (-15 -1701 ((-52) (-795))) (-15 -1709 ((-1223) (-795) (-52))) (-15 -1718 ((-1223) (-1082) (-1082))))) (T -805)) -((-1718 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1223)) (-5 *1 (-805)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1223)) (-5 *1 (-805)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805))))) -(-10 -7 (-15 -1701 ((-52) (-795))) (-15 -1709 ((-1223) (-795) (-52))) (-15 -1718 ((-1223) (-1082) (-1082)))) -((-2540 (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)) 12) (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)) 13))) -(((-806 |#1| |#2|) (-10 -7 (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) (-1063) (-1063)) (T -806)) -((-2540 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-806 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6))))) -(-10 -7 (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2540 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL (|has| |#1| (-21)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2672 (((-548) $) NIL (|has| |#1| (-819)))) (-3030 (($) NIL (|has| |#1| (-21)) CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 15)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 9)) (-3859 (((-3 $ "failed") $) 40 (|has| |#1| (-819)))) (-4182 (((-3 (-399 (-548)) "failed") $) 49 (|has| |#1| (-533)))) (-4172 (((-112) $) 43 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 46 (|has| |#1| (-533)))) (-3298 (((-112) $) NIL (|has| |#1| (-819)))) (-2266 (((-112) $) NIL (|has| |#1| (-819)))) (-3312 (((-112) $) NIL (|has| |#1| (-819)))) (-1795 (($ $ $) NIL (|has| |#1| (-819)))) (-3091 (($ $ $) NIL (|has| |#1| (-819)))) (-2546 (((-1118) $) NIL)) (-1377 (($) 13)) (-1820 (((-112) $) 12)) (-3932 (((-1082) $) NIL)) (-1828 (((-112) $) 11)) (-3743 (((-832) $) 18) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 8) (($ (-548)) NIL (-1524 (|has| |#1| (-819)) (|has| |#1| (-1007 (-548)))))) (-3835 (((-745)) 34 (|has| |#1| (-819)))) (-1446 (($ $) NIL (|has| |#1| (-819)))) (-3107 (($) 22 (|has| |#1| (-21)) CONST)) (-3118 (($) 31 (|has| |#1| (-819)) CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2234 (((-112) $ $) 42 (|has| |#1| (-819)))) (-2299 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2290 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 37 (|has| |#1| (-819))) (($ (-548) $) 25 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) -(((-807 |#1|) (-13 (-1063) (-403 |#1|) (-10 -8 (-15 -1377 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) (-1063)) (T -807)) -((-1377 (*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063))))) -(-13 (-1063) (-403 |#1|) (-10 -8 (-15 -1377 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-114) $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1737 ((|#1| (-114) |#1|) NIL)) (-2266 (((-112) $) NIL)) (-1727 (($ |#1| (-353 (-114))) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1747 (($ $ (-1 |#1| |#1|)) NIL)) (-1756 (($ $ (-1 |#1| |#1|)) NIL)) (-3171 ((|#1| $ |#1|) NIL)) (-1765 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-1773 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-548)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-808 |#1|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#1| |#1|))) (-15 -1747 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#1| (-114) |#1|)) (-15 -1727 ($ |#1| (-353 (-114)))))) (-1016)) (T -808)) -((-1773 (*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1773 (*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1765 (*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) (-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-353 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) -(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-278 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 -1765 (|#1| |#1|))) |%noBranch|) (-15 -1756 ($ $ (-1 |#1| |#1|))) (-15 -1747 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-548))) (-15 ** ($ $ (-548))) (-15 -1737 (|#1| (-114) |#1|)) (-15 -1727 ($ |#1| (-353 (-114)))))) -((-1781 (((-207 (-492)) (-1118)) 9))) -(((-809) (-10 -7 (-15 -1781 ((-207 (-492)) (-1118))))) (T -809)) -((-1781 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-207 (-492))) (-5 *1 (-809))))) -(-10 -7 (-15 -1781 ((-207 (-492)) (-1118)))) -((-3730 (((-112) $ $) 7)) (-1789 (((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 14) (((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 13)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 16) (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 15)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +((-2847 (*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821))))) +(-13 (-711 |t#1|) (-937 |t#1|) (-10 -8 (-15 -2847 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-227 |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-669 |#1|) . T) ((-711 |#1|) . T) ((-937 |#1|) . T) ((-1061 |#1|) . T) ((-1063) . T) ((-1172) . T)) +((-3010 (((-1223) (-1082) (-1082)) 47)) (-2940 (((-1223) (-795) (-52)) 44)) (-2868 (((-52) (-795)) 16))) +(((-805) (-10 -7 (-15 -2868 ((-52) (-795))) (-15 -2940 ((-1223) (-795) (-52))) (-15 -3010 ((-1223) (-1082) (-1082))))) (T -805)) +((-3010 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1223)) (-5 *1 (-805)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1223)) (-5 *1 (-805)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805))))) +(-10 -7 (-15 -2868 ((-52) (-795))) (-15 -2940 ((-1223) (-795) (-52))) (-15 -3010 ((-1223) (-1082) (-1082)))) +((-2781 (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)) 12) (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)) 13))) +(((-806 |#1| |#2|) (-10 -7 (-15 -2781 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2781 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) (-1063) (-1063)) (T -806)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-806 *5 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6))))) +(-10 -7 (-15 -2781 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))) (-15 -2781 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|) (-807 |#2|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL (|has| |#1| (-21)))) (-3013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3807 (((-547) $) NIL (|has| |#1| (-819)))) (-3219 (($) NIL (|has| |#1| (-21)) CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 15)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 9)) (-2537 (((-3 $ "failed") $) 40 (|has| |#1| (-819)))) (-2653 (((-3 (-398 (-547)) "failed") $) 49 (|has| |#1| (-532)))) (-2543 (((-112) $) 43 (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) 46 (|has| |#1| (-532)))) (-3848 (((-112) $) NIL (|has| |#1| (-819)))) (-4114 (((-112) $) NIL (|has| |#1| (-819)))) (-3937 (((-112) $) NIL (|has| |#1| (-819)))) (-2847 (($ $ $) NIL (|has| |#1| (-819)))) (-3563 (($ $ $) NIL (|has| |#1| (-819)))) (-1917 (((-1118) $) NIL)) (-1425 (($) 13)) (-1503 (((-112) $) 12)) (-3979 (((-1082) $) NIL)) (-1602 (((-112) $) 11)) (-3834 (((-832) $) 18) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 8) (($ (-547)) NIL (-1524 (|has| |#1| (-819)) (|has| |#1| (-1007 (-547)))))) (-2311 (((-745)) 34 (|has| |#1| (-819)))) (-2040 (($ $) NIL (|has| |#1| (-819)))) (-3267 (($) 22 (|has| |#1| (-21)) CONST)) (-3277 (($) 31 (|has| |#1| (-819)) CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2371 (((-112) $ $) 20)) (-2421 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2396 (((-112) $ $) 42 (|has| |#1| (-819)))) (-2484 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2470 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 37 (|has| |#1| (-819))) (($ (-547) $) 25 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) +(((-807 |#1|) (-13 (-1063) (-402 |#1|) (-10 -8 (-15 -1425 ($)) (-15 -1602 ((-112) $)) (-15 -1503 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) (-1063)) (T -807)) +((-1425 (*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-2653 (*1 *2 *1) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063))))) +(-13 (-1063) (-402 |#1|) (-10 -8 (-15 -1425 ($)) (-15 -1602 ((-112) $)) (-15 -1503 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2643 ((|#1| $) NIL) (((-114) $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1947 ((|#1| (-114) |#1|) NIL)) (-4114 (((-112) $) NIL)) (-3082 (($ |#1| (-352 (-114))) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2044 (($ $ (-1 |#1| |#1|)) NIL)) (-2148 (($ $ (-1 |#1| |#1|)) NIL)) (-3329 ((|#1| $ |#1|) NIL)) (-2249 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2353 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ (-114) (-547)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-808 |#1|) (-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2353 ($ $)) (-15 -2353 ($ $ $)) (-15 -2249 (|#1| |#1|))) |%noBranch|) (-15 -2148 ($ $ (-1 |#1| |#1|))) (-15 -2044 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -1947 (|#1| (-114) |#1|)) (-15 -3082 ($ |#1| (-352 (-114)))))) (-1016)) (T -808)) +((-2353 (*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-2353 (*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-2249 (*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) (-2148 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (-2044 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) (-1947 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *3 (-352 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-1007 |#1|) (-1007 (-114)) (-277 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2353 ($ $)) (-15 -2353 ($ $ $)) (-15 -2249 (|#1| |#1|))) |%noBranch|) (-15 -2148 ($ $ (-1 |#1| |#1|))) (-15 -2044 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-547))) (-15 ** ($ $ (-547))) (-15 -1947 (|#1| (-114) |#1|)) (-15 -3082 ($ |#1| (-352 (-114)))))) +((-2448 (((-206 (-491)) (-1118)) 9))) +(((-809) (-10 -7 (-15 -2448 ((-206 (-491)) (-1118))))) (T -809)) +((-2448 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-206 (-491))) (-5 *1 (-809))))) +(-10 -7 (-15 -2448 ((-206 (-491)) (-1118)))) +((-3821 (((-112) $ $) 7)) (-2549 (((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 14) (((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 13)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 16) (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 15)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) (((-810) (-138)) (T -810)) -((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-1789 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *2 (-1004)))) (-1789 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *2 (-1004))))) -(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -1789 ((-1004) (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -1789 ((-1004) (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-1444 (((-1004) (-619 (-308 (-371))) (-619 (-371))) 147) (((-1004) (-308 (-371)) (-619 (-371))) 145) (((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-814 (-371)))) 144) (((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-308 (-371))) (-619 (-814 (-371)))) 143) (((-1004) (-812)) 117) (((-1004) (-812) (-1028)) 116)) (-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028)) 82) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812)) 84)) (-1799 (((-1004) (-619 (-308 (-371))) (-619 (-371))) 148) (((-1004) (-812)) 133))) -(((-811) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028))) (-15 -1444 ((-1004) (-812) (-1028))) (-15 -1444 ((-1004) (-812))) (-15 -1799 ((-1004) (-812))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-308 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)))) (-15 -1444 ((-1004) (-619 (-308 (-371))) (-619 (-371)))) (-15 -1799 ((-1004) (-619 (-308 (-371))) (-619 (-371)))))) (T -811)) -((-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) (-5 *5 (-619 (-814 (-371)))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-619 (-371))) (-5 *5 (-619 (-814 (-371)))) (-5 *6 (-619 (-308 (-371)))) (-5 *3 (-308 (-371))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-811)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-811))))) -(-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028))) (-15 -1444 ((-1004) (-812) (-1028))) (-15 -1444 ((-1004) (-812))) (-15 -1799 ((-1004) (-812))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-308 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)) (-619 (-814 (-371))) (-619 (-814 (-371))))) (-15 -1444 ((-1004) (-308 (-371)) (-619 (-371)))) (-15 -1444 ((-1004) (-619 (-308 (-371))) (-619 (-371)))) (-15 -1799 ((-1004) (-619 (-308 (-371))) (-619 (-371))))) -((-3730 (((-112) $ $) NIL)) (-2375 (((-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) $) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20) (($ (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) 14) (($ (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) 18)) (-2214 (((-112) $ $) NIL))) -(((-812) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -3743 ($ (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3743 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) $))))) (T -812)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (-5 *1 (-812)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) (-5 *1 (-812)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) (-5 *1 (-812)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))))) (-5 *1 (-812))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218))))))) (-15 -3743 ($ (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) (-15 -3743 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-3 (|:| |noa| (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) (|:| |ub| (-619 (-814 (-218)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218)))))) $)))) -((-2540 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)) 13) (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14))) -(((-813 |#1| |#2|) (-10 -7 (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) (-1063) (-1063)) (T -813)) -((-2540 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-814 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-813 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))) -(-10 -7 (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2540 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL (|has| |#1| (-21)))) (-1809 (((-1082) $) 24)) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2672 (((-548) $) NIL (|has| |#1| (-819)))) (-3030 (($) NIL (|has| |#1| (-21)) CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 16)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 9)) (-3859 (((-3 $ "failed") $) 47 (|has| |#1| (-819)))) (-4182 (((-3 (-399 (-548)) "failed") $) 54 (|has| |#1| (-533)))) (-4172 (((-112) $) 49 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 52 (|has| |#1| (-533)))) (-3298 (((-112) $) NIL (|has| |#1| (-819)))) (-2835 (($) 13)) (-2266 (((-112) $) NIL (|has| |#1| (-819)))) (-3312 (((-112) $) NIL (|has| |#1| (-819)))) (-2845 (($) 14)) (-1795 (($ $ $) NIL (|has| |#1| (-819)))) (-3091 (($ $ $) NIL (|has| |#1| (-819)))) (-2546 (((-1118) $) NIL)) (-1820 (((-112) $) 12)) (-3932 (((-1082) $) NIL)) (-1828 (((-112) $) 11)) (-3743 (((-832) $) 22) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 8) (($ (-548)) NIL (-1524 (|has| |#1| (-819)) (|has| |#1| (-1007 (-548)))))) (-3835 (((-745)) 41 (|has| |#1| (-819)))) (-1446 (($ $) NIL (|has| |#1| (-819)))) (-3107 (($) 29 (|has| |#1| (-21)) CONST)) (-3118 (($) 38 (|has| |#1| (-819)) CONST)) (-2262 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2214 (((-112) $ $) 27)) (-2252 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2234 (((-112) $ $) 48 (|has| |#1| (-819)))) (-2299 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2290 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 44 (|has| |#1| (-819))) (($ (-548) $) 32 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) -(((-814 |#1|) (-13 (-1063) (-403 |#1|) (-10 -8 (-15 -2835 ($)) (-15 -2845 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (-15 -1809 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) (-1063)) (T -814)) -((-2835 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-2845 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063))))) -(-13 (-1063) (-403 |#1|) (-10 -8 (-15 -2835 ($)) (-15 -2845 ($)) (-15 -1828 ((-112) $)) (-15 -1820 ((-112) $)) (-15 -1809 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) -((-3730 (((-112) $ $) 7)) (-3423 (((-745)) 20)) (-2545 (($) 23)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2855 (((-890) $) 22)) (-2546 (((-1118) $) 9)) (-3337 (($ (-890)) 21)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +((-4283 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) (-4283 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) (-2549 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) (-5 *2 (-1004)))) (-2549 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *2 (-1004))))) +(-13 (-1063) (-10 -7 (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -2549 ((-1004) (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -2549 ((-1004) (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-1504 (((-1004) (-619 (-307 (-370))) (-619 (-370))) 147) (((-1004) (-307 (-370)) (-619 (-370))) 145) (((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-814 (-370)))) 144) (((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-307 (-370))) (-619 (-814 (-370)))) 143) (((-1004) (-812)) 117) (((-1004) (-812) (-1028)) 116)) (-4283 (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028)) 82) (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812)) 84)) (-1295 (((-1004) (-619 (-307 (-370))) (-619 (-370))) 148) (((-1004) (-812)) 133))) +(((-811) (-10 -7 (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028))) (-15 -1504 ((-1004) (-812) (-1028))) (-15 -1504 ((-1004) (-812))) (-15 -1295 ((-1004) (-812))) (-15 -1504 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-307 (-370))) (-619 (-814 (-370))))) (-15 -1504 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-814 (-370))))) (-15 -1504 ((-1004) (-307 (-370)) (-619 (-370)))) (-15 -1504 ((-1004) (-619 (-307 (-370))) (-619 (-370)))) (-15 -1295 ((-1004) (-619 (-307 (-370))) (-619 (-370)))))) (T -811)) +((-1295 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1504 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) (-5 *5 (-619 (-814 (-370)))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1504 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-619 (-370))) (-5 *5 (-619 (-814 (-370)))) (-5 *6 (-619 (-307 (-370)))) (-5 *3 (-307 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811)))) (-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-811)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-811))))) +(-10 -7 (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-812) (-1028))) (-15 -1504 ((-1004) (-812) (-1028))) (-15 -1504 ((-1004) (-812))) (-15 -1295 ((-1004) (-812))) (-15 -1504 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-307 (-370))) (-619 (-814 (-370))))) (-15 -1504 ((-1004) (-307 (-370)) (-619 (-370)) (-619 (-814 (-370))) (-619 (-814 (-370))))) (-15 -1504 ((-1004) (-307 (-370)) (-619 (-370)))) (-15 -1504 ((-1004) (-619 (-307 (-370))) (-619 (-370)))) (-15 -1295 ((-1004) (-619 (-307 (-370))) (-619 (-370))))) +((-3821 (((-112) $ $) NIL)) (-2643 (((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) $) 21)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 20) (($ (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) 14) (($ (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))))) 18)) (-2371 (((-112) $ $) NIL))) +(((-812) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -3834 ($ (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -3834 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) $))))) (T -812)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (-5 *1 (-812)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) (-5 *1 (-812)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))))) (-5 *1 (-812)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))))) (-5 *1 (-812))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217))))))) (-15 -3834 ($ (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) (-15 -3834 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217)))))) $)))) +((-2781 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)) 13) (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14))) +(((-813 |#1| |#2|) (-10 -7 (-15 -2781 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2781 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) (-1063) (-1063)) (T -813)) +((-2781 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-814 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *1 (-813 *5 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))) +(-10 -7 (-15 -2781 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))) (-15 -2781 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|) (-814 |#2|) (-814 |#2|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL (|has| |#1| (-21)))) (-1380 (((-1082) $) 24)) (-3013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3807 (((-547) $) NIL (|has| |#1| (-819)))) (-3219 (($) NIL (|has| |#1| (-21)) CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 16)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 9)) (-2537 (((-3 $ "failed") $) 47 (|has| |#1| (-819)))) (-2653 (((-3 (-398 (-547)) "failed") $) 54 (|has| |#1| (-532)))) (-2543 (((-112) $) 49 (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) 52 (|has| |#1| (-532)))) (-3848 (((-112) $) NIL (|has| |#1| (-819)))) (-3030 (($) 13)) (-4114 (((-112) $) NIL (|has| |#1| (-819)))) (-3937 (((-112) $) NIL (|has| |#1| (-819)))) (-3043 (($) 14)) (-2847 (($ $ $) NIL (|has| |#1| (-819)))) (-3563 (($ $ $) NIL (|has| |#1| (-819)))) (-1917 (((-1118) $) NIL)) (-1503 (((-112) $) 12)) (-3979 (((-1082) $) NIL)) (-1602 (((-112) $) 11)) (-3834 (((-832) $) 22) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 8) (($ (-547)) NIL (-1524 (|has| |#1| (-819)) (|has| |#1| (-1007 (-547)))))) (-2311 (((-745)) 41 (|has| |#1| (-819)))) (-2040 (($ $) NIL (|has| |#1| (-819)))) (-3267 (($) 29 (|has| |#1| (-21)) CONST)) (-3277 (($) 38 (|has| |#1| (-819)) CONST)) (-2433 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2371 (((-112) $ $) 27)) (-2421 (((-112) $ $) NIL (|has| |#1| (-819)))) (-2396 (((-112) $ $) 48 (|has| |#1| (-819)))) (-2484 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2470 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-890)) NIL (|has| |#1| (-819))) (($ $ (-745)) NIL (|has| |#1| (-819)))) (* (($ $ $) 44 (|has| |#1| (-819))) (($ (-547) $) 32 (|has| |#1| (-21))) (($ (-745) $) NIL (|has| |#1| (-21))) (($ (-890) $) NIL (|has| |#1| (-21))))) +(((-814 |#1|) (-13 (-1063) (-402 |#1|) (-10 -8 (-15 -3030 ($)) (-15 -3043 ($)) (-15 -1602 ((-112) $)) (-15 -1503 ((-112) $)) (-15 -1380 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) (-1063)) (T -814)) +((-3030 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-3043 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) (-2653 (*1 *2 *1) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063))))) +(-13 (-1063) (-402 |#1|) (-10 -8 (-15 -3030 ($)) (-15 -3043 ($)) (-15 -1602 ((-112) $)) (-15 -1503 ((-112) $)) (-15 -1380 ((-1082) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-819)) |%noBranch|) (IF (|has| |#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) +((-3821 (((-112) $ $) 7)) (-3603 (((-745)) 20)) (-3229 (($) 23)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1966 (((-890) $) 22)) (-1917 (((-1118) $) 9)) (-3479 (($ (-890)) 21)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18))) (((-815) (-138)) (T -815)) NIL -(-13 (-821) (-360)) -(((-101) . T) ((-592 (-832)) . T) ((-360) . T) ((-821) . T) ((-1063) . T)) -((-1847 (((-112) (-1218 |#2|) (-1218 |#2|)) 17)) (-1856 (((-112) (-1218 |#2|) (-1218 |#2|)) 18)) (-1838 (((-112) (-1218 |#2|) (-1218 |#2|)) 14))) -(((-816 |#1| |#2|) (-10 -7 (-15 -1838 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1847 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1856 ((-112) (-1218 |#2|) (-1218 |#2|)))) (-745) (-766)) (T -816)) -((-1856 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-1847 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) -(-10 -7 (-15 -1838 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1847 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1856 ((-112) (-1218 |#2|) (-1218 |#2|)))) -((-3730 (((-112) $ $) 7)) (-3030 (($) 23 T CONST)) (-3859 (((-3 $ "failed") $) 26)) (-2266 (((-112) $) 24)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3118 (($) 22 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (** (($ $ (-890)) 21) (($ $ (-745)) 25)) (* (($ $ $) 20))) +(-13 (-821) (-359)) +(((-101) . T) ((-591 (-832)) . T) ((-359) . T) ((-821) . T) ((-1063) . T)) +((-1802 (((-112) (-1218 |#2|) (-1218 |#2|)) 17)) (-1894 (((-112) (-1218 |#2|) (-1218 |#2|)) 18)) (-1709 (((-112) (-1218 |#2|) (-1218 |#2|)) 14))) +(((-816 |#1| |#2|) (-10 -7 (-15 -1709 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1802 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1894 ((-112) (-1218 |#2|) (-1218 |#2|)))) (-745) (-766)) (T -816)) +((-1894 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-1802 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745)))) (-1709 (*1 *2 *3 *3) (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(-10 -7 (-15 -1709 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1802 ((-112) (-1218 |#2|) (-1218 |#2|))) (-15 -1894 ((-112) (-1218 |#2|) (-1218 |#2|)))) +((-3821 (((-112) $ $) 7)) (-3219 (($) 23 T CONST)) (-2537 (((-3 $ "failed") $) 26)) (-4114 (((-112) $) 24)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3277 (($) 22 T CONST)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (** (($ $ (-890)) 21) (($ $ (-745)) 25)) (* (($ $ $) 20))) (((-817) (-138)) (T -817)) NIL (-13 (-828) (-701)) -(((-101) . T) ((-592 (-832)) . T) ((-701) . T) ((-828) . T) ((-821) . T) ((-1075) . T) ((-1063) . T)) -((-2672 (((-548) $) 17)) (-3298 (((-112) $) 10)) (-3312 (((-112) $) 11)) (-1446 (($ $) 19))) -(((-818 |#1|) (-10 -8 (-15 -1446 (|#1| |#1|)) (-15 -2672 ((-548) |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -3298 ((-112) |#1|))) (-819)) (T -818)) +(((-101) . T) ((-591 (-832)) . T) ((-701) . T) ((-828) . T) ((-821) . T) ((-1075) . T) ((-1063) . T)) +((-3807 (((-547) $) 17)) (-3848 (((-112) $) 10)) (-3937 (((-112) $) 11)) (-2040 (($ $) 19))) +(((-818 |#1|) (-10 -8 (-15 -2040 (|#1| |#1|)) (-15 -3807 ((-547) |#1|)) (-15 -3937 ((-112) |#1|)) (-15 -3848 ((-112) |#1|))) (-819)) (T -818)) NIL -(-10 -8 (-15 -1446 (|#1| |#1|)) (-15 -2672 ((-548) |#1|)) (-15 -3312 ((-112) |#1|)) (-15 -3298 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 24)) (-4104 (((-3 $ "failed") $ $) 26)) (-2672 (((-548) $) 33)) (-3030 (($) 23 T CONST)) (-3859 (((-3 $ "failed") $) 38)) (-3298 (((-112) $) 35)) (-2266 (((-112) $) 40)) (-3312 (((-112) $) 34)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 43)) (-3835 (((-745)) 42)) (-1446 (($ $) 32)) (-3107 (($) 22 T CONST)) (-3118 (($) 41 T CONST)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (-2299 (($ $ $) 28) (($ $) 27)) (-2290 (($ $ $) 20)) (** (($ $ (-745)) 39) (($ $ (-890)) 36)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-548) $) 29) (($ $ $) 37))) +(-10 -8 (-15 -2040 (|#1| |#1|)) (-15 -3807 ((-547) |#1|)) (-15 -3937 ((-112) |#1|)) (-15 -3848 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 24)) (-3013 (((-3 $ "failed") $ $) 26)) (-3807 (((-547) $) 33)) (-3219 (($) 23 T CONST)) (-2537 (((-3 $ "failed") $) 38)) (-3848 (((-112) $) 35)) (-4114 (((-112) $) 40)) (-3937 (((-112) $) 34)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 43)) (-2311 (((-745)) 42)) (-2040 (($ $) 32)) (-3267 (($) 22 T CONST)) (-3277 (($) 41 T CONST)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (-2484 (($ $ $) 28) (($ $) 27)) (-2470 (($ $ $) 20)) (** (($ $ (-745)) 39) (($ $ (-890)) 36)) (* (($ (-890) $) 21) (($ (-745) $) 25) (($ (-547) $) 29) (($ $ $) 37))) (((-819) (-138)) (T -819)) -((-3298 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-548)))) (-1446 (*1 *1 *1) (-4 *1 (-819)))) -(-13 (-765) (-1016) (-701) (-10 -8 (-15 -3298 ((-112) $)) (-15 -3312 ((-112) $)) (-15 -2672 ((-548) $)) (-15 -1446 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-1795 (($ $ $) 10)) (-3091 (($ $ $) 9)) (-2262 (((-112) $ $) 13)) (-2241 (((-112) $ $) 11)) (-2252 (((-112) $ $) 14))) -(((-820 |#1|) (-10 -8 (-15 -1795 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2252 ((-112) |#1| |#1|)) (-15 -2262 ((-112) |#1| |#1|)) (-15 -2241 ((-112) |#1| |#1|))) (-821)) (T -820)) -NIL -(-10 -8 (-15 -1795 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#1|)) (-15 -2252 ((-112) |#1| |#1|)) (-15 -2262 ((-112) |#1| |#1|)) (-15 -2241 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18))) +((-3848 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-547)))) (-2040 (*1 *1 *1) (-4 *1 (-819)))) +(-13 (-765) (-1016) (-701) (-10 -8 (-15 -3848 ((-112) $)) (-15 -3937 ((-112) $)) (-15 -3807 ((-547) $)) (-15 -2040 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-821) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2847 (($ $ $) 10)) (-3563 (($ $ $) 9)) (-2433 (((-112) $ $) 13)) (-2408 (((-112) $ $) 11)) (-2421 (((-112) $ $) 14))) +(((-820 |#1|) (-10 -8 (-15 -2847 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -2421 ((-112) |#1| |#1|)) (-15 -2433 ((-112) |#1| |#1|)) (-15 -2408 ((-112) |#1| |#1|))) (-821)) (T -820)) +NIL +(-10 -8 (-15 -2847 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -2421 ((-112) |#1| |#1|)) (-15 -2433 ((-112) |#1| |#1|)) (-15 -2408 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18))) (((-821) (-138)) (T -821)) -((-2234 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2241 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2262 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2252 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3091 (*1 *1 *1 *1) (-4 *1 (-821))) (-1795 (*1 *1 *1 *1) (-4 *1 (-821)))) -(-13 (-1063) (-10 -8 (-15 -2234 ((-112) $ $)) (-15 -2241 ((-112) $ $)) (-15 -2262 ((-112) $ $)) (-15 -2252 ((-112) $ $)) (-15 -3091 ($ $ $)) (-15 -1795 ($ $ $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-1905 (($ $ $) 45)) (-1916 (($ $ $) 44)) (-1927 (($ $ $) 42)) (-1885 (($ $ $) 51)) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 46)) (-1894 (((-3 $ "failed") $ $) 49)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-4065 (($ $) 35)) (-1970 (($ $ $) 39)) (-1982 (($ $ $) 38)) (-1865 (($ $ $) 47)) (-1950 (($ $ $) 53)) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 41)) (-1961 (((-3 $ "failed") $ $) 48)) (-1900 (((-3 $ "failed") $ |#2|) 28)) (-3881 ((|#2| $) 32)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ |#2|) 12)) (-3852 (((-619 |#2|) $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-822 |#1| |#2|) (-10 -8 (-15 -1865 (|#1| |#1| |#1|)) (-15 -1875 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1905 (|#1| |#1| |#1|)) (-15 -1916 (|#1| |#1| |#1|)) (-15 -1927 (|#1| |#1| |#1|)) (-15 -1938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3743 ((-832) |#1|))) (-823 |#2|) (-1016)) (T -822)) -NIL -(-10 -8 (-15 -1865 (|#1| |#1| |#1|)) (-15 -1875 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1905 (|#1| |#1| |#1|)) (-15 -1916 (|#1| |#1| |#1|)) (-15 -1927 (|#1| |#1| |#1|)) (-15 -1938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4160 |#1|)) |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -1982 (|#1| |#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -1900 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3852 ((-619 |#2|) |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1905 (($ $ $) 43 (|has| |#1| (-355)))) (-1916 (($ $ $) 44 (|has| |#1| (-355)))) (-1927 (($ $ $) 46 (|has| |#1| (-355)))) (-1885 (($ $ $) 41 (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 40 (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) 42 (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 45 (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) 72 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 70 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 67)) (-2375 (((-548) $) 73 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 71 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 66)) (-1872 (($ $) 62)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 53 (|has| |#1| (-443)))) (-2266 (((-112) $) 30)) (-2024 (($ |#1| (-745)) 60)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 56 (|has| |#1| (-540)))) (-3904 (((-745) $) 64)) (-1970 (($ $ $) 50 (|has| |#1| (-355)))) (-1982 (($ $ $) 51 (|has| |#1| (-355)))) (-1865 (($ $ $) 39 (|has| |#1| (-355)))) (-1950 (($ $ $) 48 (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 47 (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) 49 (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 52 (|has| |#1| (-355)))) (-2197 ((|#1| $) 63)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-540)))) (-2512 (((-745) $) 65)) (-3881 ((|#1| $) 54 (|has| |#1| (-443)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 69 (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) 68)) (-3852 (((-619 |#1|) $) 59)) (-1951 ((|#1| $ (-745)) 61)) (-3835 (((-745)) 28)) (-3398 ((|#1| $ |#1| |#1|) 58)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +((-2396 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2408 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2433 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-2421 (*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) (-3563 (*1 *1 *1 *1) (-4 *1 (-821))) (-2847 (*1 *1 *1 *1) (-4 *1 (-821)))) +(-13 (-1063) (-10 -8 (-15 -2396 ((-112) $ $)) (-15 -2408 ((-112) $ $)) (-15 -2433 ((-112) $ $)) (-15 -2421 ((-112) $ $)) (-15 -3563 ($ $ $)) (-15 -2847 ($ $ $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-4148 (($ $ $) 45)) (-4224 (($ $ $) 44)) (-4298 (($ $ $) 42)) (-3982 (($ $ $) 51)) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 46)) (-4069 (((-3 $ "failed") $ $) 49)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3786 (($ $) 35)) (-3494 (($ $ $) 39)) (-3588 (($ $ $) 38)) (-3835 (($ $ $) 47)) (-3328 (($ $ $) 53)) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 41)) (-3413 (((-3 $ "failed") $ $) 48)) (-2025 (((-3 $ "failed") $ |#2|) 28)) (-1378 ((|#2| $) 32)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ |#2|) 12)) (-2472 (((-619 |#2|) $) 18)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-822 |#1| |#2|) (-10 -8 (-15 -3835 (|#1| |#1| |#1|)) (-15 -3901 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4240 |#1|)) |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -4069 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4148 (|#1| |#1| |#1|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| |#1|)) (-15 -3247 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4240 |#1|)) |#1| |#1|)) (-15 -3328 (|#1| |#1| |#1|)) (-15 -3413 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2472 ((-619 |#2|) |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3834 ((-832) |#1|))) (-823 |#2|) (-1016)) (T -822)) +NIL +(-10 -8 (-15 -3835 (|#1| |#1| |#1|)) (-15 -3901 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4240 |#1|)) |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -4069 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4148 (|#1| |#1| |#1|)) (-15 -4224 (|#1| |#1| |#1|)) (-15 -4298 (|#1| |#1| |#1|)) (-15 -3247 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4240 |#1|)) |#1| |#1|)) (-15 -3328 (|#1| |#1| |#1|)) (-15 -3413 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -2025 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2472 ((-619 |#2|) |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-4148 (($ $ $) 43 (|has| |#1| (-354)))) (-4224 (($ $ $) 44 (|has| |#1| (-354)))) (-4298 (($ $ $) 46 (|has| |#1| (-354)))) (-3982 (($ $ $) 41 (|has| |#1| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 40 (|has| |#1| (-354)))) (-4069 (((-3 $ "failed") $ $) 42 (|has| |#1| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 45 (|has| |#1| (-354)))) (-2698 (((-3 (-547) "failed") $) 72 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 70 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 67)) (-2643 (((-547) $) 73 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 71 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 66)) (-2054 (($ $) 62)) (-2537 (((-3 $ "failed") $) 32)) (-3786 (($ $) 53 (|has| |#1| (-442)))) (-4114 (((-112) $) 30)) (-2229 (($ |#1| (-745)) 60)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55 (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 56 (|has| |#1| (-539)))) (-1626 (((-745) $) 64)) (-3494 (($ $ $) 50 (|has| |#1| (-354)))) (-3588 (($ $ $) 51 (|has| |#1| (-354)))) (-3835 (($ $ $) 39 (|has| |#1| (-354)))) (-3328 (($ $ $) 48 (|has| |#1| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 47 (|has| |#1| (-354)))) (-3413 (((-3 $ "failed") $ $) 49 (|has| |#1| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 52 (|has| |#1| (-354)))) (-2027 ((|#1| $) 63)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-539)))) (-1618 (((-745) $) 65)) (-1378 ((|#1| $) 54 (|has| |#1| (-442)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 69 (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) 68)) (-2472 (((-619 |#1|) $) 59)) (-3338 ((|#1| $ (-745)) 61)) (-2311 (((-745)) 28)) (-3583 ((|#1| $ |#1| |#1|) 58)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) (((-823 |#1|) (-138) (-1016)) (T -823)) -((-2512 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1872 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2024 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) (-3398 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1994 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-2003 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) (-4065 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) (-2014 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-1982 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1970 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1961 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1950 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) (-4 *1 (-823 *3)))) (-1927 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-2026 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) (-1916 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1905 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1894 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-1875 (*1 *2 *1 *1) (-12 (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) (-4 *1 (-823 *3)))) (-1865 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(-13 (-1016) (-111 |t#1| |t#1|) (-403 |t#1|) (-10 -8 (-15 -2512 ((-745) $)) (-15 -3904 ((-745) $)) (-15 -2197 (|t#1| $)) (-15 -1872 ($ $)) (-15 -1951 (|t#1| $ (-745))) (-15 -2024 ($ |t#1| (-745))) (-15 -3852 ((-619 |t#1|) $)) (-15 -3398 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-15 -1900 ((-3 $ "failed") $ |t#1|)) (-15 -1994 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -2003 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-15 -3881 (|t#1| $)) (-15 -4065 ($ $))) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-15 -2014 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1982 ($ $ $)) (-15 -1970 ($ $ $)) (-15 -1961 ((-3 $ "failed") $ $)) (-15 -1950 ($ $ $)) (-15 -1938 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $)) (-15 -1927 ($ $ $)) (-15 -2026 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1916 ($ $ $)) (-15 -1905 ($ $ $)) (-15 -1894 ((-3 $ "failed") $ $)) (-15 -1885 ($ $ $)) (-15 -1875 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $)) (-15 -1865 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-403 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3261 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2026 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-355)))) (-2003 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-540)))) (-2014 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-355)))) (-3398 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3398 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-540)) (PROGN (-15 -1994 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2003 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -2014 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2026 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1016) (-823 |#1|)) (T -824)) -((-2026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-2014 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-2003 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-1994 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3398 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2)))) (-3261 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5))))) -(-10 -7 (-15 -3261 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3398 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-540)) (PROGN (-15 -1994 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2003 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -2014 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2026 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#1| (-355)))) (-1916 (($ $ $) NIL (|has| |#1| (-355)))) (-1927 (($ $ $) NIL (|has| |#1| (-355)))) (-1885 (($ $ $) NIL (|has| |#1| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 32 (|has| |#1| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-3020 (((-832) $ (-832)) NIL)) (-2266 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) NIL)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 28 (|has| |#1| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 26 (|has| |#1| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#1| (-355)))) (-1982 (($ $ $) NIL (|has| |#1| (-355)))) (-1865 (($ $ $) NIL (|has| |#1| (-355)))) (-1950 (($ $ $) NIL (|has| |#1| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 30 (|has| |#1| (-355)))) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-2512 (((-745) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-1007 (-399 (-548))))) (($ |#1|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#1| $ |#1| |#1|) 15)) (-3107 (($) NIL T CONST)) (-3118 (($) 20 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 19) (($ $ (-745)) 22)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-825 |#1| |#2| |#3|) (-13 (-823 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))))) (-1016) (-98 |#1|) (-1 |#1| |#1|)) (T -825)) -((-3020 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-823 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-1905 (($ $ $) NIL (|has| |#2| (-355)))) (-1916 (($ $ $) NIL (|has| |#2| (-355)))) (-1927 (($ $ $) NIL (|has| |#2| (-355)))) (-1885 (($ $ $) NIL (|has| |#2| (-355)))) (-1875 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1894 (((-3 $ "failed") $ $) NIL (|has| |#2| (-355)))) (-2026 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#2| (-443)))) (-2266 (((-112) $) NIL)) (-2024 (($ |#2| (-745)) 16)) (-2003 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-540)))) (-1994 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-540)))) (-3904 (((-745) $) NIL)) (-1970 (($ $ $) NIL (|has| |#2| (-355)))) (-1982 (($ $ $) NIL (|has| |#2| (-355)))) (-1865 (($ $ $) NIL (|has| |#2| (-355)))) (-1950 (($ $ $) NIL (|has| |#2| (-355)))) (-1938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1961 (((-3 $ "failed") $ $) NIL (|has| |#2| (-355)))) (-2014 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540)))) (-2512 (((-745) $) NIL)) (-3881 ((|#2| $) NIL (|has| |#2| (-443)))) (-3743 (((-832) $) 23) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) NIL) (($ (-1214 |#1|)) 18)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-745)) NIL)) (-3835 (((-745)) NIL)) (-3398 ((|#2| $ |#2| |#2|) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) 13 T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-826 |#1| |#2| |#3| |#4|) (-13 (-823 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))))) (-1135) (-1016) (-98 |#2|) (-1 |#2| |#2|)) (T -826)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-826 *3 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-823 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))))) -((-2062 ((|#1| (-745) |#1|) 35 (|has| |#1| (-38 (-399 (-548)))))) (-2051 ((|#1| (-745) (-745) |#1|) 27) ((|#1| (-745) |#1|) 20)) (-2037 ((|#1| (-745) |#1|) 31)) (-3675 ((|#1| (-745) |#1|) 29)) (-3662 ((|#1| (-745) |#1|) 28))) -(((-827 |#1|) (-10 -7 (-15 -3662 (|#1| (-745) |#1|)) (-15 -3675 (|#1| (-745) |#1|)) (-15 -2037 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -2062 (|#1| (-745) |#1|)) |%noBranch|)) (-169)) (T -827)) -((-2062 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-169)))) (-2051 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2051 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2037 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-3675 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-3662 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) -(-10 -7 (-15 -3662 (|#1| (-745) |#1|)) (-15 -3675 (|#1| (-745) |#1|)) (-15 -2037 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) |#1|)) (-15 -2051 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -2062 (|#1| (-745) |#1|)) |%noBranch|)) -((-3730 (((-112) $ $) 7)) (-1795 (($ $ $) 13)) (-3091 (($ $ $) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2262 (((-112) $ $) 16)) (-2241 (((-112) $ $) 17)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 15)) (-2234 (((-112) $ $) 18)) (** (($ $ (-890)) 21)) (* (($ $ $) 20))) +((-1618 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2054 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) (-3583 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) (-2025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-3671 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442)))) (-2722 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) (-3588 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3494 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3413 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3328 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3247 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4240 *1))) (-4 *1 (-823 *3)))) (-4298 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2804 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) (-4224 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-4148 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-4069 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3982 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-3901 (*1 *2 *1 *1) (-12 (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4240 *1))) (-4 *1 (-823 *3)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-402 |t#1|) (-10 -8 (-15 -1618 ((-745) $)) (-15 -1626 ((-745) $)) (-15 -2027 (|t#1| $)) (-15 -2054 ($ $)) (-15 -3338 (|t#1| $ (-745))) (-15 -2229 ($ |t#1| (-745))) (-15 -2472 ((-619 |t#1|) $)) (-15 -3583 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2025 ((-3 $ "failed") $ |t#1|)) (-15 -3671 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -3748 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-15 -1378 (|t#1| $)) (-15 -3786 ($ $))) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-15 -2722 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -3588 ($ $ $)) (-15 -3494 ($ $ $)) (-15 -3413 ((-3 $ "failed") $ $)) (-15 -3328 ($ $ $)) (-15 -3247 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $)) (-15 -4298 ($ $ $)) (-15 -2804 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -4224 ($ $ $)) (-15 -4148 ($ $ $)) (-15 -4069 ((-3 $ "failed") $ $)) (-15 -3982 ($ $ $)) (-15 -3901 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $)) (-15 -3835 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-402 |#1|) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3470 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2804 (((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-354)))) (-3748 (((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-539)))) (-2722 (((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-354)))) (-3583 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-824 |#1| |#2|) (-10 -7 (-15 -3470 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3583 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-539)) (PROGN (-15 -3671 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3748 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -2722 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2804 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1016) (-823 |#1|)) (T -824)) +((-2804 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-2722 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3748 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3671 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) (-4 *3 (-823 *5)))) (-3583 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2)))) (-3470 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5))))) +(-10 -7 (-15 -3470 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3583 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-539)) (PROGN (-15 -3671 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3748 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -2722 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2804 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-4148 (($ $ $) NIL (|has| |#1| (-354)))) (-4224 (($ $ $) NIL (|has| |#1| (-354)))) (-4298 (($ $ $) NIL (|has| |#1| (-354)))) (-3982 (($ $ $) NIL (|has| |#1| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-4069 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 32 (|has| |#1| (-354)))) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442)))) (-3124 (((-832) $ (-832)) NIL)) (-4114 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) NIL)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 28 (|has| |#1| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 26 (|has| |#1| (-539)))) (-1626 (((-745) $) NIL)) (-3494 (($ $ $) NIL (|has| |#1| (-354)))) (-3588 (($ $ $) NIL (|has| |#1| (-354)))) (-3835 (($ $ $) NIL (|has| |#1| (-354)))) (-3328 (($ $ $) NIL (|has| |#1| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3413 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 30 (|has| |#1| (-354)))) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-1618 (((-745) $) NIL)) (-1378 ((|#1| $) NIL (|has| |#1| (-442)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-1007 (-398 (-547))))) (($ |#1|) NIL)) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) NIL)) (-2311 (((-745)) NIL)) (-3583 ((|#1| $ |#1| |#1|) 15)) (-3267 (($) NIL T CONST)) (-3277 (($) 20 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) 19) (($ $ (-745)) 22)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-825 |#1| |#2| |#3|) (-13 (-823 |#1|) (-10 -8 (-15 -3124 ((-832) $ (-832))))) (-1016) (-98 |#1|) (-1 |#1| |#1|)) (T -825)) +((-3124 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-823 |#1|) (-10 -8 (-15 -3124 ((-832) $ (-832))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-4148 (($ $ $) NIL (|has| |#2| (-354)))) (-4224 (($ $ $) NIL (|has| |#2| (-354)))) (-4298 (($ $ $) NIL (|has| |#2| (-354)))) (-3982 (($ $ $) NIL (|has| |#2| (-354)))) (-3901 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#2| (-354)))) (-4069 (((-3 $ "failed") $ $) NIL (|has| |#2| (-354)))) (-2804 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-354)))) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#2| (-442)))) (-4114 (((-112) $) NIL)) (-2229 (($ |#2| (-745)) 16)) (-3748 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-539)))) (-3671 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-539)))) (-1626 (((-745) $) NIL)) (-3494 (($ $ $) NIL (|has| |#2| (-354)))) (-3588 (($ $ $) NIL (|has| |#2| (-354)))) (-3835 (($ $ $) NIL (|has| |#2| (-354)))) (-3328 (($ $ $) NIL (|has| |#2| (-354)))) (-3247 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#2| (-354)))) (-3413 (((-3 $ "failed") $ $) NIL (|has| |#2| (-354)))) (-2722 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-354)))) (-2027 ((|#2| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539)))) (-1618 (((-745) $) NIL)) (-1378 ((|#2| $) NIL (|has| |#2| (-442)))) (-3834 (((-832) $) 23) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) NIL) (($ (-1214 |#1|)) 18)) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-745)) NIL)) (-2311 (((-745)) NIL)) (-3583 ((|#2| $ |#2| |#2|) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) 13 T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-826 |#1| |#2| |#3| |#4|) (-13 (-823 |#2|) (-10 -8 (-15 -3834 ($ (-1214 |#1|))))) (-1135) (-1016) (-98 |#2|) (-1 |#2| |#2|)) (T -826)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-826 *3 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-823 |#2|) (-10 -8 (-15 -3834 ($ (-1214 |#1|))))) +((-3054 ((|#1| (-745) |#1|) 35 (|has| |#1| (-38 (-398 (-547)))))) (-2970 ((|#1| (-745) (-745) |#1|) 27) ((|#1| (-745) |#1|) 20)) (-2895 ((|#1| (-745) |#1|) 31)) (-1264 ((|#1| (-745) |#1|) 29)) (-4216 ((|#1| (-745) |#1|) 28))) +(((-827 |#1|) (-10 -7 (-15 -4216 (|#1| (-745) |#1|)) (-15 -1264 (|#1| (-745) |#1|)) (-15 -2895 (|#1| (-745) |#1|)) (-15 -2970 (|#1| (-745) |#1|)) (-15 -2970 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3054 (|#1| (-745) |#1|)) |%noBranch|)) (-169)) (T -827)) +((-3054 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-169)))) (-2970 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2970 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-2895 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) (-4216 (*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -4216 (|#1| (-745) |#1|)) (-15 -1264 (|#1| (-745) |#1|)) (-15 -2895 (|#1| (-745) |#1|)) (-15 -2970 (|#1| (-745) |#1|)) (-15 -2970 (|#1| (-745) (-745) |#1|)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -3054 (|#1| (-745) |#1|)) |%noBranch|)) +((-3821 (((-112) $ $) 7)) (-2847 (($ $ $) 13)) (-3563 (($ $ $) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2433 (((-112) $ $) 16)) (-2408 (((-112) $ $) 17)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 15)) (-2396 (((-112) $ $) 18)) (** (($ $ (-890)) 21)) (* (($ $ $) 20))) (((-828) (-138)) (T -828)) NIL (-13 (-821) (-1075)) -(((-101) . T) ((-592 (-832)) . T) ((-821) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-4056 (((-548) $) 12)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 18) (($ (-548)) 11)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 8)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 9))) -(((-829) (-13 (-821) (-10 -8 (-15 -3743 ($ (-548))) (-15 -4056 ((-548) $))))) (T -829)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-829)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-829))))) -(-13 (-821) (-10 -8 (-15 -3743 ($ (-548))) (-15 -4056 ((-548) $)))) -((-2072 (((-1082) $ (-128)) 17))) -(((-830 |#1|) (-10 -8 (-15 -2072 ((-1082) |#1| (-128)))) (-831)) (T -830)) -NIL -(-10 -8 (-15 -2072 ((-1082) |#1| (-128)))) -((-2072 (((-1082) $ (-128)) 7)) (-2081 (((-1082) $ (-129)) 8)) (-3972 (($ $) 6))) +(((-101) . T) ((-591 (-832)) . T) ((-821) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4152 (((-547) $) 12)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 18) (($ (-547)) 11)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 8)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 9))) +(((-829) (-13 (-821) (-10 -8 (-15 -3834 ($ (-547))) (-15 -4152 ((-547) $))))) (T -829)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-829)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-829))))) +(-13 (-821) (-10 -8 (-15 -3834 ($ (-547))) (-15 -4152 ((-547) $)))) +((-3135 (((-1082) $ (-128)) 17))) +(((-830 |#1|) (-10 -8 (-15 -3135 ((-1082) |#1| (-128)))) (-831)) (T -830)) +NIL +(-10 -8 (-15 -3135 ((-1082) |#1| (-128)))) +((-3135 (((-1082) $ (-128)) 7)) (-2012 (((-1082) $ (-129)) 8)) (-4048 (($ $) 6))) (((-831) (-138)) (T -831)) -((-2081 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082)))) (-2072 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082))))) -(-13 (-170) (-10 -8 (-15 -2081 ((-1082) $ (-129))) (-15 -2072 ((-1082) $ (-128))))) +((-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082)))) (-3135 (*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(-13 (-170) (-10 -8 (-15 -2012 ((-1082) $ (-129))) (-15 -3135 ((-1082) $ (-128))))) (((-170) . T)) -((-3730 (((-112) $ $) NIL) (($ $ $) 77)) (-4203 (($ $ $) 115)) (-2094 (((-548) $) 30) (((-548)) 35)) (-4271 (($ (-548)) 44)) (-4235 (($ $ $) 45) (($ (-619 $)) 76)) (-2215 (($ $ (-619 $)) 74)) (-4291 (((-548) $) 33)) (-2242 (($ $ $) 63)) (-3087 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-4303 (((-548) $) 32)) (-2253 (($ $ $) 62)) (-1504 (($ $) 105)) (-4183 (($ $ $) 119)) (-2108 (($ (-619 $)) 52)) (-3212 (($ $ (-619 $)) 69)) (-4260 (($ (-548) (-548)) 46)) (-1294 (($ $) 116) (($ $ $) 117)) (-3676 (($ $ (-548)) 40) (($ $) 43)) (-1945 (($ $ $) 89)) (-2263 (($ $ $) 122)) (-2206 (($ $) 106)) (-1922 (($ $ $) 90)) (-2168 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1667 (((-1223) $) 8)) (-2198 (($ $) 109) (($ $ (-745)) 112)) (-2224 (($ $ $) 65)) (-2235 (($ $ $) 64)) (-1741 (($ $ (-619 $)) 100)) (-4214 (($ $ $) 104)) (-2130 (($ (-619 $)) 50)) (-2142 (($ $) 60) (($ (-619 $)) 61)) (-2178 (($ $ $) 113)) (-2187 (($ $) 107)) (-4193 (($ $ $) 118)) (-3020 (($ (-548)) 20) (($ (-1135)) 22) (($ (-1118)) 29) (($ (-218)) 24)) (-4168 (($ $ $) 93)) (-3958 (($ $) 94)) (-1259 (((-1223) (-1118)) 14)) (-3566 (($ (-1118)) 13)) (-3817 (($ (-619 (-619 $))) 49)) (-3663 (($ $ (-548)) 39) (($ $) 42)) (-2546 (((-1118) $) NIL)) (-3227 (($ $ $) 121)) (-3894 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2734 (((-112) $) 98)) (-4225 (($ $ (-619 $)) 102) (($ $ $ $) 103)) (-4281 (($ (-548)) 36)) (-3926 (((-548) $) 31) (((-548)) 34)) (-4247 (($ $ $) 37) (($ (-619 $)) 75)) (-3932 (((-1082) $) NIL)) (-1900 (($ $ $) 91)) (-3319 (($) 12)) (-3171 (($ $ (-619 $)) 99)) (-4029 (($ $) 108) (($ $ (-745)) 111)) (-1911 (($ $ $) 88)) (-4050 (($ $ (-745)) 127)) (-2120 (($ (-619 $)) 51)) (-3743 (((-832) $) 18)) (-2278 (($ $ (-548)) 38) (($ $) 41)) (-2156 (($ $) 58) (($ (-619 $)) 59)) (-4013 (($ $) 56) (($ (-619 $)) 57)) (-3528 (($ $) 114)) (-2095 (($ (-619 $)) 55)) (-3612 (($ $ $) 97)) (-4173 (($ $ $) 120)) (-1723 (($ $ $) 92)) (-1794 (($ $ $) 95) (($ $) 96)) (-2262 (($ $ $) 81)) (-2241 (($ $ $) 79)) (-2214 (((-112) $ $) 15) (($ $ $) 16)) (-2252 (($ $ $) 80)) (-2234 (($ $ $) 78)) (-2309 (($ $ $) 86)) (-2299 (($ $ $) 83) (($ $) 84)) (-2290 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-832) (-13 (-1063) (-10 -8 (-15 -1667 ((-1223) $)) (-15 -3566 ($ (-1118))) (-15 -1259 ((-1223) (-1118))) (-15 -3020 ($ (-548))) (-15 -3020 ($ (-1135))) (-15 -3020 ($ (-1118))) (-15 -3020 ($ (-218))) (-15 -3319 ($)) (-15 -2094 ((-548) $)) (-15 -3926 ((-548) $)) (-15 -2094 ((-548))) (-15 -3926 ((-548))) (-15 -4303 ((-548) $)) (-15 -4291 ((-548) $)) (-15 -4281 ($ (-548))) (-15 -4271 ($ (-548))) (-15 -4260 ($ (-548) (-548))) (-15 -3663 ($ $ (-548))) (-15 -3676 ($ $ (-548))) (-15 -2278 ($ $ (-548))) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -2278 ($ $)) (-15 -4247 ($ $ $)) (-15 -4235 ($ $ $)) (-15 -4247 ($ (-619 $))) (-15 -4235 ($ (-619 $))) (-15 -1741 ($ $ (-619 $))) (-15 -4225 ($ $ (-619 $))) (-15 -4225 ($ $ $ $)) (-15 -4214 ($ $ $)) (-15 -2734 ((-112) $)) (-15 -3171 ($ $ (-619 $))) (-15 -1504 ($ $)) (-15 -3227 ($ $ $)) (-15 -3528 ($ $)) (-15 -3817 ($ (-619 (-619 $)))) (-15 -4203 ($ $ $)) (-15 -1294 ($ $)) (-15 -1294 ($ $ $)) (-15 -4193 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -4173 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -4050 ($ $ (-745))) (-15 -3612 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -2224 ($ $ $)) (-15 -3212 ($ $ (-619 $))) (-15 -2215 ($ $ (-619 $))) (-15 -2206 ($ $)) (-15 -4029 ($ $)) (-15 -4029 ($ $ (-745))) (-15 -2198 ($ $)) (-15 -2198 ($ $ (-745))) (-15 -2187 ($ $)) (-15 -2178 ($ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -2168 ($ $)) (-15 -2168 ($ $ $)) (-15 -2168 ($ $ $ $)) (-15 -3894 ($ $)) (-15 -3894 ($ $ $)) (-15 -3894 ($ $ $ $)) (-15 -4013 ($ $)) (-15 -4013 ($ (-619 $))) (-15 -2156 ($ $)) (-15 -2156 ($ (-619 $))) (-15 -2142 ($ $)) (-15 -2142 ($ (-619 $))) (-15 -2130 ($ (-619 $))) (-15 -2120 ($ (-619 $))) (-15 -2108 ($ (-619 $))) (-15 -2095 ($ (-619 $))) (-15 -2214 ($ $ $)) (-15 -3730 ($ $ $)) (-15 -2234 ($ $ $)) (-15 -2241 ($ $ $)) (-15 -2252 ($ $ $)) (-15 -2262 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2299 ($ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ $)) (-15 -1911 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -1922 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -3958 ($ $)) (-15 -1794 ($ $ $)) (-15 -1794 ($ $))))) (T -832)) -((-1667 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-832)))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-832)))) (-3319 (*1 *1) (-5 *1 (-832))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-2094 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3926 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4271 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-4260 (*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) (-3663 (*1 *1 *1) (-5 *1 (-832))) (-3676 (*1 *1 *1) (-5 *1 (-832))) (-2278 (*1 *1 *1) (-5 *1 (-832))) (-4247 (*1 *1 *1 *1) (-5 *1 (-832))) (-4235 (*1 *1 *1 *1) (-5 *1 (-832))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1741 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-4225 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4214 (*1 *1 *1 *1) (-5 *1 (-832))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1504 (*1 *1 *1) (-5 *1 (-832))) (-3227 (*1 *1 *1 *1) (-5 *1 (-832))) (-3528 (*1 *1 *1) (-5 *1 (-832))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) (-4203 (*1 *1 *1 *1) (-5 *1 (-832))) (-1294 (*1 *1 *1) (-5 *1 (-832))) (-1294 (*1 *1 *1 *1) (-5 *1 (-832))) (-4193 (*1 *1 *1 *1) (-5 *1 (-832))) (-4183 (*1 *1 *1 *1) (-5 *1 (-832))) (-4173 (*1 *1 *1 *1) (-5 *1 (-832))) (-2263 (*1 *1 *1 *1) (-5 *1 (-832))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-3612 (*1 *1 *1 *1) (-5 *1 (-832))) (-2253 (*1 *1 *1 *1) (-5 *1 (-832))) (-2242 (*1 *1 *1 *1) (-5 *1 (-832))) (-2235 (*1 *1 *1 *1) (-5 *1 (-832))) (-2224 (*1 *1 *1 *1) (-5 *1 (-832))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2215 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2206 (*1 *1 *1) (-5 *1 (-832))) (-4029 (*1 *1 *1) (-5 *1 (-832))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-2198 (*1 *1 *1) (-5 *1 (-832))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-2187 (*1 *1 *1) (-5 *1 (-832))) (-2178 (*1 *1 *1 *1) (-5 *1 (-832))) (-3087 (*1 *1 *1) (-5 *1 (-832))) (-3087 (*1 *1 *1 *1) (-5 *1 (-832))) (-3087 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-2168 (*1 *1 *1) (-5 *1 (-832))) (-2168 (*1 *1 *1 *1) (-5 *1 (-832))) (-2168 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-3894 (*1 *1 *1) (-5 *1 (-832))) (-3894 (*1 *1 *1 *1) (-5 *1 (-832))) (-3894 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4013 (*1 *1 *1) (-5 *1 (-832))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2156 (*1 *1 *1) (-5 *1 (-832))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2142 (*1 *1 *1) (-5 *1 (-832))) (-2142 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2214 (*1 *1 *1 *1) (-5 *1 (-832))) (-3730 (*1 *1 *1 *1) (-5 *1 (-832))) (-2234 (*1 *1 *1 *1) (-5 *1 (-832))) (-2241 (*1 *1 *1 *1) (-5 *1 (-832))) (-2252 (*1 *1 *1 *1) (-5 *1 (-832))) (-2262 (*1 *1 *1 *1) (-5 *1 (-832))) (-2290 (*1 *1 *1 *1) (-5 *1 (-832))) (-2299 (*1 *1 *1 *1) (-5 *1 (-832))) (-2299 (*1 *1 *1) (-5 *1 (-832))) (* (*1 *1 *1 *1) (-5 *1 (-832))) (-2309 (*1 *1 *1 *1) (-5 *1 (-832))) (** (*1 *1 *1 *1) (-5 *1 (-832))) (-1911 (*1 *1 *1 *1) (-5 *1 (-832))) (-1945 (*1 *1 *1 *1) (-5 *1 (-832))) (-1922 (*1 *1 *1 *1) (-5 *1 (-832))) (-1900 (*1 *1 *1 *1) (-5 *1 (-832))) (-1723 (*1 *1 *1 *1) (-5 *1 (-832))) (-4168 (*1 *1 *1 *1) (-5 *1 (-832))) (-3958 (*1 *1 *1) (-5 *1 (-832))) (-1794 (*1 *1 *1 *1) (-5 *1 (-832))) (-1794 (*1 *1 *1) (-5 *1 (-832)))) -(-13 (-1063) (-10 -8 (-15 -1667 ((-1223) $)) (-15 -3566 ($ (-1118))) (-15 -1259 ((-1223) (-1118))) (-15 -3020 ($ (-548))) (-15 -3020 ($ (-1135))) (-15 -3020 ($ (-1118))) (-15 -3020 ($ (-218))) (-15 -3319 ($)) (-15 -2094 ((-548) $)) (-15 -3926 ((-548) $)) (-15 -2094 ((-548))) (-15 -3926 ((-548))) (-15 -4303 ((-548) $)) (-15 -4291 ((-548) $)) (-15 -4281 ($ (-548))) (-15 -4271 ($ (-548))) (-15 -4260 ($ (-548) (-548))) (-15 -3663 ($ $ (-548))) (-15 -3676 ($ $ (-548))) (-15 -2278 ($ $ (-548))) (-15 -3663 ($ $)) (-15 -3676 ($ $)) (-15 -2278 ($ $)) (-15 -4247 ($ $ $)) (-15 -4235 ($ $ $)) (-15 -4247 ($ (-619 $))) (-15 -4235 ($ (-619 $))) (-15 -1741 ($ $ (-619 $))) (-15 -4225 ($ $ (-619 $))) (-15 -4225 ($ $ $ $)) (-15 -4214 ($ $ $)) (-15 -2734 ((-112) $)) (-15 -3171 ($ $ (-619 $))) (-15 -1504 ($ $)) (-15 -3227 ($ $ $)) (-15 -3528 ($ $)) (-15 -3817 ($ (-619 (-619 $)))) (-15 -4203 ($ $ $)) (-15 -1294 ($ $)) (-15 -1294 ($ $ $)) (-15 -4193 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -4173 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -4050 ($ $ (-745))) (-15 -3612 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2235 ($ $ $)) (-15 -2224 ($ $ $)) (-15 -3212 ($ $ (-619 $))) (-15 -2215 ($ $ (-619 $))) (-15 -2206 ($ $)) (-15 -4029 ($ $)) (-15 -4029 ($ $ (-745))) (-15 -2198 ($ $)) (-15 -2198 ($ $ (-745))) (-15 -2187 ($ $)) (-15 -2178 ($ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -2168 ($ $)) (-15 -2168 ($ $ $)) (-15 -2168 ($ $ $ $)) (-15 -3894 ($ $)) (-15 -3894 ($ $ $)) (-15 -3894 ($ $ $ $)) (-15 -4013 ($ $)) (-15 -4013 ($ (-619 $))) (-15 -2156 ($ $)) (-15 -2156 ($ (-619 $))) (-15 -2142 ($ $)) (-15 -2142 ($ (-619 $))) (-15 -2130 ($ (-619 $))) (-15 -2120 ($ (-619 $))) (-15 -2108 ($ (-619 $))) (-15 -2095 ($ (-619 $))) (-15 -2214 ($ $ $)) (-15 -3730 ($ $ $)) (-15 -2234 ($ $ $)) (-15 -2241 ($ $ $)) (-15 -2252 ($ $ $)) (-15 -2262 ($ $ $)) (-15 -2290 ($ $ $)) (-15 -2299 ($ $ $)) (-15 -2299 ($ $)) (-15 * ($ $ $)) (-15 -2309 ($ $ $)) (-15 ** ($ $ $)) (-15 -1911 ($ $ $)) (-15 -1945 ($ $ $)) (-15 -1922 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -3958 ($ $)) (-15 -1794 ($ $ $)) (-15 -1794 ($ $)))) -((-3788 (((-1223) (-619 (-52))) 24)) (-4106 (((-1223) (-1118) (-832)) 14) (((-1223) (-832)) 9) (((-1223) (-1118)) 11))) -(((-833) (-10 -7 (-15 -4106 ((-1223) (-1118))) (-15 -4106 ((-1223) (-832))) (-15 -4106 ((-1223) (-1118) (-832))) (-15 -3788 ((-1223) (-619 (-52)))))) (T -833)) -((-3788 (*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1223)) (-5 *1 (-833)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-833))))) -(-10 -7 (-15 -4106 ((-1223) (-1118))) (-15 -4106 ((-1223) (-832))) (-15 -4106 ((-1223) (-1118) (-832))) (-15 -3788 ((-1223) (-619 (-52))))) -((-3730 (((-112) $ $) NIL)) (-2754 (((-3 $ "failed") (-1135)) 33)) (-3423 (((-745)) 31)) (-2545 (($) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2855 (((-890) $) 29)) (-2546 (((-1118) $) 39)) (-3337 (($ (-890)) 28)) (-3932 (((-1082) $) NIL)) (-2591 (((-1135) $) 13) (((-524) $) 19) (((-861 (-371)) $) 26) (((-861 (-548)) $) 22)) (-3743 (((-832) $) 16)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 36)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 35))) -(((-834 |#1|) (-13 (-815) (-593 (-1135)) (-593 (-524)) (-593 (-861 (-371))) (-593 (-861 (-548))) (-10 -8 (-15 -2754 ((-3 $ "failed") (-1135))))) (-619 (-1135))) (T -834)) -((-2754 (*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2))))) -(-13 (-815) (-593 (-1135)) (-593 (-524)) (-593 (-861 (-371))) (-593 (-861 (-548))) (-10 -8 (-15 -2754 ((-3 $ "failed") (-1135))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (((-921 |#1|) $) NIL) (($ (-921 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-3835 (((-745)) NIL)) (-3503 (((-1223) (-745)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-835 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 ((-921 |#1|) $)) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3503 ((-1223) (-745))))) (-1016) (-619 (-1135)) (-619 (-745)) (-745)) (T -835)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-2309 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-355)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-745))) (-14 *5 (-745)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *4 (-1016)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 *3)) (-14 *7 *3)))) -(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 ((-921 |#1|) $)) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3503 ((-1223) (-745))))) -((-1270 (((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|) 31)) (-1283 (((-3 (-399 |#3|) "failed") (-745) (-745) |#2| |#2|) 24))) -(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -1283 ((-3 (-399 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -1270 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) (-355) (-1209 |#1|) (-1194 |#1|)) (T -836)) -((-1270 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-171 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5)))) (-1283 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-399 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5))))) -(-10 -7 (-15 -1283 ((-3 (-399 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -1270 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) -((-1283 (((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)) 28) (((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) 26))) -(((-837 |#1| |#2| |#3|) (-10 -7 (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)))) (-355) (-1135) |#1|) (T -837)) -((-1283 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) (-5 *1 (-837 *5 *6 *7)))) (-1283 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) (-5 *1 (-837 *5 *6 *7))))) -(-10 -7 (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (-15 -1283 ((-3 (-399 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $ (-548)) 60)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-1294 (($ (-1131 (-548)) (-548)) 59)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1305 (($ $) 62)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1672 (((-745) $) 67)) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1328 (((-548)) 64)) (-1317 (((-548) $) 63)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1656 (($ $ (-548)) 66)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-1340 (((-1116 (-548)) $) 68)) (-3330 (($ $) 65)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-2439 (((-548) $ (-548)) 61)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) -(((-838 |#1|) (-138) (-548)) (T -838)) -((-1340 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1116 (-548))))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-3330 (*1 *1 *1) (-4 *1 (-838 *2))) (-1328 (*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1305 (*1 *1 *1) (-4 *1 (-838 *2))) (-2439 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1926 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) (-1294 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *3 (-548)) (-4 *1 (-838 *4))))) -(-13 (-299) (-145) (-10 -8 (-15 -1340 ((-1116 (-548)) $)) (-15 -1672 ((-745) $)) (-15 -1656 ($ $ (-548))) (-15 -3330 ($ $)) (-15 -1328 ((-548))) (-15 -1317 ((-548) $)) (-15 -1305 ($ $)) (-15 -2439 ((-548) $ (-548))) (-15 -1926 ($ $ (-548))) (-15 -1294 ($ (-1131 (-548)) (-548))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-299) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $ (-548)) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1294 (($ (-1131 (-548)) (-548)) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1305 (($ $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1672 (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1328 (((-548)) NIL)) (-1317 (((-548) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1656 (($ $ (-548)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-1340 (((-1116 (-548)) $) NIL)) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-2439 (((-548) $ (-548)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) -(((-839 |#1|) (-838 |#1|) (-548)) (T -839)) +((-3821 (((-112) $ $) NIL) (($ $ $) 77)) (-1546 (($ $ $) 115)) (-2326 (((-547) $) 30) (((-547)) 35)) (-4053 (($ (-547)) 44)) (-1898 (($ $ $) 45) (($ (-619 $)) 76)) (-1844 (($ $ (-619 $)) 74)) (-4246 (((-547) $) 33)) (-3916 (($ $ $) 63)) (-2805 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1309 (((-547) $) 32)) (-4002 (($ $ $) 62)) (-1512 (($ $) 105)) (-2660 (($ $ $) 119)) (-2243 (($ (-619 $)) 52)) (-4210 (($ $ (-619 $)) 69)) (-3944 (($ (-547) (-547)) 46)) (-2048 (($ $) 116) (($ $ $) 117)) (-3836 (($ $ (-547)) 40) (($ $) 43)) (-2079 (($ $ $) 89)) (-4084 (($ $ $) 122)) (-1752 (($ $) 106)) (-2052 (($ $ $) 90)) (-1396 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1790 (((-1223) $) 8)) (-1679 (($ $) 109) (($ $ (-745)) 112)) (-1934 (($ $ $) 65)) (-3864 (($ $ $) 64)) (-1873 (($ $ (-619 $)) 100)) (-1666 (($ $ $) 104)) (-2457 (($ (-619 $)) 50)) (-2566 (($ $) 60) (($ (-619 $)) 61)) (-1486 (($ $ $) 113)) (-1584 (($ $) 107)) (-1415 (($ $ $) 118)) (-3124 (($ (-547)) 20) (($ (-1135)) 22) (($ (-1118)) 29) (($ (-217)) 24)) (-4197 (($ $ $) 93)) (-3998 (($ $) 94)) (-3193 (((-1223) (-1118)) 14)) (-3688 (($ (-1118)) 13)) (-3933 (($ (-619 (-619 $))) 49)) (-3826 (($ $ (-547)) 39) (($ $) 42)) (-1917 (((-1118) $) NIL)) (-3387 (($ $ $) 121)) (-1528 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2404 (((-112) $) 98)) (-1782 (($ $ (-619 $)) 102) (($ $ $ $) 103)) (-4151 (($ (-547)) 36)) (-4029 (((-547) $) 31) (((-547)) 34)) (-2009 (($ $ $) 37) (($ (-619 $)) 75)) (-3979 (((-1082) $) NIL)) (-2025 (($ $ $) 91)) (-4011 (($) 12)) (-3329 (($ $ (-619 $)) 99)) (-3453 (($ $) 108) (($ $ (-745)) 111)) (-2039 (($ $ $) 88)) (-3443 (($ $ (-745)) 127)) (-2360 (($ (-619 $)) 51)) (-3834 (((-832) $) 18)) (-2582 (($ $ (-547)) 38) (($ $) 41)) (-1321 (($ $) 58) (($ (-619 $)) 59)) (-4112 (($ $) 56) (($ (-619 $)) 57)) (-3518 (($ $) 114)) (-2130 (($ (-619 $)) 55)) (-1884 (($ $ $) 97)) (-2553 (($ $ $) 120)) (-1806 (($ $ $) 92)) (-1842 (($ $ $) 95) (($ $) 96)) (-2433 (($ $ $) 81)) (-2408 (($ $ $) 79)) (-2371 (((-112) $ $) 15) (($ $ $) 16)) (-2421 (($ $ $) 80)) (-2396 (($ $ $) 78)) (-2497 (($ $ $) 86)) (-2484 (($ $ $) 83) (($ $) 84)) (-2470 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-832) (-13 (-1063) (-10 -8 (-15 -1790 ((-1223) $)) (-15 -3688 ($ (-1118))) (-15 -3193 ((-1223) (-1118))) (-15 -3124 ($ (-547))) (-15 -3124 ($ (-1135))) (-15 -3124 ($ (-1118))) (-15 -3124 ($ (-217))) (-15 -4011 ($)) (-15 -2326 ((-547) $)) (-15 -4029 ((-547) $)) (-15 -2326 ((-547))) (-15 -4029 ((-547))) (-15 -1309 ((-547) $)) (-15 -4246 ((-547) $)) (-15 -4151 ($ (-547))) (-15 -4053 ($ (-547))) (-15 -3944 ($ (-547) (-547))) (-15 -3826 ($ $ (-547))) (-15 -3836 ($ $ (-547))) (-15 -2582 ($ $ (-547))) (-15 -3826 ($ $)) (-15 -3836 ($ $)) (-15 -2582 ($ $)) (-15 -2009 ($ $ $)) (-15 -1898 ($ $ $)) (-15 -2009 ($ (-619 $))) (-15 -1898 ($ (-619 $))) (-15 -1873 ($ $ (-619 $))) (-15 -1782 ($ $ (-619 $))) (-15 -1782 ($ $ $ $)) (-15 -1666 ($ $ $)) (-15 -2404 ((-112) $)) (-15 -3329 ($ $ (-619 $))) (-15 -1512 ($ $)) (-15 -3387 ($ $ $)) (-15 -3518 ($ $)) (-15 -3933 ($ (-619 (-619 $)))) (-15 -1546 ($ $ $)) (-15 -2048 ($ $)) (-15 -2048 ($ $ $)) (-15 -1415 ($ $ $)) (-15 -2660 ($ $ $)) (-15 -2553 ($ $ $)) (-15 -4084 ($ $ $)) (-15 -3443 ($ $ (-745))) (-15 -1884 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -3916 ($ $ $)) (-15 -3864 ($ $ $)) (-15 -1934 ($ $ $)) (-15 -4210 ($ $ (-619 $))) (-15 -1844 ($ $ (-619 $))) (-15 -1752 ($ $)) (-15 -3453 ($ $)) (-15 -3453 ($ $ (-745))) (-15 -1679 ($ $)) (-15 -1679 ($ $ (-745))) (-15 -1584 ($ $)) (-15 -1486 ($ $ $)) (-15 -2805 ($ $)) (-15 -2805 ($ $ $)) (-15 -2805 ($ $ $ $)) (-15 -1396 ($ $)) (-15 -1396 ($ $ $)) (-15 -1396 ($ $ $ $)) (-15 -1528 ($ $)) (-15 -1528 ($ $ $)) (-15 -1528 ($ $ $ $)) (-15 -4112 ($ $)) (-15 -4112 ($ (-619 $))) (-15 -1321 ($ $)) (-15 -1321 ($ (-619 $))) (-15 -2566 ($ $)) (-15 -2566 ($ (-619 $))) (-15 -2457 ($ (-619 $))) (-15 -2360 ($ (-619 $))) (-15 -2243 ($ (-619 $))) (-15 -2130 ($ (-619 $))) (-15 -2371 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2408 ($ $ $)) (-15 -2421 ($ $ $)) (-15 -2433 ($ $ $)) (-15 -2470 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -2484 ($ $)) (-15 * ($ $ $)) (-15 -2497 ($ $ $)) (-15 ** ($ $ $)) (-15 -2039 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -2052 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -1806 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -3998 ($ $)) (-15 -1842 ($ $ $)) (-15 -1842 ($ $))))) (T -832)) +((-1790 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-832)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-832)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-832)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-832)))) (-4011 (*1 *1) (-5 *1 (-832))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-2326 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4029 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4151 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3944 (*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3826 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) (-3826 (*1 *1 *1) (-5 *1 (-832))) (-3836 (*1 *1 *1) (-5 *1 (-832))) (-2582 (*1 *1 *1) (-5 *1 (-832))) (-2009 (*1 *1 *1 *1) (-5 *1 (-832))) (-1898 (*1 *1 *1 *1) (-5 *1 (-832))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1782 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1782 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-1666 (*1 *1 *1 *1) (-5 *1 (-832))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1512 (*1 *1 *1) (-5 *1 (-832))) (-3387 (*1 *1 *1 *1) (-5 *1 (-832))) (-3518 (*1 *1 *1) (-5 *1 (-832))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) (-1546 (*1 *1 *1 *1) (-5 *1 (-832))) (-2048 (*1 *1 *1) (-5 *1 (-832))) (-2048 (*1 *1 *1 *1) (-5 *1 (-832))) (-1415 (*1 *1 *1 *1) (-5 *1 (-832))) (-2660 (*1 *1 *1 *1) (-5 *1 (-832))) (-2553 (*1 *1 *1 *1) (-5 *1 (-832))) (-4084 (*1 *1 *1 *1) (-5 *1 (-832))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-1884 (*1 *1 *1 *1) (-5 *1 (-832))) (-4002 (*1 *1 *1 *1) (-5 *1 (-832))) (-3916 (*1 *1 *1 *1) (-5 *1 (-832))) (-3864 (*1 *1 *1 *1) (-5 *1 (-832))) (-1934 (*1 *1 *1 *1) (-5 *1 (-832))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1752 (*1 *1 *1) (-5 *1 (-832))) (-3453 (*1 *1 *1) (-5 *1 (-832))) (-3453 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-1679 (*1 *1 *1) (-5 *1 (-832))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) (-1584 (*1 *1 *1) (-5 *1 (-832))) (-1486 (*1 *1 *1 *1) (-5 *1 (-832))) (-2805 (*1 *1 *1) (-5 *1 (-832))) (-2805 (*1 *1 *1 *1) (-5 *1 (-832))) (-2805 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-1396 (*1 *1 *1) (-5 *1 (-832))) (-1396 (*1 *1 *1 *1) (-5 *1 (-832))) (-1396 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-1528 (*1 *1 *1) (-5 *1 (-832))) (-1528 (*1 *1 *1 *1) (-5 *1 (-832))) (-1528 (*1 *1 *1 *1 *1) (-5 *1 (-832))) (-4112 (*1 *1 *1) (-5 *1 (-832))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-1321 (*1 *1 *1) (-5 *1 (-832))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2566 (*1 *1 *1) (-5 *1 (-832))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2360 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) (-2371 (*1 *1 *1 *1) (-5 *1 (-832))) (-3821 (*1 *1 *1 *1) (-5 *1 (-832))) (-2396 (*1 *1 *1 *1) (-5 *1 (-832))) (-2408 (*1 *1 *1 *1) (-5 *1 (-832))) (-2421 (*1 *1 *1 *1) (-5 *1 (-832))) (-2433 (*1 *1 *1 *1) (-5 *1 (-832))) (-2470 (*1 *1 *1 *1) (-5 *1 (-832))) (-2484 (*1 *1 *1 *1) (-5 *1 (-832))) (-2484 (*1 *1 *1) (-5 *1 (-832))) (* (*1 *1 *1 *1) (-5 *1 (-832))) (-2497 (*1 *1 *1 *1) (-5 *1 (-832))) (** (*1 *1 *1 *1) (-5 *1 (-832))) (-2039 (*1 *1 *1 *1) (-5 *1 (-832))) (-2079 (*1 *1 *1 *1) (-5 *1 (-832))) (-2052 (*1 *1 *1 *1) (-5 *1 (-832))) (-2025 (*1 *1 *1 *1) (-5 *1 (-832))) (-1806 (*1 *1 *1 *1) (-5 *1 (-832))) (-4197 (*1 *1 *1 *1) (-5 *1 (-832))) (-3998 (*1 *1 *1) (-5 *1 (-832))) (-1842 (*1 *1 *1 *1) (-5 *1 (-832))) (-1842 (*1 *1 *1) (-5 *1 (-832)))) +(-13 (-1063) (-10 -8 (-15 -1790 ((-1223) $)) (-15 -3688 ($ (-1118))) (-15 -3193 ((-1223) (-1118))) (-15 -3124 ($ (-547))) (-15 -3124 ($ (-1135))) (-15 -3124 ($ (-1118))) (-15 -3124 ($ (-217))) (-15 -4011 ($)) (-15 -2326 ((-547) $)) (-15 -4029 ((-547) $)) (-15 -2326 ((-547))) (-15 -4029 ((-547))) (-15 -1309 ((-547) $)) (-15 -4246 ((-547) $)) (-15 -4151 ($ (-547))) (-15 -4053 ($ (-547))) (-15 -3944 ($ (-547) (-547))) (-15 -3826 ($ $ (-547))) (-15 -3836 ($ $ (-547))) (-15 -2582 ($ $ (-547))) (-15 -3826 ($ $)) (-15 -3836 ($ $)) (-15 -2582 ($ $)) (-15 -2009 ($ $ $)) (-15 -1898 ($ $ $)) (-15 -2009 ($ (-619 $))) (-15 -1898 ($ (-619 $))) (-15 -1873 ($ $ (-619 $))) (-15 -1782 ($ $ (-619 $))) (-15 -1782 ($ $ $ $)) (-15 -1666 ($ $ $)) (-15 -2404 ((-112) $)) (-15 -3329 ($ $ (-619 $))) (-15 -1512 ($ $)) (-15 -3387 ($ $ $)) (-15 -3518 ($ $)) (-15 -3933 ($ (-619 (-619 $)))) (-15 -1546 ($ $ $)) (-15 -2048 ($ $)) (-15 -2048 ($ $ $)) (-15 -1415 ($ $ $)) (-15 -2660 ($ $ $)) (-15 -2553 ($ $ $)) (-15 -4084 ($ $ $)) (-15 -3443 ($ $ (-745))) (-15 -1884 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -3916 ($ $ $)) (-15 -3864 ($ $ $)) (-15 -1934 ($ $ $)) (-15 -4210 ($ $ (-619 $))) (-15 -1844 ($ $ (-619 $))) (-15 -1752 ($ $)) (-15 -3453 ($ $)) (-15 -3453 ($ $ (-745))) (-15 -1679 ($ $)) (-15 -1679 ($ $ (-745))) (-15 -1584 ($ $)) (-15 -1486 ($ $ $)) (-15 -2805 ($ $)) (-15 -2805 ($ $ $)) (-15 -2805 ($ $ $ $)) (-15 -1396 ($ $)) (-15 -1396 ($ $ $)) (-15 -1396 ($ $ $ $)) (-15 -1528 ($ $)) (-15 -1528 ($ $ $)) (-15 -1528 ($ $ $ $)) (-15 -4112 ($ $)) (-15 -4112 ($ (-619 $))) (-15 -1321 ($ $)) (-15 -1321 ($ (-619 $))) (-15 -2566 ($ $)) (-15 -2566 ($ (-619 $))) (-15 -2457 ($ (-619 $))) (-15 -2360 ($ (-619 $))) (-15 -2243 ($ (-619 $))) (-15 -2130 ($ (-619 $))) (-15 -2371 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2408 ($ $ $)) (-15 -2421 ($ $ $)) (-15 -2433 ($ $ $)) (-15 -2470 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -2484 ($ $)) (-15 * ($ $ $)) (-15 -2497 ($ $ $)) (-15 ** ($ $ $)) (-15 -2039 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -2052 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -1806 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -3998 ($ $)) (-15 -1842 ($ $ $)) (-15 -1842 ($ $)))) +((-3388 (((-1223) (-619 (-52))) 24)) (-2060 (((-1223) (-1118) (-832)) 14) (((-1223) (-832)) 9) (((-1223) (-1118)) 11))) +(((-833) (-10 -7 (-15 -2060 ((-1223) (-1118))) (-15 -2060 ((-1223) (-832))) (-15 -2060 ((-1223) (-1118) (-832))) (-15 -3388 ((-1223) (-619 (-52)))))) (T -833)) +((-3388 (*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1223)) (-5 *1 (-833)))) (-2060 (*1 *2 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-833))))) +(-10 -7 (-15 -2060 ((-1223) (-1118))) (-15 -2060 ((-1223) (-832))) (-15 -2060 ((-1223) (-1118) (-832))) (-15 -3388 ((-1223) (-619 (-52))))) +((-3821 (((-112) $ $) NIL)) (-2995 (((-3 $ "failed") (-1135)) 33)) (-3603 (((-745)) 31)) (-3229 (($) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1966 (((-890) $) 29)) (-1917 (((-1118) $) 39)) (-3479 (($ (-890)) 28)) (-3979 (((-1082) $) NIL)) (-2829 (((-1135) $) 13) (((-523) $) 19) (((-861 (-370)) $) 26) (((-861 (-547)) $) 22)) (-3834 (((-832) $) 16)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 36)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 35))) +(((-834 |#1|) (-13 (-815) (-592 (-1135)) (-592 (-523)) (-592 (-861 (-370))) (-592 (-861 (-547))) (-10 -8 (-15 -2995 ((-3 $ "failed") (-1135))))) (-619 (-1135))) (T -834)) +((-2995 (*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2))))) +(-13 (-815) (-592 (-1135)) (-592 (-523)) (-592 (-861 (-370))) (-592 (-861 (-547))) (-10 -8 (-15 -2995 ((-3 $ "failed") (-1135))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (((-921 |#1|) $) NIL) (($ (-921 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-2311 (((-745)) NIL)) (-2088 (((-1223) (-745)) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2497 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-835 |#1| |#2| |#3| |#4|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3834 ((-921 |#1|) $)) (-15 -3834 ($ (-921 |#1|))) (IF (|has| |#1| (-354)) (-15 -2497 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2088 ((-1223) (-745))))) (-1016) (-619 (-1135)) (-619 (-745)) (-745)) (T -835)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) (-2497 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-745))) (-14 *5 (-745)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *4 (-1016)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 *3)) (-14 *7 *3)))) +(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3834 ((-921 |#1|) $)) (-15 -3834 ($ (-921 |#1|))) (IF (|has| |#1| (-354)) (-15 -2497 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2088 ((-1223) (-745))))) +((-3663 (((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|) 31)) (-2526 (((-3 (-398 |#3|) "failed") (-745) (-745) |#2| |#2|) 24))) +(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -2526 ((-3 (-398 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -3663 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) (-354) (-1209 |#1|) (-1194 |#1|)) (T -836)) +((-3663 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-171 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5)))) (-2526 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-398 *6)) (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5))))) +(-10 -7 (-15 -2526 ((-3 (-398 |#3|) "failed") (-745) (-745) |#2| |#2|)) (-15 -3663 ((-3 (-171 |#3|) "failed") (-745) (-745) |#2| |#2|))) +((-2526 (((-3 (-398 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)) 28) (((-3 (-398 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) 26))) +(((-837 |#1| |#2| |#3|) (-10 -7 (-15 -2526 ((-3 (-398 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (-15 -2526 ((-3 (-398 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)))) (-354) (-1135) |#1|) (T -837)) +((-2526 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-354)) (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-398 (-1191 *6 *5))) (-5 *1 (-837 *5 *6 *7)))) (-2526 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-354)) (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-398 (-1191 *6 *5))) (-5 *1 (-837 *5 *6 *7))))) +(-10 -7 (-15 -2526 ((-3 (-398 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (-15 -2526 ((-3 (-398 (-1191 |#2| |#1|)) "failed") (-745) (-745) (-1210 |#1| |#2| |#3|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-2118 (($ $ (-547)) 60)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-2048 (($ (-1131 (-547)) (-547)) 59)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2189 (($ $) 62)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3707 (((-745) $) 67)) (-4114 (((-112) $) 30)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3148 (((-547)) 64)) (-2333 (((-547) $) 63)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3558 (($ $ (-547)) 66)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-2871 (((-1116 (-547)) $) 68)) (-4105 (($ $) 65)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-2645 (((-547) $ (-547)) 61)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) +(((-838 |#1|) (-138) (-547)) (T -838)) +((-2871 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1116 (-547))))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) (-3558 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-4105 (*1 *1 *1) (-4 *1 (-838 *2))) (-3148 (*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-2189 (*1 *1 *1) (-4 *1 (-838 *2))) (-2645 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-2118 (*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) (-2048 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *3 (-547)) (-4 *1 (-838 *4))))) +(-13 (-298) (-145) (-10 -8 (-15 -2871 ((-1116 (-547)) $)) (-15 -3707 ((-745) $)) (-15 -3558 ($ $ (-547))) (-15 -4105 ($ $)) (-15 -3148 ((-547))) (-15 -2333 ((-547) $)) (-15 -2189 ($ $)) (-15 -2645 ((-547) $ (-547))) (-15 -2118 ($ $ (-547))) (-15 -2048 ($ (-1131 (-547)) (-547))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-298) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $ (-547)) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2048 (($ (-1131 (-547)) (-547)) NIL)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2189 (($ $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3707 (((-745) $) NIL)) (-4114 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3148 (((-547)) NIL)) (-2333 (((-547) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3558 (($ $ (-547)) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-2871 (((-1116 (-547)) $) NIL)) (-4105 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL)) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL)) (-2645 (((-547) $ (-547)) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL))) +(((-839 |#1|) (-838 |#1|) (-547)) (T -839)) NIL (-838 |#1|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-839 |#1|) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-839 |#1|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-548))))) (-2375 (((-839 |#1|) $) NIL) (((-1135) $) NIL (|has| (-839 |#1|) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-839 |#1|) (-1007 (-548)))) (((-548) $) NIL (|has| (-839 |#1|) (-1007 (-548))))) (-1306 (($ $) NIL) (($ (-548) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-839 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-839 |#1|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-839 |#1|))) (|:| |vec| (-1218 (-839 |#1|)))) (-663 $) (-1218 $)) NIL) (((-663 (-839 |#1|)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-839 |#1|) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-839 |#1|) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-839 |#1|) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-839 |#1|) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-1111)))) (-3312 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-3091 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-2540 (($ (-1 (-839 |#1|) (-839 |#1|)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-839 |#1|) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-839 |#1|) (-299)))) (-3887 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-839 |#1|)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-839 |#1|) (-839 |#1|)) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-286 (-839 |#1|))) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-619 (-286 (-839 |#1|)))) NIL (|has| (-839 |#1|) (-301 (-839 |#1|)))) (($ $ (-619 (-1135)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-504 (-1135) (-839 |#1|)))) (($ $ (-1135) (-839 |#1|)) NIL (|has| (-839 |#1|) (-504 (-1135) (-839 |#1|))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-839 |#1|)) NIL (|has| (-839 |#1|) (-278 (-839 |#1|) (-839 |#1|))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| (-839 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-839 |#1|) $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| (-839 |#1|) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-839 |#1|) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-839 |#1|) (-593 (-524)))) (((-371) $) NIL (|has| (-839 |#1|) (-991))) (((-218) $) NIL (|has| (-839 |#1|) (-991)))) (-1351 (((-171 (-399 (-548))) $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL) (($ (-839 |#1|)) NIL) (($ (-1135)) NIL (|has| (-839 |#1|) (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))) (|has| (-839 |#1|) (-143))))) (-3835 (((-745)) NIL)) (-3897 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-533)))) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ (-548)) NIL)) (-1446 (($ $) NIL (|has| (-839 |#1|) (-794)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $) NIL (|has| (-839 |#1|) (-226))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-226))) (($ $ (-1135)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2309 (($ $ $) NIL) (($ (-839 |#1|) (-839 |#1|)) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-839 |#1|) $) NIL) (($ $ (-839 |#1|)) NIL))) -(((-840 |#1|) (-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) (-548)) (T -840)) -((-2439 (*1 *2 *1 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-840 *4)) (-14 *4 *3) (-5 *3 (-548)))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-840 *3)) (-14 *3 (-548)))) (-1306 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-548)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-840 *3)) (-14 *3 *2)))) -(-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 ((|#2| $) NIL (|has| |#2| (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| |#2| (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| |#2| (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548))))) (-2375 ((|#2| $) NIL) (((-1135) $) NIL (|has| |#2| (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-548)))) (((-548) $) NIL (|has| |#2| (-1007 (-548))))) (-1306 (($ $) 31) (($ (-548) $) 32)) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 53)) (-2545 (($) NIL (|has| |#2| (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) NIL (|has| |#2| (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| |#2| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| |#2| (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 ((|#2| $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#2| (-1111)))) (-3312 (((-112) $) NIL (|has| |#2| (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 49)) (-3410 (($) NIL (|has| |#2| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| |#2| (-299)))) (-3887 ((|#2| $) NIL (|has| |#2| (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 |#2|) (-619 |#2|)) NIL (|has| |#2| (-301 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-301 |#2|))) (($ $ (-286 |#2|)) NIL (|has| |#2| (-301 |#2|))) (($ $ (-619 (-286 |#2|))) NIL (|has| |#2| (-301 |#2|))) (($ $ (-619 (-1135)) (-619 |#2|)) NIL (|has| |#2| (-504 (-1135) |#2|))) (($ $ (-1135) |#2|) NIL (|has| |#2| (-504 (-1135) |#2|)))) (-4077 (((-745) $) NIL)) (-3171 (($ $ |#2|) NIL (|has| |#2| (-278 |#2| |#2|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) NIL (|has| |#2| (-226))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1993 (($ $) NIL)) (-2480 ((|#2| $) NIL)) (-2591 (((-861 (-548)) $) NIL (|has| |#2| (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| |#2| (-593 (-861 (-371))))) (((-524) $) NIL (|has| |#2| (-593 (-524)))) (((-371) $) NIL (|has| |#2| (-991))) (((-218) $) NIL (|has| |#2| (-991)))) (-1351 (((-171 (-399 (-548))) $) 68)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3743 (((-832) $) 87) (($ (-548)) 19) (($ $) NIL) (($ (-399 (-548))) 24) (($ |#2|) 18) (($ (-1135)) NIL (|has| |#2| (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-3897 ((|#2| $) NIL (|has| |#2| (-533)))) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ (-548)) 60)) (-1446 (($ $) NIL (|has| |#2| (-794)))) (-3107 (($) 14 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $) NIL (|has| |#2| (-226))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) 35)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2299 (($ $) 39) (($ $ $) 41)) (-2290 (($ $ $) 37)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) 50)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 42) (($ $ $) 44) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-841 |#1| |#2|) (-13 (-961 |#2|) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) (-548) (-838 |#1|)) (T -841)) -((-2439 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-399 (-548))) (-5 *1 (-841 *4 *5)) (-5 *3 (-548)) (-4 *5 (-838 *4)))) (-1351 (*1 *2 *1) (-12 (-14 *3 (-548)) (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3)))) (-1306 (*1 *1 *1) (-12 (-14 *2 (-548)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3))))) -(-13 (-961 |#2|) (-10 -8 (-15 -2439 ((-399 (-548)) $ (-548))) (-15 -1351 ((-171 (-399 (-548))) $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)))) -((-3730 (((-112) $ $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-1975 ((|#2| $) 12)) (-3386 (($ |#1| |#2|) 9)) (-2546 (((-1118) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3932 (((-1082) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#1| $) 11)) (-3754 (($ |#1| |#2|) 10)) (-3743 (((-832) $) 18 (-1524 (-12 (|has| |#1| (-592 (-832))) (|has| |#2| (-592 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) (-2214 (((-112) $ $) 22 (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) -(((-842 |#1| |#2|) (-13 (-1172) (-10 -8 (IF (|has| |#1| (-592 (-832))) (IF (|has| |#2| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3386 ($ |#1| |#2|)) (-15 -3754 ($ |#1| |#2|)) (-15 -3453 (|#1| $)) (-15 -1975 (|#2| $)))) (-1172) (-1172)) (T -842)) -((-3386 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) (-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) (-3453 (*1 *2 *1) (-12 (-4 *2 (-1172)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1172)))) (-1975 (*1 *2 *1) (-12 (-4 *2 (-1172)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1172))))) -(-13 (-1172) (-10 -8 (IF (|has| |#1| (-592 (-832))) (IF (|has| |#2| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3386 ($ |#1| |#2|)) (-15 -3754 ($ |#1| |#2|)) (-15 -3453 (|#1| $)) (-15 -1975 (|#2| $)))) -((-3730 (((-112) $ $) NIL)) (-1646 (((-548) $) 15)) (-1373 (($ (-154)) 11)) (-1361 (($ (-154)) 12)) (-2546 (((-1118) $) NIL)) (-2756 (((-154) $) 13)) (-3932 (((-1082) $) NIL)) (-3670 (($ (-154)) 9)) (-1385 (($ (-154)) 8)) (-3743 (((-832) $) 23) (($ (-154)) 16)) (-3093 (($ (-154)) 10)) (-2214 (((-112) $ $) NIL))) -(((-843) (-13 (-1063) (-10 -8 (-15 -1385 ($ (-154))) (-15 -3670 ($ (-154))) (-15 -3093 ($ (-154))) (-15 -1373 ($ (-154))) (-15 -1361 ($ (-154))) (-15 -2756 ((-154) $)) (-15 -1646 ((-548) $)) (-15 -3743 ($ (-154)))))) (T -843)) -((-1385 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-843)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) -(-13 (-1063) (-10 -8 (-15 -1385 ($ (-154))) (-15 -3670 ($ (-154))) (-15 -3093 ($ (-154))) (-15 -1373 ($ (-154))) (-15 -1361 ($ (-154))) (-15 -2756 ((-154) $)) (-15 -1646 ((-548) $)) (-15 -3743 ($ (-154))))) -((-3743 (((-308 (-548)) (-399 (-921 (-48)))) 23) (((-308 (-548)) (-921 (-48))) 18))) -(((-844) (-10 -7 (-15 -3743 ((-308 (-548)) (-921 (-48)))) (-15 -3743 ((-308 (-548)) (-399 (-921 (-48))))))) (T -844)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 (-48)))) (-5 *2 (-308 (-548))) (-5 *1 (-844)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-921 (-48))) (-5 *2 (-308 (-548))) (-5 *1 (-844))))) -(-10 -7 (-15 -3743 ((-308 (-548)) (-921 (-48)))) (-15 -3743 ((-308 (-548)) (-399 (-921 (-48)))))) -((-2540 (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)) 14))) -(((-845 |#1| |#2|) (-10 -7 (-15 -2540 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) (-1172) (-1172)) (T -845)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6))))) -(-10 -7 (-15 -2540 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) -((-1334 (($ |#1| |#1|) 8)) (-1416 ((|#1| $ (-745)) 10))) -(((-846 |#1|) (-10 -8 (-15 -1334 ($ |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) (-1172)) (T -846)) -((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1172)))) (-1334 (*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1172))))) -(-10 -8 (-15 -1334 ($ |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) -((-2540 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14))) -(((-847 |#1| |#2|) (-10 -7 (-15 -2540 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1172) (-1172)) (T -847)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))) -(-10 -7 (-15 -2540 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) -((-1334 (($ |#1| |#1| |#1|) 8)) (-1416 ((|#1| $ (-745)) 10))) -(((-848 |#1|) (-10 -8 (-15 -1334 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) (-1172)) (T -848)) -((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1172)))) (-1334 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1172))))) -(-10 -8 (-15 -1334 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) -((-1395 (((-619 (-1140)) (-1118)) 9))) -(((-849) (-10 -7 (-15 -1395 ((-619 (-1140)) (-1118))))) (T -849)) -((-1395 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-849))))) -(-10 -7 (-15 -1395 ((-619 (-1140)) (-1118)))) -((-2540 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14))) -(((-850 |#1| |#2|) (-10 -7 (-15 -2540 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1172) (-1172)) (T -850)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))) -(-10 -7 (-15 -2540 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) -((-1405 (($ |#1| |#1| |#1|) 8)) (-1416 ((|#1| $ (-745)) 10))) -(((-851 |#1|) (-10 -8 (-15 -1405 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) (-1172)) (T -851)) -((-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1172)))) (-1405 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1172))))) -(-10 -8 (-15 -1405 ($ |#1| |#1| |#1|)) (-15 -1416 (|#1| $ (-745)))) -((-1460 (((-1116 (-619 (-548))) (-619 (-548)) (-1116 (-619 (-548)))) 32)) (-1450 (((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548))) 28)) (-1472 (((-1116 (-619 (-548))) (-619 (-548))) 41) (((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548))) 40)) (-1483 (((-1116 (-619 (-548))) (-548)) 42)) (-1427 (((-1116 (-619 (-548))) (-548) (-548)) 22) (((-1116 (-619 (-548))) (-548)) 16) (((-1116 (-619 (-548))) (-548) (-548) (-548)) 12)) (-1439 (((-1116 (-619 (-548))) (-1116 (-619 (-548)))) 26)) (-2128 (((-619 (-548)) (-619 (-548))) 25))) -(((-852) (-10 -7 (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548))) (-15 -2128 ((-619 (-548)) (-619 (-548)))) (-15 -1439 ((-1116 (-619 (-548))) (-1116 (-619 (-548))))) (-15 -1450 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1460 ((-1116 (-619 (-548))) (-619 (-548)) (-1116 (-619 (-548))))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)))) (-15 -1483 ((-1116 (-619 (-548))) (-548))))) (T -852)) -((-1483 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-619 (-548))))) (-1472 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-619 (-548))))) (-1460 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *3 (-619 (-548))) (-5 *1 (-852)))) (-1450 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-619 (-548))))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)))) (-2128 (*1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-852)))) (-1427 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) (-1427 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) (-1427 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548))))) -(-10 -7 (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548))) (-15 -1427 ((-1116 (-619 (-548))) (-548) (-548))) (-15 -2128 ((-619 (-548)) (-619 (-548)))) (-15 -1439 ((-1116 (-619 (-548))) (-1116 (-619 (-548))))) (-15 -1450 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1460 ((-1116 (-619 (-548))) (-619 (-548)) (-1116 (-619 (-548))))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)) (-619 (-548)))) (-15 -1472 ((-1116 (-619 (-548))) (-619 (-548)))) (-15 -1483 ((-1116 (-619 (-548))) (-548)))) -((-2591 (((-861 (-371)) $) 9 (|has| |#1| (-593 (-861 (-371))))) (((-861 (-548)) $) 8 (|has| |#1| (-593 (-861 (-548))))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-839 |#1|) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-839 |#1|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| (-839 |#1|) (-1007 (-547))))) (-2643 (((-839 |#1|) $) NIL) (((-1135) $) NIL (|has| (-839 |#1|) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-839 |#1|) (-1007 (-547)))) (((-547) $) NIL (|has| (-839 |#1|) (-1007 (-547))))) (-2200 (($ $) NIL) (($ (-547) $) NIL)) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-839 |#1|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-839 |#1|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-839 |#1|))) (|:| |vec| (-1218 (-839 |#1|)))) (-663 $) (-1218 $)) NIL) (((-663 (-839 |#1|)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-839 |#1|) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-839 |#1|) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-839 |#1|) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-839 |#1|) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-1111)))) (-3937 (((-112) $) NIL (|has| (-839 |#1|) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-3563 (($ $ $) NIL (|has| (-839 |#1|) (-821)))) (-2781 (($ (-1 (-839 |#1|) (-839 |#1|)) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-839 |#1|) (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-839 |#1|) (-298)))) (-1435 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-839 |#1|) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-839 |#1|)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-839 |#1|) (-839 |#1|)) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-285 (-839 |#1|))) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-619 (-285 (-839 |#1|)))) NIL (|has| (-839 |#1|) (-300 (-839 |#1|)))) (($ $ (-619 (-1135)) (-619 (-839 |#1|))) NIL (|has| (-839 |#1|) (-503 (-1135) (-839 |#1|)))) (($ $ (-1135) (-839 |#1|)) NIL (|has| (-839 |#1|) (-503 (-1135) (-839 |#1|))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-839 |#1|)) NIL (|has| (-839 |#1|) (-277 (-839 |#1|) (-839 |#1|))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| (-839 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-225))) (($ $ (-1135)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-839 |#1|) $) NIL)) (-2829 (((-861 (-547)) $) NIL (|has| (-839 |#1|) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-839 |#1|) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-839 |#1|) (-592 (-523)))) (((-370) $) NIL (|has| (-839 |#1|) (-991))) (((-217) $) NIL (|has| (-839 |#1|) (-991)))) (-4026 (((-171 (-398 (-547))) $) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL) (($ (-839 |#1|)) NIL) (($ (-1135)) NIL (|has| (-839 |#1|) (-1007 (-1135))))) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-839 |#1|) (-878))) (|has| (-839 |#1|) (-143))))) (-2311 (((-745)) NIL)) (-1564 (((-839 |#1|) $) NIL (|has| (-839 |#1|) (-532)))) (-1932 (((-112) $ $) NIL)) (-2645 (((-398 (-547)) $ (-547)) NIL)) (-2040 (($ $) NIL (|has| (-839 |#1|) (-794)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $) NIL (|has| (-839 |#1|) (-225))) (($ $ (-745)) NIL (|has| (-839 |#1|) (-225))) (($ $ (-1135)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-839 |#1|) (-869 (-1135)))) (($ $ (-1 (-839 |#1|) (-839 |#1|)) (-745)) NIL) (($ $ (-1 (-839 |#1|) (-839 |#1|))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-839 |#1|) (-821)))) (-2497 (($ $ $) NIL) (($ (-839 |#1|) (-839 |#1|)) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-839 |#1|) $) NIL) (($ $ (-839 |#1|)) NIL))) +(((-840 |#1|) (-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2645 ((-398 (-547)) $ (-547))) (-15 -4026 ((-171 (-398 (-547))) $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)))) (-547)) (T -840)) +((-2645 (*1 *2 *1 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-840 *4)) (-14 *4 *3) (-5 *3 (-547)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-840 *3)) (-14 *3 (-547)))) (-2200 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-547)))) (-2200 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-840 *3)) (-14 *3 *2)))) +(-13 (-961 (-839 |#1|)) (-10 -8 (-15 -2645 ((-398 (-547)) $ (-547))) (-15 -4026 ((-171 (-398 (-547))) $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 ((|#2| $) NIL (|has| |#2| (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| |#2| (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (|has| |#2| (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547))))) (-2643 ((|#2| $) NIL) (((-1135) $) NIL (|has| |#2| (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-547)))) (((-547) $) NIL (|has| |#2| (-1007 (-547))))) (-2200 (($ $) 31) (($ (-547) $) 32)) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) 53)) (-3229 (($) NIL (|has| |#2| (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) NIL (|has| |#2| (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| |#2| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| |#2| (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 ((|#2| $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| |#2| (-1111)))) (-3937 (((-112) $) NIL (|has| |#2| (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| |#2| (-821)))) (-3563 (($ $ $) NIL (|has| |#2| (-821)))) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 49)) (-3045 (($) NIL (|has| |#2| (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| |#2| (-298)))) (-1435 ((|#2| $) NIL (|has| |#2| (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 |#2|) (-619 |#2|)) NIL (|has| |#2| (-300 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-300 |#2|))) (($ $ (-285 |#2|)) NIL (|has| |#2| (-300 |#2|))) (($ $ (-619 (-285 |#2|))) NIL (|has| |#2| (-300 |#2|))) (($ $ (-619 (-1135)) (-619 |#2|)) NIL (|has| |#2| (-503 (-1135) |#2|))) (($ $ (-1135) |#2|) NIL (|has| |#2| (-503 (-1135) |#2|)))) (-2776 (((-745) $) NIL)) (-3329 (($ $ |#2|) NIL (|has| |#2| (-277 |#2| |#2|)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) NIL (|has| |#2| (-225))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3660 (($ $) NIL)) (-1392 ((|#2| $) NIL)) (-2829 (((-861 (-547)) $) NIL (|has| |#2| (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| |#2| (-592 (-861 (-370))))) (((-523) $) NIL (|has| |#2| (-592 (-523)))) (((-370) $) NIL (|has| |#2| (-991))) (((-217) $) NIL (|has| |#2| (-991)))) (-4026 (((-171 (-398 (-547))) $) 68)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-3834 (((-832) $) 87) (($ (-547)) 19) (($ $) NIL) (($ (-398 (-547))) 24) (($ |#2|) 18) (($ (-1135)) NIL (|has| |#2| (-1007 (-1135))))) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2311 (((-745)) NIL)) (-1564 ((|#2| $) NIL (|has| |#2| (-532)))) (-1932 (((-112) $ $) NIL)) (-2645 (((-398 (-547)) $ (-547)) 60)) (-2040 (($ $) NIL (|has| |#2| (-794)))) (-3267 (($) 14 T CONST)) (-3277 (($) 16 T CONST)) (-1686 (($ $) NIL (|has| |#2| (-225))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2371 (((-112) $ $) 35)) (-2421 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2497 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2484 (($ $) 39) (($ $ $) 41)) (-2470 (($ $ $) 37)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) 50)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 42) (($ $ $) 44) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-841 |#1| |#2|) (-13 (-961 |#2|) (-10 -8 (-15 -2645 ((-398 (-547)) $ (-547))) (-15 -4026 ((-171 (-398 (-547))) $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)))) (-547) (-838 |#1|)) (T -841)) +((-2645 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-398 (-547))) (-5 *1 (-841 *4 *5)) (-5 *3 (-547)) (-4 *5 (-838 *4)))) (-4026 (*1 *2 *1) (-12 (-14 *3 (-547)) (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3)))) (-2200 (*1 *1 *1) (-12 (-14 *2 (-547)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) (-2200 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3))))) +(-13 (-961 |#2|) (-10 -8 (-15 -2645 ((-398 (-547)) $ (-547))) (-15 -4026 ((-171 (-398 (-547))) $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)))) +((-3821 (((-112) $ $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-2814 ((|#2| $) 12)) (-3515 (($ |#1| |#2|) 9)) (-1917 (((-1118) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3979 (((-1082) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#1| $) 11)) (-3841 (($ |#1| |#2|) 10)) (-3834 (((-832) $) 18 (-1524 (-12 (|has| |#1| (-591 (-832))) (|has| |#2| (-591 (-832)))) (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) (-2371 (((-112) $ $) 22 (-12 (|has| |#1| (-1063)) (|has| |#2| (-1063)))))) +(((-842 |#1| |#2|) (-13 (-1172) (-10 -8 (IF (|has| |#1| (-591 (-832))) (IF (|has| |#2| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3515 ($ |#1| |#2|)) (-15 -3841 ($ |#1| |#2|)) (-15 -3634 (|#1| $)) (-15 -2814 (|#2| $)))) (-1172) (-1172)) (T -842)) +((-3515 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) (-3634 (*1 *2 *1) (-12 (-4 *2 (-1172)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1172)))) (-2814 (*1 *2 *1) (-12 (-4 *2 (-1172)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1172))))) +(-13 (-1172) (-10 -8 (IF (|has| |#1| (-591 (-832))) (IF (|has| |#2| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1063)) (IF (|has| |#2| (-1063)) (-6 (-1063)) |%noBranch|) |%noBranch|) (-15 -3515 ($ |#1| |#2|)) (-15 -3841 ($ |#1| |#2|)) (-15 -3634 (|#1| $)) (-15 -2814 (|#2| $)))) +((-3821 (((-112) $ $) NIL)) (-3449 (((-547) $) 15)) (-3141 (($ (-154)) 11)) (-3791 (($ (-154)) 12)) (-1917 (((-1118) $) NIL)) (-2270 (((-154) $) 13)) (-3979 (((-1082) $) NIL)) (-2712 (($ (-154)) 9)) (-3284 (($ (-154)) 8)) (-3834 (((-832) $) 23) (($ (-154)) 16)) (-3261 (($ (-154)) 10)) (-2371 (((-112) $ $) NIL))) +(((-843) (-13 (-1063) (-10 -8 (-15 -3284 ($ (-154))) (-15 -2712 ($ (-154))) (-15 -3261 ($ (-154))) (-15 -3141 ($ (-154))) (-15 -3791 ($ (-154))) (-15 -2270 ((-154) $)) (-15 -3449 ((-547) $)) (-15 -3834 ($ (-154)))))) (T -843)) +((-3284 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-843)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(-13 (-1063) (-10 -8 (-15 -3284 ($ (-154))) (-15 -2712 ($ (-154))) (-15 -3261 ($ (-154))) (-15 -3141 ($ (-154))) (-15 -3791 ($ (-154))) (-15 -2270 ((-154) $)) (-15 -3449 ((-547) $)) (-15 -3834 ($ (-154))))) +((-3834 (((-307 (-547)) (-398 (-921 (-48)))) 23) (((-307 (-547)) (-921 (-48))) 18))) +(((-844) (-10 -7 (-15 -3834 ((-307 (-547)) (-921 (-48)))) (-15 -3834 ((-307 (-547)) (-398 (-921 (-48))))))) (T -844)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 (-48)))) (-5 *2 (-307 (-547))) (-5 *1 (-844)))) (-3834 (*1 *2 *3) (-12 (-5 *3 (-921 (-48))) (-5 *2 (-307 (-547))) (-5 *1 (-844))))) +(-10 -7 (-15 -3834 ((-307 (-547)) (-921 (-48)))) (-15 -3834 ((-307 (-547)) (-398 (-921 (-48)))))) +((-2781 (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)) 14))) +(((-845 |#1| |#2|) (-10 -7 (-15 -2781 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) (-1172) (-1172)) (T -845)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6))))) +(-10 -7 (-15 -2781 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)))) +((-3241 (($ |#1| |#1|) 8)) (-3574 ((|#1| $ (-745)) 10))) +(((-846 |#1|) (-10 -8 (-15 -3241 ($ |#1| |#1|)) (-15 -3574 (|#1| $ (-745)))) (-1172)) (T -846)) +((-3574 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1172)))) (-3241 (*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1172))))) +(-10 -8 (-15 -3241 ($ |#1| |#1|)) (-15 -3574 (|#1| $ (-745)))) +((-2781 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14))) +(((-847 |#1| |#2|) (-10 -7 (-15 -2781 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-1172) (-1172)) (T -847)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))) +(-10 -7 (-15 -2781 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) +((-3241 (($ |#1| |#1| |#1|) 8)) (-3574 ((|#1| $ (-745)) 10))) +(((-848 |#1|) (-10 -8 (-15 -3241 ($ |#1| |#1| |#1|)) (-15 -3574 (|#1| $ (-745)))) (-1172)) (T -848)) +((-3574 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1172)))) (-3241 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1172))))) +(-10 -8 (-15 -3241 ($ |#1| |#1| |#1|)) (-15 -3574 (|#1| $ (-745)))) +((-3381 (((-619 (-1140)) (-1118)) 9))) +(((-849) (-10 -7 (-15 -3381 ((-619 (-1140)) (-1118))))) (T -849)) +((-3381 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-849))))) +(-10 -7 (-15 -3381 ((-619 (-1140)) (-1118)))) +((-2781 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14))) +(((-850 |#1| |#2|) (-10 -7 (-15 -2781 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1172) (-1172)) (T -850)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))) +(-10 -7 (-15 -2781 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) +((-3473 (($ |#1| |#1| |#1|) 8)) (-3574 ((|#1| $ (-745)) 10))) +(((-851 |#1|) (-10 -8 (-15 -3473 ($ |#1| |#1| |#1|)) (-15 -3574 (|#1| $ (-745)))) (-1172)) (T -851)) +((-3574 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1172)))) (-3473 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1172))))) +(-10 -8 (-15 -3473 ($ |#1| |#1| |#1|)) (-15 -3574 (|#1| $ (-745)))) +((-2212 (((-1116 (-619 (-547))) (-619 (-547)) (-1116 (-619 (-547)))) 32)) (-2090 (((-1116 (-619 (-547))) (-619 (-547)) (-619 (-547))) 28)) (-2347 (((-1116 (-619 (-547))) (-619 (-547))) 41) (((-1116 (-619 (-547))) (-619 (-547)) (-619 (-547))) 40)) (-2467 (((-1116 (-619 (-547))) (-547)) 42)) (-3670 (((-1116 (-619 (-547))) (-547) (-547)) 22) (((-1116 (-619 (-547))) (-547)) 16) (((-1116 (-619 (-547))) (-547) (-547) (-547)) 12)) (-1961 (((-1116 (-619 (-547))) (-1116 (-619 (-547)))) 26)) (-2444 (((-619 (-547)) (-619 (-547))) 25))) +(((-852) (-10 -7 (-15 -3670 ((-1116 (-619 (-547))) (-547) (-547) (-547))) (-15 -3670 ((-1116 (-619 (-547))) (-547))) (-15 -3670 ((-1116 (-619 (-547))) (-547) (-547))) (-15 -2444 ((-619 (-547)) (-619 (-547)))) (-15 -1961 ((-1116 (-619 (-547))) (-1116 (-619 (-547))))) (-15 -2090 ((-1116 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -2212 ((-1116 (-619 (-547))) (-619 (-547)) (-1116 (-619 (-547))))) (-15 -2347 ((-1116 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -2347 ((-1116 (-619 (-547))) (-619 (-547)))) (-15 -2467 ((-1116 (-619 (-547))) (-547))))) (T -852)) +((-2467 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-619 (-547))))) (-2347 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-619 (-547))))) (-2212 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *3 (-619 (-547))) (-5 *1 (-852)))) (-2090 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-619 (-547))))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-852)))) (-3670 (*1 *2 *3 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) (-3670 (*1 *2 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) (-3670 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547))))) +(-10 -7 (-15 -3670 ((-1116 (-619 (-547))) (-547) (-547) (-547))) (-15 -3670 ((-1116 (-619 (-547))) (-547))) (-15 -3670 ((-1116 (-619 (-547))) (-547) (-547))) (-15 -2444 ((-619 (-547)) (-619 (-547)))) (-15 -1961 ((-1116 (-619 (-547))) (-1116 (-619 (-547))))) (-15 -2090 ((-1116 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -2212 ((-1116 (-619 (-547))) (-619 (-547)) (-1116 (-619 (-547))))) (-15 -2347 ((-1116 (-619 (-547))) (-619 (-547)) (-619 (-547)))) (-15 -2347 ((-1116 (-619 (-547))) (-619 (-547)))) (-15 -2467 ((-1116 (-619 (-547))) (-547)))) +((-2829 (((-861 (-370)) $) 9 (|has| |#1| (-592 (-861 (-370))))) (((-861 (-547)) $) 8 (|has| |#1| (-592 (-861 (-547))))))) (((-853 |#1|) (-138) (-1172)) (T -853)) NIL -(-13 (-10 -7 (IF (|has| |t#1| (-593 (-861 (-548)))) (-6 (-593 (-861 (-548)))) |%noBranch|) (IF (|has| |t#1| (-593 (-861 (-371)))) (-6 (-593 (-861 (-371)))) |%noBranch|))) -(((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548))))) -((-3730 (((-112) $ $) NIL)) (-3550 (($) 14)) (-1507 (($ (-858 |#1| |#2|) (-858 |#1| |#3|)) 27)) (-2173 (((-858 |#1| |#3|) $) 16)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1573 (((-112) $) 22)) (-4119 (($) 19)) (-3743 (((-832) $) 30)) (-1495 (((-858 |#1| |#2|) $) 15)) (-2214 (((-112) $ $) 25))) -(((-854 |#1| |#2| |#3|) (-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1507 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -1495 ((-858 |#1| |#2|) $)) (-15 -2173 ((-858 |#1| |#3|) $)))) (-1063) (-1063) (-640 |#2|)) (T -854)) -((-1573 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-4119 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-3550 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6)))) (-1495 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-2173 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4))))) -(-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1507 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -1495 ((-858 |#1| |#2|) $)) (-15 -2173 ((-858 |#1| |#3|) $)))) -((-3730 (((-112) $ $) 7)) (-3628 (((-858 |#1| $) $ (-861 |#1|) (-858 |#1| $)) 13)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +(-13 (-10 -7 (IF (|has| |t#1| (-592 (-861 (-547)))) (-6 (-592 (-861 (-547)))) |%noBranch|) (IF (|has| |t#1| (-592 (-861 (-370)))) (-6 (-592 (-861 (-370)))) |%noBranch|))) +(((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547))))) +((-3821 (((-112) $ $) NIL)) (-3732 (($) 14)) (-1367 (($ (-858 |#1| |#2|) (-858 |#1| |#3|)) 27)) (-3168 (((-858 |#1| |#3|) $) 16)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3905 (((-112) $) 22)) (-4142 (($) 19)) (-3834 (((-832) $) 30)) (-1255 (((-858 |#1| |#2|) $) 15)) (-2371 (((-112) $ $) 25))) +(((-854 |#1| |#2| |#3|) (-13 (-1063) (-10 -8 (-15 -3905 ((-112) $)) (-15 -4142 ($)) (-15 -3732 ($)) (-15 -1367 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -1255 ((-858 |#1| |#2|) $)) (-15 -3168 ((-858 |#1| |#3|) $)))) (-1063) (-1063) (-640 |#2|)) (T -854)) +((-3905 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-4142 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-3732 (*1 *1) (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) (-4 *4 (-640 *3)))) (-1367 (*1 *1 *2 *3) (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6)))) (-1255 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4)))) (-3168 (*1 *2 *1) (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1063)) (-4 *5 (-640 *4))))) +(-13 (-1063) (-10 -8 (-15 -3905 ((-112) $)) (-15 -4142 ($)) (-15 -3732 ($)) (-15 -1367 ($ (-858 |#1| |#2|) (-858 |#1| |#3|))) (-15 -1255 ((-858 |#1| |#2|) $)) (-15 -3168 ((-858 |#1| |#3|) $)))) +((-3821 (((-112) $ $) 7)) (-3893 (((-858 |#1| $) $ (-861 |#1|) (-858 |#1| $)) 13)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) (((-855 |#1|) (-138) (-1063)) (T -855)) -((-3628 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) (-4 *4 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -3628 ((-858 |t#1| $) $ (-861 |t#1|) (-858 |t#1| $))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-1518 (((-112) (-619 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1528 (((-858 |#1| |#2|) |#2| |#3|) 43 (-12 (-3958 (|has| |#2| (-1007 (-1135)))) (-3958 (|has| |#2| (-1016))))) (((-619 (-286 (-921 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1016)) (-3958 (|has| |#2| (-1007 (-1135)))))) (((-619 (-286 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1007 (-1135)))) (((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|) 21))) -(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -1518 ((-112) |#2| |#3|)) (-15 -1518 ((-112) (-619 |#2|) |#3|)) (-15 -1528 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1135))) (-15 -1528 ((-619 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -1528 ((-619 (-286 (-921 |#2|))) |#2| |#3|)) (-15 -1528 ((-858 |#1| |#2|) |#2| |#3|))))) (-1063) (-855 |#1|) (-593 (-861 |#1|))) (T -856)) -((-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4)) (-3958 (-4 *3 (-1007 (-1135)))) (-3958 (-4 *3 (-1016))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) (-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 (-921 *3)))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016)) (-3958 (-4 *3 (-1007 (-1135)))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) (-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 *3))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1007 (-1135))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) (-1528 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6))) (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-593 (-861 *5))))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-593 (-861 *5))))) (-1518 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5)))))) -(-10 -7 (-15 -1518 ((-112) |#2| |#3|)) (-15 -1518 ((-112) (-619 |#2|) |#3|)) (-15 -1528 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1135))) (-15 -1528 ((-619 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -1528 ((-619 (-286 (-921 |#2|))) |#2| |#3|)) (-15 -1528 ((-858 |#1| |#2|) |#2| |#3|))))) -((-2540 (((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)) 22))) -(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) (-1063) (-1063) (-1063)) (T -857)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-858 *5 *6)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-858 *5 *7)) (-5 *1 (-857 *5 *6 *7))))) -(-10 -7 (-15 -2540 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) -((-3730 (((-112) $ $) NIL)) (-1434 (($ $ $) 39)) (-3579 (((-3 (-112) "failed") $ (-861 |#1|)) 36)) (-3550 (($) 12)) (-2546 (((-1118) $) NIL)) (-1547 (($ (-861 |#1|) |#2| $) 20)) (-3932 (((-1082) $) NIL)) (-1565 (((-3 |#2| "failed") (-861 |#1|) $) 50)) (-1573 (((-112) $) 15)) (-4119 (($) 13)) (-1981 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))) $) 25)) (-3754 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|)))) 23)) (-3743 (((-832) $) 44)) (-1538 (($ (-861 |#1|) |#2| $ |#2|) 48)) (-1556 (($ (-861 |#1|) |#2| $) 47)) (-2214 (((-112) $ $) 41))) -(((-858 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1434 ($ $ $)) (-15 -1565 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -1556 ($ (-861 |#1|) |#2| $)) (-15 -1547 ($ (-861 |#1|) |#2| $)) (-15 -1538 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -1981 ((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))))) (-15 -3579 ((-3 (-112) "failed") $ (-861 |#1|))))) (-1063) (-1063)) (T -858)) -((-1573 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-4119 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3550 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1434 (*1 *1 *1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1565 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-5 *1 (-858 *4 *2)))) (-1556 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1547 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1538 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)))) (-3579 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -1573 ((-112) $)) (-15 -4119 ($)) (-15 -3550 ($)) (-15 -1434 ($ $ $)) (-15 -1565 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -1556 ($ (-861 |#1|) |#2| $)) (-15 -1547 ($ (-861 |#1|) |#2| $)) (-15 -1538 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -1981 ((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))) $)) (-15 -3754 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 |#2|))))) (-15 -3579 ((-3 (-112) "failed") $ (-861 |#1|))))) -((-2256 (((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|))) 32) (((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|))) 43) (((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|)) 35)) (-3579 (((-112) (-619 |#2|) (-861 |#1|)) 40) (((-112) |#2| (-861 |#1|)) 36)) (-3210 (((-1 (-112) |#2|) (-861 |#1|)) 16)) (-3603 (((-619 |#2|) (-861 |#1|)) 24)) (-3591 (((-861 |#1|) (-861 |#1|) |#2|) 20))) -(((-859 |#1| |#2|) (-10 -7 (-15 -2256 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|)))) (-15 -3210 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -3579 ((-112) |#2| (-861 |#1|))) (-15 -3579 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -3591 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -3603 ((-619 |#2|) (-861 |#1|)))) (-1063) (-1172)) (T -859)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1172)))) (-3591 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1172)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-859 *5 *3)) (-4 *3 (-1172)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1172)))) (-2256 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1135))) (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-859 *5 *6)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) (-4 *5 (-1172)) (-5 *1 (-859 *4 *5))))) -(-10 -7 (-15 -2256 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -2256 ((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|)))) (-15 -3210 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -3579 ((-112) |#2| (-861 |#1|))) (-15 -3579 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -3591 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -3603 ((-619 |#2|) (-861 |#1|)))) -((-2540 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19))) -(((-860 |#1| |#2|) (-10 -7 (-15 -2540 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1063) (-1063)) (T -860)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))) -(-10 -7 (-15 -2540 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) -((-3730 (((-112) $ $) NIL)) (-1647 (($ $ (-619 (-52))) 64)) (-2049 (((-619 $) $) 118)) (-1622 (((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $) 24)) (-2633 (((-112) $) 30)) (-1631 (($ $ (-619 (-1135)) (-52)) 25)) (-1655 (($ $ (-619 (-52))) 63)) (-2441 (((-3 |#1| "failed") $) 61) (((-3 (-1135) "failed") $) 140)) (-2375 ((|#1| $) 58) (((-1135) $) NIL)) (-1601 (($ $) 108)) (-3534 (((-112) $) 47)) (-1664 (((-619 (-52)) $) 45)) (-1638 (($ (-1135) (-112) (-112) (-112)) 65)) (-1583 (((-3 (-619 $) "failed") (-619 $)) 72)) (-1679 (((-112) $) 50)) (-1687 (((-112) $) 49)) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) 36)) (-3867 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3968 (((-3 (-2 (|:| |val| $) (|:| -3352 $)) "failed") $) 83)) (-3927 (((-3 (-619 $) "failed") $) 33)) (-3568 (((-3 (-619 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 $))) "failed") $) 95)) (-3557 (((-3 (-619 $) "failed") $) 37)) (-3954 (((-3 (-2 (|:| |val| $) (|:| -3352 (-745))) "failed") $) 40)) (-3545 (((-112) $) 29)) (-3932 (((-1082) $) NIL)) (-1610 (((-112) $) 21)) (-1671 (((-112) $) 46)) (-1593 (((-619 (-52)) $) 111)) (-3523 (((-112) $) 48)) (-3171 (($ (-114) (-619 $)) 92)) (-3045 (((-745) $) 28)) (-2113 (($ $) 62)) (-2591 (($ (-619 $)) 59)) (-2547 (((-112) $) 26)) (-3743 (((-832) $) 53) (($ |#1|) 18) (($ (-1135)) 66)) (-3591 (($ $ (-52)) 110)) (-3107 (($) 91 T CONST)) (-3118 (($) 73 T CONST)) (-2214 (((-112) $ $) 79)) (-2309 (($ $ $) 100)) (-2290 (($ $ $) 104)) (** (($ $ (-745)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-861 |#1|) (-13 (-1063) (-1007 |#1|) (-1007 (-1135)) (-10 -8 (-15 0 ($) -2325) (-15 1 ($) -2325) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3568 ((-3 (-619 $) "failed") $ (-114))) (-15 -3568 ((-3 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |val| $) (|:| -3352 (-745))) "failed") $)) (-15 -3867 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3557 ((-3 (-619 $) "failed") $)) (-15 -3968 ((-3 (-2 (|:| |val| $) (|:| -3352 $)) "failed") $)) (-15 -3171 ($ (-114) (-619 $))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2309 ($ $ $)) (-15 -3045 ((-745) $)) (-15 -2591 ($ (-619 $))) (-15 -2113 ($ $)) (-15 -3545 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2547 ((-112) $)) (-15 -3523 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -1679 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -1664 ((-619 (-52)) $)) (-15 -1655 ($ $ (-619 (-52)))) (-15 -1647 ($ $ (-619 (-52)))) (-15 -1638 ($ (-1135) (-112) (-112) (-112))) (-15 -1631 ($ $ (-619 (-1135)) (-52))) (-15 -1622 ((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $)) (-15 -1610 ((-112) $)) (-15 -1601 ($ $)) (-15 -3591 ($ $ (-52))) (-15 -1593 ((-619 (-52)) $)) (-15 -2049 ((-619 $) $)) (-15 -1583 ((-3 (-619 $) "failed") (-619 $))))) (-1063)) (T -861)) -((-3107 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3118 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3927 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3568 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 (-861 *3))))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3954 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-745)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3867 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3557 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3968 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3171 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-2309 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1655 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1638 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-52)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1601 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1583 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(-13 (-1063) (-1007 |#1|) (-1007 (-1135)) (-10 -8 (-15 (-3107) ($) -2325) (-15 (-3118) ($) -2325) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3568 ((-3 (-619 $) "failed") $ (-114))) (-15 -3568 ((-3 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |val| $) (|:| -3352 (-745))) "failed") $)) (-15 -3867 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3557 ((-3 (-619 $) "failed") $)) (-15 -3968 ((-3 (-2 (|:| |val| $) (|:| -3352 $)) "failed") $)) (-15 -3171 ($ (-114) (-619 $))) (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2309 ($ $ $)) (-15 -3045 ((-745) $)) (-15 -2591 ($ (-619 $))) (-15 -2113 ($ $)) (-15 -3545 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2547 ((-112) $)) (-15 -3523 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -1679 ((-112) $)) (-15 -1671 ((-112) $)) (-15 -1664 ((-619 (-52)) $)) (-15 -1655 ($ $ (-619 (-52)))) (-15 -1647 ($ $ (-619 (-52)))) (-15 -1638 ($ (-1135) (-112) (-112) (-112))) (-15 -1631 ($ $ (-619 (-1135)) (-52))) (-15 -1622 ((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $)) (-15 -1610 ((-112) $)) (-15 -1601 ($ $)) (-15 -3591 ($ $ (-52))) (-15 -1593 ((-619 (-52)) $)) (-15 -2049 ((-619 $) $)) (-15 -1583 ((-3 (-619 $) "failed") (-619 $))))) -((-3730 (((-112) $ $) NIL)) (-3065 (((-619 |#1|) $) 16)) (-3613 (((-112) $) 38)) (-2441 (((-3 (-646 |#1|) "failed") $) 43)) (-2375 (((-646 |#1|) $) 41)) (-3465 (($ $) 18)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3198 (((-745) $) 46)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-646 |#1|) $) 17)) (-3743 (((-832) $) 37) (($ (-646 |#1|)) 21) (((-793 |#1|) $) 27) (($ |#1|) 20)) (-3118 (($) 8 T CONST)) (-3623 (((-619 (-646 |#1|)) $) 23)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 11)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 49))) -(((-862 |#1|) (-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 1 ($) -2325) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ($ |#1|)) (-15 -3453 ((-646 |#1|) $)) (-15 -3198 ((-745) $)) (-15 -3623 ((-619 (-646 |#1|)) $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3065 ((-619 |#1|) $)))) (-821)) (T -862)) -((-3118 (*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3743 (*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3465 (*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821))))) -(-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 (-3118) ($) -2325) (-15 -3743 ((-793 |#1|) $)) (-15 -3743 ($ |#1|)) (-15 -3453 ((-646 |#1|) $)) (-15 -3198 ((-745) $)) (-15 -3623 ((-619 (-646 |#1|)) $)) (-15 -3465 ($ $)) (-15 -3613 ((-112) $)) (-15 -3065 ((-619 |#1|) $)))) -((-3941 ((|#1| |#1| |#1|) 19))) -(((-863 |#1| |#2|) (-10 -7 (-15 -3941 (|#1| |#1| |#1|))) (-1194 |#2|) (-1016)) (T -863)) -((-3941 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1194 *3))))) -(-10 -7 (-15 -3941 (|#1| |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3671 (((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 14)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3634 (((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 13)) (-2214 (((-112) $ $) 6))) +((-3893 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) (-4 *4 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3893 ((-858 |t#1| $) $ (-861 |t#1|) (-858 |t#1| $))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-1469 (((-112) (-619 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1583 (((-858 |#1| |#2|) |#2| |#3|) 43 (-12 (-3998 (|has| |#2| (-1007 (-1135)))) (-3998 (|has| |#2| (-1016))))) (((-619 (-285 (-921 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1016)) (-3998 (|has| |#2| (-1007 (-1135)))))) (((-619 (-285 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1007 (-1135)))) (((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|) 21))) +(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -1469 ((-112) |#2| |#3|)) (-15 -1469 ((-112) (-619 |#2|) |#3|)) (-15 -1583 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1135))) (-15 -1583 ((-619 (-285 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -1583 ((-619 (-285 (-921 |#2|))) |#2| |#3|)) (-15 -1583 ((-858 |#1| |#2|) |#2| |#3|))))) (-1063) (-855 |#1|) (-592 (-861 |#1|))) (T -856)) +((-1583 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4)) (-3998 (-4 *3 (-1007 (-1135)))) (-3998 (-4 *3 (-1016))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 (-921 *3)))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016)) (-3998 (-4 *3 (-1007 (-1135)))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 *3))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1007 (-1135))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6))) (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-592 (-861 *5))))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-592 (-861 *5))))) (-1469 (*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5)))))) +(-10 -7 (-15 -1469 ((-112) |#2| |#3|)) (-15 -1469 ((-112) (-619 |#2|) |#3|)) (-15 -1583 ((-854 |#1| |#2| (-619 |#2|)) (-619 |#2|) |#3|)) (IF (|has| |#2| (-1007 (-1135))) (-15 -1583 ((-619 (-285 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1016)) (-15 -1583 ((-619 (-285 (-921 |#2|))) |#2| |#3|)) (-15 -1583 ((-858 |#1| |#2|) |#2| |#3|))))) +((-2781 (((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)) 22))) +(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) (-1063) (-1063) (-1063)) (T -857)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-858 *5 *6)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-858 *5 *7)) (-5 *1 (-857 *5 *6 *7))))) +(-10 -7 (-15 -2781 ((-858 |#1| |#3|) (-1 |#3| |#2|) (-858 |#1| |#2|)))) +((-3821 (((-112) $ $) NIL)) (-1428 (($ $ $) 39)) (-1543 (((-3 (-112) "failed") $ (-861 |#1|)) 36)) (-3732 (($) 12)) (-1917 (((-1118) $) NIL)) (-1796 (($ (-861 |#1|) |#2| $) 20)) (-3979 (((-1082) $) NIL)) (-3837 (((-3 |#2| "failed") (-861 |#1|) $) 50)) (-3905 (((-112) $) 15)) (-4142 (($) 13)) (-2179 (((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 |#2|))) $) 25)) (-3841 (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 |#2|)))) 23)) (-3834 (((-832) $) 44)) (-1692 (($ (-861 |#1|) |#2| $ |#2|) 48)) (-3764 (($ (-861 |#1|) |#2| $) 47)) (-2371 (((-112) $ $) 41))) +(((-858 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3905 ((-112) $)) (-15 -4142 ($)) (-15 -3732 ($)) (-15 -1428 ($ $ $)) (-15 -3837 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -3764 ($ (-861 |#1|) |#2| $)) (-15 -1796 ($ (-861 |#1|) |#2| $)) (-15 -1692 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -2179 ((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 |#2|))) $)) (-15 -3841 ($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 |#2|))))) (-15 -1543 ((-3 (-112) "failed") $ (-861 |#1|))))) (-1063) (-1063)) (T -858)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-4142 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3732 (*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1428 (*1 *1 *1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3837 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-5 *1 (-858 *4 *2)))) (-3764 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1796 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-1692 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) (-4 *3 (-1063)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 *4)))) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 *4)))) (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)))) (-1543 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-4 *5 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3905 ((-112) $)) (-15 -4142 ($)) (-15 -3732 ($)) (-15 -1428 ($ $ $)) (-15 -3837 ((-3 |#2| "failed") (-861 |#1|) $)) (-15 -3764 ($ (-861 |#1|) |#2| $)) (-15 -1796 ($ (-861 |#1|) |#2| $)) (-15 -1692 ($ (-861 |#1|) |#2| $ |#2|)) (-15 -2179 ((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 |#2|))) $)) (-15 -3841 ($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 |#2|))))) (-15 -1543 ((-3 (-112) "failed") $ (-861 |#1|))))) +((-1847 (((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|))) 32) (((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|))) 43) (((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|)) 35)) (-1543 (((-112) (-619 |#2|) (-861 |#1|)) 40) (((-112) |#2| (-861 |#1|)) 36)) (-2808 (((-1 (-112) |#2|) (-861 |#1|)) 16)) (-1779 (((-619 |#2|) (-861 |#1|)) 24)) (-1664 (((-861 |#1|) (-861 |#1|) |#2|) 20))) +(((-859 |#1| |#2|) (-10 -7 (-15 -1847 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -1847 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -1847 ((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|)))) (-15 -2808 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -1543 ((-112) |#2| (-861 |#1|))) (-15 -1543 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -1664 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -1779 ((-619 |#2|) (-861 |#1|)))) (-1063) (-1172)) (T -859)) +((-1779 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1172)))) (-1664 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) (-4 *3 (-1172)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-859 *5 *3)) (-4 *3 (-1172)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-859 *4 *5)) (-4 *5 (-1172)))) (-1847 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1135))) (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-859 *5 *6)))) (-1847 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) (-1847 (*1 *2 *2 *3) (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) (-4 *5 (-1172)) (-5 *1 (-859 *4 *5))))) +(-10 -7 (-15 -1847 ((-861 |#1|) (-861 |#1|) (-1 (-112) |#2|))) (-15 -1847 ((-861 |#1|) (-861 |#1|) (-619 (-1 (-112) |#2|)))) (-15 -1847 ((-861 |#1|) (-861 |#1|) (-619 (-1135)) (-1 (-112) (-619 |#2|)))) (-15 -2808 ((-1 (-112) |#2|) (-861 |#1|))) (-15 -1543 ((-112) |#2| (-861 |#1|))) (-15 -1543 ((-112) (-619 |#2|) (-861 |#1|))) (-15 -1664 ((-861 |#1|) (-861 |#1|) |#2|)) (-15 -1779 ((-619 |#2|) (-861 |#1|)))) +((-2781 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 19))) +(((-860 |#1| |#2|) (-10 -7 (-15 -2781 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1063) (-1063)) (T -860)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))) +(-10 -7 (-15 -2781 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) +((-3821 (((-112) $ $) NIL)) (-3458 (($ $ (-619 (-52))) 64)) (-2259 (((-619 $) $) 118)) (-3206 (((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $) 24)) (-3447 (((-112) $) 30)) (-3290 (($ $ (-619 (-1135)) (-52)) 25)) (-3545 (($ $ (-619 (-52))) 63)) (-2698 (((-3 |#1| "failed") $) 61) (((-3 (-1135) "failed") $) 140)) (-2643 ((|#1| $) 58) (((-1135) $) NIL)) (-4180 (($ $) 108)) (-2427 (((-112) $) 47)) (-3632 (((-619 (-52)) $) 45)) (-3366 (($ (-1135) (-112) (-112) (-112)) 65)) (-4010 (((-3 (-619 $) "failed") (-619 $)) 72)) (-2664 (((-112) $) 50)) (-2737 (((-112) $) 49)) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) 36)) (-3973 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-4014 (((-3 (-2 (|:| |val| $) (|:| -4248 $)) "failed") $) 83)) (-1859 (((-3 (-619 $) "failed") $) 33)) (-1412 (((-3 (-619 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -2704 (-114)) (|:| |arg| (-619 $))) "failed") $) 95)) (-2658 (((-3 (-619 $) "failed") $) 37)) (-3909 (((-3 (-2 (|:| |val| $) (|:| -4248 (-745))) "failed") $) 40)) (-2550 (((-112) $) 29)) (-3979 (((-1082) $) NIL)) (-4257 (((-112) $) 21)) (-3697 (((-112) $) 46)) (-4103 (((-619 (-52)) $) 111)) (-2300 (((-112) $) 48)) (-3329 (($ (-114) (-619 $)) 92)) (-1313 (((-745) $) 28)) (-2265 (($ $) 62)) (-2829 (($ (-619 $)) 59)) (-1928 (((-112) $) 26)) (-3834 (((-832) $) 53) (($ |#1|) 18) (($ (-1135)) 66)) (-1664 (($ $ (-52)) 110)) (-3267 (($) 91 T CONST)) (-3277 (($) 73 T CONST)) (-2371 (((-112) $ $) 79)) (-2497 (($ $ $) 100)) (-2470 (($ $ $) 104)) (** (($ $ (-745)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-861 |#1|) (-13 (-1063) (-1007 |#1|) (-1007 (-1135)) (-10 -8 (-15 0 ($) -2573) (-15 1 ($) -2573) (-15 -1859 ((-3 (-619 $) "failed") $)) (-15 -1967 ((-3 (-619 $) "failed") $)) (-15 -1412 ((-3 (-619 $) "failed") $ (-114))) (-15 -1412 ((-3 (-2 (|:| -2704 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |val| $) (|:| -4248 (-745))) "failed") $)) (-15 -3973 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2658 ((-3 (-619 $) "failed") $)) (-15 -4014 ((-3 (-2 (|:| |val| $) (|:| -4248 $)) "failed") $)) (-15 -3329 ($ (-114) (-619 $))) (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2497 ($ $ $)) (-15 -1313 ((-745) $)) (-15 -2829 ($ (-619 $))) (-15 -2265 ($ $)) (-15 -2550 ((-112) $)) (-15 -2427 ((-112) $)) (-15 -3447 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -2300 ((-112) $)) (-15 -2737 ((-112) $)) (-15 -2664 ((-112) $)) (-15 -3697 ((-112) $)) (-15 -3632 ((-619 (-52)) $)) (-15 -3545 ($ $ (-619 (-52)))) (-15 -3458 ($ $ (-619 (-52)))) (-15 -3366 ($ (-1135) (-112) (-112) (-112))) (-15 -3290 ($ $ (-619 (-1135)) (-52))) (-15 -3206 ((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $)) (-15 -4257 ((-112) $)) (-15 -4180 ($ $)) (-15 -1664 ($ $ (-52))) (-15 -4103 ((-619 (-52)) $)) (-15 -2259 ((-619 $) $)) (-15 -4010 ((-3 (-619 $) "failed") (-619 $))))) (-1063)) (T -861)) +((-3267 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-3277 (*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-1859 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1967 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1412 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-1412 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2704 (-114)) (|:| |arg| (-619 (-861 *3))))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3909 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -4248 (-745)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3973 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4014 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -4248 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3329 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-2470 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3545 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3458 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-3366 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-112)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-52)) (-5 *1 (-861 *4)) (-4 *4 (-1063)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4180 (*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) (-4010 (*1 *2 *2) (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(-13 (-1063) (-1007 |#1|) (-1007 (-1135)) (-10 -8 (-15 (-3267) ($) -2573) (-15 (-3277) ($) -2573) (-15 -1859 ((-3 (-619 $) "failed") $)) (-15 -1967 ((-3 (-619 $) "failed") $)) (-15 -1412 ((-3 (-619 $) "failed") $ (-114))) (-15 -1412 ((-3 (-2 (|:| -2704 (-114)) (|:| |arg| (-619 $))) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |val| $) (|:| -4248 (-745))) "failed") $)) (-15 -3973 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2658 ((-3 (-619 $) "failed") $)) (-15 -4014 ((-3 (-2 (|:| |val| $) (|:| -4248 $)) "failed") $)) (-15 -3329 ($ (-114) (-619 $))) (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745))) (-15 ** ($ $ $)) (-15 -2497 ($ $ $)) (-15 -1313 ((-745) $)) (-15 -2829 ($ (-619 $))) (-15 -2265 ($ $)) (-15 -2550 ((-112) $)) (-15 -2427 ((-112) $)) (-15 -3447 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -2300 ((-112) $)) (-15 -2737 ((-112) $)) (-15 -2664 ((-112) $)) (-15 -3697 ((-112) $)) (-15 -3632 ((-619 (-52)) $)) (-15 -3545 ($ $ (-619 (-52)))) (-15 -3458 ($ $ (-619 (-52)))) (-15 -3366 ($ (-1135) (-112) (-112) (-112))) (-15 -3290 ($ $ (-619 (-1135)) (-52))) (-15 -3206 ((-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52))) $)) (-15 -4257 ((-112) $)) (-15 -4180 ($ $)) (-15 -1664 ($ $ (-52))) (-15 -4103 ((-619 (-52)) $)) (-15 -2259 ((-619 $) $)) (-15 -4010 ((-3 (-619 $) "failed") (-619 $))))) +((-3821 (((-112) $ $) NIL)) (-3292 (((-619 |#1|) $) 16)) (-1896 (((-112) $) 38)) (-2698 (((-3 (-646 |#1|) "failed") $) 43)) (-2643 (((-646 |#1|) $) 41)) (-3645 (($ $) 18)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-4202 (((-745) $) 46)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-646 |#1|) $) 17)) (-3834 (((-832) $) 37) (($ (-646 |#1|)) 21) (((-793 |#1|) $) 27) (($ |#1|) 20)) (-3277 (($) 8 T CONST)) (-3853 (((-619 (-646 |#1|)) $) 23)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 11)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 49))) +(((-862 |#1|) (-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 1 ($) -2573) (-15 -3834 ((-793 |#1|) $)) (-15 -3834 ($ |#1|)) (-15 -3634 ((-646 |#1|) $)) (-15 -4202 ((-745) $)) (-15 -3853 ((-619 (-646 |#1|)) $)) (-15 -3645 ($ $)) (-15 -1896 ((-112) $)) (-15 -3292 ((-619 |#1|) $)))) (-821)) (T -862)) +((-3277 (*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3834 (*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821))))) +(-13 (-821) (-1007 (-646 |#1|)) (-10 -8 (-15 (-3277) ($) -2573) (-15 -3834 ((-793 |#1|) $)) (-15 -3834 ($ |#1|)) (-15 -3634 ((-646 |#1|) $)) (-15 -4202 ((-745) $)) (-15 -3853 ((-619 (-646 |#1|)) $)) (-15 -3645 ($ $)) (-15 -1896 ((-112) $)) (-15 -3292 ((-619 |#1|) $)))) +((-1992 ((|#1| |#1| |#1|) 19))) +(((-863 |#1| |#2|) (-10 -7 (-15 -1992 (|#1| |#1| |#1|))) (-1194 |#2|) (-1016)) (T -863)) +((-1992 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -1992 (|#1| |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4283 (((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 14)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3951 (((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 13)) (-2371 (((-112) $ $) 6))) (((-864) (-138)) (T -864)) -((-3671 (*1 *2 *3 *4) (-12 (-4 *1 (-864)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) (-3634 (*1 *2 *3) (-12 (-4 *1 (-864)) (-5 *3 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *2 (-1004))))) -(-13 (-1063) (-10 -7 (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))) (-15 -3634 ((-1004) (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3658 ((|#1| |#1| (-745)) 24)) (-3647 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3642 (((-3 (-2 (|:| -3663 |#1|) (|:| -3676 |#1|)) "failed") |#1| (-745) (-745)) 27) (((-619 |#1|) |#1|) 29))) -(((-865 |#1| |#2|) (-10 -7 (-15 -3642 ((-619 |#1|) |#1|)) (-15 -3642 ((-3 (-2 (|:| -3663 |#1|) (|:| -3676 |#1|)) "failed") |#1| (-745) (-745))) (-15 -3647 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3658 (|#1| |#1| (-745)))) (-1194 |#2|) (-355)) (T -865)) -((-3658 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-5 *1 (-865 *2 *4)) (-4 *2 (-1194 *4)))) (-3647 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-355)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1194 *3)))) (-3642 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-745)) (-4 *5 (-355)) (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-865 *3 *5)) (-4 *3 (-1194 *5)))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -3642 ((-619 |#1|) |#1|)) (-15 -3642 ((-3 (-2 (|:| -3663 |#1|) (|:| -3676 |#1|)) "failed") |#1| (-745) (-745))) (-15 -3647 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3658 (|#1| |#1| (-745)))) -((-3408 (((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118)) 96) (((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118) (-218)) 91) (((-1004) (-867) (-1028)) 83) (((-1004) (-867)) 84)) (-3671 (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028)) 59) (((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867)) 61))) -(((-866) (-10 -7 (-15 -3408 ((-1004) (-867))) (-15 -3408 ((-1004) (-867) (-1028))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118) (-218))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028))))) (T -866)) -((-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-866)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-866)))) (-3408 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3408 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) (-5 *8 (-218)) (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866))))) -(-10 -7 (-15 -3408 ((-1004) (-867))) (-15 -3408 ((-1004) (-867) (-1028))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118) (-218))) (-15 -3408 ((-1004) (-371) (-371) (-371) (-371) (-745) (-745) (-619 (-308 (-371))) (-619 (-619 (-308 (-371)))) (-1118))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867))) (-15 -3671 ((-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028)))) -((-3730 (((-112) $ $) NIL)) (-2375 (((-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))) $) 19)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 21) (($ (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) 18)) (-2214 (((-112) $ $) NIL))) -(((-867) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))) $))))) (T -867)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *1 (-867)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218)))) (-5 *1 (-867))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))))) (-15 -3743 ((-832) $)) (-15 -2375 ((-2 (|:| |pde| (-619 (-308 (-218)))) (|:| |constraints| (-619 (-2 (|:| |start| (-218)) (|:| |finish| (-218)) (|:| |grid| (-745)) (|:| |boundaryType| (-548)) (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) (|:| |tol| (-218))) $)))) -((-4050 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) 10) (($ $ |#2| (-745)) 12) (($ $ (-619 |#2|) (-619 (-745))) 15)) (-3296 (($ $ |#2|) 16) (($ $ (-619 |#2|)) 18) (($ $ |#2| (-745)) 19) (($ $ (-619 |#2|) (-619 (-745))) 21))) -(((-868 |#1| |#2|) (-10 -8 (-15 -3296 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3296 (|#1| |#1| |#2| (-745))) (-15 -3296 (|#1| |#1| (-619 |#2|))) (-15 -3296 (|#1| |#1| |#2|)) (-15 -4050 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#2| (-745))) (-15 -4050 (|#1| |#1| (-619 |#2|))) (-15 -4050 (|#1| |#1| |#2|))) (-869 |#2|) (-1063)) (T -868)) -NIL -(-10 -8 (-15 -3296 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3296 (|#1| |#1| |#2| (-745))) (-15 -3296 (|#1| |#1| (-619 |#2|))) (-15 -3296 (|#1| |#1| |#2|)) (-15 -4050 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -4050 (|#1| |#1| |#2| (-745))) (-15 -4050 (|#1| |#1| (-619 |#2|))) (-15 -4050 (|#1| |#1| |#2|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4050 (($ $ |#1|) 40) (($ $ (-619 |#1|)) 39) (($ $ |#1| (-745)) 38) (($ $ (-619 |#1|) (-619 (-745))) 37)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#1|) 36) (($ $ (-619 |#1|)) 35) (($ $ |#1| (-745)) 34) (($ $ (-619 |#1|) (-619 (-745))) 33)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-4283 (*1 *2 *3 *4) (-12 (-4 *1 (-864)) (-5 *3 (-1028)) (-5 *4 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) (-3951 (*1 *2 *3) (-12 (-4 *1 (-864)) (-5 *3 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) (-5 *2 (-1004))))) +(-13 (-1063) (-10 -7 (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| |explanations| (-1118))) (-1028) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))))) (-15 -3951 ((-1004) (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-4177 ((|#1| |#1| (-745)) 24)) (-4071 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4030 (((-3 (-2 (|:| -3826 |#1|) (|:| -3836 |#1|)) "failed") |#1| (-745) (-745)) 27) (((-619 |#1|) |#1|) 29))) +(((-865 |#1| |#2|) (-10 -7 (-15 -4030 ((-619 |#1|) |#1|)) (-15 -4030 ((-3 (-2 (|:| -3826 |#1|) (|:| -3836 |#1|)) "failed") |#1| (-745) (-745))) (-15 -4071 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4177 (|#1| |#1| (-745)))) (-1194 |#2|) (-354)) (T -865)) +((-4177 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-5 *1 (-865 *2 *4)) (-4 *2 (-1194 *4)))) (-4071 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-354)) (-5 *1 (-865 *2 *3)) (-4 *2 (-1194 *3)))) (-4030 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-745)) (-4 *5 (-354)) (-5 *2 (-2 (|:| -3826 *3) (|:| -3836 *3))) (-5 *1 (-865 *3 *5)) (-4 *3 (-1194 *5)))) (-4030 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -4030 ((-619 |#1|) |#1|)) (-15 -4030 ((-3 (-2 (|:| -3826 |#1|) (|:| -3836 |#1|)) "failed") |#1| (-745) (-745))) (-15 -4071 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4177 (|#1| |#1| (-745)))) +((-3571 (((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1118)) 96) (((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1118) (-217)) 91) (((-1004) (-867) (-1028)) 83) (((-1004) (-867)) 84)) (-4283 (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028)) 59) (((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867)) 61))) +(((-866) (-10 -7 (-15 -3571 ((-1004) (-867))) (-15 -3571 ((-1004) (-867) (-1028))) (-15 -3571 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1118) (-217))) (-15 -3571 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1118))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028))))) (T -866)) +((-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-866)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118))))) (-5 *1 (-866)))) (-3571 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1118)) (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3571 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1118)) (-5 *8 (-217)) (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866))))) +(-10 -7 (-15 -3571 ((-1004) (-867))) (-15 -3571 ((-1004) (-867) (-1028))) (-15 -3571 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1118) (-217))) (-15 -3571 ((-1004) (-370) (-370) (-370) (-370) (-745) (-745) (-619 (-307 (-370))) (-619 (-619 (-307 (-370)))) (-1118))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867))) (-15 -4283 ((-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) (|:| |explanations| (-619 (-1118)))) (-867) (-1028)))) +((-3821 (((-112) $ $) NIL)) (-2643 (((-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))) $) 19)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 21) (($ (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) 18)) (-2371 (((-112) $ $) NIL))) +(((-867) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))) $))))) (T -867)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) (-5 *1 (-867)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217)))) (-5 *1 (-867))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))))) (-15 -3834 ((-832) $)) (-15 -2643 ((-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 (-2 (|:| |start| (-217)) (|:| |finish| (-217)) (|:| |grid| (-745)) (|:| |boundaryType| (-547)) (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) (|:| |tol| (-217))) $)))) +((-3443 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) 10) (($ $ |#2| (-745)) 12) (($ $ (-619 |#2|) (-619 (-745))) 15)) (-1686 (($ $ |#2|) 16) (($ $ (-619 |#2|)) 18) (($ $ |#2| (-745)) 19) (($ $ (-619 |#2|) (-619 (-745))) 21))) +(((-868 |#1| |#2|) (-10 -8 (-15 -1686 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -1686 (|#1| |#1| |#2| (-745))) (-15 -1686 (|#1| |#1| (-619 |#2|))) (-15 -1686 (|#1| |#1| |#2|)) (-15 -3443 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3443 (|#1| |#1| |#2| (-745))) (-15 -3443 (|#1| |#1| (-619 |#2|))) (-15 -3443 (|#1| |#1| |#2|))) (-869 |#2|) (-1063)) (T -868)) +NIL +(-10 -8 (-15 -1686 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -1686 (|#1| |#1| |#2| (-745))) (-15 -1686 (|#1| |#1| (-619 |#2|))) (-15 -1686 (|#1| |#1| |#2|)) (-15 -3443 (|#1| |#1| (-619 |#2|) (-619 (-745)))) (-15 -3443 (|#1| |#1| |#2| (-745))) (-15 -3443 (|#1| |#1| (-619 |#2|))) (-15 -3443 (|#1| |#1| |#2|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3443 (($ $ |#1|) 40) (($ $ (-619 |#1|)) 39) (($ $ |#1| (-745)) 38) (($ $ (-619 |#1|) (-619 (-745))) 37)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ |#1|) 36) (($ $ (-619 |#1|)) 35) (($ $ |#1| (-745)) 34) (($ $ (-619 |#1|) (-619 (-745))) 33)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-869 |#1|) (-138) (-1063)) (T -869)) -((-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-4050 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-4050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063))))) -(-13 (-1016) (-10 -8 (-15 -4050 ($ $ |t#1|)) (-15 -4050 ($ $ (-619 |t#1|))) (-15 -4050 ($ $ |t#1| (-745))) (-15 -4050 ($ $ (-619 |t#1|) (-619 (-745)))) (-15 -3296 ($ $ |t#1|)) (-15 -3296 ($ $ (-619 |t#1|))) (-15 -3296 ($ $ |t#1| (-745))) (-15 -3296 ($ $ (-619 |t#1|) (-619 (-745)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 26)) (-2028 (((-112) $ (-745)) NIL)) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-1816 (($ $ $) NIL (|has| $ (-6 -4328)))) (-1825 (($ $ $) NIL (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) (($ $ "left" $) NIL (|has| $ (-6 -4328))) (($ $ "right" $) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3676 (($ $) 25)) (-2529 (($ |#1|) 12) (($ $ $) 17)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3663 (($ $) 23)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) 20)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1158 |#1|) $) 9) (((-832) $) 29 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 21 (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-870 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2529 ($ |#1|)) (-15 -2529 ($ $ $)) (-15 -3743 ((-1158 |#1|) $)))) (-1063)) (T -870)) -((-2529 (*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-2529 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1063))))) -(-13 (-119 |#1|) (-10 -8 (-15 -2529 ($ |#1|)) (-15 -2529 ($ $ $)) (-15 -3743 ((-1158 |#1|) $)))) -((-3786 ((|#2| (-1102 |#1| |#2|)) 40))) -(((-871 |#1| |#2|) (-10 -7 (-15 -3786 (|#2| (-1102 |#1| |#2|)))) (-890) (-13 (-1016) (-10 -7 (-6 (-4329 "*"))))) (T -871)) -((-3786 (*1 *2 *3) (-12 (-5 *3 (-1102 *4 *2)) (-14 *4 (-890)) (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4329 "*"))))) (-5 *1 (-871 *4 *2))))) -(-10 -7 (-15 -3786 (|#2| (-1102 |#1| |#2|)))) -((-3730 (((-112) $ $) 7)) (-3030 (($) 18 T CONST)) (-3859 (((-3 $ "failed") $) 15)) (-3888 (((-1065 |#1|) $ |#1|) 32)) (-2266 (((-112) $) 17)) (-1795 (($ $ $) 30 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-3091 (($ $ $) 29 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 24)) (-3932 (((-1082) $) 10)) (-2460 ((|#1| $ |#1|) 34)) (-3171 ((|#1| $ |#1|) 33)) (-3798 (($ (-619 (-619 |#1|))) 35)) (-3809 (($ (-619 |#1|)) 36)) (-2128 (($ $ $) 21)) (-3652 (($ $ $) 20)) (-3743 (((-832) $) 11)) (-3118 (($) 19 T CONST)) (-2262 (((-112) $ $) 27 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2241 (((-112) $ $) 26 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 28 (-1524 (|has| |#1| (-821)) (|has| |#1| (-360))))) (-2234 (((-112) $ $) 31)) (-2309 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-548)) 22)) (* (($ $ $) 14))) +((-3443 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-3443 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-3443 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063)))) (-1686 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-1686 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063))))) +(-13 (-1016) (-10 -8 (-15 -3443 ($ $ |t#1|)) (-15 -3443 ($ $ (-619 |t#1|))) (-15 -3443 ($ $ |t#1| (-745))) (-15 -3443 ($ $ (-619 |t#1|) (-619 (-745)))) (-15 -1686 ($ $ |t#1|)) (-15 -1686 ($ $ (-619 |t#1|))) (-15 -1686 ($ $ |t#1| (-745))) (-15 -1686 ($ $ (-619 |t#1|) (-619 (-745)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) 26)) (-2826 (((-112) $ (-745)) NIL)) (-2741 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-1449 (($ $ $) NIL (|has| $ (-6 -4329)))) (-1566 (($ $ $) NIL (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) (($ $ "left" $) NIL (|has| $ (-6 -4329))) (($ $ "right" $) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-3836 (($ $) 25)) (-2763 (($ |#1|) 12) (($ $ $) 17)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3826 (($ $) 23)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) 20)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1887 (((-547) $ $) NIL)) (-2094 (((-112) $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1158 |#1|) $) 9) (((-832) $) 29 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 21 (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-870 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2763 ($ |#1|)) (-15 -2763 ($ $ $)) (-15 -3834 ((-1158 |#1|) $)))) (-1063)) (T -870)) +((-2763 (*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-2763 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1158 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1063))))) +(-13 (-119 |#1|) (-10 -8 (-15 -2763 ($ |#1|)) (-15 -2763 ($ $ $)) (-15 -3834 ((-1158 |#1|) $)))) +((-3055 ((|#2| (-1102 |#1| |#2|)) 40))) +(((-871 |#1| |#2|) (-10 -7 (-15 -3055 (|#2| (-1102 |#1| |#2|)))) (-890) (-13 (-1016) (-10 -7 (-6 (-4330 "*"))))) (T -871)) +((-3055 (*1 *2 *3) (-12 (-5 *3 (-1102 *4 *2)) (-14 *4 (-890)) (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4330 "*"))))) (-5 *1 (-871 *4 *2))))) +(-10 -7 (-15 -3055 (|#2| (-1102 |#1| |#2|)))) +((-3821 (((-112) $ $) 7)) (-3219 (($) 18 T CONST)) (-2537 (((-3 $ "failed") $) 15)) (-1446 (((-1065 |#1|) $ |#1|) 32)) (-4114 (((-112) $) 17)) (-2847 (($ $ $) 30 (-1524 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-3563 (($ $ $) 29 (-1524 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-1917 (((-1118) $) 9)) (-1976 (($ $) 24)) (-3979 (((-1082) $) 10)) (-2670 ((|#1| $ |#1|) 34)) (-3329 ((|#1| $ |#1|) 33)) (-3146 (($ (-619 (-619 |#1|))) 35)) (-2056 (($ (-619 |#1|)) 36)) (-2444 (($ $ $) 21)) (-4121 (($ $ $) 20)) (-3834 (((-832) $) 11)) (-3277 (($) 19 T CONST)) (-2433 (((-112) $ $) 27 (-1524 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-2408 (((-112) $ $) 26 (-1524 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 28 (-1524 (|has| |#1| (-821)) (|has| |#1| (-359))))) (-2396 (((-112) $ $) 31)) (-2497 (($ $ $) 23)) (** (($ $ (-890)) 13) (($ $ (-745)) 16) (($ $ (-547)) 22)) (* (($ $ $) 14))) (((-872 |#1|) (-138) (-1063)) (T -872)) -((-3809 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-2460 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3171 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3888 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) (-2234 (*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) -(-13 (-464) (-10 -8 (-15 -3809 ($ (-619 |t#1|))) (-15 -3798 ($ (-619 (-619 |t#1|)))) (-15 -2460 (|t#1| $ |t#1|)) (-15 -3171 (|t#1| $ |t#1|)) (-15 -3888 ((-1065 |t#1|) $ |t#1|)) (-15 -2234 ((-112) $ $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-821)) |%noBranch|))) -(((-101) . T) ((-592 (-832)) . T) ((-464) . T) ((-701) . T) ((-821) -1524 (|has| |#1| (-821)) (|has| |#1| (-360))) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3911 (((-619 (-619 (-745))) $) 108)) (-3863 (((-619 (-745)) (-874 |#1|) $) 130)) (-3851 (((-619 (-745)) (-874 |#1|) $) 131)) (-3922 (((-619 (-874 |#1|)) $) 98)) (-2545 (((-874 |#1|) $ (-548)) 103) (((-874 |#1|) $) 104)) (-3900 (($ (-619 (-874 |#1|))) 110)) (-1672 (((-745) $) 105)) (-3876 (((-1065 (-1065 |#1|)) $) 128)) (-3888 (((-1065 |#1|) $ |#1|) 121) (((-1065 (-1065 |#1|)) $ (-1065 |#1|)) 139) (((-1065 (-619 |#1|)) $ (-619 |#1|)) 142)) (-3836 (((-1065 |#1|) $) 101)) (-2556 (((-112) (-874 |#1|) $) 92)) (-2546 (((-1118) $) NIL)) (-3822 (((-1223) $) 95) (((-1223) $ (-548) (-548)) 143)) (-3932 (((-1082) $) NIL)) (-3935 (((-619 (-874 |#1|)) $) 96)) (-3171 (((-874 |#1|) $ (-745)) 99)) (-2512 (((-745) $) 106)) (-3743 (((-832) $) 119) (((-619 (-874 |#1|)) $) 23) (($ (-619 (-874 |#1|))) 109)) (-3957 (((-619 |#1|) $) 107)) (-2214 (((-112) $ $) 136)) (-2252 (((-112) $ $) 134)) (-2234 (((-112) $ $) 133))) -(((-873 |#1|) (-13 (-1063) (-10 -8 (-15 -3743 ((-619 (-874 |#1|)) $)) (-15 -3935 ((-619 (-874 |#1|)) $)) (-15 -3171 ((-874 |#1|) $ (-745))) (-15 -2545 ((-874 |#1|) $ (-548))) (-15 -2545 ((-874 |#1|) $)) (-15 -1672 ((-745) $)) (-15 -2512 ((-745) $)) (-15 -3957 ((-619 |#1|) $)) (-15 -3922 ((-619 (-874 |#1|)) $)) (-15 -3911 ((-619 (-619 (-745))) $)) (-15 -3743 ($ (-619 (-874 |#1|)))) (-15 -3900 ($ (-619 (-874 |#1|)))) (-15 -3888 ((-1065 |#1|) $ |#1|)) (-15 -3876 ((-1065 (-1065 |#1|)) $)) (-15 -3888 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -3888 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -2556 ((-112) (-874 |#1|) $)) (-15 -3863 ((-619 (-745)) (-874 |#1|) $)) (-15 -3851 ((-619 (-745)) (-874 |#1|) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -2234 ((-112) $ $)) (-15 -2252 ((-112) $ $)) (-15 -3822 ((-1223) $)) (-15 -3822 ((-1223) $ (-548) (-548))))) (-1063)) (T -873)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-3900 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3888 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) (-5 *3 (-1065 *4)))) (-3888 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) (-5 *3 (-619 *4)))) (-2556 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-873 *4)))) (-3863 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-3851 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2234 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2252 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3822 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-873 *4)) (-4 *4 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -3743 ((-619 (-874 |#1|)) $)) (-15 -3935 ((-619 (-874 |#1|)) $)) (-15 -3171 ((-874 |#1|) $ (-745))) (-15 -2545 ((-874 |#1|) $ (-548))) (-15 -2545 ((-874 |#1|) $)) (-15 -1672 ((-745) $)) (-15 -2512 ((-745) $)) (-15 -3957 ((-619 |#1|) $)) (-15 -3922 ((-619 (-874 |#1|)) $)) (-15 -3911 ((-619 (-619 (-745))) $)) (-15 -3743 ($ (-619 (-874 |#1|)))) (-15 -3900 ($ (-619 (-874 |#1|)))) (-15 -3888 ((-1065 |#1|) $ |#1|)) (-15 -3876 ((-1065 (-1065 |#1|)) $)) (-15 -3888 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -3888 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -2556 ((-112) (-874 |#1|) $)) (-15 -3863 ((-619 (-745)) (-874 |#1|) $)) (-15 -3851 ((-619 (-745)) (-874 |#1|) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -2234 ((-112) $ $)) (-15 -2252 ((-112) $ $)) (-15 -3822 ((-1223) $)) (-15 -3822 ((-1223) $ (-548) (-548))))) -((-3730 (((-112) $ $) NIL)) (-2490 (((-619 $) (-619 $)) 77)) (-2672 (((-548) $) 60)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-1672 (((-745) $) 58)) (-3888 (((-1065 |#1|) $ |#1|) 49)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) 63)) (-3731 (((-745) $) 61)) (-3836 (((-1065 |#1|) $) 42)) (-1795 (($ $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-3091 (($ $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-3775 (((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $) 37)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 93)) (-3932 (((-1082) $) NIL)) (-3692 (((-1065 |#1|) $) 100 (|has| |#1| (-360)))) (-3718 (((-112) $) 59)) (-2460 ((|#1| $ |#1|) 47)) (-3171 ((|#1| $ |#1|) 94)) (-2512 (((-745) $) 44)) (-3798 (($ (-619 (-619 |#1|))) 85)) (-3744 (((-940) $) 53)) (-3809 (($ (-619 |#1|)) 21)) (-2128 (($ $ $) NIL)) (-3652 (($ $ $) NIL)) (-3765 (($ (-619 (-619 |#1|))) 39)) (-3755 (($ (-619 (-619 |#1|))) 88)) (-3682 (($ (-619 |#1|)) 96)) (-3743 (((-832) $) 84) (($ (-619 (-619 |#1|))) 66) (($ (-619 |#1|)) 67)) (-3118 (($) 16 T CONST)) (-2262 (((-112) $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-2214 (((-112) $ $) 45)) (-2252 (((-112) $ $) NIL (-1524 (|has| |#1| (-360)) (|has| |#1| (-821))))) (-2234 (((-112) $ $) 65)) (-2309 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ $ $) 22))) -(((-874 |#1|) (-13 (-872 |#1|) (-10 -8 (-15 -3775 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -3765 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 |#1|))) (-15 -3755 ($ (-619 (-619 |#1|)))) (-15 -2512 ((-745) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -3744 ((-940) $)) (-15 -1672 ((-745) $)) (-15 -3731 ((-745) $)) (-15 -2672 ((-548) $)) (-15 -3718 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -2490 ((-619 $) (-619 $))) (IF (|has| |#1| (-360)) (-15 -3692 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -3682 ($ (-619 |#1|))) (IF (|has| |#1| (-360)) (-15 -3682 ($ (-619 |#1|))) |%noBranch|)))) (-1063)) (T -874)) -((-3775 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-360)) (-4 *3 (-1063)))) (-3682 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) -(-13 (-872 |#1|) (-10 -8 (-15 -3775 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -3765 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 (-619 |#1|)))) (-15 -3743 ($ (-619 |#1|))) (-15 -3755 ($ (-619 (-619 |#1|)))) (-15 -2512 ((-745) $)) (-15 -3836 ((-1065 |#1|) $)) (-15 -3744 ((-940) $)) (-15 -1672 ((-745) $)) (-15 -3731 ((-745) $)) (-15 -2672 ((-548) $)) (-15 -3718 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -2490 ((-619 $) (-619 $))) (IF (|has| |#1| (-360)) (-15 -3692 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-533)) (-15 -3682 ($ (-619 |#1|))) (IF (|has| |#1| (-360)) (-15 -3682 ($ (-619 |#1|))) |%noBranch|)))) -((-3963 (((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|)) 128)) (-3994 ((|#1|) 77)) (-3984 (((-410 (-1131 |#4|)) (-1131 |#4|)) 137)) (-4006 (((-410 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)) 69)) (-3975 (((-410 (-1131 |#4|)) (-1131 |#4|)) 147)) (-3949 (((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|) 92))) -(((-875 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|))) (-15 -3975 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3984 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3994 (|#1|)) (-15 -3949 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|)) (-15 -4006 ((-410 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)))) (-878) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -875)) -((-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-410 (-1131 *8))) (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1131 *8)))) (-3949 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7)))) (-3994 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-3963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-875 *4 *5 *6 *7))))) -(-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|))) (-15 -3975 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3984 ((-410 (-1131 |#4|)) (-1131 |#4|))) (-15 -3994 (|#1|)) (-15 -3949 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|)) (-15 -4006 ((-410 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)))) -((-3963 (((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)) 36)) (-3994 ((|#1|) 54)) (-3984 (((-410 (-1131 |#2|)) (-1131 |#2|)) 102)) (-4006 (((-410 (-1131 |#2|)) (-1131 |#2|)) 90)) (-3975 (((-410 (-1131 |#2|)) (-1131 |#2|)) 113))) -(((-876 |#1| |#2|) (-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|))) (-15 -3975 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3984 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3994 (|#1|)) (-15 -4006 ((-410 (-1131 |#2|)) (-1131 |#2|)))) (-878) (-1194 |#1|)) (T -876)) -((-4006 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3994 (*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1194 *2)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3963 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5))))) -(-10 -7 (-15 -3963 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|))) (-15 -3975 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3984 ((-410 (-1131 |#2|)) (-1131 |#2|))) (-15 -3994 (|#1|)) (-15 -4006 ((-410 (-1131 |#2|)) (-1131 |#2|)))) -((-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 41)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 18)) (-4017 (((-3 $ "failed") $) 35))) -(((-877 |#1|) (-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) (-878)) (T -877)) -NIL -(-10 -8 (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 58)) (-1688 (($ $) 49)) (-2634 (((-410 $) $) 50)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 55)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-1271 (((-112) $) 51)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-4051 (((-410 (-1131 $)) (-1131 $)) 56)) (-4060 (((-410 (-1131 $)) (-1131 $)) 57)) (-1915 (((-410 $) $) 48)) (-1900 (((-3 $ "failed") $ $) 40)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 54 (|has| $ (-143)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-4017 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-2056 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3)))) (-2670 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-3329 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) (-1446 (*1 *2 *1 *3) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) (-2396 (*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(-13 (-463) (-10 -8 (-15 -2056 ($ (-619 |t#1|))) (-15 -3146 ($ (-619 (-619 |t#1|)))) (-15 -2670 (|t#1| $ |t#1|)) (-15 -3329 (|t#1| $ |t#1|)) (-15 -1446 ((-1065 |t#1|) $ |t#1|)) (-15 -2396 ((-112) $ $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-359)) (-6 (-821)) |%noBranch|))) +(((-101) . T) ((-591 (-832)) . T) ((-463) . T) ((-701) . T) ((-821) -1524 (|has| |#1| (-821)) (|has| |#1| (-359))) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-1696 (((-619 (-619 (-745))) $) 108)) (-2579 (((-619 (-745)) (-874 |#1|) $) 130)) (-2456 (((-619 (-745)) (-874 |#1|) $) 131)) (-1812 (((-619 (-874 |#1|)) $) 98)) (-3229 (((-874 |#1|) $ (-547)) 103) (((-874 |#1|) $) 104)) (-1576 (($ (-619 (-874 |#1|))) 110)) (-3707 (((-745) $) 105)) (-2681 (((-1065 (-1065 |#1|)) $) 128)) (-1446 (((-1065 |#1|) $ |#1|) 121) (((-1065 (-1065 |#1|)) $ (-1065 |#1|)) 139) (((-1065 (-619 |#1|)) $ (-619 |#1|)) 142)) (-2325 (((-1065 |#1|) $) 101)) (-3860 (((-112) (-874 |#1|) $) 92)) (-1917 (((-1118) $) NIL)) (-2182 (((-1223) $) 95) (((-1223) $ (-547) (-547)) 143)) (-3979 (((-1082) $) NIL)) (-1925 (((-619 (-874 |#1|)) $) 96)) (-3329 (((-874 |#1|) $ (-745)) 99)) (-1618 (((-745) $) 106)) (-3834 (((-832) $) 119) (((-619 (-874 |#1|)) $) 23) (($ (-619 (-874 |#1|))) 109)) (-1849 (((-619 |#1|) $) 107)) (-2371 (((-112) $ $) 136)) (-2421 (((-112) $ $) 134)) (-2396 (((-112) $ $) 133))) +(((-873 |#1|) (-13 (-1063) (-10 -8 (-15 -3834 ((-619 (-874 |#1|)) $)) (-15 -1925 ((-619 (-874 |#1|)) $)) (-15 -3329 ((-874 |#1|) $ (-745))) (-15 -3229 ((-874 |#1|) $ (-547))) (-15 -3229 ((-874 |#1|) $)) (-15 -3707 ((-745) $)) (-15 -1618 ((-745) $)) (-15 -1849 ((-619 |#1|) $)) (-15 -1812 ((-619 (-874 |#1|)) $)) (-15 -1696 ((-619 (-619 (-745))) $)) (-15 -3834 ($ (-619 (-874 |#1|)))) (-15 -1576 ($ (-619 (-874 |#1|)))) (-15 -1446 ((-1065 |#1|) $ |#1|)) (-15 -2681 ((-1065 (-1065 |#1|)) $)) (-15 -1446 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -1446 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -3860 ((-112) (-874 |#1|) $)) (-15 -2579 ((-619 (-745)) (-874 |#1|) $)) (-15 -2456 ((-619 (-745)) (-874 |#1|) $)) (-15 -2325 ((-1065 |#1|) $)) (-15 -2396 ((-112) $ $)) (-15 -2421 ((-112) $ $)) (-15 -2182 ((-1223) $)) (-15 -2182 ((-1223) $ (-547) (-547))))) (-1063)) (T -873)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-3229 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3)))) (-1446 (*1 *2 *1 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-1446 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) (-5 *3 (-1065 *4)))) (-1446 (*1 *2 *1 *3) (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) (-5 *3 (-619 *4)))) (-3860 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-873 *4)))) (-2579 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-2456 (*1 *2 *3 *1) (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) (-5 *1 (-873 *4)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2396 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2421 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) (-2182 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-873 *4)) (-4 *4 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3834 ((-619 (-874 |#1|)) $)) (-15 -1925 ((-619 (-874 |#1|)) $)) (-15 -3329 ((-874 |#1|) $ (-745))) (-15 -3229 ((-874 |#1|) $ (-547))) (-15 -3229 ((-874 |#1|) $)) (-15 -3707 ((-745) $)) (-15 -1618 ((-745) $)) (-15 -1849 ((-619 |#1|) $)) (-15 -1812 ((-619 (-874 |#1|)) $)) (-15 -1696 ((-619 (-619 (-745))) $)) (-15 -3834 ($ (-619 (-874 |#1|)))) (-15 -1576 ($ (-619 (-874 |#1|)))) (-15 -1446 ((-1065 |#1|) $ |#1|)) (-15 -2681 ((-1065 (-1065 |#1|)) $)) (-15 -1446 ((-1065 (-1065 |#1|)) $ (-1065 |#1|))) (-15 -1446 ((-1065 (-619 |#1|)) $ (-619 |#1|))) (-15 -3860 ((-112) (-874 |#1|) $)) (-15 -2579 ((-619 (-745)) (-874 |#1|) $)) (-15 -2456 ((-619 (-745)) (-874 |#1|) $)) (-15 -2325 ((-1065 |#1|) $)) (-15 -2396 ((-112) $ $)) (-15 -2421 ((-112) $ $)) (-15 -2182 ((-1223) $)) (-15 -2182 ((-1223) $ (-547) (-547))))) +((-3821 (((-112) $ $) NIL)) (-3180 (((-619 $) (-619 $)) 77)) (-3807 (((-547) $) 60)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-3707 (((-745) $) 58)) (-1446 (((-1065 |#1|) $ |#1|) 49)) (-4114 (((-112) $) NIL)) (-3466 (((-112) $) 63)) (-3695 (((-745) $) 61)) (-2325 (((-1065 |#1|) $) 42)) (-2847 (($ $ $) NIL (-1524 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-3563 (($ $ $) NIL (-1524 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2963 (((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $) 37)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 93)) (-3979 (((-1082) $) NIL)) (-3349 (((-1065 |#1|) $) 100 (|has| |#1| (-359)))) (-3590 (((-112) $) 59)) (-2670 ((|#1| $ |#1|) 47)) (-3329 ((|#1| $ |#1|) 94)) (-1618 (((-745) $) 44)) (-3146 (($ (-619 (-619 |#1|))) 85)) (-3800 (((-940) $) 53)) (-2056 (($ (-619 |#1|)) 21)) (-2444 (($ $ $) NIL)) (-4121 (($ $ $) NIL)) (-2876 (($ (-619 (-619 |#1|))) 39)) (-2780 (($ (-619 (-619 |#1|))) 88)) (-1327 (($ (-619 |#1|)) 96)) (-3834 (((-832) $) 84) (($ (-619 (-619 |#1|))) 66) (($ (-619 |#1|)) 67)) (-3277 (($) 16 T CONST)) (-2433 (((-112) $ $) NIL (-1524 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2371 (((-112) $ $) 45)) (-2421 (((-112) $ $) NIL (-1524 (|has| |#1| (-359)) (|has| |#1| (-821))))) (-2396 (((-112) $ $) 65)) (-2497 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ $ $) 22))) +(((-874 |#1|) (-13 (-872 |#1|) (-10 -8 (-15 -2963 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -2876 ($ (-619 (-619 |#1|)))) (-15 -3834 ($ (-619 (-619 |#1|)))) (-15 -3834 ($ (-619 |#1|))) (-15 -2780 ($ (-619 (-619 |#1|)))) (-15 -1618 ((-745) $)) (-15 -2325 ((-1065 |#1|) $)) (-15 -3800 ((-940) $)) (-15 -3707 ((-745) $)) (-15 -3695 ((-745) $)) (-15 -3807 ((-547) $)) (-15 -3590 ((-112) $)) (-15 -3466 ((-112) $)) (-15 -3180 ((-619 $) (-619 $))) (IF (|has| |#1| (-359)) (-15 -3349 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-532)) (-15 -1327 ($ (-619 |#1|))) (IF (|has| |#1| (-359)) (-15 -1327 ($ (-619 |#1|))) |%noBranch|)))) (-1063)) (T -874)) +((-2963 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-359)) (-4 *3 (-1063)))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(-13 (-872 |#1|) (-10 -8 (-15 -2963 ((-2 (|:| |preimage| (-619 |#1|)) (|:| |image| (-619 |#1|))) $)) (-15 -2876 ($ (-619 (-619 |#1|)))) (-15 -3834 ($ (-619 (-619 |#1|)))) (-15 -3834 ($ (-619 |#1|))) (-15 -2780 ($ (-619 (-619 |#1|)))) (-15 -1618 ((-745) $)) (-15 -2325 ((-1065 |#1|) $)) (-15 -3800 ((-940) $)) (-15 -3707 ((-745) $)) (-15 -3695 ((-745) $)) (-15 -3807 ((-547) $)) (-15 -3590 ((-112) $)) (-15 -3466 ((-112) $)) (-15 -3180 ((-619 $) (-619 $))) (IF (|has| |#1| (-359)) (-15 -3349 ((-1065 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-532)) (-15 -1327 ($ (-619 |#1|))) (IF (|has| |#1| (-359)) (-15 -1327 ($ (-619 |#1|))) |%noBranch|)))) +((-3967 (((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|)) 128)) (-4261 ((|#1|) 77)) (-4166 (((-409 (-1131 |#4|)) (-1131 |#4|)) 137)) (-1315 (((-409 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)) 69)) (-4076 (((-409 (-1131 |#4|)) (-1131 |#4|)) 147)) (-3873 (((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|) 92))) +(((-875 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3967 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|))) (-15 -4076 ((-409 (-1131 |#4|)) (-1131 |#4|))) (-15 -4166 ((-409 (-1131 |#4|)) (-1131 |#4|))) (-15 -4261 (|#1|)) (-15 -3873 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|)) (-15 -1315 ((-409 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)))) (-878) (-767) (-821) (-918 |#1| |#2| |#3|)) (T -875)) +((-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-409 (-1131 *8))) (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1131 *8)))) (-3873 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7)))) (-4261 (*1 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) (-3967 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-875 *4 *5 *6 *7))))) +(-10 -7 (-15 -3967 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|))) (-15 -4076 ((-409 (-1131 |#4|)) (-1131 |#4|))) (-15 -4166 ((-409 (-1131 |#4|)) (-1131 |#4|))) (-15 -4261 (|#1|)) (-15 -3873 ((-3 (-619 (-1131 |#4|)) "failed") (-619 (-1131 |#4|)) (-1131 |#4|) |#3|)) (-15 -1315 ((-409 (-1131 |#4|)) (-619 |#3|) (-1131 |#4|)))) +((-3967 (((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|)) 36)) (-4261 ((|#1|) 54)) (-4166 (((-409 (-1131 |#2|)) (-1131 |#2|)) 102)) (-1315 (((-409 (-1131 |#2|)) (-1131 |#2|)) 90)) (-4076 (((-409 (-1131 |#2|)) (-1131 |#2|)) 113))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3967 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|))) (-15 -4076 ((-409 (-1131 |#2|)) (-1131 |#2|))) (-15 -4166 ((-409 (-1131 |#2|)) (-1131 |#2|))) (-15 -4261 (|#1|)) (-15 -1315 ((-409 (-1131 |#2|)) (-1131 |#2|)))) (-878) (-1194 |#1|)) (T -876)) +((-1315 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-409 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-4261 (*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1194 *2)))) (-4166 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-409 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-409 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5)))) (-3967 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5))))) +(-10 -7 (-15 -3967 ((-3 (-619 (-1131 |#2|)) "failed") (-619 (-1131 |#2|)) (-1131 |#2|))) (-15 -4076 ((-409 (-1131 |#2|)) (-1131 |#2|))) (-15 -4166 ((-409 (-1131 |#2|)) (-1131 |#2|))) (-15 -4261 (|#1|)) (-15 -1315 ((-409 (-1131 |#2|)) (-1131 |#2|)))) +((-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 41)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 18)) (-3336 (((-3 $ "failed") $) 35))) +(((-877 |#1|) (-10 -8 (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) (-878)) (T -877)) +NIL +(-10 -8 (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3833 (((-409 (-1131 $)) (-1131 $)) 58)) (-2745 (($ $) 49)) (-3457 (((-409 $) $) 50)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 55)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-3674 (((-112) $) 51)) (-4114 (((-112) $) 30)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-3658 (((-409 (-1131 $)) (-1131 $)) 56)) (-3738 (((-409 (-1131 $)) (-1131 $)) 57)) (-2106 (((-409 $) $) 48)) (-2025 (((-3 $ "failed") $ $) 40)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 54 (|has| $ (-143)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-3336 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-878) (-138)) (T -878)) -((-4081 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-878)))) (-4070 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1)))) (-4060 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1)))) (-4051 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1)))) (-4039 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *1))) (-5 *3 (-1131 *1)) (-4 *1 (-878)))) (-4028 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) (-5 *2 (-1218 *1)))) (-4017 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878))))) -(-13 (-1176) (-10 -8 (-15 -4070 ((-410 (-1131 $)) (-1131 $))) (-15 -4060 ((-410 (-1131 $)) (-1131 $))) (-15 -4051 ((-410 (-1131 $)) (-1131 $))) (-15 -4081 ((-1131 $) (-1131 $) (-1131 $))) (-15 -4039 ((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $))) (IF (|has| $ (-143)) (PROGN (-15 -4028 ((-3 (-1218 $) "failed") (-663 $))) (-15 -4017 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-2395 (((-112) $) NIL)) (-2364 (((-745)) NIL)) (-2707 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3423 (((-745)) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 $ "failed") $) NIL)) (-2375 (($ $) NIL)) (-2455 (($ (-1218 $)) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-2771 (($) NIL)) (-3727 (((-112) $) NIL)) (-2208 (($ $) NIL) (($ $ (-745)) NIL)) (-1271 (((-112) $) NIL)) (-1672 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-2266 (((-112) $) NIL)) (-2887 (($) NIL (|has| $ (-360)))) (-2866 (((-112) $) NIL (|has| $ (-360)))) (-3910 (($ $ (-890)) NIL (|has| $ (-360))) (($ $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2898 (((-1131 $) $ (-890)) NIL (|has| $ (-360))) (((-1131 $) $) NIL)) (-2855 (((-890) $) NIL)) (-4288 (((-1131 $) $) NIL (|has| $ (-360)))) (-4278 (((-3 (-1131 $) "failed") $ $) NIL (|has| $ (-360))) (((-1131 $) $) NIL (|has| $ (-360)))) (-4300 (($ $ (-1131 $)) NIL (|has| $ (-360)))) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL T CONST)) (-3337 (($ (-890)) NIL)) (-2384 (((-112) $) NIL)) (-3932 (((-1082) $) NIL)) (-4160 (($) NIL (|has| $ (-360)))) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL)) (-1915 (((-410 $) $) NIL)) (-2373 (((-890)) NIL) (((-807 (-890))) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2217 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3402 (((-133)) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2512 (((-890) $) NIL) (((-807 (-890)) $) NIL)) (-3287 (((-1131 $)) NIL)) (-3655 (($) NIL)) (-1255 (($) NIL (|has| $ (-360)))) (-2447 (((-663 $) (-1218 $)) NIL) (((-1218 $) $) NIL)) (-2591 (((-548) $) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3835 (((-745)) NIL)) (-2877 (((-1218 $) (-890)) NIL) (((-1218 $)) NIL)) (-3290 (((-112) $ $) NIL)) (-2406 (((-112) $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-2354 (($ $ (-745)) NIL (|has| $ (-360))) (($ $) NIL (|has| $ (-360)))) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-879 |#1|) (-13 (-341) (-321 $) (-593 (-548))) (-890)) (T -879)) -NIL -(-13 (-341) (-321 $) (-593 (-548))) -((-4099 (((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)) 79)) (-4089 (((-112) (-328 |#2| |#3| |#4| |#5|)) 17)) (-1672 (((-3 (-745) "failed") (-328 |#2| |#3| |#4| |#5|)) 15))) -(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -4089 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) (-13 (-821) (-540) (-1007 (-548))) (-422 |#1|) (-1194 |#2|) (-1194 (-399 |#3|)) (-334 |#2| |#3| |#4|)) (T -880)) -((-4099 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *8))) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-112)) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-745)) (-5 *1 (-880 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -4089 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) -((-4099 (((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#3|)) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)) 56)) (-4089 (((-112) (-328 (-399 (-548)) |#1| |#2| |#3|)) 16)) (-1672 (((-3 (-745) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)) 14))) -(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4089 ((-112) (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#3|)) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)))) (-1194 (-399 (-548))) (-1194 (-399 |#1|)) (-334 (-399 (-548)) |#1| |#2|)) (T -881)) -((-4099 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *6))) (-5 *1 (-881 *4 *5 *6)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-881 *4 *5 *6)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-745)) (-5 *1 (-881 *4 *5 *6))))) -(-10 -7 (-15 -1672 ((-3 (-745) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4089 ((-112) (-328 (-399 (-548)) |#1| |#2| |#3|))) (-15 -4099 ((-3 (-2 (|:| -1672 (-745)) (|:| -3418 |#3|)) "failed") (-328 (-399 (-548)) |#1| |#2| |#3|)))) -((-4152 ((|#2| |#2|) 26)) (-4132 (((-548) (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))))) 15)) (-4112 (((-890) (-548)) 35)) (-4142 (((-548) |#2|) 42)) (-4124 (((-548) |#2|) 21) (((-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))) |#1|) 20))) -(((-882 |#1| |#2|) (-10 -7 (-15 -4112 ((-890) (-548))) (-15 -4124 ((-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))) |#1|)) (-15 -4124 ((-548) |#2|)) (-15 -4132 ((-548) (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))))) (-15 -4142 ((-548) |#2|)) (-15 -4152 (|#2| |#2|))) (-1194 (-399 (-548))) (-1194 (-399 |#1|))) (T -882)) -((-4152 (*1 *2 *2) (-12 (-4 *3 (-1194 (-399 (-548)))) (-5 *1 (-882 *3 *2)) (-4 *2 (-1194 (-399 *3))))) (-4142 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1194 (-399 *4))))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))))) (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-399 *4))))) (-4124 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1194 (-399 *4))))) (-4124 (*1 *2 *3) (-12 (-4 *3 (-1194 (-399 (-548)))) (-5 *2 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-1194 (-399 *3))))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-548)) (-4 *4 (-1194 (-399 *3))) (-5 *2 (-890)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-399 *4)))))) -(-10 -7 (-15 -4112 ((-890) (-548))) (-15 -4124 ((-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))) |#1|)) (-15 -4124 ((-548) |#2|)) (-15 -4132 ((-548) (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))))) (-15 -4142 ((-548) |#2|)) (-15 -4152 (|#2| |#2|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 ((|#1| $) 81)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-1945 (($ $ $) NIL)) (-3859 (((-3 $ "failed") $) 75)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2939 (($ |#1| (-410 |#1|)) 73)) (-2874 (((-1131 |#1|) |#1| |#1|) 41)) (-2863 (($ $) 49)) (-2266 (((-112) $) NIL)) (-2884 (((-548) $) 78)) (-2894 (($ $ (-548)) 80)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2906 ((|#1| $) 77)) (-2917 (((-410 |#1|) $) 76)) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) 74)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-2928 (($ $) 39)) (-3743 (((-832) $) 99) (($ (-548)) 54) (($ $) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 31) (((-399 |#1|) $) 59) (($ (-399 (-410 |#1|))) 67)) (-3835 (((-745)) 52)) (-3290 (((-112) $ $) NIL)) (-3107 (($) 23 T CONST)) (-3118 (($) 12 T CONST)) (-2214 (((-112) $ $) 68)) (-2309 (($ $ $) NIL)) (-2299 (($ $) 88) (($ $ $) NIL)) (-2290 (($ $ $) 38)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 90) (($ $ $) 37) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-883 |#1|) (-13 (-355) (-38 |#1|) (-10 -8 (-15 -3743 ((-399 |#1|) $)) (-15 -3743 ($ (-399 (-410 |#1|)))) (-15 -2928 ($ $)) (-15 -2917 ((-410 |#1|) $)) (-15 -2906 (|#1| $)) (-15 -2894 ($ $ (-548))) (-15 -2884 ((-548) $)) (-15 -2874 ((-1131 |#1|) |#1| |#1|)) (-15 -2863 ($ $)) (-15 -2939 ($ |#1| (-410 |#1|))) (-15 -3875 (|#1| $)))) (-299)) (T -883)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-399 (-410 *3))) (-4 *3 (-299)) (-5 *1 (-883 *3)))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2906 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2874 (*1 *2 *3 *3) (-12 (-5 *2 (-1131 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) (-2863 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) (-2939 (*1 *1 *2 *3) (-12 (-5 *3 (-410 *2)) (-4 *2 (-299)) (-5 *1 (-883 *2)))) (-3875 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) -(-13 (-355) (-38 |#1|) (-10 -8 (-15 -3743 ((-399 |#1|) $)) (-15 -3743 ($ (-399 (-410 |#1|)))) (-15 -2928 ($ $)) (-15 -2917 ((-410 |#1|) $)) (-15 -2906 (|#1| $)) (-15 -2894 ($ $ (-548))) (-15 -2884 ((-548) $)) (-15 -2874 ((-1131 |#1|) |#1| |#1|)) (-15 -2863 ($ $)) (-15 -2939 ($ |#1| (-410 |#1|))) (-15 -3875 (|#1| $)))) -((-2939 (((-52) (-921 |#1|) (-410 (-921 |#1|)) (-1135)) 17) (((-52) (-399 (-921 |#1|)) (-1135)) 18))) -(((-884 |#1|) (-10 -7 (-15 -2939 ((-52) (-399 (-921 |#1|)) (-1135))) (-15 -2939 ((-52) (-921 |#1|) (-410 (-921 |#1|)) (-1135)))) (-13 (-299) (-145))) (T -884)) -((-2939 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-410 (-921 *6))) (-5 *5 (-1135)) (-5 *3 (-921 *6)) (-4 *6 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5))))) -(-10 -7 (-15 -2939 ((-52) (-399 (-921 |#1|)) (-1135))) (-15 -2939 ((-52) (-921 |#1|) (-410 (-921 |#1|)) (-1135)))) -((-2950 ((|#4| (-619 |#4|)) 121) (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3587 (((-1131 |#4|) (-619 (-1131 |#4|))) 114) (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 50) ((|#4| (-619 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3587 (|#4| |#4| |#4|)) (-15 -3587 (|#4| (-619 |#4|))) (-15 -3587 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3587 ((-1131 |#4|) (-619 (-1131 |#4|)))) (-15 -2950 (|#4| |#4| |#4|)) (-15 -2950 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -2950 (|#4| (-619 |#4|)))) (-767) (-821) (-299) (-918 |#3| |#1| |#2|)) (T -885)) -((-2950 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)))) (-2950 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) (-2950 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-619 (-1131 *7))) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-1131 *7)) (-5 *1 (-885 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-3587 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)))) (-3587 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4))))) -(-10 -7 (-15 -3587 (|#4| |#4| |#4|)) (-15 -3587 (|#4| (-619 |#4|))) (-15 -3587 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3587 ((-1131 |#4|) (-619 (-1131 |#4|)))) (-15 -2950 (|#4| |#4| |#4|)) (-15 -2950 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -2950 (|#4| (-619 |#4|)))) -((-3089 (((-873 (-548)) (-940)) 23) (((-873 (-548)) (-619 (-548))) 20)) (-2961 (((-873 (-548)) (-619 (-548))) 48) (((-873 (-548)) (-890)) 49)) (-3078 (((-873 (-548))) 24)) (-3057 (((-873 (-548))) 38) (((-873 (-548)) (-619 (-548))) 37)) (-3046 (((-873 (-548))) 36) (((-873 (-548)) (-619 (-548))) 35)) (-3034 (((-873 (-548))) 34) (((-873 (-548)) (-619 (-548))) 33)) (-3024 (((-873 (-548))) 32) (((-873 (-548)) (-619 (-548))) 31)) (-3014 (((-873 (-548))) 30) (((-873 (-548)) (-619 (-548))) 29)) (-3068 (((-873 (-548))) 40) (((-873 (-548)) (-619 (-548))) 39)) (-3004 (((-873 (-548)) (-619 (-548))) 52) (((-873 (-548)) (-890)) 53)) (-2993 (((-873 (-548)) (-619 (-548))) 50) (((-873 (-548)) (-890)) 51)) (-2972 (((-873 (-548)) (-619 (-548))) 46) (((-873 (-548)) (-890)) 47)) (-2983 (((-873 (-548)) (-619 (-890))) 43))) -(((-886) (-10 -7 (-15 -2961 ((-873 (-548)) (-890))) (-15 -2961 ((-873 (-548)) (-619 (-548)))) (-15 -2972 ((-873 (-548)) (-890))) (-15 -2972 ((-873 (-548)) (-619 (-548)))) (-15 -2983 ((-873 (-548)) (-619 (-890)))) (-15 -2993 ((-873 (-548)) (-890))) (-15 -2993 ((-873 (-548)) (-619 (-548)))) (-15 -3004 ((-873 (-548)) (-890))) (-15 -3004 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)))) (-15 -3024 ((-873 (-548)) (-619 (-548)))) (-15 -3024 ((-873 (-548)))) (-15 -3034 ((-873 (-548)) (-619 (-548)))) (-15 -3034 ((-873 (-548)))) (-15 -3046 ((-873 (-548)) (-619 (-548)))) (-15 -3046 ((-873 (-548)))) (-15 -3057 ((-873 (-548)) (-619 (-548)))) (-15 -3057 ((-873 (-548)))) (-15 -3068 ((-873 (-548)) (-619 (-548)))) (-15 -3068 ((-873 (-548)))) (-15 -3078 ((-873 (-548)))) (-15 -3089 ((-873 (-548)) (-619 (-548)))) (-15 -3089 ((-873 (-548)) (-940))))) (T -886)) -((-3089 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3078 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3068 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3057 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3046 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3034 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3024 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3014 (*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(-10 -7 (-15 -2961 ((-873 (-548)) (-890))) (-15 -2961 ((-873 (-548)) (-619 (-548)))) (-15 -2972 ((-873 (-548)) (-890))) (-15 -2972 ((-873 (-548)) (-619 (-548)))) (-15 -2983 ((-873 (-548)) (-619 (-890)))) (-15 -2993 ((-873 (-548)) (-890))) (-15 -2993 ((-873 (-548)) (-619 (-548)))) (-15 -3004 ((-873 (-548)) (-890))) (-15 -3004 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)) (-619 (-548)))) (-15 -3014 ((-873 (-548)))) (-15 -3024 ((-873 (-548)) (-619 (-548)))) (-15 -3024 ((-873 (-548)))) (-15 -3034 ((-873 (-548)) (-619 (-548)))) (-15 -3034 ((-873 (-548)))) (-15 -3046 ((-873 (-548)) (-619 (-548)))) (-15 -3046 ((-873 (-548)))) (-15 -3057 ((-873 (-548)) (-619 (-548)))) (-15 -3057 ((-873 (-548)))) (-15 -3068 ((-873 (-548)) (-619 (-548)))) (-15 -3068 ((-873 (-548)))) (-15 -3078 ((-873 (-548)))) (-15 -3089 ((-873 (-548)) (-619 (-548)))) (-15 -3089 ((-873 (-548)) (-940)))) -((-3115 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))) 12)) (-3103 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))) 11))) -(((-887 |#1|) (-10 -7 (-15 -3103 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3115 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))))) (-443)) (T -887)) -((-3115 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) (-5 *1 (-887 *4)))) (-3103 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) (-5 *1 (-887 *4))))) -(-10 -7 (-15 -3103 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -3115 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))))) -((-3743 (((-308 |#1|) (-468)) 16))) -(((-888 |#1|) (-10 -7 (-15 -3743 ((-308 |#1|) (-468)))) (-13 (-821) (-540))) (T -888)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-308 *4)) (-5 *1 (-888 *4)) (-4 *4 (-13 (-821) (-540)))))) -(-10 -7 (-15 -3743 ((-308 |#1|) (-468)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-2816 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-878)))) (-3833 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1131 *1))) (-5 *3 (-1131 *1)))) (-3738 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1131 *1))) (-5 *3 (-1131 *1)))) (-3658 (*1 *2 *3) (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1131 *1))) (-5 *3 (-1131 *1)))) (-3548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *1))) (-5 *3 (-1131 *1)) (-4 *1 (-878)))) (-3442 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) (-5 *2 (-1218 *1)))) (-3336 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878))))) +(-13 (-1176) (-10 -8 (-15 -3833 ((-409 (-1131 $)) (-1131 $))) (-15 -3738 ((-409 (-1131 $)) (-1131 $))) (-15 -3658 ((-409 (-1131 $)) (-1131 $))) (-15 -2816 ((-1131 $) (-1131 $) (-1131 $))) (-15 -3548 ((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $))) (IF (|has| $ (-143)) (PROGN (-15 -3442 ((-3 (-1218 $) "failed") (-663 $))) (-15 -3336 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2992 (((-112) $) NIL)) (-2747 (((-745)) NIL)) (-2890 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-4253 (((-1145 (-890) (-745)) (-547)) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3603 (((-745)) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 $ "failed") $) NIL)) (-2643 (($ $) NIL)) (-2402 (($ (-1218 $)) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-2445 (($) NIL)) (-3661 (((-112) $) NIL)) (-1771 (($ $) NIL) (($ $ (-745)) NIL)) (-3674 (((-112) $) NIL)) (-3707 (((-807 (-890)) $) NIL) (((-890) $) NIL)) (-4114 (((-112) $) NIL)) (-4116 (($) NIL (|has| $ (-359)))) (-3908 (((-112) $) NIL (|has| $ (-359)))) (-1684 (($ $ (-890)) NIL (|has| $ (-359))) (($ $) NIL)) (-3652 (((-3 $ "failed") $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4213 (((-1131 $) $ (-890)) NIL (|has| $ (-359))) (((-1131 $) $) NIL)) (-1966 (((-890) $) NIL)) (-4218 (((-1131 $) $) NIL (|has| $ (-359)))) (-4122 (((-3 (-1131 $) "failed") $ $) NIL (|has| $ (-359))) (((-1131 $) $) NIL (|has| $ (-359)))) (-1277 (($ $ (-1131 $)) NIL (|has| $ (-359)))) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL T CONST)) (-3479 (($ (-890)) NIL)) (-2916 (((-112) $) NIL)) (-3979 (((-1082) $) NIL)) (-4240 (($) NIL (|has| $ (-359)))) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL)) (-2106 (((-409 $) $) NIL)) (-2832 (((-890)) NIL) (((-807 (-890))) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1868 (((-3 (-745) "failed") $ $) NIL) (((-745) $) NIL)) (-3512 (((-133)) NIL)) (-3443 (($ $ (-745)) NIL) (($ $) NIL)) (-1618 (((-890) $) NIL) (((-807 (-890)) $) NIL)) (-1901 (((-1131 $)) NIL)) (-4150 (($) NIL)) (-3164 (($) NIL (|has| $ (-359)))) (-2301 (((-663 $) (-1218 $)) NIL) (((-1218 $) $) NIL)) (-2829 (((-547) $) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL)) (-3336 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2311 (((-745)) NIL)) (-4013 (((-1218 $) (-890)) NIL) (((-1218 $)) NIL)) (-1932 (((-112) $ $) NIL)) (-3084 (((-112) $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-3774 (($ $ (-745)) NIL (|has| $ (-359))) (($ $) NIL (|has| $ (-359)))) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-879 |#1|) (-13 (-340) (-320 $) (-592 (-547))) (-890)) (T -879)) +NIL +(-13 (-340) (-320 $) (-592 (-547))) +((-2977 (((-3 (-2 (|:| -3707 (-745)) (|:| -3556 |#5|)) "failed") (-327 |#2| |#3| |#4| |#5|)) 79)) (-2893 (((-112) (-327 |#2| |#3| |#4| |#5|)) 17)) (-3707 (((-3 (-745) "failed") (-327 |#2| |#3| |#4| |#5|)) 15))) +(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-3 (-745) "failed") (-327 |#2| |#3| |#4| |#5|))) (-15 -2893 ((-112) (-327 |#2| |#3| |#4| |#5|))) (-15 -2977 ((-3 (-2 (|:| -3707 (-745)) (|:| -3556 |#5|)) "failed") (-327 |#2| |#3| |#4| |#5|)))) (-13 (-821) (-539) (-1007 (-547))) (-421 |#1|) (-1194 |#2|) (-1194 (-398 |#3|)) (-333 |#2| |#3| |#4|)) (T -880)) +((-2977 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-2 (|:| -3707 (-745)) (|:| -3556 *8))) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-112)) (-5 *1 (-880 *4 *5 *6 *7 *8)))) (-3707 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-745)) (-5 *1 (-880 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3707 ((-3 (-745) "failed") (-327 |#2| |#3| |#4| |#5|))) (-15 -2893 ((-112) (-327 |#2| |#3| |#4| |#5|))) (-15 -2977 ((-3 (-2 (|:| -3707 (-745)) (|:| -3556 |#5|)) "failed") (-327 |#2| |#3| |#4| |#5|)))) +((-2977 (((-3 (-2 (|:| -3707 (-745)) (|:| -3556 |#3|)) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)) 56)) (-2893 (((-112) (-327 (-398 (-547)) |#1| |#2| |#3|)) 16)) (-3707 (((-3 (-745) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)) 14))) +(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -3707 ((-3 (-745) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2893 ((-112) (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2977 ((-3 (-2 (|:| -3707 (-745)) (|:| -3556 |#3|)) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)))) (-1194 (-398 (-547))) (-1194 (-398 |#1|)) (-333 (-398 (-547)) |#1| |#2|)) (T -881)) +((-2977 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-2 (|:| -3707 (-745)) (|:| -3556 *6))) (-5 *1 (-881 *4 *5 *6)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-881 *4 *5 *6)))) (-3707 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-745)) (-5 *1 (-881 *4 *5 *6))))) +(-10 -7 (-15 -3707 ((-3 (-745) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2893 ((-112) (-327 (-398 (-547)) |#1| |#2| |#3|))) (-15 -2977 ((-3 (-2 (|:| -3707 (-745)) (|:| -3556 |#3|)) "failed") (-327 (-398 (-547)) |#1| |#2| |#3|)))) +((-2330 ((|#2| |#2|) 26)) (-3263 (((-547) (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))))) 15)) (-3077 (((-890) (-547)) 35)) (-2198 (((-547) |#2|) 42)) (-3182 (((-547) |#2|) 21) (((-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))) |#1|) 20))) +(((-882 |#1| |#2|) (-10 -7 (-15 -3077 ((-890) (-547))) (-15 -3182 ((-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))) |#1|)) (-15 -3182 ((-547) |#2|)) (-15 -3263 ((-547) (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))))) (-15 -2198 ((-547) |#2|)) (-15 -2330 (|#2| |#2|))) (-1194 (-398 (-547))) (-1194 (-398 |#1|))) (T -882)) +((-2330 (*1 *2 *2) (-12 (-4 *3 (-1194 (-398 (-547)))) (-5 *1 (-882 *3 *2)) (-4 *2 (-1194 (-398 *3))))) (-2198 (*1 *2 *3) (-12 (-4 *4 (-1194 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1194 (-398 *4))))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))))) (-4 *4 (-1194 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-398 *4))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-1194 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1194 (-398 *4))))) (-3182 (*1 *2 *3) (-12 (-4 *3 (-1194 (-398 (-547)))) (-5 *2 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-1194 (-398 *3))))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-547)) (-4 *4 (-1194 (-398 *3))) (-5 *2 (-890)) (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-398 *4)))))) +(-10 -7 (-15 -3077 ((-890) (-547))) (-15 -3182 ((-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))) |#1|)) (-15 -3182 ((-547) |#2|)) (-15 -3263 ((-547) (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))))) (-15 -2198 ((-547) |#2|)) (-15 -2330 (|#2| |#2|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 ((|#1| $) 81)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2079 (($ $ $) NIL)) (-2537 (((-3 $ "failed") $) 75)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3482 (($ |#1| (-409 |#1|)) 73)) (-3980 (((-1131 |#1|) |#1| |#1|) 41)) (-3882 (($ $) 49)) (-4114 (((-112) $) NIL)) (-4085 (((-547) $) 78)) (-4184 (($ $ (-547)) 80)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4280 ((|#1| $) 77)) (-1334 (((-409 |#1|) $) 76)) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) 74)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3369 (($ $) 39)) (-3834 (((-832) $) 99) (($ (-547)) 54) (($ $) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 31) (((-398 |#1|) $) 59) (($ (-398 (-409 |#1|))) 67)) (-2311 (((-745)) 52)) (-1932 (((-112) $ $) NIL)) (-3267 (($) 23 T CONST)) (-3277 (($) 12 T CONST)) (-2371 (((-112) $ $) 68)) (-2497 (($ $ $) NIL)) (-2484 (($ $) 88) (($ $ $) NIL)) (-2470 (($ $ $) 38)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 90) (($ $ $) 37) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-883 |#1|) (-13 (-354) (-38 |#1|) (-10 -8 (-15 -3834 ((-398 |#1|) $)) (-15 -3834 ($ (-398 (-409 |#1|)))) (-15 -3369 ($ $)) (-15 -1334 ((-409 |#1|) $)) (-15 -4280 (|#1| $)) (-15 -4184 ($ $ (-547))) (-15 -4085 ((-547) $)) (-15 -3980 ((-1131 |#1|) |#1| |#1|)) (-15 -3882 ($ $)) (-15 -3482 ($ |#1| (-409 |#1|))) (-15 -2673 (|#1| $)))) (-298)) (T -883)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-398 (-409 *3))) (-4 *3 (-298)) (-5 *1 (-883 *3)))) (-3369 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-4280 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) (-4184 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-3980 (*1 *2 *3 *3) (-12 (-5 *2 (-1131 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) (-3882 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) (-3482 (*1 *1 *2 *3) (-12 (-5 *3 (-409 *2)) (-4 *2 (-298)) (-5 *1 (-883 *2)))) (-2673 (*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298))))) +(-13 (-354) (-38 |#1|) (-10 -8 (-15 -3834 ((-398 |#1|) $)) (-15 -3834 ($ (-398 (-409 |#1|)))) (-15 -3369 ($ $)) (-15 -1334 ((-409 |#1|) $)) (-15 -4280 (|#1| $)) (-15 -4184 ($ $ (-547))) (-15 -4085 ((-547) $)) (-15 -3980 ((-1131 |#1|) |#1| |#1|)) (-15 -3882 ($ $)) (-15 -3482 ($ |#1| (-409 |#1|))) (-15 -2673 (|#1| $)))) +((-3482 (((-52) (-921 |#1|) (-409 (-921 |#1|)) (-1135)) 17) (((-52) (-398 (-921 |#1|)) (-1135)) 18))) +(((-884 |#1|) (-10 -7 (-15 -3482 ((-52) (-398 (-921 |#1|)) (-1135))) (-15 -3482 ((-52) (-921 |#1|) (-409 (-921 |#1|)) (-1135)))) (-13 (-298) (-145))) (T -884)) +((-3482 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-409 (-921 *6))) (-5 *5 (-1135)) (-5 *3 (-921 *6)) (-4 *6 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5))))) +(-10 -7 (-15 -3482 ((-52) (-398 (-921 |#1|)) (-1135))) (-15 -3482 ((-52) (-921 |#1|) (-409 (-921 |#1|)) (-1135)))) +((-3606 ((|#4| (-619 |#4|)) 121) (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3715 (((-1131 |#4|) (-619 (-1131 |#4|))) 114) (((-1131 |#4|) (-1131 |#4|) (-1131 |#4|)) 50) ((|#4| (-619 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 (|#4| |#4| |#4|)) (-15 -3715 (|#4| (-619 |#4|))) (-15 -3715 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3715 ((-1131 |#4|) (-619 (-1131 |#4|)))) (-15 -3606 (|#4| |#4| |#4|)) (-15 -3606 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3606 (|#4| (-619 |#4|)))) (-767) (-821) (-298) (-918 |#3| |#1| |#2|)) (T -885)) +((-3606 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)))) (-3606 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6)))) (-3606 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-619 (-1131 *7))) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-1131 *7)) (-5 *1 (-885 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) (-3715 (*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)))) (-3715 (*1 *2 *2 *2) (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4))))) +(-10 -7 (-15 -3715 (|#4| |#4| |#4|)) (-15 -3715 (|#4| (-619 |#4|))) (-15 -3715 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3715 ((-1131 |#4|) (-619 (-1131 |#4|)))) (-15 -3606 (|#4| |#4| |#4|)) (-15 -3606 ((-1131 |#4|) (-1131 |#4|) (-1131 |#4|))) (-15 -3606 (|#4| (-619 |#4|)))) +((-2668 (((-873 (-547)) (-940)) 23) (((-873 (-547)) (-619 (-547))) 20)) (-3720 (((-873 (-547)) (-619 (-547))) 48) (((-873 (-547)) (-890)) 49)) (-2575 (((-873 (-547))) 24)) (-2331 (((-873 (-547))) 38) (((-873 (-547)) (-619 (-547))) 37)) (-2199 (((-873 (-547))) 36) (((-873 (-547)) (-619 (-547))) 35)) (-3264 (((-873 (-547))) 34) (((-873 (-547)) (-619 (-547))) 33)) (-3162 (((-873 (-547))) 32) (((-873 (-547)) (-619 (-547))) 31)) (-3070 (((-873 (-547))) 30) (((-873 (-547)) (-619 (-547))) 29)) (-2452 (((-873 (-547))) 40) (((-873 (-547)) (-619 (-547))) 39)) (-2978 (((-873 (-547)) (-619 (-547))) 52) (((-873 (-547)) (-890)) 53)) (-2894 (((-873 (-547)) (-619 (-547))) 50) (((-873 (-547)) (-890)) 51)) (-3813 (((-873 (-547)) (-619 (-547))) 46) (((-873 (-547)) (-890)) 47)) (-2795 (((-873 (-547)) (-619 (-890))) 43))) +(((-886) (-10 -7 (-15 -3720 ((-873 (-547)) (-890))) (-15 -3720 ((-873 (-547)) (-619 (-547)))) (-15 -3813 ((-873 (-547)) (-890))) (-15 -3813 ((-873 (-547)) (-619 (-547)))) (-15 -2795 ((-873 (-547)) (-619 (-890)))) (-15 -2894 ((-873 (-547)) (-890))) (-15 -2894 ((-873 (-547)) (-619 (-547)))) (-15 -2978 ((-873 (-547)) (-890))) (-15 -2978 ((-873 (-547)) (-619 (-547)))) (-15 -3070 ((-873 (-547)) (-619 (-547)))) (-15 -3070 ((-873 (-547)))) (-15 -3162 ((-873 (-547)) (-619 (-547)))) (-15 -3162 ((-873 (-547)))) (-15 -3264 ((-873 (-547)) (-619 (-547)))) (-15 -3264 ((-873 (-547)))) (-15 -2199 ((-873 (-547)) (-619 (-547)))) (-15 -2199 ((-873 (-547)))) (-15 -2331 ((-873 (-547)) (-619 (-547)))) (-15 -2331 ((-873 (-547)))) (-15 -2452 ((-873 (-547)) (-619 (-547)))) (-15 -2452 ((-873 (-547)))) (-15 -2575 ((-873 (-547)))) (-15 -2668 ((-873 (-547)) (-619 (-547)))) (-15 -2668 ((-873 (-547)) (-940))))) (T -886)) +((-2668 (*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2575 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2452 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2331 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2199 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3264 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3264 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3162 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3070 (*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(-10 -7 (-15 -3720 ((-873 (-547)) (-890))) (-15 -3720 ((-873 (-547)) (-619 (-547)))) (-15 -3813 ((-873 (-547)) (-890))) (-15 -3813 ((-873 (-547)) (-619 (-547)))) (-15 -2795 ((-873 (-547)) (-619 (-890)))) (-15 -2894 ((-873 (-547)) (-890))) (-15 -2894 ((-873 (-547)) (-619 (-547)))) (-15 -2978 ((-873 (-547)) (-890))) (-15 -2978 ((-873 (-547)) (-619 (-547)))) (-15 -3070 ((-873 (-547)) (-619 (-547)))) (-15 -3070 ((-873 (-547)))) (-15 -3162 ((-873 (-547)) (-619 (-547)))) (-15 -3162 ((-873 (-547)))) (-15 -3264 ((-873 (-547)) (-619 (-547)))) (-15 -3264 ((-873 (-547)))) (-15 -2199 ((-873 (-547)) (-619 (-547)))) (-15 -2199 ((-873 (-547)))) (-15 -2331 ((-873 (-547)) (-619 (-547)))) (-15 -2331 ((-873 (-547)))) (-15 -2452 ((-873 (-547)) (-619 (-547)))) (-15 -2452 ((-873 (-547)))) (-15 -2575 ((-873 (-547)))) (-15 -2668 ((-873 (-547)) (-619 (-547)))) (-15 -2668 ((-873 (-547)) (-940)))) +((-1570 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))) 12)) (-1441 (((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))) 11))) +(((-887 |#1|) (-10 -7 (-15 -1441 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -1570 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))))) (-442)) (T -887)) +((-1570 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-442)) (-5 *1 (-887 *4)))) (-1441 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-442)) (-5 *1 (-887 *4))))) +(-10 -7 (-15 -1441 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -1570 ((-619 (-921 |#1|)) (-619 (-921 |#1|)) (-619 (-1135))))) +((-3834 (((-307 |#1|) (-467)) 16))) +(((-888 |#1|) (-10 -7 (-15 -3834 ((-307 |#1|) (-467)))) (-13 (-821) (-539))) (T -888)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *2 (-307 *4)) (-5 *1 (-888 *4)) (-4 *4 (-13 (-821) (-539)))))) +(-10 -7 (-15 -3834 ((-307 |#1|) (-467)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-4114 (((-112) $) 30)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-889) (-138)) (T -889)) -((-3136 (*1 *2 *3) (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1489 (-619 *1)) (|:| -4160 *1))) (-5 *3 (-619 *1)))) (-3126 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889))))) -(-13 (-443) (-10 -8 (-15 -3136 ((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $))) (-15 -3126 ((-3 (-619 $) "failed") (-619 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3587 (($ $ $) NIL)) (-3743 (((-832) $) NIL)) (-3118 (($) NIL T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ $ $) NIL))) -(((-890) (-13 (-768) (-701) (-10 -8 (-15 -3587 ($ $ $)) (-6 (-4329 "*"))))) (T -890)) -((-3587 (*1 *1 *1 *1) (-5 *1 (-890)))) -(-13 (-768) (-701) (-10 -8 (-15 -3587 ($ $ $)) (-6 (-4329 "*")))) -((-3146 ((|#2| (-619 |#1|) (-619 |#1|)) 24))) -(((-891 |#1| |#2|) (-10 -7 (-15 -3146 (|#2| (-619 |#1|) (-619 |#1|)))) (-355) (-1194 |#1|)) (T -891)) -((-3146 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-4 *2 (-1194 *4)) (-5 *1 (-891 *4 *2))))) -(-10 -7 (-15 -3146 (|#2| (-619 |#1|) (-619 |#1|)))) -((-3657 (((-1131 |#2|) (-619 |#2|) (-619 |#2|)) 17) (((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|)) 13))) -(((-892 |#1| |#2|) (-10 -7 (-15 -3657 ((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -3657 ((-1131 |#2|) (-619 |#2|) (-619 |#2|)))) (-1135) (-355)) (T -892)) -((-3657 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-355)) (-5 *2 (-1131 *5)) (-5 *1 (-892 *4 *5)) (-14 *4 (-1135)))) (-3657 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1191 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1135)) (-4 *5 (-355)) (-5 *1 (-892 *4 *5))))) -(-10 -7 (-15 -3657 ((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -3657 ((-1131 |#2|) (-619 |#2|) (-619 |#2|)))) -((-3167 (((-548) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118)) 139)) (-3413 ((|#4| |#4|) 155)) (-3219 (((-619 (-399 (-921 |#1|))) (-619 (-1135))) 118)) (-3401 (((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-548)) 75)) (-3264 (((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-619 |#4|)) 59)) (-3388 (((-663 |#4|) (-663 |#4|) (-619 |#4|)) 55)) (-3180 (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118)) 151)) (-3157 (((-548) (-663 |#4|) (-890) (-1118)) 132) (((-548) (-663 |#4|) (-619 (-1135)) (-890) (-1118)) 131) (((-548) (-663 |#4|) (-619 |#4|) (-890) (-1118)) 130) (((-548) (-663 |#4|) (-1118)) 127) (((-548) (-663 |#4|) (-619 (-1135)) (-1118)) 126) (((-548) (-663 |#4|) (-619 |#4|) (-1118)) 125) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-890)) 124) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890)) 123) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890)) 122) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|)) 120) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135))) 119) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|)) 115)) (-3230 ((|#4| (-921 |#1|)) 68)) (-3354 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 152)) (-3339 (((-619 (-619 (-548))) (-548) (-548)) 129)) (-3325 (((-619 (-619 |#4|)) (-619 (-619 |#4|))) 88)) (-3313 (((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|))))) 86)) (-3299 (((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|))))) 85)) (-3426 (((-112) (-619 (-921 |#1|))) 17) (((-112) (-619 |#4|)) 13)) (-3240 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|)) 71)) (-3288 (((-619 |#4|) |#4|) 49)) (-3205 (((-619 (-399 (-921 |#1|))) (-619 |#4|)) 114) (((-663 (-399 (-921 |#1|))) (-663 |#4|)) 56) (((-399 (-921 |#1|)) |#4|) 111)) (-3192 (((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))))) (|:| |rgsz| (-548))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-745) (-1118) (-548)) 93)) (-3251 (((-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745)) 84)) (-3370 (((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-663 |#4|) (-745)) 101)) (-3275 (((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| -4035 (-663 (-399 (-921 |#1|)))) (|:| |vec| (-619 (-399 (-921 |#1|)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) 48))) -(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-890) (-1118))) (-15 -3167 ((-548) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3180 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3192 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))))) (|:| |rgsz| (-548))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-745) (-1118) (-548))) (-15 -3205 ((-399 (-921 |#1|)) |#4|)) (-15 -3205 ((-663 (-399 (-921 |#1|))) (-663 |#4|))) (-15 -3205 ((-619 (-399 (-921 |#1|))) (-619 |#4|))) (-15 -3219 ((-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3230 (|#4| (-921 |#1|))) (-15 -3240 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -3251 ((-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -3264 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-619 |#4|))) (-15 -3275 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| -4035 (-663 (-399 (-921 |#1|)))) (|:| |vec| (-619 (-399 (-921 |#1|)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (-15 -3288 ((-619 |#4|) |#4|)) (-15 -3299 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3313 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3325 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -3339 ((-619 (-619 (-548))) (-548) (-548))) (-15 -3354 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3370 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-663 |#4|) (-745))) (-15 -3388 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -3401 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-548))) (-15 -3413 (|#4| |#4|)) (-15 -3426 ((-112) (-619 |#4|))) (-15 -3426 ((-112) (-619 (-921 |#1|))))) (-13 (-299) (-145)) (-13 (-821) (-593 (-1135))) (-767) (-918 |#1| |#3| |#2|)) (T -893)) -((-3426 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4)))) (-3401 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-5 *4 (-663 *12)) (-5 *5 (-619 (-399 (-921 *9)))) (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-548)) (-4 *9 (-13 (-299) (-145))) (-4 *12 (-918 *9 *11 *10)) (-4 *10 (-13 (-821) (-593 (-1135)))) (-4 *11 (-767)) (-5 *2 (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12)) (|:| |wcond| (-619 (-921 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *9)))) (|:| -2877 (-619 (-1218 (-399 (-921 *9))))))))) (-5 *1 (-893 *9 *10 *11 *12)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3339 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-619 (-548)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *6 *5)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3288 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4035 (-663 (-399 (-921 *4)))) (|:| |vec| (-619 (-399 (-921 *4)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3264 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) (-5 *3 (-619 *7)) (-4 *4 (-13 (-299) (-145))) (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 *8))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745)))) (-3240 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-299) (-145))) (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-663 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-399 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-3192 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-399 (-921 *8)))) (-5 *5 (-745)) (-5 *6 (-1118)) (-4 *8 (-13 (-299) (-145))) (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-593 (-1135)))) (-4 *10 (-767)) (-5 *2 (-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) (|:| |wcond| (-619 (-921 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *8)))) (|:| -2877 (-619 (-1218 (-399 (-921 *8)))))))))) (|:| |rgsz| (-548)))) (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-548)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *4 (-1118)) (-4 *5 (-13 (-299) (-145))) (-4 *8 (-918 *5 *7 *6)) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *7 *8 *9 *10)))) (-3157 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *7 *8 *9 *10)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-1118)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)))) (-3157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1135))) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-3157 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) -(-10 -7 (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890))) (-15 -3157 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 |#4|) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-619 (-1135)) (-890) (-1118))) (-15 -3157 ((-548) (-663 |#4|) (-890) (-1118))) (-15 -3167 ((-548) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3180 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|))))))))) (-1118))) (-15 -3192 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))))) (|:| |rgsz| (-548))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-745) (-1118) (-548))) (-15 -3205 ((-399 (-921 |#1|)) |#4|)) (-15 -3205 ((-663 (-399 (-921 |#1|))) (-663 |#4|))) (-15 -3205 ((-619 (-399 (-921 |#1|))) (-619 |#4|))) (-15 -3219 ((-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3230 (|#4| (-921 |#1|))) (-15 -3240 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -3251 ((-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -3264 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-619 |#4|))) (-15 -3275 ((-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))) (-2 (|:| -4035 (-663 (-399 (-921 |#1|)))) (|:| |vec| (-619 (-399 (-921 |#1|)))) (|:| -2103 (-745)) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (-15 -3288 ((-619 |#4|) |#4|)) (-15 -3299 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3313 ((-745) (-619 (-2 (|:| -2103 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3325 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -3339 ((-619 (-619 (-548))) (-548) (-548))) (-15 -3354 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3370 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) (-663 |#4|) (-745))) (-15 -3388 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -3401 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-399 (-921 |#1|)))) (|:| -2877 (-619 (-1218 (-399 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548)))) (-663 |#4|) (-619 (-399 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-548))) (-15 -3413 (|#4| |#4|)) (-15 -3426 ((-112) (-619 |#4|))) (-15 -3426 ((-112) (-619 (-921 |#1|))))) -((-3438 (((-896) |#1| (-1135)) 17) (((-896) |#1| (-1135) (-1058 (-218))) 21)) (-3583 (((-896) |#1| |#1| (-1135) (-1058 (-218))) 19) (((-896) |#1| (-1135) (-1058 (-218))) 15))) -(((-894 |#1|) (-10 -7 (-15 -3583 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3583 ((-896) |#1| |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135)))) (-593 (-524))) (T -894)) -((-3438 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) (-3438 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) (-3583 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) (-3583 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-593 (-524)))))) -(-10 -7 (-15 -3583 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3583 ((-896) |#1| |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135) (-1058 (-218)))) (-15 -3438 ((-896) |#1| (-1135)))) -((-2994 (($ $ (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 70)) (-3948 (((-1058 (-218)) $) 40)) (-3934 (((-1058 (-218)) $) 39)) (-3921 (((-1058 (-218)) $) 38)) (-3561 (((-619 (-619 (-218))) $) 43)) (-3572 (((-1058 (-218)) $) 41)) (-3494 (((-548) (-548)) 32)) (-3538 (((-548) (-548)) 28)) (-3515 (((-548) (-548)) 30)) (-3471 (((-112) (-112)) 35)) (-3506 (((-548)) 31)) (-3933 (($ $ (-1058 (-218))) 73) (($ $) 74)) (-3596 (($ (-1 (-912 (-218)) (-218)) (-1058 (-218))) 78) (($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 79)) (-3583 (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218))) 81) (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 82) (($ $ (-1058 (-218))) 76)) (-3459 (((-548)) 36)) (-3549 (((-548)) 27)) (-3527 (((-548)) 29)) (-3360 (((-619 (-619 (-912 (-218)))) $) 95)) (-3448 (((-112) (-112)) 37)) (-3743 (((-832) $) 94)) (-3481 (((-112)) 34))) -(((-895) (-13 (-943) (-10 -8 (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3561 ((-619 (-619 (-218))) $)) (-15 -3549 ((-548))) (-15 -3538 ((-548) (-548))) (-15 -3527 ((-548))) (-15 -3515 ((-548) (-548))) (-15 -3506 ((-548))) (-15 -3494 ((-548) (-548))) (-15 -3481 ((-112))) (-15 -3471 ((-112) (-112))) (-15 -3459 ((-548))) (-15 -3448 ((-112) (-112)))))) (T -895)) -((-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3596 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3583 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3583 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-895)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-2994 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-3933 (*1 *1 *1) (-5 *1 (-895))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-895)))) (-3549 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3538 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3527 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3506 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3481 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-3459 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) -(-13 (-943) (-10 -8 (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3561 ((-619 (-619 (-218))) $)) (-15 -3549 ((-548))) (-15 -3538 ((-548) (-548))) (-15 -3527 ((-548))) (-15 -3515 ((-548) (-548))) (-15 -3506 ((-548))) (-15 -3494 ((-548) (-548))) (-15 -3481 ((-112))) (-15 -3471 ((-112) (-112))) (-15 -3459 ((-548))) (-15 -3448 ((-112) (-112))))) -((-2994 (($ $ (-1058 (-218))) 70) (($ $ (-1058 (-218)) (-1058 (-218))) 71)) (-3934 (((-1058 (-218)) $) 44)) (-3921 (((-1058 (-218)) $) 43)) (-3572 (((-1058 (-218)) $) 45)) (-3467 (((-548) (-548)) 37)) (-3405 (((-548) (-548)) 33)) (-3489 (((-548) (-548)) 35)) (-3444 (((-112) (-112)) 39)) (-3477 (((-548)) 36)) (-3933 (($ $ (-1058 (-218))) 74) (($ $) 75)) (-3596 (($ (-1 (-912 (-218)) (-218)) (-1058 (-218))) 84) (($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 85)) (-3438 (($ (-1 (-218) (-218)) (-1058 (-218))) 92) (($ (-1 (-218) (-218))) 95)) (-3583 (($ (-1 (-218) (-218)) (-1058 (-218))) 79) (($ (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218))) 80) (($ (-619 (-1 (-218) (-218))) (-1058 (-218))) 87) (($ (-619 (-1 (-218) (-218))) (-1058 (-218)) (-1058 (-218))) 88) (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218))) 81) (($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218))) 82) (($ $ (-1058 (-218))) 76)) (-3430 (((-112) $) 40)) (-3434 (((-548)) 41)) (-3417 (((-548)) 32)) (-3502 (((-548)) 34)) (-3360 (((-619 (-619 (-912 (-218)))) $) 23)) (-3285 (((-112) (-112)) 42)) (-3743 (((-832) $) 106)) (-3455 (((-112)) 38))) -(((-896) (-13 (-924) (-10 -8 (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -3430 ((-112) $)) (-15 -2994 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3417 ((-548))) (-15 -3405 ((-548) (-548))) (-15 -3502 ((-548))) (-15 -3489 ((-548) (-548))) (-15 -3477 ((-548))) (-15 -3467 ((-548) (-548))) (-15 -3455 ((-112))) (-15 -3444 ((-112) (-112))) (-15 -3434 ((-548))) (-15 -3285 ((-112) (-112)))))) (T -896)) -((-3583 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3596 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3438 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) (-5 *1 (-896)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-896)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-2994 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3933 (*1 *1 *1) (-5 *1 (-896))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) (-3417 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3502 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3477 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3455 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3434 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(-13 (-924) (-10 -8 (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)))) (-15 -3583 ($ (-619 (-1 (-218) (-218))) (-1058 (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3583 ($ (-1 (-218) (-218)) (-1 (-218) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)))) (-15 -3596 ($ (-1 (-912 (-218)) (-218)) (-1058 (-218)) (-1058 (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)) (-1058 (-218)))) (-15 -3438 ($ (-1 (-218) (-218)))) (-15 -3583 ($ $ (-1058 (-218)))) (-15 -3430 ((-112) $)) (-15 -2994 ($ $ (-1058 (-218)))) (-15 -2994 ($ $ (-1058 (-218)) (-1058 (-218)))) (-15 -3933 ($ $ (-1058 (-218)))) (-15 -3933 ($ $)) (-15 -3572 ((-1058 (-218)) $)) (-15 -3417 ((-548))) (-15 -3405 ((-548) (-548))) (-15 -3502 ((-548))) (-15 -3489 ((-548) (-548))) (-15 -3477 ((-548))) (-15 -3467 ((-548) (-548))) (-15 -3455 ((-112))) (-15 -3444 ((-112) (-112))) (-15 -3434 ((-548))) (-15 -3285 ((-112) (-112))))) -((-3607 (((-619 (-1058 (-218))) (-619 (-619 (-912 (-218))))) 24))) -(((-897) (-10 -7 (-15 -3607 ((-619 (-1058 (-218))) (-619 (-619 (-912 (-218)))))))) (T -897)) -((-3607 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-619 (-1058 (-218)))) (-5 *1 (-897))))) -(-10 -7 (-15 -3607 ((-619 (-1058 (-218))) (-619 (-619 (-912 (-218))))))) -((-2167 ((|#2| |#2|) 26)) (-2190 ((|#2| |#2|) 27)) (-2325 ((|#2| |#2|) 25)) (-2841 ((|#2| |#2| (-1118)) 24))) -(((-898 |#1| |#2|) (-10 -7 (-15 -2841 (|#2| |#2| (-1118))) (-15 -2325 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2190 (|#2| |#2|))) (-821) (-422 |#1|)) (T -898)) -((-2190 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2)) (-4 *2 (-422 *4))))) -(-10 -7 (-15 -2841 (|#2| |#2| (-1118))) (-15 -2325 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -2190 (|#2| |#2|))) -((-2167 (((-308 (-548)) (-1135)) 16)) (-2190 (((-308 (-548)) (-1135)) 14)) (-2325 (((-308 (-548)) (-1135)) 12)) (-2841 (((-308 (-548)) (-1135) (-1118)) 19))) -(((-899) (-10 -7 (-15 -2841 ((-308 (-548)) (-1135) (-1118))) (-15 -2325 ((-308 (-548)) (-1135))) (-15 -2167 ((-308 (-548)) (-1135))) (-15 -2190 ((-308 (-548)) (-1135))))) (T -899)) -((-2190 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1118)) (-5 *2 (-308 (-548))) (-5 *1 (-899))))) -(-10 -7 (-15 -2841 ((-308 (-548)) (-1135) (-1118))) (-15 -2325 ((-308 (-548)) (-1135))) (-15 -2167 ((-308 (-548)) (-1135))) (-15 -2190 ((-308 (-548)) (-1135)))) -((-3628 (((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)) 25)) (-3617 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3617 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3628 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-855 |#1|) (-13 (-1063) (-1007 |#2|))) (T -900)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) (-5 *1 (-900 *5 *3 *6)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-900 *4 *5 *6))))) -(-10 -7 (-15 -3617 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3628 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) -((-3628 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 30))) -(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-540) (-821) (-855 |#1|)) (-13 (-422 |#2|) (-593 (-861 |#1|)) (-855 |#1|) (-1007 (-591 $)))) (T -901)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-422 *6) (-593 *4) (-855 *5) (-1007 (-591 $)))) (-5 *4 (-861 *5)) (-4 *6 (-13 (-540) (-821) (-855 *5))) (-5 *1 (-901 *5 *6 *3))))) -(-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) -((-3628 (((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|)) 13))) -(((-902 |#1|) (-10 -7 (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|)))) (-533)) (T -902)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 (-548) *3)) (-5 *4 (-861 (-548))) (-4 *3 (-533)) (-5 *1 (-902 *3))))) -(-10 -7 (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|)))) -((-3628 (((-858 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-858 |#1| |#2|)) 54))) -(((-903 |#1| |#2|) (-10 -7 (-15 -3628 ((-858 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) (-1063) (-13 (-821) (-1007 (-591 $)) (-593 (-861 |#1|)) (-855 |#1|))) (T -903)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1063)) (-4 *6 (-13 (-821) (-1007 (-591 $)) (-593 *4) (-855 *5))) (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6))))) -(-10 -7 (-15 -3628 ((-858 |#1| |#2|) (-591 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) -((-3628 (((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)) 15))) -(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) (-1063) (-855 |#1|) (-640 |#2|)) (T -904)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3))))) -(-10 -7 (-15 -3628 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) -((-3628 (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|)) 17 (|has| |#3| (-855 |#1|))) (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|))) 16))) -(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) (-1063) (-767) (-821) (-13 (-1016) (-821) (-855 |#1|)) (-13 (-918 |#4| |#2| |#3|) (-593 (-861 |#1|)))) (T -905)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-918 *8 *6 *7) (-593 *4))) (-5 *4 (-861 *5)) (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-13 (-1016) (-821) (-855 *5))) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3628 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-593 *4))) (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) (-5 *1 (-905 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3628 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) -((-2256 ((|#2| |#2| (-619 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -2256 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2256 (|#2| |#2| (-619 (-1 (-112) |#3|))))) (-821) (-422 |#1|) (-1172)) (T -906)) -((-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1172)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4))))) -(-10 -7 (-15 -2256 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2256 (|#2| |#2| (-619 (-1 (-112) |#3|))))) -((-2256 (((-308 (-548)) (-1135) (-619 (-1 (-112) |#1|))) 18) (((-308 (-548)) (-1135) (-1 (-112) |#1|)) 15))) -(((-907 |#1|) (-10 -7 (-15 -2256 ((-308 (-548)) (-1135) (-1 (-112) |#1|))) (-15 -2256 ((-308 (-548)) (-1135) (-619 (-1 (-112) |#1|))))) (-1172)) (T -907)) -((-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-5 *2 (-308 (-548))) (-5 *1 (-907 *5)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1172)) (-5 *2 (-308 (-548))) (-5 *1 (-907 *5))))) -(-10 -7 (-15 -2256 ((-308 (-548)) (-1135) (-1 (-112) |#1|))) (-15 -2256 ((-308 (-548)) (-1135) (-619 (-1 (-112) |#1|))))) -((-3628 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 25))) -(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-540) (-855 |#1|) (-593 (-861 |#1|))) (-961 |#2|)) (T -908)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) (-4 *6 (-13 (-540) (-855 *5) (-593 *4))) (-5 *4 (-861 *5)) (-5 *1 (-908 *5 *6 *3))))) -(-10 -7 (-15 -3628 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) -((-3628 (((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))) 17))) -(((-909 |#1|) (-10 -7 (-15 -3628 ((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))))) (-1063)) (T -909)) -((-3628 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 (-1135))) (-5 *3 (-1135)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *1 (-909 *5))))) -(-10 -7 (-15 -3628 ((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))))) -((-3640 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 33)) (-3628 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 32))) -(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -3640 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) (-1063) (-13 (-1016) (-821)) (-13 (-1016) (-593 (-861 |#1|)) (-1007 |#2|))) (T -910)) -((-3640 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) (-4 *8 (-13 (-1016) (-593 (-861 *6)) (-1007 *7))) (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) (-5 *1 (-910 *6 *7 *8)))) (-3628 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) (-4 *9 (-13 (-1016) (-593 (-861 *7)) (-1007 *8))) (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) (-5 *1 (-910 *7 *8 *9))))) -(-10 -7 (-15 -3628 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -3640 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) -((-3736 (((-1131 (-399 (-548))) (-548)) 63)) (-3723 (((-1131 (-548)) (-548)) 66)) (-2125 (((-1131 (-548)) (-548)) 60)) (-3710 (((-548) (-1131 (-548))) 55)) (-3698 (((-1131 (-399 (-548))) (-548)) 49)) (-3686 (((-1131 (-548)) (-548)) 38)) (-3675 (((-1131 (-548)) (-548)) 68)) (-3662 (((-1131 (-548)) (-548)) 67)) (-3651 (((-1131 (-399 (-548))) (-548)) 51))) -(((-911) (-10 -7 (-15 -3651 ((-1131 (-399 (-548))) (-548))) (-15 -3662 ((-1131 (-548)) (-548))) (-15 -3675 ((-1131 (-548)) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3698 ((-1131 (-399 (-548))) (-548))) (-15 -3710 ((-548) (-1131 (-548)))) (-15 -2125 ((-1131 (-548)) (-548))) (-15 -3723 ((-1131 (-548)) (-548))) (-15 -3736 ((-1131 (-399 (-548))) (-548))))) (T -911)) -((-3736 (*1 *2 *3) (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3723 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-2125 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-548)) (-5 *1 (-911)))) (-3698 (*1 *2 *3) (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3686 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3662 (*1 *2 *3) (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) -(-10 -7 (-15 -3651 ((-1131 (-399 (-548))) (-548))) (-15 -3662 ((-1131 (-548)) (-548))) (-15 -3675 ((-1131 (-548)) (-548))) (-15 -3686 ((-1131 (-548)) (-548))) (-15 -3698 ((-1131 (-399 (-548))) (-548))) (-15 -3710 ((-548) (-1131 (-548)))) (-15 -2125 ((-1131 (-548)) (-548))) (-15 -3723 ((-1131 (-548)) (-548))) (-15 -3736 ((-1131 (-399 (-548))) (-548)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745)) NIL (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 11 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1733 (($ (-619 |#1|)) 13)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) 8)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 10 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4007 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-4248 (((-112) $ (-745)) NIL)) (-3198 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-1656 (($ $ (-619 |#1|)) 26)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 20) (($ $ (-1185 (-548))) NIL)) (-4029 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-3402 (((-890) $) 16)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4018 (($ $ $) 24)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524)))) (($ (-619 |#1|)) 17)) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2290 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-548) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3643 (((-745) $) 14 (|has| $ (-6 -4327))))) +((-1805 (*1 *2 *3) (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1557 (-619 *1)) (|:| -4240 *1))) (-5 *3 (-619 *1)))) (-1690 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889))))) +(-13 (-442) (-10 -8 (-15 -1805 ((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $))) (-15 -1690 ((-3 (-619 $) "failed") (-619 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3715 (($ $ $) NIL)) (-3834 (((-832) $) NIL)) (-3277 (($) NIL T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ $ $) NIL))) +(((-890) (-13 (-768) (-701) (-10 -8 (-15 -3715 ($ $ $)) (-6 (-4330 "*"))))) (T -890)) +((-3715 (*1 *1 *1 *1) (-5 *1 (-890)))) +(-13 (-768) (-701) (-10 -8 (-15 -3715 ($ $ $)) (-6 (-4330 "*")))) +((-1920 ((|#2| (-619 |#1|) (-619 |#1|)) 24))) +(((-891 |#1| |#2|) (-10 -7 (-15 -1920 (|#2| (-619 |#1|) (-619 |#1|)))) (-354) (-1194 |#1|)) (T -891)) +((-1920 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-4 *2 (-1194 *4)) (-5 *1 (-891 *4 *2))))) +(-10 -7 (-15 -1920 (|#2| (-619 |#1|) (-619 |#1|)))) +((-4169 (((-1131 |#2|) (-619 |#2|) (-619 |#2|)) 17) (((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|)) 13))) +(((-892 |#1| |#2|) (-10 -7 (-15 -4169 ((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -4169 ((-1131 |#2|) (-619 |#2|) (-619 |#2|)))) (-1135) (-354)) (T -892)) +((-4169 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *5)) (-4 *5 (-354)) (-5 *2 (-1131 *5)) (-5 *1 (-892 *4 *5)) (-14 *4 (-1135)))) (-4169 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1191 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1135)) (-4 *5 (-354)) (-5 *1 (-892 *4 *5))))) +(-10 -7 (-15 -4169 ((-1191 |#1| |#2|) (-1191 |#1| |#2|) (-619 |#2|) (-619 |#2|))) (-15 -4169 ((-1131 |#2|) (-619 |#2|) (-619 |#2|)))) +((-2041 (((-547) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-1118)) 139)) (-3613 ((|#4| |#4|) 155)) (-2546 (((-619 (-398 (-921 |#1|))) (-619 (-1135))) 118)) (-3501 (((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-547)) 75)) (-1668 (((-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-619 |#4|)) 59)) (-3400 (((-663 |#4|) (-663 |#4|) (-619 |#4|)) 55)) (-2167 (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-1118)) 151)) (-2038 (((-547) (-663 |#4|) (-890) (-1118)) 132) (((-547) (-663 |#4|) (-619 (-1135)) (-890) (-1118)) 131) (((-547) (-663 |#4|) (-619 |#4|) (-890) (-1118)) 130) (((-547) (-663 |#4|) (-1118)) 127) (((-547) (-663 |#4|) (-619 (-1135)) (-1118)) 126) (((-547) (-663 |#4|) (-619 |#4|) (-1118)) 125) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-890)) 124) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890)) 123) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890)) 122) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|)) 120) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135))) 119) (((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|)) 115)) (-1310 ((|#4| (-921 |#1|)) 68)) (-4269 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 152)) (-4164 (((-619 (-619 (-547))) (-547) (-547)) 129)) (-4056 (((-619 (-619 |#4|)) (-619 (-619 |#4|))) 88)) (-3947 (((-745) (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|))))) 86)) (-3855 (((-745) (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|))))) 85)) (-3717 (((-112) (-619 (-921 |#1|))) 17) (((-112) (-619 |#4|)) 13)) (-1406 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|)) 71)) (-1913 (((-619 |#4|) |#4|) 49)) (-2422 (((-619 (-398 (-921 |#1|))) (-619 |#4|)) 114) (((-663 (-398 (-921 |#1|))) (-663 |#4|)) 56) (((-398 (-921 |#1|)) |#4|) 111)) (-2293 (((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))))))) (|:| |rgsz| (-547))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-745) (-1118) (-547)) 93)) (-1537 (((-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745)) 84)) (-3249 (((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-663 |#4|) (-745)) 101)) (-1797 (((-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-2 (|:| -3509 (-663 (-398 (-921 |#1|)))) (|:| |vec| (-619 (-398 (-921 |#1|)))) (|:| -3107 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) 48))) +(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -2038 ((-547) (-663 |#4|) (-619 |#4|) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-619 (-1135)) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-619 |#4|) (-890) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-619 (-1135)) (-890) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-890) (-1118))) (-15 -2041 ((-547) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-1118))) (-15 -2167 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-1118))) (-15 -2293 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))))))) (|:| |rgsz| (-547))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-745) (-1118) (-547))) (-15 -2422 ((-398 (-921 |#1|)) |#4|)) (-15 -2422 ((-663 (-398 (-921 |#1|))) (-663 |#4|))) (-15 -2422 ((-619 (-398 (-921 |#1|))) (-619 |#4|))) (-15 -2546 ((-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -1310 (|#4| (-921 |#1|))) (-15 -1406 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -1537 ((-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -1668 ((-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-619 |#4|))) (-15 -1797 ((-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-2 (|:| -3509 (-663 (-398 (-921 |#1|)))) (|:| |vec| (-619 (-398 (-921 |#1|)))) (|:| -3107 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (-15 -1913 ((-619 |#4|) |#4|)) (-15 -3855 ((-745) (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3947 ((-745) (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -4056 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -4164 ((-619 (-619 (-547))) (-547) (-547))) (-15 -4269 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3249 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-663 |#4|) (-745))) (-15 -3400 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -3501 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-547))) (-15 -3613 (|#4| |#4|)) (-15 -3717 ((-112) (-619 |#4|))) (-15 -3717 ((-112) (-619 (-921 |#1|))))) (-13 (-298) (-145)) (-13 (-821) (-592 (-1135))) (-767) (-918 |#1| |#3| |#2|)) (T -893)) +((-3717 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1135)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4)))) (-3501 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-5 *4 (-663 *12)) (-5 *5 (-619 (-398 (-921 *9)))) (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-547)) (-4 *9 (-13 (-298) (-145))) (-4 *12 (-918 *9 *11 *10)) (-4 *10 (-13 (-821) (-592 (-1135)))) (-4 *11 (-767)) (-5 *2 (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12)) (|:| |wcond| (-619 (-921 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *9)))) (|:| -4013 (-619 (-1218 (-398 (-921 *9))))))))) (-5 *1 (-893 *9 *10 *11 *12)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3249 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-4269 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *7 *8)))) (-4164 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-619 (-547)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *6 *5)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1135)))) (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *7) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 *7))))) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) (-5 *1 (-893 *4 *5 *6 *7)))) (-1913 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3509 (-663 (-398 (-921 *4)))) (|:| |vec| (-619 (-398 (-921 *4)))) (|:| -3107 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) (|:| -4013 (-619 (-1218 (-398 (-921 *4))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-1668 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) (|:| -4013 (-619 (-1218 (-398 (-921 *4))))))) (-5 *3 (-619 *7)) (-4 *4 (-13 (-298) (-145))) (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| *8) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 *8))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745)))) (-1406 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1310 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-298) (-145))) (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-663 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-398 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-918 *4 *6 *5)))) (-2293 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-398 (-921 *8)))) (-5 *5 (-745)) (-5 *6 (-1118)) (-4 *8 (-13 (-298) (-145))) (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-592 (-1135)))) (-4 *10 (-767)) (-5 *2 (-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) (|:| |wcond| (-619 (-921 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *8)))) (|:| -4013 (-619 (-1218 (-398 (-921 *8)))))))))) (|:| |rgsz| (-547)))) (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-547)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) (|:| -4013 (-619 (-1218 (-398 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) (-5 *4 (-1118)) (-4 *5 (-13 (-298) (-145))) (-4 *8 (-918 *5 *7 *6)) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *5 *6 *7 *8)))) (-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *6 *7 *8 *9)))) (-2038 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145))) (-4 *8 (-13 (-821) (-592 (-1135)))) (-4 *9 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *7 *8 *9 *10)))) (-2038 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145))) (-4 *8 (-13 (-821) (-592 (-1135)))) (-4 *9 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *7 *8 *9 *10)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-1118)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *5 *6 *7 *8)))) (-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *6 *7 *8 *9)))) (-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1118)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *6 *7 *8 *9)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *6)))) (|:| -4013 (-619 (-1218 (-398 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)))) (-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) (|:| |wcond| (-619 (-921 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *6)))) (|:| -4013 (-619 (-1218 (-398 (-921 *6)))))))))) (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) (|:| |wcond| (-619 (-921 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) (|:| -4013 (-619 (-1218 (-398 (-921 *4)))))))))) (-5 *1 (-893 *4 *5 *6 *7)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1135))) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-619 (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) (|:| |wcond| (-619 (-921 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(-10 -7 (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 |#4|) (-890))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-619 (-1135)) (-890))) (-15 -2038 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-663 |#4|) (-890))) (-15 -2038 ((-547) (-663 |#4|) (-619 |#4|) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-619 (-1135)) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-619 |#4|) (-890) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-619 (-1135)) (-890) (-1118))) (-15 -2038 ((-547) (-663 |#4|) (-890) (-1118))) (-15 -2041 ((-547) (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-1118))) (-15 -2167 ((-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|))))))))) (-1118))) (-15 -2293 ((-2 (|:| |rgl| (-619 (-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))))))) (|:| |rgsz| (-547))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-745) (-1118) (-547))) (-15 -2422 ((-398 (-921 |#1|)) |#4|)) (-15 -2422 ((-663 (-398 (-921 |#1|))) (-663 |#4|))) (-15 -2422 ((-619 (-398 (-921 |#1|))) (-619 |#4|))) (-15 -2546 ((-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -1310 (|#4| (-921 |#1|))) (-15 -1406 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-619 |#4|)) (|:| |n0| (-619 |#4|))) (-619 |#4|) (-619 |#4|))) (-15 -1537 ((-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))) (-663 |#4|) (-745))) (-15 -1668 ((-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-619 |#4|))) (-15 -1797 ((-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))) (-2 (|:| -3509 (-663 (-398 (-921 |#1|)))) (|:| |vec| (-619 (-398 (-921 |#1|)))) (|:| -3107 (-745)) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (-15 -1913 ((-619 |#4|) |#4|)) (-15 -3855 ((-745) (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -3947 ((-745) (-619 (-2 (|:| -3107 (-745)) (|:| |eqns| (-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))))) (|:| |fgb| (-619 |#4|)))))) (-15 -4056 ((-619 (-619 |#4|)) (-619 (-619 |#4|)))) (-15 -4164 ((-619 (-619 (-547))) (-547) (-547))) (-15 -4269 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3249 ((-619 (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) (-663 |#4|) (-745))) (-15 -3400 ((-663 |#4|) (-663 |#4|) (-619 |#4|))) (-15 -3501 ((-2 (|:| |eqzro| (-619 |#4|)) (|:| |neqzro| (-619 |#4|)) (|:| |wcond| (-619 (-921 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1218 (-398 (-921 |#1|)))) (|:| -4013 (-619 (-1218 (-398 (-921 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547)))) (-663 |#4|) (-619 (-398 (-921 |#1|))) (-619 (-619 |#4|)) (-745) (-745) (-547))) (-15 -3613 (|#4| |#4|)) (-15 -3717 ((-112) (-619 |#4|))) (-15 -3717 ((-112) (-619 (-921 |#1|))))) +((-2719 (((-896) |#1| (-1135)) 17) (((-896) |#1| (-1135) (-1058 (-217))) 21)) (-1591 (((-896) |#1| |#1| (-1135) (-1058 (-217))) 19) (((-896) |#1| (-1135) (-1058 (-217))) 15))) +(((-894 |#1|) (-10 -7 (-15 -1591 ((-896) |#1| (-1135) (-1058 (-217)))) (-15 -1591 ((-896) |#1| |#1| (-1135) (-1058 (-217)))) (-15 -2719 ((-896) |#1| (-1135) (-1058 (-217)))) (-15 -2719 ((-896) |#1| (-1135)))) (-592 (-523))) (T -894)) +((-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) (-1591 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) (-1591 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) (-5 *1 (-894 *3)) (-4 *3 (-592 (-523)))))) +(-10 -7 (-15 -1591 ((-896) |#1| (-1135) (-1058 (-217)))) (-15 -1591 ((-896) |#1| |#1| (-1135) (-1058 (-217)))) (-15 -2719 ((-896) |#1| (-1135) (-1058 (-217)))) (-15 -2719 ((-896) |#1| (-1135)))) +((-2902 (($ $ (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 70)) (-1840 (((-1058 (-217)) $) 40)) (-1827 (((-1058 (-217)) $) 39)) (-1816 (((-1058 (-217)) $) 38)) (-1356 (((-619 (-619 (-217))) $) 43)) (-1466 (((-1058 (-217)) $) 41)) (-3197 (((-547) (-547)) 32)) (-2475 (((-547) (-547)) 28)) (-2219 (((-547) (-547)) 30)) (-3002 (((-112) (-112)) 35)) (-2123 (((-547)) 31)) (-1914 (($ $ (-1058 (-217))) 73) (($ $) 74)) (-1710 (($ (-1 (-912 (-217)) (-217)) (-1058 (-217))) 78) (($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 79)) (-1591 (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217))) 81) (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 82) (($ $ (-1058 (-217))) 76)) (-2907 (((-547)) 36)) (-2593 (((-547)) 27)) (-2354 (((-547)) 29)) (-1259 (((-619 (-619 (-912 (-217)))) $) 95)) (-2813 (((-112) (-112)) 37)) (-3834 (((-832) $) 94)) (-3083 (((-112)) 34))) +(((-895) (-13 (-943) (-10 -8 (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ $ (-1058 (-217)))) (-15 -2902 ($ $ (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1914 ($ $ (-1058 (-217)))) (-15 -1914 ($ $)) (-15 -1466 ((-1058 (-217)) $)) (-15 -1356 ((-619 (-619 (-217))) $)) (-15 -2593 ((-547))) (-15 -2475 ((-547) (-547))) (-15 -2354 ((-547))) (-15 -2219 ((-547) (-547))) (-15 -2123 ((-547))) (-15 -3197 ((-547) (-547))) (-15 -3083 ((-112))) (-15 -3002 ((-112) (-112))) (-15 -2907 ((-547))) (-15 -2813 ((-112) (-112)))))) (T -895)) +((-1710 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-1710 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-1591 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-1591 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-895)))) (-1591 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-2902 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-1914 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-1914 (*1 *1 *1) (-5 *1 (-895))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-895)))) (-2593 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2475 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2354 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2123 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-3083 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895)))) (-2907 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(-13 (-943) (-10 -8 (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ $ (-1058 (-217)))) (-15 -2902 ($ $ (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1914 ($ $ (-1058 (-217)))) (-15 -1914 ($ $)) (-15 -1466 ((-1058 (-217)) $)) (-15 -1356 ((-619 (-619 (-217))) $)) (-15 -2593 ((-547))) (-15 -2475 ((-547) (-547))) (-15 -2354 ((-547))) (-15 -2219 ((-547) (-547))) (-15 -2123 ((-547))) (-15 -3197 ((-547) (-547))) (-15 -3083 ((-112))) (-15 -3002 ((-112) (-112))) (-15 -2907 ((-547))) (-15 -2813 ((-112) (-112))))) +((-2902 (($ $ (-1058 (-217))) 70) (($ $ (-1058 (-217)) (-1058 (-217))) 71)) (-1827 (((-1058 (-217)) $) 44)) (-1816 (((-1058 (-217)) $) 43)) (-1466 (((-1058 (-217)) $) 45)) (-2967 (((-547) (-547)) 37)) (-3546 (((-547) (-547)) 33)) (-3151 (((-547) (-547)) 35)) (-2773 (((-112) (-112)) 39)) (-3050 (((-547)) 36)) (-1914 (($ $ (-1058 (-217))) 74) (($ $) 75)) (-1710 (($ (-1 (-912 (-217)) (-217)) (-1058 (-217))) 84) (($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 85)) (-2719 (($ (-1 (-217) (-217)) (-1058 (-217))) 92) (($ (-1 (-217) (-217))) 95)) (-1591 (($ (-1 (-217) (-217)) (-1058 (-217))) 79) (($ (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217))) 80) (($ (-619 (-1 (-217) (-217))) (-1058 (-217))) 87) (($ (-619 (-1 (-217) (-217))) (-1058 (-217)) (-1058 (-217))) 88) (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217))) 81) (($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217))) 82) (($ $ (-1058 (-217))) 76)) (-3755 (((-112) $) 40)) (-3795 (((-547)) 41)) (-3656 (((-547)) 32)) (-2073 (((-547)) 34)) (-1259 (((-619 (-619 (-912 (-217)))) $) 23)) (-1674 (((-112) (-112)) 42)) (-3834 (((-832) $) 106)) (-2872 (((-112)) 38))) +(((-896) (-13 (-924) (-10 -8 (-15 -1591 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)))) (-15 -1591 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2719 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2719 ($ (-1 (-217) (-217)))) (-15 -1591 ($ $ (-1058 (-217)))) (-15 -3755 ((-112) $)) (-15 -2902 ($ $ (-1058 (-217)))) (-15 -2902 ($ $ (-1058 (-217)) (-1058 (-217)))) (-15 -1914 ($ $ (-1058 (-217)))) (-15 -1914 ($ $)) (-15 -1466 ((-1058 (-217)) $)) (-15 -3656 ((-547))) (-15 -3546 ((-547) (-547))) (-15 -2073 ((-547))) (-15 -3151 ((-547) (-547))) (-15 -3050 ((-547))) (-15 -2967 ((-547) (-547))) (-15 -2872 ((-112))) (-15 -2773 ((-112) (-112))) (-15 -3795 ((-547))) (-15 -1674 ((-112) (-112)))))) (T -896)) +((-1591 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1591 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1591 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1591 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1591 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1591 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1710 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-1710 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2719 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) (-5 *1 (-896)))) (-2719 (*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-896)))) (-1591 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2902 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-2902 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-1914 (*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-1914 (*1 *1 *1) (-5 *1 (-896))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) (-3656 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-2073 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-3050 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-2872 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896)))) (-3795 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(-13 (-924) (-10 -8 (-15 -1591 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)))) (-15 -1591 ($ (-619 (-1 (-217) (-217))) (-1058 (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)))) (-15 -1591 ($ (-1 (-217) (-217)) (-1 (-217) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)))) (-15 -1710 ($ (-1 (-912 (-217)) (-217)) (-1058 (-217)) (-1058 (-217)) (-1058 (-217)))) (-15 -2719 ($ (-1 (-217) (-217)) (-1058 (-217)))) (-15 -2719 ($ (-1 (-217) (-217)))) (-15 -1591 ($ $ (-1058 (-217)))) (-15 -3755 ((-112) $)) (-15 -2902 ($ $ (-1058 (-217)))) (-15 -2902 ($ $ (-1058 (-217)) (-1058 (-217)))) (-15 -1914 ($ $ (-1058 (-217)))) (-15 -1914 ($ $)) (-15 -1466 ((-1058 (-217)) $)) (-15 -3656 ((-547))) (-15 -3546 ((-547) (-547))) (-15 -2073 ((-547))) (-15 -3151 ((-547) (-547))) (-15 -3050 ((-547))) (-15 -2967 ((-547) (-547))) (-15 -2872 ((-112))) (-15 -2773 ((-112) (-112))) (-15 -3795 ((-547))) (-15 -1674 ((-112) (-112))))) +((-1825 (((-619 (-1058 (-217))) (-619 (-619 (-912 (-217))))) 24))) +(((-897) (-10 -7 (-15 -1825 ((-619 (-1058 (-217))) (-619 (-619 (-912 (-217)))))))) (T -897)) +((-1825 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-619 (-1058 (-217)))) (-5 *1 (-897))))) +(-10 -7 (-15 -1825 ((-619 (-1058 (-217))) (-619 (-619 (-912 (-217))))))) +((-2399 ((|#2| |#2|) 26)) (-1762 ((|#2| |#2|) 27)) (-2573 ((|#2| |#2|) 25)) (-3037 ((|#2| |#2| (-1118)) 24))) +(((-898 |#1| |#2|) (-10 -7 (-15 -3037 (|#2| |#2| (-1118))) (-15 -2573 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -1762 (|#2| |#2|))) (-821) (-421 |#1|)) (T -898)) +((-1762 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) (-2399 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) (-3037 (*1 *2 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2)) (-4 *2 (-421 *4))))) +(-10 -7 (-15 -3037 (|#2| |#2| (-1118))) (-15 -2573 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -1762 (|#2| |#2|))) +((-2399 (((-307 (-547)) (-1135)) 16)) (-1762 (((-307 (-547)) (-1135)) 14)) (-2573 (((-307 (-547)) (-1135)) 12)) (-3037 (((-307 (-547)) (-1135) (-1118)) 19))) +(((-899) (-10 -7 (-15 -3037 ((-307 (-547)) (-1135) (-1118))) (-15 -2573 ((-307 (-547)) (-1135))) (-15 -2399 ((-307 (-547)) (-1135))) (-15 -1762 ((-307 (-547)) (-1135))))) (T -899)) +((-1762 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1118)) (-5 *2 (-307 (-547))) (-5 *1 (-899))))) +(-10 -7 (-15 -3037 ((-307 (-547)) (-1135) (-1118))) (-15 -2573 ((-307 (-547)) (-1135))) (-15 -2399 ((-307 (-547)) (-1135))) (-15 -1762 ((-307 (-547)) (-1135)))) +((-3893 (((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)) 25)) (-1939 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -1939 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3893 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-855 |#1|) (-13 (-1063) (-1007 |#2|))) (T -900)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) (-5 *1 (-900 *5 *3 *6)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-900 *4 *5 *6))))) +(-10 -7 (-15 -1939 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3893 ((-858 |#1| |#3|) |#2| (-861 |#1|) (-858 |#1| |#3|)))) +((-3893 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 30))) +(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-539) (-821) (-855 |#1|)) (-13 (-421 |#2|) (-592 (-861 |#1|)) (-855 |#1|) (-1007 (-590 $)))) (T -901)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-421 *6) (-592 *4) (-855 *5) (-1007 (-590 $)))) (-5 *4 (-861 *5)) (-4 *6 (-13 (-539) (-821) (-855 *5))) (-5 *1 (-901 *5 *6 *3))))) +(-10 -7 (-15 -3893 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) +((-3893 (((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|)) 13))) +(((-902 |#1|) (-10 -7 (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|)))) (-532)) (T -902)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 (-547) *3)) (-5 *4 (-861 (-547))) (-4 *3 (-532)) (-5 *1 (-902 *3))))) +(-10 -7 (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|)))) +((-3893 (((-858 |#1| |#2|) (-590 |#2|) (-861 |#1|) (-858 |#1| |#2|)) 54))) +(((-903 |#1| |#2|) (-10 -7 (-15 -3893 ((-858 |#1| |#2|) (-590 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) (-1063) (-13 (-821) (-1007 (-590 $)) (-592 (-861 |#1|)) (-855 |#1|))) (T -903)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-590 *6)) (-4 *5 (-1063)) (-4 *6 (-13 (-821) (-1007 (-590 $)) (-592 *4) (-855 *5))) (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6))))) +(-10 -7 (-15 -3893 ((-858 |#1| |#2|) (-590 |#2|) (-861 |#1|) (-858 |#1| |#2|)))) +((-3893 (((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)) 15))) +(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) (-1063) (-855 |#1|) (-640 |#2|)) (T -904)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3))))) +(-10 -7 (-15 -3893 ((-854 |#1| |#2| |#3|) |#3| (-861 |#1|) (-854 |#1| |#2| |#3|)))) +((-3893 (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|)) 17 (|has| |#3| (-855 |#1|))) (((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|))) 16))) +(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3893 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3893 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) (-1063) (-767) (-821) (-13 (-1016) (-821) (-855 |#1|)) (-13 (-918 |#4| |#2| |#3|) (-592 (-861 |#1|)))) (T -905)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-13 (-918 *8 *6 *7) (-592 *4))) (-5 *4 (-861 *5)) (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-13 (-1016) (-821) (-855 *5))) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3893 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-592 *4))) (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) (-5 *1 (-905 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3893 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|) (-1 (-858 |#1| |#5|) |#3| (-861 |#1|) (-858 |#1| |#5|)))) (IF (|has| |#3| (-855 |#1|)) (-15 -3893 ((-858 |#1| |#5|) |#5| (-861 |#1|) (-858 |#1| |#5|))) |%noBranch|)) +((-1847 ((|#2| |#2| (-619 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -1847 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1847 (|#2| |#2| (-619 (-1 (-112) |#3|))))) (-821) (-421 |#1|) (-1172)) (T -906)) +((-1847 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4)))) (-1847 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1172)) (-4 *4 (-821)) (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4))))) +(-10 -7 (-15 -1847 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1847 (|#2| |#2| (-619 (-1 (-112) |#3|))))) +((-1847 (((-307 (-547)) (-1135) (-619 (-1 (-112) |#1|))) 18) (((-307 (-547)) (-1135) (-1 (-112) |#1|)) 15))) +(((-907 |#1|) (-10 -7 (-15 -1847 ((-307 (-547)) (-1135) (-1 (-112) |#1|))) (-15 -1847 ((-307 (-547)) (-1135) (-619 (-1 (-112) |#1|))))) (-1172)) (T -907)) +((-1847 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-5 *2 (-307 (-547))) (-5 *1 (-907 *5)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1172)) (-5 *2 (-307 (-547))) (-5 *1 (-907 *5))))) +(-10 -7 (-15 -1847 ((-307 (-547)) (-1135) (-1 (-112) |#1|))) (-15 -1847 ((-307 (-547)) (-1135) (-619 (-1 (-112) |#1|))))) +((-3893 (((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)) 25))) +(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-1063) (-13 (-539) (-855 |#1|) (-592 (-861 |#1|))) (-961 |#2|)) (T -908)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) (-4 *6 (-13 (-539) (-855 *5) (-592 *4))) (-5 *4 (-861 *5)) (-5 *1 (-908 *5 *6 *3))))) +(-10 -7 (-15 -3893 ((-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) +((-3893 (((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))) 17))) +(((-909 |#1|) (-10 -7 (-15 -3893 ((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))))) (-1063)) (T -909)) +((-3893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-858 *5 (-1135))) (-5 *3 (-1135)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *1 (-909 *5))))) +(-10 -7 (-15 -3893 ((-858 |#1| (-1135)) (-1135) (-861 |#1|) (-858 |#1| (-1135))))) +((-4018 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 33)) (-3893 (((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))) 32))) +(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3893 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -4018 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) (-1063) (-13 (-1016) (-821)) (-13 (-1016) (-592 (-861 |#1|)) (-1007 |#2|))) (T -910)) +((-4018 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) (-4 *8 (-13 (-1016) (-592 (-861 *6)) (-1007 *7))) (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) (-5 *1 (-910 *6 *7 *8)))) (-3893 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) (-4 *9 (-13 (-1016) (-592 (-861 *7)) (-1007 *8))) (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) (-5 *1 (-910 *7 *8 *9))))) +(-10 -7 (-15 -3893 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-1 |#3| (-619 |#3|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|)))) (-15 -4018 ((-858 |#1| |#3|) (-619 |#3|) (-619 (-861 |#1|)) (-858 |#1| |#3|) (-1 (-858 |#1| |#3|) |#3| (-861 |#1|) (-858 |#1| |#3|))))) +((-3734 (((-1131 (-398 (-547))) (-547)) 63)) (-3640 (((-1131 (-547)) (-547)) 66)) (-2410 (((-1131 (-547)) (-547)) 60)) (-3520 (((-547) (-1131 (-547))) 55)) (-3414 (((-1131 (-398 (-547))) (-547)) 49)) (-3287 (((-1131 (-547)) (-547)) 38)) (-1264 (((-1131 (-547)) (-547)) 68)) (-4216 (((-1131 (-547)) (-547)) 67)) (-4110 (((-1131 (-398 (-547))) (-547)) 51))) +(((-911) (-10 -7 (-15 -4110 ((-1131 (-398 (-547))) (-547))) (-15 -4216 ((-1131 (-547)) (-547))) (-15 -1264 ((-1131 (-547)) (-547))) (-15 -3287 ((-1131 (-547)) (-547))) (-15 -3414 ((-1131 (-398 (-547))) (-547))) (-15 -3520 ((-547) (-1131 (-547)))) (-15 -2410 ((-1131 (-547)) (-547))) (-15 -3640 ((-1131 (-547)) (-547))) (-15 -3734 ((-1131 (-398 (-547))) (-547))))) (T -911)) +((-3734 (*1 *2 *3) (-12 (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))) (-3640 (*1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-1131 (-547))) (-5 *2 (-547)) (-5 *1 (-911)))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-1264 (*1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-4216 (*1 *2 *3) (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) (-4110 (*1 *2 *3) (-12 (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547))))) +(-10 -7 (-15 -4110 ((-1131 (-398 (-547))) (-547))) (-15 -4216 ((-1131 (-547)) (-547))) (-15 -1264 ((-1131 (-547)) (-547))) (-15 -3287 ((-1131 (-547)) (-547))) (-15 -3414 ((-1131 (-398 (-547))) (-547))) (-15 -3520 ((-547) (-1131 (-547)))) (-15 -2410 ((-1131 (-547)) (-547))) (-15 -3640 ((-1131 (-547)) (-547))) (-15 -3734 ((-1131 (-398 (-547))) (-547)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3757 (($ (-745)) NIL (|has| |#1| (-23)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) |#1|) 11 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2782 (($ (-619 |#1|)) 13)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4042 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3732 (($ (-745) |#1|) 8)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 10 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1324 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2024 (((-112) $ (-745)) NIL)) (-4202 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-3558 (($ $ (-619 |#1|)) 26)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 20) (($ $ (-1185 (-547))) NIL)) (-3453 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-3512 (((-890) $) 16)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3346 (($ $ $) 24)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523)))) (($ (-619 |#1|)) 17)) (-3841 (($ (-619 |#1|)) NIL)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2484 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2470 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-547) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3763 (((-745) $) 14 (|has| $ (-6 -4328))))) (((-912 |#1|) (-949 |#1|) (-1016)) (T -912)) NIL (-949 |#1|) -((-3769 (((-472 |#1| |#2|) (-921 |#2|)) 20)) (-3802 (((-240 |#1| |#2|) (-921 |#2|)) 33)) (-3779 (((-921 |#2|) (-472 |#1| |#2|)) 25)) (-3759 (((-240 |#1| |#2|) (-472 |#1| |#2|)) 55)) (-3791 (((-921 |#2|) (-240 |#1| |#2|)) 30)) (-3748 (((-472 |#1| |#2|) (-240 |#1| |#2|)) 46))) -(((-913 |#1| |#2|) (-10 -7 (-15 -3748 ((-472 |#1| |#2|) (-240 |#1| |#2|))) (-15 -3759 ((-240 |#1| |#2|) (-472 |#1| |#2|))) (-15 -3769 ((-472 |#1| |#2|) (-921 |#2|))) (-15 -3779 ((-921 |#2|) (-472 |#1| |#2|))) (-15 -3791 ((-921 |#2|) (-240 |#1| |#2|))) (-15 -3802 ((-240 |#1| |#2|) (-921 |#2|)))) (-619 (-1135)) (-1016)) (T -913)) -((-3802 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-240 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135))))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-472 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-240 *4 *5)) (-5 *1 (-913 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-472 *4 *5)) (-5 *1 (-913 *4 *5))))) -(-10 -7 (-15 -3748 ((-472 |#1| |#2|) (-240 |#1| |#2|))) (-15 -3759 ((-240 |#1| |#2|) (-472 |#1| |#2|))) (-15 -3769 ((-472 |#1| |#2|) (-921 |#2|))) (-15 -3779 ((-921 |#2|) (-472 |#1| |#2|))) (-15 -3791 ((-921 |#2|) (-240 |#1| |#2|))) (-15 -3802 ((-240 |#1| |#2|) (-921 |#2|)))) -((-3815 (((-619 |#2|) |#2| |#2|) 10)) (-3857 (((-745) (-619 |#1|)) 37 (|has| |#1| (-819)))) (-3828 (((-619 |#2|) |#2|) 11)) (-3868 (((-745) (-619 |#1|) (-548) (-548)) 39 (|has| |#1| (-819)))) (-3842 ((|#1| |#2|) 32 (|has| |#1| (-819))))) -(((-914 |#1| |#2|) (-10 -7 (-15 -3815 ((-619 |#2|) |#2| |#2|)) (-15 -3828 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -3842 (|#1| |#2|)) (-15 -3857 ((-745) (-619 |#1|))) (-15 -3868 ((-745) (-619 |#1|) (-548) (-548)))) |%noBranch|)) (-355) (-1194 |#1|)) (T -914)) -((-3868 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-548)) (-4 *5 (-819)) (-4 *5 (-355)) (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1194 *5)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1194 *4)))) (-3842 (*1 *2 *3) (-12 (-4 *2 (-355)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1194 *2)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1194 *4)))) (-3815 (*1 *2 *3 *3) (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -3815 ((-619 |#2|) |#2| |#2|)) (-15 -3828 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -3842 (|#1| |#2|)) (-15 -3857 ((-745) (-619 |#1|))) (-15 -3868 ((-745) (-619 |#1|) (-548) (-548)))) |%noBranch|)) -((-2540 (((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)) 19))) -(((-915 |#1| |#2|) (-10 -7 (-15 -2540 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) (-1016) (-1016)) (T -915)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-921 *6)) (-5 *1 (-915 *5 *6))))) -(-10 -7 (-15 -2540 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) -((-1884 (((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)) 18))) -(((-916 |#1| |#2|) (-10 -7 (-15 -1884 ((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)))) (-1135) (-1016)) (T -916)) -((-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-1214 *5)) (-14 *5 (-1135)) (-4 *6 (-1016)) (-5 *2 (-1191 *5 (-921 *6))) (-5 *1 (-916 *5 *6)) (-5 *3 (-921 *6))))) -(-10 -7 (-15 -1884 ((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)))) -((-3892 (((-745) $) 71) (((-745) $ (-619 |#4|)) 74)) (-1688 (($ $) 173)) (-2634 (((-410 $) $) 165)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 116)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL) (((-548) $) NIL) ((|#4| $) 59)) (-1557 (($ $ $ |#4|) 76)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 106) (((-663 |#2|) (-663 $)) 99)) (-4065 (($ $) 180) (($ $ |#4|) 183)) (-1862 (((-619 $) $) 63)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 199) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 192)) (-3915 (((-619 $) $) 28)) (-2024 (($ |#2| |#3|) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) 57)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#4|) 162)) (-3939 (((-3 (-619 $) "failed") $) 42)) (-3927 (((-3 (-619 $) "failed") $) 31)) (-3954 (((-3 (-2 (|:| |var| |#4|) (|:| -3352 (-745))) "failed") $) 47)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 109)) (-4051 (((-410 (-1131 $)) (-1131 $)) 122)) (-4060 (((-410 (-1131 $)) (-1131 $)) 120)) (-1915 (((-410 $) $) 140)) (-2460 (($ $ (-619 (-286 $))) 21) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL)) (-1566 (($ $ |#4|) 78)) (-2591 (((-861 (-371)) $) 213) (((-861 (-548)) $) 206) (((-524) $) 221)) (-3881 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 154)) (-1951 ((|#2| $ |#3|) NIL) (($ $ |#4| (-745)) 52) (($ $ (-619 |#4|) (-619 (-745))) 55)) (-4017 (((-3 $ "failed") $) 156)) (-2234 (((-112) $ $) 186))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4065 (|#1| |#1| |#4|)) (-15 -3881 (|#1| |#1| |#4|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1557 (|#1| |#1| |#1| |#4|)) (-15 -1862 ((-619 |#1|) |#1|)) (-15 -3892 ((-745) |#1| (-619 |#4|))) (-15 -3892 ((-745) |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| |#4|) (|:| -3352 (-745))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2024 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2024 (|#1| |#1| |#4| (-745))) (-15 -1611 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3915 ((-619 |#1|) |#1|)) (-15 -1951 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -1951 (|#1| |#1| |#4| (-745))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2024 (|#1| |#2| |#3|)) (-15 -1951 (|#2| |#1| |#3|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4065 (|#1| |#1|))) (-918 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -917)) -NIL -(-10 -8 (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -4017 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-112) |#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -4028 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -4065 (|#1| |#1| |#4|)) (-15 -3881 (|#1| |#1| |#4|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1557 (|#1| |#1| |#1| |#4|)) (-15 -1862 ((-619 |#1|) |#1|)) (-15 -3892 ((-745) |#1| (-619 |#4|))) (-15 -3892 ((-745) |#1|)) (-15 -3954 ((-3 (-2 (|:| |var| |#4|) (|:| -3352 (-745))) "failed") |#1|)) (-15 -3939 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -3927 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2024 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2024 (|#1| |#1| |#4| (-745))) (-15 -1611 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3915 ((-619 |#1|) |#1|)) (-15 -1951 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -1951 (|#1| |#1| |#4| (-745))) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#4| |#1|)) (-15 -2460 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2460 (|#1| |#1| |#4| |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2024 (|#1| |#2| |#3|)) (-15 -1951 (|#2| |#1| |#3|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4065 (|#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#3|) $) 108)) (-1884 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) 134)) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) ((|#3| $) 133)) (-1557 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-1872 (($ $) 152)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3859 (((-3 $ "failed") $) 32)) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ |#3|) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-4256 (($ $ |#1| |#2| $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| |#3| (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| |#3| (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-2036 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 118)) (-3904 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 |#2| |#2|) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-3511 (((-3 |#3| "failed") $) 121)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-2546 (((-1118) $) 9)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) 111)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-1566 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-4050 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-2512 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| |#3| (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| |#3| (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ |#3|) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-540))) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548))))))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +((-2913 (((-471 |#1| |#2|) (-921 |#2|)) 20)) (-3185 (((-239 |#1| |#2|) (-921 |#2|)) 33)) (-2998 (((-921 |#2|) (-471 |#1| |#2|)) 25)) (-2819 (((-239 |#1| |#2|) (-471 |#1| |#2|)) 55)) (-3089 (((-921 |#2|) (-239 |#1| |#2|)) 30)) (-2723 (((-471 |#1| |#2|) (-239 |#1| |#2|)) 46))) +(((-913 |#1| |#2|) (-10 -7 (-15 -2723 ((-471 |#1| |#2|) (-239 |#1| |#2|))) (-15 -2819 ((-239 |#1| |#2|) (-471 |#1| |#2|))) (-15 -2913 ((-471 |#1| |#2|) (-921 |#2|))) (-15 -2998 ((-921 |#2|) (-471 |#1| |#2|))) (-15 -3089 ((-921 |#2|) (-239 |#1| |#2|))) (-15 -3185 ((-239 |#1| |#2|) (-921 |#2|)))) (-619 (-1135)) (-1016)) (T -913)) +((-3185 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-239 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135))))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-471 *4 *5)) (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135))))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-239 *4 *5)) (-5 *1 (-913 *4 *5)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) (-5 *2 (-471 *4 *5)) (-5 *1 (-913 *4 *5))))) +(-10 -7 (-15 -2723 ((-471 |#1| |#2|) (-239 |#1| |#2|))) (-15 -2819 ((-239 |#1| |#2|) (-471 |#1| |#2|))) (-15 -2913 ((-471 |#1| |#2|) (-921 |#2|))) (-15 -2998 ((-921 |#2|) (-471 |#1| |#2|))) (-15 -3089 ((-921 |#2|) (-239 |#1| |#2|))) (-15 -3185 ((-239 |#1| |#2|) (-921 |#2|)))) +((-2119 (((-619 |#2|) |#2| |#2|) 10)) (-2524 (((-745) (-619 |#1|)) 37 (|has| |#1| (-819)))) (-2246 (((-619 |#2|) |#2|) 11)) (-2624 (((-745) (-619 |#1|) (-547) (-547)) 39 (|has| |#1| (-819)))) (-2386 ((|#1| |#2|) 32 (|has| |#1| (-819))))) +(((-914 |#1| |#2|) (-10 -7 (-15 -2119 ((-619 |#2|) |#2| |#2|)) (-15 -2246 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -2386 (|#1| |#2|)) (-15 -2524 ((-745) (-619 |#1|))) (-15 -2624 ((-745) (-619 |#1|) (-547) (-547)))) |%noBranch|)) (-354) (-1194 |#1|)) (T -914)) +((-2624 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-547)) (-4 *5 (-819)) (-4 *5 (-354)) (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1194 *5)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1194 *4)))) (-2386 (*1 *2 *3) (-12 (-4 *2 (-354)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1194 *2)))) (-2246 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1194 *4)))) (-2119 (*1 *2 *3 *3) (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -2119 ((-619 |#2|) |#2| |#2|)) (-15 -2246 ((-619 |#2|) |#2|)) (IF (|has| |#1| (-819)) (PROGN (-15 -2386 (|#1| |#2|)) (-15 -2524 ((-745) (-619 |#1|))) (-15 -2624 ((-745) (-619 |#1|) (-547) (-547)))) |%noBranch|)) +((-2781 (((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)) 19))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2781 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) (-1016) (-1016)) (T -915)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-921 *6)) (-5 *1 (-915 *5 *6))))) +(-10 -7 (-15 -2781 ((-921 |#2|) (-1 |#2| |#1|) (-921 |#1|)))) +((-2067 (((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)) 18))) +(((-916 |#1| |#2|) (-10 -7 (-15 -2067 ((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)))) (-1135) (-1016)) (T -916)) +((-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-1214 *5)) (-14 *5 (-1135)) (-4 *6 (-1016)) (-5 *2 (-1191 *5 (-921 *6))) (-5 *1 (-916 *5 *6)) (-5 *3 (-921 *6))))) +(-10 -7 (-15 -2067 ((-1191 |#1| (-921 |#2|)) (-921 |#2|) (-1214 |#1|)))) +((-1500 (((-745) $) 71) (((-745) $ (-619 |#4|)) 74)) (-2745 (($ $) 173)) (-3457 (((-409 $) $) 165)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 116)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) NIL) (((-547) $) NIL) ((|#4| $) 59)) (-3772 (($ $ $ |#4|) 76)) (-4238 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 106) (((-663 |#2|) (-663 $)) 99)) (-3786 (($ $) 180) (($ $ |#4|) 183)) (-2042 (((-619 $) $) 63)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 199) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 192)) (-1744 (((-619 $) $) 28)) (-2229 (($ |#2| |#3|) NIL) (($ $ |#4| (-745)) NIL) (($ $ (-619 |#4|) (-619 (-745))) 57)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#4|) 162)) (-1967 (((-3 (-619 $) "failed") $) 42)) (-1859 (((-3 (-619 $) "failed") $) 31)) (-3909 (((-3 (-2 (|:| |var| |#4|) (|:| -4248 (-745))) "failed") $) 47)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 109)) (-3658 (((-409 (-1131 $)) (-1131 $)) 122)) (-3738 (((-409 (-1131 $)) (-1131 $)) 120)) (-2106 (((-409 $) $) 140)) (-2670 (($ $ (-619 (-285 $))) 21) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-619 |#4|) (-619 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-619 |#4|) (-619 $)) NIL)) (-3846 (($ $ |#4|) 78)) (-2829 (((-861 (-370)) $) 213) (((-861 (-547)) $) 206) (((-523) $) 221)) (-1378 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 154)) (-3338 ((|#2| $ |#3|) NIL) (($ $ |#4| (-745)) 52) (($ $ (-619 |#4|) (-619 (-745))) 55)) (-3336 (((-3 $ "failed") $) 156)) (-2396 (((-112) $ $) 186))) +(((-917 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3738 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3658 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -3442 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -3786 (|#1| |#1| |#4|)) (-15 -1378 (|#1| |#1| |#4|)) (-15 -3846 (|#1| |#1| |#4|)) (-15 -3772 (|#1| |#1| |#1| |#4|)) (-15 -2042 ((-619 |#1|) |#1|)) (-15 -1500 ((-745) |#1| (-619 |#4|))) (-15 -1500 ((-745) |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| |#4|) (|:| -4248 (-745))) "failed") |#1|)) (-15 -1967 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -1859 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2229 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2229 (|#1| |#1| |#4| (-745))) (-15 -4267 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1| |#4|)) (-15 -1744 ((-619 |#1|) |#1|)) (-15 -3338 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -3338 (|#1| |#1| |#4| (-745))) (-15 -4238 ((-663 |#2|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -2643 (|#4| |#1|)) (-15 -2698 ((-3 |#4| "failed") |#1|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#4| |#1|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#4| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2229 (|#1| |#2| |#3|)) (-15 -3338 (|#2| |#1| |#3|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -3786 (|#1| |#1|))) (-918 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -917)) +NIL +(-10 -8 (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -3336 ((-3 |#1| "failed") |#1|)) (-15 -2396 ((-112) |#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3738 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3658 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -3442 ((-3 (-1218 |#1|) "failed") (-663 |#1|))) (-15 -3786 (|#1| |#1| |#4|)) (-15 -1378 (|#1| |#1| |#4|)) (-15 -3846 (|#1| |#1| |#4|)) (-15 -3772 (|#1| |#1| |#1| |#4|)) (-15 -2042 ((-619 |#1|) |#1|)) (-15 -1500 ((-745) |#1| (-619 |#4|))) (-15 -1500 ((-745) |#1|)) (-15 -3909 ((-3 (-2 (|:| |var| |#4|) (|:| -4248 (-745))) "failed") |#1|)) (-15 -1967 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -1859 ((-3 (-619 |#1|) "failed") |#1|)) (-15 -2229 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -2229 (|#1| |#1| |#4| (-745))) (-15 -4267 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1| |#4|)) (-15 -1744 ((-619 |#1|) |#1|)) (-15 -3338 (|#1| |#1| (-619 |#4|) (-619 (-745)))) (-15 -3338 (|#1| |#1| |#4| (-745))) (-15 -4238 ((-663 |#2|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -2643 (|#4| |#1|)) (-15 -2698 ((-3 |#4| "failed") |#1|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#4| |#1|)) (-15 -2670 (|#1| |#1| (-619 |#4|) (-619 |#2|))) (-15 -2670 (|#1| |#1| |#4| |#2|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -2229 (|#1| |#2| |#3|)) (-15 -3338 (|#2| |#1| |#3|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -3786 (|#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 |#3|) $) 108)) (-2067 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3881 (($ $) 86 (|has| |#1| (-539)))) (-1832 (((-112) $) 88 (|has| |#1| (-539)))) (-1500 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-3013 (((-3 $ "failed") $ $) 19)) (-3833 (((-409 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-2745 (($ $) 96 (|has| |#1| (-442)))) (-3457 (((-409 $) $) 95 (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) 134)) (-2643 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) ((|#3| $) 133)) (-3772 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2054 (($ $) 152)) (-4238 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2537 (((-3 $ "failed") $) 32)) (-3786 (($ $) 174 (|has| |#1| (-442))) (($ $ |#3|) 103 (|has| |#1| (-442)))) (-2042 (((-619 $) $) 107)) (-3674 (((-112) $) 94 (|has| |#1| (-878)))) (-3913 (($ $ |#1| |#2| $) 170)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| |#3| (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| |#3| (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-4114 (((-112) $) 30)) (-3570 (((-745) $) 167)) (-2245 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-1744 (((-619 $) $) 124)) (-2187 (((-112) $) 150)) (-2229 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#3|) 118)) (-1626 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-2847 (($ $ $) 77 (|has| |#1| (-821)))) (-3563 (($ $ $) 76 (|has| |#1| (-821)))) (-4019 (($ (-1 |#2| |#2|) $) 169)) (-2781 (($ (-1 |#1| |#1|) $) 149)) (-2185 (((-3 |#3| "failed") $) 121)) (-2013 (($ $) 147)) (-2027 ((|#1| $) 146)) (-3685 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-1917 (((-1118) $) 9)) (-1967 (((-3 (-619 $) "failed") $) 112)) (-1859 (((-3 (-619 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -4248 (-745))) "failed") $) 111)) (-3979 (((-1082) $) 10)) (-1988 (((-112) $) 164)) (-1999 ((|#1| $) 165)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-442)))) (-3715 (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-2106 (((-409 $) $) 97 (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-3846 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3443 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-1618 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-2829 (((-861 (-370)) $) 80 (-12 (|has| |#3| (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| |#3| (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| |#3| (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ |#3|) 104 (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1806 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-539))) (($ (-398 (-547))) 70 (-1524 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547))))))) (-2472 (((-619 |#1|) $) 166)) (-3338 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-3336 (((-3 $ "failed") $) 71 (-1524 (-1806 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) 28)) (-1969 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-1932 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2433 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2497 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144))) (((-918 |#1| |#2| |#3|) (-138) (-1016) (-767) (-821)) (T -918)) -((-4065 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2512 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-1884 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1131 *3)))) (-3511 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3904 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-1611 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-918 *4 *5 *3)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-2036 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3)) (-4 *5 (-767)) (-4 *3 (-821)))) (-2036 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)))) (-3927 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3939 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3954 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-745)))))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-1862 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-1557 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-1566 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3881 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-443)))) (-4065 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-443)))) (-1688 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2634 (*1 *2 *1) (-12 (-4 *3 (-443)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-410 *1)) (-4 *1 (-918 *3 *4 *5))))) -(-13 (-869 |t#3|) (-318 |t#1| |t#2|) (-301 $) (-504 |t#3| |t#1|) (-504 |t#3| $) (-1007 |t#3|) (-369 |t#1|) (-10 -8 (-15 -2512 ((-745) $ |t#3|)) (-15 -2512 ((-619 (-745)) $ (-619 |t#3|))) (-15 -1951 ($ $ |t#3| (-745))) (-15 -1951 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -3915 ((-619 $) $)) (-15 -1884 ((-1131 $) $ |t#3|)) (-15 -1884 ((-1131 |t#1|) $)) (-15 -3511 ((-3 |t#3| "failed") $)) (-15 -3904 ((-745) $ |t#3|)) (-15 -3904 ((-619 (-745)) $ (-619 |t#3|))) (-15 -1611 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |t#3|)) (-15 -2024 ($ $ |t#3| (-745))) (-15 -2024 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -2036 ($ (-1131 |t#1|) |t#3|)) (-15 -2036 ($ (-1131 $) |t#3|)) (-15 -3927 ((-3 (-619 $) "failed") $)) (-15 -3939 ((-3 (-619 $) "failed") $)) (-15 -3954 ((-3 (-2 (|:| |var| |t#3|) (|:| -3352 (-745))) "failed") $)) (-15 -3892 ((-745) $)) (-15 -3892 ((-745) $ (-619 |t#3|))) (-15 -2049 ((-619 |t#3|) $)) (-15 -1862 ((-619 $) $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (IF (|has| |t#3| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-593 (-861 (-548)))) (IF (|has| |t#3| (-593 (-861 (-548)))) (-6 (-593 (-861 (-548)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-593 (-861 (-371)))) (IF (|has| |t#3| (-593 (-861 (-371)))) (-6 (-593 (-861 (-371)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-548))) (IF (|has| |t#3| (-855 (-548))) (-6 (-855 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-371))) (IF (|has| |t#3| (-855 (-371))) (-6 (-855 (-371))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1557 ($ $ $ |t#3|)) (-15 -1566 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-6 (-443)) (-15 -3881 ($ $ |t#3|)) (-15 -4065 ($ $)) (-15 -4065 ($ $ |t#3|)) (-15 -2634 ((-410 $) $)) (-15 -1688 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4325)) (-6 -4325) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-301 $) . T) ((-318 |#1| |#2|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443))) ((-504 |#3| |#1|) . T) ((-504 |#3| $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) ((-878) |has| |#1| (-878)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) -((-2049 (((-619 |#2|) |#5|) 36)) (-1884 (((-1131 |#5|) |#5| |#2| (-1131 |#5|)) 23) (((-399 (-1131 |#5|)) |#5| |#2|) 16)) (-2036 ((|#5| (-399 (-1131 |#5|)) |#2|) 30)) (-3511 (((-3 |#2| "failed") |#5|) 65)) (-3939 (((-3 (-619 |#5|) "failed") |#5|) 59)) (-3968 (((-3 (-2 (|:| |val| |#5|) (|:| -3352 (-548))) "failed") |#5|) 47)) (-3927 (((-3 (-619 |#5|) "failed") |#5|) 61)) (-3954 (((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-548))) "failed") |#5|) 51))) -(((-919 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2049 ((-619 |#2|) |#5|)) (-15 -3511 ((-3 |#2| "failed") |#5|)) (-15 -1884 ((-399 (-1131 |#5|)) |#5| |#2|)) (-15 -2036 (|#5| (-399 (-1131 |#5|)) |#2|)) (-15 -1884 ((-1131 |#5|) |#5| |#2| (-1131 |#5|))) (-15 -3927 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3939 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3954 ((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-548))) "failed") |#5|)) (-15 -3968 ((-3 (-2 (|:| |val| |#5|) (|:| -3352 (-548))) "failed") |#5|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-355) (-10 -8 (-15 -3743 ($ |#4|)) (-15 -2470 (|#4| $)) (-15 -2480 (|#4| $))))) (T -919)) -((-3968 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3352 (-548)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3954 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-548)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3939 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3927 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-1884 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-1131 *2))) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *2 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4)))) (-1884 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-399 (-1131 *3))) (-5 *1 (-919 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) (-3511 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *6)) (-15 -2470 (*6 $)) (-15 -2480 (*6 $))))))) (-2049 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-355) (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $)))))))) -(-10 -7 (-15 -2049 ((-619 |#2|) |#5|)) (-15 -3511 ((-3 |#2| "failed") |#5|)) (-15 -1884 ((-399 (-1131 |#5|)) |#5| |#2|)) (-15 -2036 (|#5| (-399 (-1131 |#5|)) |#2|)) (-15 -1884 ((-1131 |#5|) |#5| |#2| (-1131 |#5|))) (-15 -3927 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3939 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3954 ((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-548))) "failed") |#5|)) (-15 -3968 ((-3 (-2 (|:| |val| |#5|) (|:| -3352 (-548))) "failed") |#5|))) -((-2540 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2540 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (T -920)) -((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *6 (-767)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7))))) -(-10 -7 (-15 -2540 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1135)) $) 16)) (-1884 (((-1131 $) $ (-1135)) 21) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1135))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 8) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1135) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1135) $) NIL)) (-1557 (($ $ $ (-1135)) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1135)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 (-1135)) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1135) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1135) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) (-1135)) NIL) (($ (-1131 $) (-1135)) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1135)) NIL)) (-3904 (((-520 (-1135)) $) NIL) (((-745) $ (-1135)) NIL) (((-619 (-745)) $ (-619 (-1135))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 (-1135)) (-520 (-1135))) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3511 (((-3 (-1135) "failed") $) 19)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1135)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $ (-1135)) 29 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1135) |#1|) NIL) (($ $ (-619 (-1135)) (-619 |#1|)) NIL) (($ $ (-1135) $) NIL) (($ $ (-619 (-1135)) (-619 $)) NIL)) (-1566 (($ $ (-1135)) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2512 (((-520 (-1135)) $) NIL) (((-745) $ (-1135)) NIL) (((-619 (-745)) $ (-619 (-1135))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1135) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1135) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1135) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1135)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 25) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-1135)) 27) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-921 |#1|) (-13 (-918 |#1| (-520 (-1135)) (-1135)) (-10 -8 (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1135))) |%noBranch|))) (-1016)) (T -921)) -((-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016))))) -(-13 (-918 |#1| (-520 (-1135)) (-1135)) (-10 -8 (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1135))) |%noBranch|))) -((-3978 (((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#3| (-745)) 38)) (-3988 (((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) (-399 (-548)) (-745)) 34)) (-4011 (((-2 (|:| -3352 (-745)) (|:| -1489 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)) 54)) (-3999 (((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#5| (-745)) 64 (|has| |#3| (-443))))) -(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3978 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -3988 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) (-399 (-548)) (-745))) (IF (|has| |#3| (-443)) (-15 -3999 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -4011 ((-2 (|:| -3352 (-745)) (|:| -1489 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) (-767) (-821) (-540) (-918 |#3| |#1| |#2|) (-13 (-355) (-10 -8 (-15 -2470 (|#4| $)) (-15 -2480 (|#4| $)) (-15 -3743 ($ |#4|))))) (T -922)) -((-4011 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) (-4 *3 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| (-619 *3)))) (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-355) (-10 -8 (-15 -2470 (*3 $)) (-15 -2480 (*3 $)) (-15 -3743 ($ *3))))))) (-3999 (*1 *2 *3 *4) (-12 (-4 *7 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *3))) (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) (-4 *3 (-13 (-355) (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8))))))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-548))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *9) (|:| |radicand| *9))) (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) (-4 *9 (-13 (-355) (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8))))))) (-3978 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-540)) (-4 *7 (-918 *3 *5 *6)) (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *8) (|:| |radicand| *8))) (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-355) (-10 -8 (-15 -2470 (*7 $)) (-15 -2480 (*7 $)) (-15 -3743 ($ *7)))))))) -(-10 -7 (-15 -3978 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -3988 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) (-399 (-548)) (-745))) (IF (|has| |#3| (-443)) (-15 -3999 ((-2 (|:| -3352 (-745)) (|:| -1489 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -4011 ((-2 (|:| -3352 (-745)) (|:| -1489 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) -((-3730 (((-112) $ $) NIL)) (-4021 (($ (-1082)) 8)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 14) (((-1082) $) 11)) (-2214 (((-112) $ $) 10))) -(((-923) (-13 (-1063) (-592 (-1082)) (-10 -8 (-15 -4021 ($ (-1082)))))) (T -923)) -((-4021 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923))))) -(-13 (-1063) (-592 (-1082)) (-10 -8 (-15 -4021 ($ (-1082))))) -((-3934 (((-1058 (-218)) $) 8)) (-3921 (((-1058 (-218)) $) 9)) (-3360 (((-619 (-619 (-912 (-218)))) $) 10)) (-3743 (((-832) $) 6))) +((-3786 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-1618 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-1618 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-3338 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-3338 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-1744 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-2067 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-1131 *3)))) (-2185 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-1626 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-745)))) (-1626 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) (-4267 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-918 *4 *5 *3)))) (-2229 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *2 (-821)))) (-2229 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) (-2245 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3)) (-4 *5 (-767)) (-4 *3 (-821)))) (-2245 (*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)))) (-1859 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-1967 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3909 (*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -4248 (-745)))))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-1500 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-2042 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) (-3772 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-3846 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-169)))) (-1378 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-442)))) (-3786 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *3 (-442)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-3457 (*1 *2 *1) (-12 (-4 *3 (-442)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-409 *1)) (-4 *1 (-918 *3 *4 *5))))) +(-13 (-869 |t#3|) (-317 |t#1| |t#2|) (-300 $) (-503 |t#3| |t#1|) (-503 |t#3| $) (-1007 |t#3|) (-368 |t#1|) (-10 -8 (-15 -1618 ((-745) $ |t#3|)) (-15 -1618 ((-619 (-745)) $ (-619 |t#3|))) (-15 -3338 ($ $ |t#3| (-745))) (-15 -3338 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -1744 ((-619 $) $)) (-15 -2067 ((-1131 $) $ |t#3|)) (-15 -2067 ((-1131 |t#1|) $)) (-15 -2185 ((-3 |t#3| "failed") $)) (-15 -1626 ((-745) $ |t#3|)) (-15 -1626 ((-619 (-745)) $ (-619 |t#3|))) (-15 -4267 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |t#3|)) (-15 -2229 ($ $ |t#3| (-745))) (-15 -2229 ($ $ (-619 |t#3|) (-619 (-745)))) (-15 -2245 ($ (-1131 |t#1|) |t#3|)) (-15 -2245 ($ (-1131 $) |t#3|)) (-15 -1859 ((-3 (-619 $) "failed") $)) (-15 -1967 ((-3 (-619 $) "failed") $)) (-15 -3909 ((-3 (-2 (|:| |var| |t#3|) (|:| -4248 (-745))) "failed") $)) (-15 -1500 ((-745) $)) (-15 -1500 ((-745) $ (-619 |t#3|))) (-15 -2259 ((-619 |t#3|) $)) (-15 -2042 ((-619 $) $)) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (IF (|has| |t#3| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-592 (-861 (-547)))) (IF (|has| |t#3| (-592 (-861 (-547)))) (-6 (-592 (-861 (-547)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-592 (-861 (-370)))) (IF (|has| |t#3| (-592 (-861 (-370)))) (-6 (-592 (-861 (-370)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-547))) (IF (|has| |t#3| (-855 (-547))) (-6 (-855 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855 (-370))) (IF (|has| |t#3| (-855 (-370))) (-6 (-855 (-370))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -3772 ($ $ $ |t#3|)) (-15 -3846 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-6 (-442)) (-15 -1378 ($ $ |t#3|)) (-15 -3786 ($ $)) (-15 -3786 ($ $ |t#3|)) (-15 -3457 ((-409 $) $)) (-15 -2745 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4326)) (-6 -4326) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) ((-281) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-300 $) . T) ((-317 |#1| |#2|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1524 (|has| |#1| (-878)) (|has| |#1| (-442))) ((-503 |#3| |#1|) . T) ((-503 |#3| $) . T) ((-503 $ $) . T) ((-539) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) ((-878) |has| |#1| (-878)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) +((-2259 (((-619 |#2|) |#5|) 36)) (-2067 (((-1131 |#5|) |#5| |#2| (-1131 |#5|)) 23) (((-398 (-1131 |#5|)) |#5| |#2|) 16)) (-2245 ((|#5| (-398 (-1131 |#5|)) |#2|) 30)) (-2185 (((-3 |#2| "failed") |#5|) 65)) (-1967 (((-3 (-619 |#5|) "failed") |#5|) 59)) (-4014 (((-3 (-2 (|:| |val| |#5|) (|:| -4248 (-547))) "failed") |#5|) 47)) (-1859 (((-3 (-619 |#5|) "failed") |#5|) 61)) (-3909 (((-3 (-2 (|:| |var| |#2|) (|:| -4248 (-547))) "failed") |#5|) 51))) +(((-919 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2259 ((-619 |#2|) |#5|)) (-15 -2185 ((-3 |#2| "failed") |#5|)) (-15 -2067 ((-398 (-1131 |#5|)) |#5| |#2|)) (-15 -2245 (|#5| (-398 (-1131 |#5|)) |#2|)) (-15 -2067 ((-1131 |#5|) |#5| |#2| (-1131 |#5|))) (-15 -1859 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -1967 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3909 ((-3 (-2 (|:| |var| |#2|) (|:| -4248 (-547))) "failed") |#5|)) (-15 -4014 ((-3 (-2 (|:| |val| |#5|) (|:| -4248 (-547))) "failed") |#5|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-354) (-10 -8 (-15 -3834 ($ |#4|)) (-15 -1382 (|#4| $)) (-15 -1392 (|#4| $))))) (T -919)) +((-4014 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4248 (-547)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) (-3909 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4248 (-547)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) (-1967 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) (-1859 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) (-2067 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))) (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-1131 *2))) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *2 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))) (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4)))) (-2067 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-398 (-1131 *3))) (-5 *1 (-919 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) (-2185 (*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *6)) (-15 -1382 (*6 $)) (-15 -1392 (*6 $))))))) (-2259 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-354) (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $)))))))) +(-10 -7 (-15 -2259 ((-619 |#2|) |#5|)) (-15 -2185 ((-3 |#2| "failed") |#5|)) (-15 -2067 ((-398 (-1131 |#5|)) |#5| |#2|)) (-15 -2245 (|#5| (-398 (-1131 |#5|)) |#2|)) (-15 -2067 ((-1131 |#5|) |#5| |#2| (-1131 |#5|))) (-15 -1859 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -1967 ((-3 (-619 |#5|) "failed") |#5|)) (-15 -3909 ((-3 (-2 (|:| |var| |#2|) (|:| -4248 (-547))) "failed") |#5|)) (-15 -4014 ((-3 (-2 (|:| |val| |#5|) (|:| -4248 (-547))) "failed") |#5|))) +((-2781 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2781 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-767) (-821) (-1016) (-918 |#3| |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (T -920)) +((-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *6 (-767)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7))))) +(-10 -7 (-15 -2781 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1135)) $) 16)) (-2067 (((-1131 $) $ (-1135)) 21) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1135))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 8) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1135) "failed") $) NIL)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1135) $) NIL)) (-3772 (($ $ $ (-1135)) NIL (|has| |#1| (-169)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1135)) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-519 (-1135)) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1135) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1135) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#1|) (-1135)) NIL) (($ (-1131 $) (-1135)) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-519 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1135)) NIL)) (-1626 (((-519 (-1135)) $) NIL) (((-745) $ (-1135)) NIL) (((-619 (-745)) $ (-619 (-1135))) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-519 (-1135)) (-519 (-1135))) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2185 (((-3 (-1135) "failed") $) 19)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1135)) (|:| -4248 (-745))) "failed") $) NIL)) (-2069 (($ $ (-1135)) 29 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1135) |#1|) NIL) (($ $ (-619 (-1135)) (-619 |#1|)) NIL) (($ $ (-1135) $) NIL) (($ $ (-619 (-1135)) (-619 $)) NIL)) (-3846 (($ $ (-1135)) NIL (|has| |#1| (-169)))) (-3443 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-1618 (((-519 (-1135)) $) NIL) (((-745) $ (-1135)) NIL) (((-619 (-745)) $ (-619 (-1135))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-1135) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1135) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1135) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1135)) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) 25) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-1135)) 27) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-519 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-921 |#1|) (-13 (-918 |#1| (-519 (-1135)) (-1135)) (-10 -8 (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1135))) |%noBranch|))) (-1016)) (T -921)) +((-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016))))) +(-13 (-918 |#1| (-519 (-1135)) (-1135)) (-10 -8 (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1135))) |%noBranch|))) +((-4107 (((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) |#3| (-745)) 38)) (-4204 (((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) (-398 (-547)) (-745)) 34)) (-1362 (((-2 (|:| -4248 (-745)) (|:| -1557 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)) 54)) (-4297 (((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) |#5| (-745)) 64 (|has| |#3| (-442))))) +(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4107 ((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -4204 ((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) (-398 (-547)) (-745))) (IF (|has| |#3| (-442)) (-15 -4297 ((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -1362 ((-2 (|:| -4248 (-745)) (|:| -1557 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) (-767) (-821) (-539) (-918 |#3| |#1| |#2|) (-13 (-354) (-10 -8 (-15 -1382 (|#4| $)) (-15 -1392 (|#4| $)) (-15 -3834 ($ |#4|))))) (T -922)) +((-1362 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) (-4 *3 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *3) (|:| |radicand| (-619 *3)))) (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-354) (-10 -8 (-15 -1382 (*3 $)) (-15 -1392 (*3 $)) (-15 -3834 ($ *3))))))) (-4297 (*1 *2 *3 *4) (-12 (-4 *7 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *3) (|:| |radicand| *3))) (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) (-4 *3 (-13 (-354) (-10 -8 (-15 -1382 (*8 $)) (-15 -1392 (*8 $)) (-15 -3834 ($ *8))))))) (-4204 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-547))) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) (-4 *8 (-918 *7 *5 *6)) (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *9) (|:| |radicand| *9))) (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) (-4 *9 (-13 (-354) (-10 -8 (-15 -1382 (*8 $)) (-15 -1392 (*8 $)) (-15 -3834 ($ *8))))))) (-4107 (*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-539)) (-4 *7 (-918 *3 *5 *6)) (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *8) (|:| |radicand| *8))) (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) (-4 *8 (-13 (-354) (-10 -8 (-15 -1382 (*7 $)) (-15 -1392 (*7 $)) (-15 -3834 ($ *7)))))))) +(-10 -7 (-15 -4107 ((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) |#3| (-745))) (-15 -4204 ((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) (-398 (-547)) (-745))) (IF (|has| |#3| (-442)) (-15 -4297 ((-2 (|:| -4248 (-745)) (|:| -1557 |#5|) (|:| |radicand| |#5|)) |#5| (-745))) |%noBranch|) (-15 -1362 ((-2 (|:| -4248 (-745)) (|:| -1557 |#4|) (|:| |radicand| (-619 |#4|))) |#4| (-745)))) +((-3821 (((-112) $ $) NIL)) (-3379 (($ (-1082)) 8)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 14) (((-1082) $) 11)) (-2371 (((-112) $ $) 10))) +(((-923) (-13 (-1063) (-591 (-1082)) (-10 -8 (-15 -3379 ($ (-1082)))))) (T -923)) +((-3379 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923))))) +(-13 (-1063) (-591 (-1082)) (-10 -8 (-15 -3379 ($ (-1082))))) +((-1827 (((-1058 (-217)) $) 8)) (-1816 (((-1058 (-217)) $) 9)) (-1259 (((-619 (-619 (-912 (-217)))) $) 10)) (-3834 (((-832) $) 6))) (((-924) (-138)) (T -924)) -((-3360 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-218))))))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218))))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218)))))) -(-13 (-592 (-832)) (-10 -8 (-15 -3360 ((-619 (-619 (-912 (-218)))) $)) (-15 -3921 ((-1058 (-218)) $)) (-15 -3934 ((-1058 (-218)) $)))) -(((-592 (-832)) . T)) -((-4032 (((-3 (-663 |#1|) "failed") |#2| (-890)) 15))) -(((-925 |#1| |#2|) (-10 -7 (-15 -4032 ((-3 (-663 |#1|) "failed") |#2| (-890)))) (-540) (-630 |#1|)) (T -925)) -((-4032 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-890)) (-4 *5 (-540)) (-5 *2 (-663 *5)) (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5))))) -(-10 -7 (-15 -4032 ((-3 (-663 |#1|) "failed") |#2| (-890)))) -((-4040 (((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 16)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 18)) (-2540 (((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)) 13))) -(((-926 |#1| |#2|) (-10 -7 (-15 -4040 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2540 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) (-1172) (-1172)) (T -926)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-927 *6)) (-5 *1 (-926 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-926 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5))))) -(-10 -7 (-15 -4040 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2540 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) 16 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 15 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 13)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) |#1|) 12)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) 10 (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) 17 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) 11)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) 14) (($ $ (-1185 (-548))) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) NIL)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3643 (((-745) $) 8 (|has| $ (-6 -4327))))) +((-1259 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-217))))))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217))))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217)))))) +(-13 (-591 (-832)) (-10 -8 (-15 -1259 ((-619 (-619 (-912 (-217)))) $)) (-15 -1816 ((-1058 (-217)) $)) (-15 -1827 ((-1058 (-217)) $)))) +(((-591 (-832)) . T)) +((-3483 (((-3 (-663 |#1|) "failed") |#2| (-890)) 15))) +(((-925 |#1| |#2|) (-10 -7 (-15 -3483 ((-3 (-663 |#1|) "failed") |#2| (-890)))) (-539) (-630 |#1|)) (T -925)) +((-3483 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-890)) (-4 *5 (-539)) (-5 *2 (-663 *5)) (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5))))) +(-10 -7 (-15 -3483 ((-3 (-663 |#1|) "failed") |#2| (-890)))) +((-3562 (((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 16)) (-2542 ((|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|) 18)) (-2781 (((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)) 13))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3562 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2781 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) (-1172) (-1172)) (T -926)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-927 *6)) (-5 *1 (-926 *5 *6)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-926 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5))))) +(-10 -7 (-15 -3562 ((-927 |#2|) (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-927 |#1|) |#2|)) (-15 -2781 ((-927 |#2|) (-1 |#2| |#1|) (-927 |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) |#1|) 16 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 15 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 13)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) |#1|) 12)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) 10 (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) 17 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) 11)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) 14) (($ $ (-1185 (-547))) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) NIL)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-3763 (((-745) $) 8 (|has| $ (-6 -4328))))) (((-927 |#1|) (-19 |#1|) (-1172)) (T -927)) NIL (-19 |#1|) -((-4044 (($ $ (-1056 $)) 7) (($ $ (-1135)) 6))) +((-3595 (($ $ (-1056 $)) 7) (($ $ (-1135)) 6))) (((-928) (-138)) (T -928)) -((-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928)))) (-4044 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1135))))) -(-13 (-10 -8 (-15 -4044 ($ $ (-1135))) (-15 -4044 ($ $ (-1056 $))))) -((-2771 (((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)) 25) (((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135))) 26) (((-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135)) 43))) -(((-929 |#1|) (-10 -7 (-15 -2771 ((-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)))) (-13 (-355) (-145))) (T -929)) -((-2771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-5 *5 (-1135)) (-4 *6 (-13 (-355) (-145))) (-5 *2 (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *6))) (|:| |prim| (-1131 *6)))) (-5 *1 (-929 *6)))) (-2771 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-355) (-145))) (-5 *2 (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *5))) (|:| |prim| (-1131 *5)))) (-5 *1 (-929 *5)))) (-2771 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-1135)) (-4 *5 (-13 (-355) (-145))) (-5 *2 (-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 *5)))) (-5 *1 (-929 *5))))) -(-10 -7 (-15 -2771 ((-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2771 ((-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)))) -((-2793 (((-619 |#1|) |#1| |#1|) 42)) (-1271 (((-112) |#1|) 39)) (-2787 ((|#1| |#1|) 65)) (-2779 ((|#1| |#1|) 64))) -(((-930 |#1|) (-10 -7 (-15 -1271 ((-112) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2793 ((-619 |#1|) |#1| |#1|))) (-533)) (T -930)) -((-2793 (*1 *2 *3 *3) (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-533)))) (-2787 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533)))) (-2779 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533)))) (-1271 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-533))))) -(-10 -7 (-15 -1271 ((-112) |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2793 ((-619 |#1|) |#1| |#1|))) -((-1667 (((-1223) (-832)) 9))) -(((-931) (-10 -7 (-15 -1667 ((-1223) (-832))))) (T -931)) -((-1667 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-931))))) -(-10 -7 (-15 -1667 ((-1223) (-832)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 61 (|has| |#1| (-540)))) (-3303 (($ $) 62 (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 28)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) 24)) (-3859 (((-3 $ "failed") $) 35)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-4256 (($ $ |#1| |#2| $) 48)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 16)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| |#2|) NIL)) (-3904 ((|#2| $) 19)) (-4267 (($ (-1 |#2| |#2|) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2185 (($ $) 23)) (-2197 ((|#1| $) 21)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 40)) (-2175 ((|#1| $) NIL)) (-1362 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-540))))) (-1900 (((-3 $ "failed") $ $) 74 (|has| |#1| (-540))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-540)))) (-2512 ((|#2| $) 17)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) 39) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 34) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ |#2|) 31)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 15)) (-4243 (($ $ $ (-745)) 57 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 67 (|has| |#1| (-540)))) (-3107 (($) 22 T CONST)) (-3118 (($) 12 T CONST)) (-2214 (((-112) $ $) 66)) (-2309 (($ $ |#1|) 75 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) 54) (($ $ (-745)) 52)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-932 |#1| |#2|) (-13 (-318 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| |#2| (-130)) (-15 -1362 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) (-1016) (-766)) (T -932)) -((-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *2 (-766))))) -(-13 (-318 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| |#2| (-130)) (-15 -1362 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-2857 (($ $ $) 63 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (-4104 (((-3 $ "failed") $ $) 50 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-3423 (((-745)) 34 (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-2803 ((|#2| $) 21)) (-2812 ((|#1| $) 20)) (-3030 (($) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3859 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-2545 (($) NIL (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-2266 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-1795 (($ $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-3091 (($ $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2822 (($ |#1| |#2|) 19)) (-2855 (((-890) $) NIL (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 37 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-3337 (($ (-890)) NIL (-12 (|has| |#1| (-360)) (|has| |#2| (-360))))) (-3932 (((-1082) $) NIL)) (-2128 (($ $ $) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-3652 (($ $ $) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-3743 (((-832) $) 14)) (-3107 (($) 40 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3118 (($) 24 (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) CONST)) (-2262 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2241 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2214 (((-112) $ $) 18)) (-2252 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2234 (((-112) $ $) 66 (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2309 (($ $ $) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464))))) (-2299 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2290 (($ $ $) 43 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (** (($ $ (-548)) NIL (-12 (|has| |#1| (-464)) (|has| |#2| (-464)))) (($ $ (-745)) 31 (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (* (($ (-548) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-745) $) 46 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ (-890) $) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ $ $) 27 (-1524 (-12 (|has| |#1| (-464)) (|has| |#2| (-464))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))))) -(((-933 |#1| |#2|) (-13 (-1063) (-10 -8 (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-464)) (-6 (-464)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -2822 ($ |#1| |#2|)) (-15 -2812 (|#1| $)) (-15 -2803 (|#2| $)))) (-1063) (-1063)) (T -933)) -((-2822 (*1 *1 *2 *3) (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2812 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063)))) (-2803 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063))))) -(-13 (-1063) (-10 -8 (IF (|has| |#1| (-360)) (IF (|has| |#2| (-360)) (-6 (-360)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-464)) (-6 (-464)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -2822 ($ |#1| |#2|)) (-15 -2812 (|#1| $)) (-15 -2803 (|#2| $)))) -((-4056 (((-1067) $) 12)) (-1812 (($ (-1135) (-1067)) 13)) (-2275 (((-1135) $) 10)) (-3743 (((-832) $) 22))) -(((-934) (-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -4056 ((-1067) $)) (-15 -1812 ($ (-1135) (-1067)))))) (T -934)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-934)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934)))) (-1812 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-934))))) -(-13 (-592 (-832)) (-10 -8 (-15 -2275 ((-1135) $)) (-15 -4056 ((-1067) $)) (-15 -1812 ($ (-1135) (-1067))))) -((-2049 (((-1065 (-1135)) $) 19)) (-2921 (((-112) $) 26)) (-2754 (((-1135) $) 27)) (-2943 (((-112) $) 24)) (-2932 ((|#1| $) 25)) (-2868 (((-842 $ $) $) 34)) (-2878 (((-112) $) 33)) (-4168 (($ $ $) 12)) (-2911 (($ $) 29)) (-3191 (((-112) $) 28)) (-3958 (($ $) 10)) (-2848 (((-842 $ $) $) 36)) (-2856 (((-112) $) 35)) (-2202 (($ $ $) 13)) (-2828 (((-842 $ $) $) 38)) (-2838 (((-112) $) 37)) (-2954 (($ $ $) 14)) (-3743 (($ |#1|) 7) (($ (-1135)) 9) (((-832) $) 40 (|has| |#1| (-592 (-832))))) (-2888 (((-842 $ $) $) 32)) (-2899 (((-112) $) 30)) (-1723 (($ $ $) 11))) -(((-935 |#1|) (-13 (-936) (-10 -8 (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-1135))) (-15 -2049 ((-1065 (-1135)) $)) (-15 -2943 ((-112) $)) (-15 -2932 (|#1| $)) (-15 -2921 ((-112) $)) (-15 -2754 ((-1135) $)) (-15 -3191 ((-112) $)) (-15 -2911 ($ $)) (-15 -2899 ((-112) $)) (-15 -2888 ((-842 $ $) $)) (-15 -2878 ((-112) $)) (-15 -2868 ((-842 $ $) $)) (-15 -2856 ((-112) $)) (-15 -2848 ((-842 $ $) $)) (-15 -2838 ((-112) $)) (-15 -2828 ((-842 $ $) $)))) (-936)) (T -935)) -((-3743 (*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1135))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2932 (*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2911 (*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936))))) -(-13 (-936) (-10 -8 (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (-15 -3743 ($ |#1|)) (-15 -3743 ($ (-1135))) (-15 -2049 ((-1065 (-1135)) $)) (-15 -2943 ((-112) $)) (-15 -2932 (|#1| $)) (-15 -2921 ((-112) $)) (-15 -2754 ((-1135) $)) (-15 -3191 ((-112) $)) (-15 -2911 ($ $)) (-15 -2899 ((-112) $)) (-15 -2888 ((-842 $ $) $)) (-15 -2878 ((-112) $)) (-15 -2868 ((-842 $ $) $)) (-15 -2856 ((-112) $)) (-15 -2848 ((-842 $ $) $)) (-15 -2838 ((-112) $)) (-15 -2828 ((-842 $ $) $)))) -((-4168 (($ $ $) 8)) (-3958 (($ $) 6)) (-2202 (($ $ $) 9)) (-2954 (($ $ $) 10)) (-1723 (($ $ $) 7))) +((-3595 (*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928)))) (-3595 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1135))))) +(-13 (-10 -8 (-15 -3595 ($ $ (-1135))) (-15 -3595 ($ $ (-1056 $))))) +((-2445 (((-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)) 25) (((-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135))) 26) (((-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135)) 43))) +(((-929 |#1|) (-10 -7 (-15 -2445 ((-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135))) (-15 -2445 ((-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2445 ((-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)))) (-13 (-354) (-145))) (T -929)) +((-2445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-5 *5 (-1135)) (-4 *6 (-13 (-354) (-145))) (-5 *2 (-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 *6))) (|:| |prim| (-1131 *6)))) (-5 *1 (-929 *6)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-354) (-145))) (-5 *2 (-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 *5))) (|:| |prim| (-1131 *5)))) (-5 *1 (-929 *5)))) (-2445 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-1135)) (-4 *5 (-13 (-354) (-145))) (-5 *2 (-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1131 *5)))) (-5 *1 (-929 *5))))) +(-10 -7 (-15 -2445 ((-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) (|:| |prim| (-1131 |#1|))) (-921 |#1|) (-1135) (-921 |#1|) (-1135))) (-15 -2445 ((-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)))) (-15 -2445 ((-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 |#1|))) (|:| |prim| (-1131 |#1|))) (-619 (-921 |#1|)) (-619 (-1135)) (-1135)))) +((-2687 (((-619 |#1|) |#1| |#1|) 42)) (-3674 (((-112) |#1|) 39)) (-2633 ((|#1| |#1|) 65)) (-2548 ((|#1| |#1|) 64))) +(((-930 |#1|) (-10 -7 (-15 -3674 ((-112) |#1|)) (-15 -2548 (|#1| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2687 ((-619 |#1|) |#1| |#1|))) (-532)) (T -930)) +((-2687 (*1 *2 *3 *3) (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-532)))) (-2633 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532)))) (-2548 (*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532)))) (-3674 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-532))))) +(-10 -7 (-15 -3674 ((-112) |#1|)) (-15 -2548 (|#1| |#1|)) (-15 -2633 (|#1| |#1|)) (-15 -2687 ((-619 |#1|) |#1| |#1|))) +((-1790 (((-1223) (-832)) 9))) +(((-931) (-10 -7 (-15 -1790 ((-1223) (-832))))) (T -931)) +((-1790 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-931))))) +(-10 -7 (-15 -1790 ((-1223) (-832)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 61 (|has| |#1| (-539)))) (-3881 (($ $) 62 (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 28)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2054 (($ $) 24)) (-2537 (((-3 $ "failed") $) 35)) (-3786 (($ $) NIL (|has| |#1| (-442)))) (-3913 (($ $ |#1| |#2| $) 48)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) 16)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| |#2|) NIL)) (-1626 ((|#2| $) 19)) (-4019 (($ (-1 |#2| |#2|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2013 (($ $) 23)) (-2027 ((|#1| $) 21)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) 40)) (-1999 ((|#1| $) NIL)) (-2930 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-539))))) (-2025 (((-3 $ "failed") $ $) 74 (|has| |#1| (-539))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-539)))) (-1618 ((|#2| $) 17)) (-1378 ((|#1| $) NIL (|has| |#1| (-442)))) (-3834 (((-832) $) NIL) (($ (-547)) 39) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 34) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ |#2|) 31)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) 15)) (-1969 (($ $ $ (-745)) 57 (|has| |#1| (-169)))) (-1932 (((-112) $ $) 67 (|has| |#1| (-539)))) (-3267 (($) 22 T CONST)) (-3277 (($) 12 T CONST)) (-2371 (((-112) $ $) 66)) (-2497 (($ $ |#1|) 75 (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) 54) (($ $ (-745)) 52)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-932 |#1| |#2|) (-13 (-317 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| |#2| (-130)) (-15 -2930 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|))) (-1016) (-766)) (T -932)) +((-2930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(-13 (-317 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| |#2| (-130)) (-15 -2930 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-1991 (($ $ $) 63 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (-3013 (((-3 $ "failed") $ $) 50 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (-3603 (((-745)) 34 (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-1432 ((|#2| $) 21)) (-1541 ((|#1| $) 20)) (-3219 (($) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-2537 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-3229 (($) NIL (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-4114 (((-112) $) NIL (-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (-2847 (($ $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-3563 (($ $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-1637 (($ |#1| |#2|) 19)) (-1966 (((-890) $) NIL (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 37 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-3479 (($ (-890)) NIL (-12 (|has| |#1| (-359)) (|has| |#2| (-359))))) (-3979 (((-1082) $) NIL)) (-2444 (($ $ $) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-4121 (($ $ $) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-3834 (((-832) $) 14)) (-3267 (($) 40 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))) CONST)) (-3277 (($) 24 (-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))) CONST)) (-2433 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2408 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2371 (((-112) $ $) 18)) (-2421 (((-112) $ $) NIL (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2396 (((-112) $ $) 66 (-1524 (-12 (|has| |#1| (-767)) (|has| |#2| (-767))) (-12 (|has| |#1| (-821)) (|has| |#2| (-821)))))) (-2497 (($ $ $) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463))))) (-2484 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2470 (($ $ $) 43 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767)))))) (** (($ $ (-547)) NIL (-12 (|has| |#1| (-463)) (|has| |#2| (-463)))) (($ $ (-745)) 31 (-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))) (($ $ (-890)) NIL (-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701)))))) (* (($ (-547) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-745) $) 46 (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ (-890) $) NIL (-1524 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-767)) (|has| |#2| (-767))))) (($ $ $) 27 (-1524 (-12 (|has| |#1| (-463)) (|has| |#2| (-463))) (-12 (|has| |#1| (-701)) (|has| |#2| (-701))))))) +(((-933 |#1| |#2|) (-13 (-1063) (-10 -8 (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-463)) (-6 (-463)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -1637 ($ |#1| |#2|)) (-15 -1541 (|#1| $)) (-15 -1432 (|#2| $)))) (-1063) (-1063)) (T -933)) +((-1637 (*1 *1 *2 *3) (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1541 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063)))) (-1432 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063))))) +(-13 (-1063) (-10 -8 (IF (|has| |#1| (-359)) (IF (|has| |#2| (-359)) (-6 (-359)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-701)) (IF (|has| |#2| (-701)) (-6 (-701)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-463)) (-6 (-463)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-767)) (IF (|has| |#2| (-767)) (-6 (-767)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-821)) (IF (|has| |#2| (-821)) (-6 (-821)) |%noBranch|) |%noBranch|) (-15 -1637 ($ |#1| |#2|)) (-15 -1541 (|#1| $)) (-15 -1432 (|#2| $)))) +((-4152 (((-1067) $) 12)) (-1982 (($ (-1135) (-1067)) 13)) (-2464 (((-1135) $) 10)) (-3834 (((-832) $) 22))) +(((-934) (-13 (-591 (-832)) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -4152 ((-1067) $)) (-15 -1982 ($ (-1135) (-1067)))))) (T -934)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-934)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934)))) (-1982 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-934))))) +(-13 (-591 (-832)) (-10 -8 (-15 -2464 ((-1135) $)) (-15 -4152 ((-1067) $)) (-15 -1982 ($ (-1135) (-1067))))) +((-3821 (((-112) $ $) NIL)) (-2259 (((-1065 (-1135)) $) 19)) (-3293 (((-112) $) 26)) (-2995 (((-1135) $) 27)) (-3526 (((-112) $) 24)) (-3411 ((|#1| $) 25)) (-3926 (((-842 $ $) $) 34)) (-4025 (((-112) $) 33)) (-4197 (($ $ $) 12)) (-1272 (($ $) 29)) (-3356 (((-112) $) 28)) (-3998 (($ $) 10)) (-1917 (((-1118) $) NIL)) (-1892 (((-842 $ $) $) 36)) (-1979 (((-112) $) 35)) (-2426 (($ $ $) 13)) (-3979 (((-1082) $) NIL)) (-1707 (((-842 $ $) $) 38)) (-1799 (((-112) $) 37)) (-3646 (($ $ $) 14)) (-3834 (((-832) $) 40) (($ |#1|) 7) (($ (-1135)) 9)) (-4126 (((-842 $ $) $) 32)) (-4222 (((-112) $) 30)) (-1806 (($ $ $) 11)) (-2371 (((-112) $ $) NIL))) +(((-935 |#1|) (-13 (-936) (-10 -8 (-15 -3834 ($ |#1|)) (-15 -3834 ($ (-1135))) (-15 -2259 ((-1065 (-1135)) $)) (-15 -3526 ((-112) $)) (-15 -3411 (|#1| $)) (-15 -3293 ((-112) $)) (-15 -2995 ((-1135) $)) (-15 -3356 ((-112) $)) (-15 -1272 ($ $)) (-15 -4222 ((-112) $)) (-15 -4126 ((-842 $ $) $)) (-15 -4025 ((-112) $)) (-15 -3926 ((-842 $ $) $)) (-15 -1979 ((-112) $)) (-15 -1892 ((-842 $ $) $)) (-15 -1799 ((-112) $)) (-15 -1707 ((-842 $ $) $)))) (-936)) (T -935)) +((-3834 (*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1065 (-1135))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3411 (*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1272 (*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(-13 (-936) (-10 -8 (-15 -3834 ($ |#1|)) (-15 -3834 ($ (-1135))) (-15 -2259 ((-1065 (-1135)) $)) (-15 -3526 ((-112) $)) (-15 -3411 (|#1| $)) (-15 -3293 ((-112) $)) (-15 -2995 ((-1135) $)) (-15 -3356 ((-112) $)) (-15 -1272 ($ $)) (-15 -4222 ((-112) $)) (-15 -4126 ((-842 $ $) $)) (-15 -4025 ((-112) $)) (-15 -3926 ((-842 $ $) $)) (-15 -1979 ((-112) $)) (-15 -1892 ((-842 $ $) $)) (-15 -1799 ((-112) $)) (-15 -1707 ((-842 $ $) $)))) +((-3821 (((-112) $ $) 7)) (-4197 (($ $ $) 15)) (-3998 (($ $) 17)) (-1917 (((-1118) $) 9)) (-2426 (($ $ $) 14)) (-3979 (((-1082) $) 10)) (-3646 (($ $ $) 13)) (-3834 (((-832) $) 11)) (-1806 (($ $ $) 16)) (-2371 (((-112) $ $) 6))) (((-936) (-138)) (T -936)) -((-2954 (*1 *1 *1 *1) (-4 *1 (-936))) (-2202 (*1 *1 *1 *1) (-4 *1 (-936))) (-4168 (*1 *1 *1 *1) (-4 *1 (-936))) (-1723 (*1 *1 *1 *1) (-4 *1 (-936))) (-3958 (*1 *1 *1) (-4 *1 (-936)))) -(-13 (-10 -8 (-15 -3958 ($ $)) (-15 -1723 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -2202 ($ $ $)) (-15 -2954 ($ $ $)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2965 (($ $ $) 43)) (-2913 (($ $ $) 44)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3091 ((|#1| $) 45)) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3998 (*1 *1 *1) (-4 *1 (-936))) (-1806 (*1 *1 *1 *1) (-4 *1 (-936))) (-4197 (*1 *1 *1 *1) (-4 *1 (-936))) (-2426 (*1 *1 *1 *1) (-4 *1 (-936))) (-3646 (*1 *1 *1 *1) (-4 *1 (-936)))) +(-13 (-1063) (-10 -8 (-15 -3998 ($ $)) (-15 -1806 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -2426 ($ $ $)) (-15 -3646 ($ $ $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3756 (($ $ $) 43)) (-1294 (($ $ $) 44)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3563 ((|#1| $) 45)) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-937 |#1|) (-138) (-821)) (T -937)) -((-3091 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-2965 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4327) (-15 -3091 (|t#1| $)) (-15 -2913 ($ $ $)) (-15 -2965 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3097 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|) 85)) (-1548 ((|#2| |#2| |#2|) 83)) (-3109 (((-2 (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|) 87)) (-3120 (((-2 (|:| |coef1| |#2|) (|:| -3587 |#2|)) |#2| |#2|) 89)) (-3196 (((-2 (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|) 107 (|has| |#1| (-443)))) (-3280 (((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 46)) (-2987 (((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 64)) (-2998 (((-2 (|:| |coef1| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 66)) (-3083 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3028 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 71)) (-3140 (((-2 (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|) 97)) (-3061 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 74)) (-3161 (((-619 (-745)) |#2| |#2|) 82)) (-3256 ((|#1| |#2| |#2|) 42)) (-3185 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|) 105 (|has| |#1| (-443)))) (-3173 ((|#1| |#2| |#2|) 103 (|has| |#1| (-443)))) (-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 44)) (-2977 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|) 63)) (-1557 ((|#1| |#2| |#2|) 61)) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|) 35)) (-3244 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3072 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3353 ((|#2| |#2| |#2|) 75)) (-3018 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 69)) (-3008 ((|#2| |#2| |#2| (-745)) 67)) (-3587 ((|#2| |#2| |#2|) 111 (|has| |#1| (-443)))) (-1900 (((-1218 |#2|) (-1218 |#2|) |#1|) 21)) (-3209 (((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|) 39)) (-3130 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|) 95)) (-1566 ((|#1| |#2|) 92)) (-3051 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 73)) (-3039 ((|#2| |#2| |#2| (-745)) 72)) (-3150 (((-619 |#2|) |#2| |#2|) 80)) (-3234 ((|#2| |#2| |#1| |#1| (-745)) 50)) (-3223 ((|#1| |#1| |#1| (-745)) 49)) (* (((-1218 |#2|) |#1| (-1218 |#2|)) 16))) -(((-938 |#1| |#2|) (-10 -7 (-15 -1557 (|#1| |#2| |#2|)) (-15 -2977 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3008 (|#2| |#2| |#2| (-745))) (-15 -3018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3028 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3039 (|#2| |#2| |#2| (-745))) (-15 -3051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3061 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3353 (|#2| |#2| |#2|)) (-15 -3072 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3083 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1548 (|#2| |#2| |#2|)) (-15 -3097 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3109 ((-2 (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3120 ((-2 (|:| |coef1| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -1566 (|#1| |#2|)) (-15 -3130 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3140 ((-2 (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3150 ((-619 |#2|) |#2| |#2|)) (-15 -3161 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-443)) (PROGN (-15 -3173 (|#1| |#2| |#2|)) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3587 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1218 |#2|) |#1| (-1218 |#2|))) (-15 -1900 ((-1218 |#2|) (-1218 |#2|) |#1|)) (-15 -1519 ((-2 (|:| -1489 |#1|) (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3223 (|#1| |#1| |#1| (-745))) (-15 -3234 (|#2| |#2| |#1| |#1| (-745))) (-15 -3244 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3256 (|#1| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|))) (-540) (-1194 |#1|)) (T -938)) -((-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-3244 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3234 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3223 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *2 (-540)) (-5 *1 (-938 *2 *4)) (-4 *4 (-1194 *2)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1519 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -1489 *4) (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1900 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) (-5 *1 (-938 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) (-5 *1 (-938 *3 *4)))) (-3587 (*1 *2 *2 *2) (-12 (-4 *3 (-443)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3196 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3173 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3185 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3173 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3173 (*1 *2 *3 *3) (-12 (-4 *2 (-540)) (-4 *2 (-443)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3150 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3140 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1566 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3130 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1566 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1566 (*1 *2 *3) (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-3120 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3587 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3109 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3587 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3097 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3587 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1548 (*1 *2 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3072 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3353 (*1 *2 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-3061 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3051 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3039 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1194 *4)))) (-3028 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3018 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3008 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1194 *4)))) (-2998 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2987 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2977 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1557 (*1 *2 *3 *3) (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2))))) -(-10 -7 (-15 -1557 (|#1| |#2| |#2|)) (-15 -2977 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2987 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3008 (|#2| |#2| |#2| (-745))) (-15 -3018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3028 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3039 (|#2| |#2| |#2| (-745))) (-15 -3051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3061 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3353 (|#2| |#2| |#2|)) (-15 -3072 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3083 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1548 (|#2| |#2| |#2|)) (-15 -3097 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3109 ((-2 (|:| |coef2| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -3120 ((-2 (|:| |coef1| |#2|) (|:| -3587 |#2|)) |#2| |#2|)) (-15 -1566 (|#1| |#2|)) (-15 -3130 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3140 ((-2 (|:| |coef2| |#2|) (|:| -1566 |#1|)) |#2|)) (-15 -3150 ((-619 |#2|) |#2| |#2|)) (-15 -3161 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-443)) (PROGN (-15 -3173 (|#1| |#2| |#2|)) (-15 -3185 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| -3173 |#1|)) |#2| |#2|)) (-15 -3587 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1218 |#2|) |#1| (-1218 |#2|))) (-15 -1900 ((-1218 |#2|) (-1218 |#2|) |#1|)) (-15 -1519 ((-2 (|:| -1489 |#1|) (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) |#2| |#2|)) (-15 -3223 (|#1| |#1| |#1| (-745))) (-15 -3234 (|#2| |#2| |#1| |#1| (-745))) (-15 -3244 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3256 (|#1| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef2| |#2|) (|:| -1557 |#1|)) |#2| |#2|))) -((-3730 (((-112) $ $) NIL)) (-1949 (((-1171) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-939) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $))))) (T -939)) -((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-939)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-939))))) -(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)) (-15 -1949 ((-1171) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) 27)) (-3030 (($) NIL T CONST)) (-3304 (((-619 (-619 (-548))) (-619 (-548))) 29)) (-3291 (((-548) $) 45)) (-3317 (($ (-619 (-548))) 17)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2591 (((-619 (-548)) $) 12)) (-2128 (($ $) 32)) (-3743 (((-832) $) 43) (((-619 (-548)) $) 10)) (-3107 (($) 7 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 19)) (-2290 (($ $ $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) 25))) -(((-940) (-13 (-769) (-593 (-619 (-548))) (-10 -8 (-15 -3317 ($ (-619 (-548)))) (-15 -3304 ((-619 (-619 (-548))) (-619 (-548)))) (-15 -3291 ((-548) $)) (-15 -2128 ($ $)) (-15 -3743 ((-619 (-548)) $))))) (T -940)) -((-3317 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940)))) (-3304 (*1 *2 *3) (-12 (-5 *2 (-619 (-619 (-548)))) (-5 *1 (-940)) (-5 *3 (-619 (-548))))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-940)))) (-2128 (*1 *1 *1) (-5 *1 (-940))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940))))) -(-13 (-769) (-593 (-619 (-548))) (-10 -8 (-15 -3317 ($ (-619 (-548)))) (-15 -3304 ((-619 (-619 (-548))) (-619 (-548)))) (-15 -3291 ((-548) $)) (-15 -2128 ($ $)) (-15 -3743 ((-619 (-548)) $)))) -((-2309 (($ $ |#2|) 30)) (-2299 (($ $) 22) (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-399 (-548)) $) 26) (($ $ (-399 (-548))) 28))) -(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2309 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-942 |#2| |#3| |#4|) (-1016) (-766) (-821)) (T -941)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-399 (-548)))) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 -2309 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#3|) $) 72)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3345 (((-112) $) 71)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-619 |#3|) (-619 |#2|)) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2512 ((|#2| $) 62)) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-3563 (*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4328) (-15 -3563 (|t#1| $)) (-15 -1294 ($ $ $)) (-15 -3756 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2715 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3715 |#2|)) |#2| |#2|) 85)) (-1808 ((|#2| |#2| |#2|) 83)) (-1495 (((-2 (|:| |coef2| |#2|) (|:| -3715 |#2|)) |#2| |#2|) 87)) (-1620 (((-2 (|:| |coef1| |#2|) (|:| -3715 |#2|)) |#2| |#2|) 89)) (-2348 (((-2 (|:| |coef2| |#2|) (|:| -2092 |#1|)) |#2| |#2|) 107 (|has| |#1| (-442)))) (-1846 (((-2 (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|) 46)) (-2834 (((-2 (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|) 64)) (-2934 (((-2 (|:| |coef1| |#2|) (|:| -3772 |#1|)) |#2| |#2|) 66)) (-2619 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3200 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 71)) (-1855 (((-2 (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|) 97)) (-2381 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 74)) (-1962 (((-619 (-745)) |#2| |#2|) 82)) (-1585 ((|#1| |#2| |#2|) 42)) (-2214 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2092 |#1|)) |#2| |#2|) 105 (|has| |#1| (-442)))) (-2092 ((|#1| |#2| |#2|) 103 (|has| |#1| (-442)))) (-1716 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|) 44)) (-3858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|) 63)) (-3772 ((|#1| |#2| |#2|) 61)) (-1484 (((-2 (|:| -1557 |#1|) (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2|) 35)) (-1459 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2505 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-4258 ((|#2| |#2| |#2|) 75)) (-3103 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 69)) (-3014 ((|#2| |#2| |#2| (-745)) 67)) (-3715 ((|#2| |#2| |#2|) 111 (|has| |#1| (-442)))) (-2025 (((-1218 |#2|) (-1218 |#2|) |#1|) 21)) (-2468 (((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2|) 39)) (-1737 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|) 95)) (-3846 ((|#1| |#2|) 92)) (-2253 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745)) 73)) (-2137 ((|#2| |#2| |#2| (-745)) 72)) (-1960 (((-619 |#2|) |#2| |#2|) 80)) (-1350 ((|#2| |#2| |#1| |#1| (-745)) 50)) (-2588 ((|#1| |#1| |#1| (-745)) 49)) (* (((-1218 |#2|) |#1| (-1218 |#2|)) 16))) +(((-938 |#1| |#2|) (-10 -7 (-15 -3772 (|#1| |#2| |#2|)) (-15 -3858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -2834 ((-2 (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -2934 ((-2 (|:| |coef1| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -3014 (|#2| |#2| |#2| (-745))) (-15 -3103 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3200 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -2137 (|#2| |#2| |#2| (-745))) (-15 -2253 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -2381 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -4258 (|#2| |#2| |#2|)) (-15 -2505 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2619 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1808 (|#2| |#2| |#2|)) (-15 -2715 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3715 |#2|)) |#2| |#2|)) (-15 -1495 ((-2 (|:| |coef2| |#2|) (|:| -3715 |#2|)) |#2| |#2|)) (-15 -1620 ((-2 (|:| |coef1| |#2|) (|:| -3715 |#2|)) |#2| |#2|)) (-15 -3846 (|#1| |#2|)) (-15 -1737 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -1855 ((-2 (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -1960 ((-619 |#2|) |#2| |#2|)) (-15 -1962 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-442)) (PROGN (-15 -2092 (|#1| |#2| |#2|)) (-15 -2214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2092 |#1|)) |#2| |#2|)) (-15 -2348 ((-2 (|:| |coef2| |#2|) (|:| -2092 |#1|)) |#2| |#2|)) (-15 -3715 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1218 |#2|) |#1| (-1218 |#2|))) (-15 -2025 ((-1218 |#2|) (-1218 |#2|) |#1|)) (-15 -1484 ((-2 (|:| -1557 |#1|) (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2|)) (-15 -2468 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2|)) (-15 -2588 (|#1| |#1| |#1| (-745))) (-15 -1350 (|#2| |#2| |#1| |#1| (-745))) (-15 -1459 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1585 (|#1| |#2| |#2|)) (-15 -1716 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -1846 ((-2 (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|))) (-539) (-1194 |#1|)) (T -938)) +((-1846 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3772 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1716 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3772 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1585 (*1 *2 *3 *3) (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-1459 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-1350 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-2588 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *2 (-539)) (-5 *1 (-938 *2 *4)) (-4 *4 (-1194 *2)))) (-2468 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1484 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -1557 *4) (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-539)) (-5 *1 (-938 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-539)) (-5 *1 (-938 *3 *4)))) (-3715 (*1 *2 *2 *2) (-12 (-4 *3 (-442)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-2348 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2092 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2214 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2092 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2092 (*1 *2 *3 *3) (-12 (-4 *2 (-539)) (-4 *2 (-442)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-1962 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1960 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1855 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3846 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1737 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3846 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3846 (*1 *2 *3) (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) (-1620 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3715 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1495 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3715 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2715 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3715 *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-1808 (*1 *2 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-2619 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2505 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-4258 (*1 *2 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) (-2381 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-2253 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-2137 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1194 *4)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3103 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5)))) (-3014 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2)) (-4 *2 (-1194 *4)))) (-2934 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3772 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3772 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3858 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3772 *4))) (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) (-3772 (*1 *2 *3 *3) (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2))))) +(-10 -7 (-15 -3772 (|#1| |#2| |#2|)) (-15 -3858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -2834 ((-2 (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -2934 ((-2 (|:| |coef1| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -3014 (|#2| |#2| |#2| (-745))) (-15 -3103 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -3200 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -2137 (|#2| |#2| |#2| (-745))) (-15 -2253 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -2381 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-745))) (-15 -4258 (|#2| |#2| |#2|)) (-15 -2505 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2619 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1808 (|#2| |#2| |#2|)) (-15 -2715 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3715 |#2|)) |#2| |#2|)) (-15 -1495 ((-2 (|:| |coef2| |#2|) (|:| -3715 |#2|)) |#2| |#2|)) (-15 -1620 ((-2 (|:| |coef1| |#2|) (|:| -3715 |#2|)) |#2| |#2|)) (-15 -3846 (|#1| |#2|)) (-15 -1737 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -1855 ((-2 (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -1960 ((-619 |#2|) |#2| |#2|)) (-15 -1962 ((-619 (-745)) |#2| |#2|)) (IF (|has| |#1| (-442)) (PROGN (-15 -2092 (|#1| |#2| |#2|)) (-15 -2214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2092 |#1|)) |#2| |#2|)) (-15 -2348 ((-2 (|:| |coef2| |#2|) (|:| -2092 |#1|)) |#2| |#2|)) (-15 -3715 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1218 |#2|) |#1| (-1218 |#2|))) (-15 -2025 ((-1218 |#2|) (-1218 |#2|) |#1|)) (-15 -1484 ((-2 (|:| -1557 |#1|) (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2|)) (-15 -2468 ((-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) |#2| |#2|)) (-15 -2588 (|#1| |#1| |#1| (-745))) (-15 -1350 (|#2| |#2| |#1| |#1| (-745))) (-15 -1459 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1585 (|#1| |#2| |#2|)) (-15 -1716 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|)) (-15 -1846 ((-2 (|:| |coef2| |#2|) (|:| -3772 |#1|)) |#2| |#2|))) +((-3821 (((-112) $ $) NIL)) (-2084 (((-1171) $) 12)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3943 (((-1140) $) 9)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-939) (-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $)) (-15 -2084 ((-1171) $))))) (T -939)) +((-3943 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-939)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-939))))) +(-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $)) (-15 -2084 ((-1171) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) 27)) (-3219 (($) NIL T CONST)) (-3889 (((-619 (-619 (-547))) (-619 (-547))) 29)) (-1943 (((-547) $) 45)) (-3989 (($ (-619 (-547))) 17)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2829 (((-619 (-547)) $) 12)) (-2444 (($ $) 32)) (-3834 (((-832) $) 43) (((-619 (-547)) $) 10)) (-3267 (($) 7 T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 20)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 19)) (-2470 (($ $ $) 21)) (* (($ (-890) $) NIL) (($ (-745) $) 25))) +(((-940) (-13 (-769) (-592 (-619 (-547))) (-10 -8 (-15 -3989 ($ (-619 (-547)))) (-15 -3889 ((-619 (-619 (-547))) (-619 (-547)))) (-15 -1943 ((-547) $)) (-15 -2444 ($ $)) (-15 -3834 ((-619 (-547)) $))))) (T -940)) +((-3989 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940)))) (-3889 (*1 *2 *3) (-12 (-5 *2 (-619 (-619 (-547)))) (-5 *1 (-940)) (-5 *3 (-619 (-547))))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-940)))) (-2444 (*1 *1 *1) (-5 *1 (-940))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940))))) +(-13 (-769) (-592 (-619 (-547))) (-10 -8 (-15 -3989 ($ (-619 (-547)))) (-15 -3889 ((-619 (-619 (-547))) (-619 (-547)))) (-15 -1943 ((-547) $)) (-15 -2444 ($ $)) (-15 -3834 ((-619 (-547)) $)))) +((-2497 (($ $ |#2|) 30)) (-2484 (($ $) 22) (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-398 (-547)) $) 26) (($ $ (-398 (-547))) 28))) +(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2497 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) (-942 |#2| |#3| |#4|) (-1016) (-766) (-821)) (T -941)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-398 (-547)))) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 -2497 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 * (|#1| (-890) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 |#3|) $) 72)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-4211 (((-112) $) 71)) (-4114 (((-112) $) 30)) (-2187 (((-112) $) 60)) (-2229 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-619 |#3|) (-619 |#2|)) 73)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-1618 ((|#2| $) 62)) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-3338 ((|#1| $ |#2|) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-942 |#1| |#2| |#3|) (-138) (-1016) (-766) (-821)) (T -942)) -((-2197 (*1 *2 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-2185 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *2 (-766)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766)) (-4 *2 (-821)))) (-2024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 *5)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-766)) (-4 *6 (-821)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2024 ($ $ |t#3| |t#2|)) (-15 -2024 ($ $ (-619 |t#3|) (-619 |t#2|))) (-15 -2185 ($ $)) (-15 -2197 (|t#1| $)) (-15 -2512 (|t#2| $)) (-15 -2049 ((-619 |t#3|) $)) (-15 -3345 ((-112) $)) (-15 -3330 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-282) |has| |#1| (-540)) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3948 (((-1058 (-218)) $) 8)) (-3934 (((-1058 (-218)) $) 9)) (-3921 (((-1058 (-218)) $) 10)) (-3360 (((-619 (-619 (-912 (-218)))) $) 11)) (-3743 (((-832) $) 6))) +((-2027 (*1 *2 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-2013 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *2 (-766)))) (-2229 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766)) (-4 *2 (-821)))) (-2229 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 *5)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-766)) (-4 *6 (-821)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-619 *5)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) (-4 *5 (-821)) (-5 *2 (-112)))) (-4105 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) (-4 *4 (-821))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2229 ($ $ |t#3| |t#2|)) (-15 -2229 ($ $ (-619 |t#3|) (-619 |t#2|))) (-15 -2013 ($ $)) (-15 -2027 (|t#1| $)) (-15 -1618 (|t#2| $)) (-15 -2259 ((-619 |t#3|) $)) (-15 -4211 ((-112) $)) (-15 -4105 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-281) |has| |#1| (-539)) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-1840 (((-1058 (-217)) $) 8)) (-1827 (((-1058 (-217)) $) 9)) (-1816 (((-1058 (-217)) $) 10)) (-1259 (((-619 (-619 (-912 (-217)))) $) 11)) (-3834 (((-832) $) 6))) (((-943) (-138)) (T -943)) -((-3360 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-218))))))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218))))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218))))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) -(-13 (-592 (-832)) (-10 -8 (-15 -3360 ((-619 (-619 (-912 (-218)))) $)) (-15 -3921 ((-1058 (-218)) $)) (-15 -3934 ((-1058 (-218)) $)) (-15 -3948 ((-1058 (-218)) $)))) -(((-592 (-832)) . T)) -((-2049 (((-619 |#4|) $) 23)) (-2289 (((-112) $) 48)) (-3376 (((-112) $) 47)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#4|) 36)) (-2251 (((-112) $) 49)) (-2271 (((-112) $ $) 55)) (-2261 (((-112) $ $) 58)) (-2280 (((-112) $) 53)) (-2213 (((-619 |#5|) (-619 |#5|) $) 90)) (-2223 (((-619 |#5|) (-619 |#5|) $) 87)) (-2233 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2338 (((-619 |#4|) $) 27)) (-2329 (((-112) |#4| $) 30)) (-2240 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2298 (($ $ |#4|) 33)) (-2319 (($ $ |#4|) 32)) (-2308 (($ $ |#4|) 34)) (-2214 (((-112) $ $) 40))) -(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3376 ((-112) |#1|)) (-15 -2213 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2223 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2233 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2240 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2251 ((-112) |#1|)) (-15 -2261 ((-112) |#1| |#1|)) (-15 -2271 ((-112) |#1| |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -2289 ((-112) |#1|)) (-15 -2490 ((-2 (|:| |under| |#1|) (|:| -3887 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2308 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -2329 ((-112) |#4| |#1|)) (-15 -2338 ((-619 |#4|) |#1|)) (-15 -2049 ((-619 |#4|) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-945 |#2| |#3| |#4| |#5|) (-1016) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -944)) -NIL -(-10 -8 (-15 -3376 ((-112) |#1|)) (-15 -2213 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2223 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -2233 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2240 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2251 ((-112) |#1|)) (-15 -2261 ((-112) |#1| |#1|)) (-15 -2271 ((-112) |#1| |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -2289 ((-112) |#1|)) (-15 -2490 ((-2 (|:| |under| |#1|) (|:| -3887 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2308 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -2329 ((-112) |#4| |#1|)) (-15 -2338 ((-619 |#4|) |#1|)) (-15 -2049 ((-619 |#4|) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327)))) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327)))) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-3932 (((-1082) $) 10)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) +((-1259 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-217))))))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217))))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217)))))) +(-13 (-591 (-832)) (-10 -8 (-15 -1259 ((-619 (-619 (-912 (-217)))) $)) (-15 -1816 ((-1058 (-217)) $)) (-15 -1827 ((-1058 (-217)) $)) (-15 -1840 ((-1058 (-217)) $)))) +(((-591 (-832)) . T)) +((-2259 (((-619 |#4|) $) 23)) (-4286 (((-112) $) 48)) (-3312 (((-112) $) 47)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#4|) 36)) (-3990 (((-112) $) 49)) (-4154 (((-112) $ $) 55)) (-4075 (((-112) $ $) 58)) (-4212 (((-112) $) 53)) (-1833 (((-619 |#5|) (-619 |#5|) $) 90)) (-1922 (((-619 |#5|) (-619 |#5|) $) 87)) (-3856 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3623 (((-619 |#4|) $) 27)) (-3523 (((-112) |#4| $) 30)) (-3906 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3228 (($ $ |#4|) 33)) (-3429 (($ $ |#4|) 32)) (-3324 (($ $ |#4|) 34)) (-2371 (((-112) $ $) 40))) +(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3312 ((-112) |#1|)) (-15 -1833 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -1922 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -3856 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3906 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3990 ((-112) |#1|)) (-15 -4075 ((-112) |#1| |#1|)) (-15 -4154 ((-112) |#1| |#1|)) (-15 -4212 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -3180 ((-2 (|:| |under| |#1|) (|:| -1435 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3228 (|#1| |#1| |#4|)) (-15 -3324 (|#1| |#1| |#4|)) (-15 -3429 (|#1| |#1| |#4|)) (-15 -3523 ((-112) |#4| |#1|)) (-15 -3623 ((-619 |#4|) |#1|)) (-15 -2259 ((-619 |#4|) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-945 |#2| |#3| |#4| |#5|) (-1016) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -944)) +NIL +(-10 -8 (-15 -3312 ((-112) |#1|)) (-15 -1833 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -1922 ((-619 |#5|) (-619 |#5|) |#1|)) (-15 -3856 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3906 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3990 ((-112) |#1|)) (-15 -4075 ((-112) |#1| |#1|)) (-15 -4154 ((-112) |#1| |#1|)) (-15 -4212 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -3180 ((-2 (|:| |under| |#1|) (|:| -1435 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3228 (|#1| |#1| |#4|)) (-15 -3324 (|#1| |#1| |#4|)) (-15 -3429 (|#1| |#1| |#4|)) (-15 -3523 ((-112) |#4| |#1|)) (-15 -3623 ((-619 |#4|) |#1|)) (-15 -2259 ((-619 |#4|) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-2259 (((-619 |#3|) $) 33)) (-4286 (((-112) $) 26)) (-3312 (((-112) $) 17 (|has| |#1| (-539)))) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) 27)) (-2826 (((-112) $ (-745)) 44)) (-1476 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4328)))) (-3219 (($) 45 T CONST)) (-3990 (((-112) $) 22 (|has| |#1| (-539)))) (-4154 (((-112) $ $) 24 (|has| |#1| (-539)))) (-4075 (((-112) $ $) 23 (|has| |#1| (-539)))) (-4212 (((-112) $) 25 (|has| |#1| (-539)))) (-1833 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 36)) (-2643 (($ (-619 |#4|)) 35)) (-3664 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4328)))) (-2973 (((-619 |#4|) $) 52 (|has| $ (-6 -4328)))) (-1397 ((|#3| $) 34)) (-4161 (((-112) $ (-745)) 43)) (-3666 (((-619 |#4|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 47)) (-3623 (((-619 |#3|) $) 32)) (-3523 (((-112) |#3| $) 31)) (-2024 (((-112) $ (-745)) 42)) (-1917 (((-1118) $) 9)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-3979 (((-1082) $) 10)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2462 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) 38)) (-3169 (((-112) $) 41)) (-4011 (($) 40)) (-3987 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4328)))) (-2265 (($ $) 39)) (-2829 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 60)) (-3228 (($ $ |#3|) 28)) (-3429 (($ $ |#3|) 30)) (-3324 (($ $ |#3|) 29)) (-3834 (((-832) $) 11) (((-619 |#4|) $) 37)) (-2583 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 46 (|has| $ (-6 -4328))))) (((-945 |#1| |#2| |#3| |#4|) (-138) (-1016) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -945)) -((-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2329 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-2319 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-2308 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-2298 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-2490 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3887 *1) (|:| |upper| *1))) (-4 *1 (-945 *4 *5 *3 *6)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2271 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2261 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112)))) (-2240 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2233 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2223 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)))) (-2213 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-5 *2 (-112))))) -(-13 (-1063) (-149 |t#4|) (-592 (-619 |t#4|)) (-10 -8 (-6 -4327) (-15 -2441 ((-3 $ "failed") (-619 |t#4|))) (-15 -2375 ($ (-619 |t#4|))) (-15 -3239 (|t#3| $)) (-15 -2049 ((-619 |t#3|) $)) (-15 -2338 ((-619 |t#3|) $)) (-15 -2329 ((-112) |t#3| $)) (-15 -2319 ($ $ |t#3|)) (-15 -2308 ($ $ |t#3|)) (-15 -2298 ($ $ |t#3|)) (-15 -2490 ((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |t#3|)) (-15 -2289 ((-112) $)) (IF (|has| |t#1| (-540)) (PROGN (-15 -2280 ((-112) $)) (-15 -2271 ((-112) $ $)) (-15 -2261 ((-112) $ $)) (-15 -2251 ((-112) $)) (-15 -2240 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2233 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2223 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -2213 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -3376 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-1063) . T) ((-1172) . T)) -((-2358 (((-619 |#4|) |#4| |#4|) 118)) (-2599 (((-619 |#4|) (-619 |#4|) (-112)) 107 (|has| |#1| (-443))) (((-619 |#4|) (-619 |#4|)) 108 (|has| |#1| (-443)))) (-2463 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 35)) (-2451 (((-112) |#4|) 34)) (-2589 (((-619 |#4|) |#4|) 103 (|has| |#1| (-443)))) (-2410 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|)) 20)) (-2419 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 22)) (-2429 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 23)) (-2550 (((-3 (-2 (|:| |bas| (-467 |#1| |#2| |#3| |#4|)) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|)) 73)) (-2570 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2579 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2347 (((-619 |#4|) (-619 |#4|)) 110)) (-2515 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112)) 48) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 50)) (-2525 ((|#4| |#4| (-619 |#4|)) 49)) (-2609 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 114 (|has| |#1| (-443)))) (-2628 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 117 (|has| |#1| (-443)))) (-2619 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 116 (|has| |#1| (-443)))) (-2367 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|))) 87) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 89) (((-619 |#4|) (-619 |#4|) |#4|) 121) (((-619 |#4|) |#4| |#4|) 119) (((-619 |#4|) (-619 |#4|)) 88)) (-2659 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-2438 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 41)) (-2399 (((-112) (-619 |#4|)) 62)) (-2388 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 53)) (-2484 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 29)) (-2474 (((-112) |#4|) 28)) (-2649 (((-619 |#4|) (-619 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-2637 (((-619 |#4|) (-619 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-2537 (((-619 |#4|) (-619 |#4|)) 66)) (-2561 (((-619 |#4|) (-619 |#4|)) 79)) (-2377 (((-112) (-619 |#4|) (-619 |#4|)) 51)) (-2506 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 39)) (-2496 (((-112) |#4|) 36))) -(((-946 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) |#4| |#4|)) (-15 -2347 ((-619 |#4|) (-619 |#4|))) (-15 -2358 ((-619 |#4|) |#4| |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -2377 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2388 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2399 ((-112) (-619 |#4|))) (-15 -2410 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -2419 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2429 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2438 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2451 ((-112) |#4|)) (-15 -2463 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2474 ((-112) |#4|)) (-15 -2484 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2506 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2525 (|#4| |#4| (-619 |#4|))) (-15 -2537 ((-619 |#4|) (-619 |#4|))) (-15 -2550 ((-3 (-2 (|:| |bas| (-467 |#1| |#2| |#3| |#4|)) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -2561 ((-619 |#4|) (-619 |#4|))) (-15 -2570 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2579 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2589 ((-619 |#4|) |#4|)) (-15 -2599 ((-619 |#4|) (-619 |#4|))) (-15 -2599 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -2609 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2619 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2628 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (PROGN (-15 -2637 ((-619 |#4|) (-619 |#4|))) (-15 -2649 ((-619 |#4|) (-619 |#4|))) (-15 -2659 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) (-540) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -946)) -((-2659 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2637 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2628 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2619 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2609 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2599 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2589 (*1 *2 *3) (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2579 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8)))) (-2570 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2550 (*1 *2 *3) (|partial| -12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-467 *4 *5 *6 *7)) (|:| -2088 (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2)))) (-2515 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2515 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2484 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2474 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2451 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2438 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8)))) (-2377 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2367 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2367 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) (-2358 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2367 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) -(-10 -7 (-15 -2367 ((-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) |#4| |#4|)) (-15 -2347 ((-619 |#4|) (-619 |#4|))) (-15 -2358 ((-619 |#4|) |#4| |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2367 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -2377 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2388 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -2399 ((-112) (-619 |#4|))) (-15 -2410 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -2419 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2429 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2438 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2451 ((-112) |#4|)) (-15 -2463 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2474 ((-112) |#4|)) (-15 -2484 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2506 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2515 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -2525 (|#4| |#4| (-619 |#4|))) (-15 -2537 ((-619 |#4|) (-619 |#4|))) (-15 -2550 ((-3 (-2 (|:| |bas| (-467 |#1| |#2| |#3| |#4|)) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -2561 ((-619 |#4|) (-619 |#4|))) (-15 -2570 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2579 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2589 ((-619 |#4|) |#4|)) (-15 -2599 ((-619 |#4|) (-619 |#4|))) (-15 -2599 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -2609 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2619 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2628 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (PROGN (-15 -2637 ((-619 |#4|) (-619 |#4|))) (-15 -2649 ((-619 |#4|) (-619 |#4|))) (-15 -2659 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) -((-2670 (((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2688 (((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)) 36)) (-2678 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-947 |#1|) (-10 -7 (-15 -2670 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2678 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2688 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)))) (-355)) (T -947)) -((-2688 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5))))) (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)))) (-2678 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) (-5 *1 (-947 *5)))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-355)) (-5 *2 (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-663 *6))))) -(-10 -7 (-15 -2670 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2678 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2688 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)))) -((-2634 (((-410 |#4|) |#4|) 48))) -(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2634 ((-410 |#4|) |#4|))) (-821) (-767) (-443) (-918 |#3| |#2| |#1|)) (T -948)) -((-2634 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-443)) (-5 *2 (-410 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) -(-10 -7 (-15 -2634 ((-410 |#4|) |#4|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3320 (($ (-745)) 112 (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1733 (($ (-619 |#1|)) 118)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4007 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-4248 (((-112) $ (-745)) 10)) (-3198 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-1656 (($ $ (-619 |#1|)) 115)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-4029 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-3402 (((-890) $) 117)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-4018 (($ $ $) 104)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524)))) (($ (-619 |#1|)) 116)) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2299 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2290 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-548) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *1 (-945 *3 *4 *5 *6)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-3523 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-3429 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-3324 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-3228 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2)))) (-3180 (*1 *2 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1435 *1) (|:| |upper| *1))) (-4 *1 (-945 *4 *5 *3 *6)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-4154 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-4075 (*1 *2 *1 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112)))) (-3906 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3856 (*1 *2 *3 *1) (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1922 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)))) (-1833 (*1 *2 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-5 *2 (-112))))) +(-13 (-1063) (-149 |t#4|) (-591 (-619 |t#4|)) (-10 -8 (-6 -4328) (-15 -2698 ((-3 $ "failed") (-619 |t#4|))) (-15 -2643 ($ (-619 |t#4|))) (-15 -1397 (|t#3| $)) (-15 -2259 ((-619 |t#3|) $)) (-15 -3623 ((-619 |t#3|) $)) (-15 -3523 ((-112) |t#3| $)) (-15 -3429 ($ $ |t#3|)) (-15 -3324 ($ $ |t#3|)) (-15 -3228 ($ $ |t#3|)) (-15 -3180 ((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |t#3|)) (-15 -4286 ((-112) $)) (IF (|has| |t#1| (-539)) (PROGN (-15 -4212 ((-112) $)) (-15 -4154 ((-112) $ $)) (-15 -4075 ((-112) $ $)) (-15 -3990 ((-112) $)) (-15 -3906 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3856 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1922 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -1833 ((-619 |t#4|) (-619 |t#4|) $)) (-15 -3312 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-1063) . T) ((-1172) . T)) +((-2690 (((-619 |#4|) |#4| |#4|) 118)) (-4254 (((-619 |#4|) (-619 |#4|) (-112)) 107 (|has| |#1| (-442))) (((-619 |#4|) (-619 |#4|)) 108 (|has| |#1| (-442)))) (-2476 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 35)) (-2355 (((-112) |#4|) 34)) (-4178 (((-619 |#4|) |#4|) 103 (|has| |#1| (-442)))) (-3111 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|)) 20)) (-3198 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 22)) (-2111 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|)) 23)) (-1957 (((-3 (-2 (|:| |bas| (-466 |#1| |#2| |#3| |#4|)) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|)) 73)) (-3984 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-4079 (((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3718 (((-619 |#4|) (-619 |#4|)) 110)) (-1652 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112)) 48) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 50)) (-1757 ((|#4| |#4| (-619 |#4|)) 49)) (-1287 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 114 (|has| |#1| (-442)))) (-3396 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 117 (|has| |#1| (-442)))) (-3307 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 116 (|has| |#1| (-442)))) (-2774 (((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|))) 87) (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 89) (((-619 |#4|) (-619 |#4|) |#4|) 121) (((-619 |#4|) |#4| |#4|) 119) (((-619 |#4|) (-619 |#4|)) 88)) (-3704 (((-619 |#4|) (-619 |#4|) (-619 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-2220 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 41)) (-3031 (((-112) (-619 |#4|)) 62)) (-2942 (((-112) (-619 |#4|) (-619 (-619 |#4|))) 53)) (-2676 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 29)) (-2584 (((-112) |#4|) 28)) (-3599 (((-619 |#4|) (-619 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-3487 (((-619 |#4|) (-619 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-1864 (((-619 |#4|) (-619 |#4|)) 66)) (-3894 (((-619 |#4|) (-619 |#4|)) 79)) (-2859 (((-112) (-619 |#4|) (-619 |#4|)) 51)) (-1544 (((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|)) 39)) (-1426 (((-112) |#4|) 36))) +(((-946 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2774 ((-619 |#4|) (-619 |#4|))) (-15 -2774 ((-619 |#4|) |#4| |#4|)) (-15 -3718 ((-619 |#4|) (-619 |#4|))) (-15 -2690 ((-619 |#4|) |#4| |#4|)) (-15 -2774 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2774 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2774 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -2859 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2942 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3031 ((-112) (-619 |#4|))) (-15 -3111 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -3198 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2111 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2220 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2355 ((-112) |#4|)) (-15 -2476 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2584 ((-112) |#4|)) (-15 -2676 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1426 ((-112) |#4|)) (-15 -1544 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1652 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -1652 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -1757 (|#4| |#4| (-619 |#4|))) (-15 -1864 ((-619 |#4|) (-619 |#4|))) (-15 -1957 ((-3 (-2 (|:| |bas| (-466 |#1| |#2| |#3| |#4|)) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -3894 ((-619 |#4|) (-619 |#4|))) (-15 -3984 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4079 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-442)) (PROGN (-15 -4178 ((-619 |#4|) |#4|)) (-15 -4254 ((-619 |#4|) (-619 |#4|))) (-15 -4254 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -1287 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -3307 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -3396 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (PROGN (-15 -3487 ((-619 |#4|) (-619 |#4|))) (-15 -3599 ((-619 |#4|) (-619 |#4|))) (-15 -3704 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) (-539) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -946)) +((-3704 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-3307 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-1287 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-4254 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-4178 (*1 *2 *3) (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-4079 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8)))) (-3984 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-1957 (*1 *2 *3) (|partial| -12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-466 *4 *5 *6 *7)) (|:| -2303 (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-1757 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2)))) (-1652 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-1652 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-1426 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2676 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2584 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2355 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-3111 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8)))) (-2859 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2774 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7)))) (-2774 (*1 *2 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2774 (*1 *2 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) (-2690 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) (-2774 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) +(-10 -7 (-15 -2774 ((-619 |#4|) (-619 |#4|))) (-15 -2774 ((-619 |#4|) |#4| |#4|)) (-15 -3718 ((-619 |#4|) (-619 |#4|))) (-15 -2690 ((-619 |#4|) |#4| |#4|)) (-15 -2774 ((-619 |#4|) (-619 |#4|) |#4|)) (-15 -2774 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -2774 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-1 (-619 |#4|) (-619 |#4|)))) (-15 -2859 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2942 ((-112) (-619 |#4|) (-619 (-619 |#4|)))) (-15 -3031 ((-112) (-619 |#4|))) (-15 -3111 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-1 (-112) |#4|) (-619 |#4|))) (-15 -3198 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2111 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 (-1 (-112) |#4|)) (-619 |#4|))) (-15 -2220 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2355 ((-112) |#4|)) (-15 -2476 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -2584 ((-112) |#4|)) (-15 -2676 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1426 ((-112) |#4|)) (-15 -1544 ((-2 (|:| |goodPols| (-619 |#4|)) (|:| |badPols| (-619 |#4|))) (-619 |#4|))) (-15 -1652 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -1652 ((-619 |#4|) (-619 |#4|) (-619 |#4|) (-112))) (-15 -1757 (|#4| |#4| (-619 |#4|))) (-15 -1864 ((-619 |#4|) (-619 |#4|))) (-15 -1957 ((-3 (-2 (|:| |bas| (-466 |#1| |#2| |#3| |#4|)) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|))) (-15 -3894 ((-619 |#4|) (-619 |#4|))) (-15 -3984 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4079 ((-619 |#4|) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-442)) (PROGN (-15 -4178 ((-619 |#4|) |#4|)) (-15 -4254 ((-619 |#4|) (-619 |#4|))) (-15 -4254 ((-619 |#4|) (-619 |#4|) (-112))) (-15 -1287 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -3307 ((-619 |#4|) (-619 |#4|) (-619 |#4|))) (-15 -3396 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (PROGN (-15 -3487 ((-619 |#4|) (-619 |#4|))) (-15 -3599 ((-619 |#4|) (-619 |#4|))) (-15 -3704 ((-619 |#4|) (-619 |#4|) (-619 |#4|)))) |%noBranch|) |%noBranch|)) +((-3789 (((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2828 (((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)) 36)) (-2751 (((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-947 |#1|) (-10 -7 (-15 -3789 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2751 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2828 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)))) (-354)) (T -947)) +((-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5))))) (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)))) (-2751 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) (-5 *1 (-947 *5)))) (-3789 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-354)) (-5 *2 (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-663 *6))))) +(-10 -7 (-15 -3789 ((-2 (|:| R (-663 |#1|)) (|:| A (-663 |#1|)) (|:| |Ainv| (-663 |#1|))) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2751 ((-663 |#1|) (-663 |#1|) (-663 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2828 ((-619 (-2 (|:| C (-663 |#1|)) (|:| |g| (-1218 |#1|)))) (-663 |#1|) (-1218 |#1|)))) +((-3457 (((-409 |#4|) |#4|) 48))) +(((-948 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 ((-409 |#4|) |#4|))) (-821) (-767) (-442) (-918 |#3| |#2| |#1|)) (T -948)) +((-3457 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-442)) (-5 *2 (-409 *3)) (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(-10 -7 (-15 -3457 ((-409 |#4|) |#4|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3757 (($ (-745)) 112 (|has| |#1| (-23)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4329))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-2034 (($ $) 90 (|has| $ (-6 -4329)))) (-3048 (($ $) 100)) (-3664 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 51)) (-2867 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2782 (($ (-619 |#1|)) 118)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4042 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3732 (($ (-745) |#1|) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 87 (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 86 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1324 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-2024 (((-112) $ (-745)) 10)) (-4202 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 42 (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2418 (($ $ |#1|) 41 (|has| $ (-6 -4329)))) (-3558 (($ $ (-619 |#1|)) 115)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1185 (-547))) 63)) (-3453 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-3512 (((-890) $) 117)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3346 (($ $ $) 104)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 91 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| |#1| (-592 (-523)))) (($ (-619 |#1|)) 116)) (-3841 (($ (-619 |#1|)) 70)) (-1935 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2421 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2484 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2470 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-547) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-949 |#1|) (-138) (-1016)) (T -949)) -((-1733 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) (-1656 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016))))) -(-13 (-1216 |t#1|) (-10 -8 (-15 -1733 ($ (-619 |t#1|))) (-15 -3402 ((-890) $)) (-15 -2591 ($ (-619 |t#1|))) (-15 -4018 ($ $ $)) (-15 -1656 ($ $ (-619 |t#1|))))) -(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T) ((-1216 |#1|) . T)) -((-2540 (((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)) 17))) -(((-950 |#1| |#2|) (-10 -7 (-15 -2540 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) (-1016) (-1016)) (T -950)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-912 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-912 *6)) (-5 *1 (-950 *5 *6))))) -(-10 -7 (-15 -2540 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) -((-2713 ((|#1| (-912 |#1|)) 13)) (-2704 ((|#1| (-912 |#1|)) 12)) (-2697 ((|#1| (-912 |#1|)) 11)) (-2730 ((|#1| (-912 |#1|)) 15)) (-1646 ((|#1| (-912 |#1|)) 21)) (-2722 ((|#1| (-912 |#1|)) 14)) (-2738 ((|#1| (-912 |#1|)) 16)) (-2756 ((|#1| (-912 |#1|)) 20)) (-2747 ((|#1| (-912 |#1|)) 19))) -(((-951 |#1|) (-10 -7 (-15 -2697 (|#1| (-912 |#1|))) (-15 -2704 (|#1| (-912 |#1|))) (-15 -2713 (|#1| (-912 |#1|))) (-15 -2722 (|#1| (-912 |#1|))) (-15 -2730 (|#1| (-912 |#1|))) (-15 -2738 (|#1| (-912 |#1|))) (-15 -2747 (|#1| (-912 |#1|))) (-15 -2756 (|#1| (-912 |#1|))) (-15 -1646 (|#1| (-912 |#1|)))) (-1016)) (T -951)) -((-1646 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(-10 -7 (-15 -2697 (|#1| (-912 |#1|))) (-15 -2704 (|#1| (-912 |#1|))) (-15 -2713 (|#1| (-912 |#1|))) (-15 -2722 (|#1| (-912 |#1|))) (-15 -2730 (|#1| (-912 |#1|))) (-15 -2738 (|#1| (-912 |#1|))) (-15 -2747 (|#1| (-912 |#1|))) (-15 -2756 (|#1| (-912 |#1|))) (-15 -1646 (|#1| (-912 |#1|)))) -((-1798 (((-3 |#1| "failed") |#1|) 18)) (-1694 (((-3 |#1| "failed") |#1|) 6)) (-1780 (((-3 |#1| "failed") |#1|) 16)) (-1678 (((-3 |#1| "failed") |#1|) 4)) (-1819 (((-3 |#1| "failed") |#1|) 20)) (-1708 (((-3 |#1| "failed") |#1|) 8)) (-1654 (((-3 |#1| "failed") |#1| (-745)) 1)) (-1670 (((-3 |#1| "failed") |#1|) 3)) (-1663 (((-3 |#1| "failed") |#1|) 2)) (-1829 (((-3 |#1| "failed") |#1|) 21)) (-1717 (((-3 |#1| "failed") |#1|) 9)) (-1808 (((-3 |#1| "failed") |#1|) 19)) (-1700 (((-3 |#1| "failed") |#1|) 7)) (-1788 (((-3 |#1| "failed") |#1|) 17)) (-1686 (((-3 |#1| "failed") |#1|) 5)) (-1855 (((-3 |#1| "failed") |#1|) 24)) (-1746 (((-3 |#1| "failed") |#1|) 12)) (-1837 (((-3 |#1| "failed") |#1|) 22)) (-1726 (((-3 |#1| "failed") |#1|) 10)) (-1874 (((-3 |#1| "failed") |#1|) 26)) (-1764 (((-3 |#1| "failed") |#1|) 14)) (-1883 (((-3 |#1| "failed") |#1|) 27)) (-1772 (((-3 |#1| "failed") |#1|) 15)) (-1864 (((-3 |#1| "failed") |#1|) 25)) (-1755 (((-3 |#1| "failed") |#1|) 13)) (-1846 (((-3 |#1| "failed") |#1|) 23)) (-1736 (((-3 |#1| "failed") |#1|) 11))) +((-2782 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) (-3346 (*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) (-3558 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016))))) +(-13 (-1216 |t#1|) (-10 -8 (-15 -2782 ($ (-619 |t#1|))) (-15 -3512 ((-890) $)) (-15 -2829 ($ (-619 |t#1|))) (-15 -3346 ($ $ $)) (-15 -3558 ($ $ (-619 |t#1|))))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T) ((-1216 |#1|) . T)) +((-2781 (((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)) 17))) +(((-950 |#1| |#2|) (-10 -7 (-15 -2781 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) (-1016) (-1016)) (T -950)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-912 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-912 *6)) (-5 *1 (-950 *5 *6))))) +(-10 -7 (-15 -2781 ((-912 |#2|) (-1 |#2| |#1|) (-912 |#1|)))) +((-3036 ((|#1| (-912 |#1|)) 13)) (-2964 ((|#1| (-912 |#1|)) 12)) (-2905 ((|#1| (-912 |#1|)) 11)) (-3186 ((|#1| (-912 |#1|)) 15)) (-3449 ((|#1| (-912 |#1|)) 21)) (-3105 ((|#1| (-912 |#1|)) 14)) (-2068 ((|#1| (-912 |#1|)) 16)) (-2270 ((|#1| (-912 |#1|)) 20)) (-2168 ((|#1| (-912 |#1|)) 19))) +(((-951 |#1|) (-10 -7 (-15 -2905 (|#1| (-912 |#1|))) (-15 -2964 (|#1| (-912 |#1|))) (-15 -3036 (|#1| (-912 |#1|))) (-15 -3105 (|#1| (-912 |#1|))) (-15 -3186 (|#1| (-912 |#1|))) (-15 -2068 (|#1| (-912 |#1|))) (-15 -2168 (|#1| (-912 |#1|))) (-15 -2270 (|#1| (-912 |#1|))) (-15 -3449 (|#1| (-912 |#1|)))) (-1016)) (T -951)) +((-3449 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(-10 -7 (-15 -2905 (|#1| (-912 |#1|))) (-15 -2964 (|#1| (-912 |#1|))) (-15 -3036 (|#1| (-912 |#1|))) (-15 -3105 (|#1| (-912 |#1|))) (-15 -3186 (|#1| (-912 |#1|))) (-15 -2068 (|#1| (-912 |#1|))) (-15 -2168 (|#1| (-912 |#1|))) (-15 -2270 (|#1| (-912 |#1|))) (-15 -3449 (|#1| (-912 |#1|)))) +((-1285 (((-3 |#1| "failed") |#1|) 18)) (-2799 (((-3 |#1| "failed") |#1|) 6)) (-2437 (((-3 |#1| "failed") |#1|) 16)) (-2656 (((-3 |#1| "failed") |#1|) 4)) (-1491 (((-3 |#1| "failed") |#1|) 20)) (-2931 (((-3 |#1| "failed") |#1|) 8)) (-3533 (((-3 |#1| "failed") |#1| (-745)) 1)) (-3687 (((-3 |#1| "failed") |#1|) 3)) (-3622 (((-3 |#1| "failed") |#1|) 2)) (-1616 (((-3 |#1| "failed") |#1|) 21)) (-3000 (((-3 |#1| "failed") |#1|) 9)) (-1370 (((-3 |#1| "failed") |#1|) 19)) (-2858 (((-3 |#1| "failed") |#1|) 7)) (-2539 (((-3 |#1| "failed") |#1|) 17)) (-2726 (((-3 |#1| "failed") |#1|) 5)) (-1883 (((-3 |#1| "failed") |#1|) 24)) (-2032 (((-3 |#1| "failed") |#1|) 12)) (-1698 (((-3 |#1| "failed") |#1|) 22)) (-3074 (((-3 |#1| "failed") |#1|) 10)) (-3892 (((-3 |#1| "failed") |#1|) 26)) (-2234 (((-3 |#1| "failed") |#1|) 14)) (-3971 (((-3 |#1| "failed") |#1|) 27)) (-2341 (((-3 |#1| "failed") |#1|) 15)) (-3824 (((-3 |#1| "failed") |#1|) 25)) (-2134 (((-3 |#1| "failed") |#1|) 13)) (-1791 (((-3 |#1| "failed") |#1|) 23)) (-1937 (((-3 |#1| "failed") |#1|) 11))) (((-952 |#1|) (-138) (-1157)) (T -952)) -((-1883 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1874 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1864 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1855 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1846 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1837 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1829 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1819 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1808 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1798 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1788 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1780 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1772 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1764 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1755 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1746 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1736 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1726 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1717 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1708 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1700 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1694 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1686 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1678 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1670 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1663 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1654 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(-13 (-10 -7 (-15 -1654 ((-3 |t#1| "failed") |t#1| (-745))) (-15 -1663 ((-3 |t#1| "failed") |t#1|)) (-15 -1670 ((-3 |t#1| "failed") |t#1|)) (-15 -1678 ((-3 |t#1| "failed") |t#1|)) (-15 -1686 ((-3 |t#1| "failed") |t#1|)) (-15 -1694 ((-3 |t#1| "failed") |t#1|)) (-15 -1700 ((-3 |t#1| "failed") |t#1|)) (-15 -1708 ((-3 |t#1| "failed") |t#1|)) (-15 -1717 ((-3 |t#1| "failed") |t#1|)) (-15 -1726 ((-3 |t#1| "failed") |t#1|)) (-15 -1736 ((-3 |t#1| "failed") |t#1|)) (-15 -1746 ((-3 |t#1| "failed") |t#1|)) (-15 -1755 ((-3 |t#1| "failed") |t#1|)) (-15 -1764 ((-3 |t#1| "failed") |t#1|)) (-15 -1772 ((-3 |t#1| "failed") |t#1|)) (-15 -1780 ((-3 |t#1| "failed") |t#1|)) (-15 -1788 ((-3 |t#1| "failed") |t#1|)) (-15 -1798 ((-3 |t#1| "failed") |t#1|)) (-15 -1808 ((-3 |t#1| "failed") |t#1|)) (-15 -1819 ((-3 |t#1| "failed") |t#1|)) (-15 -1829 ((-3 |t#1| "failed") |t#1|)) (-15 -1837 ((-3 |t#1| "failed") |t#1|)) (-15 -1846 ((-3 |t#1| "failed") |t#1|)) (-15 -1855 ((-3 |t#1| "failed") |t#1|)) (-15 -1864 ((-3 |t#1| "failed") |t#1|)) (-15 -1874 ((-3 |t#1| "failed") |t#1|)) (-15 -1883 ((-3 |t#1| "failed") |t#1|)))) -((-1904 ((|#4| |#4| (-619 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1893 ((|#4| |#4| (-619 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2540 ((|#4| (-1 |#4| (-921 |#1|)) |#4|) 30))) -(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| |#4| |#3|)) (-15 -1893 (|#4| |#4| (-619 |#3|))) (-15 -1904 (|#4| |#4| |#3|)) (-15 -1904 (|#4| |#4| (-619 |#3|))) (-15 -2540 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) (-1016) (-767) (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135))))) (-918 (-921 |#1|) |#2| |#3|)) (T -953)) -((-2540 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-921 *4))) (-4 *4 (-1016)) (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *6 *2)))) (-1904 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-1904 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) (-1893 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-1893 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)) (-15 -2754 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3))))) -(-10 -7 (-15 -1893 (|#4| |#4| |#3|)) (-15 -1893 (|#4| |#4| (-619 |#3|))) (-15 -1904 (|#4| |#4| |#3|)) (-15 -1904 (|#4| |#4| (-619 |#3|))) (-15 -2540 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) -((-1914 ((|#2| |#3|) 35)) (-3490 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 73)) (-3478 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 89))) -(((-954 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -1914 (|#2| |#3|))) (-341) (-1194 |#1|) (-1194 |#2|) (-699 |#2| |#3|)) (T -954)) -((-1914 (*1 *2 *3) (-12 (-4 *3 (-1194 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-954 *4 *2 *3 *5)) (-4 *4 (-341)) (-4 *5 (-699 *2 *3)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) (-3478 (*1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5))))) -(-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -1914 (|#2| |#3|))) -((-1980 (((-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548)))) (-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548))))) 69))) -(((-955 |#1| |#2|) (-10 -7 (-15 -1980 ((-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548)))) (-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548))))))) (-619 (-1135)) (-745)) (T -955)) -((-1980 (*1 *2 *2) (-12 (-5 *2 (-956 (-399 (-548)) (-834 *3) (-233 *4 (-745)) (-240 *3 (-399 (-548))))) (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4))))) -(-10 -7 (-15 -1980 ((-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548)))) (-956 (-399 (-548)) (-834 |#1|) (-233 |#2| (-745)) (-240 |#1| (-399 (-548))))))) -((-3730 (((-112) $ $) NIL)) (-1902 (((-3 (-112) "failed") $) 69)) (-2805 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-299))))) (-1960 (($ $ (-3 (-112) "failed")) 70)) (-1969 (($ (-619 |#4|) |#4|) 25)) (-2546 (((-1118) $) NIL)) (-1925 (($ $) 67)) (-3932 (((-1082) $) NIL)) (-1616 (((-112) $) 68)) (-3319 (($) 30)) (-1936 ((|#4| $) 72)) (-1947 (((-619 |#4|) $) 71)) (-3743 (((-832) $) 66)) (-2214 (((-112) $ $) NIL))) -(((-956 |#1| |#2| |#3| |#4|) (-13 (-1063) (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1969 ($ (-619 |#4|) |#4|)) (-15 -1902 ((-3 (-112) "failed") $)) (-15 -1960 ($ $ (-3 (-112) "failed"))) (-15 -1616 ((-112) $)) (-15 -1947 ((-619 |#4|) $)) (-15 -1936 (|#4| $)) (-15 -1925 ($ $)) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (-15 -2805 ($ $)) |%noBranch|) |%noBranch|))) (-443) (-821) (-767) (-918 |#1| |#3| |#2|)) (T -956)) -((-3319 (*1 *1) (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-1969 (*1 *1 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-443)) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3)))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1616 (*1 *2 *1) (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1947 (*1 *2 *1) (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-1936 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)))) (-1925 (*1 *1 *1) (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-2805 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-299)) (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))) -(-13 (-1063) (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -1969 ($ (-619 |#4|) |#4|)) (-15 -1902 ((-3 (-112) "failed") $)) (-15 -1960 ($ $ (-3 (-112) "failed"))) (-15 -1616 ((-112) $)) (-15 -1947 ((-619 |#4|) $)) (-15 -1936 (|#4| $)) (-15 -1925 ($ $)) (IF (|has| |#1| (-299)) (IF (|has| |#1| (-145)) (-15 -2805 ($ $)) |%noBranch|) |%noBranch|))) -((-2710 (((-112) |#5| |#5|) 38)) (-2735 (((-112) |#5| |#5|) 52)) (-2776 (((-112) |#5| (-619 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-2744 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-1675 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 63)) (-2702 (((-1223)) 33)) (-2694 (((-1223) (-1118) (-1118) (-1118)) 29)) (-2784 (((-619 |#5|) (-619 |#5|)) 81)) (-1683 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) 79)) (-1691 (((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 101)) (-2727 (((-112) |#5| |#5|) 47)) (-2768 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2752 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-2761 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-2199 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-1697 (((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-2718 (((-619 |#5|) (-619 |#5|)) 43))) -(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -957)) -((-1697 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-1691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-1675 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) (-2776 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2768 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2199 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2727 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2710 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2754 (((-1135) $) 15)) (-4056 (((-1118) $) 16)) (-2155 (($ (-1135) (-1118)) 14)) (-3743 (((-832) $) 13))) -(((-958) (-13 (-592 (-832)) (-10 -8 (-15 -2155 ($ (-1135) (-1118))) (-15 -2754 ((-1135) $)) (-15 -4056 ((-1118) $))))) (T -958)) -((-2155 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-958)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-958)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-958))))) -(-13 (-592 (-832)) (-10 -8 (-15 -2155 ($ (-1135) (-1118))) (-15 -2754 ((-1135) $)) (-15 -4056 ((-1118) $)))) -((-2540 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) (-540) (-540) (-961 |#1|) (-961 |#2|)) (T -959)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-540)) (-4 *6 (-540)) (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5))))) -(-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) -((-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-1135) "failed") $) 65) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) 95)) (-2375 ((|#2| $) NIL) (((-1135) $) 60) (((-399 (-548)) $) NIL) (((-548) $) 92)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 112) (((-663 |#2|) (-663 $)) 28)) (-2545 (($) 98)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 75) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 84)) (-2002 (($ $) 10)) (-3725 (((-3 $ "failed") $) 20)) (-2540 (($ (-1 |#2| |#2|) $) 22)) (-3410 (($) 16)) (-3862 (($ $) 54)) (-4050 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1993 (($ $) 12)) (-2591 (((-861 (-548)) $) 70) (((-861 (-371)) $) 79) (((-524) $) 40) (((-371) $) 44) (((-218) $) 47)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 90) (($ |#2|) NIL) (($ (-1135)) 57)) (-3835 (((-745)) 31)) (-2234 (((-112) $ $) 50))) -(((-960 |#1| |#2|) (-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2545 (|#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) (-961 |#2|) (-540)) (T -960)) -((-3835 (*1 *2) (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) (-4 *3 (-961 *4))))) -(-10 -8 (-15 -2234 ((-112) |#1| |#1|)) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -3743 (|#1| (-1135))) (-15 -2545 (|#1|)) (-15 -3862 (|#1| |#1|)) (-15 -1993 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -3628 ((-858 (-548) |#1|) |#1| (-861 (-548)) (-858 (-548) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -1608 ((-663 |#2|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 ((|#1| $) 136 (|has| |#1| (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 127 (|has| |#1| (-878)))) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 130 (|has| |#1| (-878)))) (-4087 (((-112) $ $) 57)) (-2672 (((-548) $) 117 (|has| |#1| (-794)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 175) (((-3 (-1135) "failed") $) 125 (|has| |#1| (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) 109 (|has| |#1| (-1007 (-548)))) (((-3 (-548) "failed") $) 107 (|has| |#1| (-1007 (-548))))) (-2375 ((|#1| $) 174) (((-1135) $) 124 (|has| |#1| (-1007 (-1135)))) (((-399 (-548)) $) 108 (|has| |#1| (-1007 (-548)))) (((-548) $) 106 (|has| |#1| (-1007 (-548))))) (-1945 (($ $ $) 53)) (-1608 (((-663 (-548)) (-663 $)) 149 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 148 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 147) (((-663 |#1|) (-663 $)) 146)) (-3859 (((-3 $ "failed") $) 32)) (-2545 (($) 134 (|has| |#1| (-533)))) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-3298 (((-112) $) 119 (|has| |#1| (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 143 (|has| |#1| (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 142 (|has| |#1| (-855 (-371))))) (-2266 (((-112) $) 30)) (-2002 (($ $) 138)) (-2470 ((|#1| $) 140)) (-3725 (((-3 $ "failed") $) 105 (|has| |#1| (-1111)))) (-3312 (((-112) $) 118 (|has| |#1| (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1795 (($ $ $) 115 (|has| |#1| (-821)))) (-3091 (($ $ $) 114 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 166)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3410 (($) 104 (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3862 (($ $) 135 (|has| |#1| (-299)))) (-3887 ((|#1| $) 132 (|has| |#1| (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 129 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 128 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 172 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 170 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 169 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 168 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 167 (|has| |#1| (-504 (-1135) |#1|)))) (-4077 (((-745) $) 56)) (-3171 (($ $ |#1|) 173 (|has| |#1| (-278 |#1| |#1|)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-4050 (($ $) 165 (|has| |#1| (-226))) (($ $ (-745)) 163 (|has| |#1| (-226))) (($ $ (-1135)) 161 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 160 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 159 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 158 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-1993 (($ $) 137)) (-2480 ((|#1| $) 139)) (-2591 (((-861 (-548)) $) 145 (|has| |#1| (-593 (-861 (-548))))) (((-861 (-371)) $) 144 (|has| |#1| (-593 (-861 (-371))))) (((-524) $) 122 (|has| |#1| (-593 (-524)))) (((-371) $) 121 (|has| |#1| (-991))) (((-218) $) 120 (|has| |#1| (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 131 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ |#1|) 178) (($ (-1135)) 126 (|has| |#1| (-1007 (-1135))))) (-4017 (((-3 $ "failed") $) 123 (-1524 (|has| |#1| (-143)) (-1723 (|has| $ (-143)) (|has| |#1| (-878)))))) (-3835 (((-745)) 28)) (-3897 ((|#1| $) 133 (|has| |#1| (-533)))) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 116 (|has| |#1| (-794)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 164 (|has| |#1| (-226))) (($ $ (-745)) 162 (|has| |#1| (-226))) (($ $ (-1135)) 157 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 156 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 155 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 154 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2262 (((-112) $ $) 112 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 111 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 113 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 110 (|has| |#1| (-821)))) (-2309 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-961 |#1|) (-138) (-540)) (T -961)) -((-2309 (*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-2470 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-1993 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) (-3862 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) (-2545 (*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-533)) (-4 *2 (-540)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533))))) -(-13 (-355) (-38 |t#1|) (-1007 |t#1|) (-330 |t#1|) (-224 |t#1|) (-369 |t#1|) (-853 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2309 ($ |t#1| |t#1|)) (-15 -2470 (|t#1| $)) (-15 -2480 (|t#1| $)) (-15 -2002 ($ $)) (-15 -1993 ($ $)) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-1007 (-548))) (PROGN (-6 (-1007 (-548))) (-6 (-1007 (-399 (-548))))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1007 (-1135))) (-6 (-1007 (-1135))) |%noBranch|) (IF (|has| |t#1| (-299)) (PROGN (-15 -3875 (|t#1| $)) (-15 -3862 ($ $))) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -2545 ($)) (-15 -3897 (|t#1| $)) (-15 -3887 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-593 (-218)) |has| |#1| (-991)) ((-593 (-371)) |has| |#1| (-991)) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-593 (-861 (-371))) |has| |#1| (-593 (-861 (-371)))) ((-593 (-861 (-548))) |has| |#1| (-593 (-861 (-548)))) ((-224 |#1|) . T) ((-226) |has| |#1| (-226)) ((-236) . T) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-282) . T) ((-299) . T) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-355) . T) ((-330 |#1|) . T) ((-369 |#1|) . T) ((-392 |#1|) . T) ((-443) . T) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-765) |has| |#1| (-794)) ((-766) |has| |#1| (-794)) ((-768) |has| |#1| (-794)) ((-769) |has| |#1| (-794)) ((-794) |has| |#1| (-794)) ((-819) |has| |#1| (-794)) ((-821) -1524 (|has| |#1| (-821)) (|has| |#1| (-794))) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-371)) |has| |#1| (-855 (-371))) ((-855 (-548)) |has| |#1| (-855 (-548))) ((-853 |#1|) . T) ((-878) |has| |#1| (-878)) ((-889) . T) ((-991) |has| |#1| (-991)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-548))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 (-1135)) |has| |#1| (-1007 (-1135))) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-1111)) ((-1172) . T) ((-1176) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2013 (($ (-1102 |#1| |#2|)) 11)) (-3817 (((-1102 |#1| |#2|) $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#2| $ (-233 |#1| |#2|)) 16)) (-3743 (((-832) $) NIL)) (-3107 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL))) -(((-962 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2013 ($ (-1102 |#1| |#2|))) (-15 -3817 ((-1102 |#1| |#2|) $)) (-15 -3171 (|#2| $ (-233 |#1| |#2|))))) (-890) (-355)) (T -962)) -((-2013 (*1 *1 *2) (-12 (-5 *2 (-1102 *3 *4)) (-14 *3 (-890)) (-4 *4 (-355)) (-5 *1 (-962 *3 *4)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-1102 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) (-4 *4 (-355)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-355)) (-5 *1 (-962 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2013 ($ (-1102 |#1| |#2|))) (-15 -3817 ((-1102 |#1| |#2|) $)) (-15 -3171 (|#2| $ (-233 |#1| |#2|))))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-963) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $))))) (T -963)) -((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-963))))) -(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-2048 (($ $) 46)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-3198 (((-745) $) 45)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2035 ((|#1| $) 44)) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-2071 ((|#1| |#1| $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-2060 ((|#1| $) 47)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-2025 ((|#1| $) 43)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3971 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3892 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3824 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1883 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1791 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1698 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1616 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1491 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1370 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1285 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2539 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2437 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2341 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2234 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2134 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2032 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-1937 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3074 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3000 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2931 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2858 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2799 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2726 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-2656 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3687 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3622 (*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157)))) (-3533 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(-13 (-10 -7 (-15 -3533 ((-3 |t#1| "failed") |t#1| (-745))) (-15 -3622 ((-3 |t#1| "failed") |t#1|)) (-15 -3687 ((-3 |t#1| "failed") |t#1|)) (-15 -2656 ((-3 |t#1| "failed") |t#1|)) (-15 -2726 ((-3 |t#1| "failed") |t#1|)) (-15 -2799 ((-3 |t#1| "failed") |t#1|)) (-15 -2858 ((-3 |t#1| "failed") |t#1|)) (-15 -2931 ((-3 |t#1| "failed") |t#1|)) (-15 -3000 ((-3 |t#1| "failed") |t#1|)) (-15 -3074 ((-3 |t#1| "failed") |t#1|)) (-15 -1937 ((-3 |t#1| "failed") |t#1|)) (-15 -2032 ((-3 |t#1| "failed") |t#1|)) (-15 -2134 ((-3 |t#1| "failed") |t#1|)) (-15 -2234 ((-3 |t#1| "failed") |t#1|)) (-15 -2341 ((-3 |t#1| "failed") |t#1|)) (-15 -2437 ((-3 |t#1| "failed") |t#1|)) (-15 -2539 ((-3 |t#1| "failed") |t#1|)) (-15 -1285 ((-3 |t#1| "failed") |t#1|)) (-15 -1370 ((-3 |t#1| "failed") |t#1|)) (-15 -1491 ((-3 |t#1| "failed") |t#1|)) (-15 -1616 ((-3 |t#1| "failed") |t#1|)) (-15 -1698 ((-3 |t#1| "failed") |t#1|)) (-15 -1791 ((-3 |t#1| "failed") |t#1|)) (-15 -1883 ((-3 |t#1| "failed") |t#1|)) (-15 -3824 ((-3 |t#1| "failed") |t#1|)) (-15 -3892 ((-3 |t#1| "failed") |t#1|)) (-15 -3971 ((-3 |t#1| "failed") |t#1|)))) +((-4137 ((|#4| |#4| (-619 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4059 ((|#4| |#4| (-619 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2781 ((|#4| (-1 |#4| (-921 |#1|)) |#4|) 30))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4059 (|#4| |#4| |#3|)) (-15 -4059 (|#4| |#4| (-619 |#3|))) (-15 -4137 (|#4| |#4| |#3|)) (-15 -4137 (|#4| |#4| (-619 |#3|))) (-15 -2781 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) (-1016) (-767) (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135))))) (-918 (-921 |#1|) |#2| |#3|)) (T -953)) +((-2781 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-921 *4))) (-4 *4 (-1016)) (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *6 *2)))) (-4137 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-4137 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) (-4059 (*1 *2 *2 *3) (-12 (-5 *3 (-619 *6)) (-4 *6 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *2 (-918 (-921 *4) *5 *6)))) (-4059 (*1 *2 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)) (-15 -2995 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3))))) +(-10 -7 (-15 -4059 (|#4| |#4| |#3|)) (-15 -4059 (|#4| |#4| (-619 |#3|))) (-15 -4137 (|#4| |#4| |#3|)) (-15 -4137 (|#4| |#4| (-619 |#3|))) (-15 -2781 (|#4| (-1 |#4| (-921 |#1|)) |#4|))) +((-4215 ((|#2| |#3|) 35)) (-3161 (((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 73)) (-3059 (((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 89))) +(((-954 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3059 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3161 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -4215 (|#2| |#3|))) (-340) (-1194 |#1|) (-1194 |#2|) (-699 |#2| |#3|)) (T -954)) +((-4215 (*1 *2 *3) (-12 (-4 *3 (-1194 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-954 *4 *2 *3 *5)) (-4 *4 (-340)) (-4 *5 (-699 *2 *3)))) (-3161 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) (-3059 (*1 *2) (-12 (-4 *3 (-340)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -4013 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5))))) +(-10 -7 (-15 -3059 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3161 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|)) (-15 -4215 (|#2| |#3|))) +((-3576 (((-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))) (-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547))))) 69))) +(((-955 |#1| |#2|) (-10 -7 (-15 -3576 ((-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))) (-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547))))))) (-619 (-1135)) (-745)) (T -955)) +((-3576 (*1 *2 *2) (-12 (-5 *2 (-956 (-398 (-547)) (-834 *3) (-232 *4 (-745)) (-239 *3 (-398 (-547))))) (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4))))) +(-10 -7 (-15 -3576 ((-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547)))) (-956 (-398 (-547)) (-834 |#1|) (-232 |#2| (-745)) (-239 |#1| (-398 (-547))))))) +((-3821 (((-112) $ $) NIL)) (-1451 (((-3 (-112) "failed") $) 69)) (-1458 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-298))))) (-3404 (($ $ (-3 (-112) "failed")) 70)) (-3485 (($ (-619 |#4|) |#4|) 25)) (-1917 (((-1118) $) NIL)) (-4289 (($ $) 67)) (-3979 (((-1082) $) NIL)) (-3169 (((-112) $) 68)) (-4011 (($) 30)) (-3234 ((|#4| $) 72)) (-3317 (((-619 |#4|) $) 71)) (-3834 (((-832) $) 66)) (-2371 (((-112) $ $) NIL))) +(((-956 |#1| |#2| |#3| |#4|) (-13 (-1063) (-591 (-832)) (-10 -8 (-15 -4011 ($)) (-15 -3485 ($ (-619 |#4|) |#4|)) (-15 -1451 ((-3 (-112) "failed") $)) (-15 -3404 ($ $ (-3 (-112) "failed"))) (-15 -3169 ((-112) $)) (-15 -3317 ((-619 |#4|) $)) (-15 -3234 (|#4| $)) (-15 -4289 ($ $)) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (-15 -1458 ($ $)) |%noBranch|) |%noBranch|))) (-442) (-821) (-767) (-918 |#1| |#3| |#2|)) (T -956)) +((-4011 (*1 *1) (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-442)) (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3)))) (-1451 (*1 *2 *1) (|partial| -12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-3317 (*1 *2 *1) (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) (-3234 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)))) (-4289 (*1 *1 *1) (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) (-1458 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-298)) (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))) +(-13 (-1063) (-591 (-832)) (-10 -8 (-15 -4011 ($)) (-15 -3485 ($ (-619 |#4|) |#4|)) (-15 -1451 ((-3 (-112) "failed") $)) (-15 -3404 ($ $ (-3 (-112) "failed"))) (-15 -3169 ((-112) $)) (-15 -3317 ((-619 |#4|) $)) (-15 -3234 (|#4| $)) (-15 -4289 ($ $)) (IF (|has| |#1| (-298)) (IF (|has| |#1| (-145)) (-15 -1458 ($ $)) |%noBranch|) |%noBranch|))) +((-3009 (((-112) |#5| |#5|) 38)) (-3223 (((-112) |#5| |#5|) 52)) (-2512 (((-112) |#5| (-619 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-2131 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-2625 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) 63)) (-2947 (((-1223)) 33)) (-2877 (((-1223) (-1118) (-1118) (-1118)) 29)) (-2600 (((-619 |#5|) (-619 |#5|)) 81)) (-2699 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) 79)) (-2772 (((-619 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 101)) (-3155 (((-112) |#5| |#5|) 47)) (-2411 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2230 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-2338 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-1694 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-2830 (((-3 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3081 (((-619 |#5|) (-619 |#5|)) 43))) +(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2877 ((-1223) (-1118) (-1118) (-1118))) (-15 -2947 ((-1223))) (-15 -3009 ((-112) |#5| |#5|)) (-15 -3081 ((-619 |#5|) (-619 |#5|))) (-15 -3155 ((-112) |#5| |#5|)) (-15 -3223 ((-112) |#5| |#5|)) (-15 -2131 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2230 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2338 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1694 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2411 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2512 ((-112) |#5| |#5|)) (-15 -2512 ((-112) |#5| (-619 |#5|))) (-15 -2600 ((-619 |#5|) (-619 |#5|))) (-15 -2625 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -2699 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-15 -2772 ((-619 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2830 ((-3 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -957)) +((-2830 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2636 (-619 *9)) (|:| -1965 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-2772 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2636 (-619 *9)) (|:| -1965 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1965 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2625 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) (-2512 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2411 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-1694 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2338 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2230 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2131 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-3223 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3155 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) (-3009 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2947 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2877 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -2877 ((-1223) (-1118) (-1118) (-1118))) (-15 -2947 ((-1223))) (-15 -3009 ((-112) |#5| |#5|)) (-15 -3081 ((-619 |#5|) (-619 |#5|))) (-15 -3155 ((-112) |#5| |#5|)) (-15 -3223 ((-112) |#5| |#5|)) (-15 -2131 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2230 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2338 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1694 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2411 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2512 ((-112) |#5| |#5|)) (-15 -2512 ((-112) |#5| (-619 |#5|))) (-15 -2600 ((-619 |#5|) (-619 |#5|))) (-15 -2625 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -2699 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-15 -2772 ((-619 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2830 ((-3 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2995 (((-1135) $) 15)) (-4152 (((-1118) $) 16)) (-2374 (($ (-1135) (-1118)) 14)) (-3834 (((-832) $) 13))) +(((-958) (-13 (-591 (-832)) (-10 -8 (-15 -2374 ($ (-1135) (-1118))) (-15 -2995 ((-1135) $)) (-15 -4152 ((-1118) $))))) (T -958)) +((-2374 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-958)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-958)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-958))))) +(-13 (-591 (-832)) (-10 -8 (-15 -2374 ($ (-1135) (-1118))) (-15 -2995 ((-1135) $)) (-15 -4152 ((-1118) $)))) +((-2781 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| (-1 |#2| |#1|) |#3|))) (-539) (-539) (-961 |#1|) (-961 |#2|)) (T -959)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5))))) +(-10 -7 (-15 -2781 (|#4| (-1 |#2| |#1|) |#3|))) +((-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-1135) "failed") $) 65) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) 95)) (-2643 ((|#2| $) NIL) (((-1135) $) 60) (((-398 (-547)) $) NIL) (((-547) $) 92)) (-4238 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 112) (((-663 |#2|) (-663 $)) 28)) (-3229 (($) 98)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 75) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 84)) (-3739 (($ $) 10)) (-3652 (((-3 $ "failed") $) 20)) (-2781 (($ (-1 |#2| |#2|) $) 22)) (-3045 (($) 16)) (-2567 (($ $) 54)) (-3443 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3660 (($ $) 12)) (-2829 (((-861 (-547)) $) 70) (((-861 (-370)) $) 79) (((-523) $) 40) (((-370) $) 44) (((-217) $) 47)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 90) (($ |#2|) NIL) (($ (-1135)) 57)) (-2311 (((-745)) 31)) (-2396 (((-112) $ $) 50))) +(((-960 |#1| |#2|) (-10 -8 (-15 -2396 ((-112) |#1| |#1|)) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2829 ((-217) |#1|)) (-15 -2829 ((-370) |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2643 ((-1135) |#1|)) (-15 -2698 ((-3 (-1135) "failed") |#1|)) (-15 -3834 (|#1| (-1135))) (-15 -3229 (|#1|)) (-15 -2567 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -4238 ((-663 |#2|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 -3834 ((-832) |#1|))) (-961 |#2|) (-539)) (T -960)) +((-2311 (*1 *2) (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) (-4 *3 (-961 *4))))) +(-10 -8 (-15 -2396 ((-112) |#1| |#1|)) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2829 ((-217) |#1|)) (-15 -2829 ((-370) |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2643 ((-1135) |#1|)) (-15 -2698 ((-3 (-1135) "failed") |#1|)) (-15 -3834 (|#1| (-1135))) (-15 -3229 (|#1|)) (-15 -2567 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -3893 ((-858 (-547) |#1|) |#1| (-861 (-547)) (-858 (-547) |#1|))) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -4238 ((-663 |#2|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2673 ((|#1| $) 136 (|has| |#1| (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-3833 (((-409 (-1131 $)) (-1131 $)) 127 (|has| |#1| (-878)))) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 130 (|has| |#1| (-878)))) (-2873 (((-112) $ $) 57)) (-3807 (((-547) $) 117 (|has| |#1| (-794)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 175) (((-3 (-1135) "failed") $) 125 (|has| |#1| (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) 109 (|has| |#1| (-1007 (-547)))) (((-3 (-547) "failed") $) 107 (|has| |#1| (-1007 (-547))))) (-2643 ((|#1| $) 174) (((-1135) $) 124 (|has| |#1| (-1007 (-1135)))) (((-398 (-547)) $) 108 (|has| |#1| (-1007 (-547)))) (((-547) $) 106 (|has| |#1| (-1007 (-547))))) (-2079 (($ $ $) 53)) (-4238 (((-663 (-547)) (-663 $)) 149 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 148 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 147) (((-663 |#1|) (-663 $)) 146)) (-2537 (((-3 $ "failed") $) 32)) (-3229 (($) 134 (|has| |#1| (-532)))) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3674 (((-112) $) 68)) (-3848 (((-112) $) 119 (|has| |#1| (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 143 (|has| |#1| (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 142 (|has| |#1| (-855 (-370))))) (-4114 (((-112) $) 30)) (-3739 (($ $) 138)) (-1382 ((|#1| $) 140)) (-3652 (((-3 $ "failed") $) 105 (|has| |#1| (-1111)))) (-3937 (((-112) $) 118 (|has| |#1| (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2847 (($ $ $) 115 (|has| |#1| (-821)))) (-3563 (($ $ $) 114 (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) 166)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3045 (($) 104 (|has| |#1| (-1111)) CONST)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2567 (($ $) 135 (|has| |#1| (-298)))) (-1435 ((|#1| $) 132 (|has| |#1| (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 129 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 128 (|has| |#1| (-878)))) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) 172 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 170 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 169 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 168 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) 167 (|has| |#1| (-503 (-1135) |#1|)))) (-2776 (((-745) $) 56)) (-3329 (($ $ |#1|) 173 (|has| |#1| (-277 |#1| |#1|)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-3443 (($ $) 165 (|has| |#1| (-225))) (($ $ (-745)) 163 (|has| |#1| (-225))) (($ $ (-1135)) 161 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 160 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 159 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 158 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3660 (($ $) 137)) (-1392 ((|#1| $) 139)) (-2829 (((-861 (-547)) $) 145 (|has| |#1| (-592 (-861 (-547))))) (((-861 (-370)) $) 144 (|has| |#1| (-592 (-861 (-370))))) (((-523) $) 122 (|has| |#1| (-592 (-523)))) (((-370) $) 121 (|has| |#1| (-991))) (((-217) $) 120 (|has| |#1| (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 131 (-1806 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ |#1|) 178) (($ (-1135)) 126 (|has| |#1| (-1007 (-1135))))) (-3336 (((-3 $ "failed") $) 123 (-1524 (|has| |#1| (-143)) (-1806 (|has| $ (-143)) (|has| |#1| (-878)))))) (-2311 (((-745)) 28)) (-1564 ((|#1| $) 133 (|has| |#1| (-532)))) (-1932 (((-112) $ $) 37)) (-2040 (($ $) 116 (|has| |#1| (-794)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $) 164 (|has| |#1| (-225))) (($ $ (-745)) 162 (|has| |#1| (-225))) (($ $ (-1135)) 157 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 156 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 155 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 154 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2433 (((-112) $ $) 112 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 111 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 113 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 110 (|has| |#1| (-821)))) (-2497 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-961 |#1|) (-138) (-539)) (T -961)) +((-2497 (*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-1392 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-3739 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298)))) (-2567 (*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298)))) (-3229 (*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-532)) (-4 *2 (-539)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532))))) +(-13 (-354) (-38 |t#1|) (-1007 |t#1|) (-329 |t#1|) (-223 |t#1|) (-368 |t#1|) (-853 |t#1|) (-391 |t#1|) (-10 -8 (-15 -2497 ($ |t#1| |t#1|)) (-15 -1382 (|t#1| $)) (-15 -1392 (|t#1| $)) (-15 -3739 ($ $)) (-15 -3660 ($ $)) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-1007 (-547))) (PROGN (-6 (-1007 (-547))) (-6 (-1007 (-398 (-547))))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#1| (-991)) (-6 (-991)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1007 (-1135))) (-6 (-1007 (-1135))) |%noBranch|) (IF (|has| |t#1| (-298)) (PROGN (-15 -2673 (|t#1| $)) (-15 -2567 ($ $))) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -3229 ($)) (-15 -1564 (|t#1| $)) (-15 -1435 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-878)) (-6 (-878)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-592 (-217)) |has| |#1| (-991)) ((-592 (-370)) |has| |#1| (-991)) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-592 (-861 (-370))) |has| |#1| (-592 (-861 (-370)))) ((-592 (-861 (-547))) |has| |#1| (-592 (-861 (-547)))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-235) . T) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-281) . T) ((-298) . T) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-354) . T) ((-329 |#1|) . T) ((-368 |#1|) . T) ((-391 |#1|) . T) ((-442) . T) ((-503 (-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-765) |has| |#1| (-794)) ((-766) |has| |#1| (-794)) ((-768) |has| |#1| (-794)) ((-769) |has| |#1| (-794)) ((-794) |has| |#1| (-794)) ((-819) |has| |#1| (-794)) ((-821) -1524 (|has| |#1| (-821)) (|has| |#1| (-794))) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-370)) |has| |#1| (-855 (-370))) ((-855 (-547)) |has| |#1| (-855 (-547))) ((-853 |#1|) . T) ((-878) |has| |#1| (-878)) ((-889) . T) ((-991) |has| |#1| (-991)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-547))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 (-1135)) |has| |#1| (-1007 (-1135))) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-1111)) ((-1172) . T) ((-1176) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2716 (($ (-1102 |#1| |#2|)) 11)) (-3933 (((-1102 |#1| |#2|) $) 12)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3329 ((|#2| $ (-232 |#1| |#2|)) 16)) (-3834 (((-832) $) NIL)) (-3267 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL))) +(((-962 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2716 ($ (-1102 |#1| |#2|))) (-15 -3933 ((-1102 |#1| |#2|) $)) (-15 -3329 (|#2| $ (-232 |#1| |#2|))))) (-890) (-354)) (T -962)) +((-2716 (*1 *1 *2) (-12 (-5 *2 (-1102 *3 *4)) (-14 *3 (-890)) (-4 *4 (-354)) (-5 *1 (-962 *3 *4)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-1102 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) (-4 *4 (-354)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-232 *4 *2)) (-14 *4 (-890)) (-4 *2 (-354)) (-5 *1 (-962 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2716 ($ (-1102 |#1| |#2|))) (-15 -3933 ((-1102 |#1| |#2|) $)) (-15 -3329 (|#2| $ (-232 |#1| |#2|))))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3943 (((-1140) $) 9)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-963) (-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $))))) (T -963)) +((-3943 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-963))))) +(-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-2962 (($ $) 46)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-4202 (((-745) $) 45)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2885 ((|#1| $) 44)) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3125 ((|#1| |#1| $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3044 ((|#1| $) 47)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2796 ((|#1| $) 43)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-964 |#1|) (-138) (-1172)) (T -964)) -((-2071 (*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4327) (-15 -2071 (|t#1| |t#1| $)) (-15 -2060 (|t#1| $)) (-15 -2048 ($ $)) (-15 -3198 ((-745) $)) (-15 -2035 (|t#1| $)) (-15 -2025 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-3324 (((-112) $) 42)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#2| $) 43)) (-4182 (((-3 (-399 (-548)) "failed") $) 78)) (-4172 (((-112) $) 72)) (-4161 (((-399 (-548)) $) 76)) (-2266 (((-112) $) 41)) (-3910 ((|#2| $) 22)) (-2540 (($ (-1 |#2| |#2|) $) 19)) (-2153 (($ $) 61)) (-4050 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2591 (((-524) $) 67)) (-2128 (($ $) 17)) (-3743 (((-832) $) 56) (($ (-548)) 38) (($ |#2|) 36) (($ (-399 (-548))) NIL)) (-3835 (((-745)) 10)) (-1446 ((|#2| $) 71)) (-2214 (((-112) $ $) 25)) (-2234 (((-112) $ $) 69)) (-2299 (($ $) 29) (($ $ $) 28)) (-2290 (($ $ $) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL))) -(((-965 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 -2153 (|#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -2266 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-966 |#2|) (-169)) (T -965)) -((-3835 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) (-4 *3 (-966 *4))))) -(-10 -8 (-15 -3743 (|#1| (-399 (-548)))) (-15 -2234 ((-112) |#1| |#1|)) (-15 * (|#1| (-399 (-548)) |#1|)) (-15 * (|#1| |#1| (-399 (-548)))) (-15 -2153 (|#1| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -3910 (|#2| |#1|)) (-15 -2128 (|#1| |#1|)) (-15 -2540 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -3743 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -2266 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -3324 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2290 (|#1| |#1| |#1|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2441 (((-3 (-548) "failed") $) 116 (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 114 (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) 113)) (-2375 (((-548) $) 117 (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) 115 (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) 112)) (-1608 (((-663 (-548)) (-663 $)) 87 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 86 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 85) (((-663 |#1|) (-663 $)) 84)) (-3859 (((-3 $ "failed") $) 32)) (-1937 ((|#1| $) 77)) (-4182 (((-3 (-399 (-548)) "failed") $) 73 (|has| |#1| (-533)))) (-4172 (((-112) $) 75 (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) 74 (|has| |#1| (-533)))) (-2080 (($ |#1| |#1| |#1| |#1|) 78)) (-2266 (((-112) $) 30)) (-3910 ((|#1| $) 79)) (-1795 (($ $ $) 66 (|has| |#1| (-821)))) (-3091 (($ $ $) 65 (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) 88)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 70 (|has| |#1| (-355)))) (-2093 ((|#1| $) 80)) (-2106 ((|#1| $) 81)) (-2118 ((|#1| $) 82)) (-3932 (((-1082) $) 10)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 94 (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) 92 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) 91 (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 90 (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) 89 (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) 95 (|has| |#1| (-278 |#1| |#1|)))) (-4050 (($ $) 111 (|has| |#1| (-226))) (($ $ (-745)) 109 (|has| |#1| (-226))) (($ $ (-1135)) 107 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 106 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 105 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 104 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2591 (((-524) $) 71 (|has| |#1| (-593 (-524))))) (-2128 (($ $) 83)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 35) (($ (-399 (-548))) 60 (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-1446 ((|#1| $) 76 (|has| |#1| (-1025)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $) 110 (|has| |#1| (-226))) (($ $ (-745)) 108 (|has| |#1| (-226))) (($ $ (-1135)) 103 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 102 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 101 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 100 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2262 (((-112) $ $) 63 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 62 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 64 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 61 (|has| |#1| (-821)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 69 (|has| |#1| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-399 (-548))) 68 (|has| |#1| (-355))) (($ (-399 (-548)) $) 67 (|has| |#1| (-355))))) +((-3125 (*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2962 (*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4328) (-15 -3125 (|t#1| |t#1| $)) (-15 -3044 (|t#1| $)) (-15 -2962 ($ $)) (-15 -4202 ((-745) $)) (-15 -2885 (|t#1| $)) (-15 -2796 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-4046 (((-112) $) 42)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2643 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#2| $) 43)) (-2653 (((-3 (-398 (-547)) "failed") $) 78)) (-2543 (((-112) $) 72)) (-2430 (((-398 (-547)) $) 76)) (-4114 (((-112) $) 41)) (-1684 ((|#2| $) 22)) (-2781 (($ (-1 |#2| |#2|) $) 19)) (-1976 (($ $) 61)) (-3443 (($ $) NIL) (($ $ (-745)) NIL) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2829 (((-523) $) 67)) (-2444 (($ $) 17)) (-3834 (((-832) $) 56) (($ (-547)) 38) (($ |#2|) 36) (($ (-398 (-547))) NIL)) (-2311 (((-745)) 10)) (-2040 ((|#2| $) 71)) (-2371 (((-112) $ $) 25)) (-2396 (((-112) $ $) 69)) (-2484 (($ $) 29) (($ $ $) 28)) (-2470 (($ $ $) 26)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL))) +(((-965 |#1| |#2|) (-10 -8 (-15 -3834 (|#1| (-398 (-547)))) (-15 -2396 ((-112) |#1| |#1|)) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 -1976 (|#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -3834 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 -4114 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-966 |#2|) (-169)) (T -965)) +((-2311 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) (-4 *3 (-966 *4))))) +(-10 -8 (-15 -3834 (|#1| (-398 (-547)))) (-15 -2396 ((-112) |#1| |#1|)) (-15 * (|#1| (-398 (-547)) |#1|)) (-15 * (|#1| |#1| (-398 (-547)))) (-15 -1976 (|#1| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2781 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -3834 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 -4114 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-745) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 * (|#1| (-890) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2698 (((-3 (-547) "failed") $) 116 (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 114 (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) 113)) (-2643 (((-547) $) 117 (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) 115 (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) 112)) (-4238 (((-663 (-547)) (-663 $)) 87 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 86 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 85) (((-663 |#1|) (-663 $)) 84)) (-2537 (((-3 $ "failed") $) 32)) (-2129 ((|#1| $) 77)) (-2653 (((-3 (-398 (-547)) "failed") $) 73 (|has| |#1| (-532)))) (-2543 (((-112) $) 75 (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) 74 (|has| |#1| (-532)))) (-2000 (($ |#1| |#1| |#1| |#1|) 78)) (-4114 (((-112) $) 30)) (-1684 ((|#1| $) 79)) (-2847 (($ $ $) 66 (|has| |#1| (-821)))) (-3563 (($ $ $) 65 (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) 88)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 70 (|has| |#1| (-354)))) (-2116 ((|#1| $) 80)) (-2228 ((|#1| $) 81)) (-2349 ((|#1| $) 82)) (-3979 (((-1082) $) 10)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) 94 (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) 92 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) 91 (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) 90 (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) 89 (|has| |#1| (-503 (-1135) |#1|)))) (-3329 (($ $ |#1|) 95 (|has| |#1| (-277 |#1| |#1|)))) (-3443 (($ $) 111 (|has| |#1| (-225))) (($ $ (-745)) 109 (|has| |#1| (-225))) (($ $ (-1135)) 107 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 106 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 105 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 104 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2829 (((-523) $) 71 (|has| |#1| (-592 (-523))))) (-2444 (($ $) 83)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 35) (($ (-398 (-547))) 60 (-1524 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-3336 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2040 ((|#1| $) 76 (|has| |#1| (-1025)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $) 110 (|has| |#1| (-225))) (($ $ (-745)) 108 (|has| |#1| (-225))) (($ $ (-1135)) 103 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 102 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 101 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 100 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2433 (((-112) $ $) 63 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 62 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 64 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 61 (|has| |#1| (-821)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 69 (|has| |#1| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-398 (-547))) 68 (|has| |#1| (-354))) (($ (-398 (-547)) $) 67 (|has| |#1| (-354))))) (((-966 |#1|) (-138) (-169)) (T -966)) -((-2128 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2080 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548))))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-399 (-548)))))) -(-13 (-38 |t#1|) (-403 |t#1|) (-224 |t#1|) (-330 |t#1|) (-369 |t#1|) (-10 -8 (-15 -2128 ($ $)) (-15 -2118 (|t#1| $)) (-15 -2106 (|t#1| $)) (-15 -2093 (|t#1| $)) (-15 -3910 (|t#1| $)) (-15 -2080 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1937 (|t#1| $)) (IF (|has| |t#1| (-282)) (-6 (-282)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-236)) |%noBranch|) (IF (|has| |t#1| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -1446 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-533)) (PROGN (-15 -4172 ((-112) $)) (-15 -4161 ((-399 (-548)) $)) (-15 -4182 ((-3 (-399 (-548)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-355)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-355)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-355)) (|has| |#1| (-282))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-224 |#1|) . T) ((-226) |has| |#1| (-226)) ((-236) |has| |#1| (-355)) ((-278 |#1| $) |has| |#1| (-278 |#1| |#1|)) ((-282) -1524 (|has| |#1| (-355)) (|has| |#1| (-282))) ((-301 |#1|) |has| |#1| (-301 |#1|)) ((-330 |#1|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-504 (-1135) |#1|) |has| |#1| (-504 (-1135) |#1|)) ((-504 |#1| |#1|) |has| |#1| (-301 |#1|)) ((-622 #0#) |has| |#1| (-355)) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-355)) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-355)) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-355)) (|has| |#1| (-282))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2540 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) (-966 |#2|) (-169) (-966 |#4|) (-169)) (T -967)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5))))) -(-10 -7 (-15 -2540 (|#3| (-1 |#4| |#2|) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 12)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-533)))) (-4172 (((-112) $) NIL (|has| |#1| (-533)))) (-4161 (((-399 (-548)) $) NIL (|has| |#1| (-533)))) (-2080 (($ |#1| |#1| |#1| |#1|) 16)) (-2266 (((-112) $) NIL)) (-3910 ((|#1| $) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-2093 ((|#1| $) 15)) (-2106 ((|#1| $) 14)) (-2118 ((|#1| $) 13)) (-3932 (((-1082) $) NIL)) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-301 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-286 |#1|))) NIL (|has| |#1| (-301 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-504 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-504 (-1135) |#1|)))) (-3171 (($ $ |#1|) NIL (|has| |#1| (-278 |#1| |#1|)))) (-4050 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-2128 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-1446 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3107 (($) 8 T CONST)) (-3118 (($) 10 T CONST)) (-3296 (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-355))))) +((-2444 (*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2000 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547))))) (-2653 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-398 (-547)))))) +(-13 (-38 |t#1|) (-402 |t#1|) (-223 |t#1|) (-329 |t#1|) (-368 |t#1|) (-10 -8 (-15 -2444 ($ $)) (-15 -2349 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -2116 (|t#1| $)) (-15 -1684 (|t#1| $)) (-15 -2000 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2129 (|t#1| $)) (IF (|has| |t#1| (-281)) (-6 (-281)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-235)) |%noBranch|) (IF (|has| |t#1| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1025)) (-15 -2040 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-532)) (PROGN (-15 -2543 ((-112) $)) (-15 -2430 ((-398 (-547)) $)) (-15 -2653 ((-3 (-398 (-547)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-354)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-354)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-354)) (|has| |#1| (-281))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-235) |has| |#1| (-354)) ((-277 |#1| $) |has| |#1| (-277 |#1| |#1|)) ((-281) -1524 (|has| |#1| (-354)) (|has| |#1| (-281))) ((-300 |#1|) |has| |#1| (-300 |#1|)) ((-329 |#1|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-503 (-1135) |#1|) |has| |#1| (-503 (-1135) |#1|)) ((-503 |#1| |#1|) |has| |#1| (-300 |#1|)) ((-622 #0#) |has| |#1| (-354)) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-354)) ((-692 |#1|) . T) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1022 #0#) |has| |#1| (-354)) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-354)) (|has| |#1| (-281))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2781 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#3| (-1 |#4| |#2|) |#1|))) (-966 |#2|) (-169) (-966 |#4|) (-169)) (T -967)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5))))) +(-10 -7 (-15 -2781 (|#3| (-1 |#4| |#2|) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2129 ((|#1| $) 12)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-532)))) (-2543 (((-112) $) NIL (|has| |#1| (-532)))) (-2430 (((-398 (-547)) $) NIL (|has| |#1| (-532)))) (-2000 (($ |#1| |#1| |#1| |#1|) 16)) (-4114 (((-112) $) NIL)) (-1684 ((|#1| $) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2116 ((|#1| $) 15)) (-2228 ((|#1| $) 14)) (-2349 ((|#1| $) 13)) (-3979 (((-1082) $) NIL)) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-300 |#1|))) (($ $ (-285 |#1|)) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-285 |#1|))) NIL (|has| |#1| (-300 |#1|))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-503 (-1135) |#1|))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-503 (-1135) |#1|)))) (-3329 (($ $ |#1|) NIL (|has| |#1| (-277 |#1| |#1|)))) (-3443 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-2444 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2040 ((|#1| $) NIL (|has| |#1| (-1025)))) (-3267 (($) 8 T CONST)) (-3277 (($) 10 T CONST)) (-1686 (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-354))))) (((-968 |#1|) (-966 |#1|) (-169)) (T -968)) NIL (-966 |#1|) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2048 (($ $) 20)) (-2140 (($ (-619 |#1|)) 29)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3198 (((-745) $) 22)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 24)) (-2539 (($ |#1| $) 15)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2035 ((|#1| $) 23)) (-1357 ((|#1| $) 19)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-2071 ((|#1| |#1| $) 14)) (-1616 (((-112) $) 17)) (-3319 (($) NIL)) (-2060 ((|#1| $) 18)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) NIL)) (-2025 ((|#1| $) 26)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-969 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -2140 ($ (-619 |#1|))))) (-1063)) (T -969)) -((-2140 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3))))) -(-13 (-964 |#1|) (-10 -8 (-15 -2140 ($ (-619 |#1|))))) -((-1926 (($ $) 12)) (-2154 (($ $ (-548)) 13))) -(((-970 |#1|) (-10 -8 (-15 -1926 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-548)))) (-971)) (T -970)) -NIL -(-10 -8 (-15 -1926 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-548)))) -((-1926 (($ $) 6)) (-2154 (($ $ (-548)) 7)) (** (($ $ (-399 (-548))) 8))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2826 (((-112) $ (-745)) NIL)) (-3219 (($) NIL T CONST)) (-2962 (($ $) 20)) (-2555 (($ (-619 |#1|)) 29)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-4202 (((-745) $) 22)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1959 ((|#1| $) 24)) (-1885 (($ |#1| $) 15)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2885 ((|#1| $) 23)) (-1373 ((|#1| $) 19)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3125 ((|#1| |#1| $) 14)) (-3169 (((-112) $) 17)) (-4011 (($) NIL)) (-3044 ((|#1| $) 18)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) NIL)) (-2796 ((|#1| $) 26)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-969 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -2555 ($ (-619 |#1|))))) (-1063)) (T -969)) +((-2555 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3))))) +(-13 (-964 |#1|) (-10 -8 (-15 -2555 ($ (-619 |#1|))))) +((-2118 (($ $) 12)) (-1311 (($ $ (-547)) 13))) +(((-970 |#1|) (-10 -8 (-15 -2118 (|#1| |#1|)) (-15 -1311 (|#1| |#1| (-547)))) (-971)) (T -970)) +NIL +(-10 -8 (-15 -2118 (|#1| |#1|)) (-15 -1311 (|#1| |#1| (-547)))) +((-2118 (($ $) 6)) (-1311 (($ $ (-547)) 7)) (** (($ $ (-398 (-547))) 8))) (((-971) (-138)) (T -971)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-399 (-548))))) (-2154 (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-548)))) (-1926 (*1 *1 *1) (-4 *1 (-971)))) -(-13 (-10 -8 (-15 -1926 ($ $)) (-15 -2154 ($ $ (-548))) (-15 ** ($ $ (-399 (-548)))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1562 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| (-399 |#2|) (-355)))) (-3303 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-3279 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-2350 (((-663 (-399 |#2|)) (-1218 $)) NIL) (((-663 (-399 |#2|))) NIL)) (-2707 (((-399 |#2|) $) NIL)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| (-399 |#2|) (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-2634 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4087 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-3423 (((-745)) NIL (|has| (-399 |#2|) (-360)))) (-3509 (((-112)) NIL)) (-3497 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-3 (-399 |#2|) "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| (-399 |#2|) (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| (-399 |#2|) (-1007 (-399 (-548))))) (((-399 |#2|) $) NIL)) (-2455 (($ (-1218 (-399 |#2|)) (-1218 $)) NIL) (($ (-1218 (-399 |#2|))) 70) (($ (-1218 |#2|) |#2|) NIL)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-399 |#2|) (-341)))) (-1945 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2341 (((-663 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-399 |#2|) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-399 |#2|))) (|:| |vec| (-1218 (-399 |#2|)))) (-663 $) (-1218 $)) NIL) (((-663 (-399 |#2|)) (-663 $)) NIL)) (-3409 (((-1218 $) (-1218 $)) NIL)) (-2061 (($ |#3|) 65) (((-3 $ "failed") (-399 |#3|)) NIL (|has| (-399 |#2|) (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-1479 (((-619 (-619 |#1|))) NIL (|has| |#1| (-360)))) (-3542 (((-112) |#1| |#1|) NIL)) (-2103 (((-890)) NIL)) (-2545 (($) NIL (|has| (-399 |#2|) (-360)))) (-3485 (((-112)) NIL)) (-3473 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-1922 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| (-399 |#2|) (-355)))) (-4065 (($ $) NIL)) (-2771 (($) NIL (|has| (-399 |#2|) (-341)))) (-3727 (((-112) $) NIL (|has| (-399 |#2|) (-341)))) (-2208 (($ $ (-745)) NIL (|has| (-399 |#2|) (-341))) (($ $) NIL (|has| (-399 |#2|) (-341)))) (-1271 (((-112) $) NIL (|has| (-399 |#2|) (-355)))) (-1672 (((-890) $) NIL (|has| (-399 |#2|) (-341))) (((-807 (-890)) $) NIL (|has| (-399 |#2|) (-341)))) (-2266 (((-112) $) NIL)) (-1400 (((-745)) NIL)) (-3421 (((-1218 $) (-1218 $)) NIL)) (-3910 (((-399 |#2|) $) NIL)) (-1492 (((-619 (-921 |#1|)) (-1135)) NIL (|has| |#1| (-355)))) (-3725 (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-2898 ((|#3| $) NIL (|has| (-399 |#2|) (-355)))) (-2855 (((-890) $) NIL (|has| (-399 |#2|) (-360)))) (-2050 ((|#3| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2546 (((-1118) $) NIL)) (-3349 (((-663 (-399 |#2|))) 52)) (-3383 (((-663 (-399 |#2|))) 51)) (-2153 (($ $) NIL (|has| (-399 |#2|) (-355)))) (-1544 (($ (-1218 |#2|) |#2|) 71)) (-3365 (((-663 (-399 |#2|))) 50)) (-3396 (((-663 (-399 |#2|))) 49)) (-1535 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1553 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 77)) (-3463 (((-1218 $)) 46)) (-3478 (((-1218 $)) 45)) (-3451 (((-112) $) NIL)) (-3441 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3410 (($) NIL (|has| (-399 |#2|) (-341)) CONST)) (-3337 (($ (-890)) NIL (|has| (-399 |#2|) (-360)))) (-1515 (((-3 |#2| "failed")) 63)) (-3932 (((-1082) $) NIL)) (-3564 (((-745)) NIL)) (-4160 (($) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-399 |#2|) (-355)))) (-3587 (($ (-619 $)) NIL (|has| (-399 |#2|) (-355))) (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| (-399 |#2|) (-341)))) (-1915 (((-410 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-399 |#2|) (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| (-399 |#2|) (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-399 |#2|) (-355)))) (-4077 (((-745) $) NIL (|has| (-399 |#2|) (-355)))) (-3171 ((|#1| $ |#1| |#1|) NIL)) (-1525 (((-3 |#2| "failed")) 62)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1566 (((-399 |#2|) (-1218 $)) NIL) (((-399 |#2|)) 42)) (-2217 (((-745) $) NIL (|has| (-399 |#2|) (-341))) (((-3 (-745) "failed") $ $) NIL (|has| (-399 |#2|) (-341)))) (-4050 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2257 (((-663 (-399 |#2|)) (-1218 $) (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355)))) (-3287 ((|#3|) 53)) (-3655 (($) NIL (|has| (-399 |#2|) (-341)))) (-2447 (((-1218 (-399 |#2|)) $ (-1218 $)) NIL) (((-663 (-399 |#2|)) (-1218 $) (-1218 $)) NIL) (((-1218 (-399 |#2|)) $) 72) (((-663 (-399 |#2|)) (-1218 $)) NIL)) (-2591 (((-1218 (-399 |#2|)) $) NIL) (($ (-1218 (-399 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-399 |#2|) (-341)))) (-3433 (((-1218 $) (-1218 $)) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 |#2|)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| (-399 |#2|) (-1007 (-399 (-548)))) (|has| (-399 |#2|) (-355)))) (($ $) NIL (|has| (-399 |#2|) (-355)))) (-4017 (($ $) NIL (|has| (-399 |#2|) (-341))) (((-3 $ "failed") $) NIL (|has| (-399 |#2|) (-143)))) (-3780 ((|#3| $) NIL)) (-3835 (((-745)) NIL)) (-3531 (((-112)) 60)) (-3518 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2877 (((-1218 $)) 121)) (-3290 (((-112) $ $) NIL (|has| (-399 |#2|) (-355)))) (-1503 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3554 (((-112)) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1 (-399 |#2|) (-399 |#2|)) (-745)) NIL (|has| (-399 |#2|) (-355))) (($ $ (-1 (-399 |#2|) (-399 |#2|))) NIL (|has| (-399 |#2|) (-355))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-399 |#2|) (-355)) (|has| (-399 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341)))) (($ $) NIL (-1524 (-12 (|has| (-399 |#2|) (-226)) (|has| (-399 |#2|) (-355))) (|has| (-399 |#2|) (-341))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ $) NIL (|has| (-399 |#2|) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| (-399 |#2|) (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 |#2|)) NIL) (($ (-399 |#2|) $) NIL) (($ (-399 (-548)) $) NIL (|has| (-399 |#2|) (-355))) (($ $ (-399 (-548))) NIL (|has| (-399 |#2|) (-355))))) -(((-972 |#1| |#2| |#3| |#4| |#5|) (-334 |#1| |#2| |#3|) (-1176) (-1194 |#1|) (-1194 (-399 |#2|)) (-399 |#2|) (-745)) (T -972)) -NIL -(-334 |#1| |#2| |#3|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4110 (((-619 (-548)) $) 54)) (-2177 (($ (-619 (-548))) 62)) (-3875 (((-548) $) 40 (|has| (-548) (-299)))) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL (|has| (-548) (-794)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) 49) (((-3 (-1135) "failed") $) NIL (|has| (-548) (-1007 (-1135)))) (((-3 (-399 (-548)) "failed") $) 47 (|has| (-548) (-1007 (-548)))) (((-3 (-548) "failed") $) 49 (|has| (-548) (-1007 (-548))))) (-2375 (((-548) $) NIL) (((-1135) $) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) NIL (|has| (-548) (-1007 (-548)))) (((-548) $) NIL (|has| (-548) (-1007 (-548))))) (-1945 (($ $ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| (-548) (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2545 (($) NIL (|has| (-548) (-533)))) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-2196 (((-619 (-548)) $) 60)) (-3298 (((-112) $) NIL (|has| (-548) (-794)))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (|has| (-548) (-855 (-548)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (|has| (-548) (-855 (-371))))) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL)) (-2470 (((-548) $) 37)) (-3725 (((-3 $ "failed") $) NIL (|has| (-548) (-1111)))) (-3312 (((-112) $) NIL (|has| (-548) (-794)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-548) (-821)))) (-2540 (($ (-1 (-548) (-548)) $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL)) (-3410 (($) NIL (|has| (-548) (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-3862 (($ $) NIL (|has| (-548) (-299))) (((-399 (-548)) $) 42)) (-4097 (((-1116 (-548)) $) 59)) (-2166 (($ (-619 (-548)) (-619 (-548))) 63)) (-3887 (((-548) $) 53 (|has| (-548) (-533)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| (-548) (-878)))) (-1915 (((-410 $) $) NIL)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2460 (($ $ (-619 (-548)) (-619 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-548) (-548)) NIL (|has| (-548) (-301 (-548)))) (($ $ (-286 (-548))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-286 (-548)))) NIL (|has| (-548) (-301 (-548)))) (($ $ (-619 (-1135)) (-619 (-548))) NIL (|has| (-548) (-504 (-1135) (-548)))) (($ $ (-1135) (-548)) NIL (|has| (-548) (-504 (-1135) (-548))))) (-4077 (((-745) $) NIL)) (-3171 (($ $ (-548)) NIL (|has| (-548) (-278 (-548) (-548))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $) 11 (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-1993 (($ $) NIL)) (-2480 (((-548) $) 39)) (-2186 (((-619 (-548)) $) 61)) (-2591 (((-861 (-548)) $) NIL (|has| (-548) (-593 (-861 (-548))))) (((-861 (-371)) $) NIL (|has| (-548) (-593 (-861 (-371))))) (((-524) $) NIL (|has| (-548) (-593 (-524)))) (((-371) $) NIL (|has| (-548) (-991))) (((-218) $) NIL (|has| (-548) (-991)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-548) (-878))))) (-3743 (((-832) $) 77) (($ (-548)) 43) (($ $) NIL) (($ (-399 (-548))) 20) (($ (-548)) 43) (($ (-1135)) NIL (|has| (-548) (-1007 (-1135)))) (((-399 (-548)) $) 18)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-548) (-878))) (|has| (-548) (-143))))) (-3835 (((-745)) 9)) (-3897 (((-548) $) 51 (|has| (-548) (-533)))) (-3290 (((-112) $ $) NIL)) (-1446 (($ $) NIL (|has| (-548) (-794)))) (-3107 (($) 10 T CONST)) (-3118 (($) 12 T CONST)) (-3296 (($ $) NIL (|has| (-548) (-226))) (($ $ (-745)) NIL (|has| (-548) (-226))) (($ $ (-1135)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-548) (-869 (-1135)))) (($ $ (-1 (-548) (-548)) (-745)) NIL) (($ $ (-1 (-548) (-548))) NIL)) (-2262 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2214 (((-112) $ $) 14)) (-2252 (((-112) $ $) NIL (|has| (-548) (-821)))) (-2234 (((-112) $ $) 33 (|has| (-548) (-821)))) (-2309 (($ $ $) 29) (($ (-548) (-548)) 31)) (-2299 (($ $) 15) (($ $ $) 23)) (-2290 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 25) (($ $ $) 27) (($ $ (-399 (-548))) NIL) (($ (-399 (-548)) $) NIL) (($ (-548) $) 25) (($ $ (-548)) NIL))) -(((-973 |#1|) (-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -4110 ((-619 (-548)) $)) (-15 -4097 ((-1116 (-548)) $)) (-15 -2196 ((-619 (-548)) $)) (-15 -2186 ((-619 (-548)) $)) (-15 -2177 ($ (-619 (-548)))) (-15 -2166 ($ (-619 (-548)) (-619 (-548)))))) (-548)) (T -973)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) (-2166 (*1 *1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) -(-13 (-961 (-548)) (-10 -8 (-15 -3743 ((-399 (-548)) $)) (-15 -3862 ((-399 (-548)) $)) (-15 -4110 ((-619 (-548)) $)) (-15 -4097 ((-1116 (-548)) $)) (-15 -2196 ((-619 (-548)) $)) (-15 -2186 ((-619 (-548)) $)) (-15 -2177 ($ (-619 (-548)))) (-15 -2166 ($ (-619 (-548)) (-619 (-548)))))) -((-4122 (((-52) (-399 (-548)) (-548)) 9))) -(((-974) (-10 -7 (-15 -4122 ((-52) (-399 (-548)) (-548))))) (T -974)) -((-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-548))) (-5 *4 (-548)) (-5 *2 (-52)) (-5 *1 (-974))))) -(-10 -7 (-15 -4122 ((-52) (-399 (-548)) (-548)))) -((-3423 (((-548)) 13)) (-4150 (((-548)) 16)) (-4140 (((-1223) (-548)) 15)) (-4130 (((-548) (-548)) 17) (((-548)) 12))) -(((-975) (-10 -7 (-15 -4130 ((-548))) (-15 -3423 ((-548))) (-15 -4130 ((-548) (-548))) (-15 -4140 ((-1223) (-548))) (-15 -4150 ((-548))))) (T -975)) -((-4150 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-975)))) (-4130 (*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) (-3423 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) (-4130 (*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975))))) -(-10 -7 (-15 -4130 ((-548))) (-15 -3423 ((-548))) (-15 -4130 ((-548) (-548))) (-15 -4140 ((-1223) (-548))) (-15 -4150 ((-548)))) -((-1329 (((-410 |#1|) |#1|) 41)) (-1915 (((-410 |#1|) |#1|) 40))) -(((-976 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|))) (-1194 (-399 (-548)))) (T -976)) -((-1329 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1194 (-399 (-548)))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1194 (-399 (-548))))))) -(-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|))) -((-4182 (((-3 (-399 (-548)) "failed") |#1|) 15)) (-4172 (((-112) |#1|) 14)) (-4161 (((-399 (-548)) |#1|) 10))) -(((-977 |#1|) (-10 -7 (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|))) (-1007 (-399 (-548)))) (T -977)) -((-4182 (*1 *2 *3) (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2)))) (-4172 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-399 (-548)))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2))))) -(-10 -7 (-15 -4161 ((-399 (-548)) |#1|)) (-15 -4172 ((-112) |#1|)) (-15 -4182 ((-3 (-399 (-548)) "failed") |#1|))) -((-2089 ((|#2| $ "value" |#2|) 12)) (-3171 ((|#2| $ "value") 10)) (-4224 (((-112) $ $) 18))) -(((-978 |#1| |#2|) (-10 -8 (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -3171 (|#2| |#1| "value"))) (-979 |#2|) (-1172)) (T -978)) -NIL -(-10 -8 (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4224 ((-112) |#1| |#1|)) (-15 -3171 (|#2| |#1| "value"))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) 7 T CONST)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-398 (-547))))) (-1311 (*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-547)))) (-2118 (*1 *1 *1) (-4 *1 (-971)))) +(-13 (-10 -8 (-15 -2118 ($ $)) (-15 -1311 ($ $ (-547))) (-15 ** ($ $ (-398 (-547)))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3809 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| (-398 |#2|) (-354)))) (-3881 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-1832 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3743 (((-663 (-398 |#2|)) (-1218 $)) NIL) (((-663 (-398 |#2|))) NIL)) (-2890 (((-398 |#2|) $) NIL)) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| (-398 |#2|) (-340)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3457 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-2873 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-3603 (((-745)) NIL (|has| (-398 |#2|) (-359)))) (-2159 (((-112)) NIL)) (-2017 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-3 (-398 |#2|) "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| (-398 |#2|) (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| (-398 |#2|) (-1007 (-398 (-547))))) (((-398 |#2|) $) NIL)) (-2402 (($ (-1218 (-398 |#2|)) (-1218 $)) NIL) (($ (-1218 (-398 |#2|))) 70) (($ (-1218 |#2|) |#2|) NIL)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-398 |#2|) (-340)))) (-2079 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-3653 (((-663 (-398 |#2|)) $ (-1218 $)) NIL) (((-663 (-398 |#2|)) $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-398 |#2|) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-398 |#2|))) (|:| |vec| (-1218 (-398 |#2|)))) (-663 $) (-1218 $)) NIL) (((-663 (-398 |#2|)) (-663 $)) NIL)) (-3581 (((-1218 $) (-1218 $)) NIL)) (-2542 (($ |#3|) 65) (((-3 $ "failed") (-398 |#3|)) NIL (|has| (-398 |#2|) (-354)))) (-2537 (((-3 $ "failed") $) NIL)) (-2431 (((-619 (-619 |#1|))) NIL (|has| |#1| (-359)))) (-2515 (((-112) |#1| |#1|) NIL)) (-3107 (((-890)) NIL)) (-3229 (($) NIL (|has| (-398 |#2|) (-359)))) (-3110 (((-112)) NIL)) (-3019 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2052 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| (-398 |#2|) (-354)))) (-3786 (($ $) NIL)) (-2445 (($) NIL (|has| (-398 |#2|) (-340)))) (-3661 (((-112) $) NIL (|has| (-398 |#2|) (-340)))) (-1771 (($ $ (-745)) NIL (|has| (-398 |#2|) (-340))) (($ $) NIL (|has| (-398 |#2|) (-340)))) (-3674 (((-112) $) NIL (|has| (-398 |#2|) (-354)))) (-3707 (((-890) $) NIL (|has| (-398 |#2|) (-340))) (((-807 (-890)) $) NIL (|has| (-398 |#2|) (-340)))) (-4114 (((-112) $) NIL)) (-3433 (((-745)) NIL)) (-3686 (((-1218 $) (-1218 $)) NIL)) (-1684 (((-398 |#2|) $) NIL)) (-2564 (((-619 (-921 |#1|)) (-1135)) NIL (|has| |#1| (-354)))) (-3652 (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-4213 ((|#3| $) NIL (|has| (-398 |#2|) (-354)))) (-1966 (((-890) $) NIL (|has| (-398 |#2|) (-359)))) (-2531 ((|#3| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1917 (((-1118) $) NIL)) (-4237 (((-663 (-398 |#2|))) 52)) (-3365 (((-663 (-398 |#2|))) 51)) (-1976 (($ $) NIL (|has| (-398 |#2|) (-354)))) (-1760 (($ (-1218 |#2|) |#2|) 71)) (-3216 (((-663 (-398 |#2|))) 50)) (-3459 (((-663 (-398 |#2|))) 49)) (-1656 (((-2 (|:| |num| (-663 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1867 (((-2 (|:| |num| (-1218 |#2|)) (|:| |den| |#2|)) $) 77)) (-2941 (((-1218 $)) 46)) (-3059 (((-1218 $)) 45)) (-2840 (((-112) $) NIL)) (-2746 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3045 (($) NIL (|has| (-398 |#2|) (-340)) CONST)) (-3479 (($ (-890)) NIL (|has| (-398 |#2|) (-359)))) (-1431 (((-3 |#2| "failed")) 63)) (-3979 (((-1082) $) NIL)) (-1379 (((-745)) NIL)) (-4240 (($) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| (-398 |#2|) (-354)))) (-3715 (($ (-619 $)) NIL (|has| (-398 |#2|) (-354))) (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| (-398 |#2|) (-340)))) (-2106 (((-409 $) $) NIL (|has| (-398 |#2|) (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-398 |#2|) (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-2025 (((-3 $ "failed") $ $) NIL (|has| (-398 |#2|) (-354)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| (-398 |#2|) (-354)))) (-2776 (((-745) $) NIL (|has| (-398 |#2|) (-354)))) (-3329 ((|#1| $ |#1| |#1|) NIL)) (-1548 (((-3 |#2| "failed")) 62)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| (-398 |#2|) (-354)))) (-3846 (((-398 |#2|) (-1218 $)) NIL) (((-398 |#2|)) 42)) (-1868 (((-745) $) NIL (|has| (-398 |#2|) (-340))) (((-3 (-745) "failed") $ $) NIL (|has| (-398 |#2|) (-340)))) (-3443 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-4035 (((-663 (-398 |#2|)) (-1218 $) (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354)))) (-1901 ((|#3|) 53)) (-4150 (($) NIL (|has| (-398 |#2|) (-340)))) (-2301 (((-1218 (-398 |#2|)) $ (-1218 $)) NIL) (((-663 (-398 |#2|)) (-1218 $) (-1218 $)) NIL) (((-1218 (-398 |#2|)) $) 72) (((-663 (-398 |#2|)) (-1218 $)) NIL)) (-2829 (((-1218 (-398 |#2|)) $) NIL) (($ (-1218 (-398 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| (-398 |#2|) (-340)))) (-3784 (((-1218 $) (-1218 $)) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 |#2|)) NIL) (($ (-398 (-547))) NIL (-1524 (|has| (-398 |#2|) (-1007 (-398 (-547)))) (|has| (-398 |#2|) (-354)))) (($ $) NIL (|has| (-398 |#2|) (-354)))) (-3336 (($ $) NIL (|has| (-398 |#2|) (-340))) (((-3 $ "failed") $) NIL (|has| (-398 |#2|) (-143)))) (-3008 ((|#3| $) NIL)) (-2311 (((-745)) NIL)) (-2389 (((-112)) 60)) (-2261 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-4013 (((-1218 $)) 121)) (-1932 (((-112) $ $) NIL (|has| (-398 |#2|) (-354)))) (-1338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2626 (((-112)) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-1 (-398 |#2|) (-398 |#2|)) (-745)) NIL (|has| (-398 |#2|) (-354))) (($ $ (-1 (-398 |#2|) (-398 |#2|))) NIL (|has| (-398 |#2|) (-354))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| (-398 |#2|) (-354)) (|has| (-398 |#2|) (-869 (-1135))))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340)))) (($ $) NIL (-1524 (-12 (|has| (-398 |#2|) (-225)) (|has| (-398 |#2|) (-354))) (|has| (-398 |#2|) (-340))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ $) NIL (|has| (-398 |#2|) (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| (-398 |#2|) (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 |#2|)) NIL) (($ (-398 |#2|) $) NIL) (($ (-398 (-547)) $) NIL (|has| (-398 |#2|) (-354))) (($ $ (-398 (-547))) NIL (|has| (-398 |#2|) (-354))))) +(((-972 |#1| |#2| |#3| |#4| |#5|) (-333 |#1| |#2| |#3|) (-1176) (-1194 |#1|) (-1194 (-398 |#2|)) (-398 |#2|) (-745)) (T -972)) +NIL +(-333 |#1| |#2| |#3|) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3060 (((-619 (-547)) $) 54)) (-1471 (($ (-619 (-547))) 62)) (-2673 (((-547) $) 40 (|has| (-547) (-298)))) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL (|has| (-547) (-794)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) 49) (((-3 (-1135) "failed") $) NIL (|has| (-547) (-1007 (-1135)))) (((-3 (-398 (-547)) "failed") $) 47 (|has| (-547) (-1007 (-547)))) (((-3 (-547) "failed") $) 49 (|has| (-547) (-1007 (-547))))) (-2643 (((-547) $) NIL) (((-1135) $) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) NIL (|has| (-547) (-1007 (-547)))) (((-547) $) NIL (|has| (-547) (-1007 (-547))))) (-2079 (($ $ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| (-547) (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3229 (($) NIL (|has| (-547) (-532)))) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-1669 (((-619 (-547)) $) 60)) (-3848 (((-112) $) NIL (|has| (-547) (-794)))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (|has| (-547) (-855 (-547)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (|has| (-547) (-855 (-370))))) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL)) (-1382 (((-547) $) 37)) (-3652 (((-3 $ "failed") $) NIL (|has| (-547) (-1111)))) (-3937 (((-112) $) NIL (|has| (-547) (-794)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-547) (-821)))) (-2781 (($ (-1 (-547) (-547)) $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL)) (-3045 (($) NIL (|has| (-547) (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2567 (($ $) NIL (|has| (-547) (-298))) (((-398 (-547)) $) 42)) (-2960 (((-1116 (-547)) $) 59)) (-1387 (($ (-619 (-547)) (-619 (-547))) 63)) (-1435 (((-547) $) 53 (|has| (-547) (-532)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| (-547) (-878)))) (-2106 (((-409 $) $) NIL)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2670 (($ $ (-619 (-547)) (-619 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-547) (-547)) NIL (|has| (-547) (-300 (-547)))) (($ $ (-285 (-547))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-285 (-547)))) NIL (|has| (-547) (-300 (-547)))) (($ $ (-619 (-1135)) (-619 (-547))) NIL (|has| (-547) (-503 (-1135) (-547)))) (($ $ (-1135) (-547)) NIL (|has| (-547) (-503 (-1135) (-547))))) (-2776 (((-745) $) NIL)) (-3329 (($ $ (-547)) NIL (|has| (-547) (-277 (-547) (-547))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $) 11 (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-3660 (($ $) NIL)) (-1392 (((-547) $) 39)) (-1573 (((-619 (-547)) $) 61)) (-2829 (((-861 (-547)) $) NIL (|has| (-547) (-592 (-861 (-547))))) (((-861 (-370)) $) NIL (|has| (-547) (-592 (-861 (-370))))) (((-523) $) NIL (|has| (-547) (-592 (-523)))) (((-370) $) NIL (|has| (-547) (-991))) (((-217) $) NIL (|has| (-547) (-991)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-547) (-878))))) (-3834 (((-832) $) 77) (($ (-547)) 43) (($ $) NIL) (($ (-398 (-547))) 20) (($ (-547)) 43) (($ (-1135)) NIL (|has| (-547) (-1007 (-1135)))) (((-398 (-547)) $) 18)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-547) (-878))) (|has| (-547) (-143))))) (-2311 (((-745)) 9)) (-1564 (((-547) $) 51 (|has| (-547) (-532)))) (-1932 (((-112) $ $) NIL)) (-2040 (($ $) NIL (|has| (-547) (-794)))) (-3267 (($) 10 T CONST)) (-3277 (($) 12 T CONST)) (-1686 (($ $) NIL (|has| (-547) (-225))) (($ $ (-745)) NIL (|has| (-547) (-225))) (($ $ (-1135)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| (-547) (-869 (-1135)))) (($ $ (-1 (-547) (-547)) (-745)) NIL) (($ $ (-1 (-547) (-547))) NIL)) (-2433 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2371 (((-112) $ $) 14)) (-2421 (((-112) $ $) NIL (|has| (-547) (-821)))) (-2396 (((-112) $ $) 33 (|has| (-547) (-821)))) (-2497 (($ $ $) 29) (($ (-547) (-547)) 31)) (-2484 (($ $) 15) (($ $ $) 23)) (-2470 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 25) (($ $ $) 27) (($ $ (-398 (-547))) NIL) (($ (-398 (-547)) $) NIL) (($ (-547) $) 25) (($ $ (-547)) NIL))) +(((-973 |#1|) (-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -3060 ((-619 (-547)) $)) (-15 -2960 ((-1116 (-547)) $)) (-15 -1669 ((-619 (-547)) $)) (-15 -1573 ((-619 (-547)) $)) (-15 -1471 ($ (-619 (-547)))) (-15 -1387 ($ (-619 (-547)) (-619 (-547)))))) (-547)) (T -973)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-1116 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1471 (*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) (-1387 (*1 *1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) +(-13 (-961 (-547)) (-10 -8 (-15 -3834 ((-398 (-547)) $)) (-15 -2567 ((-398 (-547)) $)) (-15 -3060 ((-619 (-547)) $)) (-15 -2960 ((-1116 (-547)) $)) (-15 -1669 ((-619 (-547)) $)) (-15 -1573 ((-619 (-547)) $)) (-15 -1471 ($ (-619 (-547)))) (-15 -1387 ($ (-619 (-547)) (-619 (-547)))))) +((-3163 (((-52) (-398 (-547)) (-547)) 9))) +(((-974) (-10 -7 (-15 -3163 ((-52) (-398 (-547)) (-547))))) (T -974)) +((-3163 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-547))) (-5 *4 (-547)) (-5 *2 (-52)) (-5 *1 (-974))))) +(-10 -7 (-15 -3163 ((-52) (-398 (-547)) (-547)))) +((-3603 (((-547)) 13)) (-2304 (((-547)) 16)) (-2175 (((-1223) (-547)) 15)) (-3243 (((-547) (-547)) 17) (((-547)) 12))) +(((-975) (-10 -7 (-15 -3243 ((-547))) (-15 -3603 ((-547))) (-15 -3243 ((-547) (-547))) (-15 -2175 ((-1223) (-547))) (-15 -2304 ((-547))))) (T -975)) +((-2304 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-975)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) (-3603 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) (-3243 (*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975))))) +(-10 -7 (-15 -3243 ((-547))) (-15 -3603 ((-547))) (-15 -3243 ((-547) (-547))) (-15 -2175 ((-1223) (-547))) (-15 -2304 ((-547)))) +((-2236 (((-409 |#1|) |#1|) 41)) (-2106 (((-409 |#1|) |#1|) 40))) +(((-976 |#1|) (-10 -7 (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2236 ((-409 |#1|) |#1|))) (-1194 (-398 (-547)))) (T -976)) +((-2236 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1194 (-398 (-547)))))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1194 (-398 (-547))))))) +(-10 -7 (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2236 ((-409 |#1|) |#1|))) +((-2653 (((-3 (-398 (-547)) "failed") |#1|) 15)) (-2543 (((-112) |#1|) 14)) (-2430 (((-398 (-547)) |#1|) 10))) +(((-977 |#1|) (-10 -7 (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|))) (-1007 (-398 (-547)))) (T -977)) +((-2653 (*1 *2 *3) (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2)))) (-2543 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-398 (-547)))))) (-2430 (*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2))))) +(-10 -7 (-15 -2430 ((-398 (-547)) |#1|)) (-15 -2543 ((-112) |#1|)) (-15 -2653 ((-3 (-398 (-547)) "failed") |#1|))) +((-2238 ((|#2| $ "value" |#2|) 12)) (-3329 ((|#2| $ "value") 10)) (-1770 (((-112) $ $) 18))) +(((-978 |#1| |#2|) (-10 -8 (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -1770 ((-112) |#1| |#1|)) (-15 -3329 (|#2| |#1| "value"))) (-979 |#2|) (-1172)) (T -978)) +NIL +(-10 -8 (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -1770 ((-112) |#1| |#1|)) (-15 -3329 (|#2| |#1| "value"))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-3219 (($) 7 T CONST)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47)) (-1887 (((-547) $ $) 44)) (-2094 (((-112) $) 46)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-979 |#1|) (-138) (-1172)) (T -979)) -((-2956 (*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-4245 (*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-4234 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-548)))) (-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4213 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4328)) (-4 *1 (-979 *3)) (-4 *3 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-4192 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) (-4 *2 (-1172))))) -(-13 (-480 |t#1|) (-10 -8 (-15 -2956 ((-619 $) $)) (-15 -4245 ((-619 $) $)) (-15 -3010 ((-112) $)) (-15 -4056 (|t#1| $)) (-15 -3171 (|t#1| $ "value")) (-15 -2740 ((-112) $)) (-15 -2869 ((-619 |t#1|) $)) (-15 -4234 ((-548) $ $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -4224 ((-112) $ $)) (-15 -4213 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4328)) (PROGN (-15 -4202 ($ $ (-619 $))) (-15 -2089 (|t#1| $ "value" |t#1|)) (-15 -4192 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-1926 (($ $) 9) (($ $ (-890)) 43) (($ (-399 (-548))) 13) (($ (-548)) 15)) (-3263 (((-3 $ "failed") (-1131 $) (-890) (-832)) 23) (((-3 $ "failed") (-1131 $) (-890)) 28)) (-2154 (($ $ (-548)) 49)) (-3835 (((-745)) 17)) (-3274 (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 (-399 (-548)))) 54) (((-619 $) (-1131 (-548))) 59) (((-619 $) (-921 $)) 63) (((-619 $) (-921 (-399 (-548)))) 67) (((-619 $) (-921 (-548))) 71)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ $ (-399 (-548))) 47))) -(((-980 |#1|) (-10 -8 (-15 -1926 (|#1| (-548))) (-15 -1926 (|#1| (-399 (-548)))) (-15 -1926 (|#1| |#1| (-890))) (-15 -3274 ((-619 |#1|) (-921 (-548)))) (-15 -3274 ((-619 |#1|) (-921 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-921 |#1|))) (-15 -3274 ((-619 |#1|) (-1131 (-548)))) (-15 -3274 ((-619 |#1|) (-1131 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-1131 |#1|))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -2154 (|#1| |#1| (-548))) (-15 -1926 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-981)) (T -980)) -((-3835 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981))))) -(-10 -8 (-15 -1926 (|#1| (-548))) (-15 -1926 (|#1| (-399 (-548)))) (-15 -1926 (|#1| |#1| (-890))) (-15 -3274 ((-619 |#1|) (-921 (-548)))) (-15 -3274 ((-619 |#1|) (-921 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-921 |#1|))) (-15 -3274 ((-619 |#1|) (-1131 (-548)))) (-15 -3274 ((-619 |#1|) (-1131 (-399 (-548))))) (-15 -3274 ((-619 |#1|) (-1131 |#1|))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890))) (-15 -3263 ((-3 |#1| "failed") (-1131 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -2154 (|#1| |#1| (-548))) (-15 -1926 (|#1| |#1|)) (-15 ** (|#1| |#1| (-548))) (-15 -3835 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 87)) (-3303 (($ $) 88)) (-3279 (((-112) $) 90)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 107)) (-2634 (((-410 $) $) 108)) (-1926 (($ $) 71) (($ $ (-890)) 57) (($ (-399 (-548))) 56) (($ (-548)) 55)) (-4087 (((-112) $ $) 98)) (-2672 (((-548) $) 124)) (-3030 (($) 17 T CONST)) (-3263 (((-3 $ "failed") (-1131 $) (-890) (-832)) 65) (((-3 $ "failed") (-1131 $) (-890)) 64)) (-2441 (((-3 (-548) "failed") $) 83 (|has| (-399 (-548)) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 81 (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-3 (-399 (-548)) "failed") $) 79)) (-2375 (((-548) $) 84 (|has| (-399 (-548)) (-1007 (-548)))) (((-399 (-548)) $) 82 (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-399 (-548)) $) 78)) (-4269 (($ $ (-832)) 54)) (-4258 (($ $ (-832)) 53)) (-1945 (($ $ $) 102)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 101)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 96)) (-1271 (((-112) $) 109)) (-3298 (((-112) $) 122)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 70)) (-3312 (((-112) $) 123)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 105)) (-1795 (($ $ $) 121)) (-3091 (($ $ $) 120)) (-4280 (((-3 (-1131 $) "failed") $) 66)) (-4302 (((-3 (-832) "failed") $) 68)) (-4290 (((-3 (-1131 $) "failed") $) 67)) (-3553 (($ (-619 $)) 94) (($ $ $) 93)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 110)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 95)) (-3587 (($ (-619 $)) 92) (($ $ $) 91)) (-1915 (((-410 $) $) 106)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 103)) (-1900 (((-3 $ "failed") $ $) 86)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 97)) (-4077 (((-745) $) 99)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 100)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 114) (($ $) 85) (($ (-399 (-548))) 80) (($ (-548)) 77) (($ (-399 (-548))) 74)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 89)) (-2439 (((-399 (-548)) $ $) 52)) (-3274 (((-619 $) (-1131 $)) 63) (((-619 $) (-1131 (-399 (-548)))) 62) (((-619 $) (-1131 (-548))) 61) (((-619 $) (-921 $)) 60) (((-619 $) (-921 (-399 (-548)))) 59) (((-619 $) (-921 (-548))) 58)) (-1446 (($ $) 125)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 118)) (-2241 (((-112) $ $) 117)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 119)) (-2234 (((-112) $ $) 116)) (-2309 (($ $ $) 115)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 111) (($ $ (-399 (-548))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ (-399 (-548)) $) 113) (($ $ (-399 (-548))) 112) (($ (-548) $) 76) (($ $ (-548)) 75) (($ (-399 (-548)) $) 73) (($ $ (-399 (-548))) 72))) +((-3668 (*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-1996 (*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3)))) (-1887 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-547)))) (-1770 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1655 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1534 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4329)) (-4 *1 (-979 *3)) (-4 *3 (-1172)))) (-2238 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4329)) (-4 *1 (-979 *2)) (-4 *2 (-1172)))) (-2741 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-979 *2)) (-4 *2 (-1172))))) +(-13 (-479 |t#1|) (-10 -8 (-15 -3668 ((-619 $) $)) (-15 -1996 ((-619 $) $)) (-15 -3033 ((-112) $)) (-15 -4152 (|t#1| $)) (-15 -3329 (|t#1| $ "value")) (-15 -2094 ((-112) $)) (-15 -3579 ((-619 |t#1|) $)) (-15 -1887 ((-547) $ $)) (IF (|has| |t#1| (-1063)) (PROGN (-15 -1770 ((-112) $ $)) (-15 -1655 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4329)) (PROGN (-15 -1534 ($ $ (-619 $))) (-15 -2238 (|t#1| $ "value" |t#1|)) (-15 -2741 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2118 (($ $) 9) (($ $ (-890)) 43) (($ (-398 (-547))) 13) (($ (-547)) 15)) (-1658 (((-3 $ "failed") (-1131 $) (-890) (-832)) 23) (((-3 $ "failed") (-1131 $) (-890)) 28)) (-1311 (($ $ (-547)) 49)) (-2311 (((-745)) 17)) (-1785 (((-619 $) (-1131 $)) NIL) (((-619 $) (-1131 (-398 (-547)))) 54) (((-619 $) (-1131 (-547))) 59) (((-619 $) (-921 $)) 63) (((-619 $) (-921 (-398 (-547)))) 67) (((-619 $) (-921 (-547))) 71)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ $ (-398 (-547))) 47))) +(((-980 |#1|) (-10 -8 (-15 -2118 (|#1| (-547))) (-15 -2118 (|#1| (-398 (-547)))) (-15 -2118 (|#1| |#1| (-890))) (-15 -1785 ((-619 |#1|) (-921 (-547)))) (-15 -1785 ((-619 |#1|) (-921 (-398 (-547))))) (-15 -1785 ((-619 |#1|) (-921 |#1|))) (-15 -1785 ((-619 |#1|) (-1131 (-547)))) (-15 -1785 ((-619 |#1|) (-1131 (-398 (-547))))) (-15 -1785 ((-619 |#1|) (-1131 |#1|))) (-15 -1658 ((-3 |#1| "failed") (-1131 |#1|) (-890))) (-15 -1658 ((-3 |#1| "failed") (-1131 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -1311 (|#1| |#1| (-547))) (-15 -2118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2311 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) (-981)) (T -980)) +((-2311 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981))))) +(-10 -8 (-15 -2118 (|#1| (-547))) (-15 -2118 (|#1| (-398 (-547)))) (-15 -2118 (|#1| |#1| (-890))) (-15 -1785 ((-619 |#1|) (-921 (-547)))) (-15 -1785 ((-619 |#1|) (-921 (-398 (-547))))) (-15 -1785 ((-619 |#1|) (-921 |#1|))) (-15 -1785 ((-619 |#1|) (-1131 (-547)))) (-15 -1785 ((-619 |#1|) (-1131 (-398 (-547))))) (-15 -1785 ((-619 |#1|) (-1131 |#1|))) (-15 -1658 ((-3 |#1| "failed") (-1131 |#1|) (-890))) (-15 -1658 ((-3 |#1| "failed") (-1131 |#1|) (-890) (-832))) (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -1311 (|#1| |#1| (-547))) (-15 -2118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-547))) (-15 -2311 ((-745))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 87)) (-3881 (($ $) 88)) (-1832 (((-112) $) 90)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 107)) (-3457 (((-409 $) $) 108)) (-2118 (($ $) 71) (($ $ (-890)) 57) (($ (-398 (-547))) 56) (($ (-547)) 55)) (-2873 (((-112) $ $) 98)) (-3807 (((-547) $) 124)) (-3219 (($) 17 T CONST)) (-1658 (((-3 $ "failed") (-1131 $) (-890) (-832)) 65) (((-3 $ "failed") (-1131 $) (-890)) 64)) (-2698 (((-3 (-547) "failed") $) 83 (|has| (-398 (-547)) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 81 (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-3 (-398 (-547)) "failed") $) 79)) (-2643 (((-547) $) 84 (|has| (-398 (-547)) (-1007 (-547)))) (((-398 (-547)) $) 82 (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-398 (-547)) $) 78)) (-4043 (($ $ (-832)) 54)) (-3934 (($ $ (-832)) 53)) (-2079 (($ $ $) 102)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 101)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 96)) (-3674 (((-112) $) 109)) (-3848 (((-112) $) 122)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 70)) (-3937 (((-112) $) 123)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 105)) (-2847 (($ $ $) 121)) (-3563 (($ $ $) 120)) (-4141 (((-3 (-1131 $) "failed") $) 66)) (-1300 (((-3 (-832) "failed") $) 68)) (-4236 (((-3 (-1131 $) "failed") $) 67)) (-3685 (($ (-619 $)) 94) (($ $ $) 93)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 110)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 95)) (-3715 (($ (-619 $)) 92) (($ $ $) 91)) (-2106 (((-409 $) $) 106)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 103)) (-2025 (((-3 $ "failed") $ $) 86)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 97)) (-2776 (((-745) $) 99)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 100)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 114) (($ $) 85) (($ (-398 (-547))) 80) (($ (-547)) 77) (($ (-398 (-547))) 74)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 89)) (-2645 (((-398 (-547)) $ $) 52)) (-1785 (((-619 $) (-1131 $)) 63) (((-619 $) (-1131 (-398 (-547)))) 62) (((-619 $) (-1131 (-547))) 61) (((-619 $) (-921 $)) 60) (((-619 $) (-921 (-398 (-547)))) 59) (((-619 $) (-921 (-547))) 58)) (-2040 (($ $) 125)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 118)) (-2408 (((-112) $ $) 117)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 119)) (-2396 (((-112) $ $) 116)) (-2497 (($ $ $) 115)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 111) (($ $ (-398 (-547))) 69)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ (-398 (-547)) $) 113) (($ $ (-398 (-547))) 112) (($ (-547) $) 76) (($ $ (-547)) 75) (($ (-398 (-547)) $) 73) (($ $ (-398 (-547))) 72))) (((-981) (-138)) (T -981)) -((-1926 (*1 *1 *1) (-4 *1 (-981))) (-4302 (*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832)))) (-4290 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981)))) (-4280 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981)))) (-3263 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-5 *4 (-832)) (-4 *1 (-981)))) (-3263 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1131 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-1926 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-981)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-981)))) (-4269 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-4258 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-2439 (*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-399 (-548)))))) -(-13 (-145) (-819) (-169) (-355) (-403 (-399 (-548))) (-38 (-548)) (-38 (-399 (-548))) (-971) (-10 -8 (-15 -4302 ((-3 (-832) "failed") $)) (-15 -4290 ((-3 (-1131 $) "failed") $)) (-15 -4280 ((-3 (-1131 $) "failed") $)) (-15 -3263 ((-3 $ "failed") (-1131 $) (-890) (-832))) (-15 -3263 ((-3 $ "failed") (-1131 $) (-890))) (-15 -3274 ((-619 $) (-1131 $))) (-15 -3274 ((-619 $) (-1131 (-399 (-548))))) (-15 -3274 ((-619 $) (-1131 (-548)))) (-15 -3274 ((-619 $) (-921 $))) (-15 -3274 ((-619 $) (-921 (-399 (-548))))) (-15 -3274 ((-619 $) (-921 (-548)))) (-15 -1926 ($ $ (-890))) (-15 -1926 ($ $)) (-15 -1926 ($ (-399 (-548)))) (-15 -1926 ($ (-548))) (-15 -4269 ($ $ (-832))) (-15 -4258 ($ $ (-832))) (-15 -2439 ((-399 (-548)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 #1=(-548)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-403 (-399 (-548))) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 #1#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 #1#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-889) . T) ((-971) . T) ((-1007 (-399 (-548))) . T) ((-1007 (-548)) |has| (-399 (-548)) (-1007 (-548))) ((-1022 #0#) . T) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-1257 (((-2 (|:| |ans| |#2|) (|:| -3676 |#2|) (|:| |sol?| (-112))) (-548) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-982 |#1| |#2|) (-10 -7 (-15 -1257 ((-2 (|:| |ans| |#2|) (|:| -3676 |#2|) (|:| |sol?| (-112))) (-548) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-27) (-422 |#1|))) (T -982)) -((-1257 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1135)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1157) (-27) (-422 *8))) (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-548)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112)))) (-5 *1 (-982 *8 *4))))) -(-10 -7 (-15 -1257 ((-2 (|:| |ans| |#2|) (|:| -3676 |#2|) (|:| |sol?| (-112))) (-548) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1269 (((-3 (-619 |#2|) "failed") (-548) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-983 |#1| |#2|) (-10 -7 (-15 -1269 ((-3 (-619 |#2|) "failed") (-548) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548))) (-13 (-1157) (-27) (-422 |#1|))) (T -983)) -((-1269 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1135)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1157) (-27) (-422 *8))) (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-548)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4))))) -(-10 -7 (-15 -1269 ((-3 (-619 |#2|) "failed") (-548) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -1699 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1304 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-548)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-548) (-1 |#2| |#2|)) 30)) (-1282 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |c| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|)) 58)) (-1293 (((-2 (|:| |ans| (-399 |#2|)) (|:| |nosol| (-112))) (-399 |#2|) (-399 |#2|)) 63))) -(((-984 |#1| |#2|) (-10 -7 (-15 -1282 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |c| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1293 ((-2 (|:| |ans| (-399 |#2|)) (|:| |nosol| (-112))) (-399 |#2|) (-399 |#2|))) (-15 -1304 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-548)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-548) (-1 |#2| |#2|)))) (-13 (-355) (-145) (-1007 (-548))) (-1194 |#1|)) (T -984)) -((-1304 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1194 *6)) (-4 *6 (-13 (-355) (-145) (-1007 *4))) (-5 *4 (-548)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-984 *6 *3)))) (-1293 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |ans| (-399 *5)) (|:| |nosol| (-112)))) (-5 *1 (-984 *4 *5)) (-5 *3 (-399 *5)))) (-1282 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |c| (-399 *6)) (|:| -2405 *6))) (-5 *1 (-984 *5 *6)) (-5 *3 (-399 *6))))) -(-10 -7 (-15 -1282 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |c| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1293 ((-2 (|:| |ans| (-399 |#2|)) (|:| |nosol| (-112))) (-399 |#2|) (-399 |#2|))) (-15 -1304 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2383 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-548)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-548) (-1 |#2| |#2|)))) -((-1316 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |h| |#2|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|)) 22)) (-1327 (((-3 (-619 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)) 33))) -(((-985 |#1| |#2|) (-10 -7 (-15 -1316 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |h| |#2|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1327 ((-3 (-619 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)))) (-13 (-355) (-145) (-1007 (-548))) (-1194 |#1|)) (T -985)) -((-1327 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-399 *5))) (-5 *1 (-985 *4 *5)) (-5 *3 (-399 *5)))) (-1316 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |h| *6) (|:| |c1| (-399 *6)) (|:| |c2| (-399 *6)) (|:| -2405 *6))) (-5 *1 (-985 *5 *6)) (-5 *3 (-399 *6))))) -(-10 -7 (-15 -1316 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-399 |#2|)) (|:| |h| |#2|) (|:| |c1| (-399 |#2|)) (|:| |c2| (-399 |#2|)) (|:| -2405 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|) (-1 |#2| |#2|))) (-15 -1327 ((-3 (-619 (-399 |#2|)) "failed") (-399 |#2|) (-399 |#2|) (-399 |#2|)))) -((-1339 (((-1 |#1|) (-619 (-2 (|:| -4056 |#1|) (|:| -3266 (-548))))) 37)) (-3602 (((-1 |#1|) (-1065 |#1|)) 45)) (-1349 (((-1 |#1|) (-1218 |#1|) (-1218 (-548)) (-548)) 34))) -(((-986 |#1|) (-10 -7 (-15 -3602 ((-1 |#1|) (-1065 |#1|))) (-15 -1339 ((-1 |#1|) (-619 (-2 (|:| -4056 |#1|) (|:| -3266 (-548)))))) (-15 -1349 ((-1 |#1|) (-1218 |#1|) (-1218 (-548)) (-548)))) (-1063)) (T -986)) -((-1349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1218 *6)) (-5 *4 (-1218 (-548))) (-5 *5 (-548)) (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -4056 *4) (|:| -3266 (-548))))) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4))))) -(-10 -7 (-15 -3602 ((-1 |#1|) (-1065 |#1|))) (-15 -1339 ((-1 |#1|) (-619 (-2 (|:| -4056 |#1|) (|:| -3266 (-548)))))) (-15 -1349 ((-1 |#1|) (-1218 |#1|) (-1218 (-548)) (-548)))) -((-1672 (((-745) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-355) (-1194 |#1|) (-1194 (-399 |#2|)) (-334 |#1| |#2| |#3|) (-13 (-360) (-355))) (T -987)) -((-1672 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-355)) (-4 *7 (-1194 *6)) (-4 *4 (-1194 (-399 *7))) (-4 *8 (-334 *6 *7 *4)) (-4 *9 (-13 (-360) (-355))) (-5 *2 (-745)) (-5 *1 (-987 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -1672 ((-745) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3730 (((-112) $ $) NIL)) (-1402 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 11)) (-2214 (((-112) $ $) NIL))) -(((-988) (-13 (-1047) (-10 -8 (-15 -1402 ((-1140) $)) (-15 -2286 ((-1140) $))))) (T -988)) -((-1402 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988))))) -(-13 (-1047) (-10 -8 (-15 -1402 ((-1140) $)) (-15 -2286 ((-1140) $)))) -((-3933 (((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 31) (((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 28)) (-1383 (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 33) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548))) 29) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 32) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|) 27)) (-1372 (((-619 (-399 (-548))) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) 19)) (-1360 (((-399 (-548)) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 16))) -(((-989 |#1|) (-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1360 ((-399 (-548)) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1372 ((-619 (-399 (-548))) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))))) (-1194 (-548))) (T -989)) -((-1372 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *2 (-619 (-399 (-548)))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-548))))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *2 (-399 (-548))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-548))))) (-3933 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) (-3933 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *4 (-399 (-548))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) (-1383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-399 (-548))) (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-399 (-548))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548)))))) -(-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1360 ((-399 (-548)) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1372 ((-619 (-399 (-548))) (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))))) -((-3933 (((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 35) (((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 32)) (-1383 (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548))) 30) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548))) 26) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) 28) (((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|) 24))) -(((-990 |#1|) (-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-1194 (-399 (-548)))) (T -990)) -((-3933 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))))) (-3933 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) (-5 *4 (-399 (-548))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) (-1383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-399 (-548))) (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *5)) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5))))) (-1383 (*1 *2 *3 *4) (-12 (-5 *4 (-399 (-548))) (-5 *2 (-619 (-2 (|:| -3663 *4) (|:| -3676 *4)))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))) (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548))))))) -(-10 -7 (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1|)) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-399 (-548)))) (-15 -1383 ((-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-399 (-548)))) (-15 -3933 ((-3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) "failed") |#1| (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))) (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) -((-2591 (((-218) $) 6) (((-371) $) 9))) +((-2118 (*1 *1 *1) (-4 *1 (-981))) (-1300 (*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832)))) (-4236 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981)))) (-4141 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981)))) (-1658 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-5 *4 (-832)) (-4 *1 (-981)))) (-1658 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1131 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1131 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) (-2118 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-981)))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-981)))) (-4043 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832)))) (-2645 (*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-398 (-547)))))) +(-13 (-145) (-819) (-169) (-354) (-402 (-398 (-547))) (-38 (-547)) (-38 (-398 (-547))) (-971) (-10 -8 (-15 -1300 ((-3 (-832) "failed") $)) (-15 -4236 ((-3 (-1131 $) "failed") $)) (-15 -4141 ((-3 (-1131 $) "failed") $)) (-15 -1658 ((-3 $ "failed") (-1131 $) (-890) (-832))) (-15 -1658 ((-3 $ "failed") (-1131 $) (-890))) (-15 -1785 ((-619 $) (-1131 $))) (-15 -1785 ((-619 $) (-1131 (-398 (-547))))) (-15 -1785 ((-619 $) (-1131 (-547)))) (-15 -1785 ((-619 $) (-921 $))) (-15 -1785 ((-619 $) (-921 (-398 (-547))))) (-15 -1785 ((-619 $) (-921 (-547)))) (-15 -2118 ($ $ (-890))) (-15 -2118 ($ $)) (-15 -2118 ($ (-398 (-547)))) (-15 -2118 ($ (-547))) (-15 -4043 ($ $ (-832))) (-15 -3934 ($ $ (-832))) (-15 -2645 ((-398 (-547)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 #1=(-547)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-402 (-398 (-547))) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 #1#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 #1#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-889) . T) ((-971) . T) ((-1007 (-398 (-547))) . T) ((-1007 (-547)) |has| (-398 (-547)) (-1007 (-547))) ((-1022 #0#) . T) ((-1022 #1#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3184 (((-2 (|:| |ans| |#2|) (|:| -3836 |#2|) (|:| |sol?| (-112))) (-547) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-982 |#1| |#2|) (-10 -7 (-15 -3184 ((-2 (|:| |ans| |#2|) (|:| -3836 |#2|) (|:| |sol?| (-112))) (-547) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-27) (-421 |#1|))) (T -982)) +((-3184 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1135)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2848 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1157) (-27) (-421 *8))) (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-547)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3836 *4) (|:| |sol?| (-112)))) (-5 *1 (-982 *8 *4))))) +(-10 -7 (-15 -3184 ((-2 (|:| |ans| |#2|) (|:| -3836 |#2|) (|:| |sol?| (-112))) (-547) |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3129 (((-3 (-619 |#2|) "failed") (-547) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-983 |#1| |#2|) (-10 -7 (-15 -3129 ((-3 (-619 |#2|) "failed") (-547) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547))) (-13 (-1157) (-27) (-421 |#1|))) (T -983)) +((-3129 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1135)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-619 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2848 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1157) (-27) (-421 *8))) (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3))) (-5 *3 (-547)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4))))) +(-10 -7 (-15 -3129 ((-3 (-619 |#2|) "failed") (-547) |#2| |#2| |#2| (-1135) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-619 |#2|)) (-1 (-3 (-2 (|:| -2848 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2176 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2636 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-547)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-547) (-1 |#2| |#2|)) 30)) (-2513 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |c| (-398 |#2|)) (|:| -2615 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|)) 58)) (-2036 (((-2 (|:| |ans| (-398 |#2|)) (|:| |nosol| (-112))) (-398 |#2|) (-398 |#2|)) 63))) +(((-984 |#1| |#2|) (-10 -7 (-15 -2513 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |c| (-398 |#2|)) (|:| -2615 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -2036 ((-2 (|:| |ans| (-398 |#2|)) (|:| |nosol| (-112))) (-398 |#2|) (-398 |#2|))) (-15 -2176 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2636 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-547)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-547) (-1 |#2| |#2|)))) (-13 (-354) (-145) (-1007 (-547))) (-1194 |#1|)) (T -984)) +((-2176 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1194 *6)) (-4 *6 (-13 (-354) (-145) (-1007 *4))) (-5 *4 (-547)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2636 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-984 *6 *3)))) (-2036 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| |ans| (-398 *5)) (|:| |nosol| (-112)))) (-5 *1 (-984 *4 *5)) (-5 *3 (-398 *5)))) (-2513 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |c| (-398 *6)) (|:| -2615 *6))) (-5 *1 (-984 *5 *6)) (-5 *3 (-398 *6))))) +(-10 -7 (-15 -2513 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |c| (-398 |#2|)) (|:| -2615 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -2036 ((-2 (|:| |ans| (-398 |#2|)) (|:| |nosol| (-112))) (-398 |#2|) (-398 |#2|))) (-15 -2176 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2636 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-547)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-547) (-1 |#2| |#2|)))) +((-2319 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |h| |#2|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| -2615 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|)) 22)) (-3138 (((-3 (-619 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)) 33))) +(((-985 |#1| |#2|) (-10 -7 (-15 -2319 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |h| |#2|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| -2615 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3138 ((-3 (-619 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)))) (-13 (-354) (-145) (-1007 (-547))) (-1194 |#1|)) (T -985)) +((-3138 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1194 *4)) (-5 *2 (-619 (-398 *5))) (-5 *1 (-985 *4 *5)) (-5 *3 (-398 *5)))) (-2319 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |h| *6) (|:| |c1| (-398 *6)) (|:| |c2| (-398 *6)) (|:| -2615 *6))) (-5 *1 (-985 *5 *6)) (-5 *3 (-398 *6))))) +(-10 -7 (-15 -2319 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-398 |#2|)) (|:| |h| |#2|) (|:| |c1| (-398 |#2|)) (|:| |c2| (-398 |#2|)) (|:| -2615 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|) (-1 |#2| |#2|))) (-15 -3138 ((-3 (-619 (-398 |#2|)) "failed") (-398 |#2|) (-398 |#2|) (-398 |#2|)))) +((-2525 (((-1 |#1|) (-619 (-2 (|:| -4152 |#1|) (|:| -1691 (-547))))) 37)) (-1768 (((-1 |#1|) (-1065 |#1|)) 45)) (-2240 (((-1 |#1|) (-1218 |#1|) (-1218 (-547)) (-547)) 34))) +(((-986 |#1|) (-10 -7 (-15 -1768 ((-1 |#1|) (-1065 |#1|))) (-15 -2525 ((-1 |#1|) (-619 (-2 (|:| -4152 |#1|) (|:| -1691 (-547)))))) (-15 -2240 ((-1 |#1|) (-1218 |#1|) (-1218 (-547)) (-547)))) (-1063)) (T -986)) +((-2240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1218 *6)) (-5 *4 (-1218 (-547))) (-5 *5 (-547)) (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -4152 *4) (|:| -1691 (-547))))) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4))))) +(-10 -7 (-15 -1768 ((-1 |#1|) (-1065 |#1|))) (-15 -2525 ((-1 |#1|) (-619 (-2 (|:| -4152 |#1|) (|:| -1691 (-547)))))) (-15 -2240 ((-1 |#1|) (-1218 |#1|) (-1218 (-547)) (-547)))) +((-3707 (((-745) (-327 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3707 ((-745) (-327 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-354) (-1194 |#1|) (-1194 (-398 |#2|)) (-333 |#1| |#2| |#3|) (-13 (-359) (-354))) (T -987)) +((-3707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-4 *4 (-1194 (-398 *7))) (-4 *8 (-333 *6 *7 *4)) (-4 *9 (-13 (-359) (-354))) (-5 *2 (-745)) (-5 *1 (-987 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3707 ((-745) (-327 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3821 (((-112) $ $) NIL)) (-3454 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-1140) $) 11)) (-2371 (((-112) $ $) NIL))) +(((-988) (-13 (-1047) (-10 -8 (-15 -3454 ((-1140) $)) (-15 -2478 ((-1140) $))))) (T -988)) +((-3454 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988))))) +(-13 (-1047) (-10 -8 (-15 -3454 ((-1140) $)) (-15 -2478 ((-1140) $)))) +((-1914 (((-3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) "failed") |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) 31) (((-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547))) 28)) (-3275 (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547))) 33) (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-398 (-547))) 29) (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) 32) (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1|) 27)) (-3130 (((-619 (-398 (-547))) (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) 19)) (-3781 (((-398 (-547)) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) 16))) +(((-989 |#1|) (-10 -7 (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1|)) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) "failed") |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3781 ((-398 (-547)) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3130 ((-619 (-398 (-547))) (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))))) (-1194 (-547))) (T -989)) +((-3130 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *2 (-619 (-398 (-547)))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-547))))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) (-5 *2 (-398 (-547))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-547))))) (-1914 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))))) (-1914 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) (-5 *4 (-398 (-547))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-398 (-547))) (-5 *2 (-619 (-2 (|:| -3826 *5) (|:| -3836 *5)))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))) (-5 *4 (-2 (|:| -3826 *5) (|:| -3836 *5))))) (-3275 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))) (-5 *4 (-398 (-547))))) (-3275 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))) (-5 *4 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547)))))) +(-10 -7 (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1|)) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) "failed") |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3781 ((-398 (-547)) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3130 ((-619 (-398 (-547))) (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))))) +((-1914 (((-3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) "failed") |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) 35) (((-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547))) 32)) (-3275 (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547))) 30) (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-398 (-547))) 26) (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) 28) (((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1|) 24))) +(((-990 |#1|) (-10 -7 (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1|)) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) "failed") |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) (-1194 (-398 (-547)))) (T -990)) +((-1914 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-398 (-547)))))) (-1914 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) (-5 *4 (-398 (-547))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-398 (-547))) (-5 *2 (-619 (-2 (|:| -3826 *5) (|:| -3836 *5)))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *5)) (-5 *4 (-2 (|:| -3826 *5) (|:| -3836 *5))))) (-3275 (*1 *2 *3 *4) (-12 (-5 *4 (-398 (-547))) (-5 *2 (-619 (-2 (|:| -3826 *4) (|:| -3836 *4)))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) (-3275 (*1 *2 *3 *4) (-12 (-5 *2 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-398 (-547)))) (-5 *4 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-5 *1 (-990 *3)) (-4 *3 (-1194 (-398 (-547))))))) +(-10 -7 (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1|)) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-398 (-547)))) (-15 -3275 ((-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-398 (-547)))) (-15 -1914 ((-3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) "failed") |#1| (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))) (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) +((-2829 (((-217) $) 6) (((-370) $) 9))) (((-991) (-138)) (T -991)) NIL -(-13 (-593 (-218)) (-593 (-371))) -(((-593 (-218)) . T) ((-593 (-371)) . T)) -((-3408 (((-619 (-371)) (-921 (-548)) (-371)) 28) (((-619 (-371)) (-921 (-399 (-548))) (-371)) 27)) (-2615 (((-619 (-619 (-371))) (-619 (-921 (-548))) (-619 (-1135)) (-371)) 37))) -(((-992) (-10 -7 (-15 -3408 ((-619 (-371)) (-921 (-399 (-548))) (-371))) (-15 -3408 ((-619 (-371)) (-921 (-548)) (-371))) (-15 -2615 ((-619 (-619 (-371))) (-619 (-921 (-548))) (-619 (-1135)) (-371))))) (T -992)) -((-2615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-371)))) (-5 *1 (-992)) (-5 *5 (-371)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 (-371))) (-5 *1 (-992)) (-5 *4 (-371)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 (-371))) (-5 *1 (-992)) (-5 *4 (-371))))) -(-10 -7 (-15 -3408 ((-619 (-371)) (-921 (-399 (-548))) (-371))) (-15 -3408 ((-619 (-371)) (-921 (-548)) (-371))) (-15 -2615 ((-619 (-619 (-371))) (-619 (-921 (-548))) (-619 (-1135)) (-371)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 70)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-1926 (($ $) NIL) (($ $ (-890)) NIL) (($ (-399 (-548))) NIL) (($ (-548)) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) 65)) (-3030 (($) NIL T CONST)) (-3263 (((-3 $ "failed") (-1131 $) (-890) (-832)) NIL) (((-3 $ "failed") (-1131 $) (-890)) 50)) (-2441 (((-3 (-399 (-548)) "failed") $) NIL (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-548) "failed") $) NIL (-1524 (|has| (-399 (-548)) (-1007 (-548))) (|has| |#1| (-1007 (-548)))))) (-2375 (((-399 (-548)) $) 15 (|has| (-399 (-548)) (-1007 (-399 (-548))))) (((-399 (-548)) $) 15) ((|#1| $) 108) (((-548) $) NIL (-1524 (|has| (-399 (-548)) (-1007 (-548))) (|has| |#1| (-1007 (-548)))))) (-4269 (($ $ (-832)) 42)) (-4258 (($ $ (-832)) 43)) (-1945 (($ $ $) NIL)) (-3250 (((-399 (-548)) $ $) 19)) (-3859 (((-3 $ "failed") $) 83)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3298 (((-112) $) 61)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL)) (-3312 (((-112) $) 64)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-4280 (((-3 (-1131 $) "failed") $) 78)) (-4302 (((-3 (-832) "failed") $) 77)) (-4290 (((-3 (-1131 $) "failed") $) 75)) (-1393 (((-3 (-1026 $ (-1131 $)) "failed") $) 73)) (-3553 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 84)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3743 (((-832) $) 82) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ $) 58) (($ (-399 (-548))) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ |#1|) 110)) (-3835 (((-745)) NIL)) (-3290 (((-112) $ $) NIL)) (-2439 (((-399 (-548)) $ $) 25)) (-3274 (((-619 $) (-1131 $)) 56) (((-619 $) (-1131 (-399 (-548)))) NIL) (((-619 $) (-1131 (-548))) NIL) (((-619 $) (-921 $)) NIL) (((-619 $) (-921 (-399 (-548)))) NIL) (((-619 $) (-921 (-548))) NIL)) (-1403 (($ (-1026 $ (-1131 $)) (-832)) 41)) (-1446 (($ $) 20)) (-3107 (($) 29 T CONST)) (-3118 (($) 35 T CONST)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 71)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 22)) (-2309 (($ $ $) 33)) (-2299 (($ $) 34) (($ $ $) 69)) (-2290 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL) (($ $ (-399 (-548))) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 91) (($ $ $) 96) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ (-548) $) 91) (($ $ (-548)) NIL) (($ (-399 (-548)) $) NIL) (($ $ (-399 (-548))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-993 |#1|) (-13 (-981) (-403 |#1|) (-38 |#1|) (-10 -8 (-15 -1403 ($ (-1026 $ (-1131 $)) (-832))) (-15 -1393 ((-3 (-1026 $ (-1131 $)) "failed") $)) (-15 -3250 ((-399 (-548)) $ $)))) (-13 (-819) (-355) (-991))) (T -993)) -((-1403 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-993 *4) (-1131 (-993 *4)))) (-5 *3 (-832)) (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-355) (-991))))) (-1393 (*1 *2 *1) (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1131 (-993 *3)))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-355) (-991))))) (-3250 (*1 *2 *1 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-355) (-991)))))) -(-13 (-981) (-403 |#1|) (-38 |#1|) (-10 -8 (-15 -1403 ($ (-1026 $ (-1131 $)) (-832))) (-15 -1393 ((-3 (-1026 $ (-1131 $)) "failed") $)) (-15 -3250 ((-399 (-548)) $ $)))) -((-1414 (((-2 (|:| -2383 |#2|) (|:| -2503 (-619 |#1|))) |#2| (-619 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-994 |#1| |#2|) (-10 -7 (-15 -1414 (|#2| |#2| |#1|)) (-15 -1414 ((-2 (|:| -2383 |#2|) (|:| -2503 (-619 |#1|))) |#2| (-619 |#1|)))) (-355) (-630 |#1|)) (T -994)) -((-1414 (*1 *2 *3 *4) (-12 (-4 *5 (-355)) (-5 *2 (-2 (|:| -2383 *3) (|:| -2503 (-619 *5)))) (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5)))) (-1414 (*1 *2 *2 *3) (-12 (-4 *3 (-355)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3))))) -(-10 -7 (-15 -1414 (|#2| |#2| |#1|)) (-15 -1414 ((-2 (|:| -2383 |#2|) (|:| -2503 (-619 |#1|))) |#2| (-619 |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1425 ((|#1| $ |#1|) 14)) (-2089 ((|#1| $ |#1|) 12)) (-1449 (($ |#1|) 10)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3171 ((|#1| $) 11)) (-1438 ((|#1| $) 13)) (-3743 (((-832) $) 21 (|has| |#1| (-1063)))) (-2214 (((-112) $ $) 9))) -(((-995 |#1|) (-13 (-1172) (-10 -8 (-15 -1449 ($ |#1|)) (-15 -3171 (|#1| $)) (-15 -2089 (|#1| $ |#1|)) (-15 -1438 (|#1| $)) (-15 -1425 (|#1| $ |#1|)) (-15 -2214 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -995)) -((-1449 (*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-1438 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-1425 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1172))))) -(-13 (-1172) (-10 -8 (-15 -1449 ($ |#1|)) (-15 -3171 (|#1| $)) (-15 -2089 (|#1| $ |#1|)) (-15 -1438 (|#1| $)) (-15 -1425 (|#1| $ |#1|)) (-15 -2214 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) 105) (((-619 $) (-619 |#4|) (-112)) 106) (((-619 $) (-619 |#4|) (-112) (-112)) 104) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 99)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 54)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) 26 (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 39)) (-2038 ((|#4| |#4| $) 57)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-2258 (((-112) |#4| $) NIL)) (-3425 (((-112) |#4| $) NIL)) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3665 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 119)) (-1934 (((-619 |#4|) $) 16 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 33)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 17 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 97)) (-3724 (((-3 |#4| "failed") $) 37)) (-3387 (((-619 $) |#4| $) 80)) (-3412 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-2520 (((-619 $) |#4| $) 102) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 103) (((-619 $) |#4| (-619 $)) NIL)) (-3678 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 114)) (-3688 (($ |#4| $) 70) (($ (-619 |#4|) $) 71) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2179 (((-619 |#4|) $) NIL)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 35)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) 48)) (-1656 (($ $ |#4|) NIL) (((-619 $) |#4| $) 82) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 77)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 13)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 12)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 20)) (-2298 (($ $ |#3|) 42)) (-2319 (($ $ |#3|) 44)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 31) (((-619 |#4|) $) 40)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3338 (((-619 $) |#4| $) 79) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2247 (((-112) |#4| $) NIL)) (-2406 (((-112) |#3| $) 53)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-996 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -996)) -((-3688 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) -(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) -((-1564 (((-619 (-663 |#1|)) (-619 (-663 |#1|))) 58) (((-663 |#1|) (-663 |#1|)) 57) (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 56) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 53)) (-1555 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 52) (((-663 |#1|) (-663 |#1|) (-890)) 51)) (-1572 (((-619 (-663 (-548))) (-619 (-619 (-548)))) 68) (((-619 (-663 (-548))) (-619 (-874 (-548))) (-548)) 67) (((-663 (-548)) (-619 (-548))) 64) (((-663 (-548)) (-874 (-548)) (-548)) 63)) (-1546 (((-663 (-921 |#1|)) (-745)) 81)) (-1537 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 37 (|has| |#1| (-6 (-4329 "*")))) (((-663 |#1|) (-663 |#1|) (-890)) 35 (|has| |#1| (-6 (-4329 "*")))))) -(((-997 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -1546 ((-663 (-921 |#1|)) (-745))) (-15 -1555 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -1555 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -1564 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1564 ((-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1572 ((-663 (-548)) (-874 (-548)) (-548))) (-15 -1572 ((-663 (-548)) (-619 (-548)))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-874 (-548))) (-548))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-619 (-548)))))) (-1016)) (T -997)) -((-1572 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-548)))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-874 (-548)))) (-5 *4 (-548)) (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-548))) (-5 *4 (-548)) (-5 *2 (-663 *4)) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4329 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4329 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4329 "*"))) (-15 -1537 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -1546 ((-663 (-921 |#1|)) (-745))) (-15 -1555 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -1555 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -1564 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1564 ((-663 |#1|) (-663 |#1|))) (-15 -1564 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1572 ((-663 (-548)) (-874 (-548)) (-548))) (-15 -1572 ((-663 (-548)) (-619 (-548)))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-874 (-548))) (-548))) (-15 -1572 ((-619 (-663 (-548))) (-619 (-619 (-548)))))) -((-1609 (((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)) 50 (|has| |#1| (-299)))) (-3530 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))) 76 (|has| |#1| (-355))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|)) 79 (|has| |#1| (-355)))) (-3454 (((-1218 |#1|) (-619 (-1218 |#1|)) (-548)) 93 (-12 (|has| |#1| (-355)) (|has| |#1| (-360))))) (-3443 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890)) 85 (-12 (|has| |#1| (-355)) (|has| |#1| (-360)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112)) 83 (-12 (|has| |#1| (-355)) (|has| |#1| (-360)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|))) 82 (-12 (|has| |#1| (-355)) (|has| |#1| (-360)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-548) (-548)) 81 (-12 (|has| |#1| (-355)) (|has| |#1| (-360))))) (-1629 (((-112) (-619 (-663 |#1|))) 71 (|has| |#1| (-355))) (((-112) (-619 (-663 |#1|)) (-548)) 73 (|has| |#1| (-355)))) (-1600 (((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|)) 48 (|has| |#1| (-299)))) (-1592 (((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|)) 34)) (-1582 (((-663 |#1|) (-1218 (-1218 |#1|))) 31)) (-1621 (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-548)) 65 (|has| |#1| (-355))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 64 (|has| |#1| (-355))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-548)) 69 (|has| |#1| (-355))))) -(((-998 |#1|) (-10 -7 (-15 -1582 ((-663 |#1|) (-1218 (-1218 |#1|)))) (-15 -1592 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-299)) (PROGN (-15 -1600 ((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -1609 ((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-548))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))))) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#1| (-355)) (PROGN (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-548) (-548))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -3454 ((-1218 |#1|) (-619 (-1218 |#1|)) (-548)))) |%noBranch|) |%noBranch|)) (-1016)) (T -998)) -((-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1218 *5))) (-5 *4 (-548)) (-5 *2 (-1218 *5)) (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-355)) (-4 *4 (-360)) (-4 *4 (-1016)) (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) (-5 *3 (-619 (-663 *4))))) (-3443 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-548)) (-4 *6 (-355)) (-4 *6 (-360)) (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) (-5 *3 (-619 (-663 *6))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1218 (-1218 *5))) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *4)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-4 *5 (-355)) (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) (-1621 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-1016)))) (-1621 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) (-4 *4 (-355)) (-4 *4 (-1016)))) (-1621 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-548)) (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-355)) (-4 *6 (-1016)))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1218 *5)) (-4 *5 (-299)) (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-299)) (-4 *5 (-1016)) (-5 *2 (-1218 (-1218 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1218 *5)))) (-1592 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-998 *4)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-1218 (-1218 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) (-5 *1 (-998 *4))))) -(-10 -7 (-15 -1582 ((-663 |#1|) (-1218 (-1218 |#1|)))) (-15 -1592 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-299)) (PROGN (-15 -1600 ((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -1609 ((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-548))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -1621 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)) (-548))) (-15 -1629 ((-112) (-619 (-663 |#1|)))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -3530 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))))) |%noBranch|) (IF (|has| |#1| (-360)) (IF (|has| |#1| (-355)) (PROGN (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-548) (-548))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -3443 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -3454 ((-1218 |#1|) (-619 (-1218 |#1|)) (-548)))) |%noBranch|) |%noBranch|)) -((-3877 ((|#1| (-890) |#1|) 9))) -(((-999 |#1|) (-10 -7 (-15 -3877 (|#1| (-890) |#1|))) (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $))))) (T -999)) -((-3877 (*1 *2 *3 *2) (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)))))))) -(-10 -7 (-15 -3877 (|#1| (-890) |#1|))) -((-1459 (((-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548))))))) (-663 (-399 (-921 (-548))))) 59)) (-1471 (((-619 (-663 (-308 (-548)))) (-308 (-548)) (-663 (-399 (-921 (-548))))) 48)) (-1482 (((-619 (-308 (-548))) (-663 (-399 (-921 (-548))))) 41)) (-1527 (((-619 (-663 (-308 (-548)))) (-663 (-399 (-921 (-548))))) 68)) (-1506 (((-663 (-308 (-548))) (-663 (-308 (-548)))) 34)) (-1517 (((-619 (-663 (-308 (-548)))) (-619 (-663 (-308 (-548))))) 62)) (-1494 (((-3 (-663 (-308 (-548))) "failed") (-663 (-399 (-921 (-548))))) 66))) -(((-1000) (-10 -7 (-15 -1459 ((-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548))))))) (-663 (-399 (-921 (-548)))))) (-15 -1471 ((-619 (-663 (-308 (-548)))) (-308 (-548)) (-663 (-399 (-921 (-548)))))) (-15 -1482 ((-619 (-308 (-548))) (-663 (-399 (-921 (-548)))))) (-15 -1494 ((-3 (-663 (-308 (-548))) "failed") (-663 (-399 (-921 (-548)))))) (-15 -1506 ((-663 (-308 (-548))) (-663 (-308 (-548))))) (-15 -1517 ((-619 (-663 (-308 (-548)))) (-619 (-663 (-308 (-548)))))) (-15 -1527 ((-619 (-663 (-308 (-548)))) (-663 (-399 (-921 (-548)))))))) (T -1000)) -((-1527 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)))) (-1506 (*1 *2 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000)))) (-1494 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-308 (-548)))) (-5 *1 (-1000)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)) (-5 *3 (-308 (-548))))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548)))))))) (-5 *1 (-1000))))) -(-10 -7 (-15 -1459 ((-619 (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) (|:| |radvect| (-619 (-663 (-308 (-548))))))) (-663 (-399 (-921 (-548)))))) (-15 -1471 ((-619 (-663 (-308 (-548)))) (-308 (-548)) (-663 (-399 (-921 (-548)))))) (-15 -1482 ((-619 (-308 (-548))) (-663 (-399 (-921 (-548)))))) (-15 -1494 ((-3 (-663 (-308 (-548))) "failed") (-663 (-399 (-921 (-548)))))) (-15 -1506 ((-663 (-308 (-548))) (-663 (-308 (-548))))) (-15 -1517 ((-619 (-663 (-308 (-548)))) (-619 (-663 (-308 (-548)))))) (-15 -1527 ((-619 (-663 (-308 (-548)))) (-663 (-399 (-921 (-548))))))) -((-3466 ((|#1| |#1| (-890)) 9))) -(((-1001 |#1|) (-10 -7 (-15 -3466 (|#1| |#1| (-890)))) (-13 (-1063) (-10 -8 (-15 * ($ $ $))))) (T -1001)) -((-3466 (*1 *2 *2 *3) (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3466 (|#1| |#1| (-890)))) -((-3743 ((|#1| (-304)) 11) (((-1223) |#1|) 9))) -(((-1002 |#1|) (-10 -7 (-15 -3743 ((-1223) |#1|)) (-15 -3743 (|#1| (-304)))) (-1172)) (T -1002)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1002 *2)) (-4 *2 (-1172)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1223)) (-5 *1 (-1002 *3)) (-4 *3 (-1172))))) -(-10 -7 (-15 -3743 ((-1223) |#1|)) (-15 -3743 (|#1| (-304)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2061 (($ |#4|) 25)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2050 ((|#4| $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 46) (($ (-548)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3835 (((-745)) 43)) (-3107 (($) 21 T CONST)) (-3118 (($) 23 T CONST)) (-2214 (((-112) $ $) 40)) (-2299 (($ $) 31) (($ $ $) NIL)) (-2290 (($ $ $) 29)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1003 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2061 ($ |#4|)) (-15 -3743 ($ |#4|)) (-15 -2050 (|#4| $)))) (-355) (-767) (-821) (-918 |#1| |#2| |#3|) (-619 |#4|)) (T -1003)) -((-2061 (*1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-2050 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2))))) -(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2061 ($ |#4|)) (-15 -3743 ($ |#4|)) (-15 -2050 (|#4| $)))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-4149 (((-1223) $ (-1135) (-1135)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-3487 (((-112) (-112)) 39)) (-3476 (((-112) (-112)) 38)) (-2089 (((-52) $ (-1135) (-52)) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 (-52) "failed") (-1135) $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-3 (-52) "failed") (-1135) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-52) $ (-1135) (-52)) NIL (|has| $ (-6 -4328)))) (-3899 (((-52) $ (-1135)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1135) $) NIL (|has| (-1135) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4181 (((-1135) $) NIL (|has| (-1135) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-4043 (((-619 (-1135)) $) 34)) (-4233 (((-112) (-1135) $) NIL)) (-1346 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-4201 (((-619 (-1135)) $) NIL)) (-4212 (((-112) (-1135) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3453 (((-52) $) NIL (|has| (-1135) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) "failed") (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL)) (-4159 (($ $ (-52)) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-286 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-286 (-52)))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4223 (((-619 (-52)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-52) $ (-1135)) 35) (((-52) $ (-1135) (-52)) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3743 (((-832) $) 37 (-1524 (|has| (-52) (-592 (-832))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1004) (-13 (-1148 (-1135) (-52)) (-10 -7 (-15 -3487 ((-112) (-112))) (-15 -3476 ((-112) (-112))) (-6 -4327)))) (T -1004)) -((-3487 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) -(-13 (-1148 (-1135) (-52)) (-10 -7 (-15 -3487 ((-112) (-112))) (-15 -3476 ((-112) (-112))) (-6 -4327))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3816 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-1005) (-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $))))) (T -1005)) -((-3816 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1005))))) -(-13 (-1047) (-10 -8 (-15 -3816 ((-1140) $)))) -((-2375 ((|#2| $) 10))) -(((-1006 |#1| |#2|) (-10 -8 (-15 -2375 (|#2| |#1|))) (-1007 |#2|) (-1172)) (T -1006)) -NIL -(-10 -8 (-15 -2375 (|#2| |#1|))) -((-2441 (((-3 |#1| "failed") $) 7)) (-2375 ((|#1| $) 8)) (-3743 (($ |#1|) 6))) +(-13 (-592 (-217)) (-592 (-370))) +(((-592 (-217)) . T) ((-592 (-370)) . T)) +((-3571 (((-619 (-370)) (-921 (-547)) (-370)) 28) (((-619 (-370)) (-921 (-398 (-547))) (-370)) 27)) (-3269 (((-619 (-619 (-370))) (-619 (-921 (-547))) (-619 (-1135)) (-370)) 37))) +(((-992) (-10 -7 (-15 -3571 ((-619 (-370)) (-921 (-398 (-547))) (-370))) (-15 -3571 ((-619 (-370)) (-921 (-547)) (-370))) (-15 -3269 ((-619 (-619 (-370))) (-619 (-921 (-547))) (-619 (-1135)) (-370))))) (T -992)) +((-3269 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-370)))) (-5 *1 (-992)) (-5 *5 (-370)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 (-370))) (-5 *1 (-992)) (-5 *4 (-370)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 (-370))) (-5 *1 (-992)) (-5 *4 (-370))))) +(-10 -7 (-15 -3571 ((-619 (-370)) (-921 (-398 (-547))) (-370))) (-15 -3571 ((-619 (-370)) (-921 (-547)) (-370))) (-15 -3269 ((-619 (-619 (-370))) (-619 (-921 (-547))) (-619 (-1135)) (-370)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 70)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2118 (($ $) NIL) (($ $ (-890)) NIL) (($ (-398 (-547))) NIL) (($ (-547)) NIL)) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) 65)) (-3219 (($) NIL T CONST)) (-1658 (((-3 $ "failed") (-1131 $) (-890) (-832)) NIL) (((-3 $ "failed") (-1131 $) (-890)) 50)) (-2698 (((-3 (-398 (-547)) "failed") $) NIL (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-547) "failed") $) NIL (-1524 (|has| (-398 (-547)) (-1007 (-547))) (|has| |#1| (-1007 (-547)))))) (-2643 (((-398 (-547)) $) 15 (|has| (-398 (-547)) (-1007 (-398 (-547))))) (((-398 (-547)) $) 15) ((|#1| $) 108) (((-547) $) NIL (-1524 (|has| (-398 (-547)) (-1007 (-547))) (|has| |#1| (-1007 (-547)))))) (-4043 (($ $ (-832)) 42)) (-3934 (($ $ (-832)) 43)) (-2079 (($ $ $) NIL)) (-1525 (((-398 (-547)) $ $) 19)) (-2537 (((-3 $ "failed") $) 83)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-3848 (((-112) $) 61)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL)) (-3937 (((-112) $) 64)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-4141 (((-3 (-1131 $) "failed") $) 78)) (-1300 (((-3 (-832) "failed") $) 77)) (-4236 (((-3 (-1131 $) "failed") $) 75)) (-3371 (((-3 (-1026 $ (-1131 $)) "failed") $) 73)) (-3685 (($ (-619 $)) NIL) (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 84)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ (-619 $)) NIL) (($ $ $) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3834 (((-832) $) 82) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ $) 58) (($ (-398 (-547))) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ |#1|) 110)) (-2311 (((-745)) NIL)) (-1932 (((-112) $ $) NIL)) (-2645 (((-398 (-547)) $ $) 25)) (-1785 (((-619 $) (-1131 $)) 56) (((-619 $) (-1131 (-398 (-547)))) NIL) (((-619 $) (-1131 (-547))) NIL) (((-619 $) (-921 $)) NIL) (((-619 $) (-921 (-398 (-547)))) NIL) (((-619 $) (-921 (-547))) NIL)) (-3463 (($ (-1026 $ (-1131 $)) (-832)) 41)) (-2040 (($ $) 20)) (-3267 (($) 29 T CONST)) (-3277 (($) 35 T CONST)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 71)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 22)) (-2497 (($ $ $) 33)) (-2484 (($ $) 34) (($ $ $) 69)) (-2470 (($ $ $) 103)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL) (($ $ (-398 (-547))) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 91) (($ $ $) 96) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ (-547) $) 91) (($ $ (-547)) NIL) (($ (-398 (-547)) $) NIL) (($ $ (-398 (-547))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-993 |#1|) (-13 (-981) (-402 |#1|) (-38 |#1|) (-10 -8 (-15 -3463 ($ (-1026 $ (-1131 $)) (-832))) (-15 -3371 ((-3 (-1026 $ (-1131 $)) "failed") $)) (-15 -1525 ((-398 (-547)) $ $)))) (-13 (-819) (-354) (-991))) (T -993)) +((-3463 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-993 *4) (-1131 (-993 *4)))) (-5 *3 (-832)) (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-354) (-991))))) (-3371 (*1 *2 *1) (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1131 (-993 *3)))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-354) (-991))))) (-1525 (*1 *2 *1 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-354) (-991)))))) +(-13 (-981) (-402 |#1|) (-38 |#1|) (-10 -8 (-15 -3463 ($ (-1026 $ (-1131 $)) (-832))) (-15 -3371 ((-3 (-1026 $ (-1131 $)) "failed") $)) (-15 -1525 ((-398 (-547)) $ $)))) +((-3564 (((-2 (|:| -2636 |#2|) (|:| -2704 (-619 |#1|))) |#2| (-619 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-994 |#1| |#2|) (-10 -7 (-15 -3564 (|#2| |#2| |#1|)) (-15 -3564 ((-2 (|:| -2636 |#2|) (|:| -2704 (-619 |#1|))) |#2| (-619 |#1|)))) (-354) (-630 |#1|)) (T -994)) +((-3564 (*1 *2 *3 *4) (-12 (-4 *5 (-354)) (-5 *2 (-2 (|:| -2636 *3) (|:| -2704 (-619 *5)))) (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5)))) (-3564 (*1 *2 *2 *3) (-12 (-4 *3 (-354)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3))))) +(-10 -7 (-15 -3564 (|#2| |#2| |#1|)) (-15 -3564 ((-2 (|:| -2636 |#2|) (|:| -2704 (-619 |#1|))) |#2| (-619 |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3659 ((|#1| $ |#1|) 14)) (-2238 ((|#1| $ |#1|) 12)) (-2080 (($ |#1|) 10)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3329 ((|#1| $) 11)) (-1952 ((|#1| $) 13)) (-3834 (((-832) $) 21 (|has| |#1| (-1063)))) (-2371 (((-112) $ $) 9))) +(((-995 |#1|) (-13 (-1172) (-10 -8 (-15 -2080 ($ |#1|)) (-15 -3329 (|#1| $)) (-15 -2238 (|#1| $ |#1|)) (-15 -1952 (|#1| $)) (-15 -3659 (|#1| $ |#1|)) (-15 -2371 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -995)) +((-2080 (*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-3329 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-2238 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-1952 (*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-3659 (*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) (-2371 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1172))))) +(-13 (-1172) (-10 -8 (-15 -2080 ($ |#1|)) (-15 -3329 (|#1| $)) (-15 -2238 (|#1| $ |#1|)) (-15 -1952 (|#1| $)) (-15 -3659 (|#1| $ |#1|)) (-15 -2371 ((-112) $ $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) NIL)) (-3759 (((-619 $) (-619 |#4|)) 105) (((-619 $) (-619 |#4|) (-112)) 106) (((-619 $) (-619 |#4|) (-112) (-112)) 104) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 107)) (-2259 (((-619 |#3|) $) NIL)) (-4286 (((-112) $) NIL)) (-3312 (((-112) $) NIL (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3144 ((|#4| |#4| $) NIL)) (-2745 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| $) 99)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-1476 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 54)) (-3219 (($) NIL T CONST)) (-3990 (((-112) $) 26 (|has| |#1| (-539)))) (-4154 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4075 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4212 (((-112) $) NIL (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1833 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2643 (($ (-619 |#4|)) NIL)) (-3645 (((-3 $ "failed") $) 39)) (-2903 ((|#4| |#4| $) 57)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-3801 (($ |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2733 ((|#4| |#4| $) NIL)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) NIL)) (-4047 (((-112) |#4| $) NIL)) (-3709 (((-112) |#4| $) NIL)) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4235 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 119)) (-2973 (((-619 |#4|) $) 16 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1397 ((|#3| $) 33)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#4|) $) 17 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-1850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 21)) (-3623 (((-619 |#3|) $) NIL)) (-3523 (((-112) |#3| $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3240 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-4258 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| |#4| $) 97)) (-3817 (((-3 |#4| "failed") $) 37)) (-3389 (((-619 $) |#4| $) 80)) (-3604 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-1711 (((-619 $) |#4| $) 102) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 103) (((-619 $) |#4| (-619 $)) NIL)) (-1288 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 114)) (-3308 (($ |#4| $) 70) (($ (-619 |#4|) $) 71) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-1499 (((-619 |#4|) $) NIL)) (-2257 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2979 ((|#4| |#4| $) NIL)) (-1694 (((-112) $ $) NIL)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3062 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-3 |#4| "failed") $) 35)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3505 (((-3 $ "failed") $ |#4|) 48)) (-3558 (($ $ |#4|) NIL) (((-619 $) |#4| $) 82) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 77)) (-2462 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 15)) (-4011 (($) 13)) (-1618 (((-745) $) NIL)) (-3987 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) 12)) (-2829 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 20)) (-3228 (($ $ |#3|) 42)) (-3429 (($ $ |#3|) 44)) (-2817 (($ $) NIL)) (-3324 (($ $ |#3|) NIL)) (-3834 (((-832) $) 31) (((-619 |#4|) $) 40)) (-3423 (((-745) $) NIL (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-4155 (((-619 $) |#4| $) 79) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-2583 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) NIL)) (-3956 (((-112) |#4| $) NIL)) (-3084 (((-112) |#3| $) 53)) (-2371 (((-112) $ $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-996 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3308 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1288 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -4235 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -996)) +((-3308 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-3759 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-3759 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-1288 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) (-4235 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3308 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1288 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -4235 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) +((-3829 (((-619 (-663 |#1|)) (-619 (-663 |#1|))) 58) (((-663 |#1|) (-663 |#1|)) 57) (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 56) (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 53)) (-3752 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 52) (((-663 |#1|) (-663 |#1|) (-890)) 51)) (-3895 (((-619 (-663 (-547))) (-619 (-619 (-547)))) 68) (((-619 (-663 (-547))) (-619 (-874 (-547))) (-547)) 67) (((-663 (-547)) (-619 (-547))) 64) (((-663 (-547)) (-874 (-547)) (-547)) 63)) (-1783 (((-663 (-921 |#1|)) (-745)) 81)) (-1680 (((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890)) 37 (|has| |#1| (-6 (-4330 "*")))) (((-663 |#1|) (-663 |#1|) (-890)) 35 (|has| |#1| (-6 (-4330 "*")))))) +(((-997 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4330 "*"))) (-15 -1680 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4330 "*"))) (-15 -1680 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -1783 ((-663 (-921 |#1|)) (-745))) (-15 -3752 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -3752 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -3829 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3829 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3829 ((-663 |#1|) (-663 |#1|))) (-15 -3829 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3895 ((-663 (-547)) (-874 (-547)) (-547))) (-15 -3895 ((-663 (-547)) (-619 (-547)))) (-15 -3895 ((-619 (-663 (-547))) (-619 (-874 (-547))) (-547))) (-15 -3895 ((-619 (-663 (-547))) (-619 (-619 (-547)))))) (-1016)) (T -997)) +((-3895 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-547)))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-874 (-547)))) (-5 *4 (-547)) (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-547))) (-5 *4 (-547)) (-5 *2 (-663 *4)) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3829 (*1 *2 *2 *2) (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3829 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) (-4 *4 (-1016)))) (-1680 (*1 *2 *2 *3) (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (|has| *4 (-6 (-4330 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4)))) (-1680 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4330 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4330 "*"))) (-15 -1680 ((-663 |#1|) (-663 |#1|) (-890))) |%noBranch|) (IF (|has| |#1| (-6 (-4330 "*"))) (-15 -1680 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) |%noBranch|) (-15 -1783 ((-663 (-921 |#1|)) (-745))) (-15 -3752 ((-663 |#1|) (-663 |#1|) (-890))) (-15 -3752 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-890))) (-15 -3829 ((-663 |#1|) (-663 |#1|) (-663 |#1|))) (-15 -3829 ((-619 (-663 |#1|)) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3829 ((-663 |#1|) (-663 |#1|))) (-15 -3829 ((-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3895 ((-663 (-547)) (-874 (-547)) (-547))) (-15 -3895 ((-663 (-547)) (-619 (-547)))) (-15 -3895 ((-619 (-663 (-547))) (-619 (-874 (-547))) (-547))) (-15 -3895 ((-619 (-663 (-547))) (-619 (-619 (-547)))))) +((-4247 (((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)) 50 (|has| |#1| (-298)))) (-2378 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))) 76 (|has| |#1| (-354))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|)) 79 (|has| |#1| (-354)))) (-2860 (((-1218 |#1|) (-619 (-1218 |#1|)) (-547)) 93 (-12 (|has| |#1| (-354)) (|has| |#1| (-359))))) (-2764 (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890)) 85 (-12 (|has| |#1| (-354)) (|has| |#1| (-359)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112)) 83 (-12 (|has| |#1| (-354)) (|has| |#1| (-359)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|))) 82 (-12 (|has| |#1| (-354)) (|has| |#1| (-359)))) (((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-547) (-547)) 81 (-12 (|has| |#1| (-354)) (|has| |#1| (-359))))) (-3280 (((-112) (-619 (-663 |#1|))) 71 (|has| |#1| (-354))) (((-112) (-619 (-663 |#1|)) (-547)) 73 (|has| |#1| (-354)))) (-4171 (((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|)) 48 (|has| |#1| (-298)))) (-4093 (((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|)) 34)) (-4000 (((-663 |#1|) (-1218 (-1218 |#1|))) 31)) (-3196 (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-547)) 65 (|has| |#1| (-354))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|))) 64 (|has| |#1| (-354))) (((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-547)) 69 (|has| |#1| (-354))))) +(((-998 |#1|) (-10 -7 (-15 -4000 ((-663 |#1|) (-1218 (-1218 |#1|)))) (-15 -4093 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-298)) (PROGN (-15 -4171 ((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -4247 ((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -3196 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-547))) (-15 -3196 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3196 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-547))) (-15 -3280 ((-112) (-619 (-663 |#1|)) (-547))) (-15 -3280 ((-112) (-619 (-663 |#1|)))) (-15 -2378 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -2378 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))))) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#1| (-354)) (PROGN (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-547) (-547))) (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -2860 ((-1218 |#1|) (-619 (-1218 |#1|)) (-547)))) |%noBranch|) |%noBranch|)) (-1016)) (T -998)) +((-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1218 *5))) (-5 *4 (-547)) (-5 *2 (-1218 *5)) (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)))) (-2764 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-2764 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-2764 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *4 (-359)) (-4 *4 (-1016)) (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) (-5 *3 (-619 (-663 *4))))) (-2764 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-547)) (-4 *6 (-354)) (-4 *6 (-359)) (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) (-5 *3 (-619 (-663 *6))))) (-2378 (*1 *2 *3 *4) (-12 (-5 *4 (-1218 (-1218 *5))) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-2378 (*1 *2 *3 *4) (-12 (-5 *4 (-1218 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) (-5 *3 (-619 (-663 *5))))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *4)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-4 *5 (-354)) (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) (-3196 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-1016)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) (-4 *4 (-354)) (-4 *4 (-1016)))) (-3196 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-547)) (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-354)) (-4 *6 (-1016)))) (-4247 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1218 *5)) (-4 *5 (-298)) (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-298)) (-4 *5 (-1016)) (-5 *2 (-1218 (-1218 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1218 *5)))) (-4093 (*1 *2 *3 *2) (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-998 *4)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-1218 (-1218 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) (-5 *1 (-998 *4))))) +(-10 -7 (-15 -4000 ((-663 |#1|) (-1218 (-1218 |#1|)))) (-15 -4093 ((-663 |#1|) (-619 (-663 |#1|)) (-663 |#1|))) (IF (|has| |#1| (-298)) (PROGN (-15 -4171 ((-1218 (-1218 |#1|)) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -4247 ((-663 |#1|) (-619 (-663 |#1|)) (-1218 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -3196 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-112) (-547))) (-15 -3196 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -3196 ((-663 |#1|) (-619 (-663 |#1|)) (-619 (-663 |#1|)) (-547))) (-15 -3280 ((-112) (-619 (-663 |#1|)) (-547))) (-15 -3280 ((-112) (-619 (-663 |#1|)))) (-15 -2378 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 |#1|))) (-15 -2378 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-1218 (-1218 |#1|))))) |%noBranch|) (IF (|has| |#1| (-359)) (IF (|has| |#1| (-354)) (PROGN (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112) (-547) (-547))) (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)))) (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-112))) (-15 -2764 ((-619 (-619 (-663 |#1|))) (-619 (-663 |#1|)) (-890))) (-15 -2860 ((-1218 |#1|) (-619 (-1218 |#1|)) (-547)))) |%noBranch|) |%noBranch|)) +((-4020 ((|#1| (-890) |#1|) 9))) +(((-999 |#1|) (-10 -7 (-15 -4020 (|#1| (-890) |#1|))) (-13 (-1063) (-10 -8 (-15 -2470 ($ $ $))))) (T -999)) +((-4020 (*1 *2 *3 *2) (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 -2470 ($ $ $)))))))) +(-10 -7 (-15 -4020 (|#1| (-890) |#1|))) +((-2201 (((-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547))))))) (-663 (-398 (-921 (-547))))) 59)) (-2335 (((-619 (-663 (-307 (-547)))) (-307 (-547)) (-663 (-398 (-921 (-547))))) 48)) (-2455 (((-619 (-307 (-547))) (-663 (-398 (-921 (-547))))) 41)) (-1572 (((-619 (-663 (-307 (-547)))) (-663 (-398 (-921 (-547))))) 68)) (-1358 (((-663 (-307 (-547))) (-663 (-307 (-547)))) 34)) (-1457 (((-619 (-663 (-307 (-547)))) (-619 (-663 (-307 (-547))))) 62)) (-4302 (((-3 (-663 (-307 (-547))) "failed") (-663 (-398 (-921 (-547))))) 66))) +(((-1000) (-10 -7 (-15 -2201 ((-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547))))))) (-663 (-398 (-921 (-547)))))) (-15 -2335 ((-619 (-663 (-307 (-547)))) (-307 (-547)) (-663 (-398 (-921 (-547)))))) (-15 -2455 ((-619 (-307 (-547))) (-663 (-398 (-921 (-547)))))) (-15 -4302 ((-3 (-663 (-307 (-547))) "failed") (-663 (-398 (-921 (-547)))))) (-15 -1358 ((-663 (-307 (-547))) (-663 (-307 (-547))))) (-15 -1457 ((-619 (-663 (-307 (-547)))) (-619 (-663 (-307 (-547)))))) (-15 -1572 ((-619 (-663 (-307 (-547)))) (-663 (-398 (-921 (-547)))))))) (T -1000)) +((-1572 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)))) (-1358 (*1 *2 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000)))) (-4302 (*1 *2 *3) (|partial| -12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-307 (-547)))) (-5 *1 (-1000)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)) (-5 *3 (-307 (-547))))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547)))))))) (-5 *1 (-1000))))) +(-10 -7 (-15 -2201 ((-619 (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) (|:| |radvect| (-619 (-663 (-307 (-547))))))) (-663 (-398 (-921 (-547)))))) (-15 -2335 ((-619 (-663 (-307 (-547)))) (-307 (-547)) (-663 (-398 (-921 (-547)))))) (-15 -2455 ((-619 (-307 (-547))) (-663 (-398 (-921 (-547)))))) (-15 -4302 ((-3 (-663 (-307 (-547))) "failed") (-663 (-398 (-921 (-547)))))) (-15 -1358 ((-663 (-307 (-547))) (-663 (-307 (-547))))) (-15 -1457 ((-619 (-663 (-307 (-547)))) (-619 (-663 (-307 (-547)))))) (-15 -1572 ((-619 (-663 (-307 (-547)))) (-663 (-398 (-921 (-547))))))) +((-2957 ((|#1| |#1| (-890)) 9))) +(((-1001 |#1|) (-10 -7 (-15 -2957 (|#1| |#1| (-890)))) (-13 (-1063) (-10 -8 (-15 * ($ $ $))))) (T -1001)) +((-2957 (*1 *2 *2 *3) (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2957 (|#1| |#1| (-890)))) +((-3834 ((|#1| (-303)) 11) (((-1223) |#1|) 9))) +(((-1002 |#1|) (-10 -7 (-15 -3834 ((-1223) |#1|)) (-15 -3834 (|#1| (-303)))) (-1172)) (T -1002)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-303)) (-5 *1 (-1002 *2)) (-4 *2 (-1172)))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-1223)) (-5 *1 (-1002 *3)) (-4 *3 (-1172))))) +(-10 -7 (-15 -3834 ((-1223) |#1|)) (-15 -3834 (|#1| (-303)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2542 (($ |#4|) 25)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-2531 ((|#4| $) 27)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 46) (($ (-547)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2311 (((-745)) 43)) (-3267 (($) 21 T CONST)) (-3277 (($) 23 T CONST)) (-2371 (((-112) $ $) 40)) (-2484 (($ $) 31) (($ $ $) NIL)) (-2470 (($ $ $) 29)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1003 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2542 ($ |#4|)) (-15 -3834 ($ |#4|)) (-15 -2531 (|#4| $)))) (-354) (-767) (-821) (-918 |#1| |#2| |#3|) (-619 |#4|)) (T -1003)) +((-2542 (*1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) (-2531 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2))))) +(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2542 ($ |#4|)) (-15 -3834 ($ |#4|)) (-15 -2531 (|#4| $)))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-2290 (((-1223) $ (-1135) (-1135)) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-3131 (((-112) (-112)) 39)) (-3041 (((-112) (-112)) 38)) (-2238 (((-52) $ (-1135) (-52)) NIL)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 (-52) "failed") (-1135) $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3342 (($ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-3 (-52) "failed") (-1135) $) NIL)) (-3801 (($ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-1861 (((-52) $ (-1135) (-52)) NIL (|has| $ (-6 -4329)))) (-1793 (((-52) $ (-1135)) NIL)) (-2973 (((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-619 (-52)) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-1135) $) NIL (|has| (-1135) (-821)))) (-3666 (((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-619 (-52)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063))))) (-2638 (((-1135) $) NIL (|has| (-1135) (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3437 (((-619 (-1135)) $) 34)) (-1876 (((-112) (-1135) $) NIL)) (-1959 (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL)) (-1885 (($ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL)) (-1520 (((-619 (-1135)) $) NIL)) (-1641 (((-112) (-1135) $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3634 (((-52) $) NIL (|has| (-1135) (-821)))) (-3461 (((-3 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) "failed") (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL)) (-2418 (($ $ (-52)) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-285 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-285 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-285 (-52)))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063))))) (-1758 (((-619 (-52)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 (((-52) $ (-1135)) 35) (((-52) $ (-1135) (-52)) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-3834 (((-832) $) 37 (-1524 (|has| (-52) (-591 (-832))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1004) (-13 (-1148 (-1135) (-52)) (-10 -7 (-15 -3131 ((-112) (-112))) (-15 -3041 ((-112) (-112))) (-6 -4328)))) (T -1004)) +((-3131 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) +(-13 (-1148 (-1135) (-52)) (-10 -7 (-15 -3131 ((-112) (-112))) (-15 -3041 ((-112) (-112))) (-6 -4328))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3943 (((-1140) $) 9)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-1005) (-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $))))) (T -1005)) +((-3943 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1005))))) +(-13 (-1047) (-10 -8 (-15 -3943 ((-1140) $)))) +((-2643 ((|#2| $) 10))) +(((-1006 |#1| |#2|) (-10 -8 (-15 -2643 (|#2| |#1|))) (-1007 |#2|) (-1172)) (T -1006)) +NIL +(-10 -8 (-15 -2643 (|#2| |#1|))) +((-2698 (((-3 |#1| "failed") $) 7)) (-2643 ((|#1| $) 8)) (-3834 (($ |#1|) 6))) (((-1007 |#1|) (-138) (-1172)) (T -1007)) -((-2375 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) (-2441 (*1 *2 *1) (|partial| -12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) (-3743 (*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172))))) -(-13 (-10 -8 (-15 -3743 ($ |t#1|)) (-15 -2441 ((-3 |t#1| "failed") $)) (-15 -2375 (|t#1| $)))) -((-3500 (((-619 (-619 (-286 (-399 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))) 38))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -3500 ((-619 (-619 (-286 (-399 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))))) (-540) (-13 (-540) (-1007 |#1|))) (T -1008)) -((-3500 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-13 (-540) (-1007 *5))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *6)))))) (-5 *1 (-1008 *5 *6))))) -(-10 -7 (-15 -3500 ((-619 (-619 (-286 (-399 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))))) -((-3522 (((-371)) 15)) (-3602 (((-1 (-371)) (-371) (-371)) 20)) (-2405 (((-1 (-371)) (-745)) 43)) (-3533 (((-371)) 34)) (-3944 (((-1 (-371)) (-371) (-371)) 35)) (-3544 (((-371)) 26)) (-3567 (((-1 (-371)) (-371)) 27)) (-3556 (((-371) (-745)) 38)) (-3578 (((-1 (-371)) (-745)) 39)) (-1426 (((-1 (-371)) (-745) (-745)) 42)) (-1456 (((-1 (-371)) (-745) (-745)) 40))) -(((-1009) (-10 -7 (-15 -3522 ((-371))) (-15 -3533 ((-371))) (-15 -3544 ((-371))) (-15 -3556 ((-371) (-745))) (-15 -3602 ((-1 (-371)) (-371) (-371))) (-15 -3944 ((-1 (-371)) (-371) (-371))) (-15 -3567 ((-1 (-371)) (-371))) (-15 -3578 ((-1 (-371)) (-745))) (-15 -1456 ((-1 (-371)) (-745) (-745))) (-15 -1426 ((-1 (-371)) (-745) (-745))) (-15 -2405 ((-1 (-371)) (-745))))) (T -1009)) -((-2405 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-1426 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-1456 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) (-3944 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) (-3602 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-371)) (-5 *1 (-1009)))) (-3544 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009)))) (-3533 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009)))) (-3522 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) -(-10 -7 (-15 -3522 ((-371))) (-15 -3533 ((-371))) (-15 -3544 ((-371))) (-15 -3556 ((-371) (-745))) (-15 -3602 ((-1 (-371)) (-371) (-371))) (-15 -3944 ((-1 (-371)) (-371) (-371))) (-15 -3567 ((-1 (-371)) (-371))) (-15 -3578 ((-1 (-371)) (-745))) (-15 -1456 ((-1 (-371)) (-745) (-745))) (-15 -1426 ((-1 (-371)) (-745) (-745))) (-15 -2405 ((-1 (-371)) (-745)))) -((-1915 (((-410 |#1|) |#1|) 33))) -(((-1010 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|))) (-1194 (-399 (-921 (-548))))) (T -1010)) -((-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1194 (-399 (-921 (-548)))))))) -(-10 -7 (-15 -1915 ((-410 |#1|) |#1|))) -((-3590 (((-399 (-410 (-921 |#1|))) (-399 (-921 |#1|))) 14))) -(((-1011 |#1|) (-10 -7 (-15 -3590 ((-399 (-410 (-921 |#1|))) (-399 (-921 |#1|))))) (-299)) (T -1011)) -((-3590 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-299)) (-5 *2 (-399 (-410 (-921 *4)))) (-5 *1 (-1011 *4))))) -(-10 -7 (-15 -3590 ((-399 (-410 (-921 |#1|))) (-399 (-921 |#1|))))) -((-2049 (((-619 (-1135)) (-399 (-921 |#1|))) 17)) (-1884 (((-399 (-1131 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135)) 24)) (-2036 (((-399 (-921 |#1|)) (-399 (-1131 (-399 (-921 |#1|)))) (-1135)) 26)) (-3511 (((-3 (-1135) "failed") (-399 (-921 |#1|))) 20)) (-2460 (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-286 (-399 (-921 |#1|))))) 32) (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|)))) 33) (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-1135)) (-619 (-399 (-921 |#1|)))) 28) (((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|))) 29)) (-3743 (((-399 (-921 |#1|)) |#1|) 11))) -(((-1012 |#1|) (-10 -7 (-15 -2049 ((-619 (-1135)) (-399 (-921 |#1|)))) (-15 -3511 ((-3 (-1135) "failed") (-399 (-921 |#1|)))) (-15 -1884 ((-399 (-1131 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -2036 ((-399 (-921 |#1|)) (-399 (-1131 (-399 (-921 |#1|)))) (-1135))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-1135)) (-619 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3743 ((-399 (-921 |#1|)) |#1|))) (-540)) (T -1012)) -((-3743 (*1 *2 *3) (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-540)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) (-5 *2 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *1 (-1012 *4)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *3 (-286 (-399 (-921 *4)))) (-5 *2 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *1 (-1012 *4)))) (-2460 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-5 *4 (-619 (-399 (-921 *5)))) (-5 *2 (-399 (-921 *5))) (-4 *5 (-540)) (-5 *1 (-1012 *5)))) (-2460 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-540)) (-5 *1 (-1012 *4)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-1131 (-399 (-921 *5))))) (-5 *4 (-1135)) (-5 *2 (-399 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-540)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-540)) (-5 *2 (-399 (-1131 (-399 (-921 *5))))) (-5 *1 (-1012 *5)) (-5 *3 (-399 (-921 *5))))) (-3511 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-1135)) (-5 *1 (-1012 *4)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-1135))) (-5 *1 (-1012 *4))))) -(-10 -7 (-15 -2049 ((-619 (-1135)) (-399 (-921 |#1|)))) (-15 -3511 ((-3 (-1135) "failed") (-399 (-921 |#1|)))) (-15 -1884 ((-399 (-1131 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -2036 ((-399 (-921 |#1|)) (-399 (-1131 (-399 (-921 |#1|)))) (-1135))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-1135)) (-619 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-286 (-399 (-921 |#1|))))) (-15 -2460 ((-399 (-921 |#1|)) (-399 (-921 |#1|)) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3743 ((-399 (-921 |#1|)) |#1|))) -((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 (-754 |#1| (-834 |#2|)))))) (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2004 (((-619 $) (-619 (-754 |#1| (-834 |#2|)))) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112)) NIL)) (-2049 (((-619 (-834 |#2|)) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2073 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-1688 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1806 $))) (-754 |#1| (-834 |#2|)) $) NIL)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ (-834 |#2|)) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 (-754 |#1| (-834 |#2|)) "failed") $ (-834 |#2|)) NIL)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) NIL (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2213 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2375 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3465 (((-3 $ "failed") $) NIL)) (-2038 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-3699 (($ (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-540)))) (-2143 (((-112) (-754 |#1| (-834 |#2|)) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2015 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2061 (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|))) NIL (|has| $ (-6 -4327))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2169 (((-2 (|:| -2466 (-619 (-754 |#1| (-834 |#2|)))) (|:| -1280 (-619 (-754 |#1| (-834 |#2|))))) $) NIL)) (-2258 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-3425 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2267 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-1934 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2157 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-3239 (((-834 |#2|) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-3960 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL)) (-2338 (((-619 (-834 |#2|)) $) NIL)) (-2329 (((-112) (-834 |#2|) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3369 (((-3 (-754 |#1| (-834 |#2|)) (-619 $)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3353 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1806 $))) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3724 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-3387 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL)) (-3412 (((-3 (-112) (-619 $)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2520 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL)) (-3688 (($ (-754 |#1| (-834 |#2|)) $) NIL) (($ (-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2179 (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2109 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2052 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-540)))) (-2121 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2063 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-4030 (((-3 (-754 |#1| (-834 |#2|)) "failed") (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL)) (-1971 (((-3 $ "failed") $ (-754 |#1| (-834 |#2|))) NIL)) (-1656 (($ $ (-754 |#1| (-834 |#2|))) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-3537 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-286 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-619 (-286 (-754 |#1| (-834 |#2|))))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-301 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-2512 (((-745) $) NIL)) (-3945 (((-745) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-745) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-754 |#1| (-834 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2298 (($ $ (-834 |#2|)) NIL)) (-2319 (($ $ (-834 |#2|)) NIL)) (-2027 (($ $) NIL)) (-2308 (($ $ (-834 |#2|)) NIL)) (-3743 (((-832) $) NIL) (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-1962 (((-745) $) NIL (|has| (-834 |#2|) (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2096 (((-112) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-619 (-754 |#1| (-834 |#2|))))) NIL)) (-3338 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-3548 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 (-834 |#2|)) $) NIL)) (-2247 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-2406 (((-112) (-834 |#2|) $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1013 |#1| |#2|) (-13 (-1036 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -2004 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) (-443) (-619 (-1135))) (T -1013)) -((-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1013 *5 *6))))) -(-13 (-1036 |#1| (-520 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -2004 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) -((-3602 (((-1 (-548)) (-1058 (-548))) 33)) (-3646 (((-548) (-548) (-548) (-548) (-548)) 30)) (-3622 (((-1 (-548)) |RationalNumber|) NIL)) (-3633 (((-1 (-548)) |RationalNumber|) NIL)) (-3612 (((-1 (-548)) (-548) |RationalNumber|) NIL))) -(((-1014) (-10 -7 (-15 -3602 ((-1 (-548)) (-1058 (-548)))) (-15 -3612 ((-1 (-548)) (-548) |RationalNumber|)) (-15 -3622 ((-1 (-548)) |RationalNumber|)) (-15 -3633 ((-1 (-548)) |RationalNumber|)) (-15 -3646 ((-548) (-548) (-548) (-548) (-548))))) (T -1014)) -((-3646 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1014)))) (-3633 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)))) (-3622 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)) (-5 *3 (-548)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1058 (-548))) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) -(-10 -7 (-15 -3602 ((-1 (-548)) (-1058 (-548)))) (-15 -3612 ((-1 (-548)) (-548) |RationalNumber|)) (-15 -3622 ((-1 (-548)) |RationalNumber|)) (-15 -3633 ((-1 (-548)) |RationalNumber|)) (-15 -3646 ((-548) (-548) (-548) (-548) (-548)))) -((-3743 (((-832) $) NIL) (($ (-548)) 10))) -(((-1015 |#1|) (-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-1016)) (T -1015)) -NIL -(-10 -8 (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +((-2643 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) (-2698 (*1 *2 *1) (|partial| -12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) (-3834 (*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172))))) +(-13 (-10 -8 (-15 -3834 ($ |t#1|)) (-15 -2698 ((-3 |t#1| "failed") $)) (-15 -2643 (|t#1| $)))) +((-2046 (((-619 (-619 (-285 (-398 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))) 38))) +(((-1008 |#1| |#2|) (-10 -7 (-15 -2046 ((-619 (-619 (-285 (-398 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))))) (-539) (-13 (-539) (-1007 |#1|))) (T -1008)) +((-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-13 (-539) (-1007 *5))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *6)))))) (-5 *1 (-1008 *5 *6))))) +(-10 -7 (-15 -2046 ((-619 (-619 (-285 (-398 (-921 |#2|))))) (-619 (-921 |#2|)) (-619 (-1135))))) +((-2288 (((-370)) 15)) (-1768 (((-1 (-370)) (-370) (-370)) 20)) (-2615 (((-1 (-370)) (-745)) 43)) (-2416 (((-370)) 34)) (-4033 (((-1 (-370)) (-370) (-370)) 35)) (-2540 (((-370)) 26)) (-1403 (((-1 (-370)) (-370)) 27)) (-2650 (((-370) (-745)) 38)) (-1532 (((-1 (-370)) (-745)) 39)) (-1409 (((-1 (-370)) (-745) (-745)) 42)) (-2165 (((-1 (-370)) (-745) (-745)) 40))) +(((-1009) (-10 -7 (-15 -2288 ((-370))) (-15 -2416 ((-370))) (-15 -2540 ((-370))) (-15 -2650 ((-370) (-745))) (-15 -1768 ((-1 (-370)) (-370) (-370))) (-15 -4033 ((-1 (-370)) (-370) (-370))) (-15 -1403 ((-1 (-370)) (-370))) (-15 -1532 ((-1 (-370)) (-745))) (-15 -2165 ((-1 (-370)) (-745) (-745))) (-15 -1409 ((-1 (-370)) (-745) (-745))) (-15 -2615 ((-1 (-370)) (-745))))) (T -1009)) +((-2615 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-1409 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-2165 (*1 *2 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) (-4033 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) (-1768 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-370)) (-5 *1 (-1009)))) (-2540 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))) (-2416 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009)))) (-2288 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009))))) +(-10 -7 (-15 -2288 ((-370))) (-15 -2416 ((-370))) (-15 -2540 ((-370))) (-15 -2650 ((-370) (-745))) (-15 -1768 ((-1 (-370)) (-370) (-370))) (-15 -4033 ((-1 (-370)) (-370) (-370))) (-15 -1403 ((-1 (-370)) (-370))) (-15 -1532 ((-1 (-370)) (-745))) (-15 -2165 ((-1 (-370)) (-745) (-745))) (-15 -1409 ((-1 (-370)) (-745) (-745))) (-15 -2615 ((-1 (-370)) (-745)))) +((-2106 (((-409 |#1|) |#1|) 33))) +(((-1010 |#1|) (-10 -7 (-15 -2106 ((-409 |#1|) |#1|))) (-1194 (-398 (-921 (-547))))) (T -1010)) +((-2106 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1194 (-398 (-921 (-547)))))))) +(-10 -7 (-15 -2106 ((-409 |#1|) |#1|))) +((-1653 (((-398 (-409 (-921 |#1|))) (-398 (-921 |#1|))) 14))) +(((-1011 |#1|) (-10 -7 (-15 -1653 ((-398 (-409 (-921 |#1|))) (-398 (-921 |#1|))))) (-298)) (T -1011)) +((-1653 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-298)) (-5 *2 (-398 (-409 (-921 *4)))) (-5 *1 (-1011 *4))))) +(-10 -7 (-15 -1653 ((-398 (-409 (-921 |#1|))) (-398 (-921 |#1|))))) +((-2259 (((-619 (-1135)) (-398 (-921 |#1|))) 17)) (-2067 (((-398 (-1131 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1135)) 24)) (-2245 (((-398 (-921 |#1|)) (-398 (-1131 (-398 (-921 |#1|)))) (-1135)) 26)) (-2185 (((-3 (-1135) "failed") (-398 (-921 |#1|))) 20)) (-2670 (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-285 (-398 (-921 |#1|))))) 32) (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|)))) 33) (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-1135)) (-619 (-398 (-921 |#1|)))) 28) (((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|))) 29)) (-3834 (((-398 (-921 |#1|)) |#1|) 11))) +(((-1012 |#1|) (-10 -7 (-15 -2259 ((-619 (-1135)) (-398 (-921 |#1|)))) (-15 -2185 ((-3 (-1135) "failed") (-398 (-921 |#1|)))) (-15 -2067 ((-398 (-1131 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1135))) (-15 -2245 ((-398 (-921 |#1|)) (-398 (-1131 (-398 (-921 |#1|)))) (-1135))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|)))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-1135)) (-619 (-398 (-921 |#1|))))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3834 ((-398 (-921 |#1|)) |#1|))) (-539)) (T -1012)) +((-3834 (*1 *2 *3) (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-539)))) (-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) (-5 *2 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *1 (-1012 *4)))) (-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-285 (-398 (-921 *4)))) (-5 *2 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *1 (-1012 *4)))) (-2670 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-5 *4 (-619 (-398 (-921 *5)))) (-5 *2 (-398 (-921 *5))) (-4 *5 (-539)) (-5 *1 (-1012 *5)))) (-2670 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-539)) (-5 *1 (-1012 *4)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-1131 (-398 (-921 *5))))) (-5 *4 (-1135)) (-5 *2 (-398 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-539)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-539)) (-5 *2 (-398 (-1131 (-398 (-921 *5))))) (-5 *1 (-1012 *5)) (-5 *3 (-398 (-921 *5))))) (-2185 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-1135)) (-5 *1 (-1012 *4)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-1135))) (-5 *1 (-1012 *4))))) +(-10 -7 (-15 -2259 ((-619 (-1135)) (-398 (-921 |#1|)))) (-15 -2185 ((-3 (-1135) "failed") (-398 (-921 |#1|)))) (-15 -2067 ((-398 (-1131 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1135))) (-15 -2245 ((-398 (-921 |#1|)) (-398 (-1131 (-398 (-921 |#1|)))) (-1135))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|)))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-1135)) (-619 (-398 (-921 |#1|))))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-285 (-398 (-921 |#1|))))) (-15 -2670 ((-398 (-921 |#1|)) (-398 (-921 |#1|)) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3834 ((-398 (-921 |#1|)) |#1|))) +((-3821 (((-112) $ $) NIL)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 (-754 |#1| (-834 |#2|)))))) (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3759 (((-619 $) (-619 (-754 |#1| (-834 |#2|)))) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112)) NIL)) (-2259 (((-619 (-834 |#2|)) $) NIL)) (-4286 (((-112) $) NIL)) (-3312 (((-112) $) NIL (|has| |#1| (-539)))) (-2469 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-3144 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2745 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1965 $))) (-754 |#1| (-834 |#2|)) $) NIL)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ (-834 |#2|)) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-1476 (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 (-754 |#1| (-834 |#2|)) "failed") $ (-834 |#2|)) NIL)) (-3219 (($) NIL T CONST)) (-3990 (((-112) $) NIL (|has| |#1| (-539)))) (-4154 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4075 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4212 (((-112) $) NIL (|has| |#1| (-539)))) (-2028 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-1833 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-539)))) (-1922 (((-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-2643 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3645 (((-3 $ "failed") $) NIL)) (-2903 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-3801 (($ (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-539)))) (-2577 (((-112) (-754 |#1| (-834 |#2|)) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2733 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-2542 (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $ (-754 |#1| (-834 |#2|))) NIL (|has| $ (-6 -4328))) (((-754 |#1| (-834 |#2|)) (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-1407 (((-2 (|:| -2665 (-619 (-754 |#1| (-834 |#2|)))) (|:| -1351 (-619 (-754 |#1| (-834 |#2|))))) $) NIL)) (-4047 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-3709 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-4124 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2973 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1331 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-1397 (((-834 |#2|) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-1850 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) $) NIL)) (-3623 (((-619 (-834 |#2|)) $) NIL)) (-3523 (((-112) (-834 |#2|) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3240 (((-3 (-754 |#1| (-834 |#2|)) (-619 $)) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-4258 (((-619 (-2 (|:| |val| (-754 |#1| (-834 |#2|))) (|:| -1965 $))) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3817 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-3389 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL)) (-3604 (((-3 (-112) (-619 $)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-1711 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL)) (-3308 (($ (-754 |#1| (-834 |#2|)) $) NIL) (($ (-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-1499 (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-2257 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-2979 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-1694 (((-112) $ $) NIL)) (-3906 (((-2 (|:| |num| (-754 |#1| (-834 |#2|))) (|:| |den| |#1|)) (-754 |#1| (-834 |#2|)) $) NIL (|has| |#1| (-539)))) (-2373 (((-112) (-754 |#1| (-834 |#2|)) $) NIL) (((-112) $) NIL)) (-3062 (((-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-3 (-754 |#1| (-834 |#2|)) "failed") $) NIL)) (-3461 (((-3 (-754 |#1| (-834 |#2|)) "failed") (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL)) (-3505 (((-3 $ "failed") $ (-754 |#1| (-834 |#2|))) NIL)) (-3558 (($ $ (-754 |#1| (-834 |#2|))) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-2462 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-754 |#1| (-834 |#2|))) (-619 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-285 (-754 |#1| (-834 |#2|)))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (($ $ (-619 (-285 (-754 |#1| (-834 |#2|))))) NIL (-12 (|has| (-754 |#1| (-834 |#2|)) (-300 (-754 |#1| (-834 |#2|)))) (|has| (-754 |#1| (-834 |#2|)) (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-1618 (((-745) $) NIL)) (-3987 (((-745) (-754 |#1| (-834 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-754 |#1| (-834 |#2|)) (-1063)))) (((-745) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-754 |#1| (-834 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-754 |#1| (-834 |#2|)))) NIL)) (-3228 (($ $ (-834 |#2|)) NIL)) (-3429 (($ $ (-834 |#2|)) NIL)) (-2817 (($ $) NIL)) (-3324 (($ $ (-834 |#2|)) NIL)) (-3834 (((-832) $) NIL) (((-619 (-754 |#1| (-834 |#2|))) $) NIL)) (-3423 (((-745) $) NIL (|has| (-834 |#2|) (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 (-754 |#1| (-834 |#2|))))) "failed") (-619 (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|))) (-1 (-112) (-754 |#1| (-834 |#2|)) (-754 |#1| (-834 |#2|)))) NIL)) (-2143 (((-112) $ (-1 (-112) (-754 |#1| (-834 |#2|)) (-619 (-754 |#1| (-834 |#2|))))) NIL)) (-4155 (((-619 $) (-754 |#1| (-834 |#2|)) $) NIL) (((-619 $) (-754 |#1| (-834 |#2|)) (-619 $)) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) $) NIL) (((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-619 $)) NIL)) (-2583 (((-112) (-1 (-112) (-754 |#1| (-834 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3598 (((-619 (-834 |#2|)) $) NIL)) (-3956 (((-112) (-754 |#1| (-834 |#2|)) $) NIL)) (-3084 (((-112) (-834 |#2|) $) NIL)) (-2371 (((-112) $ $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1013 |#1| |#2|) (-13 (-1036 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -3759 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) (-442) (-619 (-1135))) (T -1013)) +((-3759 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1013 *5 *6))))) +(-13 (-1036 |#1| (-519 (-834 |#2|)) (-834 |#2|) (-754 |#1| (-834 |#2|))) (-10 -8 (-15 -3759 ((-619 $) (-619 (-754 |#1| (-834 |#2|))) (-112) (-112))))) +((-1768 (((-1 (-547)) (-1058 (-547))) 33)) (-4061 (((-547) (-547) (-547) (-547) (-547)) 30)) (-3845 (((-1 (-547)) |RationalNumber|) NIL)) (-3940 (((-1 (-547)) |RationalNumber|) NIL)) (-1884 (((-1 (-547)) (-547) |RationalNumber|) NIL))) +(((-1014) (-10 -7 (-15 -1768 ((-1 (-547)) (-1058 (-547)))) (-15 -1884 ((-1 (-547)) (-547) |RationalNumber|)) (-15 -3845 ((-1 (-547)) |RationalNumber|)) (-15 -3940 ((-1 (-547)) |RationalNumber|)) (-15 -4061 ((-547) (-547) (-547) (-547) (-547))))) (T -1014)) +((-4061 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1014)))) (-3940 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))) (-3845 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)) (-5 *3 (-547)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-1058 (-547))) (-5 *2 (-1 (-547))) (-5 *1 (-1014))))) +(-10 -7 (-15 -1768 ((-1 (-547)) (-1058 (-547)))) (-15 -1884 ((-1 (-547)) (-547) |RationalNumber|)) (-15 -3845 ((-1 (-547)) |RationalNumber|)) (-15 -3940 ((-1 (-547)) |RationalNumber|)) (-15 -4061 ((-547) (-547) (-547) (-547) (-547)))) +((-3834 (((-832) $) NIL) (($ (-547)) 10))) +(((-1015 |#1|) (-10 -8 (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-1016)) (T -1015)) +NIL +(-10 -8 (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-1016) (-138)) (T -1016)) -((-3835 (*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1016))))) -(-13 (-1023) (-701) (-622 $) (-10 -8 (-15 -3835 ((-745))) (-15 -3743 ($ (-548))) (-6 -4324))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3657 (((-399 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)) 46))) -(((-1017 |#1| |#2|) (-10 -7 (-15 -3657 ((-399 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) (-1135) (-355)) (T -1017)) -((-3657 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-355)) (-5 *2 (-399 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1135))))) -(-10 -7 (-15 -3657 ((-399 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) -((-3785 (((-112) $) 29)) (-3808 (((-112) $) 16)) (-4205 (((-745) $) 13)) (-4216 (((-745) $) 14)) (-3797 (((-112) $) 26)) (-3774 (((-112) $) 31))) -(((-1018 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4216 ((-745) |#1|)) (-15 -4205 ((-745) |#1|)) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|))) (-1019 |#2| |#3| |#4| |#5| |#6|) (-745) (-745) (-1016) (-231 |#3| |#4|) (-231 |#2| |#4|)) (T -1018)) -NIL -(-10 -8 (-15 -4216 ((-745) |#1|)) (-15 -4205 ((-745) |#1|)) (-15 -3774 ((-112) |#1|)) (-15 -3785 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -3808 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3785 (((-112) $) 51)) (-4104 (((-3 $ "failed") $ $) 19)) (-3808 (((-112) $) 53)) (-2028 (((-112) $ (-745)) 61)) (-3030 (($) 17 T CONST)) (-3691 (($ $) 34 (|has| |#3| (-299)))) (-3717 ((|#4| $ (-548)) 39)) (-2103 (((-745) $) 33 (|has| |#3| (-540)))) (-3899 ((|#3| $ (-548) (-548)) 41)) (-1934 (((-619 |#3|) $) 68 (|has| $ (-6 -4327)))) (-3681 (((-745) $) 32 (|has| |#3| (-540)))) (-3669 (((-619 |#5|) $) 31 (|has| |#3| (-540)))) (-4205 (((-745) $) 45)) (-4216 (((-745) $) 44)) (-4282 (((-112) $ (-745)) 60)) (-3764 (((-548) $) 49)) (-3742 (((-548) $) 47)) (-2342 (((-619 |#3|) $) 69 (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 48)) (-3729 (((-548) $) 46)) (-3817 (($ (-619 (-619 |#3|))) 54)) (-3960 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2401 (((-619 (-619 |#3|)) $) 43)) (-4248 (((-112) $ (-745)) 59)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-540)))) (-3537 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#3|) (-619 |#3|)) 75 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) 73 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-286 |#3|))) 72 (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) 55)) (-1616 (((-112) $) 58)) (-3319 (($) 57)) (-3171 ((|#3| $ (-548) (-548)) 42) ((|#3| $ (-548) (-548) |#3|) 40)) (-3797 (((-112) $) 52)) (-3945 (((-745) |#3| $) 70 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4327)))) (-2113 (($ $) 56)) (-3704 ((|#5| $ (-548)) 38)) (-3743 (((-832) $) 11)) (-3548 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4327)))) (-3774 (((-112) $) 50)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#3|) 35 (|has| |#3| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3643 (((-745) $) 62 (|has| $ (-6 -4327))))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-138) (-745) (-745) (-1016) (-231 |t#2| |t#3|) (-231 |t#1| |t#3|)) (T -1019)) -((-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-619 (-619 *5))))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016)))) (-3899 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016)))) (-3171 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) (-4 *7 (-231 *4 *6)) (-4 *2 (-231 *5 *6)))) (-3704 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) (-4 *7 (-231 *5 *6)) (-4 *2 (-231 *4 *6)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) (-1900 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-540)))) (-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-355)))) (-3691 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *2 *4)) (-4 *4 (-299)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) (-5 *2 (-745)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) (-5 *2 (-745)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) (-5 *2 (-619 *7))))) -(-13 (-111 |t#3| |t#3|) (-480 |t#3|) (-10 -8 (-6 -4327) (IF (|has| |t#3| (-169)) (-6 (-692 |t#3|)) |%noBranch|) (-15 -3817 ($ (-619 (-619 |t#3|)))) (-15 -3808 ((-112) $)) (-15 -3797 ((-112) $)) (-15 -3785 ((-112) $)) (-15 -3774 ((-112) $)) (-15 -3764 ((-548) $)) (-15 -3753 ((-548) $)) (-15 -3742 ((-548) $)) (-15 -3729 ((-548) $)) (-15 -4205 ((-745) $)) (-15 -4216 ((-745) $)) (-15 -2401 ((-619 (-619 |t#3|)) $)) (-15 -3171 (|t#3| $ (-548) (-548))) (-15 -3899 (|t#3| $ (-548) (-548))) (-15 -3171 (|t#3| $ (-548) (-548) |t#3|)) (-15 -3717 (|t#4| $ (-548))) (-15 -3704 (|t#5| $ (-548))) (-15 -2540 ($ (-1 |t#3| |t#3|) $)) (-15 -2540 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-540)) (-15 -1900 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-355)) (-15 -2309 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-299)) (-15 -3691 ($ $)) |%noBranch|) (IF (|has| |t#3| (-540)) (PROGN (-15 -2103 ((-745) $)) (-15 -3681 ((-745) $)) (-15 -3669 ((-619 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-592 (-832)) . T) ((-301 |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))) ((-480 |#3|) . T) ((-504 |#3| |#3|) -12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))) ((-622 |#3|) . T) ((-692 |#3|) |has| |#3| (-169)) ((-1022 |#3|) . T) ((-1063) . T) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3785 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 43 (|has| |#3| (-299)))) (-3717 (((-233 |#2| |#3|) $ (-548)) 32)) (-3821 (($ (-663 |#3|)) 41)) (-2103 (((-745) $) 45 (|has| |#3| (-540)))) (-3899 ((|#3| $ (-548) (-548)) NIL)) (-1934 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-3681 (((-745) $) 47 (|has| |#3| (-540)))) (-3669 (((-619 (-233 |#1| |#3|)) $) 51 (|has| |#3| (-540)))) (-4205 (((-745) $) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#3|))) 27)) (-3960 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2401 (((-619 (-619 |#3|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-540)))) (-3537 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-286 |#3|))) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#3| $ (-548) (-548)) NIL) ((|#3| $ (-548) (-548) |#3|) NIL)) (-3402 (((-133)) 54 (|has| |#3| (-355)))) (-3797 (((-112) $) NIL)) (-3945 (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063)))) (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 63 (|has| |#3| (-593 (-524))))) (-3704 (((-233 |#1| |#3|) $ (-548)) 36)) (-3743 (((-832) $) 16) (((-663 |#3|) $) 38)) (-3548 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-3107 (($) 13 T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#3|) NIL (|has| |#3| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1020 |#1| |#2| |#3|) (-13 (-1019 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-592 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-355)) (-6 (-1225 |#3|)) |%noBranch|) (IF (|has| |#3| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (-15 -3821 ($ (-663 |#3|))) (-15 -3743 ((-663 |#3|) $)))) (-745) (-745) (-1016)) (T -1020)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-1016)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745))))) -(-13 (-1019 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-592 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-355)) (-6 (-1225 |#3|)) |%noBranch|) (IF (|has| |#3| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|) (-15 -3821 ($ (-663 |#3|))) (-15 -3743 ((-663 |#3|) $)))) -((-2061 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2540 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1021 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2540 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2061 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-745) (-745) (-1016) (-231 |#2| |#3|) (-231 |#1| |#3|) (-1019 |#1| |#2| |#3| |#4| |#5|) (-1016) (-231 |#2| |#7|) (-231 |#1| |#7|) (-1019 |#1| |#2| |#7| |#8| |#9|)) (T -1021)) -((-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) (-4 *9 (-231 *5 *7)) (-4 *10 (-231 *6 *2)) (-4 *11 (-231 *5 *2)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) (-4 *9 (-231 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-231 *6 *10)) (-4 *12 (-231 *5 *10))))) -(-10 -7 (-15 -2540 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2061 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ |#1|) 23))) +((-2311 (*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1016))))) +(-13 (-1023) (-701) (-622 $) (-10 -8 (-15 -2311 ((-745))) (-15 -3834 ($ (-547))) (-6 -4325))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 $) . T) ((-701) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-4169 (((-398 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)) 46))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -4169 ((-398 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) (-1135) (-354)) (T -1017)) +((-4169 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-354)) (-5 *2 (-398 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1135))))) +(-10 -7 (-15 -4169 ((-398 (-921 |#2|)) (-619 |#2|) (-619 |#2|) (-745) (-745)))) +((-3047 (((-112) $) 29)) (-3237 (((-112) $) 16)) (-2126 (((-745) $) 13)) (-2139 (((-745) $) 14)) (-3137 (((-112) $) 26)) (-2955 (((-112) $) 31))) +(((-1018 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2139 ((-745) |#1|)) (-15 -2126 ((-745) |#1|)) (-15 -2955 ((-112) |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3237 ((-112) |#1|))) (-1019 |#2| |#3| |#4| |#5| |#6|) (-745) (-745) (-1016) (-230 |#3| |#4|) (-230 |#2| |#4|)) (T -1018)) +NIL +(-10 -8 (-15 -2139 ((-745) |#1|)) (-15 -2126 ((-745) |#1|)) (-15 -2955 ((-112) |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3237 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3047 (((-112) $) 51)) (-3013 (((-3 $ "failed") $ $) 19)) (-3237 (((-112) $) 53)) (-2826 (((-112) $ (-745)) 61)) (-3219 (($) 17 T CONST)) (-3340 (($ $) 34 (|has| |#3| (-298)))) (-3578 ((|#4| $ (-547)) 39)) (-3107 (((-745) $) 33 (|has| |#3| (-539)))) (-1793 ((|#3| $ (-547) (-547)) 41)) (-2973 (((-619 |#3|) $) 68 (|has| $ (-6 -4328)))) (-1318 (((-745) $) 32 (|has| |#3| (-539)))) (-4273 (((-619 |#5|) $) 31 (|has| |#3| (-539)))) (-2126 (((-745) $) 45)) (-2139 (((-745) $) 44)) (-4161 (((-112) $ (-745)) 60)) (-2865 (((-547) $) 49)) (-3790 (((-547) $) 47)) (-3666 (((-619 |#3|) $) 69 (|has| $ (-6 -4328)))) (-3860 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4328))))) (-2769 (((-547) $) 48)) (-3684 (((-547) $) 46)) (-3933 (($ (-619 (-619 |#3|))) 54)) (-1850 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3051 (((-619 (-619 |#3|)) $) 43)) (-2024 (((-112) $ (-745)) 59)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-539)))) (-2462 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#3|) (-619 |#3|)) 75 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) 73 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-285 |#3|))) 72 (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2911 (((-112) $ $) 55)) (-3169 (((-112) $) 58)) (-4011 (($) 57)) (-3329 ((|#3| $ (-547) (-547)) 42) ((|#3| $ (-547) (-547) |#3|) 40)) (-3137 (((-112) $) 52)) (-3987 (((-745) |#3| $) 70 (-12 (|has| |#3| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4328)))) (-2265 (($ $) 56)) (-3456 ((|#5| $ (-547)) 38)) (-3834 (((-832) $) 11)) (-2583 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4328)))) (-2955 (((-112) $) 50)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#3|) 35 (|has| |#3| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3763 (((-745) $) 62 (|has| $ (-6 -4328))))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-138) (-745) (-745) (-1016) (-230 |t#2| |t#3|) (-230 |t#1| |t#3|)) (T -1019)) +((-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-3047 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745)))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-619 (-619 *5))))) (-3329 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016)))) (-1793 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016)))) (-3329 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) (-4 *7 (-230 *4 *6)) (-4 *2 (-230 *5 *6)))) (-3456 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) (-4 *7 (-230 *5 *6)) (-4 *2 (-230 *4 *6)))) (-2781 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-2025 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-539)))) (-2497 (*1 *1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-354)))) (-3340 (*1 *1 *1) (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *2 *4)) (-4 *4 (-298)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) (-5 *2 (-745)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) (-5 *2 (-745)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) (-5 *2 (-619 *7))))) +(-13 (-111 |t#3| |t#3|) (-479 |t#3|) (-10 -8 (-6 -4328) (IF (|has| |t#3| (-169)) (-6 (-692 |t#3|)) |%noBranch|) (-15 -3933 ($ (-619 (-619 |t#3|)))) (-15 -3237 ((-112) $)) (-15 -3137 ((-112) $)) (-15 -3047 ((-112) $)) (-15 -2955 ((-112) $)) (-15 -2865 ((-547) $)) (-15 -2769 ((-547) $)) (-15 -3790 ((-547) $)) (-15 -3684 ((-547) $)) (-15 -2126 ((-745) $)) (-15 -2139 ((-745) $)) (-15 -3051 ((-619 (-619 |t#3|)) $)) (-15 -3329 (|t#3| $ (-547) (-547))) (-15 -1793 (|t#3| $ (-547) (-547))) (-15 -3329 (|t#3| $ (-547) (-547) |t#3|)) (-15 -3578 (|t#4| $ (-547))) (-15 -3456 (|t#5| $ (-547))) (-15 -2781 ($ (-1 |t#3| |t#3|) $)) (-15 -2781 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-539)) (-15 -2025 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-354)) (-15 -2497 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-298)) (-15 -3340 ($ $)) |%noBranch|) (IF (|has| |t#3| (-539)) (PROGN (-15 -3107 ((-745) $)) (-15 -1318 ((-745) $)) (-15 -4273 ((-619 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-591 (-832)) . T) ((-300 |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))) ((-479 |#3|) . T) ((-503 |#3| |#3|) -12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))) ((-622 |#3|) . T) ((-692 |#3|) |has| |#3| (-169)) ((-1022 |#3|) . T) ((-1063) . T) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3047 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3237 (((-112) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-3219 (($) NIL T CONST)) (-3340 (($ $) 43 (|has| |#3| (-298)))) (-3578 (((-232 |#2| |#3|) $ (-547)) 32)) (-2169 (($ (-663 |#3|)) 41)) (-3107 (((-745) $) 45 (|has| |#3| (-539)))) (-1793 ((|#3| $ (-547) (-547)) NIL)) (-2973 (((-619 |#3|) $) NIL (|has| $ (-6 -4328)))) (-1318 (((-745) $) 47 (|has| |#3| (-539)))) (-4273 (((-619 (-232 |#1| |#3|)) $) 51 (|has| |#3| (-539)))) (-2126 (((-745) $) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2865 (((-547) $) NIL)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#3|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-2769 (((-547) $) NIL)) (-3684 (((-547) $) NIL)) (-3933 (($ (-619 (-619 |#3|))) 27)) (-1850 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3051 (((-619 (-619 |#3|)) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-539)))) (-2462 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 (-285 |#3|))) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#3| $ (-547) (-547)) NIL) ((|#3| $ (-547) (-547) |#3|) NIL)) (-3512 (((-133)) 54 (|has| |#3| (-354)))) (-3137 (((-112) $) NIL)) (-3987 (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063)))) (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) 63 (|has| |#3| (-592 (-523))))) (-3456 (((-232 |#1| |#3|) $ (-547)) 36)) (-3834 (((-832) $) 16) (((-663 |#3|) $) 38)) (-2583 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2955 (((-112) $) NIL)) (-3267 (($) 13 T CONST)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#3|) NIL (|has| |#3| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1020 |#1| |#2| |#3|) (-13 (-1019 |#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) (-591 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-354)) (-6 (-1225 |#3|)) |%noBranch|) (IF (|has| |#3| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (-15 -2169 ($ (-663 |#3|))) (-15 -3834 ((-663 |#3|) $)))) (-745) (-745) (-1016)) (T -1020)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-1016)))) (-2169 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745))))) +(-13 (-1019 |#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) (-591 (-663 |#3|)) (-10 -8 (IF (|has| |#3| (-354)) (-6 (-1225 |#3|)) |%noBranch|) (IF (|has| |#3| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|) (-15 -2169 ($ (-663 |#3|))) (-15 -3834 ((-663 |#3|) $)))) +((-2542 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2781 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1021 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2781 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2542 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-745) (-745) (-1016) (-230 |#2| |#3|) (-230 |#1| |#3|) (-1019 |#1| |#2| |#3| |#4| |#5|) (-1016) (-230 |#2| |#7|) (-230 |#1| |#7|) (-1019 |#1| |#2| |#7| |#8| |#9|)) (T -1021)) +((-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *10 (-230 *6 *2)) (-4 *11 (-230 *5 *2)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016)) (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-230 *6 *10)) (-4 *12 (-230 *5 *10))))) +(-10 -7 (-15 -2781 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2542 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ |#1|) 23))) (((-1022 |#1|) (-138) (-1023)) (T -1022)) ((* (*1 *1 *1 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1023))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-1023) (-138)) (T -1023)) NIL (-13 (-21) (-1075)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-592 (-832)) . T) ((-1075) . T) ((-1063) . T)) -((-1665 (($ $) 16)) (-3849 (($ $) 22)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 49)) (-3910 (($ $) 24)) (-3862 (($ $) 11)) (-3887 (($ $) 38)) (-2591 (((-371) $) NIL) (((-218) $) NIL) (((-861 (-371)) $) 33)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL) (($ (-399 (-548))) 28) (($ (-548)) NIL) (($ (-399 (-548))) 28)) (-3835 (((-745)) 8)) (-3897 (($ $) 39))) -(((-1024 |#1|) (-10 -8 (-15 -3849 (|#1| |#1|)) (-15 -1665 (|#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) (-1025)) (T -1024)) -((-3835 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) -(-10 -8 (-15 -3849 (|#1| |#1|)) (-15 -1665 (|#1| |#1|)) (-15 -3862 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3628 ((-858 (-371) |#1|) |#1| (-861 (-371)) (-858 (-371) |#1|))) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 -2591 ((-218) |#1|)) (-15 -2591 ((-371) |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3835 ((-745))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 (((-548) $) 86)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-1665 (($ $) 84)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-1926 (($ $) 94)) (-4087 (((-112) $ $) 57)) (-2672 (((-548) $) 111)) (-3030 (($) 17 T CONST)) (-3849 (($ $) 83)) (-2441 (((-3 (-548) "failed") $) 99) (((-3 (-399 (-548)) "failed") $) 96)) (-2375 (((-548) $) 98) (((-399 (-548)) $) 95)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-1271 (((-112) $) 68)) (-3298 (((-112) $) 109)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 90)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 93)) (-3910 (($ $) 89)) (-3312 (((-112) $) 110)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-1795 (($ $ $) 108)) (-3091 (($ $ $) 107)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-3862 (($ $) 85)) (-3887 (($ $) 87)) (-1915 (((-410 $) $) 71)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2591 (((-371) $) 102) (((-218) $) 101) (((-861 (-371)) $) 91)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ (-548)) 100) (($ (-399 (-548))) 97)) (-3835 (((-745)) 28)) (-3897 (($ $) 88)) (-3290 (((-112) $ $) 37)) (-1446 (($ $) 112)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2262 (((-112) $ $) 105)) (-2241 (((-112) $ $) 104)) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 106)) (-2234 (((-112) $ $) 103)) (-2309 (($ $ $) 62)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66) (($ $ (-399 (-548))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-591 (-832)) . T) ((-1075) . T) ((-1063) . T)) +((-3643 (($ $) 16)) (-2446 (($ $) 22)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 49)) (-1684 (($ $) 24)) (-2567 (($ $) 11)) (-1435 (($ $) 38)) (-2829 (((-370) $) NIL) (((-217) $) NIL) (((-861 (-370)) $) 33)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL) (($ (-398 (-547))) 28) (($ (-547)) NIL) (($ (-398 (-547))) 28)) (-2311 (((-745)) 8)) (-1564 (($ $) 39))) +(((-1024 |#1|) (-10 -8 (-15 -2446 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -2567 (|#1| |#1|)) (-15 -1435 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| (-547))) (-15 -2829 ((-217) |#1|)) (-15 -2829 ((-370) |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 -3834 ((-832) |#1|))) (-1025)) (T -1024)) +((-2311 (*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) +(-10 -8 (-15 -2446 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -2567 (|#1| |#1|)) (-15 -1435 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -3893 ((-858 (-370) |#1|) |#1| (-861 (-370)) (-858 (-370) |#1|))) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| (-547))) (-15 -2829 ((-217) |#1|)) (-15 -2829 ((-370) |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-547))) (-15 -2311 ((-745))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2673 (((-547) $) 86)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3643 (($ $) 84)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2118 (($ $) 94)) (-2873 (((-112) $ $) 57)) (-3807 (((-547) $) 111)) (-3219 (($) 17 T CONST)) (-2446 (($ $) 83)) (-2698 (((-3 (-547) "failed") $) 99) (((-3 (-398 (-547)) "failed") $) 96)) (-2643 (((-547) $) 98) (((-398 (-547)) $) 95)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-3674 (((-112) $) 68)) (-3848 (((-112) $) 109)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 90)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 93)) (-1684 (($ $) 89)) (-3937 (((-112) $) 110)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-2847 (($ $ $) 108)) (-3563 (($ $ $) 107)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2567 (($ $) 85)) (-1435 (($ $) 87)) (-2106 (((-409 $) $) 71)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-2829 (((-370) $) 102) (((-217) $) 101) (((-861 (-370)) $) 91)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ (-547)) 100) (($ (-398 (-547))) 97)) (-2311 (((-745)) 28)) (-1564 (($ $) 88)) (-1932 (((-112) $ $) 37)) (-2040 (($ $) 112)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2433 (((-112) $ $) 105)) (-2408 (((-112) $ $) 104)) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 106)) (-2396 (((-112) $ $) 103)) (-2497 (($ $ $) 62)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66) (($ $ (-398 (-547))) 92)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64))) (((-1025) (-138)) (T -1025)) -((-1446 (*1 *1 *1) (-4 *1 (-1025))) (-3910 (*1 *1 *1) (-4 *1 (-1025))) (-3897 (*1 *1 *1) (-4 *1 (-1025))) (-3887 (*1 *1 *1) (-4 *1 (-1025))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-548)))) (-3862 (*1 *1 *1) (-4 *1 (-1025))) (-1665 (*1 *1 *1) (-4 *1 (-1025))) (-3849 (*1 *1 *1) (-4 *1 (-1025)))) -(-13 (-355) (-819) (-991) (-1007 (-548)) (-1007 (-399 (-548))) (-971) (-593 (-861 (-371))) (-855 (-371)) (-145) (-10 -8 (-15 -3910 ($ $)) (-15 -3897 ($ $)) (-15 -3887 ($ $)) (-15 -3875 ((-548) $)) (-15 -3862 ($ $)) (-15 -1665 ($ $)) (-15 -3849 ($ $)) (-15 -1446 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-592 (-832)) . T) ((-169) . T) ((-593 (-218)) . T) ((-593 (-371)) . T) ((-593 (-861 (-371))) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-371)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1007 (-399 (-548))) . T) ((-1007 (-548)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) |#2| $) 23)) (-3423 ((|#1| $) 10)) (-2672 (((-548) |#2| $) 88)) (-3263 (((-3 $ "failed") |#2| (-890)) 57)) (-3676 ((|#1| $) 28)) (-3250 ((|#1| |#2| $ |#1|) 37)) (-3933 (($ $) 25)) (-3859 (((-3 |#2| "failed") |#2| $) 87)) (-3298 (((-112) |#2| $) NIL)) (-3312 (((-112) |#2| $) NIL)) (-3920 (((-112) |#2| $) 24)) (-3947 ((|#1| $) 89)) (-3663 ((|#1| $) 27)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3287 ((|#2| $) 79)) (-3743 (((-832) $) 70)) (-2439 ((|#1| |#2| $ |#1|) 38)) (-3274 (((-619 $) |#2|) 59)) (-2214 (((-112) $ $) 74))) -(((-1026 |#1| |#2|) (-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3663 (|#1| $)) (-15 -3676 (|#1| $)) (-15 -3423 (|#1| $)) (-15 -3947 (|#1| $)) (-15 -3933 ($ $)) (-15 -3920 ((-112) |#2| $)) (-15 -3250 (|#1| |#2| $ |#1|)))) (-13 (-819) (-355)) (-1194 |#1|)) (T -1026)) -((-3250 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3663 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3676 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3423 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3933 (*1 *1 *1) (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3920 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-819) (-355))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) (-4 *3 (-1194 *4))))) -(-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3663 (|#1| $)) (-15 -3676 (|#1| $)) (-15 -3423 (|#1| $)) (-15 -3947 (|#1| $)) (-15 -3933 ($ $)) (-15 -3920 ((-112) |#2| $)) (-15 -3250 (|#1| |#2| $ |#1|)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) NIL)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) NIL)) (-3030 (($) NIL T CONST)) (-3962 (($ (-1135)) 10) (($ (-548)) 7)) (-2441 (((-3 (-548) "failed") $) NIL)) (-2375 (((-548) $) NIL)) (-1945 (($ $ $) NIL)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-663 (-548)) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($) NIL) (($ $) NIL)) (-1922 (($ $ $) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) NIL)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) NIL)) (-3705 (((-112) $) NIL)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) NIL)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-2742 (($ $) NIL)) (-3198 (($ $) NIL)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) NIL)) (-3932 (((-1082) $) NIL) (($ $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) NIL) (($ (-619 $)) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2445 (($ $) NIL)) (-2113 (($ $) NIL)) (-2591 (((-548) $) 16) (((-524) $) NIL) (((-861 (-548)) $) NIL) (((-371) $) NIL) (((-218) $) NIL) (($ (-1135)) 9)) (-3743 (((-832) $) 20) (($ (-548)) 6) (($ $) NIL) (($ (-548)) 6)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) NIL)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) NIL)) (-1446 (($ $) NIL)) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) NIL)) (-2299 (($ $) 19) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL))) -(((-1027) (-13 (-533) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -2591 ($ (-1135))) (-15 -3962 ($ (-1135))) (-15 -3962 ($ (-548)))))) (T -1027)) -((-2591 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1027))))) -(-13 (-533) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -2591 ($ (-1135))) (-15 -3962 ($ (-1135))) (-15 -3962 ($ (-548))))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-4149 (((-1223) $ (-1135) (-1135)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-3983 (($) 9)) (-2089 (((-52) $ (-1135) (-52)) NIL)) (-4069 (($ $) 30)) (-2808 (($ $) 28)) (-2817 (($ $) 27)) (-2799 (($ $) 29)) (-4059 (($ $) 32)) (-4049 (($ $) 33)) (-2825 (($ $) 26)) (-4080 (($ $) 31)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) 25 (|has| $ (-6 -4327)))) (-3255 (((-3 (-52) "failed") (-1135) $) 40)) (-3030 (($) NIL T CONST)) (-2834 (($) 7)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) 50 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-3 (-52) "failed") (-1135) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327)))) (-3974 (((-3 (-1118) "failed") $ (-1118) (-548)) 59)) (-3971 (((-52) $ (-1135) (-52)) NIL (|has| $ (-6 -4328)))) (-3899 (((-52) $ (-1135)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1135) $) NIL (|has| (-1135) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) 35 (|has| $ (-6 -4327))) (((-619 (-52)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4181 (((-1135) $) NIL (|has| (-1135) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-4043 (((-619 (-1135)) $) NIL)) (-4233 (((-112) (-1135) $) NIL)) (-1346 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) 43)) (-4201 (((-619 (-1135)) $) NIL)) (-4212 (((-112) (-1135) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-4016 (((-371) $ (-1135)) 49)) (-4005 (((-619 (-1118)) $ (-1118)) 60)) (-3453 (((-52) $) NIL (|has| (-1135) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) "failed") (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL)) (-4159 (($ $ (-52)) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL (-12 (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-301 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-286 (-52))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-286 (-52)))) NIL (-12 (|has| (-52) (-301 (-52))) (|has| (-52) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063))))) (-4223 (((-619 (-52)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-52) $ (-1135)) NIL) (((-52) $ (-1135) (-52)) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3993 (($ $ (-1135)) 51)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) 37)) (-1831 (($ $ $) 38)) (-3743 (((-832) $) NIL (-1524 (|has| (-52) (-592 (-832))) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-592 (-832)))))) (-4037 (($ $ (-1135) (-371)) 47)) (-4027 (($ $ (-1135) (-371)) 48)) (-1368 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1135)) (|:| -1657 (-52)))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3156 (-1135)) (|:| -1657 (-52))) (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1028) (-13 (-1148 (-1135) (-52)) (-10 -8 (-15 -1831 ($ $ $)) (-15 -2834 ($)) (-15 -2825 ($ $)) (-15 -2817 ($ $)) (-15 -2808 ($ $)) (-15 -2799 ($ $)) (-15 -4080 ($ $)) (-15 -4069 ($ $)) (-15 -4059 ($ $)) (-15 -4049 ($ $)) (-15 -4037 ($ $ (-1135) (-371))) (-15 -4027 ($ $ (-1135) (-371))) (-15 -4016 ((-371) $ (-1135))) (-15 -4005 ((-619 (-1118)) $ (-1118))) (-15 -3993 ($ $ (-1135))) (-15 -3983 ($)) (-15 -3974 ((-3 (-1118) "failed") $ (-1118) (-548))) (-6 -4327)))) (T -1028)) -((-1831 (*1 *1 *1 *1) (-5 *1 (-1028))) (-2834 (*1 *1) (-5 *1 (-1028))) (-2825 (*1 *1 *1) (-5 *1 (-1028))) (-2817 (*1 *1 *1) (-5 *1 (-1028))) (-2808 (*1 *1 *1) (-5 *1 (-1028))) (-2799 (*1 *1 *1) (-5 *1 (-1028))) (-4080 (*1 *1 *1) (-5 *1 (-1028))) (-4069 (*1 *1 *1) (-5 *1 (-1028))) (-4059 (*1 *1 *1) (-5 *1 (-1028))) (-4049 (*1 *1 *1) (-5 *1 (-1028))) (-4037 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028)))) (-4027 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028)))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-371)) (-5 *1 (-1028)))) (-4005 (*1 *2 *1 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1028)) (-5 *3 (-1118)))) (-3993 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1028)))) (-3983 (*1 *1) (-5 *1 (-1028))) (-3974 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-1028))))) -(-13 (-1148 (-1135) (-52)) (-10 -8 (-15 -1831 ($ $ $)) (-15 -2834 ($)) (-15 -2825 ($ $)) (-15 -2817 ($ $)) (-15 -2808 ($ $)) (-15 -2799 ($ $)) (-15 -4080 ($ $)) (-15 -4069 ($ $)) (-15 -4059 ($ $)) (-15 -4049 ($ $)) (-15 -4037 ($ $ (-1135) (-371))) (-15 -4027 ($ $ (-1135) (-371))) (-15 -4016 ((-371) $ (-1135))) (-15 -4005 ((-619 (-1118)) $ (-1118))) (-15 -3993 ($ $ (-1135))) (-15 -3983 ($)) (-15 -3974 ((-3 (-1118) "failed") $ (-1118) (-548))) (-6 -4327))) -((-1272 (($ $) 45)) (-3090 (((-112) $ $) 74)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-921 (-399 (-548)))) 227) (((-3 $ "failed") (-921 (-548))) 226) (((-3 $ "failed") (-921 |#2|)) 229)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL) (((-548) $) NIL) ((|#4| $) NIL) (($ (-921 (-399 (-548)))) 215) (($ (-921 (-548))) 211) (($ (-921 |#2|)) 231)) (-1872 (($ $) NIL) (($ $ |#4|) 43)) (-2143 (((-112) $ $) 112) (((-112) $ (-619 $)) 113)) (-3155 (((-112) $) 56)) (-1519 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 107)) (-2873 (($ $) 138)) (-2982 (($ $) 134)) (-2992 (($ $) 133)) (-3077 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3067 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2157 (((-112) $ $) 121) (((-112) $ (-619 $)) 122)) (-3239 ((|#4| $) 33)) (-3013 (($ $ $) 110)) (-3166 (((-112) $) 55)) (-3229 (((-745) $) 35)) (-2844 (($ $) 152)) (-2853 (($ $) 149)) (-3114 (((-619 $) $) 68)) (-3145 (($ $) 57)) (-2862 (($ $) 145)) (-3125 (((-619 $) $) 65)) (-3135 (($ $) 59)) (-2197 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $) 111)) (-3023 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 108) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |#4|) 109)) (-3033 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $) 104) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |#4|) 105)) (-3056 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3044 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3190 (((-619 $) $) 51)) (-2109 (((-112) $ $) 118) (((-112) $ (-619 $)) 119)) (-2052 (($ $ $) 103)) (-3410 (($ $) 37)) (-2199 (((-112) $ $) 72)) (-2121 (((-112) $ $) 114) (((-112) $ (-619 $)) 116)) (-2063 (($ $ $) 101)) (-3218 (($ $) 40)) (-3587 ((|#2| |#2| $) 142) (($ (-619 $)) NIL) (($ $ $) NIL)) (-2960 (($ $ |#2|) NIL) (($ $ $) 131)) (-2971 (($ $ |#2|) 126) (($ $ $) 129)) (-3204 (($ $) 48)) (-3179 (($ $) 52)) (-2591 (((-861 (-371)) $) NIL) (((-861 (-548)) $) NIL) (((-524) $) NIL) (($ (-921 (-399 (-548)))) 217) (($ (-921 (-548))) 213) (($ (-921 |#2|)) 228) (((-1118) $) 250) (((-921 |#2|) $) 162)) (-3743 (((-832) $) 30) (($ (-548)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-921 |#2|) $) 163) (($ (-399 (-548))) NIL) (($ $) NIL)) (-3102 (((-3 (-112) "failed") $ $) 71))) -(((-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 ((-921 |#2|) |#1|)) (-15 -2591 ((-921 |#2|) |#1|)) (-15 -2591 ((-1118) |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3587 (|#2| |#2| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#2|)) (-15 -2971 (|#1| |#1| |#2|)) (-15 -2982 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2591 (|#1| (-921 |#2|))) (-15 -2375 (|#1| (-921 |#2|))) (-15 -2441 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2591 (|#1| (-921 (-548)))) (-15 -2375 (|#1| (-921 (-548)))) (-15 -2441 ((-3 |#1| "failed") (-921 (-548)))) (-15 -2591 (|#1| (-921 (-399 (-548))))) (-15 -2375 (|#1| (-921 (-399 (-548))))) (-15 -2441 ((-3 |#1| "failed") (-921 (-399 (-548))))) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2063 (|#1| |#1| |#1|)) (-15 -3003 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4023 (-745))) |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1|)) (-15 -1519 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1| |#4|)) (-15 -3056 (|#1| |#1| |#1| |#4|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1| |#1| |#4|)) (-15 -3077 (|#1| |#1| |#1| |#4|)) (-15 -3067 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| (-619 |#1|))) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2109 ((-112) |#1| (-619 |#1|))) (-15 -2109 ((-112) |#1| |#1|)) (-15 -2121 ((-112) |#1| (-619 |#1|))) (-15 -2121 ((-112) |#1| |#1|)) (-15 -2143 ((-112) |#1| (-619 |#1|))) (-15 -2143 ((-112) |#1| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3102 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3114 ((-619 |#1|) |#1|)) (-15 -3125 ((-619 |#1|) |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3155 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1872 (|#1| |#1| |#4|)) (-15 -2197 (|#1| |#1| |#4|)) (-15 -3179 (|#1| |#1|)) (-15 -3190 ((-619 |#1|) |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3229 ((-745) |#1|)) (-15 -3239 (|#4| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2197 (|#2| |#1|)) (-15 -1872 (|#1| |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-1030 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -1029)) -NIL -(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3587 (|#1| (-619 |#1|))) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 ((-921 |#2|) |#1|)) (-15 -2591 ((-921 |#2|) |#1|)) (-15 -2591 ((-1118) |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3587 (|#2| |#2| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1| |#2|)) (-15 -2971 (|#1| |#1| |#2|)) (-15 -2982 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2591 (|#1| (-921 |#2|))) (-15 -2375 (|#1| (-921 |#2|))) (-15 -2441 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2591 (|#1| (-921 (-548)))) (-15 -2375 (|#1| (-921 (-548)))) (-15 -2441 ((-3 |#1| "failed") (-921 (-548)))) (-15 -2591 (|#1| (-921 (-399 (-548))))) (-15 -2375 (|#1| (-921 (-399 (-548))))) (-15 -2441 ((-3 |#1| "failed") (-921 (-399 (-548))))) (-15 -2052 (|#1| |#1| |#1|)) (-15 -2063 (|#1| |#1| |#1|)) (-15 -3003 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4023 (-745))) |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1|)) (-15 -1519 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3023 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1| |#4|)) (-15 -3033 ((-2 (|:| -1489 |#1|) (|:| |gap| (-745)) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1| |#4|)) (-15 -3056 (|#1| |#1| |#1| |#4|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -3056 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1| |#1| |#4|)) (-15 -3077 (|#1| |#1| |#1| |#4|)) (-15 -3067 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2157 ((-112) |#1| (-619 |#1|))) (-15 -2157 ((-112) |#1| |#1|)) (-15 -2109 ((-112) |#1| (-619 |#1|))) (-15 -2109 ((-112) |#1| |#1|)) (-15 -2121 ((-112) |#1| (-619 |#1|))) (-15 -2121 ((-112) |#1| |#1|)) (-15 -2143 ((-112) |#1| (-619 |#1|))) (-15 -2143 ((-112) |#1| |#1|)) (-15 -3090 ((-112) |#1| |#1|)) (-15 -2199 ((-112) |#1| |#1|)) (-15 -3102 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3114 ((-619 |#1|) |#1|)) (-15 -3125 ((-619 |#1|) |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3155 ((-112) |#1|)) (-15 -3166 ((-112) |#1|)) (-15 -1872 (|#1| |#1| |#4|)) (-15 -2197 (|#1| |#1| |#4|)) (-15 -3179 (|#1| |#1|)) (-15 -3190 ((-619 |#1|) |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3229 ((-745) |#1|)) (-15 -3239 (|#4| |#1|)) (-15 -2591 ((-524) |#1|)) (-15 -2591 ((-861 (-548)) |#1|)) (-15 -2591 ((-861 (-371)) |#1|)) (-15 -2375 (|#4| |#1|)) (-15 -2441 ((-3 |#4| "failed") |#1|)) (-15 -3743 (|#1| |#4|)) (-15 -2197 (|#2| |#1|)) (-15 -1872 (|#1| |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 |#3|) $) 108)) (-1884 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-1272 (($ $) 269)) (-3090 (((-112) $ $) 255)) (-4104 (((-3 $ "failed") $ $) 19)) (-1548 (($ $ $) 214 (|has| |#1| (-540)))) (-2916 (((-619 $) $ $) 209 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-921 (-399 (-548)))) 229 (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))) (((-3 $ "failed") (-921 (-548))) 226 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135)))))) (((-3 $ "failed") (-921 |#1|)) 223 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548)))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-533))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-961 (-548)))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))))) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) ((|#3| $) 133) (($ (-921 (-399 (-548)))) 228 (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))) (($ (-921 (-548))) 225 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135)))))) (($ (-921 |#1|)) 222 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (-3958 (|has| |#1| (-38 (-548)))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-533))) (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (-3958 (|has| |#1| (-961 (-548)))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))))) (-1557 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-540)))) (-1872 (($ $) 152) (($ $ |#3|) 264)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2143 (((-112) $ $) 254) (((-112) $ (-619 $)) 253)) (-3859 (((-3 $ "failed") $) 32)) (-3155 (((-112) $) 262)) (-1519 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 234)) (-2873 (($ $) 203 (|has| |#1| (-443)))) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ |#3|) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-2982 (($ $) 219 (|has| |#1| (-540)))) (-2992 (($ $) 220 (|has| |#1| (-540)))) (-3077 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3067 (($ $ $) 245) (($ $ $ |#3|) 243)) (-4256 (($ $ |#1| |#2| $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| |#3| (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| |#3| (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-2157 (((-112) $ $) 248) (((-112) $ (-619 $)) 247)) (-2883 (($ $ $ $ $) 205 (|has| |#1| (-540)))) (-3239 ((|#3| $) 273)) (-2036 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-3013 (($ $ $) 233)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 118)) (-3166 (((-112) $) 263)) (-3904 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3229 (((-745) $) 272)) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 |#2| |#2|) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-3511 (((-3 |#3| "failed") $) 121)) (-2844 (($ $) 200 (|has| |#1| (-443)))) (-2853 (($ $) 201 (|has| |#1| (-443)))) (-3114 (((-619 $) $) 258)) (-3145 (($ $) 261)) (-2862 (($ $) 202 (|has| |#1| (-443)))) (-3125 (((-619 $) $) 259)) (-3135 (($ $) 260)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146) (($ $ |#3|) 265)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-3003 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $) 232)) (-3023 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $) 236) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |#3|) 235)) (-3033 (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $) 238) (((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |#3|) 237)) (-3056 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3044 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2546 (((-1118) $) 9)) (-3353 (($ $ $) 208 (|has| |#1| (-540)))) (-3190 (((-619 $) $) 267)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| |#3|) (|:| -3352 (-745))) "failed") $) 111)) (-2109 (((-112) $ $) 250) (((-112) $ (-619 $)) 249)) (-2052 (($ $ $) 230)) (-3410 (($ $) 271)) (-2199 (((-112) $ $) 256)) (-2121 (((-112) $ $) 252) (((-112) $ (-619 $)) 251)) (-2063 (($ $ $) 231)) (-3218 (($ $) 270)) (-3932 (((-1082) $) 10)) (-2927 (((-2 (|:| -3587 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-540)))) (-2938 (((-2 (|:| -3587 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-540)))) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 ((|#1| |#1| $) 204 (|has| |#1| (-443))) (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-2949 (((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-540)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-2960 (($ $ |#1|) 217 (|has| |#1| (-540))) (($ $ $) 215 (|has| |#1| (-540)))) (-2971 (($ $ |#1|) 218 (|has| |#1| (-540))) (($ $ $) 216 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-1566 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-4050 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-2512 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-3204 (($ $) 268)) (-3179 (($ $) 266)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| |#3| (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| |#3| (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| |#3| (-593 (-524))) (|has| |#1| (-593 (-524))))) (($ (-921 (-399 (-548)))) 227 (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135))))) (($ (-921 (-548))) 224 (-1524 (-12 (-3958 (|has| |#1| (-38 (-399 (-548))))) (|has| |#1| (-38 (-548))) (|has| |#3| (-593 (-1135)))) (-12 (|has| |#1| (-38 (-399 (-548)))) (|has| |#3| (-593 (-1135)))))) (($ (-921 |#1|)) 221 (|has| |#3| (-593 (-1135)))) (((-1118) $) 199 (-12 (|has| |#1| (-1007 (-548))) (|has| |#3| (-593 (-1135))))) (((-921 |#1|) $) 198 (|has| |#3| (-593 (-1135))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ |#3|) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-921 |#1|) $) 197 (|has| |#3| (-593 (-1135)))) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548)))))) (($ $) 83 (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3102 (((-3 (-112) "failed") $ $) 257)) (-3118 (($) 29 T CONST)) (-2893 (($ $ $ $ (-745)) 206 (|has| |#1| (-540)))) (-2905 (($ $ $ (-745)) 207 (|has| |#1| (-540)))) (-3296 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +((-2040 (*1 *1 *1) (-4 *1 (-1025))) (-1684 (*1 *1 *1) (-4 *1 (-1025))) (-1564 (*1 *1 *1) (-4 *1 (-1025))) (-1435 (*1 *1 *1) (-4 *1 (-1025))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-547)))) (-2567 (*1 *1 *1) (-4 *1 (-1025))) (-3643 (*1 *1 *1) (-4 *1 (-1025))) (-2446 (*1 *1 *1) (-4 *1 (-1025)))) +(-13 (-354) (-819) (-991) (-1007 (-547)) (-1007 (-398 (-547))) (-971) (-592 (-861 (-370))) (-855 (-370)) (-145) (-10 -8 (-15 -1684 ($ $)) (-15 -1564 ($ $)) (-15 -1435 ($ $)) (-15 -2673 ((-547) $)) (-15 -2567 ($ $)) (-15 -3643 ($ $)) (-15 -2446 ($ $)) (-15 -2040 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-591 (-832)) . T) ((-169) . T) ((-592 (-217)) . T) ((-592 (-370)) . T) ((-592 (-861 (-370))) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 $) . T) ((-701) . T) ((-765) . T) ((-766) . T) ((-768) . T) ((-769) . T) ((-819) . T) ((-821) . T) ((-855 (-370)) . T) ((-889) . T) ((-971) . T) ((-991) . T) ((-1007 (-398 (-547))) . T) ((-1007 (-547)) . T) ((-1022 #0#) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) |#2| $) 23)) (-3603 ((|#1| $) 10)) (-3807 (((-547) |#2| $) 88)) (-1658 (((-3 $ "failed") |#2| (-890)) 57)) (-3836 ((|#1| $) 28)) (-1525 ((|#1| |#2| $ |#1|) 37)) (-1914 (($ $) 25)) (-2537 (((-3 |#2| "failed") |#2| $) 87)) (-3848 (((-112) |#2| $) NIL)) (-3937 (((-112) |#2| $) NIL)) (-1800 (((-112) |#2| $) 24)) (-2031 ((|#1| $) 89)) (-3826 ((|#1| $) 27)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1901 ((|#2| $) 79)) (-3834 (((-832) $) 70)) (-2645 ((|#1| |#2| $ |#1|) 38)) (-1785 (((-619 $) |#2|) 59)) (-2371 (((-112) $ $) 74))) +(((-1026 |#1| |#2|) (-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3826 (|#1| $)) (-15 -3836 (|#1| $)) (-15 -3603 (|#1| $)) (-15 -2031 (|#1| $)) (-15 -1914 ($ $)) (-15 -1800 ((-112) |#2| $)) (-15 -1525 (|#1| |#2| $ |#1|)))) (-13 (-819) (-354)) (-1194 |#1|)) (T -1026)) +((-1525 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3826 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3836 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-2031 (*1 *2 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-1914 (*1 *1 *1) (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2)))) (-1800 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-819) (-354))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) (-4 *3 (-1194 *4))))) +(-13 (-1033 |#1| |#2|) (-10 -8 (-15 -3826 (|#1| $)) (-15 -3836 (|#1| $)) (-15 -3603 (|#1| $)) (-15 -2031 (|#1| $)) (-15 -1914 ($ $)) (-15 -1800 ((-112) |#2| $)) (-15 -1525 (|#1| |#2| $ |#1|)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1605 (($ $ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2702 (($ $ $ $) NIL)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL)) (-1302 (($ $ $) NIL)) (-3219 (($) NIL T CONST)) (-3959 (($ (-1135)) 10) (($ (-547)) 7)) (-2698 (((-3 (-547) "failed") $) NIL)) (-2643 (((-547) $) NIL)) (-2079 (($ $ $) NIL)) (-4238 (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-663 (-547)) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL)) (-2543 (((-112) $) NIL)) (-2430 (((-398 (-547)) $) NIL)) (-3229 (($) NIL) (($ $) NIL)) (-2052 (($ $ $) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2490 (($ $ $ $) NIL)) (-1723 (($ $ $) NIL)) (-3848 (((-112) $) NIL)) (-1569 (($ $ $) NIL)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-4114 (((-112) $) NIL)) (-3466 (((-112) $) NIL)) (-3652 (((-3 $ "failed") $) NIL)) (-3937 (((-112) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2605 (($ $ $ $) NIL)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-2417 (($ $) NIL)) (-4202 (($ $) NIL)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-2368 (($ $ $) NIL)) (-3045 (($) NIL T CONST)) (-3771 (($ $) NIL)) (-3979 (((-1082) $) NIL) (($ $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2677 (($ $) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3590 (((-112) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-3443 (($ $ (-745)) NIL) (($ $) NIL)) (-1882 (($ $) NIL)) (-2265 (($ $) NIL)) (-2829 (((-547) $) 16) (((-523) $) NIL) (((-861 (-547)) $) NIL) (((-370) $) NIL) (((-217) $) NIL) (($ (-1135)) 9)) (-3834 (((-832) $) 20) (($ (-547)) 6) (($ $) NIL) (($ (-547)) 6)) (-2311 (((-745)) NIL)) (-1837 (((-112) $ $) NIL)) (-1884 (($ $ $) NIL)) (-1849 (($) NIL)) (-1932 (((-112) $ $) NIL)) (-1482 (($ $ $ $) NIL)) (-2040 (($ $) NIL)) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) NIL)) (-2484 (($ $) 19) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL))) +(((-1027) (-13 (-532) (-10 -8 (-6 -4315) (-6 -4320) (-6 -4316) (-15 -2829 ($ (-1135))) (-15 -3959 ($ (-1135))) (-15 -3959 ($ (-547)))))) (T -1027)) +((-2829 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1027))))) +(-13 (-532) (-10 -8 (-6 -4315) (-6 -4320) (-6 -4316) (-15 -2829 ($ (-1135))) (-15 -3959 ($ (-1135))) (-15 -3959 ($ (-547))))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-2290 (((-1223) $ (-1135) (-1135)) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-4157 (($) 9)) (-2238 (((-52) $ (-1135) (-52)) NIL)) (-3822 (($ $) 30)) (-1501 (($ $) 28)) (-1600 (($ $) 27)) (-1395 (($ $) 29)) (-3729 (($ $) 32)) (-3647 (($ $) 33)) (-1672 (($ $) 26)) (-2802 (($ $) 31)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) 25 (|has| $ (-6 -4328)))) (-3477 (((-3 (-52) "failed") (-1135) $) 40)) (-3219 (($) NIL T CONST)) (-1764 (($) 7)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3342 (($ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) 50 (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-3 (-52) "failed") (-1135) $) NIL)) (-3801 (($ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328)))) (-4068 (((-3 (-1118) "failed") $ (-1118) (-547)) 59)) (-1861 (((-52) $ (-1135) (-52)) NIL (|has| $ (-6 -4329)))) (-1793 (((-52) $ (-1135)) NIL)) (-2973 (((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-619 (-52)) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-1135) $) NIL (|has| (-1135) (-821)))) (-3666 (((-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) 35 (|has| $ (-6 -4328))) (((-619 (-52)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063))))) (-2638 (((-1135) $) NIL (|has| (-1135) (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4329))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3437 (((-619 (-1135)) $) NIL)) (-1876 (((-112) (-1135) $) NIL)) (-1959 (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL)) (-1885 (($ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) 43)) (-1520 (((-619 (-1135)) $) NIL)) (-1641 (((-112) (-1135) $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3325 (((-370) $ (-1135)) 49)) (-1304 (((-619 (-1118)) $ (-1118)) 60)) (-3634 (((-52) $) NIL (|has| (-1135) (-821)))) (-3461 (((-3 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) "failed") (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL)) (-2418 (($ $ (-52)) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-285 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL (-12 (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-300 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (($ $ (-619 (-52)) (-619 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-285 (-52))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063)))) (($ $ (-619 (-285 (-52)))) NIL (-12 (|has| (-52) (-300 (-52))) (|has| (-52) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063))))) (-1758 (((-619 (-52)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 (((-52) $ (-1135)) NIL) (((-52) $ (-1135) (-52)) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-4251 (($ $ (-1135)) 51)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063)))) (((-745) (-52) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-52) (-1063)))) (((-745) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) 37)) (-1935 (($ $ $) 38)) (-3834 (((-832) $) NIL (-1524 (|has| (-52) (-591 (-832))) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-591 (-832)))))) (-3537 (($ $ (-1135) (-370)) 47)) (-3430 (($ $ (-1135) (-370)) 48)) (-2731 (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 (-1135)) (|:| -1777 (-52)))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-52) (-1063)) (|has| (-2 (|:| -3326 (-1135)) (|:| -1777 (-52))) (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1028) (-13 (-1148 (-1135) (-52)) (-10 -8 (-15 -1935 ($ $ $)) (-15 -1764 ($)) (-15 -1672 ($ $)) (-15 -1600 ($ $)) (-15 -1501 ($ $)) (-15 -1395 ($ $)) (-15 -2802 ($ $)) (-15 -3822 ($ $)) (-15 -3729 ($ $)) (-15 -3647 ($ $)) (-15 -3537 ($ $ (-1135) (-370))) (-15 -3430 ($ $ (-1135) (-370))) (-15 -3325 ((-370) $ (-1135))) (-15 -1304 ((-619 (-1118)) $ (-1118))) (-15 -4251 ($ $ (-1135))) (-15 -4157 ($)) (-15 -4068 ((-3 (-1118) "failed") $ (-1118) (-547))) (-6 -4328)))) (T -1028)) +((-1935 (*1 *1 *1 *1) (-5 *1 (-1028))) (-1764 (*1 *1) (-5 *1 (-1028))) (-1672 (*1 *1 *1) (-5 *1 (-1028))) (-1600 (*1 *1 *1) (-5 *1 (-1028))) (-1501 (*1 *1 *1) (-5 *1 (-1028))) (-1395 (*1 *1 *1) (-5 *1 (-1028))) (-2802 (*1 *1 *1) (-5 *1 (-1028))) (-3822 (*1 *1 *1) (-5 *1 (-1028))) (-3729 (*1 *1 *1) (-5 *1 (-1028))) (-3647 (*1 *1 *1) (-5 *1 (-1028))) (-3537 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-370)) (-5 *1 (-1028)))) (-3430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-370)) (-5 *1 (-1028)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-370)) (-5 *1 (-1028)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1028)) (-5 *3 (-1118)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1028)))) (-4157 (*1 *1) (-5 *1 (-1028))) (-4068 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1118)) (-5 *3 (-547)) (-5 *1 (-1028))))) +(-13 (-1148 (-1135) (-52)) (-10 -8 (-15 -1935 ($ $ $)) (-15 -1764 ($)) (-15 -1672 ($ $)) (-15 -1600 ($ $)) (-15 -1501 ($ $)) (-15 -1395 ($ $)) (-15 -2802 ($ $)) (-15 -3822 ($ $)) (-15 -3729 ($ $)) (-15 -3647 ($ $)) (-15 -3537 ($ $ (-1135) (-370))) (-15 -3430 ($ $ (-1135) (-370))) (-15 -3325 ((-370) $ (-1135))) (-15 -1304 ((-619 (-1118)) $ (-1118))) (-15 -4251 ($ $ (-1135))) (-15 -4157 ($)) (-15 -4068 ((-3 (-1118) "failed") $ (-1118) (-547))) (-6 -4328))) +((-1335 (($ $) 45)) (-2678 (((-112) $ $) 74)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-921 (-398 (-547)))) 227) (((-3 $ "failed") (-921 (-547))) 226) (((-3 $ "failed") (-921 |#2|)) 229)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) NIL) (((-547) $) NIL) ((|#4| $) NIL) (($ (-921 (-398 (-547)))) 215) (($ (-921 (-547))) 211) (($ (-921 |#2|)) 231)) (-2054 (($ $) NIL) (($ $ |#4|) 43)) (-2577 (((-112) $ $) 112) (((-112) $ (-619 $)) 113)) (-2023 (((-112) $) 56)) (-1484 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 107)) (-3968 (($ $) 138)) (-2787 (($ $) 134)) (-2883 (($ $) 133)) (-2562 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2441 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1331 (((-112) $ $) 121) (((-112) $ (-619 $)) 122)) (-1397 ((|#4| $) 33)) (-3061 (($ $ $) 110)) (-2026 (((-112) $) 55)) (-2644 (((-745) $) 35)) (-1860 (($ $) 152)) (-1946 (($ $) 149)) (-1558 (((-619 $) $) 68)) (-1908 (($ $) 57)) (-3874 (($ $) 145)) (-1677 (((-619 $) $) 65)) (-1794 (($ $) 59)) (-2027 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2969 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3402 (-745))) $ $) 111)) (-3153 (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $) 108) (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $ |#4|) 109)) (-3252 (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $) 104) (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $ |#4|) 105)) (-2318 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2188 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2281 (((-619 $) $) 51)) (-2257 (((-112) $ $) 118) (((-112) $ (-619 $)) 119)) (-2979 (($ $ $) 103)) (-3045 (($ $) 37)) (-1694 (((-112) $ $) 72)) (-2373 (((-112) $ $) 114) (((-112) $ (-619 $)) 116)) (-3062 (($ $ $) 101)) (-2535 (($ $) 40)) (-3715 ((|#2| |#2| $) 142) (($ (-619 $)) NIL) (($ $ $) NIL)) (-3711 (($ $ |#2|) NIL) (($ $ $) 131)) (-3805 (($ $ |#2|) 126) (($ $ $) 129)) (-2409 (($ $) 48)) (-2156 (($ $) 52)) (-2829 (((-861 (-370)) $) NIL) (((-861 (-547)) $) NIL) (((-523) $) NIL) (($ (-921 (-398 (-547)))) 217) (($ (-921 (-547))) 213) (($ (-921 |#2|)) 228) (((-1118) $) 250) (((-921 |#2|) $) 162)) (-3834 (((-832) $) 30) (($ (-547)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-921 |#2|) $) 163) (($ (-398 (-547))) NIL) (($ $) NIL)) (-1424 (((-3 (-112) "failed") $ $) 71))) +(((-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3834 (|#1| |#1|)) (-15 -3715 (|#1| |#1| |#1|)) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 ((-921 |#2|) |#1|)) (-15 -2829 ((-921 |#2|) |#1|)) (-15 -2829 ((-1118) |#1|)) (-15 -1860 (|#1| |#1|)) (-15 -1946 (|#1| |#1|)) (-15 -3874 (|#1| |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -3715 (|#2| |#2| |#1|)) (-15 -3711 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3711 (|#1| |#1| |#2|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -2787 (|#1| |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2829 (|#1| (-921 |#2|))) (-15 -2643 (|#1| (-921 |#2|))) (-15 -2698 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2829 (|#1| (-921 (-547)))) (-15 -2643 (|#1| (-921 (-547)))) (-15 -2698 ((-3 |#1| "failed") (-921 (-547)))) (-15 -2829 (|#1| (-921 (-398 (-547))))) (-15 -2643 (|#1| (-921 (-398 (-547))))) (-15 -2698 ((-3 |#1| "failed") (-921 (-398 (-547))))) (-15 -2979 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#1|)) (-15 -2969 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3402 (-745))) |#1| |#1|)) (-15 -3061 (|#1| |#1| |#1|)) (-15 -1484 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -3153 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1| |#4|)) (-15 -3153 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -3252 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -3856 |#1|)) |#1| |#1| |#4|)) (-15 -3252 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2188 (|#1| |#1| |#1| |#4|)) (-15 -2318 (|#1| |#1| |#1| |#4|)) (-15 -2188 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1| |#4|)) (-15 -2562 (|#1| |#1| |#1| |#4|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -1331 ((-112) |#1| (-619 |#1|))) (-15 -1331 ((-112) |#1| |#1|)) (-15 -2257 ((-112) |#1| (-619 |#1|))) (-15 -2257 ((-112) |#1| |#1|)) (-15 -2373 ((-112) |#1| (-619 |#1|))) (-15 -2373 ((-112) |#1| |#1|)) (-15 -2577 ((-112) |#1| (-619 |#1|))) (-15 -2577 ((-112) |#1| |#1|)) (-15 -2678 ((-112) |#1| |#1|)) (-15 -1694 ((-112) |#1| |#1|)) (-15 -1424 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1558 ((-619 |#1|) |#1|)) (-15 -1677 ((-619 |#1|) |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -2023 ((-112) |#1|)) (-15 -2026 ((-112) |#1|)) (-15 -2054 (|#1| |#1| |#4|)) (-15 -2027 (|#1| |#1| |#4|)) (-15 -2156 (|#1| |#1|)) (-15 -2281 ((-619 |#1|) |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -1335 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -2644 ((-745) |#1|)) (-15 -1397 (|#4| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2643 (|#4| |#1|)) (-15 -2698 ((-3 |#4| "failed") |#1|)) (-15 -3834 (|#1| |#4|)) (-15 -2027 (|#2| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-1030 |#2| |#3| |#4|) (-1016) (-767) (-821)) (T -1029)) +NIL +(-10 -8 (-15 -3834 (|#1| |#1|)) (-15 -3715 (|#1| |#1| |#1|)) (-15 -3715 (|#1| (-619 |#1|))) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 ((-921 |#2|) |#1|)) (-15 -2829 ((-921 |#2|) |#1|)) (-15 -2829 ((-1118) |#1|)) (-15 -1860 (|#1| |#1|)) (-15 -1946 (|#1| |#1|)) (-15 -3874 (|#1| |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -3715 (|#2| |#2| |#1|)) (-15 -3711 (|#1| |#1| |#1|)) (-15 -3805 (|#1| |#1| |#1|)) (-15 -3711 (|#1| |#1| |#2|)) (-15 -3805 (|#1| |#1| |#2|)) (-15 -2787 (|#1| |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2829 (|#1| (-921 |#2|))) (-15 -2643 (|#1| (-921 |#2|))) (-15 -2698 ((-3 |#1| "failed") (-921 |#2|))) (-15 -2829 (|#1| (-921 (-547)))) (-15 -2643 (|#1| (-921 (-547)))) (-15 -2698 ((-3 |#1| "failed") (-921 (-547)))) (-15 -2829 (|#1| (-921 (-398 (-547))))) (-15 -2643 (|#1| (-921 (-398 (-547))))) (-15 -2698 ((-3 |#1| "failed") (-921 (-398 (-547))))) (-15 -2979 (|#1| |#1| |#1|)) (-15 -3062 (|#1| |#1| |#1|)) (-15 -2969 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3402 (-745))) |#1| |#1|)) (-15 -3061 (|#1| |#1| |#1|)) (-15 -1484 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -3153 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1| |#4|)) (-15 -3153 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -3252 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -3856 |#1|)) |#1| |#1| |#4|)) (-15 -3252 ((-2 (|:| -1557 |#1|) (|:| |gap| (-745)) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2188 (|#1| |#1| |#1| |#4|)) (-15 -2318 (|#1| |#1| |#1| |#4|)) (-15 -2188 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1| |#4|)) (-15 -2562 (|#1| |#1| |#1| |#4|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -1331 ((-112) |#1| (-619 |#1|))) (-15 -1331 ((-112) |#1| |#1|)) (-15 -2257 ((-112) |#1| (-619 |#1|))) (-15 -2257 ((-112) |#1| |#1|)) (-15 -2373 ((-112) |#1| (-619 |#1|))) (-15 -2373 ((-112) |#1| |#1|)) (-15 -2577 ((-112) |#1| (-619 |#1|))) (-15 -2577 ((-112) |#1| |#1|)) (-15 -2678 ((-112) |#1| |#1|)) (-15 -1694 ((-112) |#1| |#1|)) (-15 -1424 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1558 ((-619 |#1|) |#1|)) (-15 -1677 ((-619 |#1|) |#1|)) (-15 -1794 (|#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -2023 ((-112) |#1|)) (-15 -2026 ((-112) |#1|)) (-15 -2054 (|#1| |#1| |#4|)) (-15 -2027 (|#1| |#1| |#4|)) (-15 -2156 (|#1| |#1|)) (-15 -2281 ((-619 |#1|) |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -1335 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -2644 ((-745) |#1|)) (-15 -1397 (|#4| |#1|)) (-15 -2829 ((-523) |#1|)) (-15 -2829 ((-861 (-547)) |#1|)) (-15 -2829 ((-861 (-370)) |#1|)) (-15 -2643 (|#4| |#1|)) (-15 -2698 ((-3 |#4| "failed") |#1|)) (-15 -3834 (|#1| |#4|)) (-15 -2027 (|#2| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 |#3|) $) 108)) (-2067 (((-1131 $) $ |#3|) 123) (((-1131 |#1|) $) 122)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3881 (($ $) 86 (|has| |#1| (-539)))) (-1832 (((-112) $) 88 (|has| |#1| (-539)))) (-1500 (((-745) $) 110) (((-745) $ (-619 |#3|)) 109)) (-1335 (($ $) 269)) (-2678 (((-112) $ $) 255)) (-3013 (((-3 $ "failed") $ $) 19)) (-1808 (($ $ $) 214 (|has| |#1| (-539)))) (-1323 (((-619 $) $ $) 209 (|has| |#1| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-2745 (($ $) 96 (|has| |#1| (-442)))) (-3457 (((-409 $) $) 95 (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-921 (-398 (-547)))) 229 (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135))))) (((-3 $ "failed") (-921 (-547))) 226 (-1524 (-12 (-3998 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1135)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135)))))) (((-3 $ "failed") (-921 |#1|)) 223 (-1524 (-12 (-3998 (|has| |#1| (-38 (-398 (-547))))) (-3998 (|has| |#1| (-38 (-547)))) (|has| |#3| (-592 (-1135)))) (-12 (-3998 (|has| |#1| (-532))) (-3998 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1135)))) (-12 (-3998 (|has| |#1| (-961 (-547)))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135))))))) (-2643 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) ((|#3| $) 133) (($ (-921 (-398 (-547)))) 228 (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135))))) (($ (-921 (-547))) 225 (-1524 (-12 (-3998 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1135)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135)))))) (($ (-921 |#1|)) 222 (-1524 (-12 (-3998 (|has| |#1| (-38 (-398 (-547))))) (-3998 (|has| |#1| (-38 (-547)))) (|has| |#3| (-592 (-1135)))) (-12 (-3998 (|has| |#1| (-532))) (-3998 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1135)))) (-12 (-3998 (|has| |#1| (-961 (-547)))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135))))))) (-3772 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-539)))) (-2054 (($ $) 152) (($ $ |#3|) 264)) (-4238 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2577 (((-112) $ $) 254) (((-112) $ (-619 $)) 253)) (-2537 (((-3 $ "failed") $) 32)) (-2023 (((-112) $) 262)) (-1484 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 234)) (-3968 (($ $) 203 (|has| |#1| (-442)))) (-3786 (($ $) 174 (|has| |#1| (-442))) (($ $ |#3|) 103 (|has| |#1| (-442)))) (-2042 (((-619 $) $) 107)) (-3674 (((-112) $) 94 (|has| |#1| (-878)))) (-2787 (($ $) 219 (|has| |#1| (-539)))) (-2883 (($ $) 220 (|has| |#1| (-539)))) (-2562 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2441 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3913 (($ $ |#1| |#2| $) 170)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| |#3| (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| |#3| (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-4114 (((-112) $) 30)) (-3570 (((-745) $) 167)) (-1331 (((-112) $ $) 248) (((-112) $ (-619 $)) 247)) (-4077 (($ $ $ $ $) 205 (|has| |#1| (-539)))) (-1397 ((|#3| $) 273)) (-2245 (($ (-1131 |#1|) |#3|) 115) (($ (-1131 $) |#3|) 114)) (-1744 (((-619 $) $) 124)) (-2187 (((-112) $) 150)) (-2229 (($ |#1| |#2|) 151) (($ $ |#3| (-745)) 117) (($ $ (-619 |#3|) (-619 (-745))) 116)) (-3061 (($ $ $) 233)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#3|) 118)) (-2026 (((-112) $) 263)) (-1626 ((|#2| $) 168) (((-745) $ |#3|) 120) (((-619 (-745)) $ (-619 |#3|)) 119)) (-2847 (($ $ $) 77 (|has| |#1| (-821)))) (-2644 (((-745) $) 272)) (-3563 (($ $ $) 76 (|has| |#1| (-821)))) (-4019 (($ (-1 |#2| |#2|) $) 169)) (-2781 (($ (-1 |#1| |#1|) $) 149)) (-2185 (((-3 |#3| "failed") $) 121)) (-1860 (($ $) 200 (|has| |#1| (-442)))) (-1946 (($ $) 201 (|has| |#1| (-442)))) (-1558 (((-619 $) $) 258)) (-1908 (($ $) 261)) (-3874 (($ $) 202 (|has| |#1| (-442)))) (-1677 (((-619 $) $) 259)) (-1794 (($ $) 260)) (-2013 (($ $) 147)) (-2027 ((|#1| $) 146) (($ $ |#3|) 265)) (-3685 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-2969 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3402 (-745))) $ $) 232)) (-3153 (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $) 236) (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $ |#3|) 235)) (-3252 (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $) 238) (((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $ |#3|) 237)) (-2318 (($ $ $) 242) (($ $ $ |#3|) 240)) (-2188 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1917 (((-1118) $) 9)) (-4258 (($ $ $) 208 (|has| |#1| (-539)))) (-2281 (((-619 $) $) 267)) (-1967 (((-3 (-619 $) "failed") $) 112)) (-1859 (((-3 (-619 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| |#3|) (|:| -4248 (-745))) "failed") $) 111)) (-2257 (((-112) $ $) 250) (((-112) $ (-619 $)) 249)) (-2979 (($ $ $) 230)) (-3045 (($ $) 271)) (-1694 (((-112) $ $) 256)) (-2373 (((-112) $ $) 252) (((-112) $ (-619 $)) 251)) (-3062 (($ $ $) 231)) (-2535 (($ $) 270)) (-3979 (((-1082) $) 10)) (-3357 (((-2 (|:| -3715 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-539)))) (-3472 (((-2 (|:| -3715 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-539)))) (-1988 (((-112) $) 164)) (-1999 ((|#1| $) 165)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-442)))) (-3715 ((|#1| |#1| $) 204 (|has| |#1| (-442))) (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-2106 (((-409 $) $) 97 (|has| |#1| (-878)))) (-3596 (((-2 (|:| -3715 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-539)))) (-2025 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-3711 (($ $ |#1|) 217 (|has| |#1| (-539))) (($ $ $) 215 (|has| |#1| (-539)))) (-3805 (($ $ |#1|) 218 (|has| |#1| (-539))) (($ $ $) 216 (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-619 |#3|) (-619 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-619 |#3|) (-619 $)) 136)) (-3846 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-3443 (($ $ |#3|) 40) (($ $ (-619 |#3|)) 39) (($ $ |#3| (-745)) 38) (($ $ (-619 |#3|) (-619 (-745))) 37)) (-1618 ((|#2| $) 148) (((-745) $ |#3|) 128) (((-619 (-745)) $ (-619 |#3|)) 127)) (-2409 (($ $) 268)) (-2156 (($ $) 266)) (-2829 (((-861 (-370)) $) 80 (-12 (|has| |#3| (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| |#3| (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| |#3| (-592 (-523))) (|has| |#1| (-592 (-523))))) (($ (-921 (-398 (-547)))) 227 (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135))))) (($ (-921 (-547))) 224 (-1524 (-12 (-3998 (|has| |#1| (-38 (-398 (-547))))) (|has| |#1| (-38 (-547))) (|has| |#3| (-592 (-1135)))) (-12 (|has| |#1| (-38 (-398 (-547)))) (|has| |#3| (-592 (-1135)))))) (($ (-921 |#1|)) 221 (|has| |#3| (-592 (-1135)))) (((-1118) $) 199 (-12 (|has| |#1| (-1007 (-547))) (|has| |#3| (-592 (-1135))))) (((-921 |#1|) $) 198 (|has| |#3| (-592 (-1135))))) (-1378 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ |#3|) 104 (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1806 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-921 |#1|) $) 197 (|has| |#3| (-592 (-1135)))) (($ (-398 (-547))) 70 (-1524 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547)))))) (($ $) 83 (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) 166)) (-3338 ((|#1| $ |#2|) 153) (($ $ |#3| (-745)) 126) (($ $ (-619 |#3|) (-619 (-745))) 125)) (-3336 (((-3 $ "failed") $) 71 (-1524 (-1806 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) 28)) (-1969 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-1932 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-1424 (((-3 (-112) "failed") $ $) 257)) (-3277 (($) 29 T CONST)) (-4174 (($ $ $ $ (-745)) 206 (|has| |#1| (-539)))) (-4270 (($ $ $ (-745)) 207 (|has| |#1| (-539)))) (-1686 (($ $ |#3|) 36) (($ $ (-619 |#3|)) 35) (($ $ |#3| (-745)) 34) (($ $ (-619 |#3|) (-619 (-745))) 33)) (-2433 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2497 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144))) (((-1030 |#1| |#2| |#3|) (-138) (-1016) (-767) (-821)) (T -1030)) -((-3239 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2197 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-1872 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3125 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3102 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2199 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-3090 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2143 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2143 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2121 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2109 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2157 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2157 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3067 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3077 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3067 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3056 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3056 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3044 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3033 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3033 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-3023 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3023 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-1519 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3013 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-3003 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4023 (-745)))) (-4 *1 (-1030 *3 *4 *5)))) (-2063 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2052 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2441 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2441 (*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2375 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2591 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2441 (*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2375 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *5 (-593 (-1135))) (-4 *4 (-767)) (-4 *5 (-821)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2982 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2971 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2960 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2960 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-1548 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2949 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3587 *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-1557 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2916 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-3353 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-2905 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540)))) (-2893 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540)))) (-2883 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-540)))) (-3587 (*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2862 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2853 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443)))) (-2844 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-443))))) -(-13 (-918 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3239 (|t#3| $)) (-15 -3229 ((-745) $)) (-15 -3410 ($ $)) (-15 -3218 ($ $)) (-15 -1272 ($ $)) (-15 -3204 ($ $)) (-15 -3190 ((-619 $) $)) (-15 -3179 ($ $)) (-15 -2197 ($ $ |t#3|)) (-15 -1872 ($ $ |t#3|)) (-15 -3166 ((-112) $)) (-15 -3155 ((-112) $)) (-15 -3145 ($ $)) (-15 -3135 ($ $)) (-15 -3125 ((-619 $) $)) (-15 -3114 ((-619 $) $)) (-15 -3102 ((-3 (-112) "failed") $ $)) (-15 -2199 ((-112) $ $)) (-15 -3090 ((-112) $ $)) (-15 -2143 ((-112) $ $)) (-15 -2143 ((-112) $ (-619 $))) (-15 -2121 ((-112) $ $)) (-15 -2121 ((-112) $ (-619 $))) (-15 -2109 ((-112) $ $)) (-15 -2109 ((-112) $ (-619 $))) (-15 -2157 ((-112) $ $)) (-15 -2157 ((-112) $ (-619 $))) (-15 -3077 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3077 ($ $ $ |t#3|)) (-15 -3067 ($ $ $ |t#3|)) (-15 -3056 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3056 ($ $ $ |t#3|)) (-15 -3044 ($ $ $ |t#3|)) (-15 -3033 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $)) (-15 -3033 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -2233 $)) $ $ |t#3|)) (-15 -3023 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3023 ((-2 (|:| -1489 $) (|:| |gap| (-745)) (|:| -3826 $) (|:| -2233 $)) $ $ |t#3|)) (-15 -1519 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -3013 ($ $ $)) (-15 -3003 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4023 (-745))) $ $)) (-15 -2063 ($ $ $)) (-15 -2052 ($ $ $)) (IF (|has| |t#3| (-593 (-1135))) (PROGN (-6 (-592 (-921 |t#1|))) (-6 (-593 (-921 |t#1|))) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -2441 ((-3 $ "failed") (-921 (-399 (-548))))) (-15 -2375 ($ (-921 (-399 (-548))))) (-15 -2591 ($ (-921 (-399 (-548))))) (-15 -2441 ((-3 $ "failed") (-921 (-548)))) (-15 -2375 ($ (-921 (-548)))) (-15 -2591 ($ (-921 (-548)))) (IF (|has| |t#1| (-961 (-548))) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 |t#1|))) (-15 -2375 ($ (-921 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-548))) (IF (|has| |t#1| (-38 (-399 (-548)))) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 (-548)))) (-15 -2375 ($ (-921 (-548)))) (-15 -2591 ($ (-921 (-548)))) (IF (|has| |t#1| (-533)) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 |t#1|))) (-15 -2375 ($ (-921 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-548))) |%noBranch| (IF (|has| |t#1| (-38 (-399 (-548)))) |%noBranch| (PROGN (-15 -2441 ((-3 $ "failed") (-921 |t#1|))) (-15 -2375 ($ (-921 |t#1|)))))) (-15 -2591 ($ (-921 |t#1|))) (IF (|has| |t#1| (-1007 (-548))) (-6 (-593 (-1118))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-15 -2992 ($ $)) (-15 -2982 ($ $)) (-15 -2971 ($ $ |t#1|)) (-15 -2960 ($ $ |t#1|)) (-15 -2971 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -1548 ($ $ $)) (-15 -2949 ((-2 (|:| -3587 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2938 ((-2 (|:| -3587 $) (|:| |coef1| $)) $ $)) (-15 -2927 ((-2 (|:| -3587 $) (|:| |coef2| $)) $ $)) (-15 -1557 ($ $ $)) (-15 -2916 ((-619 $) $ $)) (-15 -3353 ($ $ $)) (-15 -2905 ($ $ $ (-745))) (-15 -2893 ($ $ $ $ (-745))) (-15 -2883 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-443)) (PROGN (-15 -3587 (|t#1| |t#1| $)) (-15 -2873 ($ $)) (-15 -2862 ($ $)) (-15 -2853 ($ $)) (-15 -2844 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-592 (-921 |#1|)) |has| |#3| (-593 (-1135))) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| |#1| (-593 (-524))) (|has| |#3| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#3| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#3| (-593 (-861 (-548))))) ((-593 (-921 |#1|)) |has| |#3| (-593 (-1135))) ((-593 (-1118)) -12 (|has| |#1| (-1007 (-548))) (|has| |#3| (-593 (-1135)))) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-301 $) . T) ((-318 |#1| |#2|) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443))) ((-504 |#3| |#1|) . T) ((-504 |#3| $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-371)) -12 (|has| |#1| (-855 (-371))) (|has| |#3| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-855 (-548))) (|has| |#3| (-855 (-548)))) ((-918 |#1| |#2| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-2763 (((-619 (-1140)) $) 13)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2286 (((-1140) $) 15)) (-2214 (((-112) $ $) NIL))) -(((-1031) (-13 (-1047) (-10 -8 (-15 -2763 ((-619 (-1140)) $)) (-15 -2286 ((-1140) $))))) (T -1031)) -((-2763 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1031)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1031))))) -(-13 (-1047) (-10 -8 (-15 -2763 ((-619 (-1140)) $)) (-15 -2286 ((-1140) $)))) -((-3324 (((-112) |#3| $) 13)) (-3263 (((-3 $ "failed") |#3| (-890)) 23)) (-3859 (((-3 |#3| "failed") |#3| $) 38)) (-3298 (((-112) |#3| $) 16)) (-3312 (((-112) |#3| $) 14))) -(((-1032 |#1| |#2| |#3|) (-10 -8 (-15 -3263 ((-3 |#1| "failed") |#3| (-890))) (-15 -3859 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3298 ((-112) |#3| |#1|)) (-15 -3312 ((-112) |#3| |#1|)) (-15 -3324 ((-112) |#3| |#1|))) (-1033 |#2| |#3|) (-13 (-819) (-355)) (-1194 |#2|)) (T -1032)) -NIL -(-10 -8 (-15 -3263 ((-3 |#1| "failed") |#3| (-890))) (-15 -3859 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3298 ((-112) |#3| |#1|)) (-15 -3312 ((-112) |#3| |#1|)) (-15 -3324 ((-112) |#3| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) |#2| $) 21)) (-2672 (((-548) |#2| $) 22)) (-3263 (((-3 $ "failed") |#2| (-890)) 15)) (-3250 ((|#1| |#2| $ |#1|) 13)) (-3859 (((-3 |#2| "failed") |#2| $) 18)) (-3298 (((-112) |#2| $) 19)) (-3312 (((-112) |#2| $) 20)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3287 ((|#2| $) 17)) (-3743 (((-832) $) 11)) (-2439 ((|#1| |#2| $ |#1|) 14)) (-3274 (((-619 $) |#2|) 16)) (-2214 (((-112) $ $) 6))) -(((-1033 |#1| |#2|) (-138) (-13 (-819) (-355)) (-1194 |t#1|)) (T -1033)) -((-2672 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-548)))) (-3324 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3312 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3298 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3859 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) (-4 *2 (-1194 *3)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) (-4 *2 (-1194 *3)))) (-3274 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-619 *1)) (-4 *1 (-1033 *4 *3)))) (-3263 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-355))) (-4 *1 (-1033 *4 *2)) (-4 *2 (-1194 *4)))) (-2439 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) (-4 *3 (-1194 *2)))) (-3250 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) (-4 *3 (-1194 *2))))) -(-13 (-1063) (-10 -8 (-15 -2672 ((-548) |t#2| $)) (-15 -3324 ((-112) |t#2| $)) (-15 -3312 ((-112) |t#2| $)) (-15 -3298 ((-112) |t#2| $)) (-15 -3859 ((-3 |t#2| "failed") |t#2| $)) (-15 -3287 (|t#2| $)) (-15 -3274 ((-619 $) |t#2|)) (-15 -3263 ((-3 $ "failed") |t#2| (-890))) (-15 -2439 (|t#1| |t#2| $ |t#1|)) (-15 -3250 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3653 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745)) 96)) (-3619 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 56)) (-1312 (((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)) 87)) (-3598 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-3630 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 58) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112)) 60)) (-3642 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 79)) (-2591 (((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 82)) (-3609 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-112)) 55)) (-3585 (((-745) (-619 |#4|) (-619 |#5|)) 19))) -(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-112))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1034)) -((-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-3653 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) (-3642 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3642 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3609 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-112))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) -((-2258 (((-112) |#5| $) 21)) (-3425 (((-112) |#5| $) 24)) (-2267 (((-112) |#5| $) 16) (((-112) $) 45)) (-2520 (((-619 $) |#5| $) NIL) (((-619 $) (-619 |#5|) $) 77) (((-619 $) (-619 |#5|) (-619 $)) 75) (((-619 $) |#5| (-619 $)) 78)) (-1656 (($ $ |#5|) NIL) (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 60) (((-619 $) (-619 |#5|) $) 62) (((-619 $) (-619 |#5|) (-619 $)) 64)) (-3338 (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 54) (((-619 $) (-619 |#5|) $) 56) (((-619 $) (-619 |#5|) (-619 $)) 58)) (-2247 (((-112) |#5| $) 27))) -(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1656 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1656 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1656 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1656 ((-619 |#1|) |#5| |#1|)) (-15 -3338 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3338 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3338 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3338 ((-619 |#1|) |#5| |#1|)) (-15 -2520 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -2520 ((-619 |#1|) |#5| |#1|)) (-15 -3425 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#1|)) (-15 -2247 ((-112) |#5| |#1|)) (-15 -2258 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#5| |#1|)) (-15 -1656 (|#1| |#1| |#5|))) (-1036 |#2| |#3| |#4| |#5|) (-443) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1035)) -NIL -(-10 -8 (-15 -1656 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1656 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1656 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1656 ((-619 |#1|) |#5| |#1|)) (-15 -3338 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3338 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3338 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3338 ((-619 |#1|) |#5| |#1|)) (-15 -2520 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -2520 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -2520 ((-619 |#1|) |#5| |#1|)) (-15 -3425 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#1|)) (-15 -2247 ((-112) |#5| |#1|)) (-15 -2258 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#5| |#1|)) (-15 -1656 (|#1| |#1| |#5|))) -((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) -(((-1036 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1036)) -((-2267 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2258 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2247 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-3425 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3412 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3400 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3400 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3387 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3369 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3353 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1688 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2520 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2520 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-2520 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-2520 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-3338 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-3338 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-3688 (*1 *1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3688 (*1 *1 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) (-1656 (*1 *2 *3 *1) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-1656 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *5 *6 *7 *8))))) -(-13 (-1165 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2267 ((-112) |t#4| $)) (-15 -2258 ((-112) |t#4| $)) (-15 -2247 ((-112) |t#4| $)) (-15 -2267 ((-112) $)) (-15 -3425 ((-112) |t#4| $)) (-15 -3412 ((-3 (-112) (-619 $)) |t#4| $)) (-15 -3400 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |t#4| $)) (-15 -3400 ((-112) |t#4| $)) (-15 -3387 ((-619 $) |t#4| $)) (-15 -3369 ((-3 |t#4| (-619 $)) |t#4| |t#4| $)) (-15 -3353 ((-619 (-2 (|:| |val| |t#4|) (|:| -1806 $))) |t#4| |t#4| $)) (-15 -1688 ((-619 (-2 (|:| |val| |t#4|) (|:| -1806 $))) |t#4| $)) (-15 -2520 ((-619 $) |t#4| $)) (-15 -2520 ((-619 $) (-619 |t#4|) $)) (-15 -2520 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -2520 ((-619 $) |t#4| (-619 $))) (-15 -3338 ((-619 $) |t#4| $)) (-15 -3338 ((-619 $) |t#4| (-619 $))) (-15 -3338 ((-619 $) (-619 |t#4|) $)) (-15 -3338 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -3688 ($ |t#4| $)) (-15 -3688 ($ (-619 |t#4|) $)) (-15 -1656 ((-619 $) |t#4| $)) (-15 -1656 ((-619 $) |t#4| (-619 $))) (-15 -1656 ((-619 $) (-619 |t#4|) $)) (-15 -1656 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -2004 ((-619 $) (-619 |t#4|) (-112))))) -(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) -((-2334 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|) 81)) (-2304 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 113)) (-2324 (((-619 |#5|) |#4| |#5|) 70)) (-2314 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1732 (((-1223)) 37)) (-1713 (((-1223)) 26)) (-1722 (((-1223) (-1118) (-1118) (-1118)) 33)) (-1705 (((-1223) (-1118) (-1118) (-1118)) 22)) (-2274 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|) 96)) (-2285 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112)) 107) (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2295 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 102))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -2274 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -2295 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2304 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2314 ((-112) |#4| |#5|)) (-15 -2314 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -2324 ((-619 |#5|) |#4| |#5|)) (-15 -2334 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1037)) -((-2334 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2324 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2314 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2314 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2304 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2295 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) (-5 *1 (-1037 *6 *7 *4 *8 *9)))) (-2285 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-2274 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1732 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-1713 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -2274 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2285 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -2295 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2304 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -2314 ((-112) |#4| |#5|)) (-15 -2314 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -2324 ((-619 |#5|) |#4| |#5|)) (-15 -2334 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) -((-3730 (((-112) $ $) NIL)) (-2275 (((-1135) $) 8)) (-2546 (((-1118) $) 16)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 13))) -(((-1038 |#1|) (-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) (-1135)) (T -1038)) -((-2275 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1038 *3)) (-14 *3 *2)))) -(-13 (-1063) (-10 -8 (-15 -2275 ((-1135) $)))) -((-3730 (((-112) $ $) NIL)) (-2256 (($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|))) 33)) (-1630 (($ |#3| |#3|) 22) (($ |#3| |#3| (-619 (-1135))) 20)) (-1987 ((|#3| $) 13)) (-2441 (((-3 (-286 |#3|) "failed") $) 58)) (-2375 (((-286 |#3|) $) NIL)) (-2343 (((-619 (-1135)) $) 16)) (-3521 (((-861 |#1|) $) 11)) (-1974 ((|#3| $) 12)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-890)) 39)) (-3743 (((-832) $) 86) (($ (-286 |#3|)) 21)) (-2214 (((-112) $ $) 36))) -(((-1039 |#1| |#2| |#3|) (-13 (-1063) (-278 |#3| |#3|) (-1007 (-286 |#3|)) (-10 -8 (-15 -1630 ($ |#3| |#3|)) (-15 -1630 ($ |#3| |#3| (-619 (-1135)))) (-15 -2256 ($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|)))) (-15 -3521 ((-861 |#1|) $)) (-15 -1974 (|#3| $)) (-15 -1987 (|#3| $)) (-15 -3171 (|#3| $ |#3| (-890))) (-15 -2343 ((-619 (-1135)) $)))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-593 (-861 |#1|))) (-13 (-422 |#2|) (-855 |#1|) (-593 (-861 |#1|)))) (T -1039)) -((-1630 (*1 *1 *2 *2) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))))) (-1630 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) (-2256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1 (-112) (-619 *6))) (-4 *6 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1039 *4 *5 *6)))) (-3521 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 *2))) (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 *2))))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) (-1987 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) (-3171 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) (-2343 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-5 *2 (-619 (-1135))) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) -(-13 (-1063) (-278 |#3| |#3|) (-1007 (-286 |#3|)) (-10 -8 (-15 -1630 ($ |#3| |#3|)) (-15 -1630 ($ |#3| |#3| (-619 (-1135)))) (-15 -2256 ($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|)))) (-15 -3521 ((-861 |#1|) $)) (-15 -1974 (|#3| $)) (-15 -1987 (|#3| $)) (-15 -3171 (|#3| $ |#3| (-890))) (-15 -2343 ((-619 (-1135)) $)))) -((-3730 (((-112) $ $) NIL)) (-2227 (($ (-619 (-1039 |#1| |#2| |#3|))) 13)) (-2800 (((-619 (-1039 |#1| |#2| |#3|)) $) 20)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3171 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-890)) 26)) (-3743 (((-832) $) 16)) (-2214 (((-112) $ $) 19))) -(((-1040 |#1| |#2| |#3|) (-13 (-1063) (-278 |#3| |#3|) (-10 -8 (-15 -2227 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -2800 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3171 (|#3| $ |#3| (-890))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-593 (-861 |#1|))) (-13 (-422 |#2|) (-855 |#1|) (-593 (-861 |#1|)))) (T -1040)) -((-2227 (*1 *1 *2) (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) (-5 *1 (-1040 *3 *4 *5)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))))) (-3171 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) (-5 *1 (-1040 *4 *5 *2)) (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4))))))) -(-13 (-1063) (-278 |#3| |#3|) (-10 -8 (-15 -2227 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -2800 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3171 (|#3| $ |#3| (-890))))) -((-2352 (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 75) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 77) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 76))) -(((-1041 |#1| |#2|) (-10 -7 (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) (-13 (-299) (-145)) (-619 (-1135))) (T -1041)) -((-2352 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))))) (-2352 (*1 *2 *3) (-12 (-4 *4 (-13 (-299) (-145))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1135))))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135)))))) -(-10 -7 (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2352 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) -((-1915 (((-410 |#3|) |#3|) 18))) -(((-1042 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) (-1194 (-399 (-548))) (-13 (-355) (-145) (-699 (-399 (-548)) |#1|)) (-1194 |#2|)) (T -1042)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-13 (-355) (-145) (-699 (-399 (-548)) *4))) (-5 *2 (-410 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1194 *5))))) -(-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 126)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-355)))) (-3303 (($ $) NIL (|has| |#1| (-355)))) (-3279 (((-112) $) NIL (|has| |#1| (-355)))) (-2350 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) 115)) (-2707 ((|#1| $) 119)) (-3667 (((-1145 (-890) (-745)) (-548)) NIL (|has| |#1| (-341)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-3423 (((-745)) 40 (|has| |#1| (-360)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-2455 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) 43)) (-3644 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-2341 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 106) (((-663 |#1|) (-663 $)) 101)) (-2061 (($ |#2|) 61) (((-3 $ "failed") (-399 |#2|)) NIL (|has| |#1| (-355)))) (-3859 (((-3 $ "failed") $) NIL)) (-2103 (((-890)) 77)) (-2545 (($) 44 (|has| |#1| (-360)))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-2771 (($) NIL (|has| |#1| (-341)))) (-3727 (((-112) $) NIL (|has| |#1| (-341)))) (-2208 (($ $ (-745)) NIL (|has| |#1| (-341))) (($ $) NIL (|has| |#1| (-341)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-1672 (((-890) $) NIL (|has| |#1| (-341))) (((-807 (-890)) $) NIL (|has| |#1| (-341)))) (-2266 (((-112) $) NIL)) (-3910 ((|#1| $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2898 ((|#2| $) 84 (|has| |#1| (-355)))) (-2855 (((-890) $) 131 (|has| |#1| (-360)))) (-2050 ((|#2| $) 58)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3410 (($) NIL (|has| |#1| (-341)) CONST)) (-3337 (($ (-890)) 125 (|has| |#1| (-360)))) (-3932 (((-1082) $) NIL)) (-4160 (($) 121)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3679 (((-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548))))) NIL (|has| |#1| (-341)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-1566 ((|#1| (-1218 $)) NIL) ((|#1|) 109)) (-2217 (((-745) $) NIL (|has| |#1| (-341))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-341)))) (-4050 (($ $) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-2257 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-3287 ((|#2|) 73)) (-3655 (($) NIL (|has| |#1| (-341)))) (-2447 (((-1218 |#1|) $ (-1218 $)) 89) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) 71) (((-663 |#1|) (-1218 $)) 85)) (-2591 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-341)))) (-3743 (((-832) $) 57) (($ (-548)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-355))) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-355)) (|has| |#1| (-1007 (-399 (-548))))))) (-4017 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3780 ((|#2| $) 82)) (-3835 (((-745)) 75)) (-2877 (((-1218 $)) 81)) (-3290 (((-112) $ $) NIL (|has| |#1| (-355)))) (-3107 (($) 30 T CONST)) (-3118 (($) 19 T CONST)) (-3296 (($ $) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#1| (-226)) (|has| |#1| (-355))) (|has| |#1| (-341)))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-355)) (|has| |#1| (-869 (-1135))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-355)))) (-2214 (((-112) $ $) 63)) (-2309 (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) 67) (($ $ $) NIL)) (-2290 (($ $ $) 65)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-399 (-548)) $) NIL (|has| |#1| (-355))) (($ $ (-399 (-548))) NIL (|has| |#1| (-355))))) +((-1397 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-745)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1335 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2409 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2281 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-2156 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2027 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2054 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1794 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-1677 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-1558 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-1424 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-1694 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2678 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2577 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2577 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2373 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2373 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2257 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-2257 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-1331 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) (-1331 (*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) (-2562 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2562 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2441 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2188 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2318 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-2188 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *2 (-821)))) (-3252 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -3856 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3252 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -3856 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3153 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1030 *4 *5 *3)))) (-1484 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3061 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2969 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3402 (-745)))) (-4 *1 (-1030 *3 *4 *5)))) (-3062 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2979 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) (-2698 (*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) (-2698 (*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2643 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2829 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2698 (*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 *3)) (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-3998 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3998 (-4 *3 (-532))) (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3998 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2643 (*1 *1 *2) (-1524 (-12 (-5 *2 (-921 *3)) (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-3998 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3998 (-4 *3 (-532))) (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) (-12 (-3998 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *5 (-592 (-1135))) (-4 *4 (-767)) (-4 *5 (-821)))) (-2883 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-2787 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3805 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3711 (*1 *1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3805 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3711 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-1808 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3596 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3715 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3472 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3715 *1) (|:| |coef1| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3357 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-2 (|:| -3715 *1) (|:| |coef2| *1))) (-4 *1 (-1030 *3 *4 *5)))) (-3772 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-1323 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5)))) (-4258 (*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-4270 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539)))) (-4174 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539)))) (-4077 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-539)))) (-3715 (*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-3968 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-3874 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-1946 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442)))) (-1860 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-442))))) +(-13 (-918 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1397 (|t#3| $)) (-15 -2644 ((-745) $)) (-15 -3045 ($ $)) (-15 -2535 ($ $)) (-15 -1335 ($ $)) (-15 -2409 ($ $)) (-15 -2281 ((-619 $) $)) (-15 -2156 ($ $)) (-15 -2027 ($ $ |t#3|)) (-15 -2054 ($ $ |t#3|)) (-15 -2026 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -1908 ($ $)) (-15 -1794 ($ $)) (-15 -1677 ((-619 $) $)) (-15 -1558 ((-619 $) $)) (-15 -1424 ((-3 (-112) "failed") $ $)) (-15 -1694 ((-112) $ $)) (-15 -2678 ((-112) $ $)) (-15 -2577 ((-112) $ $)) (-15 -2577 ((-112) $ (-619 $))) (-15 -2373 ((-112) $ $)) (-15 -2373 ((-112) $ (-619 $))) (-15 -2257 ((-112) $ $)) (-15 -2257 ((-112) $ (-619 $))) (-15 -1331 ((-112) $ $)) (-15 -1331 ((-112) $ (-619 $))) (-15 -2562 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2562 ($ $ $ |t#3|)) (-15 -2441 ($ $ $ |t#3|)) (-15 -2318 ($ $ $)) (-15 -2188 ($ $ $)) (-15 -2318 ($ $ $ |t#3|)) (-15 -2188 ($ $ $ |t#3|)) (-15 -3252 ((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $)) (-15 -3252 ((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -3856 $)) $ $ |t#3|)) (-15 -3153 ((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -3153 ((-2 (|:| -1557 $) (|:| |gap| (-745)) (|:| -2225 $) (|:| -3856 $)) $ $ |t#3|)) (-15 -1484 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -3061 ($ $ $)) (-15 -2969 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3402 (-745))) $ $)) (-15 -3062 ($ $ $)) (-15 -2979 ($ $ $)) (IF (|has| |t#3| (-592 (-1135))) (PROGN (-6 (-591 (-921 |t#1|))) (-6 (-592 (-921 |t#1|))) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -2698 ((-3 $ "failed") (-921 (-398 (-547))))) (-15 -2643 ($ (-921 (-398 (-547))))) (-15 -2829 ($ (-921 (-398 (-547))))) (-15 -2698 ((-3 $ "failed") (-921 (-547)))) (-15 -2643 ($ (-921 (-547)))) (-15 -2829 ($ (-921 (-547)))) (IF (|has| |t#1| (-961 (-547))) |%noBranch| (PROGN (-15 -2698 ((-3 $ "failed") (-921 |t#1|))) (-15 -2643 ($ (-921 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-547))) (IF (|has| |t#1| (-38 (-398 (-547)))) |%noBranch| (PROGN (-15 -2698 ((-3 $ "failed") (-921 (-547)))) (-15 -2643 ($ (-921 (-547)))) (-15 -2829 ($ (-921 (-547)))) (IF (|has| |t#1| (-532)) |%noBranch| (PROGN (-15 -2698 ((-3 $ "failed") (-921 |t#1|))) (-15 -2643 ($ (-921 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-547))) |%noBranch| (IF (|has| |t#1| (-38 (-398 (-547)))) |%noBranch| (PROGN (-15 -2698 ((-3 $ "failed") (-921 |t#1|))) (-15 -2643 ($ (-921 |t#1|)))))) (-15 -2829 ($ (-921 |t#1|))) (IF (|has| |t#1| (-1007 (-547))) (-6 (-592 (-1118))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-15 -2883 ($ $)) (-15 -2787 ($ $)) (-15 -3805 ($ $ |t#1|)) (-15 -3711 ($ $ |t#1|)) (-15 -3805 ($ $ $)) (-15 -3711 ($ $ $)) (-15 -1808 ($ $ $)) (-15 -3596 ((-2 (|:| -3715 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3472 ((-2 (|:| -3715 $) (|:| |coef1| $)) $ $)) (-15 -3357 ((-2 (|:| -3715 $) (|:| |coef2| $)) $ $)) (-15 -3772 ($ $ $)) (-15 -1323 ((-619 $) $ $)) (-15 -4258 ($ $ $)) (-15 -4270 ($ $ $ (-745))) (-15 -4174 ($ $ $ $ (-745))) (-15 -4077 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-442)) (PROGN (-15 -3715 (|t#1| |t#1| $)) (-15 -3968 ($ $)) (-15 -3874 ($ $)) (-15 -1946 ($ $)) (-15 -1860 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-591 (-921 |#1|)) |has| |#3| (-592 (-1135))) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| |#1| (-592 (-523))) (|has| |#3| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#3| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#3| (-592 (-861 (-547))))) ((-592 (-921 |#1|)) |has| |#3| (-592 (-1135))) ((-592 (-1118)) -12 (|has| |#1| (-1007 (-547))) (|has| |#3| (-592 (-1135)))) ((-281) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-300 $) . T) ((-317 |#1| |#2|) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1524 (|has| |#1| (-878)) (|has| |#1| (-442))) ((-503 |#3| |#1|) . T) ((-503 |#3| $) . T) ((-503 $ $) . T) ((-539) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 |#3|) . T) ((-855 (-370)) -12 (|has| |#1| (-855 (-370))) (|has| |#3| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-855 (-547))) (|has| |#3| (-855 (-547)))) ((-918 |#1| |#2| |#3|) . T) ((-878) |has| |#1| (-878)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 |#1|) . T) ((-1007 |#3|) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) |has| |#1| (-878))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3006 (((-619 (-1140)) $) 13)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2478 (((-1140) $) 15)) (-2371 (((-112) $ $) NIL))) +(((-1031) (-13 (-1047) (-10 -8 (-15 -3006 ((-619 (-1140)) $)) (-15 -2478 ((-1140) $))))) (T -1031)) +((-3006 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1031)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1031))))) +(-13 (-1047) (-10 -8 (-15 -3006 ((-619 (-1140)) $)) (-15 -2478 ((-1140) $)))) +((-4046 (((-112) |#3| $) 13)) (-1658 (((-3 $ "failed") |#3| (-890)) 23)) (-2537 (((-3 |#3| "failed") |#3| $) 38)) (-3848 (((-112) |#3| $) 16)) (-3937 (((-112) |#3| $) 14))) +(((-1032 |#1| |#2| |#3|) (-10 -8 (-15 -1658 ((-3 |#1| "failed") |#3| (-890))) (-15 -2537 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3848 ((-112) |#3| |#1|)) (-15 -3937 ((-112) |#3| |#1|)) (-15 -4046 ((-112) |#3| |#1|))) (-1033 |#2| |#3|) (-13 (-819) (-354)) (-1194 |#2|)) (T -1032)) +NIL +(-10 -8 (-15 -1658 ((-3 |#1| "failed") |#3| (-890))) (-15 -2537 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3848 ((-112) |#3| |#1|)) (-15 -3937 ((-112) |#3| |#1|)) (-15 -4046 ((-112) |#3| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) |#2| $) 21)) (-3807 (((-547) |#2| $) 22)) (-1658 (((-3 $ "failed") |#2| (-890)) 15)) (-1525 ((|#1| |#2| $ |#1|) 13)) (-2537 (((-3 |#2| "failed") |#2| $) 18)) (-3848 (((-112) |#2| $) 19)) (-3937 (((-112) |#2| $) 20)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1901 ((|#2| $) 17)) (-3834 (((-832) $) 11)) (-2645 ((|#1| |#2| $ |#1|) 14)) (-1785 (((-619 $) |#2|) 16)) (-2371 (((-112) $ $) 6))) +(((-1033 |#1| |#2|) (-138) (-13 (-819) (-354)) (-1194 |t#1|)) (T -1033)) +((-3807 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1194 *4)) (-5 *2 (-547)))) (-4046 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3937 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-3848 (*1 *2 *3 *1) (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1194 *4)) (-5 *2 (-112)))) (-2537 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354))) (-4 *2 (-1194 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354))) (-4 *2 (-1194 *3)))) (-1785 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1194 *4)) (-5 *2 (-619 *1)) (-4 *1 (-1033 *4 *3)))) (-1658 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-354))) (-4 *1 (-1033 *4 *2)) (-4 *2 (-1194 *4)))) (-2645 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354))) (-4 *3 (-1194 *2)))) (-1525 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354))) (-4 *3 (-1194 *2))))) +(-13 (-1063) (-10 -8 (-15 -3807 ((-547) |t#2| $)) (-15 -4046 ((-112) |t#2| $)) (-15 -3937 ((-112) |t#2| $)) (-15 -3848 ((-112) |t#2| $)) (-15 -2537 ((-3 |t#2| "failed") |t#2| $)) (-15 -1901 (|t#2| $)) (-15 -1785 ((-619 $) |t#2|)) (-15 -1658 ((-3 $ "failed") |t#2| (-890))) (-15 -2645 (|t#1| |t#2| $ |t#1|)) (-15 -1525 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-4130 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-745)) 96)) (-1958 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745)) 56)) (-3750 (((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-745)) 87)) (-1735 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-3911 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745)) 58) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745) (-112)) 60)) (-4030 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 79)) (-2829 (((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) 82)) (-1853 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-112)) 55)) (-1617 (((-745) (-619 |#4|) (-619 |#5|)) 19))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1617 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1735 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1853 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-112))) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4130 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-745))) (-15 -2829 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -3750 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-745)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1034)) +((-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1965 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1965 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) (-4030 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-4030 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-3911 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3911 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3911 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-1958 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1853 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1617 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1735 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1853 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-112))) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4130 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-745))) (-15 -2829 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -3750 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-745)))) +((-4047 (((-112) |#5| $) 21)) (-3709 (((-112) |#5| $) 24)) (-4124 (((-112) |#5| $) 16) (((-112) $) 45)) (-1711 (((-619 $) |#5| $) NIL) (((-619 $) (-619 |#5|) $) 77) (((-619 $) (-619 |#5|) (-619 $)) 75) (((-619 $) |#5| (-619 $)) 78)) (-3558 (($ $ |#5|) NIL) (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 60) (((-619 $) (-619 |#5|) $) 62) (((-619 $) (-619 |#5|) (-619 $)) 64)) (-4155 (((-619 $) |#5| $) NIL) (((-619 $) |#5| (-619 $)) 54) (((-619 $) (-619 |#5|) $) 56) (((-619 $) (-619 |#5|) (-619 $)) 58)) (-3956 (((-112) |#5| $) 27))) +(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3558 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3558 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3558 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3558 ((-619 |#1|) |#5| |#1|)) (-15 -4155 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -4155 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -4155 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -4155 ((-619 |#1|) |#5| |#1|)) (-15 -1711 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1711 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1711 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1711 ((-619 |#1|) |#5| |#1|)) (-15 -3709 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#1|)) (-15 -3956 ((-112) |#5| |#1|)) (-15 -4047 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#5| |#1|)) (-15 -3558 (|#1| |#1| |#5|))) (-1036 |#2| |#3| |#4| |#5|) (-442) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1035)) +NIL +(-10 -8 (-15 -3558 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -3558 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -3558 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -3558 ((-619 |#1|) |#5| |#1|)) (-15 -4155 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -4155 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -4155 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -4155 ((-619 |#1|) |#5| |#1|)) (-15 -1711 ((-619 |#1|) |#5| (-619 |#1|))) (-15 -1711 ((-619 |#1|) (-619 |#5|) (-619 |#1|))) (-15 -1711 ((-619 |#1|) (-619 |#5|) |#1|)) (-15 -1711 ((-619 |#1|) |#5| |#1|)) (-15 -3709 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#1|)) (-15 -3956 ((-112) |#5| |#1|)) (-15 -4047 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#5| |#1|)) (-15 -3558 (|#1| |#1| |#5|))) +((-3821 (((-112) $ $) 7)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) 85)) (-3759 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2259 (((-619 |#3|) $) 33)) (-4286 (((-112) $) 26)) (-3312 (((-112) $) 17 (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) 101) (((-112) $) 97)) (-3144 ((|#4| |#4| $) 92)) (-2745 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| $) 126)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) 27)) (-2826 (((-112) $ (-745)) 44)) (-1476 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 79)) (-3219 (($) 45 T CONST)) (-3990 (((-112) $) 22 (|has| |#1| (-539)))) (-4154 (((-112) $ $) 24 (|has| |#1| (-539)))) (-4075 (((-112) $ $) 23 (|has| |#1| (-539)))) (-4212 (((-112) $) 25 (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1833 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 36)) (-2643 (($ (-619 |#4|)) 35)) (-3645 (((-3 $ "failed") $) 82)) (-2903 ((|#4| |#4| $) 89)) (-3664 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2733 ((|#4| |#4| $) 87)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) 105)) (-4047 (((-112) |#4| $) 136)) (-3709 (((-112) |#4| $) 133)) (-4124 (((-112) |#4| $) 137) (((-112) $) 134)) (-2973 (((-619 |#4|) $) 52 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) 104) (((-112) $) 103)) (-1397 ((|#3| $) 34)) (-4161 (((-112) $ (-745)) 43)) (-3666 (((-619 |#4|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 47)) (-3623 (((-619 |#3|) $) 32)) (-3523 (((-112) |#3| $) 31)) (-2024 (((-112) $ (-745)) 42)) (-1917 (((-1118) $) 9)) (-3240 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-4258 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| |#4| $) 127)) (-3817 (((-3 |#4| "failed") $) 83)) (-3389 (((-619 $) |#4| $) 129)) (-3604 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1711 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3308 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-1499 (((-619 |#4|) $) 107)) (-2257 (((-112) |#4| $) 99) (((-112) $) 95)) (-2979 ((|#4| |#4| $) 90)) (-1694 (((-112) $ $) 110)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) 100) (((-112) $) 96)) (-3062 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3634 (((-3 |#4| "failed") $) 84)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3505 (((-3 $ "failed") $ |#4|) 78)) (-3558 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-2462 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) 38)) (-3169 (((-112) $) 41)) (-4011 (($) 40)) (-1618 (((-745) $) 106)) (-3987 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4328)))) (-2265 (($ $) 39)) (-2829 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 60)) (-3228 (($ $ |#3|) 28)) (-3429 (($ $ |#3|) 30)) (-2817 (($ $) 88)) (-3324 (($ $ |#3|) 29)) (-3834 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3423 (((-745) $) 76 (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-4155 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2583 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) 81)) (-3956 (((-112) |#4| $) 135)) (-3084 (((-112) |#3| $) 80)) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 46 (|has| $ (-6 -4328))))) +(((-1036 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1036)) +((-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-4047 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3956 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-3709 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3604 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3489 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3489 (*1 *2 *3 *1) (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-3389 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-4258 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-2745 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *1)))) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1711 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-1711 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-1711 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-1711 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-4155 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-4155 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-4155 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-3308 (*1 *1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3308 (*1 *1 *2 *1) (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) (-3558 (*1 *2 *3 *1) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) (-3558 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) (-3558 (*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *5 *6 *7 *8))))) +(-13 (-1165 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -4124 ((-112) |t#4| $)) (-15 -4047 ((-112) |t#4| $)) (-15 -3956 ((-112) |t#4| $)) (-15 -4124 ((-112) $)) (-15 -3709 ((-112) |t#4| $)) (-15 -3604 ((-3 (-112) (-619 $)) |t#4| $)) (-15 -3489 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |t#4| $)) (-15 -3489 ((-112) |t#4| $)) (-15 -3389 ((-619 $) |t#4| $)) (-15 -3240 ((-3 |t#4| (-619 $)) |t#4| |t#4| $)) (-15 -4258 ((-619 (-2 (|:| |val| |t#4|) (|:| -1965 $))) |t#4| |t#4| $)) (-15 -2745 ((-619 (-2 (|:| |val| |t#4|) (|:| -1965 $))) |t#4| $)) (-15 -1711 ((-619 $) |t#4| $)) (-15 -1711 ((-619 $) (-619 |t#4|) $)) (-15 -1711 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -1711 ((-619 $) |t#4| (-619 $))) (-15 -4155 ((-619 $) |t#4| $)) (-15 -4155 ((-619 $) |t#4| (-619 $))) (-15 -4155 ((-619 $) (-619 |t#4|) $)) (-15 -4155 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -3308 ($ |t#4| $)) (-15 -3308 ($ (-619 |t#4|) $)) (-15 -3558 ((-619 $) |t#4| $)) (-15 -3558 ((-619 $) |t#4| (-619 $))) (-15 -3558 ((-619 $) (-619 |t#4|) $)) (-15 -3558 ((-619 $) (-619 |t#4|) (-619 $))) (-15 -3759 ((-619 $) (-619 |t#4|) (-112))))) +(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-3584 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|) 81)) (-3282 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|) 113)) (-3481 (((-619 |#5|) |#4| |#5|) 70)) (-3378 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3120 (((-1223)) 37)) (-2974 (((-1223)) 26)) (-3049 (((-1223) (-1118) (-1118) (-1118)) 33)) (-2906 (((-1223) (-1118) (-1118) (-1118)) 22)) (-4182 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#4| |#4| |#5|) 96)) (-4259 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#3| (-112)) 107) (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1281 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|) 102))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2906 ((-1223) (-1118) (-1118) (-1118))) (-15 -2974 ((-1223))) (-15 -3049 ((-1223) (-1118) (-1118) (-1118))) (-15 -3120 ((-1223))) (-15 -4182 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -4259 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4259 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#3| (-112))) (-15 -1281 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -3282 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -3378 ((-112) |#4| |#5|)) (-15 -3378 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -3481 ((-619 |#5|) |#4| |#5|)) (-15 -3584 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1037)) +((-3584 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3481 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3378 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3378 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3282 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1281 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-4259 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1965 *9)))) (-5 *1 (-1037 *6 *7 *4 *8 *9)))) (-4259 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-4182 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))) (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3120 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-3049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2974 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2906 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -2906 ((-1223) (-1118) (-1118) (-1118))) (-15 -2974 ((-1223))) (-15 -3049 ((-1223) (-1118) (-1118) (-1118))) (-15 -3120 ((-1223))) (-15 -4182 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -4259 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4259 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#3| (-112))) (-15 -1281 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -3282 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -3378 ((-112) |#4| |#5|)) (-15 -3378 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -3481 ((-619 |#5|) |#4| |#5|)) (-15 -3584 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|))) +((-3821 (((-112) $ $) NIL)) (-2464 (((-1135) $) 8)) (-1917 (((-1118) $) 16)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 13))) +(((-1038 |#1|) (-13 (-1063) (-10 -8 (-15 -2464 ((-1135) $)))) (-1135)) (T -1038)) +((-2464 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1038 *3)) (-14 *3 *2)))) +(-13 (-1063) (-10 -8 (-15 -2464 ((-1135) $)))) +((-3821 (((-112) $ $) NIL)) (-1847 (($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|))) 33)) (-3650 (($ |#3| |#3|) 22) (($ |#3| |#3| (-619 (-1135))) 20)) (-2186 ((|#3| $) 13)) (-2698 (((-3 (-285 |#3|) "failed") $) 58)) (-2643 (((-285 |#3|) $) NIL)) (-3676 (((-619 (-1135)) $) 16)) (-3642 (((-861 |#1|) $) 11)) (-2174 ((|#3| $) 12)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3329 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-890)) 39)) (-3834 (((-832) $) 86) (($ (-285 |#3|)) 21)) (-2371 (((-112) $ $) 36))) +(((-1039 |#1| |#2| |#3|) (-13 (-1063) (-277 |#3| |#3|) (-1007 (-285 |#3|)) (-10 -8 (-15 -3650 ($ |#3| |#3|)) (-15 -3650 ($ |#3| |#3| (-619 (-1135)))) (-15 -1847 ($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|)))) (-15 -3642 ((-861 |#1|) $)) (-15 -2174 (|#3| $)) (-15 -2186 (|#3| $)) (-15 -3329 (|#3| $ |#3| (-890))) (-15 -3676 ((-619 (-1135)) $)))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-592 (-861 |#1|))) (-13 (-421 |#2|) (-855 |#1|) (-592 (-861 |#1|)))) (T -1039)) +((-3650 (*1 *1 *2 *2) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))) (-3650 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) (-1847 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1 (-112) (-619 *6))) (-4 *6 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *6)))) (-3642 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 *2))) (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 *2))))) (-2174 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))))) (-2186 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))))) (-3329 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) (-3676 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-5 *2 (-619 (-1135))) (-5 *1 (-1039 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))))) +(-13 (-1063) (-277 |#3| |#3|) (-1007 (-285 |#3|)) (-10 -8 (-15 -3650 ($ |#3| |#3|)) (-15 -3650 ($ |#3| |#3| (-619 (-1135)))) (-15 -1847 ($ $ (-619 (-1135)) (-1 (-112) (-619 |#3|)))) (-15 -3642 ((-861 |#1|) $)) (-15 -2174 (|#3| $)) (-15 -2186 (|#3| $)) (-15 -3329 (|#3| $ |#3| (-890))) (-15 -3676 ((-619 (-1135)) $)))) +((-3821 (((-112) $ $) NIL)) (-1809 (($ (-619 (-1039 |#1| |#2| |#3|))) 13)) (-3626 (((-619 (-1039 |#1| |#2| |#3|)) $) 20)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3329 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-890)) 26)) (-3834 (((-832) $) 16)) (-2371 (((-112) $ $) 19))) +(((-1040 |#1| |#2| |#3|) (-13 (-1063) (-277 |#3| |#3|) (-10 -8 (-15 -1809 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -3626 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3329 (|#3| $ |#3| (-890))))) (-1063) (-13 (-1016) (-855 |#1|) (-821) (-592 (-861 |#1|))) (-13 (-421 |#2|) (-855 |#1|) (-592 (-861 |#1|)))) (T -1040)) +((-1809 (*1 *1 *2) (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1040 *3 *4 *5)))) (-3626 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))))) (-3329 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1040 *4 *5 *2)) (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4))))))) +(-13 (-1063) (-277 |#3| |#3|) (-10 -8 (-15 -1809 ($ (-619 (-1039 |#1| |#2| |#3|)))) (-15 -3626 ((-619 (-1039 |#1| |#2| |#3|)) $)) (-15 -3329 (|#3| $ |#3| (-890))))) +((-3766 (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 75) (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 77) (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 76))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -3766 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -3766 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3766 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) (-13 (-298) (-145)) (-619 (-1135))) (T -1041)) +((-3766 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-298) (-145))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *4)) (|:| -2301 (-619 (-921 *4)))))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1135))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135)))))) +(-10 -7 (-15 -3766 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -3766 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3766 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)))) +((-2106 (((-409 |#3|) |#3|) 18))) +(((-1042 |#1| |#2| |#3|) (-10 -7 (-15 -2106 ((-409 |#3|) |#3|))) (-1194 (-398 (-547))) (-13 (-354) (-145) (-699 (-398 (-547)) |#1|)) (-1194 |#2|)) (T -1042)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-13 (-354) (-145) (-699 (-398 (-547)) *4))) (-5 *2 (-409 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -2106 ((-409 |#3|) |#3|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 126)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-354)))) (-3881 (($ $) NIL (|has| |#1| (-354)))) (-1832 (((-112) $) NIL (|has| |#1| (-354)))) (-3743 (((-663 |#1|) (-1218 $)) NIL) (((-663 |#1|)) 115)) (-2890 ((|#1| $) 119)) (-4253 (((-1145 (-890) (-745)) (-547)) NIL (|has| |#1| (-340)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-3603 (((-745)) 40 (|has| |#1| (-359)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2402 (($ (-1218 |#1|) (-1218 $)) NIL) (($ (-1218 |#1|)) 43)) (-4040 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-3653 (((-663 |#1|) $ (-1218 $)) NIL) (((-663 |#1|) $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 106) (((-663 |#1|) (-663 $)) 101)) (-2542 (($ |#2|) 61) (((-3 $ "failed") (-398 |#2|)) NIL (|has| |#1| (-354)))) (-2537 (((-3 $ "failed") $) NIL)) (-3107 (((-890)) 77)) (-3229 (($) 44 (|has| |#1| (-359)))) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-2445 (($) NIL (|has| |#1| (-340)))) (-3661 (((-112) $) NIL (|has| |#1| (-340)))) (-1771 (($ $ (-745)) NIL (|has| |#1| (-340))) (($ $) NIL (|has| |#1| (-340)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-3707 (((-890) $) NIL (|has| |#1| (-340))) (((-807 (-890)) $) NIL (|has| |#1| (-340)))) (-4114 (((-112) $) NIL)) (-1684 ((|#1| $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-4213 ((|#2| $) 84 (|has| |#1| (-354)))) (-1966 (((-890) $) 131 (|has| |#1| (-359)))) (-2531 ((|#2| $) 58)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-3045 (($) NIL (|has| |#1| (-340)) CONST)) (-3479 (($ (-890)) 125 (|has| |#1| (-359)))) (-3979 (((-1082) $) NIL)) (-4240 (($) 121)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-1296 (((-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547))))) NIL (|has| |#1| (-340)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3846 ((|#1| (-1218 $)) NIL) ((|#1|) 109)) (-1868 (((-745) $) NIL (|has| |#1| (-340))) (((-3 (-745) "failed") $ $) NIL (|has| |#1| (-340)))) (-3443 (($ $) NIL (-1524 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-4035 (((-663 |#1|) (-1218 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-1901 ((|#2|) 73)) (-4150 (($) NIL (|has| |#1| (-340)))) (-2301 (((-1218 |#1|) $ (-1218 $)) 89) (((-663 |#1|) (-1218 $) (-1218 $)) NIL) (((-1218 |#1|) $) 71) (((-663 |#1|) (-1218 $)) 85)) (-2829 (((-1218 |#1|) $) NIL) (($ (-1218 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (|has| |#1| (-340)))) (-3834 (((-832) $) 57) (($ (-547)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-354))) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-354)) (|has| |#1| (-1007 (-398 (-547))))))) (-3336 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3008 ((|#2| $) 82)) (-2311 (((-745)) 75)) (-4013 (((-1218 $)) 81)) (-1932 (((-112) $ $) NIL (|has| |#1| (-354)))) (-3267 (($) 30 T CONST)) (-3277 (($) 19 T CONST)) (-1686 (($ $) NIL (-1524 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#1| (-225)) (|has| |#1| (-354))) (|has| |#1| (-340)))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-354)) (|has| |#1| (-869 (-1135))))) (($ $ (-1 |#1| |#1|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-354)))) (-2371 (((-112) $ $) 63)) (-2497 (($ $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) 67) (($ $ $) NIL)) (-2470 (($ $ $) 65)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-398 (-547)) $) NIL (|has| |#1| (-354))) (($ $ (-398 (-547))) NIL (|has| |#1| (-354))))) (((-1043 |#1| |#2| |#3|) (-699 |#1| |#2|) (-169) (-1194 |#1|) |#2|) (T -1043)) NIL (-699 |#1| |#2|) -((-1915 (((-410 |#3|) |#3|) 19))) -(((-1044 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) (-1194 (-399 (-921 (-548)))) (-13 (-355) (-145) (-699 (-399 (-921 (-548))) |#1|)) (-1194 |#2|)) (T -1044)) -((-1915 (*1 *2 *3) (-12 (-4 *4 (-1194 (-399 (-921 (-548))))) (-4 *5 (-13 (-355) (-145) (-699 (-399 (-921 (-548))) *4))) (-5 *2 (-410 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1194 *5))))) -(-10 -7 (-15 -1915 ((-410 |#3|) |#3|))) -((-3730 (((-112) $ $) NIL)) (-1795 (($ $ $) 14)) (-3091 (($ $ $) 15)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2363 (($) 6)) (-2591 (((-1135) $) 18)) (-3743 (((-832) $) 12)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 13)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 8))) -(((-1045) (-13 (-821) (-10 -8 (-15 -2363 ($)) (-15 -2591 ((-1135) $))))) (T -1045)) -((-2363 (*1 *1) (-5 *1 (-1045))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1045))))) -(-13 (-821) (-10 -8 (-15 -2363 ($)) (-15 -2591 ((-1135) $)))) -((-3743 (((-832) $) 37) (((-1140) $) NIL))) -(((-1046 |#1|) (-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) (-1047)) (T -1046)) -NIL -(-10 -8 (-15 -3743 ((-1140) |#1|)) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (((-1140) $) 14)) (-2214 (((-112) $ $) 6))) +((-2106 (((-409 |#3|) |#3|) 19))) +(((-1044 |#1| |#2| |#3|) (-10 -7 (-15 -2106 ((-409 |#3|) |#3|))) (-1194 (-398 (-921 (-547)))) (-13 (-354) (-145) (-699 (-398 (-921 (-547))) |#1|)) (-1194 |#2|)) (T -1044)) +((-2106 (*1 *2 *3) (-12 (-4 *4 (-1194 (-398 (-921 (-547))))) (-4 *5 (-13 (-354) (-145) (-699 (-398 (-921 (-547))) *4))) (-5 *2 (-409 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(-10 -7 (-15 -2106 ((-409 |#3|) |#3|))) +((-3821 (((-112) $ $) NIL)) (-2847 (($ $ $) 14)) (-3563 (($ $ $) 15)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2738 (($) 6)) (-2829 (((-1135) $) 18)) (-3834 (((-832) $) 12)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 13)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 8))) +(((-1045) (-13 (-821) (-10 -8 (-15 -2738 ($)) (-15 -2829 ((-1135) $))))) (T -1045)) +((-2738 (*1 *1) (-5 *1 (-1045))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1045))))) +(-13 (-821) (-10 -8 (-15 -2738 ($)) (-15 -2829 ((-1135) $)))) +((-3834 (((-832) $) 37) (((-1140) $) NIL))) +(((-1046 |#1|) (-10 -8 (-15 -3834 ((-1140) |#1|)) (-15 -3834 ((-832) |#1|))) (-1047)) (T -1046)) +NIL +(-10 -8 (-15 -3834 ((-1140) |#1|)) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (((-1140) $) 14)) (-2371 (((-112) $ $) 6))) (((-1047) (-138)) (T -1047)) NIL (-13 (-92)) -(((-92) . T) ((-101) . T) ((-592 (-832)) . T) ((-592 (-1140)) . T) ((-1063) . T)) -((-2372 ((|#1| |#1| (-1 (-548) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2353 (((-1223)) 15)) (-4253 (((-619 |#1|)) 9))) -(((-1048 |#1|) (-10 -7 (-15 -2353 ((-1223))) (-15 -4253 ((-619 |#1|))) (-15 -2372 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2372 (|#1| |#1| (-1 (-548) |#1| |#1|)))) (-131)) (T -1048)) -((-2372 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-548) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-2372 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-4253 (*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))) (-2353 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -2353 ((-1223))) (-15 -4253 ((-619 |#1|))) (-15 -2372 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2372 (|#1| |#1| (-1 (-548) |#1| |#1|)))) -((-2404 (($ (-108) $) 16)) (-2415 (((-3 (-108) "failed") (-1135) $) 15)) (-3319 (($) 7)) (-2394 (($) 17)) (-2382 (($) 18)) (-2424 (((-619 (-172)) $) 10)) (-3743 (((-832) $) 21))) -(((-1049) (-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -2424 ((-619 (-172)) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $)) (-15 -2404 ($ (-108) $)) (-15 -2394 ($)) (-15 -2382 ($))))) (T -1049)) -((-3319 (*1 *1) (-5 *1 (-1049))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049)))) (-2415 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-1049)))) (-2404 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049)))) (-2394 (*1 *1) (-5 *1 (-1049))) (-2382 (*1 *1) (-5 *1 (-1049)))) -(-13 (-592 (-832)) (-10 -8 (-15 -3319 ($)) (-15 -2424 ((-619 (-172)) $)) (-15 -2415 ((-3 (-108) "failed") (-1135) $)) (-15 -2404 ($ (-108) $)) (-15 -2394 ($)) (-15 -2382 ($)))) -((-2434 (((-1218 (-663 |#1|)) (-619 (-663 |#1|))) 42) (((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|))) 63) (((-1218 (-663 (-399 (-921 |#1|)))) (-619 (-1135)) (-663 (-399 (-921 |#1|)))) 79)) (-2447 (((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))) 36))) -(((-1050 |#1|) (-10 -7 (-15 -2434 ((-1218 (-663 (-399 (-921 |#1|)))) (-619 (-1135)) (-663 (-399 (-921 |#1|))))) (-15 -2434 ((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|)))) (-15 -2434 ((-1218 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -2447 ((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) (-355)) (T -1050)) -((-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-355)) (-5 *2 (-1218 *5)) (-5 *1 (-1050 *5)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-1050 *4)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) (-5 *2 (-1218 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-921 *5))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) (-5 *2 (-1218 (-663 (-399 (-921 *5))))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-399 (-921 *5))))))) -(-10 -7 (-15 -2434 ((-1218 (-663 (-399 (-921 |#1|)))) (-619 (-1135)) (-663 (-399 (-921 |#1|))))) (-15 -2434 ((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|)))) (-15 -2434 ((-1218 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -2447 ((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2919 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1135)) NIL)) (-3266 (((-745) $) NIL) (((-745) $ (-1135)) NIL)) (-2049 (((-619 (-1052 (-1135))) $) NIL)) (-1884 (((-1131 $) $ (-1052 (-1135))) NIL) (((-1131 |#1|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1052 (-1135)))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2896 (($ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1052 (-1135)) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL) (((-3 (-1087 |#1| (-1135)) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1052 (-1135)) $) NIL) (((-1135) $) NIL) (((-1087 |#1| (-1135)) $) NIL)) (-1557 (($ $ $ (-1052 (-1135))) NIL (|has| |#1| (-169)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ (-1052 (-1135))) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 (-1052 (-1135))) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1052 (-1135)) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1052 (-1135)) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ (-1135)) NIL) (((-745) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2036 (($ (-1131 |#1|) (-1052 (-1135))) NIL) (($ (-1131 $) (-1052 (-1135))) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-520 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1052 (-1135))) NIL)) (-3904 (((-520 (-1052 (-1135))) $) NIL) (((-745) $ (-1052 (-1135))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1135)))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 (-1052 (-1135))) (-520 (-1052 (-1135)))) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3278 (((-1 $ (-745)) (-1135)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-226)))) (-3511 (((-3 (-1052 (-1135)) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-1956 (((-1052 (-1135)) $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-2909 (((-112) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1052 (-1135))) (|:| -3352 (-745))) "failed") $) NIL)) (-2045 (($ $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1052 (-1135)) |#1|) NIL) (($ $ (-619 (-1052 (-1135))) (-619 |#1|)) NIL) (($ $ (-1052 (-1135)) $) NIL) (($ $ (-619 (-1052 (-1135))) (-619 $)) NIL) (($ $ (-1135) $) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 $)) NIL (|has| |#1| (-226))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-226))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-226)))) (-1566 (($ $ (-1052 (-1135))) NIL (|has| |#1| (-169)))) (-4050 (($ $ (-1052 (-1135))) NIL) (($ $ (-619 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2930 (((-619 (-1135)) $) NIL)) (-2512 (((-520 (-1052 (-1135))) $) NIL) (((-745) $ (-1052 (-1135))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1135)))) NIL) (((-745) $ (-1135)) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1052 (-1135)) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1052 (-1135)) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1052 (-1135)) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) NIL (|has| |#1| (-443))) (($ $ (-1052 (-1135))) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-1052 (-1135))) NIL) (($ (-1135)) NIL) (($ (-1087 |#1| (-1135))) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-520 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1052 (-1135))) NIL) (($ $ (-619 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-226))) (($ $ (-745)) NIL (|has| |#1| (-226))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1051 |#1|) (-13 (-245 |#1| (-1135) (-1052 (-1135)) (-520 (-1052 (-1135)))) (-1007 (-1087 |#1| (-1135)))) (-1016)) (T -1051)) -NIL -(-13 (-245 |#1| (-1135) (-1052 (-1135)) (-520 (-1052 (-1135)))) (-1007 (-1087 |#1| (-1135)))) -((-3730 (((-112) $ $) NIL)) (-3266 (((-745) $) NIL)) (-2754 ((|#1| $) 10)) (-2441 (((-3 |#1| "failed") $) NIL)) (-2375 ((|#1| $) NIL)) (-1672 (((-745) $) 11)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3278 (($ |#1| (-745)) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-4050 (($ $) NIL) (($ $ (-745)) NIL)) (-3743 (((-832) $) NIL) (($ |#1|) NIL)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 15))) -(((-1052 |#1|) (-258 |#1|) (-821)) (T -1052)) -NIL -(-258 |#1|) -((-2540 (((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 24 (|has| |#1| (-819))) (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 14))) -(((-1053 |#1| |#2|) (-10 -7 (-15 -2540 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) (-1172) (-1172)) (T -1053)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-819)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-1053 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6))))) -(-10 -7 (-15 -2540 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2457 (((-619 (-1140)) $) 9)) (-2214 (((-112) $ $) NIL))) -(((-1054) (-13 (-1047) (-10 -8 (-15 -2457 ((-619 (-1140)) $))))) (T -1054)) -((-2457 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1054))))) -(-13 (-1047) (-10 -8 (-15 -2457 ((-619 (-1140)) $)))) -((-2540 (((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)) 19))) -(((-1055 |#1| |#2|) (-10 -7 (-15 -2540 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) (-1172) (-1172)) (T -1055)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1056 *6)) (-5 *1 (-1055 *5 *6))))) -(-10 -7 (-15 -2540 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2754 (((-1135) $) 11)) (-4100 (((-1058 |#1|) $) 12)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2155 (($ (-1135) (-1058 |#1|)) 10)) (-3743 (((-832) $) 20 (|has| |#1| (-1063)))) (-2214 (((-112) $ $) 15 (|has| |#1| (-1063))))) -(((-1056 |#1|) (-13 (-1172) (-10 -8 (-15 -2155 ($ (-1135) (-1058 |#1|))) (-15 -2754 ((-1135) $)) (-15 -4100 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -1056)) -((-2155 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1058 *4)) (-4 *4 (-1172)) (-5 *1 (-1056 *4)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1172))))) -(-13 (-1172) (-10 -8 (-15 -2155 ($ (-1135) (-1058 |#1|))) (-15 -2754 ((-1135) $)) (-15 -4100 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) -((-4100 (($ |#1| |#1|) 7)) (-2479 ((|#1| $) 10)) (-4246 ((|#1| $) 12)) (-4259 (((-548) $) 8)) (-2469 ((|#1| $) 9)) (-4270 ((|#1| $) 11)) (-2591 (($ |#1|) 6)) (-1794 (($ |#1| |#1|) 14)) (-1984 (($ $ (-548)) 13))) +(((-92) . T) ((-101) . T) ((-591 (-832)) . T) ((-591 (-1140)) . T) ((-1063) . T)) +((-2822 ((|#1| |#1| (-1 (-547) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-2616 (((-1223)) 15)) (-1276 (((-619 |#1|)) 9))) +(((-1048 |#1|) (-10 -7 (-15 -2616 ((-1223))) (-15 -1276 ((-619 |#1|))) (-15 -2822 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2822 (|#1| |#1| (-1 (-547) |#1| |#1|)))) (-131)) (T -1048)) +((-2822 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-547) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-2822 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) (-1276 (*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131)))) (-2616 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -2616 ((-1223))) (-15 -1276 ((-619 |#1|))) (-15 -2822 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2822 (|#1| |#1| (-1 (-547) |#1| |#1|)))) +((-3076 (($ (-108) $) 16)) (-3160 (((-3 (-108) "failed") (-1135) $) 15)) (-4011 (($) 7)) (-2984 (($) 17)) (-2908 (($) 18)) (-2059 (((-619 (-172)) $) 10)) (-3834 (((-832) $) 21))) +(((-1049) (-13 (-591 (-832)) (-10 -8 (-15 -4011 ($)) (-15 -2059 ((-619 (-172)) $)) (-15 -3160 ((-3 (-108) "failed") (-1135) $)) (-15 -3076 ($ (-108) $)) (-15 -2984 ($)) (-15 -2908 ($))))) (T -1049)) +((-4011 (*1 *1) (-5 *1 (-1049))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049)))) (-3160 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-1049)))) (-3076 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049)))) (-2984 (*1 *1) (-5 *1 (-1049))) (-2908 (*1 *1) (-5 *1 (-1049)))) +(-13 (-591 (-832)) (-10 -8 (-15 -4011 ($)) (-15 -2059 ((-619 (-172)) $)) (-15 -3160 ((-3 (-108) "failed") (-1135) $)) (-15 -3076 ($ (-108) $)) (-15 -2984 ($)) (-15 -2908 ($)))) +((-2173 (((-1218 (-663 |#1|)) (-619 (-663 |#1|))) 42) (((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|))) 63) (((-1218 (-663 (-398 (-921 |#1|)))) (-619 (-1135)) (-663 (-398 (-921 |#1|)))) 79)) (-2301 (((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))) 36))) +(((-1050 |#1|) (-10 -7 (-15 -2173 ((-1218 (-663 (-398 (-921 |#1|)))) (-619 (-1135)) (-663 (-398 (-921 |#1|))))) (-15 -2173 ((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|)))) (-15 -2173 ((-1218 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -2301 ((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) (-354)) (T -1050)) +((-2301 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-1218 *5)) (-5 *1 (-1050 *5)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-1050 *4)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-354)) (-5 *2 (-1218 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-921 *5))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-354)) (-5 *2 (-1218 (-663 (-398 (-921 *5))))) (-5 *1 (-1050 *5)) (-5 *4 (-663 (-398 (-921 *5))))))) +(-10 -7 (-15 -2173 ((-1218 (-663 (-398 (-921 |#1|)))) (-619 (-1135)) (-663 (-398 (-921 |#1|))))) (-15 -2173 ((-1218 (-663 (-921 |#1|))) (-619 (-1135)) (-663 (-921 |#1|)))) (-15 -2173 ((-1218 (-663 |#1|)) (-619 (-663 |#1|)))) (-15 -2301 ((-1218 |#1|) (-663 |#1|) (-619 (-663 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-1352 (((-619 (-745)) $) NIL) (((-619 (-745)) $ (-1135)) NIL)) (-1691 (((-745) $) NIL) (((-745) $ (-1135)) NIL)) (-2259 (((-619 (-1052 (-1135))) $) NIL)) (-2067 (((-1131 $) $ (-1052 (-1135))) NIL) (((-1131 |#1|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1052 (-1135)))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4203 (($ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1052 (-1135)) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL) (((-3 (-1087 |#1| (-1135)) "failed") $) NIL)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1052 (-1135)) $) NIL) (((-1135) $) NIL) (((-1087 |#1| (-1135)) $) NIL)) (-3772 (($ $ $ (-1052 (-1135))) NIL (|has| |#1| (-169)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ (-1052 (-1135))) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-519 (-1052 (-1135))) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1052 (-1135)) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1052 (-1135)) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3707 (((-745) $ (-1135)) NIL) (((-745) $) NIL)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2245 (($ (-1131 |#1|) (-1052 (-1135))) NIL) (($ (-1131 $) (-1052 (-1135))) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-519 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1052 (-1135))) NIL)) (-1626 (((-519 (-1052 (-1135))) $) NIL) (((-745) $ (-1052 (-1135))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1135)))) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-519 (-1052 (-1135))) (-519 (-1052 (-1135)))) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (((-1 $ (-745)) (-1135)) NIL) (((-1 $ (-745)) $) NIL (|has| |#1| (-225)))) (-2185 (((-3 (-1052 (-1135)) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-4044 (((-1052 (-1135)) $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-4306 (((-112) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1052 (-1135))) (|:| -4248 (-745))) "failed") $) NIL)) (-2242 (($ $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1052 (-1135)) |#1|) NIL) (($ $ (-619 (-1052 (-1135))) (-619 |#1|)) NIL) (($ $ (-1052 (-1135)) $) NIL) (($ $ (-619 (-1052 (-1135))) (-619 $)) NIL) (($ $ (-1135) $) NIL (|has| |#1| (-225))) (($ $ (-619 (-1135)) (-619 $)) NIL (|has| |#1| (-225))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-225))) (($ $ (-619 (-1135)) (-619 |#1|)) NIL (|has| |#1| (-225)))) (-3846 (($ $ (-1052 (-1135))) NIL (|has| |#1| (-169)))) (-3443 (($ $ (-1052 (-1135))) NIL) (($ $ (-619 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3391 (((-619 (-1135)) $) NIL)) (-1618 (((-519 (-1052 (-1135))) $) NIL) (((-745) $ (-1052 (-1135))) NIL) (((-619 (-745)) $ (-619 (-1052 (-1135)))) NIL) (((-745) $ (-1135)) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-1052 (-1135)) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1052 (-1135)) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1052 (-1135)) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) NIL (|has| |#1| (-442))) (($ $ (-1052 (-1135))) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-1052 (-1135))) NIL) (($ (-1135)) NIL) (($ (-1087 |#1| (-1135))) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-519 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-1052 (-1135))) NIL) (($ $ (-619 (-1052 (-1135)))) NIL) (($ $ (-1052 (-1135)) (-745)) NIL) (($ $ (-619 (-1052 (-1135))) (-619 (-745))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-745)) NIL (|has| |#1| (-225))) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1051 |#1|) (-13 (-244 |#1| (-1135) (-1052 (-1135)) (-519 (-1052 (-1135)))) (-1007 (-1087 |#1| (-1135)))) (-1016)) (T -1051)) +NIL +(-13 (-244 |#1| (-1135) (-1052 (-1135)) (-519 (-1052 (-1135)))) (-1007 (-1087 |#1| (-1135)))) +((-3821 (((-112) $ $) NIL)) (-1691 (((-745) $) NIL)) (-2995 ((|#1| $) 10)) (-2698 (((-3 |#1| "failed") $) NIL)) (-2643 ((|#1| $) NIL)) (-3707 (((-745) $) 11)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-1820 (($ |#1| (-745)) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3443 (($ $) NIL) (($ $ (-745)) NIL)) (-3834 (((-832) $) NIL) (($ |#1|) NIL)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 15))) +(((-1052 |#1|) (-257 |#1|) (-821)) (T -1052)) +NIL +(-257 |#1|) +((-2781 (((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 24 (|has| |#1| (-819))) (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 14))) +(((-1053 |#1| |#2|) (-10 -7 (-15 -2781 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2781 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) (-1172) (-1172)) (T -1053)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-819)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-1053 *5 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6))))) +(-10 -7 (-15 -2781 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (IF (|has| |#1| (-819)) (-15 -2781 ((-619 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2428 (((-619 (-1140)) $) 9)) (-2371 (((-112) $ $) NIL))) +(((-1054) (-13 (-1047) (-10 -8 (-15 -2428 ((-619 (-1140)) $))))) (T -1054)) +((-2428 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1054))))) +(-13 (-1047) (-10 -8 (-15 -2428 ((-619 (-1140)) $)))) +((-2781 (((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)) 19))) +(((-1055 |#1| |#2|) (-10 -7 (-15 -2781 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) (-1172) (-1172)) (T -1055)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1056 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1056 *6)) (-5 *1 (-1055 *5 *6))))) +(-10 -7 (-15 -2781 ((-1056 |#2|) (-1 |#2| |#1|) (-1056 |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2995 (((-1135) $) 11)) (-3114 (((-1058 |#1|) $) 12)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2374 (($ (-1135) (-1058 |#1|)) 10)) (-3834 (((-832) $) 20 (|has| |#1| (-1063)))) (-2371 (((-112) $ $) 15 (|has| |#1| (-1063))))) +(((-1056 |#1|) (-13 (-1172) (-10 -8 (-15 -2374 ($ (-1135) (-1058 |#1|))) (-15 -2995 ((-1135) $)) (-15 -3114 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -1056)) +((-2374 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1058 *4)) (-4 *4 (-1172)) (-5 *1 (-1056 *4)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1172))))) +(-13 (-1172) (-10 -8 (-15 -2374 ($ (-1135) (-1058 |#1|))) (-15 -2995 ((-1135) $)) (-15 -3114 ((-1058 |#1|) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) +((-3114 (($ |#1| |#1|) 7)) (-2637 ((|#1| $) 10)) (-1257 ((|#1| $) 12)) (-1269 (((-547) $) 8)) (-2541 ((|#1| $) 9)) (-1280 ((|#1| $) 11)) (-2829 (($ |#1|) 6)) (-1842 (($ |#1| |#1|) 14)) (-2107 (($ $ (-547)) 13))) (((-1057 |#1|) (-138) (-1172)) (T -1057)) -((-1794 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1057 *3)) (-4 *3 (-1172)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1172)) (-5 *2 (-548)))) (-4100 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) -(-13 (-1172) (-10 -8 (-15 -1794 ($ |t#1| |t#1|)) (-15 -1984 ($ $ (-548))) (-15 -4246 (|t#1| $)) (-15 -4270 (|t#1| $)) (-15 -2479 (|t#1| $)) (-15 -2469 (|t#1| $)) (-15 -4259 ((-548) $)) (-15 -4100 ($ |t#1| |t#1|)) (-15 -2591 ($ |t#1|)))) +((-1842 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1057 *3)) (-4 *3 (-1172)))) (-1257 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-1280 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-1269 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1172)) (-5 *2 (-547)))) (-3114 (*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) (-2829 (*1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(-13 (-1172) (-10 -8 (-15 -1842 ($ |t#1| |t#1|)) (-15 -2107 ($ $ (-547))) (-15 -1257 (|t#1| $)) (-15 -1280 (|t#1| $)) (-15 -2637 (|t#1| $)) (-15 -2541 (|t#1| $)) (-15 -1269 ((-547) $)) (-15 -3114 ($ |t#1| |t#1|)) (-15 -2829 ($ |t#1|)))) (((-1172) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4100 (($ |#1| |#1|) 15)) (-2540 (((-619 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-819)))) (-2479 ((|#1| $) 10)) (-4246 ((|#1| $) 9)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-4259 (((-548) $) 14)) (-2469 ((|#1| $) 12)) (-4270 ((|#1| $) 11)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1384 (((-619 |#1|) $) 36 (|has| |#1| (-819))) (((-619 |#1|) (-619 $)) 35 (|has| |#1| (-819)))) (-2591 (($ |#1|) 26)) (-3743 (((-832) $) 25 (|has| |#1| (-1063)))) (-1794 (($ |#1| |#1|) 8)) (-1984 (($ $ (-548)) 16)) (-2214 (((-112) $ $) 19 (|has| |#1| (-1063))))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3114 (($ |#1| |#1|) 15)) (-2781 (((-619 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-819)))) (-2637 ((|#1| $) 10)) (-1257 ((|#1| $) 9)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1269 (((-547) $) 14)) (-2541 ((|#1| $) 12)) (-1280 ((|#1| $) 11)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1436 (((-619 |#1|) $) 36 (|has| |#1| (-819))) (((-619 |#1|) (-619 $)) 35 (|has| |#1| (-819)))) (-2829 (($ |#1|) 26)) (-3834 (((-832) $) 25 (|has| |#1| (-1063)))) (-1842 (($ |#1| |#1|) 8)) (-2107 (($ $ (-547)) 16)) (-2371 (((-112) $ $) 19 (|has| |#1| (-1063))))) (((-1058 |#1|) (-13 (-1057 |#1|) (-10 -7 (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-619 |#1|))) |%noBranch|))) (-1172)) (T -1058)) NIL (-13 (-1057 |#1|) (-10 -7 (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-619 |#1|))) |%noBranch|))) -((-4100 (($ |#1| |#1|) 7)) (-2540 ((|#2| (-1 |#1| |#1|) $) 16)) (-2479 ((|#1| $) 10)) (-4246 ((|#1| $) 12)) (-4259 (((-548) $) 8)) (-2469 ((|#1| $) 9)) (-4270 ((|#1| $) 11)) (-1384 ((|#2| (-619 $)) 18) ((|#2| $) 17)) (-2591 (($ |#1|) 6)) (-1794 (($ |#1| |#1|) 14)) (-1984 (($ $ (-548)) 13))) +((-3114 (($ |#1| |#1|) 7)) (-2781 ((|#2| (-1 |#1| |#1|) $) 16)) (-2637 ((|#1| $) 10)) (-1257 ((|#1| $) 12)) (-1269 (((-547) $) 8)) (-2541 ((|#1| $) 9)) (-1280 ((|#1| $) 11)) (-1436 ((|#2| (-619 $)) 18) ((|#2| $) 17)) (-2829 (($ |#1|) 6)) (-1842 (($ |#1| |#1|) 14)) (-2107 (($ $ (-547)) 13))) (((-1059 |#1| |#2|) (-138) (-819) (-1109 |t#1|)) (T -1059)) -((-1384 (*1 *2 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1109 *3)))) (-2540 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4))))) -(-13 (-1057 |t#1|) (-10 -8 (-15 -1384 (|t#2| (-619 $))) (-15 -1384 (|t#2| $)) (-15 -2540 (|t#2| (-1 |t#1| |t#1|) $)))) +((-1436 (*1 *2 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1109 *3)))) (-2781 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4))))) +(-13 (-1057 |t#1|) (-10 -8 (-15 -1436 (|t#2| (-619 $))) (-15 -1436 (|t#2| $)) (-15 -2781 (|t#2| (-1 |t#1| |t#1|) $)))) (((-1057 |#1|) . T) ((-1172) . T)) -((-1434 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2501 (($ $ $) 10)) (-2511 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1060 |#1| |#2|) (-10 -8 (-15 -1434 (|#1| |#2| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2511 (|#1| |#1| |#1|))) (-1061 |#2|) (-1063)) (T -1060)) +((-1428 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1492 (($ $ $) 10)) (-1604 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1060 |#1| |#2|) (-10 -8 (-15 -1428 (|#1| |#2| |#1|)) (-15 -1428 (|#1| |#1| |#2|)) (-15 -1428 (|#1| |#1| |#1|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1| |#2|)) (-15 -1604 (|#1| |#1| |#1|))) (-1061 |#2|) (-1063)) (T -1060)) NIL -(-10 -8 (-15 -1434 (|#1| |#2| |#1|)) (-15 -1434 (|#1| |#1| |#2|)) (-15 -1434 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2511 (|#1| |#1| |#2|)) (-15 -2511 (|#1| |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-1434 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2501 (($ $ $) 20)) (-2491 (((-112) $ $) 19)) (-2028 (((-112) $ (-745)) 35)) (-2592 (($) 25) (($ (-619 |#1|)) 24)) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4327)))) (-3030 (($) 36 T CONST)) (-3484 (($ $) 59 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4327)))) (-1934 (((-619 |#1|) $) 43 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) 28)) (-4282 (((-112) $ (-745)) 34)) (-2342 (((-619 |#1|) $) 44 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 38)) (-4248 (((-112) $ (-745)) 33)) (-2546 (((-1118) $) 9)) (-2520 (($ $ $) 23)) (-3932 (((-1082) $) 10)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3537 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#1|) (-619 |#1|)) 50 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 48 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-286 |#1|))) 47 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 29)) (-1616 (((-112) $) 32)) (-3319 (($) 31)) (-2511 (($ $ $) 22) (($ $ |#1|) 21)) (-3945 (((-745) |#1| $) 45 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4327)))) (-2113 (($ $) 30)) (-2591 (((-524) $) 60 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 51)) (-3743 (((-832) $) 11)) (-4013 (($) 27) (($ (-619 |#1|)) 26)) (-3548 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 37 (|has| $ (-6 -4327))))) +(-10 -8 (-15 -1428 (|#1| |#2| |#1|)) (-15 -1428 (|#1| |#1| |#2|)) (-15 -1428 (|#1| |#1| |#1|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1| |#2|)) (-15 -1604 (|#1| |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-1428 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1492 (($ $ $) 20)) (-1383 (((-112) $ $) 19)) (-2826 (((-112) $ (-745)) 35)) (-2771 (($) 25) (($ (-619 |#1|)) 24)) (-1476 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4328)))) (-3219 (($) 36 T CONST)) (-3664 (($ $) 59 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 58 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4328)))) (-2973 (((-619 |#1|) $) 43 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) 28)) (-4161 (((-112) $ (-745)) 34)) (-3666 (((-619 |#1|) $) 44 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 38)) (-2024 (((-112) $ (-745)) 33)) (-1917 (((-1118) $) 9)) (-1711 (($ $ $) 23)) (-3979 (((-1082) $) 10)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2462 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#1|) (-619 |#1|)) 50 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 48 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-285 |#1|))) 47 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 29)) (-3169 (((-112) $) 32)) (-4011 (($) 31)) (-1604 (($ $ $) 22) (($ $ |#1|) 21)) (-3987 (((-745) |#1| $) 45 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4328)))) (-2265 (($ $) 30)) (-2829 (((-523) $) 60 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 51)) (-3834 (((-832) $) 11)) (-4112 (($) 27) (($ (-619 |#1|)) 26)) (-2583 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 37 (|has| $ (-6 -4328))))) (((-1061 |#1|) (-138) (-1063)) (T -1061)) -((-2531 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4013 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-2592 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2511 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2511 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2501 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2491 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1434 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1434 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1434 (*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) -(-13 (-1063) (-149 |t#1|) (-10 -8 (-6 -4317) (-15 -2531 ((-112) $ $)) (-15 -4013 ($)) (-15 -4013 ($ (-619 |t#1|))) (-15 -2592 ($)) (-15 -2592 ($ (-619 |t#1|))) (-15 -2520 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2511 ($ $ |t#1|)) (-15 -2501 ($ $ $)) (-15 -2491 ((-112) $ $)) (-15 -1434 ($ $ $)) (-15 -1434 ($ $ |t#1|)) (-15 -1434 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) . T) ((-1172) . T)) -((-2546 (((-1118) $) 10)) (-3932 (((-1082) $) 8))) -(((-1062 |#1|) (-10 -8 (-15 -2546 ((-1118) |#1|)) (-15 -3932 ((-1082) |#1|))) (-1063)) (T -1062)) -NIL -(-10 -8 (-15 -2546 ((-1118) |#1|)) (-15 -3932 ((-1082) |#1|))) -((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +((-1815 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-4112 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-2771 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) (-1711 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1604 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1604 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1492 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1383 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) (-1428 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1428 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) (-1428 (*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(-13 (-1063) (-149 |t#1|) (-10 -8 (-6 -4318) (-15 -1815 ((-112) $ $)) (-15 -4112 ($)) (-15 -4112 ($ (-619 |t#1|))) (-15 -2771 ($)) (-15 -2771 ($ (-619 |t#1|))) (-15 -1711 ($ $ $)) (-15 -1604 ($ $ $)) (-15 -1604 ($ $ |t#1|)) (-15 -1492 ($ $ $)) (-15 -1383 ((-112) $ $)) (-15 -1428 ($ $ $)) (-15 -1428 ($ $ |t#1|)) (-15 -1428 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) . T) ((-1172) . T)) +((-1917 (((-1118) $) 10)) (-3979 (((-1082) $) 8))) +(((-1062 |#1|) (-10 -8 (-15 -1917 ((-1118) |#1|)) (-15 -3979 ((-1082) |#1|))) (-1063)) (T -1062)) +NIL +(-10 -8 (-15 -1917 ((-1118) |#1|)) (-15 -3979 ((-1082) |#1|))) +((-3821 (((-112) $ $) 7)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) (((-1063) (-138)) (T -1063)) -((-3932 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1118))))) -(-13 (-101) (-592 (-832)) (-10 -8 (-15 -3932 ((-1082) $)) (-15 -2546 ((-1118) $)))) -(((-101) . T) ((-592 (-832)) . T)) -((-3730 (((-112) $ $) NIL)) (-3423 (((-745)) 30)) (-2575 (($ (-619 (-890))) 52)) (-2595 (((-3 $ "failed") $ (-890) (-890)) 58)) (-2545 (($) 32)) (-2556 (((-112) (-890) $) 35)) (-2855 (((-890) $) 50)) (-2546 (((-1118) $) NIL)) (-3337 (($ (-890)) 31)) (-2604 (((-3 $ "failed") $ (-890)) 55)) (-3932 (((-1082) $) NIL)) (-2566 (((-1218 $)) 40)) (-2584 (((-619 (-890)) $) 24)) (-1605 (((-745) $ (-890) (-890)) 56)) (-3743 (((-832) $) 29)) (-2214 (((-112) $ $) 21))) -(((-1064 |#1| |#2|) (-13 (-360) (-10 -8 (-15 -2604 ((-3 $ "failed") $ (-890))) (-15 -2595 ((-3 $ "failed") $ (-890) (-890))) (-15 -2584 ((-619 (-890)) $)) (-15 -2575 ($ (-619 (-890)))) (-15 -2566 ((-1218 $))) (-15 -2556 ((-112) (-890) $)) (-15 -1605 ((-745) $ (-890) (-890))))) (-890) (-890)) (T -1064)) -((-2604 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2595 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2566 (*1 *2) (-12 (-5 *2 (-1218 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-2556 (*1 *2 *3 *1) (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1605 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-360) (-10 -8 (-15 -2604 ((-3 $ "failed") $ (-890))) (-15 -2595 ((-3 $ "failed") $ (-890) (-890))) (-15 -2584 ((-619 (-890)) $)) (-15 -2575 ($ (-619 (-890)))) (-15 -2566 ((-1218 $))) (-15 -2556 ((-112) (-890) $)) (-15 -1605 ((-745) $ (-890) (-890))))) -((-3730 (((-112) $ $) NIL)) (-2528 (($) NIL (|has| |#1| (-360)))) (-1434 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2501 (($ $ $) 72)) (-2491 (((-112) $ $) 73)) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#1| (-360)))) (-2592 (($ (-619 |#1|)) NIL) (($) 13)) (-2657 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-1636 (($ |#1| $) 67 (|has| $ (-6 -4327))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4327)))) (-2545 (($) NIL (|has| |#1| (-360)))) (-1934 (((-619 |#1|) $) 19 (|has| $ (-6 -4327)))) (-2531 (((-112) $ $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-1795 ((|#1| $) 57 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3091 ((|#1| $) 55 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 34)) (-2855 (((-890) $) NIL (|has| |#1| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2520 (($ $ $) 70)) (-1346 ((|#1| $) 25)) (-2539 (($ |#1| $) 65)) (-3337 (($ (-890)) NIL (|has| |#1| (-360)))) (-3932 (((-1082) $) NIL)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1357 ((|#1| $) 27)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 21)) (-3319 (($) 11)) (-2511 (($ $ |#1|) NIL) (($ $ $) 71)) (-2801 (($) NIL) (($ (-619 |#1|)) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 16)) (-2591 (((-524) $) 52 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 61)) (-2543 (($ $) NIL (|has| |#1| (-360)))) (-3743 (((-832) $) NIL)) (-2554 (((-745) $) NIL)) (-4013 (($ (-619 |#1|)) NIL) (($) 12)) (-1368 (($ (-619 |#1|)) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 54)) (-3643 (((-745) $) 10 (|has| $ (-6 -4327))))) -(((-1065 |#1|) (-417 |#1|) (-1063)) (T -1065)) -NIL -(-417 |#1|) -((-3730 (((-112) $ $) 7)) (-2633 (((-112) $) 32)) (-3803 ((|#2| $) 27)) (-2643 (((-112) $) 33)) (-1504 ((|#1| $) 28)) (-2666 (((-112) $) 35)) (-2684 (((-112) $) 37)) (-2654 (((-112) $) 34)) (-2546 (((-1118) $) 9)) (-2624 (((-112) $) 31)) (-3829 ((|#3| $) 26)) (-3932 (((-1082) $) 10)) (-2614 (((-112) $) 30)) (-1335 ((|#4| $) 25)) (-2720 ((|#5| $) 24)) (-2383 (((-112) $ $) 38)) (-3171 (($ $ (-548)) 14) (($ $ (-619 (-548))) 13)) (-1981 (((-619 $) $) 29)) (-2591 (($ (-619 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3743 (((-832) $) 11)) (-3336 (($ $) 16)) (-3322 (($ $) 17)) (-2675 (((-112) $) 36)) (-2214 (((-112) $ $) 6)) (-3643 (((-548) $) 15))) +((-3979 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1118))))) +(-13 (-101) (-591 (-832)) (-10 -8 (-15 -3979 ((-1082) $)) (-15 -1917 ((-1118) $)))) +(((-101) . T) ((-591 (-832)) . T)) +((-3821 (((-112) $ $) NIL)) (-3603 (((-745)) 30)) (-4041 (($ (-619 (-890))) 52)) (-4217 (((-3 $ "failed") $ (-890) (-890)) 58)) (-3229 (($) 32)) (-3860 (((-112) (-890) $) 35)) (-1966 (((-890) $) 50)) (-1917 (((-1118) $) NIL)) (-3479 (($ (-890)) 31)) (-4300 (((-3 $ "failed") $ (-890)) 55)) (-3979 (((-1082) $) NIL)) (-3942 (((-1218 $)) 40)) (-4129 (((-619 (-890)) $) 24)) (-2642 (((-745) $ (-890) (-890)) 56)) (-3834 (((-832) $) 29)) (-2371 (((-112) $ $) 21))) +(((-1064 |#1| |#2|) (-13 (-359) (-10 -8 (-15 -4300 ((-3 $ "failed") $ (-890))) (-15 -4217 ((-3 $ "failed") $ (-890) (-890))) (-15 -4129 ((-619 (-890)) $)) (-15 -4041 ($ (-619 (-890)))) (-15 -3942 ((-1218 $))) (-15 -3860 ((-112) (-890) $)) (-15 -2642 ((-745) $ (-890) (-890))))) (-890) (-890)) (T -1064)) +((-4300 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4217 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3942 (*1 *2) (-12 (-5 *2 (-1218 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) (-3860 (*1 *2 *3 *1) (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2642 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-359) (-10 -8 (-15 -4300 ((-3 $ "failed") $ (-890))) (-15 -4217 ((-3 $ "failed") $ (-890) (-890))) (-15 -4129 ((-619 (-890)) $)) (-15 -4041 ($ (-619 (-890)))) (-15 -3942 ((-1218 $))) (-15 -3860 ((-112) (-890) $)) (-15 -2642 ((-745) $ (-890) (-890))))) +((-3821 (((-112) $ $) NIL)) (-1788 (($) NIL (|has| |#1| (-359)))) (-1428 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1492 (($ $ $) 72)) (-1383 (((-112) $ $) 73)) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| |#1| (-359)))) (-2771 (($ (-619 |#1|)) NIL) (($) 13)) (-3681 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3342 (($ |#1| $) 67 (|has| $ (-6 -4328))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4328)))) (-3229 (($) NIL (|has| |#1| (-359)))) (-2973 (((-619 |#1|) $) 19 (|has| $ (-6 -4328)))) (-1815 (((-112) $ $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2847 ((|#1| $) 57 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3563 ((|#1| $) 55 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 34)) (-1966 (((-890) $) NIL (|has| |#1| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-1711 (($ $ $) 70)) (-1959 ((|#1| $) 25)) (-1885 (($ |#1| $) 65)) (-3479 (($ (-890)) NIL (|has| |#1| (-359)))) (-3979 (((-1082) $) NIL)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1373 ((|#1| $) 27)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 21)) (-4011 (($) 11)) (-1604 (($ $ |#1|) NIL) (($ $ $) 71)) (-1404 (($) NIL) (($ (-619 |#1|)) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 16)) (-2829 (((-523) $) 52 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 61)) (-1893 (($ $) NIL (|has| |#1| (-359)))) (-3834 (((-832) $) NIL)) (-3844 (((-745) $) NIL)) (-4112 (($ (-619 |#1|)) NIL) (($) 12)) (-2731 (($ (-619 |#1|)) NIL)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 54)) (-3763 (((-745) $) 10 (|has| $ (-6 -4328))))) +(((-1065 |#1|) (-416 |#1|) (-1063)) (T -1065)) +NIL +(-416 |#1|) +((-3821 (((-112) $ $) 7)) (-3447 (((-112) $) 32)) (-3932 ((|#2| $) 27)) (-3540 (((-112) $) 33)) (-1512 ((|#1| $) 28)) (-3747 (((-112) $) 35)) (-2798 (((-112) $) 37)) (-3651 (((-112) $) 34)) (-1917 (((-1118) $) 9)) (-3350 (((-112) $) 31)) (-3953 ((|#3| $) 26)) (-3979 (((-1082) $) 10)) (-3256 (((-112) $) 30)) (-1347 ((|#4| $) 25)) (-2961 ((|#5| $) 24)) (-2636 (((-112) $ $) 38)) (-3329 (($ $ (-547)) 14) (($ $ (-619 (-547))) 13)) (-2179 (((-619 $) $) 29)) (-2829 (($ (-619 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3834 (((-832) $) 11)) (-3535 (($ $) 16)) (-3524 (($ $) 17)) (-2724 (((-112) $) 36)) (-2371 (((-112) $ $) 6)) (-3763 (((-547) $) 15))) (((-1066 |#1| |#2| |#3| |#4| |#5|) (-138) (-1063) (-1063) (-1063) (-1063) (-1063)) (T -1066)) -((-2383 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-1981 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *2 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-4 *6 (-1063)))) (-2591 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3322 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3336 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-548)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -2383 ((-112) $ $)) (-15 -2684 ((-112) $)) (-15 -2675 ((-112) $)) (-15 -2666 ((-112) $)) (-15 -2654 ((-112) $)) (-15 -2643 ((-112) $)) (-15 -2633 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2614 ((-112) $)) (-15 -1981 ((-619 $) $)) (-15 -1504 (|t#1| $)) (-15 -3803 (|t#2| $)) (-15 -3829 (|t#3| $)) (-15 -1335 (|t#4| $)) (-15 -2720 (|t#5| $)) (-15 -2591 ($ (-619 $))) (-15 -2591 ($ |t#1|)) (-15 -2591 ($ |t#2|)) (-15 -2591 ($ |t#3|)) (-15 -2591 ($ |t#4|)) (-15 -2591 ($ |t#5|)) (-15 -3322 ($ $)) (-15 -3336 ($ $)) (-15 -3643 ((-548) $)) (-15 -3171 ($ $ (-548))) (-15 -3171 ($ $ (-619 (-548)))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL)) (-2633 (((-112) $) NIL)) (-3803 (((-1135) $) NIL)) (-2643 (((-112) $) NIL)) (-1504 (((-1118) $) NIL)) (-2666 (((-112) $) NIL)) (-2684 (((-112) $) NIL)) (-2654 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-2624 (((-112) $) NIL)) (-3829 (((-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-2614 (((-112) $) NIL)) (-1335 (((-218) $) NIL)) (-2720 (((-832) $) NIL)) (-2383 (((-112) $ $) NIL)) (-3171 (($ $ (-548)) NIL) (($ $ (-619 (-548))) NIL)) (-1981 (((-619 $) $) NIL)) (-2591 (($ (-619 $)) NIL) (($ (-1118)) NIL) (($ (-1135)) NIL) (($ (-548)) NIL) (($ (-218)) NIL) (($ (-832)) NIL)) (-3743 (((-832) $) NIL)) (-3336 (($ $) NIL)) (-3322 (($ $) NIL)) (-2675 (((-112) $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-548) $) NIL))) -(((-1067) (-1066 (-1118) (-1135) (-548) (-218) (-832))) (T -1067)) -NIL -(-1066 (-1118) (-1135) (-548) (-218) (-832)) -((-3730 (((-112) $ $) NIL)) (-2633 (((-112) $) 38)) (-3803 ((|#2| $) 42)) (-2643 (((-112) $) 37)) (-1504 ((|#1| $) 41)) (-2666 (((-112) $) 35)) (-2684 (((-112) $) 14)) (-2654 (((-112) $) 36)) (-2546 (((-1118) $) NIL)) (-2624 (((-112) $) 39)) (-3829 ((|#3| $) 44)) (-3932 (((-1082) $) NIL)) (-2614 (((-112) $) 40)) (-1335 ((|#4| $) 43)) (-2720 ((|#5| $) 45)) (-2383 (((-112) $ $) 34)) (-3171 (($ $ (-548)) 56) (($ $ (-619 (-548))) 58)) (-1981 (((-619 $) $) 22)) (-2591 (($ (-619 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-3743 (((-832) $) 23)) (-3336 (($ $) 21)) (-3322 (($ $) 52)) (-2675 (((-112) $) 18)) (-2214 (((-112) $ $) 33)) (-3643 (((-548) $) 54))) +((-2636 (*1 *2 *1 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112)))) (-2179 (*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-2829 (*1 *1 *2) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2829 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *2 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2829 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *2 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-2829 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *2 (-1063)) (-4 *6 (-1063)))) (-2829 (*1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) (-3524 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3535 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-547)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -2636 ((-112) $ $)) (-15 -2798 ((-112) $)) (-15 -2724 ((-112) $)) (-15 -3747 ((-112) $)) (-15 -3651 ((-112) $)) (-15 -3540 ((-112) $)) (-15 -3447 ((-112) $)) (-15 -3350 ((-112) $)) (-15 -3256 ((-112) $)) (-15 -2179 ((-619 $) $)) (-15 -1512 (|t#1| $)) (-15 -3932 (|t#2| $)) (-15 -3953 (|t#3| $)) (-15 -1347 (|t#4| $)) (-15 -2961 (|t#5| $)) (-15 -2829 ($ (-619 $))) (-15 -2829 ($ |t#1|)) (-15 -2829 ($ |t#2|)) (-15 -2829 ($ |t#3|)) (-15 -2829 ($ |t#4|)) (-15 -2829 ($ |t#5|)) (-15 -3524 ($ $)) (-15 -3535 ($ $)) (-15 -3763 ((-547) $)) (-15 -3329 ($ $ (-547))) (-15 -3329 ($ $ (-619 (-547)))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL)) (-3447 (((-112) $) NIL)) (-3932 (((-1135) $) NIL)) (-3540 (((-112) $) NIL)) (-1512 (((-1118) $) NIL)) (-3747 (((-112) $) NIL)) (-2798 (((-112) $) NIL)) (-3651 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-3350 (((-112) $) NIL)) (-3953 (((-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3256 (((-112) $) NIL)) (-1347 (((-217) $) NIL)) (-2961 (((-832) $) NIL)) (-2636 (((-112) $ $) NIL)) (-3329 (($ $ (-547)) NIL) (($ $ (-619 (-547))) NIL)) (-2179 (((-619 $) $) NIL)) (-2829 (($ (-619 $)) NIL) (($ (-1118)) NIL) (($ (-1135)) NIL) (($ (-547)) NIL) (($ (-217)) NIL) (($ (-832)) NIL)) (-3834 (((-832) $) NIL)) (-3535 (($ $) NIL)) (-3524 (($ $) NIL)) (-2724 (((-112) $) NIL)) (-2371 (((-112) $ $) NIL)) (-3763 (((-547) $) NIL))) +(((-1067) (-1066 (-1118) (-1135) (-547) (-217) (-832))) (T -1067)) +NIL +(-1066 (-1118) (-1135) (-547) (-217) (-832)) +((-3821 (((-112) $ $) NIL)) (-3447 (((-112) $) 38)) (-3932 ((|#2| $) 42)) (-3540 (((-112) $) 37)) (-1512 ((|#1| $) 41)) (-3747 (((-112) $) 35)) (-2798 (((-112) $) 14)) (-3651 (((-112) $) 36)) (-1917 (((-1118) $) NIL)) (-3350 (((-112) $) 39)) (-3953 ((|#3| $) 44)) (-3979 (((-1082) $) NIL)) (-3256 (((-112) $) 40)) (-1347 ((|#4| $) 43)) (-2961 ((|#5| $) 45)) (-2636 (((-112) $ $) 34)) (-3329 (($ $ (-547)) 56) (($ $ (-619 (-547))) 58)) (-2179 (((-619 $) $) 22)) (-2829 (($ (-619 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-3834 (((-832) $) 23)) (-3535 (($ $) 21)) (-3524 (($ $) 52)) (-2724 (((-112) $) 18)) (-2371 (((-112) $ $) 33)) (-3763 (((-547) $) 54))) (((-1068 |#1| |#2| |#3| |#4| |#5|) (-1066 |#1| |#2| |#3| |#4| |#5|) (-1063) (-1063) (-1063) (-1063) (-1063)) (T -1068)) NIL (-1066 |#1| |#2| |#3| |#4| |#5|) -((-3898 (((-1223) $) 23)) (-4252 (($ (-1135) (-426) |#2|) 11)) (-3743 (((-832) $) 16))) -(((-1069 |#1| |#2|) (-13 (-387) (-10 -8 (-15 -4252 ($ (-1135) (-426) |#2|)))) (-821) (-422 |#1|)) (T -1069)) -((-4252 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-426)) (-4 *5 (-821)) (-5 *1 (-1069 *5 *4)) (-4 *4 (-422 *5))))) -(-13 (-387) (-10 -8 (-15 -4252 ($ (-1135) (-426) |#2|)))) -((-2710 (((-112) |#5| |#5|) 38)) (-2735 (((-112) |#5| |#5|) 52)) (-2776 (((-112) |#5| (-619 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-2744 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-1675 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 63)) (-2702 (((-1223)) 33)) (-2694 (((-1223) (-1118) (-1118) (-1118)) 29)) (-2784 (((-619 |#5|) (-619 |#5|)) 82)) (-1683 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) 80)) (-1691 (((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 102)) (-2727 (((-112) |#5| |#5|) 47)) (-2768 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2752 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-2761 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-2199 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-1697 (((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-2718 (((-619 |#5|) (-619 |#5|)) 43))) -(((-1070 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1070)) -((-1697 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-1691 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-1675 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3)))) (-2776 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2768 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2199 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2727 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2710 (*1 *2 *3 *3) (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2694 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(-10 -7 (-15 -2694 ((-1223) (-1118) (-1118) (-1118))) (-15 -2702 ((-1223))) (-15 -2710 ((-112) |#5| |#5|)) (-15 -2718 ((-619 |#5|) (-619 |#5|))) (-15 -2727 ((-112) |#5| |#5|)) (-15 -2735 ((-112) |#5| |#5|)) (-15 -2744 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2752 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2761 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2199 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2768 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2776 ((-112) |#5| |#5|)) (-15 -2776 ((-112) |#5| (-619 |#5|))) (-15 -2784 ((-619 |#5|) (-619 |#5|))) (-15 -1675 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1683 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-15 -1691 ((-619 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -1697 ((-3 (-2 (|:| -2383 (-619 |#4|)) (|:| -1806 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1834 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|) 96)) (-1743 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|) 72)) (-1769 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 91)) (-1785 (((-619 |#5|) |#4| |#5|) 110)) (-1803 (((-619 |#5|) |#4| |#5|) 117)) (-1824 (((-619 |#5|) |#4| |#5|) 118)) (-1777 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 97)) (-1793 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 116)) (-1814 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-1751 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112)) 84) (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-1760 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|) 79)) (-1732 (((-1223)) 37)) (-1713 (((-1223)) 26)) (-1722 (((-1223) (-1118) (-1118) (-1118)) 33)) (-1705 (((-1223) (-1118) (-1118) (-1118)) 22))) -(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -1743 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -1760 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1769 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1814 ((-112) |#4| |#5|)) (-15 -1777 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1785 ((-619 |#5|) |#4| |#5|)) (-15 -1793 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1803 ((-619 |#5|) |#4| |#5|)) (-15 -1814 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1824 ((-619 |#5|) |#4| |#5|)) (-15 -1834 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1071)) -((-1834 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1824 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1803 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1793 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1785 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1769 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1760 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-1751 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1743 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1732 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-1713 (*1 *2) (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-1705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(-10 -7 (-15 -1705 ((-1223) (-1118) (-1118) (-1118))) (-15 -1713 ((-1223))) (-15 -1722 ((-1223) (-1118) (-1118) (-1118))) (-15 -1732 ((-1223))) (-15 -1743 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1751 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) |#3| (-112))) (-15 -1760 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1769 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#4| |#5|)) (-15 -1814 ((-112) |#4| |#5|)) (-15 -1777 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1785 ((-619 |#5|) |#4| |#5|)) (-15 -1793 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1803 ((-619 |#5|) |#4| |#5|)) (-15 -1814 ((-619 (-2 (|:| |val| (-112)) (|:| -1806 |#5|))) |#4| |#5|)) (-15 -1824 ((-619 |#5|) |#4| |#5|)) (-15 -1834 ((-619 (-2 (|:| |val| |#4|) (|:| -1806 |#5|))) |#4| |#5|))) -((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) -(((-1072 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1072)) +((-3304 (((-1223) $) 23)) (-1312 (($ (-1135) (-425) |#2|) 11)) (-3834 (((-832) $) 16))) +(((-1069 |#1| |#2|) (-13 (-386) (-10 -8 (-15 -1312 ($ (-1135) (-425) |#2|)))) (-821) (-421 |#1|)) (T -1069)) +((-1312 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1135)) (-5 *3 (-425)) (-4 *5 (-821)) (-5 *1 (-1069 *5 *4)) (-4 *4 (-421 *5))))) +(-13 (-386) (-10 -8 (-15 -1312 ($ (-1135) (-425) |#2|)))) +((-3009 (((-112) |#5| |#5|) 38)) (-3223 (((-112) |#5| |#5|) 52)) (-2512 (((-112) |#5| (-619 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-2131 (((-112) (-619 |#4|) (-619 |#4|)) 58)) (-2625 (((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) 63)) (-2947 (((-1223)) 33)) (-2877 (((-1223) (-1118) (-1118) (-1118)) 29)) (-2600 (((-619 |#5|) (-619 |#5|)) 82)) (-2699 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) 80)) (-2772 (((-619 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112)) 102)) (-3155 (((-112) |#5| |#5|) 47)) (-2411 (((-3 (-112) "failed") |#5| |#5|) 71)) (-2230 (((-112) (-619 |#4|) (-619 |#4|)) 57)) (-2338 (((-112) (-619 |#4|) (-619 |#4|)) 59)) (-1694 (((-112) (-619 |#4|) (-619 |#4|)) 60)) (-2830 (((-3 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3081 (((-619 |#5|) (-619 |#5|)) 43))) +(((-1070 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2877 ((-1223) (-1118) (-1118) (-1118))) (-15 -2947 ((-1223))) (-15 -3009 ((-112) |#5| |#5|)) (-15 -3081 ((-619 |#5|) (-619 |#5|))) (-15 -3155 ((-112) |#5| |#5|)) (-15 -3223 ((-112) |#5| |#5|)) (-15 -2131 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2230 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2338 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1694 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2411 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2512 ((-112) |#5| |#5|)) (-15 -2512 ((-112) |#5| (-619 |#5|))) (-15 -2600 ((-619 |#5|) (-619 |#5|))) (-15 -2625 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -2699 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-15 -2772 ((-619 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2830 ((-3 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1070)) +((-2830 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| -2636 (-619 *9)) (|:| -1965 *4) (|:| |ineq| (-619 *9)))) (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) (-4 *4 (-1036 *6 *7 *8 *9)))) (-2772 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| -2636 (-619 *9)) (|:| -1965 *10) (|:| |ineq| (-619 *9))))) (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1965 *7)))) (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2625 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-2512 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3)))) (-2512 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2411 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-1694 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2338 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2230 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2131 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-3223 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3155 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-1070 *3 *4 *5 *6 *7)))) (-3009 (*1 *2 *3 *3) (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) (-2947 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2877 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -2877 ((-1223) (-1118) (-1118) (-1118))) (-15 -2947 ((-1223))) (-15 -3009 ((-112) |#5| |#5|)) (-15 -3081 ((-619 |#5|) (-619 |#5|))) (-15 -3155 ((-112) |#5| |#5|)) (-15 -3223 ((-112) |#5| |#5|)) (-15 -2131 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2230 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2338 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -1694 ((-112) (-619 |#4|) (-619 |#4|))) (-15 -2411 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2512 ((-112) |#5| |#5|)) (-15 -2512 ((-112) |#5| (-619 |#5|))) (-15 -2600 ((-619 |#5|) (-619 |#5|))) (-15 -2625 ((-112) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -2699 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-15 -2772 ((-619 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|)))) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -2830 ((-3 (-2 (|:| -2636 (-619 |#4|)) (|:| -1965 |#5|) (|:| |ineq| (-619 |#4|))) "failed") (-619 |#4|) |#5| (-619 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1662 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|) 96)) (-1993 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#4| |#4| |#5|) 72)) (-2302 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|) 91)) (-2501 (((-619 |#5|) |#4| |#5|) 110)) (-1336 (((-619 |#5|) |#4| |#5|) 117)) (-1554 (((-619 |#5|) |#4| |#5|) 118)) (-2401 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|) 97)) (-2591 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|) 116)) (-1423 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2096 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#3| (-112)) 84) (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2196 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|) 79)) (-3120 (((-1223)) 37)) (-2974 (((-1223)) 26)) (-3049 (((-1223) (-1118) (-1118) (-1118)) 33)) (-2906 (((-1223) (-1118) (-1118) (-1118)) 22))) +(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2906 ((-1223) (-1118) (-1118) (-1118))) (-15 -2974 ((-1223))) (-15 -3049 ((-1223) (-1118) (-1118) (-1118))) (-15 -3120 ((-1223))) (-15 -1993 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -2096 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2096 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#3| (-112))) (-15 -2196 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -2302 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -1423 ((-112) |#4| |#5|)) (-15 -2401 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -2501 ((-619 |#5|) |#4| |#5|)) (-15 -2591 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -1336 ((-619 |#5|) |#4| |#5|)) (-15 -1423 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -1554 ((-619 |#5|) |#4| |#5|)) (-15 -1662 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1071)) +((-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1554 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1423 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1336 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2591 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2501 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2401 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-1423 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2302 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2196 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821)) (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1965 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-2096 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-1993 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-3120 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-3049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) (-2974 (*1 *2) (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) (-2906 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(-10 -7 (-15 -2906 ((-1223) (-1118) (-1118) (-1118))) (-15 -2974 ((-1223))) (-15 -3049 ((-1223) (-1118) (-1118) (-1118))) (-15 -3120 ((-1223))) (-15 -1993 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -2096 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2096 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) |#3| (-112))) (-15 -2196 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -2302 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#4| |#5|)) (-15 -1423 ((-112) |#4| |#5|)) (-15 -2401 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -2501 ((-619 |#5|) |#4| |#5|)) (-15 -2591 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -1336 ((-619 |#5|) |#4| |#5|)) (-15 -1423 ((-619 (-2 (|:| |val| (-112)) (|:| -1965 |#5|))) |#4| |#5|)) (-15 -1554 ((-619 |#5|) |#4| |#5|)) (-15 -1662 ((-619 (-2 (|:| |val| |#4|) (|:| -1965 |#5|))) |#4| |#5|))) +((-3821 (((-112) $ $) 7)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) 85)) (-3759 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2259 (((-619 |#3|) $) 33)) (-4286 (((-112) $) 26)) (-3312 (((-112) $) 17 (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) 101) (((-112) $) 97)) (-3144 ((|#4| |#4| $) 92)) (-2745 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| $) 126)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) 27)) (-2826 (((-112) $ (-745)) 44)) (-1476 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 79)) (-3219 (($) 45 T CONST)) (-3990 (((-112) $) 22 (|has| |#1| (-539)))) (-4154 (((-112) $ $) 24 (|has| |#1| (-539)))) (-4075 (((-112) $ $) 23 (|has| |#1| (-539)))) (-4212 (((-112) $) 25 (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1833 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 36)) (-2643 (($ (-619 |#4|)) 35)) (-3645 (((-3 $ "failed") $) 82)) (-2903 ((|#4| |#4| $) 89)) (-3664 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2733 ((|#4| |#4| $) 87)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) 105)) (-4047 (((-112) |#4| $) 136)) (-3709 (((-112) |#4| $) 133)) (-4124 (((-112) |#4| $) 137) (((-112) $) 134)) (-2973 (((-619 |#4|) $) 52 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) 104) (((-112) $) 103)) (-1397 ((|#3| $) 34)) (-4161 (((-112) $ (-745)) 43)) (-3666 (((-619 |#4|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 47)) (-3623 (((-619 |#3|) $) 32)) (-3523 (((-112) |#3| $) 31)) (-2024 (((-112) $ (-745)) 42)) (-1917 (((-1118) $) 9)) (-3240 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-4258 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| |#4| $) 127)) (-3817 (((-3 |#4| "failed") $) 83)) (-3389 (((-619 $) |#4| $) 129)) (-3604 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1711 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3308 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-1499 (((-619 |#4|) $) 107)) (-2257 (((-112) |#4| $) 99) (((-112) $) 95)) (-2979 ((|#4| |#4| $) 90)) (-1694 (((-112) $ $) 110)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) 100) (((-112) $) 96)) (-3062 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3634 (((-3 |#4| "failed") $) 84)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3505 (((-3 $ "failed") $ |#4|) 78)) (-3558 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-2462 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) 38)) (-3169 (((-112) $) 41)) (-4011 (($) 40)) (-1618 (((-745) $) 106)) (-3987 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4328)))) (-2265 (($ $) 39)) (-2829 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 60)) (-3228 (($ $ |#3|) 28)) (-3429 (($ $ |#3|) 30)) (-2817 (($ $) 88)) (-3324 (($ $ |#3|) 29)) (-3834 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3423 (((-745) $) 76 (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-4155 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2583 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) 81)) (-3956 (((-112) |#4| $) 135)) (-3084 (((-112) |#3| $) 80)) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 46 (|has| $ (-6 -4328))))) +(((-1072 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1072)) NIL (-13 (-1036 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) -((-1943 (((-619 (-548)) (-548) (-548) (-548)) 22)) (-1932 (((-619 (-548)) (-548) (-548) (-548)) 12)) (-1921 (((-619 (-548)) (-548) (-548) (-548)) 18)) (-1910 (((-548) (-548) (-548)) 9)) (-1898 (((-1218 (-548)) (-619 (-548)) (-1218 (-548)) (-548)) 46) (((-1218 (-548)) (-1218 (-548)) (-1218 (-548)) (-548)) 41)) (-1890 (((-619 (-548)) (-619 (-548)) (-619 (-548)) (-112)) 28)) (-1880 (((-663 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548))) 45)) (-1869 (((-663 (-548)) (-619 (-548)) (-619 (-548))) 33)) (-1860 (((-619 (-663 (-548))) (-619 (-548))) 35)) (-1851 (((-619 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548))) 49)) (-1843 (((-663 (-548)) (-619 (-548)) (-619 (-548)) (-619 (-548))) 57))) -(((-1073) (-10 -7 (-15 -1843 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1851 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1860 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1869 ((-663 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1880 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1890 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-112))) (-15 -1898 ((-1218 (-548)) (-1218 (-548)) (-1218 (-548)) (-548))) (-15 -1898 ((-1218 (-548)) (-619 (-548)) (-1218 (-548)) (-548))) (-15 -1910 ((-548) (-548) (-548))) (-15 -1921 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1932 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1943 ((-619 (-548)) (-548) (-548) (-548))))) (T -1073)) -((-1943 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548)))) (-1932 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548)))) (-1921 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548)))) (-1910 (*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1073)))) (-1898 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-619 (-548))) (-5 *4 (-548)) (-5 *1 (-1073)))) (-1898 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-548)) (-5 *1 (-1073)))) (-1890 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *3 (-112)) (-5 *1 (-1073)))) (-1880 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-663 (-548))) (-5 *3 (-619 (-548))) (-5 *1 (-1073)))) (-1869 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-1073)))) (-1851 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *3 (-663 (-548))) (-5 *1 (-1073)))) (-1843 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073))))) -(-10 -7 (-15 -1843 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1851 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1860 ((-619 (-663 (-548))) (-619 (-548)))) (-15 -1869 ((-663 (-548)) (-619 (-548)) (-619 (-548)))) (-15 -1880 ((-663 (-548)) (-619 (-548)) (-619 (-548)) (-663 (-548)))) (-15 -1890 ((-619 (-548)) (-619 (-548)) (-619 (-548)) (-112))) (-15 -1898 ((-1218 (-548)) (-1218 (-548)) (-1218 (-548)) (-548))) (-15 -1898 ((-1218 (-548)) (-619 (-548)) (-1218 (-548)) (-548))) (-15 -1910 ((-548) (-548) (-548))) (-15 -1921 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1932 ((-619 (-548)) (-548) (-548) (-548))) (-15 -1943 ((-619 (-548)) (-548) (-548) (-548)))) +(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-3285 (((-619 (-547)) (-547) (-547) (-547)) 22)) (-3202 (((-619 (-547)) (-547) (-547) (-547)) 12)) (-4262 (((-619 (-547)) (-547) (-547) (-547)) 18)) (-4185 (((-547) (-547) (-547)) 9)) (-4108 (((-1218 (-547)) (-619 (-547)) (-1218 (-547)) (-547)) 46) (((-1218 (-547)) (-1218 (-547)) (-1218 (-547)) (-547)) 41)) (-4028 (((-619 (-547)) (-619 (-547)) (-619 (-547)) (-112)) 28)) (-3941 (((-663 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547))) 45)) (-3866 (((-663 (-547)) (-619 (-547)) (-619 (-547))) 33)) (-3798 (((-619 (-663 (-547))) (-619 (-547))) 35)) (-1851 (((-619 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547))) 49)) (-1755 (((-663 (-547)) (-619 (-547)) (-619 (-547)) (-619 (-547))) 57))) +(((-1073) (-10 -7 (-15 -1755 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -1851 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -3798 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -3866 ((-663 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -3941 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -4028 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-112))) (-15 -4108 ((-1218 (-547)) (-1218 (-547)) (-1218 (-547)) (-547))) (-15 -4108 ((-1218 (-547)) (-619 (-547)) (-1218 (-547)) (-547))) (-15 -4185 ((-547) (-547) (-547))) (-15 -4262 ((-619 (-547)) (-547) (-547) (-547))) (-15 -3202 ((-619 (-547)) (-547) (-547) (-547))) (-15 -3285 ((-619 (-547)) (-547) (-547) (-547))))) (T -1073)) +((-3285 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))) (-3202 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))) (-4262 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547)))) (-4185 (*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1073)))) (-4108 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1218 (-547))) (-5 *3 (-619 (-547))) (-5 *4 (-547)) (-5 *1 (-1073)))) (-4108 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1218 (-547))) (-5 *3 (-547)) (-5 *1 (-1073)))) (-4028 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *3 (-112)) (-5 *1 (-1073)))) (-3941 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-663 (-547))) (-5 *3 (-619 (-547))) (-5 *1 (-1073)))) (-3866 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-1073)))) (-1851 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *3 (-663 (-547))) (-5 *1 (-1073)))) (-1755 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073))))) +(-10 -7 (-15 -1755 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -1851 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -3798 ((-619 (-663 (-547))) (-619 (-547)))) (-15 -3866 ((-663 (-547)) (-619 (-547)) (-619 (-547)))) (-15 -3941 ((-663 (-547)) (-619 (-547)) (-619 (-547)) (-663 (-547)))) (-15 -4028 ((-619 (-547)) (-619 (-547)) (-619 (-547)) (-112))) (-15 -4108 ((-1218 (-547)) (-1218 (-547)) (-1218 (-547)) (-547))) (-15 -4108 ((-1218 (-547)) (-619 (-547)) (-1218 (-547)) (-547))) (-15 -4185 ((-547) (-547) (-547))) (-15 -4262 ((-619 (-547)) (-547) (-547) (-547))) (-15 -3202 ((-619 (-547)) (-547) (-547) (-547))) (-15 -3285 ((-619 (-547)) (-547) (-547) (-547)))) ((** (($ $ (-890)) 10))) (((-1074 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-890)))) (-1075)) (T -1074)) NIL (-10 -8 (-15 ** (|#1| |#1| (-890)))) -((-3730 (((-112) $ $) 7)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 14))) +((-3821 (((-112) $ $) 7)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6)) (** (($ $ (-890)) 13)) (* (($ $ $) 14))) (((-1075) (-138)) (T -1075)) ((* (*1 *1 *1 *1) (-4 *1 (-1075))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1075)) (-5 *2 (-890))))) (-13 (-1063) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-890))))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3730 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-3324 (((-112) $) NIL (|has| |#3| (-130)))) (-2264 (($ (-890)) NIL (|has| |#3| (-1016)))) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2857 (($ $ $) NIL (|has| |#3| (-767)))) (-4104 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-2028 (((-112) $ (-745)) NIL)) (-3423 (((-745)) NIL (|has| |#3| (-360)))) (-2672 (((-548) $) NIL (|has| |#3| (-819)))) (-2089 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063)))) (-2375 (((-548) $) NIL (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063)))) (((-399 (-548)) $) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) ((|#3| $) NIL (|has| |#3| (-1063)))) (-1608 (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#3| (-615 (-548))) (|has| |#3| (-1016)))) (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016)))) (-3859 (((-3 $ "failed") $) NIL (|has| |#3| (-701)))) (-2545 (($) NIL (|has| |#3| (-360)))) (-3971 ((|#3| $ (-548) |#3|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#3| $ (-548)) 12)) (-3298 (((-112) $) NIL (|has| |#3| (-819)))) (-1934 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL (|has| |#3| (-701)))) (-3312 (((-112) $) NIL (|has| |#3| (-819)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2342 (((-619 |#3|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-3960 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#3| |#3|) $) NIL)) (-2855 (((-890) $) NIL (|has| |#3| (-360)))) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#3| (-1063)))) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3337 (($ (-890)) NIL (|has| |#3| (-360)))) (-3932 (((-1082) $) NIL (|has| |#3| (-1063)))) (-3453 ((|#3| $) NIL (|has| (-548) (-821)))) (-4159 (($ $ |#3|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#3|))) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-301 |#3|)) (|has| |#3| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-4223 (((-619 |#3|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#3| $ (-548) |#3|) NIL) ((|#3| $ (-548)) NIL)) (-4029 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-1957 (($ (-1218 |#3|)) NIL)) (-3402 (((-133)) NIL (|has| |#3| (-355)))) (-4050 (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-3945 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#3| (-1063))))) (-2113 (($ $) NIL)) (-3743 (((-1218 |#3|) $) NIL) (($ (-548)) NIL (-1524 (-12 (|has| |#3| (-1007 (-548))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-399 (-548))) NIL (-12 (|has| |#3| (-1007 (-399 (-548)))) (|has| |#3| (-1063)))) (($ |#3|) NIL (|has| |#3| (-1063))) (((-832) $) NIL (|has| |#3| (-592 (-832))))) (-3835 (((-745)) NIL (|has| |#3| (-1016)))) (-3548 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4327)))) (-1446 (($ $) NIL (|has| |#3| (-819)))) (-3107 (($) NIL (|has| |#3| (-130)) CONST)) (-3118 (($) NIL (|has| |#3| (-701)) CONST)) (-3296 (($ $) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-226)) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-2262 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2241 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2214 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-2252 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2234 (((-112) $ $) 17 (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2309 (($ $ |#3|) NIL (|has| |#3| (-355)))) (-2299 (($ $ $) NIL (|has| |#3| (-1016))) (($ $) NIL (|has| |#3| (-1016)))) (-2290 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-745)) NIL (|has| |#3| (-701))) (($ $ (-890)) NIL (|has| |#3| (-701)))) (* (($ (-548) $) NIL (|has| |#3| (-1016))) (($ $ $) NIL (|has| |#3| (-701))) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ (-745) $) NIL (|has| |#3| (-130))) (($ (-890) $) NIL (|has| |#3| (-25)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1076 |#1| |#2| |#3|) (-231 |#1| |#3|) (-745) (-745) (-767)) (T -1076)) -NIL -(-231 |#1| |#3|) -((-1955 (((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 37)) (-2020 (((-548) (-1191 |#2| |#1|)) 69 (|has| |#1| (-443)))) (-1999 (((-548) (-1191 |#2| |#1|)) 54)) (-1966 (((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 45)) (-2010 (((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 68 (|has| |#1| (-443)))) (-1977 (((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 48)) (-1990 (((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 53))) -(((-1077 |#1| |#2|) (-10 -7 (-15 -1955 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1966 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1977 ((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1990 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1999 ((-548) (-1191 |#2| |#1|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2010 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -2020 ((-548) (-1191 |#2| |#1|)))) |%noBranch|)) (-794) (-1135)) (T -1077)) -((-2020 (*1 *2 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-1990 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5)))) (-1977 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5)))) (-1966 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4)))) (-1955 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) -(-10 -7 (-15 -1955 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1966 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1977 ((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1990 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -1999 ((-548) (-1191 |#2| |#1|))) (IF (|has| |#1| (-443)) (PROGN (-15 -2010 ((-548) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -2020 ((-548) (-1191 |#2| |#1|)))) |%noBranch|)) -((-2672 (((-3 (-548) "failed") |#2| (-1135) |#2| (-1118)) 17) (((-3 (-548) "failed") |#2| (-1135) (-814 |#2|)) 15) (((-3 (-548) "failed") |#2|) 54))) -(((-1078 |#1| |#2|) (-10 -7 (-15 -2672 ((-3 (-548) "failed") |#2|)) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) (-814 |#2|))) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) |#2| (-1118)))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)) (-443)) (-13 (-27) (-1157) (-422 |#1|))) (T -1078)) -((-2672 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-1118)) (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))))) (-2672 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)))) (-2672 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) (-5 *2 (-548)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4)))))) -(-10 -7 (-15 -2672 ((-3 (-548) "failed") |#2|)) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) (-814 |#2|))) (-15 -2672 ((-3 (-548) "failed") |#2| (-1135) |#2| (-1118)))) -((-2672 (((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)) (-1118)) 35) (((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-814 (-399 (-921 |#1|)))) 30) (((-3 (-548) "failed") (-399 (-921 |#1|))) 13))) -(((-1079 |#1|) (-10 -7 (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-814 (-399 (-921 |#1|))))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)) (-1118)))) (-443)) (T -1079)) -((-2672 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1135)) (-5 *5 (-1118)) (-4 *6 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *6)))) (-2672 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 (-399 (-921 *6)))) (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *6)))) (-2672 (*1 *2 *3) (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *4))))) -(-10 -7 (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-814 (-399 (-921 |#1|))))) (-15 -2672 ((-3 (-548) "failed") (-399 (-921 |#1|)) (-1135) (-399 (-921 |#1|)) (-1118)))) -((-3730 (((-112) $ $) NIL)) (-1949 (((-1140) $) 10)) (-3041 (((-619 (-1140)) $) 11)) (-3858 (($ (-619 (-1140)) (-1140)) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 20)) (-2214 (((-112) $ $) 14))) -(((-1080) (-13 (-1063) (-10 -8 (-15 -3858 ($ (-619 (-1140)) (-1140))) (-15 -1949 ((-1140) $)) (-15 -3041 ((-619 (-1140)) $))))) (T -1080)) -((-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1140))) (-5 *3 (-1140)) (-5 *1 (-1080)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1080)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1080))))) -(-13 (-1063) (-10 -8 (-15 -3858 ($ (-619 (-1140)) (-1140))) (-15 -1949 ((-1140) $)) (-15 -3041 ((-619 (-1140)) $)))) -((-2805 (((-308 (-548)) (-48)) 12))) -(((-1081) (-10 -7 (-15 -2805 ((-308 (-548)) (-48))))) (T -1081)) -((-2805 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-308 (-548))) (-5 *1 (-1081))))) -(-10 -7 (-15 -2805 ((-308 (-548)) (-48)))) -((-3730 (((-112) $ $) NIL)) (-1258 (($ $) 41)) (-3324 (((-112) $) 65)) (-2218 (($ $ $) 48)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 86)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-3119 (($ $ $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3096 (($ $ $ $) 75)) (-1688 (($ $) NIL)) (-2634 (((-410 $) $) NIL)) (-4087 (((-112) $ $) NIL)) (-2672 (((-548) $) NIL)) (-2970 (($ $ $) 72)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL)) (-2375 (((-548) $) NIL)) (-1945 (($ $ $) 59)) (-1608 (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 80) (((-663 (-548)) (-663 $)) 28)) (-3859 (((-3 $ "failed") $) NIL)) (-4182 (((-3 (-399 (-548)) "failed") $) NIL)) (-4172 (((-112) $) NIL)) (-4161 (((-399 (-548)) $) NIL)) (-2545 (($) 83) (($ $) 84)) (-1922 (($ $ $) 58)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL)) (-1271 (((-112) $) NIL)) (-3071 (($ $ $ $) NIL)) (-3129 (($ $ $) 81)) (-3298 (((-112) $) NIL)) (-4206 (($ $ $) NIL)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL)) (-2266 (((-112) $) 66)) (-3705 (((-112) $) 64)) (-3958 (($ $) 42)) (-3725 (((-3 $ "failed") $) NIL)) (-3312 (((-112) $) 76)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3082 (($ $ $ $) 73)) (-1795 (($ $ $) 68) (($) 39)) (-3091 (($ $ $) 67) (($) 38)) (-2742 (($ $) NIL)) (-3198 (($ $) 71)) (-3553 (($ $ $) NIL) (($ (-619 $)) NIL)) (-2546 (((-1118) $) NIL)) (-3060 (($ $ $) NIL)) (-3410 (($) NIL T CONST)) (-3595 (($ $) 50)) (-3932 (((-1082) $) 70)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3587 (($ $ $) 62) (($ (-619 $)) NIL)) (-4185 (($ $) NIL)) (-1915 (((-410 $) $) NIL)) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL)) (-1900 (((-3 $ "failed") $ $) NIL)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3718 (((-112) $) NIL)) (-4077 (((-745) $) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 61)) (-4050 (($ $ (-745)) NIL) (($ $) NIL)) (-2445 (($ $) 51)) (-2113 (($ $) NIL)) (-2591 (((-548) $) 32) (((-524) $) NIL) (((-861 (-548)) $) NIL) (((-371) $) NIL) (((-218) $) NIL)) (-3743 (((-832) $) 31) (($ (-548)) 82) (($ $) NIL) (($ (-548)) 82)) (-3835 (((-745)) NIL)) (-3139 (((-112) $ $) NIL)) (-3612 (($ $ $) NIL)) (-3957 (($) 37)) (-3290 (((-112) $ $) NIL)) (-3106 (($ $ $ $) 74)) (-1446 (($ $) 63)) (-2818 (($ $ $) 44)) (-3107 (($) 35 T CONST)) (-3363 (($ $ $) 47)) (-3118 (($) 36 T CONST)) (-2739 (((-1118) $) 21) (((-1118) $ (-112)) 23) (((-1223) (-796) $) 24) (((-1223) (-796) $ (-112)) 25)) (-3381 (($ $) 45)) (-3296 (($ $ (-745)) NIL) (($ $) NIL)) (-3348 (($ $ $) 46)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 40)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 49)) (-2809 (($ $ $) 43)) (-2299 (($ $) 52) (($ $ $) 54)) (-2290 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 34) (($ $ $) 55))) -(((-1082) (-13 (-533) (-635) (-802) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -3091 ($)) (-15 -1795 ($)) (-15 -3958 ($ $)) (-15 -1258 ($ $)) (-15 -2809 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2218 ($ $ $)) (-15 -3381 ($ $)) (-15 -3348 ($ $ $)) (-15 -3363 ($ $ $))))) (T -1082)) -((-2818 (*1 *1 *1 *1) (-5 *1 (-1082))) (-2809 (*1 *1 *1 *1) (-5 *1 (-1082))) (-1258 (*1 *1 *1) (-5 *1 (-1082))) (-3091 (*1 *1) (-5 *1 (-1082))) (-1795 (*1 *1) (-5 *1 (-1082))) (-3958 (*1 *1 *1) (-5 *1 (-1082))) (-2218 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3381 (*1 *1 *1) (-5 *1 (-1082))) (-3348 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3363 (*1 *1 *1 *1) (-5 *1 (-1082)))) -(-13 (-533) (-635) (-802) (-10 -8 (-6 -4314) (-6 -4319) (-6 -4315) (-15 -3091 ($)) (-15 -1795 ($)) (-15 -3958 ($ $)) (-15 -1258 ($ $)) (-15 -2809 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2218 ($ $ $)) (-15 -3381 ($ $)) (-15 -3348 ($ $ $)) (-15 -3363 ($ $ $)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2088 ((|#1| $) 44)) (-2028 (((-112) $ (-745)) 8)) (-3030 (($) 7 T CONST)) (-2043 ((|#1| |#1| $) 46)) (-2032 ((|#1| $) 45)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1346 ((|#1| $) 39)) (-2539 (($ |#1| $) 40)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1357 ((|#1| $) 41)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3045 (((-745) $) 43)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) 42)) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3821 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-4046 (((-112) $) NIL (|has| |#3| (-130)))) (-4095 (($ (-890)) NIL (|has| |#3| (-1016)))) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-1991 (($ $ $) NIL (|has| |#3| (-767)))) (-3013 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-2826 (((-112) $ (-745)) NIL)) (-3603 (((-745)) NIL (|has| |#3| (-359)))) (-3807 (((-547) $) NIL (|has| |#3| (-819)))) (-2238 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1063)))) (-2643 (((-547) $) NIL (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063)))) (((-398 (-547)) $) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) ((|#3| $) NIL (|has| |#3| (-1063)))) (-4238 (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#3| (-615 (-547))) (|has| |#3| (-1016)))) (((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) NIL (|has| |#3| (-1016))) (((-663 |#3|) (-663 $)) NIL (|has| |#3| (-1016)))) (-2537 (((-3 $ "failed") $) NIL (|has| |#3| (-701)))) (-3229 (($) NIL (|has| |#3| (-359)))) (-1861 ((|#3| $ (-547) |#3|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#3| $ (-547)) 12)) (-3848 (((-112) $) NIL (|has| |#3| (-819)))) (-2973 (((-619 |#3|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL (|has| |#3| (-701)))) (-3937 (((-112) $) NIL (|has| |#3| (-819)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-3666 (((-619 |#3|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-1850 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#3| |#3|) $) NIL)) (-1966 (((-890) $) NIL (|has| |#3| (-359)))) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#3| (-1063)))) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3479 (($ (-890)) NIL (|has| |#3| (-359)))) (-3979 (((-1082) $) NIL (|has| |#3| (-1063)))) (-3634 ((|#3| $) NIL (|has| (-547) (-821)))) (-2418 (($ $ |#3|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#3|))) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-285 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063)))) (($ $ (-619 |#3|) (-619 |#3|)) NIL (-12 (|has| |#3| (-300 |#3|)) (|has| |#3| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-1758 (((-619 |#3|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#3| $ (-547) |#3|) NIL) ((|#3| $ (-547)) NIL)) (-3453 ((|#3| $ $) NIL (|has| |#3| (-1016)))) (-2155 (($ (-1218 |#3|)) NIL)) (-3512 (((-133)) NIL (|has| |#3| (-354)))) (-3443 (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-3987 (((-745) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328))) (((-745) |#3| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#3| (-1063))))) (-2265 (($ $) NIL)) (-3834 (((-1218 |#3|) $) NIL) (($ (-547)) NIL (-1524 (-12 (|has| |#3| (-1007 (-547))) (|has| |#3| (-1063))) (|has| |#3| (-1016)))) (($ (-398 (-547))) NIL (-12 (|has| |#3| (-1007 (-398 (-547)))) (|has| |#3| (-1063)))) (($ |#3|) NIL (|has| |#3| (-1063))) (((-832) $) NIL (|has| |#3| (-591 (-832))))) (-2311 (((-745)) NIL (|has| |#3| (-1016)))) (-2583 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4328)))) (-2040 (($ $) NIL (|has| |#3| (-819)))) (-3267 (($) NIL (|has| |#3| (-130)) CONST)) (-3277 (($) NIL (|has| |#3| (-701)) CONST)) (-1686 (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-745)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1016)))) (($ $ (-1135)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#3| (-869 (-1135))) (|has| |#3| (-1016)))) (($ $ (-1 |#3| |#3|) (-745)) NIL (|has| |#3| (-1016))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1016)))) (-2433 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2408 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2371 (((-112) $ $) NIL (|has| |#3| (-1063)))) (-2421 (((-112) $ $) NIL (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2396 (((-112) $ $) 17 (-1524 (|has| |#3| (-767)) (|has| |#3| (-819))))) (-2497 (($ $ |#3|) NIL (|has| |#3| (-354)))) (-2484 (($ $ $) NIL (|has| |#3| (-1016))) (($ $) NIL (|has| |#3| (-1016)))) (-2470 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-745)) NIL (|has| |#3| (-701))) (($ $ (-890)) NIL (|has| |#3| (-701)))) (* (($ (-547) $) NIL (|has| |#3| (-1016))) (($ $ $) NIL (|has| |#3| (-701))) (($ $ |#3|) NIL (|has| |#3| (-701))) (($ |#3| $) NIL (|has| |#3| (-701))) (($ (-745) $) NIL (|has| |#3| (-130))) (($ (-890) $) NIL (|has| |#3| (-25)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1076 |#1| |#2| |#3|) (-230 |#1| |#3|) (-745) (-745) (-767)) (T -1076)) +NIL +(-230 |#1| |#3|) +((-3372 (((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 37)) (-2768 (((-547) (-1191 |#2| |#1|)) 69 (|has| |#1| (-442)))) (-3712 (((-547) (-1191 |#2| |#1|)) 54)) (-3455 (((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 45)) (-2686 (((-547) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 68 (|has| |#1| (-442)))) (-3539 (((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 48)) (-3628 (((-547) (-1191 |#2| |#1|) (-1191 |#2| |#1|)) 53))) +(((-1077 |#1| |#2|) (-10 -7 (-15 -3372 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3455 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3539 ((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3628 ((-547) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3712 ((-547) (-1191 |#2| |#1|))) (IF (|has| |#1| (-442)) (PROGN (-15 -2686 ((-547) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -2768 ((-547) (-1191 |#2| |#1|)))) |%noBranch|)) (-794) (-1135)) (T -1077)) +((-2768 (*1 *2 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-2686 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-3628 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5)))) (-3539 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5)))) (-3455 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) +(-10 -7 (-15 -3372 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3455 ((-619 (-1191 |#2| |#1|)) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3539 ((-619 |#1|) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3628 ((-547) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -3712 ((-547) (-1191 |#2| |#1|))) (IF (|has| |#1| (-442)) (PROGN (-15 -2686 ((-547) (-1191 |#2| |#1|) (-1191 |#2| |#1|))) (-15 -2768 ((-547) (-1191 |#2| |#1|)))) |%noBranch|)) +((-3807 (((-3 (-547) "failed") |#2| (-1135) |#2| (-1118)) 17) (((-3 (-547) "failed") |#2| (-1135) (-814 |#2|)) 15) (((-3 (-547) "failed") |#2|) 54))) +(((-1078 |#1| |#2|) (-10 -7 (-15 -3807 ((-3 (-547) "failed") |#2|)) (-15 -3807 ((-3 (-547) "failed") |#2| (-1135) (-814 |#2|))) (-15 -3807 ((-3 (-547) "failed") |#2| (-1135) |#2| (-1118)))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)) (-442)) (-13 (-27) (-1157) (-421 |#1|))) (T -1078)) +((-3807 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-1118)) (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) (-5 *2 (-547)) (-5 *1 (-1078 *6 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))))) (-3807 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) (-5 *2 (-547)) (-5 *1 (-1078 *6 *3)))) (-3807 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) (-5 *2 (-547)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4)))))) +(-10 -7 (-15 -3807 ((-3 (-547) "failed") |#2|)) (-15 -3807 ((-3 (-547) "failed") |#2| (-1135) (-814 |#2|))) (-15 -3807 ((-3 (-547) "failed") |#2| (-1135) |#2| (-1118)))) +((-3807 (((-3 (-547) "failed") (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|)) (-1118)) 35) (((-3 (-547) "failed") (-398 (-921 |#1|)) (-1135) (-814 (-398 (-921 |#1|)))) 30) (((-3 (-547) "failed") (-398 (-921 |#1|))) 13))) +(((-1079 |#1|) (-10 -7 (-15 -3807 ((-3 (-547) "failed") (-398 (-921 |#1|)))) (-15 -3807 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1135) (-814 (-398 (-921 |#1|))))) (-15 -3807 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|)) (-1118)))) (-442)) (T -1079)) +((-3807 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1135)) (-5 *5 (-1118)) (-4 *6 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *6)))) (-3807 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 (-398 (-921 *6)))) (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *6)))) (-3807 (*1 *2 *3) (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *4))))) +(-10 -7 (-15 -3807 ((-3 (-547) "failed") (-398 (-921 |#1|)))) (-15 -3807 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1135) (-814 (-398 (-921 |#1|))))) (-15 -3807 ((-3 (-547) "failed") (-398 (-921 |#1|)) (-1135) (-398 (-921 |#1|)) (-1118)))) +((-3821 (((-112) $ $) NIL)) (-2084 (((-1140) $) 10)) (-3214 (((-619 (-1140)) $) 11)) (-3975 (($ (-619 (-1140)) (-1140)) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 20)) (-2371 (((-112) $ $) 14))) +(((-1080) (-13 (-1063) (-10 -8 (-15 -3975 ($ (-619 (-1140)) (-1140))) (-15 -2084 ((-1140) $)) (-15 -3214 ((-619 (-1140)) $))))) (T -1080)) +((-3975 (*1 *1 *2 *3) (-12 (-5 *2 (-619 (-1140))) (-5 *3 (-1140)) (-5 *1 (-1080)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1080)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1080))))) +(-13 (-1063) (-10 -8 (-15 -3975 ($ (-619 (-1140)) (-1140))) (-15 -2084 ((-1140) $)) (-15 -3214 ((-619 (-1140)) $)))) +((-1458 (((-307 (-547)) (-48)) 12))) +(((-1081) (-10 -7 (-15 -1458 ((-307 (-547)) (-48))))) (T -1081)) +((-1458 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-547))) (-5 *1 (-1081))))) +(-10 -7 (-15 -1458 ((-307 (-547)) (-48)))) +((-3821 (((-112) $ $) NIL)) (-1332 (($ $) 41)) (-4046 (((-112) $) 65)) (-2447 (($ $ $) 48)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 86)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1605 (($ $ $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2702 (($ $ $ $) 75)) (-2745 (($ $) NIL)) (-3457 (((-409 $) $) NIL)) (-2873 (((-112) $ $) NIL)) (-3807 (((-547) $) NIL)) (-1302 (($ $ $) 72)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL)) (-2643 (((-547) $) NIL)) (-2079 (($ $ $) 59)) (-4238 (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 80) (((-663 (-547)) (-663 $)) 28)) (-2537 (((-3 $ "failed") $) NIL)) (-2653 (((-3 (-398 (-547)) "failed") $) NIL)) (-2543 (((-112) $) NIL)) (-2430 (((-398 (-547)) $) NIL)) (-3229 (($) 83) (($ $) 84)) (-2052 (($ $ $) 58)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL)) (-3674 (((-112) $) NIL)) (-2490 (($ $ $ $) NIL)) (-1723 (($ $ $) 81)) (-3848 (((-112) $) NIL)) (-1569 (($ $ $) NIL)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL)) (-4114 (((-112) $) 66)) (-3466 (((-112) $) 64)) (-3998 (($ $) 42)) (-3652 (((-3 $ "failed") $) NIL)) (-3937 (((-112) $) 76)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-2605 (($ $ $ $) 73)) (-2847 (($ $ $) 68) (($) 39)) (-3563 (($ $ $) 67) (($) 38)) (-2417 (($ $) NIL)) (-4202 (($ $) 71)) (-3685 (($ $ $) NIL) (($ (-619 $)) NIL)) (-1917 (((-1118) $) NIL)) (-2368 (($ $ $) NIL)) (-3045 (($) NIL T CONST)) (-3771 (($ $) 50)) (-3979 (((-1082) $) 70)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL)) (-3715 (($ $ $) 62) (($ (-619 $)) NIL)) (-2677 (($ $) NIL)) (-2106 (((-409 $) $) NIL)) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL)) (-2025 (((-3 $ "failed") $ $) NIL)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL)) (-3590 (((-112) $) NIL)) (-2776 (((-745) $) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 61)) (-3443 (($ $ (-745)) NIL) (($ $) NIL)) (-1882 (($ $) 51)) (-2265 (($ $) NIL)) (-2829 (((-547) $) 32) (((-523) $) NIL) (((-861 (-547)) $) NIL) (((-370) $) NIL) (((-217) $) NIL)) (-3834 (((-832) $) 31) (($ (-547)) 82) (($ $) NIL) (($ (-547)) 82)) (-2311 (((-745)) NIL)) (-1837 (((-112) $ $) NIL)) (-1884 (($ $ $) NIL)) (-1849 (($) 37)) (-1932 (((-112) $ $) NIL)) (-1482 (($ $ $ $) 74)) (-2040 (($ $) 63)) (-3696 (($ $ $) 44)) (-3267 (($) 35 T CONST)) (-3787 (($ $ $) 47)) (-3277 (($) 36 T CONST)) (-2083 (((-1118) $) 21) (((-1118) $ (-112)) 23) (((-1223) (-796) $) 24) (((-1223) (-796) $ (-112)) 25)) (-3797 (($ $) 45)) (-1686 (($ $ (-745)) NIL) (($ $) NIL)) (-3777 (($ $ $) 46)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 40)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 49)) (-3683 (($ $ $) 43)) (-2484 (($ $) 52) (($ $ $) 54)) (-2470 (($ $ $) 53)) (** (($ $ (-890)) NIL) (($ $ (-745)) 57)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 34) (($ $ $) 55))) +(((-1082) (-13 (-532) (-635) (-802) (-10 -8 (-6 -4315) (-6 -4320) (-6 -4316) (-15 -3563 ($)) (-15 -2847 ($)) (-15 -3998 ($ $)) (-15 -1332 ($ $)) (-15 -3683 ($ $ $)) (-15 -3696 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3797 ($ $)) (-15 -3777 ($ $ $)) (-15 -3787 ($ $ $))))) (T -1082)) +((-3696 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3683 (*1 *1 *1 *1) (-5 *1 (-1082))) (-1332 (*1 *1 *1) (-5 *1 (-1082))) (-3563 (*1 *1) (-5 *1 (-1082))) (-2847 (*1 *1) (-5 *1 (-1082))) (-3998 (*1 *1 *1) (-5 *1 (-1082))) (-2447 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3797 (*1 *1 *1) (-5 *1 (-1082))) (-3777 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3787 (*1 *1 *1 *1) (-5 *1 (-1082)))) +(-13 (-532) (-635) (-802) (-10 -8 (-6 -4315) (-6 -4320) (-6 -4316) (-15 -3563 ($)) (-15 -2847 ($)) (-15 -3998 ($ $)) (-15 -1332 ($ $)) (-15 -3683 ($ $ $)) (-15 -3696 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3797 ($ $)) (-15 -3777 ($ $ $)) (-15 -3787 ($ $ $)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-2303 ((|#1| $) 44)) (-2826 (((-112) $ (-745)) 8)) (-3219 (($) 7 T CONST)) (-2936 ((|#1| |#1| $) 46)) (-2853 ((|#1| $) 45)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-1959 ((|#1| $) 39)) (-1885 (($ |#1| $) 40)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-1373 ((|#1| $) 41)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-1313 (((-745) $) 43)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) 42)) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1083 |#1|) (-138) (-1172)) (T -1083)) -((-2043 (*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4327) (-15 -2043 (|t#1| |t#1| $)) (-15 -2032 (|t#1| $)) (-15 -2088 (|t#1| $)) (-15 -3045 ((-745) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-2707 ((|#3| $) 76)) (-2441 (((-3 (-548) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2375 (((-548) $) NIL) (((-399 (-548)) $) NIL) ((|#3| $) 37)) (-1608 (((-663 (-548)) (-663 $)) NIL) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) 73) (((-663 |#3|) (-663 $)) 65)) (-4050 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-2077 ((|#3| $) 78)) (-2090 ((|#4| $) 32)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ |#3|) 16)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15) (($ $ (-548)) 82))) -(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 -2077 (|#3| |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -2090 (|#4| |#1|)) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3743 ((-832) |#1|))) (-1085 |#2| |#3| |#4| |#5|) (-745) (-1016) (-231 |#2| |#3|) (-231 |#2| |#3|)) (T -1084)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-548))) (-15 -2077 (|#3| |#1|)) (-15 -2707 (|#3| |#1|)) (-15 -2090 (|#4| |#1|)) (-15 -1608 ((-663 |#3|) (-663 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 |#1|) (-1218 |#1|))) (-15 -1608 ((-663 (-548)) (-663 |#1|))) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3743 (|#1| |#3|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-548) |#1|)) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -4050 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2707 ((|#2| $) 70)) (-3785 (((-112) $) 110)) (-4104 (((-3 $ "failed") $ $) 19)) (-3808 (((-112) $) 108)) (-2028 (((-112) $ (-745)) 100)) (-2114 (($ |#2|) 73)) (-3030 (($) 17 T CONST)) (-3691 (($ $) 127 (|has| |#2| (-299)))) (-3717 ((|#3| $ (-548)) 122)) (-2441 (((-3 (-548) "failed") $) 84 (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) 82 (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) 79)) (-2375 (((-548) $) 85 (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) 83 (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) 78)) (-1608 (((-663 (-548)) (-663 $)) 77 (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 76 (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 75) (((-663 |#2|) (-663 $)) 74)) (-3859 (((-3 $ "failed") $) 32)) (-2103 (((-745) $) 128 (|has| |#2| (-540)))) (-3899 ((|#2| $ (-548) (-548)) 120)) (-1934 (((-619 |#2|) $) 93 (|has| $ (-6 -4327)))) (-2266 (((-112) $) 30)) (-3681 (((-745) $) 129 (|has| |#2| (-540)))) (-3669 (((-619 |#4|) $) 130 (|has| |#2| (-540)))) (-4205 (((-745) $) 116)) (-4216 (((-745) $) 117)) (-4282 (((-112) $ (-745)) 101)) (-2057 ((|#2| $) 65 (|has| |#2| (-6 (-4329 "*"))))) (-3764 (((-548) $) 112)) (-3742 (((-548) $) 114)) (-2342 (((-619 |#2|) $) 92 (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-3753 (((-548) $) 113)) (-3729 (((-548) $) 115)) (-3817 (($ (-619 (-619 |#2|))) 107)) (-3960 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-2401 (((-619 (-619 |#2|)) $) 118)) (-4248 (((-112) $ (-745)) 102)) (-2546 (((-1118) $) 9)) (-2369 (((-3 $ "failed") $) 64 (|has| |#2| (-355)))) (-3932 (((-1082) $) 10)) (-1900 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-540)))) (-3537 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) 89 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 88 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 106)) (-1616 (((-112) $) 103)) (-3319 (($) 104)) (-3171 ((|#2| $ (-548) (-548) |#2|) 121) ((|#2| $ (-548) (-548)) 119)) (-4050 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-745)) 49) (($ $ (-619 (-1135)) (-619 (-745))) 42 (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) 41 (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) 40 (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) 39 (|has| |#2| (-869 (-1135)))) (($ $ (-745)) 37 (|has| |#2| (-226))) (($ $) 35 (|has| |#2| (-226)))) (-2077 ((|#2| $) 69)) (-2102 (($ (-619 |#2|)) 72)) (-3797 (((-112) $) 109)) (-2090 ((|#3| $) 71)) (-2068 ((|#2| $) 66 (|has| |#2| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4327))) (((-745) |#2| $) 91 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 105)) (-3704 ((|#4| $ (-548)) 123)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 81 (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) 80)) (-3835 (((-745)) 28)) (-3548 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4327)))) (-3774 (((-112) $) 111)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-745)) 47) (($ $ (-619 (-1135)) (-619 (-745))) 46 (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) 45 (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) 44 (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) 43 (|has| |#2| (-869 (-1135)))) (($ $ (-745)) 38 (|has| |#2| (-226))) (($ $) 36 (|has| |#2| (-226)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#2|) 126 (|has| |#2| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 63 (|has| |#2| (-355)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3643 (((-745) $) 99 (|has| $ (-6 -4327))))) -(((-1085 |#1| |#2| |#3| |#4|) (-138) (-745) (-1016) (-231 |t#1| |t#2|) (-231 |t#1| |t#2|)) (T -1085)) -((-2114 (*1 *1 *2) (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4)))) (-2090 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *2 (-231 *3 *4)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (-4 *2 (-1016)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (-4 *2 (-1016)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *2 (-231 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-231 *3 *4)) (-4 *5 (-231 *3 *4)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) (-2369 (*1 *1 *1) (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-231 *2 *3)) (-4 *5 (-231 *2 *3)) (-4 *3 (-355)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4)) (-4 *4 (-355))))) -(-13 (-224 |t#2|) (-111 |t#2| |t#2|) (-1019 |t#1| |t#1| |t#2| |t#3| |t#4|) (-403 |t#2|) (-369 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-692 |t#2|)) |%noBranch|) (-15 -2114 ($ |t#2|)) (-15 -2102 ($ (-619 |t#2|))) (-15 -2090 (|t#3| $)) (-15 -2707 (|t#2| $)) (-15 -2077 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4329 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2068 (|t#2| $)) (-15 -2057 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-355)) (PROGN (-15 -2369 ((-3 $ "failed") $)) (-15 ** ($ $ (-548)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4329 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-224 |#2|) . T) ((-226) |has| |#2| (-226)) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-369 |#2|) . T) ((-403 |#2|) . T) ((-480 |#2|) . T) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#2| (-615 (-548))) ((-615 |#2|) . T) ((-692 |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-6 (-4329 "*")))) ((-701) . T) ((-869 (-1135)) |has| |#2| (-869 (-1135))) ((-1019 |#1| |#1| |#2| |#3| |#4|) . T) ((-1007 (-399 (-548))) |has| |#2| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#2| (-1007 (-548))) ((-1007 |#2|) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1172) . T)) -((-2149 ((|#4| |#4|) 70)) (-2125 ((|#4| |#4|) 65)) (-2172 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|) 78)) (-2162 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2136 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2125 (|#4| |#4|)) (-15 -2136 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2149 (|#4| |#4|)) (-15 -2162 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2172 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|))) (-299) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -1086)) -((-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-299)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-2162 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2149 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2136 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(-10 -7 (-15 -2125 (|#4| |#4|)) (-15 -2136 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2149 (|#4| |#4|)) (-15 -2162 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2172 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2877 (-619 |#3|))) |#4| |#3|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 17)) (-2049 (((-619 |#2|) $) 159)) (-1884 (((-1131 $) $ |#2|) 54) (((-1131 |#1|) $) 43)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 108 (|has| |#1| (-540)))) (-3303 (($ $) 110 (|has| |#1| (-540)))) (-3279 (((-112) $) 112 (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 |#2|)) 192)) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) 156) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 |#2| "failed") $) NIL)) (-2375 ((|#1| $) 154) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) ((|#2| $) NIL)) (-1557 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-1872 (($ $) 196)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 82)) (-4065 (($ $) NIL (|has| |#1| (-443))) (($ $ |#2|) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-520 |#2|) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#1| (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#1| (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-2266 (((-112) $) 19)) (-2333 (((-745) $) 26)) (-2036 (($ (-1131 |#1|) |#2|) 48) (($ (-1131 $) |#2|) 64)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) 32)) (-2024 (($ |#1| (-520 |#2|)) 71) (($ $ |#2| (-745)) 52) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ |#2|) NIL)) (-3904 (((-520 |#2|) $) 186) (((-745) $ |#2|) 187) (((-619 (-745)) $ (-619 |#2|)) 188)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-520 |#2|) (-520 |#2|)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 120)) (-3511 (((-3 |#2| "failed") $) 161)) (-2185 (($ $) 195)) (-2197 ((|#1| $) 37)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| |#2|) (|:| -3352 (-745))) "failed") $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 33)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 138 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 143 (|has| |#1| (-443))) (($ $ $) 130 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-878)))) (-1900 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-540)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-619 |#2|) (-619 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-619 |#2|) (-619 $)) 176)) (-1566 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-4050 (($ $ |#2|) 194) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2512 (((-520 |#2|) $) 182) (((-745) $ |#2|) 178) (((-619 (-745)) $ (-619 |#2|)) 180)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| |#1| (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| |#1| (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| |#1| (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#1| $) 126 (|has| |#1| (-443))) (($ $ |#2|) 129 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3743 (((-832) $) 149) (($ (-548)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-540))) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3852 (((-619 |#1|) $) 152)) (-1951 ((|#1| $ (-520 |#2|)) 73) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 79)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) 115 (|has| |#1| (-540)))) (-3107 (($) 12 T CONST)) (-3118 (($) 14 T CONST)) (-3296 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 97)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 124 (|has| |#1| (-355)))) (-2299 (($ $) 85) (($ $ $) 95)) (-2290 (($ $ $) 49)) (** (($ $ (-890)) 102) (($ $ (-745)) 100)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 88) (($ $ $) 65) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1087 |#1| |#2|) (-918 |#1| (-520 |#2|) |#2|) (-1016) (-821)) (T -1087)) -NIL -(-918 |#1| (-520 |#2|) |#2|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-2074 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 113 (|has| |#1| (-38 (-399 (-548)))))) (-2098 (($ $) 145 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3520 (((-921 |#1|) $ (-745)) NIL) (((-921 |#1|) $ (-745) (-745)) NIL)) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $ |#2|) NIL) (((-745) $ |#2| (-745)) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2435 (((-112) $) NIL)) (-2024 (($ $ (-619 |#2|) (-619 (-520 |#2|))) NIL) (($ $ |#2| (-520 |#2|)) NIL) (($ |#1| (-520 |#2|)) NIL) (($ $ |#2| (-745)) 56) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) 111 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $ |#2|) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-1939 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-399 (-548)))))) (-1656 (($ $ (-745)) 13)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2458 (($ $) 109 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (($ $ |#2| $) 95) (($ $ (-619 |#2|) (-619 $)) 88) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-4050 (($ $ |#2|) 98) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2512 (((-520 |#2|) $) NIL)) (-2182 (((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|))) 77)) (-2110 (($ $) 147 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 15)) (-3743 (((-832) $) 180) (($ (-548)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-540))) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#2|) 63) (($ |#3|) 61)) (-1951 ((|#1| $ (-520 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL) ((|#3| $ (-745)) 38)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2145 (($ $) 153 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 149 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 157 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-4026 (($ $) 159 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 155 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 151 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 47 T CONST)) (-3118 (($) 55 T CONST)) (-3296 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) 182 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 59)) (** (($ $ (-890)) NIL) (($ $ (-745)) 68) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 101 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 58) (($ $ (-399 (-548))) 106 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 104 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1088 |#1| |#2| |#3|) (-13 (-715 |#1| |#2|) (-10 -8 (-15 -1951 (|#3| $ (-745))) (-15 -3743 ($ |#2|)) (-15 -3743 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2182 ((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ |#2| |#1|)) (-15 -1939 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1016) (-821) (-918 |#1| (-520 |#2|) |#2|)) (T -1088)) -((-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-520 *5) *5)) (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-520 *2) *2)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-520 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-520 *4) *4)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1116 *7))) (-4 *6 (-821)) (-4 *7 (-918 *5 (-520 *6) *6)) (-4 *5 (-1016)) (-5 *2 (-1 (-1116 *7) *7)) (-5 *1 (-1088 *5 *6 *7)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-520 *2) *2)))) (-1939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) (-4 *5 (-918 *4 (-520 *3) *3))))) -(-13 (-715 |#1| |#2|) (-10 -8 (-15 -1951 (|#3| $ (-745))) (-15 -3743 ($ |#2|)) (-15 -3743 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2182 ((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|)))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ |#2| |#1|)) (-15 -1939 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 126)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-2258 (((-112) |#4| $) 136)) (-3425 (((-112) |#4| $) 133)) (-2267 (((-112) |#4| $) 137) (((-112) $) 134)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 127)) (-3724 (((-3 |#4| "failed") $) 83)) (-3387 (((-619 $) |#4| $) 129)) (-3412 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2520 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3688 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3338 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2247 (((-112) |#4| $) 135)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) -(((-1089 |#1| |#2| |#3| |#4|) (-138) (-443) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1089)) +((-2936 (*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4328) (-15 -2936 (|t#1| |t#1| $)) (-15 -2853 (|t#1| $)) (-15 -2303 (|t#1| $)) (-15 -1313 ((-745) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2890 ((|#3| $) 76)) (-2698 (((-3 (-547) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2643 (((-547) $) NIL) (((-398 (-547)) $) NIL) ((|#3| $) 37)) (-4238 (((-663 (-547)) (-663 $)) NIL) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL) (((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 $) (-1218 $)) 73) (((-663 |#3|) (-663 $)) 65)) (-3443 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135)) NIL) (($ $ (-745)) NIL) (($ $) NIL)) (-1963 ((|#3| $) 78)) (-2082 ((|#4| $) 32)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ |#3|) 16)) (** (($ $ (-890)) NIL) (($ $ (-745)) 15) (($ $ (-547)) 82))) +(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 -1963 (|#3| |#1|)) (-15 -2890 (|#3| |#1|)) (-15 -2082 (|#4| |#1|)) (-15 -4238 ((-663 |#3|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -2643 (|#3| |#1|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -3834 (|#1| |#3|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3834 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3834 ((-832) |#1|))) (-1085 |#2| |#3| |#4| |#5|) (-745) (-1016) (-230 |#2| |#3|) (-230 |#2| |#3|)) (T -1084)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-547))) (-15 -1963 (|#3| |#1|)) (-15 -2890 (|#3| |#1|)) (-15 -2082 (|#4| |#1|)) (-15 -4238 ((-663 |#3|) (-663 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 |#3|)) (|:| |vec| (-1218 |#3|))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 |#1|) (-1218 |#1|))) (-15 -4238 ((-663 (-547)) (-663 |#1|))) (-15 -2643 (|#3| |#1|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -3834 (|#1| |#3|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-547) |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|) (-745))) (-15 -3443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3834 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2890 ((|#2| $) 70)) (-3047 (((-112) $) 110)) (-3013 (((-3 $ "failed") $ $) 19)) (-3237 (((-112) $) 108)) (-2826 (((-112) $ (-745)) 100)) (-2294 (($ |#2|) 73)) (-3219 (($) 17 T CONST)) (-3340 (($ $) 127 (|has| |#2| (-298)))) (-3578 ((|#3| $ (-547)) 122)) (-2698 (((-3 (-547) "failed") $) 84 (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) 82 (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) 79)) (-2643 (((-547) $) 85 (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) 83 (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) 78)) (-4238 (((-663 (-547)) (-663 $)) 77 (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 76 (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 75) (((-663 |#2|) (-663 $)) 74)) (-2537 (((-3 $ "failed") $) 32)) (-3107 (((-745) $) 128 (|has| |#2| (-539)))) (-1793 ((|#2| $ (-547) (-547)) 120)) (-2973 (((-619 |#2|) $) 93 (|has| $ (-6 -4328)))) (-4114 (((-112) $) 30)) (-1318 (((-745) $) 129 (|has| |#2| (-539)))) (-4273 (((-619 |#4|) $) 130 (|has| |#2| (-539)))) (-2126 (((-745) $) 116)) (-2139 (((-745) $) 117)) (-4161 (((-112) $ (-745)) 101)) (-3015 ((|#2| $) 65 (|has| |#2| (-6 (-4330 "*"))))) (-2865 (((-547) $) 112)) (-3790 (((-547) $) 114)) (-3666 (((-619 |#2|) $) 92 (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2769 (((-547) $) 113)) (-3684 (((-547) $) 115)) (-3933 (($ (-619 (-619 |#2|))) 107)) (-1850 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3051 (((-619 (-619 |#2|)) $) 118)) (-2024 (((-112) $ (-745)) 102)) (-1917 (((-1118) $) 9)) (-2793 (((-3 $ "failed") $) 64 (|has| |#2| (-354)))) (-3979 (((-1082) $) 10)) (-2025 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-539)))) (-2462 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) 89 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 88 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) 106)) (-3169 (((-112) $) 103)) (-4011 (($) 104)) (-3329 ((|#2| $ (-547) (-547) |#2|) 121) ((|#2| $ (-547) (-547)) 119)) (-3443 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-745)) 49) (($ $ (-619 (-1135)) (-619 (-745))) 42 (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) 41 (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) 40 (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) 39 (|has| |#2| (-869 (-1135)))) (($ $ (-745)) 37 (|has| |#2| (-225))) (($ $) 35 (|has| |#2| (-225)))) (-1963 ((|#2| $) 69)) (-2192 (($ (-619 |#2|)) 72)) (-3137 (((-112) $) 109)) (-2082 ((|#3| $) 71)) (-3096 ((|#2| $) 66 (|has| |#2| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4328))) (((-745) |#2| $) 91 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 105)) (-3456 ((|#4| $ (-547)) 123)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 81 (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) 80)) (-2311 (((-745)) 28)) (-2583 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4328)))) (-2955 (((-112) $) 111)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-745)) 47) (($ $ (-619 (-1135)) (-619 (-745))) 46 (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) 45 (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) 44 (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) 43 (|has| |#2| (-869 (-1135)))) (($ $ (-745)) 38 (|has| |#2| (-225))) (($ $) 36 (|has| |#2| (-225)))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#2|) 126 (|has| |#2| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 63 (|has| |#2| (-354)))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-3763 (((-745) $) 99 (|has| $ (-6 -4328))))) +(((-1085 |#1| |#2| |#3| |#4|) (-138) (-745) (-1016) (-230 |t#1| |t#2|) (-230 |t#1| |t#2|)) (T -1085)) +((-2294 (*1 *1 *2) (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1016)))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1016)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-230 *3 *4)) (-4 *5 (-230 *3 *4)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016)))) (-2793 (*1 *1 *1) (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-230 *2 *3)) (-4 *5 (-230 *2 *3)) (-4 *3 (-354)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)) (-4 *4 (-354))))) +(-13 (-223 |t#2|) (-111 |t#2| |t#2|) (-1019 |t#1| |t#1| |t#2| |t#3| |t#4|) (-402 |t#2|) (-368 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-692 |t#2|)) |%noBranch|) (-15 -2294 ($ |t#2|)) (-15 -2192 ($ (-619 |t#2|))) (-15 -2082 (|t#3| $)) (-15 -2890 (|t#2| $)) (-15 -1963 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4330 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3096 (|t#2| $)) (-15 -3015 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-354)) (PROGN (-15 -2793 ((-3 $ "failed") $)) (-15 ** ($ $ (-547)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4330 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-223 |#2|) . T) ((-225) |has| |#2| (-225)) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-368 |#2|) . T) ((-402 |#2|) . T) ((-479 |#2|) . T) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-622 |#2|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#2| (-615 (-547))) ((-615 |#2|) . T) ((-692 |#2|) -1524 (|has| |#2| (-169)) (|has| |#2| (-6 (-4330 "*")))) ((-701) . T) ((-869 (-1135)) |has| |#2| (-869 (-1135))) ((-1019 |#1| |#1| |#2| |#3| |#4|) . T) ((-1007 (-398 (-547))) |has| |#2| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#2| (-1007 (-547))) ((-1007 |#2|) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1172) . T)) +((-2609 ((|#4| |#4|) 70)) (-2410 ((|#4| |#4|) 65)) (-1433 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|))) |#4| |#3|) 78)) (-1360 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2511 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2410 (|#4| |#4|)) (-15 -2511 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2609 (|#4| |#4|)) (-15 -1360 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1433 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|))) |#4| |#3|))) (-298) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -1086)) +((-1433 (*1 *2 *3 *4) (-12 (-4 *5 (-298)) (-4 *6 (-364 *5)) (-4 *4 (-364 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) (-1360 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(-10 -7 (-15 -2410 (|#4| |#4|)) (-15 -2511 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2609 (|#4| |#4|)) (-15 -1360 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1433 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4013 (-619 |#3|))) |#4| |#3|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 17)) (-2259 (((-619 |#2|) $) 159)) (-2067 (((-1131 $) $ |#2|) 54) (((-1131 |#1|) $) 43)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 108 (|has| |#1| (-539)))) (-3881 (($ $) 110 (|has| |#1| (-539)))) (-1832 (((-112) $) 112 (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 |#2|)) 192)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) 156) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 |#2| "failed") $) NIL)) (-2643 ((|#1| $) 154) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) ((|#2| $) NIL)) (-3772 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-2054 (($ $) 196)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) 82)) (-3786 (($ $) NIL (|has| |#1| (-442))) (($ $ |#2|) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-519 |#2|) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#1| (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#1| (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-4114 (((-112) $) 19)) (-3570 (((-745) $) 26)) (-2245 (($ (-1131 |#1|) |#2|) 48) (($ (-1131 $) |#2|) 64)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) 32)) (-2229 (($ |#1| (-519 |#2|)) 71) (($ $ |#2| (-745)) 52) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ |#2|) NIL)) (-1626 (((-519 |#2|) $) 186) (((-745) $ |#2|) 187) (((-619 (-745)) $ (-619 |#2|)) 188)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-519 |#2|) (-519 |#2|)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) 120)) (-2185 (((-3 |#2| "failed") $) 161)) (-2013 (($ $) 195)) (-2027 ((|#1| $) 37)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| |#2|) (|:| -4248 (-745))) "failed") $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) 33)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 138 (|has| |#1| (-442)))) (-3715 (($ (-619 $)) 143 (|has| |#1| (-442))) (($ $ $) 130 (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#1| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-878)))) (-2025 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-539)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-619 |#2|) (-619 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-619 |#2|) (-619 $)) 176)) (-3846 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-3443 (($ $ |#2|) 194) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1618 (((-519 |#2|) $) 182) (((-745) $ |#2|) 178) (((-619 (-745)) $ (-619 |#2|)) 180)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| |#1| (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| |#1| (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| |#1| (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-1378 ((|#1| $) 126 (|has| |#1| (-442))) (($ $ |#2|) 129 (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-3834 (((-832) $) 149) (($ (-547)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-539))) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2472 (((-619 |#1|) $) 152)) (-3338 ((|#1| $ (-519 |#2|)) 73) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) 79)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) 115 (|has| |#1| (-539)))) (-3267 (($) 12 T CONST)) (-3277 (($) 14 T CONST)) (-1686 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 97)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) 124 (|has| |#1| (-354)))) (-2484 (($ $) 85) (($ $ $) 95)) (-2470 (($ $ $) 49)) (** (($ $ (-890)) 102) (($ $ (-745)) 100)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 88) (($ $ $) 65) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1087 |#1| |#2|) (-918 |#1| (-519 |#2|) |#2|) (-1016) (-821)) (T -1087)) +NIL +(-918 |#1| (-519 |#2|) |#2|) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 |#2|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1648 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1624 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 113 (|has| |#1| (-38 (-398 (-547)))))) (-1670 (($ $) 145 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1401 (((-921 |#1|) $ (-745)) NIL) (((-921 |#1|) $ (-745) (-745)) NIL)) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-745) $ |#2|) NIL) (((-745) $ |#2| (-745)) NIL)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2187 (((-112) $) NIL)) (-2229 (($ $ (-619 |#2|) (-619 (-519 |#2|))) NIL) (($ $ |#2| (-519 |#2|)) NIL) (($ |#1| (-519 |#2|)) NIL) (($ $ |#2| (-745)) 56) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3620 (($ $) 111 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-2069 (($ $ |#2|) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-3255 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-398 (-547)))))) (-3558 (($ $ (-745)) 13)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2703 (($ $) 109 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (($ $ |#2| $) 95) (($ $ (-619 |#2|) (-619 $)) 88) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-3443 (($ $ |#2|) 98) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-1618 (((-519 |#2|) $) NIL)) (-1538 (((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|))) 77)) (-1681 (($ $) 147 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 143 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 15)) (-3834 (((-832) $) 180) (($ (-547)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-539))) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#2|) 63) (($ |#3|) 61)) (-3338 ((|#1| $ (-519 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL) ((|#3| $ (-745)) 38)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-1717 (($ $) 153 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) 149 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 157 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1918 (($ $) 159 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 155 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 151 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 47 T CONST)) (-3277 (($) 55 T CONST)) (-1686 (($ $ |#2|) NIL) (($ $ (-619 |#2|)) NIL) (($ $ |#2| (-745)) NIL) (($ $ (-619 |#2|) (-619 (-745))) NIL)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) 182 (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 59)) (** (($ $ (-890)) NIL) (($ $ (-745)) 68) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 101 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 58) (($ $ (-398 (-547))) 106 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 104 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1088 |#1| |#2| |#3|) (-13 (-715 |#1| |#2|) (-10 -8 (-15 -3338 (|#3| $ (-745))) (-15 -3834 ($ |#2|)) (-15 -3834 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1538 ((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $ |#2| |#1|)) (-15 -3255 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1016) (-821) (-918 |#1| (-519 |#2|) |#2|)) (T -1088)) +((-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-519 *5) *5)) (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-519 *2) *2)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-519 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-918 *3 (-519 *4) *4)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1116 *7))) (-4 *6 (-821)) (-4 *7 (-918 *5 (-519 *6) *6)) (-4 *5 (-1016)) (-5 *2 (-1 (-1116 *7) *7)) (-5 *1 (-1088 *5 *6 *7)))) (-2069 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-519 *2) *2)))) (-3255 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) (-4 *5 (-918 *4 (-519 *3) *3))))) +(-13 (-715 |#1| |#2|) (-10 -8 (-15 -3338 (|#3| $ (-745))) (-15 -3834 ($ |#2|)) (-15 -3834 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1538 ((-1 (-1116 |#3|) |#3|) (-619 |#2|) (-619 (-1116 |#3|)))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $ |#2| |#1|)) (-15 -3255 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3821 (((-112) $ $) 7)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) 85)) (-3759 (((-619 $) (-619 |#4|)) 86) (((-619 $) (-619 |#4|) (-112)) 111)) (-2259 (((-619 |#3|) $) 33)) (-4286 (((-112) $) 26)) (-3312 (((-112) $) 17 (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) 101) (((-112) $) 97)) (-3144 ((|#4| |#4| $) 92)) (-2745 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| $) 126)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) 27)) (-2826 (((-112) $ (-745)) 44)) (-1476 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 79)) (-3219 (($) 45 T CONST)) (-3990 (((-112) $) 22 (|has| |#1| (-539)))) (-4154 (((-112) $ $) 24 (|has| |#1| (-539)))) (-4075 (((-112) $ $) 23 (|has| |#1| (-539)))) (-4212 (((-112) $) 25 (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1833 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 36)) (-2643 (($ (-619 |#4|)) 35)) (-3645 (((-3 $ "failed") $) 82)) (-2903 ((|#4| |#4| $) 89)) (-3664 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2733 ((|#4| |#4| $) 87)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) 105)) (-4047 (((-112) |#4| $) 136)) (-3709 (((-112) |#4| $) 133)) (-4124 (((-112) |#4| $) 137) (((-112) $) 134)) (-2973 (((-619 |#4|) $) 52 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) 104) (((-112) $) 103)) (-1397 ((|#3| $) 34)) (-4161 (((-112) $ (-745)) 43)) (-3666 (((-619 |#4|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 47)) (-3623 (((-619 |#3|) $) 32)) (-3523 (((-112) |#3| $) 31)) (-2024 (((-112) $ (-745)) 42)) (-1917 (((-1118) $) 9)) (-3240 (((-3 |#4| (-619 $)) |#4| |#4| $) 128)) (-4258 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| |#4| $) 127)) (-3817 (((-3 |#4| "failed") $) 83)) (-3389 (((-619 $) |#4| $) 129)) (-3604 (((-3 (-112) (-619 $)) |#4| $) 132)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1711 (((-619 $) |#4| $) 125) (((-619 $) (-619 |#4|) $) 124) (((-619 $) (-619 |#4|) (-619 $)) 123) (((-619 $) |#4| (-619 $)) 122)) (-3308 (($ |#4| $) 117) (($ (-619 |#4|) $) 116)) (-1499 (((-619 |#4|) $) 107)) (-2257 (((-112) |#4| $) 99) (((-112) $) 95)) (-2979 ((|#4| |#4| $) 90)) (-1694 (((-112) $ $) 110)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) 100) (((-112) $) 96)) (-3062 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3634 (((-3 |#4| "failed") $) 84)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3505 (((-3 $ "failed") $ |#4|) 78)) (-3558 (($ $ |#4|) 77) (((-619 $) |#4| $) 115) (((-619 $) |#4| (-619 $)) 114) (((-619 $) (-619 |#4|) $) 113) (((-619 $) (-619 |#4|) (-619 $)) 112)) (-2462 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) 38)) (-3169 (((-112) $) 41)) (-4011 (($) 40)) (-1618 (((-745) $) 106)) (-3987 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4328)))) (-2265 (($ $) 39)) (-2829 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 60)) (-3228 (($ $ |#3|) 28)) (-3429 (($ $ |#3|) 30)) (-2817 (($ $) 88)) (-3324 (($ $ |#3|) 29)) (-3834 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3423 (((-745) $) 76 (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-4155 (((-619 $) |#4| $) 121) (((-619 $) |#4| (-619 $)) 120) (((-619 $) (-619 |#4|) $) 119) (((-619 $) (-619 |#4|) (-619 $)) 118)) (-2583 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) 81)) (-3956 (((-112) |#4| $) 135)) (-3084 (((-112) |#3| $) 80)) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 46 (|has| $ (-6 -4328))))) +(((-1089 |#1| |#2| |#3| |#4|) (-138) (-442) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1089)) NIL (-13 (-1072 |t#1| |t#2| |t#3| |t#4|) (-758 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-758 |#1| |#2| |#3| |#4|) . T) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) -((-3408 (((-619 |#2|) |#1|) 12)) (-2229 (((-619 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-619 |#2|) |#1|) 52)) (-2210 (((-619 |#2|) |#2| |#2| |#2|) 39) (((-619 |#2|) |#1|) 50)) (-2192 ((|#2| |#1|) 46)) (-2204 (((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3498 (((-619 |#2|) |#2| |#2|) 38) (((-619 |#2|) |#1|) 49)) (-2220 (((-619 |#2|) |#2| |#2| |#2| |#2|) 40) (((-619 |#2|) |#1|) 51)) (-4167 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-4147 ((|#2| |#2| |#2| |#2|) 43)) (-4137 ((|#2| |#2| |#2|) 42)) (-4157 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -3408 ((-619 |#2|) |#1|)) (-15 -2192 (|#2| |#1|)) (-15 -2204 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3498 ((-619 |#2|) |#1|)) (-15 -2210 ((-619 |#2|) |#1|)) (-15 -2220 ((-619 |#2|) |#1|)) (-15 -2229 ((-619 |#2|) |#1|)) (-15 -3498 ((-619 |#2|) |#2| |#2|)) (-15 -2210 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -2220 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2229 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4137 (|#2| |#2| |#2|)) (-15 -4147 (|#2| |#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4167 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1194 |#2|) (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (T -1090)) -((-4167 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-4157 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-4147 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-4137 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-2229 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-2220 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-2210 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-3498 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-2229 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-2210 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-2 (|:| |solns| (-619 *5)) (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1090 *3 *5)) (-4 *3 (-1194 *5)))) (-2192 (*1 *2 *3) (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -3408 ((-619 |#2|) |#1|)) (-15 -2192 (|#2| |#1|)) (-15 -2204 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3498 ((-619 |#2|) |#1|)) (-15 -2210 ((-619 |#2|) |#1|)) (-15 -2220 ((-619 |#2|) |#1|)) (-15 -2229 ((-619 |#2|) |#1|)) (-15 -3498 ((-619 |#2|) |#2| |#2|)) (-15 -2210 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -2220 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2229 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4137 (|#2| |#2| |#2|)) (-15 -4147 (|#2| |#2| |#2| |#2|)) (-15 -4157 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4167 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-4178 (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|))))) 95) (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135))) 94) (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|)))) 92) (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 90) (((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|)))) 75) (((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))) (-1135)) 76) (((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|))) 70) (((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)) (-1135)) 59)) (-4188 (((-619 (-619 (-308 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 88) (((-619 (-308 |#1|)) (-399 (-921 |#1|)) (-1135)) 43)) (-4198 (((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-399 (-921 |#1|)) (-1135)) 98) (((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135)) 97))) -(((-1091 |#1|) (-10 -7 (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -4188 ((-619 (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -4188 ((-619 (-619 (-308 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-399 (-921 |#1|)) (-1135)))) (-13 (-299) (-821) (-145))) (T -1091)) -((-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-308 *5)))) (-5 *1 (-1091 *5)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-308 *5))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-286 (-399 (-921 *5))))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-619 (-399 (-921 *4)))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-286 (-399 (-921 *4)))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1091 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1091 *4)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1091 *5))))) -(-10 -7 (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-399 (-921 |#1|)))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4178 ((-619 (-286 (-308 |#1|))) (-286 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-399 (-921 |#1|))))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -4178 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -4188 ((-619 (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -4188 ((-619 (-619 (-308 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -4198 ((-1125 (-619 (-308 |#1|)) (-619 (-286 (-308 |#1|)))) (-399 (-921 |#1|)) (-1135)))) -((-4220 (((-399 (-1131 (-308 |#1|))) (-1218 (-308 |#1|)) (-399 (-1131 (-308 |#1|))) (-548)) 29)) (-4209 (((-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|)))) 40))) -(((-1092 |#1|) (-10 -7 (-15 -4209 ((-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))))) (-15 -4220 ((-399 (-1131 (-308 |#1|))) (-1218 (-308 |#1|)) (-399 (-1131 (-308 |#1|))) (-548)))) (-13 (-540) (-821))) (T -1092)) -((-4220 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-399 (-1131 (-308 *5)))) (-5 *3 (-1218 (-308 *5))) (-5 *4 (-548)) (-4 *5 (-13 (-540) (-821))) (-5 *1 (-1092 *5)))) (-4209 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-399 (-1131 (-308 *3)))) (-4 *3 (-13 (-540) (-821))) (-5 *1 (-1092 *3))))) -(-10 -7 (-15 -4209 ((-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))) (-399 (-1131 (-308 |#1|))))) (-15 -4220 ((-399 (-1131 (-308 |#1|))) (-1218 (-308 |#1|)) (-399 (-1131 (-308 |#1|))) (-548)))) -((-3408 (((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-308 |#1|))) (-619 (-1135))) 224) (((-619 (-286 (-308 |#1|))) (-308 |#1|) (-1135)) 20) (((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)) (-1135)) 26) (((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|))) 25) (((-619 (-286 (-308 |#1|))) (-308 |#1|)) 21))) -(((-1093 |#1|) (-10 -7 (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|) (-1135))) (-15 -3408 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-308 |#1|))) (-619 (-1135))))) (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (T -1093)) -((-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-619 (-286 (-308 *5)))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-308 *5)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-286 (-308 *5))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-286 (-308 *4))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-308 *4))))) -(-10 -7 (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-286 (-308 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-308 |#1|))) (-308 |#1|) (-1135))) (-15 -3408 ((-619 (-619 (-286 (-308 |#1|)))) (-619 (-286 (-308 |#1|))) (-619 (-1135))))) -((-4241 ((|#2| |#2|) 20 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-4230 ((|#2| |#2|) 19 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1094 |#1| |#2|) (-10 -7 (-15 -4230 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4241 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -4230 (|#2| |#2|)) (-15 -4241 (|#2| |#2|))) |%noBranch|)) (-1172) (-13 (-583 (-548) |#1|) (-10 -7 (-6 -4327) (-6 -4328)))) (T -1094)) -((-4241 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328)))))) (-4230 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328)))))) (-4241 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328)))))) (-4230 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328))))))) -(-10 -7 (-15 -4230 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4241 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -4230 (|#2| |#2|)) (-15 -4241 (|#2| |#2|))) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-3127 (((-1124 3 |#1|) $) 107)) (-1277 (((-112) $) 72)) (-1288 (($ $ (-619 (-912 |#1|))) 20) (($ $ (-619 (-619 |#1|))) 75) (($ (-619 (-912 |#1|))) 74) (((-619 (-912 |#1|)) $) 73)) (-1345 (((-112) $) 41)) (-1733 (($ $ (-912 |#1|)) 46) (($ $ (-619 |#1|)) 51) (($ $ (-745)) 53) (($ (-912 |#1|)) 47) (((-912 |#1|) $) 45)) (-3942 (((-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 105)) (-1390 (((-745) $) 26)) (-1400 (((-745) $) 25)) (-3116 (($ $ (-745) (-912 |#1|)) 39)) (-1252 (((-112) $) 82)) (-1265 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 89) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 91) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 85) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 93) (($ (-619 (-619 (-912 |#1|)))) 86) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 87) (((-619 (-619 (-912 |#1|))) $) 84)) (-2913 (($ (-619 $)) 28) (($ $ $) 29)) (-4265 (((-619 (-168)) $) 102)) (-3049 (((-619 (-912 |#1|)) $) 96)) (-4276 (((-619 (-619 (-168))) $) 101)) (-4286 (((-619 (-619 (-619 (-912 |#1|)))) $) NIL)) (-4297 (((-619 (-619 (-619 (-745)))) $) 99)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1356 (((-745) $ (-619 (-912 |#1|))) 37)) (-1323 (((-112) $) 54)) (-1334 (($ $ (-619 (-912 |#1|))) 56) (($ $ (-619 (-619 |#1|))) 62) (($ (-619 (-912 |#1|))) 57) (((-619 (-912 |#1|)) $) 55)) (-1411 (($) 23) (($ (-1124 3 |#1|)) 24)) (-2113 (($ $) 35)) (-1367 (((-619 $) $) 34)) (-1539 (($ (-619 $)) 31)) (-1379 (((-619 $) $) 33)) (-3743 (((-832) $) 111)) (-1300 (((-112) $) 64)) (-1311 (($ $ (-619 (-912 |#1|))) 66) (($ $ (-619 (-619 |#1|))) 69) (($ (-619 (-912 |#1|))) 67) (((-619 (-912 |#1|)) $) 65)) (-4254 (($ $) 106)) (-2214 (((-112) $ $) NIL))) +(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-758 |#1| |#2| |#3| |#4|) . T) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1072 |#1| |#2| |#3| |#4|) . T) ((-1165 |#1| |#2| |#3| |#4|) . T) ((-1172) . T)) +((-3571 (((-619 |#2|) |#1|) 12)) (-3831 (((-619 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-619 |#2|) |#1|) 52)) (-1798 (((-619 |#2|) |#2| |#2| |#2|) 39) (((-619 |#2|) |#1|) 50)) (-1634 ((|#2| |#1|) 46)) (-1728 (((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1381 (((-619 |#2|) |#2| |#2|) 38) (((-619 |#2|) |#1|) 49)) (-1890 (((-619 |#2|) |#2| |#2| |#2| |#2|) 40) (((-619 |#2|) |#1|) 51)) (-2491 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2264 ((|#2| |#2| |#2| |#2|) 43)) (-2138 ((|#2| |#2| |#2|) 42)) (-2392 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -3571 ((-619 |#2|) |#1|)) (-15 -1634 (|#2| |#1|)) (-15 -1728 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1381 ((-619 |#2|) |#1|)) (-15 -1798 ((-619 |#2|) |#1|)) (-15 -1890 ((-619 |#2|) |#1|)) (-15 -3831 ((-619 |#2|) |#1|)) (-15 -1381 ((-619 |#2|) |#2| |#2|)) (-15 -1798 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -1890 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3831 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2138 (|#2| |#2| |#2|)) (-15 -2264 (|#2| |#2| |#2| |#2|)) (-15 -2392 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2491 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1194 |#2|) (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (T -1090)) +((-2491 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-2392 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-2264 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-2138 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-3831 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-1890 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-1798 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-1381 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-1890 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-1798 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-2 (|:| |solns| (-619 *5)) (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1090 *3 *5)) (-4 *3 (-1194 *5)))) (-1634 (*1 *2 *3) (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3571 ((-619 |#2|) |#1|)) (-15 -1634 (|#2| |#1|)) (-15 -1728 ((-2 (|:| |solns| (-619 |#2|)) (|:| |maps| (-619 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1381 ((-619 |#2|) |#1|)) (-15 -1798 ((-619 |#2|) |#1|)) (-15 -1890 ((-619 |#2|) |#1|)) (-15 -3831 ((-619 |#2|) |#1|)) (-15 -1381 ((-619 |#2|) |#2| |#2|)) (-15 -1798 ((-619 |#2|) |#2| |#2| |#2|)) (-15 -1890 ((-619 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3831 ((-619 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2138 (|#2| |#2| |#2|)) (-15 -2264 (|#2| |#2| |#2| |#2|)) (-15 -2392 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2491 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2606 (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|))))) 95) (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1135))) 94) (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|)))) 92) (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))) (-619 (-1135))) 90) (((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|)))) 75) (((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))) (-1135)) 76) (((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|))) 70) (((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)) (-1135)) 59)) (-2705 (((-619 (-619 (-307 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1135))) 88) (((-619 (-307 |#1|)) (-398 (-921 |#1|)) (-1135)) 43)) (-1483 (((-1125 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-398 (-921 |#1|)) (-1135)) 98) (((-1125 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-285 (-398 (-921 |#1|))) (-1135)) 97))) +(((-1091 |#1|) (-10 -7 (-15 -2606 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)) (-1135))) (-15 -2606 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)))) (-15 -2606 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))) (-1135))) (-15 -2606 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1135)))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -2705 ((-619 (-307 |#1|)) (-398 (-921 |#1|)) (-1135))) (-15 -2705 ((-619 (-619 (-307 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -1483 ((-1125 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-285 (-398 (-921 |#1|))) (-1135))) (-15 -1483 ((-1125 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-398 (-921 |#1|)) (-1135)))) (-13 (-298) (-821) (-145))) (T -1091)) +((-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-1125 (-619 (-307 *5)) (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-1125 (-619 (-307 *5)) (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-307 *5)))) (-5 *1 (-1091 *5)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-307 *5))) (-5 *1 (-1091 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-285 (-398 (-921 *5))))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-619 (-398 (-921 *4)))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-285 (-398 (-921 *4)))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1091 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1091 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1091 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1091 *5))))) +(-10 -7 (-15 -2606 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)) (-1135))) (-15 -2606 ((-619 (-285 (-307 |#1|))) (-398 (-921 |#1|)))) (-15 -2606 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))) (-1135))) (-15 -2606 ((-619 (-285 (-307 |#1|))) (-285 (-398 (-921 |#1|))))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-398 (-921 |#1|))))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1135)))) (-15 -2606 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -2705 ((-619 (-307 |#1|)) (-398 (-921 |#1|)) (-1135))) (-15 -2705 ((-619 (-619 (-307 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -1483 ((-1125 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-285 (-398 (-921 |#1|))) (-1135))) (-15 -1483 ((-1125 (-619 (-307 |#1|)) (-619 (-285 (-307 |#1|)))) (-398 (-921 |#1|)) (-1135)))) +((-1724 (((-398 (-1131 (-307 |#1|))) (-1218 (-307 |#1|)) (-398 (-1131 (-307 |#1|))) (-547)) 29)) (-1606 (((-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|)))) 40))) +(((-1092 |#1|) (-10 -7 (-15 -1606 ((-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))))) (-15 -1724 ((-398 (-1131 (-307 |#1|))) (-1218 (-307 |#1|)) (-398 (-1131 (-307 |#1|))) (-547)))) (-13 (-539) (-821))) (T -1092)) +((-1724 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-398 (-1131 (-307 *5)))) (-5 *3 (-1218 (-307 *5))) (-5 *4 (-547)) (-4 *5 (-13 (-539) (-821))) (-5 *1 (-1092 *5)))) (-1606 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-398 (-1131 (-307 *3)))) (-4 *3 (-13 (-539) (-821))) (-5 *1 (-1092 *3))))) +(-10 -7 (-15 -1606 ((-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))) (-398 (-1131 (-307 |#1|))))) (-15 -1724 ((-398 (-1131 (-307 |#1|))) (-1218 (-307 |#1|)) (-398 (-1131 (-307 |#1|))) (-547)))) +((-3571 (((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-307 |#1|))) (-619 (-1135))) 224) (((-619 (-285 (-307 |#1|))) (-307 |#1|) (-1135)) 20) (((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)) (-1135)) 26) (((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|))) 25) (((-619 (-285 (-307 |#1|))) (-307 |#1|)) 21))) +(((-1093 |#1|) (-10 -7 (-15 -3571 ((-619 (-285 (-307 |#1|))) (-307 |#1|))) (-15 -3571 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)))) (-15 -3571 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)) (-1135))) (-15 -3571 ((-619 (-285 (-307 |#1|))) (-307 |#1|) (-1135))) (-15 -3571 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-307 |#1|))) (-619 (-1135))))) (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (T -1093)) +((-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1093 *5)) (-5 *3 (-619 (-285 (-307 *5)))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-307 *5)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5)) (-5 *3 (-285 (-307 *5))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-285 (-307 *4))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4)) (-5 *3 (-307 *4))))) +(-10 -7 (-15 -3571 ((-619 (-285 (-307 |#1|))) (-307 |#1|))) (-15 -3571 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)))) (-15 -3571 ((-619 (-285 (-307 |#1|))) (-285 (-307 |#1|)) (-1135))) (-15 -3571 ((-619 (-285 (-307 |#1|))) (-307 |#1|) (-1135))) (-15 -3571 ((-619 (-619 (-285 (-307 |#1|)))) (-619 (-285 (-307 |#1|))) (-619 (-1135))))) +((-1951 ((|#2| |#2|) 20 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-1841 ((|#2| |#2|) 19 (|has| |#1| (-821))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1094 |#1| |#2|) (-10 -7 (-15 -1841 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1951 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -1841 (|#2| |#2|)) (-15 -1951 (|#2| |#2|))) |%noBranch|)) (-1172) (-13 (-582 (-547) |#1|) (-10 -7 (-6 -4328) (-6 -4329)))) (T -1094)) +((-1951 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4328) (-6 -4329)))))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4328) (-6 -4329)))))) (-1951 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4328) (-6 -4329)))))) (-1841 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4328) (-6 -4329))))))) +(-10 -7 (-15 -1841 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1951 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-821)) (PROGN (-15 -1841 (|#2| |#2|)) (-15 -1951 (|#2| |#2|))) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-1702 (((-1124 3 |#1|) $) 107)) (-2458 (((-112) $) 72)) (-1984 (($ $ (-619 (-912 |#1|))) 20) (($ $ (-619 (-619 |#1|))) 75) (($ (-619 (-912 |#1|))) 74) (((-619 (-912 |#1|)) $) 73)) (-1906 (((-112) $) 41)) (-2782 (($ $ (-912 |#1|)) 46) (($ $ (-619 |#1|)) 51) (($ $ (-745)) 53) (($ (-912 |#1|)) 47) (((-912 |#1|) $) 45)) (-1835 (((-2 (|:| -2985 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 105)) (-3337 (((-745) $) 26)) (-3433 (((-745) $) 25)) (-1582 (($ $ (-745) (-912 |#1|)) 39)) (-3996 (((-112) $) 82)) (-1258 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 89) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 91) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 85) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 93) (($ (-619 (-619 (-912 |#1|)))) 86) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 87) (((-619 (-619 (-912 |#1|))) $) 84)) (-1294 (($ (-619 $)) 28) (($ $ $) 29)) (-3997 (((-619 (-168)) $) 102)) (-2775 (((-619 (-912 |#1|)) $) 96)) (-4102 (((-619 (-619 (-168))) $) 101)) (-4198 (((-619 (-619 (-619 (-912 |#1|)))) $) NIL)) (-4301 (((-619 (-619 (-619 (-745)))) $) 99)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1297 (((-745) $ (-619 (-912 |#1|))) 37)) (-3311 (((-112) $) 54)) (-3241 (($ $ (-619 (-912 |#1|))) 56) (($ $ (-619 (-619 |#1|))) 62) (($ (-619 (-912 |#1|))) 57) (((-619 (-912 |#1|)) $) 55)) (-3527 (($) 23) (($ (-1124 3 |#1|)) 24)) (-2265 (($ $) 35)) (-2499 (((-619 $) $) 34)) (-1704 (($ (-619 $)) 31)) (-3245 (((-619 $) $) 33)) (-3834 (((-832) $) 111)) (-2125 (((-112) $) 64)) (-2266 (($ $ (-619 (-912 |#1|))) 66) (($ $ (-619 (-619 |#1|))) 69) (($ (-619 (-912 |#1|))) 67) (((-619 (-912 |#1|)) $) 65)) (-2078 (($ $) 106)) (-2371 (((-112) $ $) NIL))) (((-1095 |#1|) (-1096 |#1|) (-1016)) (T -1095)) NIL (-1096 |#1|) -((-3730 (((-112) $ $) 7)) (-3127 (((-1124 3 |#1|) $) 13)) (-1277 (((-112) $) 29)) (-1288 (($ $ (-619 (-912 |#1|))) 33) (($ $ (-619 (-619 |#1|))) 32) (($ (-619 (-912 |#1|))) 31) (((-619 (-912 |#1|)) $) 30)) (-1345 (((-112) $) 44)) (-1733 (($ $ (-912 |#1|)) 49) (($ $ (-619 |#1|)) 48) (($ $ (-745)) 47) (($ (-912 |#1|)) 46) (((-912 |#1|) $) 45)) (-3942 (((-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 15)) (-1390 (((-745) $) 58)) (-1400 (((-745) $) 59)) (-3116 (($ $ (-745) (-912 |#1|)) 50)) (-1252 (((-112) $) 21)) (-1265 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 28) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 27) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 26) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 25) (($ (-619 (-619 (-912 |#1|)))) 24) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 23) (((-619 (-619 (-912 |#1|))) $) 22)) (-2913 (($ (-619 $)) 57) (($ $ $) 56)) (-4265 (((-619 (-168)) $) 16)) (-3049 (((-619 (-912 |#1|)) $) 20)) (-4276 (((-619 (-619 (-168))) $) 17)) (-4286 (((-619 (-619 (-619 (-912 |#1|)))) $) 18)) (-4297 (((-619 (-619 (-619 (-745)))) $) 19)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1356 (((-745) $ (-619 (-912 |#1|))) 51)) (-1323 (((-112) $) 39)) (-1334 (($ $ (-619 (-912 |#1|))) 43) (($ $ (-619 (-619 |#1|))) 42) (($ (-619 (-912 |#1|))) 41) (((-619 (-912 |#1|)) $) 40)) (-1411 (($) 61) (($ (-1124 3 |#1|)) 60)) (-2113 (($ $) 52)) (-1367 (((-619 $) $) 53)) (-1539 (($ (-619 $)) 55)) (-1379 (((-619 $) $) 54)) (-3743 (((-832) $) 11)) (-1300 (((-112) $) 34)) (-1311 (($ $ (-619 (-912 |#1|))) 38) (($ $ (-619 (-619 |#1|))) 37) (($ (-619 (-912 |#1|))) 36) (((-619 (-912 |#1|)) $) 35)) (-4254 (($ $) 14)) (-2214 (((-112) $ $) 6))) +((-3821 (((-112) $ $) 7)) (-1702 (((-1124 3 |#1|) $) 13)) (-2458 (((-112) $) 29)) (-1984 (($ $ (-619 (-912 |#1|))) 33) (($ $ (-619 (-619 |#1|))) 32) (($ (-619 (-912 |#1|))) 31) (((-619 (-912 |#1|)) $) 30)) (-1906 (((-112) $) 44)) (-2782 (($ $ (-912 |#1|)) 49) (($ $ (-619 |#1|)) 48) (($ $ (-745)) 47) (($ (-912 |#1|)) 46) (((-912 |#1|) $) 45)) (-1835 (((-2 (|:| -2985 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $) 15)) (-3337 (((-745) $) 58)) (-3433 (((-745) $) 59)) (-1582 (($ $ (-745) (-912 |#1|)) 50)) (-3996 (((-112) $) 21)) (-1258 (($ $ (-619 (-619 (-912 |#1|))) (-619 (-168)) (-168)) 28) (($ $ (-619 (-619 (-619 |#1|))) (-619 (-168)) (-168)) 27) (($ $ (-619 (-619 (-912 |#1|))) (-112) (-112)) 26) (($ $ (-619 (-619 (-619 |#1|))) (-112) (-112)) 25) (($ (-619 (-619 (-912 |#1|)))) 24) (($ (-619 (-619 (-912 |#1|))) (-112) (-112)) 23) (((-619 (-619 (-912 |#1|))) $) 22)) (-1294 (($ (-619 $)) 57) (($ $ $) 56)) (-3997 (((-619 (-168)) $) 16)) (-2775 (((-619 (-912 |#1|)) $) 20)) (-4102 (((-619 (-619 (-168))) $) 17)) (-4198 (((-619 (-619 (-619 (-912 |#1|)))) $) 18)) (-4301 (((-619 (-619 (-619 (-745)))) $) 19)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1297 (((-745) $ (-619 (-912 |#1|))) 51)) (-3311 (((-112) $) 39)) (-3241 (($ $ (-619 (-912 |#1|))) 43) (($ $ (-619 (-619 |#1|))) 42) (($ (-619 (-912 |#1|))) 41) (((-619 (-912 |#1|)) $) 40)) (-3527 (($) 61) (($ (-1124 3 |#1|)) 60)) (-2265 (($ $) 52)) (-2499 (((-619 $) $) 53)) (-1704 (($ (-619 $)) 55)) (-3245 (((-619 $) $) 54)) (-3834 (((-832) $) 11)) (-2125 (((-112) $) 34)) (-2266 (($ $ (-619 (-912 |#1|))) 38) (($ $ (-619 (-619 |#1|))) 37) (($ (-619 (-912 |#1|))) 36) (((-619 (-912 |#1|)) $) 35)) (-2078 (($ $) 14)) (-2371 (((-112) $ $) 6))) (((-1096 |#1|) (-138) (-1016)) (T -1096)) -((-3743 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832)))) (-1411 (*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1124 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-1367 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1356 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-3116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1334 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1311 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1311 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1288 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1265 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-1265 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-1265 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1265 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 *3)))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1265 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *4 (-1016)) (-4 *1 (-1096 *4)))) (-1265 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-912 *3)))))) (-1252 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-745))))))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-912 *3))))))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168)))))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168))))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745)))))) (-4254 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1124 3 *3))))) -(-13 (-1063) (-10 -8 (-15 -1411 ($)) (-15 -1411 ($ (-1124 3 |t#1|))) (-15 -1400 ((-745) $)) (-15 -1390 ((-745) $)) (-15 -2913 ($ (-619 $))) (-15 -2913 ($ $ $)) (-15 -1539 ($ (-619 $))) (-15 -1379 ((-619 $) $)) (-15 -1367 ((-619 $) $)) (-15 -2113 ($ $)) (-15 -1356 ((-745) $ (-619 (-912 |t#1|)))) (-15 -3116 ($ $ (-745) (-912 |t#1|))) (-15 -1733 ($ $ (-912 |t#1|))) (-15 -1733 ($ $ (-619 |t#1|))) (-15 -1733 ($ $ (-745))) (-15 -1733 ($ (-912 |t#1|))) (-15 -1733 ((-912 |t#1|) $)) (-15 -1345 ((-112) $)) (-15 -1334 ($ $ (-619 (-912 |t#1|)))) (-15 -1334 ($ $ (-619 (-619 |t#1|)))) (-15 -1334 ($ (-619 (-912 |t#1|)))) (-15 -1334 ((-619 (-912 |t#1|)) $)) (-15 -1323 ((-112) $)) (-15 -1311 ($ $ (-619 (-912 |t#1|)))) (-15 -1311 ($ $ (-619 (-619 |t#1|)))) (-15 -1311 ($ (-619 (-912 |t#1|)))) (-15 -1311 ((-619 (-912 |t#1|)) $)) (-15 -1300 ((-112) $)) (-15 -1288 ($ $ (-619 (-912 |t#1|)))) (-15 -1288 ($ $ (-619 (-619 |t#1|)))) (-15 -1288 ($ (-619 (-912 |t#1|)))) (-15 -1288 ((-619 (-912 |t#1|)) $)) (-15 -1277 ((-112) $)) (-15 -1265 ($ $ (-619 (-619 (-912 |t#1|))) (-619 (-168)) (-168))) (-15 -1265 ($ $ (-619 (-619 (-619 |t#1|))) (-619 (-168)) (-168))) (-15 -1265 ($ $ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -1265 ($ $ (-619 (-619 (-619 |t#1|))) (-112) (-112))) (-15 -1265 ($ (-619 (-619 (-912 |t#1|))))) (-15 -1265 ($ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -1265 ((-619 (-619 (-912 |t#1|))) $)) (-15 -1252 ((-112) $)) (-15 -3049 ((-619 (-912 |t#1|)) $)) (-15 -4297 ((-619 (-619 (-619 (-745)))) $)) (-15 -4286 ((-619 (-619 (-619 (-912 |t#1|)))) $)) (-15 -4276 ((-619 (-619 (-168))) $)) (-15 -4265 ((-619 (-168)) $)) (-15 -3942 ((-2 (|:| -4101 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $)) (-15 -4254 ($ $)) (-15 -3127 ((-1124 3 |t#1|) $)) (-15 -3743 ((-832) $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3203 (((-619 (-1140)) (-1118)) 9))) -(((-1097) (-10 -7 (-15 -3203 ((-619 (-1140)) (-1118))))) (T -1097)) -((-3203 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-1097))))) -(-10 -7 (-15 -3203 ((-619 (-1140)) (-1118)))) -((-1435 (((-1223) (-619 (-832))) 23) (((-1223) (-832)) 22)) (-1422 (((-1223) (-619 (-832))) 21) (((-1223) (-832)) 20)) (-3898 (((-1223) (-619 (-832))) 19) (((-1223) (-832)) 11) (((-1223) (-1118) (-832)) 17))) -(((-1098) (-10 -7 (-15 -3898 ((-1223) (-1118) (-832))) (-15 -3898 ((-1223) (-832))) (-15 -1422 ((-1223) (-832))) (-15 -1435 ((-1223) (-832))) (-15 -3898 ((-1223) (-619 (-832)))) (-15 -1422 ((-1223) (-619 (-832)))) (-15 -1435 ((-1223) (-619 (-832)))))) (T -1098)) -((-1435 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098))))) -(-10 -7 (-15 -3898 ((-1223) (-1118) (-832))) (-15 -3898 ((-1223) (-832))) (-15 -1422 ((-1223) (-832))) (-15 -1435 ((-1223) (-832))) (-15 -3898 ((-1223) (-619 (-832)))) (-15 -1422 ((-1223) (-619 (-832)))) (-15 -1435 ((-1223) (-619 (-832))))) -((-1478 (($ $ $) 10)) (-1467 (($ $) 9)) (-1513 (($ $ $) 13)) (-1533 (($ $ $) 15)) (-1502 (($ $ $) 12)) (-1523 (($ $ $) 14)) (-1551 (($ $) 17)) (-1542 (($ $) 16)) (-1446 (($ $) 6)) (-1491 (($ $ $) 11) (($ $) 7)) (-1456 (($ $ $) 8))) +((-3834 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832)))) (-3527 (*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1124 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) (-1294 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3245 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-2499 (*1 *2 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)))) (-2265 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1297 (*1 *2 *1 *3) (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-1582 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-2782 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2782 (*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2782 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2782 (*1 *1 *2) (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-3241 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3241 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-2266 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2266 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-1258 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-1258 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016)))) (-1258 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1258 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-112)) (-4 *1 (-1096 *4)) (-4 *4 (-1016)))) (-1258 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 *3)))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) (-1258 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-619 (-619 (-912 *4)))) (-5 *3 (-112)) (-4 *4 (-1016)) (-4 *1 (-1096 *4)))) (-1258 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-912 *3)))))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-745))))))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-619 (-912 *3))))))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168)))))) (-3997 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168))))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2985 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745)))))) (-2078 (*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1124 3 *3))))) +(-13 (-1063) (-10 -8 (-15 -3527 ($)) (-15 -3527 ($ (-1124 3 |t#1|))) (-15 -3433 ((-745) $)) (-15 -3337 ((-745) $)) (-15 -1294 ($ (-619 $))) (-15 -1294 ($ $ $)) (-15 -1704 ($ (-619 $))) (-15 -3245 ((-619 $) $)) (-15 -2499 ((-619 $) $)) (-15 -2265 ($ $)) (-15 -1297 ((-745) $ (-619 (-912 |t#1|)))) (-15 -1582 ($ $ (-745) (-912 |t#1|))) (-15 -2782 ($ $ (-912 |t#1|))) (-15 -2782 ($ $ (-619 |t#1|))) (-15 -2782 ($ $ (-745))) (-15 -2782 ($ (-912 |t#1|))) (-15 -2782 ((-912 |t#1|) $)) (-15 -1906 ((-112) $)) (-15 -3241 ($ $ (-619 (-912 |t#1|)))) (-15 -3241 ($ $ (-619 (-619 |t#1|)))) (-15 -3241 ($ (-619 (-912 |t#1|)))) (-15 -3241 ((-619 (-912 |t#1|)) $)) (-15 -3311 ((-112) $)) (-15 -2266 ($ $ (-619 (-912 |t#1|)))) (-15 -2266 ($ $ (-619 (-619 |t#1|)))) (-15 -2266 ($ (-619 (-912 |t#1|)))) (-15 -2266 ((-619 (-912 |t#1|)) $)) (-15 -2125 ((-112) $)) (-15 -1984 ($ $ (-619 (-912 |t#1|)))) (-15 -1984 ($ $ (-619 (-619 |t#1|)))) (-15 -1984 ($ (-619 (-912 |t#1|)))) (-15 -1984 ((-619 (-912 |t#1|)) $)) (-15 -2458 ((-112) $)) (-15 -1258 ($ $ (-619 (-619 (-912 |t#1|))) (-619 (-168)) (-168))) (-15 -1258 ($ $ (-619 (-619 (-619 |t#1|))) (-619 (-168)) (-168))) (-15 -1258 ($ $ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -1258 ($ $ (-619 (-619 (-619 |t#1|))) (-112) (-112))) (-15 -1258 ($ (-619 (-619 (-912 |t#1|))))) (-15 -1258 ($ (-619 (-619 (-912 |t#1|))) (-112) (-112))) (-15 -1258 ((-619 (-619 (-912 |t#1|))) $)) (-15 -3996 ((-112) $)) (-15 -2775 ((-619 (-912 |t#1|)) $)) (-15 -4301 ((-619 (-619 (-619 (-745)))) $)) (-15 -4198 ((-619 (-619 (-619 (-912 |t#1|)))) $)) (-15 -4102 ((-619 (-619 (-168))) $)) (-15 -3997 ((-619 (-168)) $)) (-15 -1835 ((-2 (|:| -2985 (-745)) (|:| |curves| (-745)) (|:| |polygons| (-745)) (|:| |constructs| (-745))) $)) (-15 -2078 ($ $)) (-15 -1702 ((-1124 3 |t#1|) $)) (-15 -3834 ((-832) $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-3370 (((-619 (-1140)) (-1118)) 9))) +(((-1097) (-10 -7 (-15 -3370 ((-619 (-1140)) (-1118))))) (T -1097)) +((-3370 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-1097))))) +(-10 -7 (-15 -3370 ((-619 (-1140)) (-1118)))) +((-1921 (((-1223) (-619 (-832))) 23) (((-1223) (-832)) 22)) (-3627 (((-1223) (-619 (-832))) 21) (((-1223) (-832)) 20)) (-3304 (((-1223) (-619 (-832))) 19) (((-1223) (-832)) 11) (((-1223) (-1118) (-832)) 17))) +(((-1098) (-10 -7 (-15 -3304 ((-1223) (-1118) (-832))) (-15 -3304 ((-1223) (-832))) (-15 -3627 ((-1223) (-832))) (-15 -1921 ((-1223) (-832))) (-15 -3304 ((-1223) (-619 (-832)))) (-15 -3627 ((-1223) (-619 (-832)))) (-15 -1921 ((-1223) (-619 (-832)))))) (T -1098)) +((-1921 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(-10 -7 (-15 -3304 ((-1223) (-1118) (-832))) (-15 -3304 ((-1223) (-832))) (-15 -3627 ((-1223) (-832))) (-15 -1921 ((-1223) (-832))) (-15 -3304 ((-1223) (-619 (-832)))) (-15 -3627 ((-1223) (-619 (-832)))) (-15 -1921 ((-1223) (-619 (-832))))) +((-2420 (($ $ $) 10)) (-2292 (($ $) 9)) (-1418 (($ $ $) 13)) (-1645 (($ $ $) 15)) (-1329 (($ $ $) 12)) (-1535 (($ $ $) 14)) (-1845 (($ $) 17)) (-1740 (($ $) 16)) (-2040 (($ $) 6)) (-2554 (($ $ $) 11) (($ $) 7)) (-2165 (($ $ $) 8))) (((-1099) (-138)) (T -1099)) -((-1551 (*1 *1 *1) (-4 *1 (-1099))) (-1542 (*1 *1 *1) (-4 *1 (-1099))) (-1533 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1523 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1513 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1502 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1491 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1478 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1467 (*1 *1 *1) (-4 *1 (-1099))) (-1456 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1491 (*1 *1 *1) (-4 *1 (-1099))) (-1446 (*1 *1 *1) (-4 *1 (-1099)))) -(-13 (-10 -8 (-15 -1446 ($ $)) (-15 -1491 ($ $)) (-15 -1456 ($ $ $)) (-15 -1467 ($ $)) (-15 -1478 ($ $ $)) (-15 -1491 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -1513 ($ $ $)) (-15 -1523 ($ $ $)) (-15 -1533 ($ $ $)) (-15 -1542 ($ $)) (-15 -1551 ($ $)))) -((-3730 (((-112) $ $) 41)) (-4056 ((|#1| $) 15)) (-1561 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1902 (((-112) $) 17)) (-1606 (($ $ |#1|) 28)) (-1589 (($ $ (-112)) 30)) (-1578 (($ $) 31)) (-1597 (($ $ |#2|) 29)) (-2546 (((-1118) $) NIL)) (-1569 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3932 (((-1082) $) NIL)) (-1616 (((-112) $) 14)) (-3319 (($) 10)) (-2113 (($ $) 27)) (-3754 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) 21) (((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|)))) 24) (((-619 $) |#1| (-619 |#2|)) 26)) (-2897 ((|#2| $) 16)) (-3743 (((-832) $) 50)) (-2214 (((-112) $ $) 39))) -(((-1100 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3319 ($)) (-15 -1616 ((-112) $)) (-15 -4056 (|#1| $)) (-15 -2897 (|#2| $)) (-15 -1902 ((-112) $)) (-15 -3754 ($ |#1| |#2| (-112))) (-15 -3754 ($ |#1| |#2|)) (-15 -3754 ($ (-2 (|:| |val| |#1|) (|:| -1806 |#2|)))) (-15 -3754 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))))) (-15 -3754 ((-619 $) |#1| (-619 |#2|))) (-15 -2113 ($ $)) (-15 -1606 ($ $ |#1|)) (-15 -1597 ($ $ |#2|)) (-15 -1589 ($ $ (-112))) (-15 -1578 ($ $)) (-15 -1569 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1561 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1100)) -((-3319 (*1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-4056 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *2 *3)) (-4 *3 (-13 (-1063) (-34))))) (-2897 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1806 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *4)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1806 *5)))) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *4 *5))) (-5 *1 (-1100 *4 *5)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *3 *5))) (-5 *1 (-1100 *3 *5)) (-4 *3 (-13 (-1063) (-34))))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1606 (*1 *1 *1 *2) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1597 (*1 *1 *1 *2) (-12 (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))) (-4 *2 (-13 (-1063) (-34))))) (-1589 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1569 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6)))) (-1561 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34)))))) -(-13 (-1063) (-10 -8 (-15 -3319 ($)) (-15 -1616 ((-112) $)) (-15 -4056 (|#1| $)) (-15 -2897 (|#2| $)) (-15 -1902 ((-112) $)) (-15 -3754 ($ |#1| |#2| (-112))) (-15 -3754 ($ |#1| |#2|)) (-15 -3754 ($ (-2 (|:| |val| |#1|) (|:| -1806 |#2|)))) (-15 -3754 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))))) (-15 -3754 ((-619 $) |#1| (-619 |#2|))) (-15 -2113 ($ $)) (-15 -1606 ($ $ |#1|)) (-15 -1597 ($ $ |#2|)) (-15 -1589 ($ $ (-112))) (-15 -1578 ($ $)) (-15 -1569 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1561 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-3730 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-4056 (((-1100 |#1| |#2|) $) 25)) (-1660 (($ $) 76)) (-1643 (((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1626 (($ $ $ (-619 (-1100 |#1| |#2|))) 90) (($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-2028 (((-112) $ (-745)) NIL)) (-4192 (((-1100 |#1| |#2|) $ (-1100 |#1| |#2|)) 43 (|has| $ (-6 -4328)))) (-2089 (((-1100 |#1| |#2|) $ "value" (-1100 |#1| |#2|)) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-3845 (((-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) $) 80)) (-1636 (($ (-1100 |#1| |#2|) $) 39)) (-3699 (($ (-1100 |#1| |#2|) $) 31)) (-1934 (((-619 (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 51)) (-1651 (((-112) (-1100 |#1| |#2|) $) 82)) (-4213 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 (-1100 |#1| |#2|)) $) 55 (|has| $ (-6 -4327)))) (-2556 (((-112) (-1100 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-1100 |#1| |#2|) (-1063))))) (-3960 (($ (-1 (-1100 |#1| |#2|) (-1100 |#1| |#2|)) $) 47 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-1100 |#1| |#2|) (-1100 |#1| |#2|)) $) 46)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 (-1100 |#1| |#2|)) $) 53)) (-3010 (((-112) $) 42)) (-2546 (((-1118) $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3932 (((-1082) $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3483 (((-3 $ "failed") $) 75)) (-3537 (((-112) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-1100 |#1| |#2|)))) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-286 (-1100 |#1| |#2|))) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-1100 |#1| |#2|) (-1100 |#1| |#2|)) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-619 (-1100 |#1| |#2|)) (-619 (-1100 |#1| |#2|))) NIL (-12 (|has| (-1100 |#1| |#2|) (-301 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063))))) (-2039 (((-112) $ $) 50)) (-1616 (((-112) $) 22)) (-3319 (($) 24)) (-3171 (((-1100 |#1| |#2|) $ "value") NIL)) (-4234 (((-548) $ $) NIL)) (-2740 (((-112) $) 44)) (-3945 (((-745) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327))) (((-745) (-1100 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-1100 |#1| |#2|) (-1063))))) (-2113 (($ $) 49)) (-3754 (($ (-1100 |#1| |#2|)) 9) (($ |#1| |#2| (-619 $)) 12) (($ |#1| |#2| (-619 (-1100 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-619 |#2|)) 17)) (-3394 (((-619 |#2|) $) 81)) (-3743 (((-832) $) 73 (|has| (-1100 |#1| |#2|) (-592 (-832))))) (-2956 (((-619 $) $) 28)) (-4224 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3548 (((-112) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 64 (|has| (-1100 |#1| |#2|) (-1063)))) (-3643 (((-745) $) 58 (|has| $ (-6 -4327))))) -(((-1101 |#1| |#2|) (-13 (-979 (-1100 |#1| |#2|)) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3483 ((-3 $ "failed") $)) (-15 -1660 ($ $)) (-15 -3754 ($ (-1100 |#1| |#2|))) (-15 -3754 ($ |#1| |#2| (-619 $))) (-15 -3754 ($ |#1| |#2| (-619 (-1100 |#1| |#2|)))) (-15 -3754 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3394 ((-619 |#2|) $)) (-15 -3845 ((-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) $)) (-15 -1651 ((-112) (-1100 |#1| |#2|) $)) (-15 -1643 ((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3699 ($ (-1100 |#1| |#2|) $)) (-15 -1636 ($ (-1100 |#1| |#2|) $)) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)))) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1101)) -((-3483 (*1 *1 *1) (|partial| -12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1101 *2 *3))) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3754 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1100 *2 *3))) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)))) (-3754 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-619 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1651 (*1 *2 *3 *1) (-12 (-5 *3 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)))) (-1643 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1100 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-1636 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-1626 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-619 (-1100 *3 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-1626 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1100 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *1 (-1101 *4 *5))))) -(-13 (-979 (-1100 |#1| |#2|)) (-10 -8 (-6 -4328) (-6 -4327) (-15 -3483 ((-3 $ "failed") $)) (-15 -1660 ($ $)) (-15 -3754 ($ (-1100 |#1| |#2|))) (-15 -3754 ($ |#1| |#2| (-619 $))) (-15 -3754 ($ |#1| |#2| (-619 (-1100 |#1| |#2|)))) (-15 -3754 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3394 ((-619 |#2|) $)) (-15 -3845 ((-619 (-2 (|:| |val| |#1|) (|:| -1806 |#2|))) $)) (-15 -1651 ((-112) (-1100 |#1| |#2|) $)) (-15 -1643 ((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3699 ($ (-1100 |#1| |#2|) $)) (-15 -1636 ($ (-1100 |#1| |#2|) $)) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)))) (-15 -1626 ($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3508 (($ $) NIL)) (-2707 ((|#2| $) NIL)) (-3785 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3495 (($ (-663 |#2|)) 47)) (-3808 (((-112) $) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-2114 (($ |#2|) 9)) (-3030 (($) NIL T CONST)) (-3691 (($ $) 60 (|has| |#2| (-299)))) (-3717 (((-233 |#1| |#2|) $ (-548)) 34)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 |#2| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) ((|#2| $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) 74)) (-2103 (((-745) $) 62 (|has| |#2| (-540)))) (-3899 ((|#2| $ (-548) (-548)) NIL)) (-1934 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2266 (((-112) $) NIL)) (-3681 (((-745) $) 64 (|has| |#2| (-540)))) (-3669 (((-619 (-233 |#1| |#2|)) $) 68 (|has| |#2| (-540)))) (-4205 (((-745) $) NIL)) (-4216 (((-745) $) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-2057 ((|#2| $) 58 (|has| |#2| (-6 (-4329 "*"))))) (-3764 (((-548) $) NIL)) (-3742 (((-548) $) NIL)) (-2342 (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-3753 (((-548) $) NIL)) (-3729 (((-548) $) NIL)) (-3817 (($ (-619 (-619 |#2|))) 29)) (-3960 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2401 (((-619 (-619 |#2|)) $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-2369 (((-3 $ "failed") $) 71 (|has| |#2| (-355)))) (-3932 (((-1082) $) NIL)) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540)))) (-3537 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ (-548) (-548) |#2|) NIL) ((|#2| $ (-548) (-548)) NIL)) (-4050 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2077 ((|#2| $) NIL)) (-2102 (($ (-619 |#2|)) 42)) (-3797 (((-112) $) NIL)) (-2090 (((-233 |#1| |#2|) $) NIL)) (-2068 ((|#2| $) 56 (|has| |#2| (-6 (-4329 "*"))))) (-3945 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 83 (|has| |#2| (-593 (-524))))) (-3704 (((-233 |#1| |#2|) $ (-548)) 36)) (-3743 (((-832) $) 39) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#2| (-1007 (-399 (-548))))) (($ |#2|) NIL) (((-663 |#2|) $) 44)) (-3835 (((-745)) 17)) (-3548 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-3774 (((-112) $) NIL)) (-3107 (($) 11 T CONST)) (-3118 (($) 14 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-226))) (($ $) NIL (|has| |#2| (-226)))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) 54) (($ $ (-548)) 73 (|has| |#2| (-355)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) 50) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) 52)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1102 |#1| |#2|) (-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-10 -8 (-15 -3508 ($ $)) (-15 -3495 ($ (-663 |#2|))) (-15 -3743 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4329 "*"))) (-6 -4316) |%noBranch|) (IF (|has| |#2| (-6 (-4329 "*"))) (IF (|has| |#2| (-6 -4324)) (-6 -4324) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) (-745) (-1016)) (T -1102)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745)) (-4 *4 (-1016)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-1102 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745))))) -(-13 (-1085 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-592 (-663 |#2|)) (-10 -8 (-15 -3508 ($ $)) (-15 -3495 ($ (-663 |#2|))) (-15 -3743 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4329 "*"))) (-6 -4316) |%noBranch|) (IF (|has| |#2| (-6 (-4329 "*"))) (IF (|has| |#2| (-6 -4324)) (-6 -4324) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-593 (-524))) (-6 (-593 (-524))) |%noBranch|))) -((-3552 (($ $) 19)) (-3517 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-2683 (((-112) $ $) 24)) (-3574 (($ $) 17)) (-3171 (((-142) $ (-548) (-142)) NIL) (((-142) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL) (($ $ $) 29)) (-3743 (($ (-142)) 27) (((-832) $) NIL))) -(((-1103 |#1|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3517 (|#1| |#1| (-139))) (-15 -3517 (|#1| |#1| (-142))) (-15 -3743 (|#1| (-142))) (-15 -2683 ((-112) |#1| |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -3171 ((-142) |#1| (-548))) (-15 -3171 ((-142) |#1| (-548) (-142)))) (-1104)) (T -1103)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3517 (|#1| |#1| (-139))) (-15 -3517 (|#1| |#1| (-142))) (-15 -3743 (|#1| (-142))) (-15 -2683 ((-112) |#1| |#1|)) (-15 -3552 (|#1| |#1|)) (-15 -3574 (|#1| |#1|)) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -3171 ((-142) |#1| (-548))) (-15 -3171 ((-142) |#1| (-548) (-142)))) -((-3730 (((-112) $ $) 19 (|has| (-142) (-1063)))) (-3541 (($ $) 120)) (-3552 (($ $) 121)) (-3517 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) 118)) (-2642 (((-112) $ $ (-548)) 117)) (-3530 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 (((-142) $ (-548) (-142)) 52 (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3377 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-2541 (($ $ (-1185 (-548)) $) 114)) (-3484 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) 53 (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) 51)) (-2683 (((-112) $ $) 119)) (-2621 (((-548) (-1 (-112) (-142)) $) 97) (((-548) (-142) $) 96 (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) 95 (|has| (-142) (-1063))) (((-548) $ $ (-548)) 113) (((-548) (-139) $ (-548)) 112)) (-1934 (((-619 (-142)) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) 115)) (-3407 (((-745) $ $ (-142)) 116)) (-3960 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3563 (($ $) 122)) (-3574 (($ $) 123)) (-4248 (((-112) $ (-745)) 10)) (-3392 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2546 (((-1118) $) 22 (|has| (-142) (-1063)))) (-2387 (($ (-142) $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| (-142) (-1063)))) (-3453 (((-142) $) 42 (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-4159 (($ $ (-142)) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) 26 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 (((-142) $ (-548) (-142)) 50) (((-142) $ (-548)) 49) (($ $ (-1185 (-548))) 63) (($ $ $) 102)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4327))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) 70)) (-1831 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (($ (-142)) 111) (((-832) $) 18 (|has| (-142) (-592 (-832))))) (-3548 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2241 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2214 (((-112) $ $) 20 (|has| (-142) (-1063)))) (-2252 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2234 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-1845 (*1 *1 *1) (-4 *1 (-1099))) (-1740 (*1 *1 *1) (-4 *1 (-1099))) (-1645 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1535 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1418 (*1 *1 *1 *1) (-4 *1 (-1099))) (-1329 (*1 *1 *1 *1) (-4 *1 (-1099))) (-2554 (*1 *1 *1 *1) (-4 *1 (-1099))) (-2420 (*1 *1 *1 *1) (-4 *1 (-1099))) (-2292 (*1 *1 *1) (-4 *1 (-1099))) (-2165 (*1 *1 *1 *1) (-4 *1 (-1099))) (-2554 (*1 *1 *1) (-4 *1 (-1099))) (-2040 (*1 *1 *1) (-4 *1 (-1099)))) +(-13 (-10 -8 (-15 -2040 ($ $)) (-15 -2554 ($ $)) (-15 -2165 ($ $ $)) (-15 -2292 ($ $)) (-15 -2420 ($ $ $)) (-15 -2554 ($ $ $)) (-15 -1329 ($ $ $)) (-15 -1418 ($ $ $)) (-15 -1535 ($ $ $)) (-15 -1645 ($ $ $)) (-15 -1740 ($ $)) (-15 -1845 ($ $)))) +((-3821 (((-112) $ $) 41)) (-4152 ((|#1| $) 15)) (-3803 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-1451 (((-112) $) 17)) (-4219 (($ $ |#1|) 28)) (-4064 (($ $ (-112)) 30)) (-3955 (($ $) 31)) (-4143 (($ $ |#2|) 29)) (-1917 (((-1118) $) NIL)) (-3870 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3979 (((-1082) $) NIL)) (-3169 (((-112) $) 14)) (-4011 (($) 10)) (-2265 (($ $) 27)) (-3841 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1965 |#2|))) 21) (((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1965 |#2|)))) 24) (((-619 $) |#1| (-619 |#2|)) 26)) (-1911 ((|#2| $) 16)) (-3834 (((-832) $) 50)) (-2371 (((-112) $ $) 39))) +(((-1100 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -4011 ($)) (-15 -3169 ((-112) $)) (-15 -4152 (|#1| $)) (-15 -1911 (|#2| $)) (-15 -1451 ((-112) $)) (-15 -3841 ($ |#1| |#2| (-112))) (-15 -3841 ($ |#1| |#2|)) (-15 -3841 ($ (-2 (|:| |val| |#1|) (|:| -1965 |#2|)))) (-15 -3841 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1965 |#2|))))) (-15 -3841 ((-619 $) |#1| (-619 |#2|))) (-15 -2265 ($ $)) (-15 -4219 ($ $ |#1|)) (-15 -4143 ($ $ |#2|)) (-15 -4064 ($ $ (-112))) (-15 -3955 ($ $)) (-15 -3870 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3803 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1100)) +((-4011 (*1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-4152 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *2 *3)) (-4 *3 (-13 (-1063) (-34))))) (-1911 (*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3841 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1965 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *4)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1965 *5)))) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *4 *5))) (-5 *1 (-1100 *4 *5)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *3 *5))) (-5 *1 (-1100 *3 *5)) (-4 *3 (-13 (-1063) (-34))))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-4219 (*1 *1 *1 *2) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-4143 (*1 *1 *1 *2) (-12 (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))) (-4 *2 (-13 (-1063) (-34))))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3870 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6)))) (-3803 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34)))))) +(-13 (-1063) (-10 -8 (-15 -4011 ($)) (-15 -3169 ((-112) $)) (-15 -4152 (|#1| $)) (-15 -1911 (|#2| $)) (-15 -1451 ((-112) $)) (-15 -3841 ($ |#1| |#2| (-112))) (-15 -3841 ($ |#1| |#2|)) (-15 -3841 ($ (-2 (|:| |val| |#1|) (|:| -1965 |#2|)))) (-15 -3841 ((-619 $) (-619 (-2 (|:| |val| |#1|) (|:| -1965 |#2|))))) (-15 -3841 ((-619 $) |#1| (-619 |#2|))) (-15 -2265 ($ $)) (-15 -4219 ($ $ |#1|)) (-15 -4143 ($ $ |#2|)) (-15 -4064 ($ $ (-112))) (-15 -3955 ($ $)) (-15 -3870 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3803 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3821 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-4152 (((-1100 |#1| |#2|) $) 25)) (-3592 (($ $) 76)) (-3417 (((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3248 (($ $ $ (-619 (-1100 |#1| |#2|))) 90) (($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-2826 (((-112) $ (-745)) NIL)) (-2741 (((-1100 |#1| |#2|) $ (-1100 |#1| |#2|)) 43 (|has| $ (-6 -4329)))) (-2238 (((-1100 |#1| |#2|) $ "value" (-1100 |#1| |#2|)) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-1485 (((-619 (-2 (|:| |val| |#1|) (|:| -1965 |#2|))) $) 80)) (-3342 (($ (-1100 |#1| |#2|) $) 39)) (-3801 (($ (-1100 |#1| |#2|) $) 31)) (-2973 (((-619 (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 51)) (-3499 (((-112) (-1100 |#1| |#2|) $) 82)) (-1655 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 (-1100 |#1| |#2|)) $) 55 (|has| $ (-6 -4328)))) (-3860 (((-112) (-1100 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-1100 |#1| |#2|) (-1063))))) (-1850 (($ (-1 (-1100 |#1| |#2|) (-1100 |#1| |#2|)) $) 47 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-1100 |#1| |#2|) (-1100 |#1| |#2|)) $) 46)) (-2024 (((-112) $ (-745)) NIL)) (-3579 (((-619 (-1100 |#1| |#2|)) $) 53)) (-3033 (((-112) $) 42)) (-1917 (((-1118) $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3979 (((-1082) $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-3101 (((-3 $ "failed") $) 75)) (-2462 (((-112) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-1100 |#1| |#2|)))) NIL (-12 (|has| (-1100 |#1| |#2|) (-300 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-285 (-1100 |#1| |#2|))) NIL (-12 (|has| (-1100 |#1| |#2|) (-300 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-1100 |#1| |#2|) (-1100 |#1| |#2|)) NIL (-12 (|has| (-1100 |#1| |#2|) (-300 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063)))) (($ $ (-619 (-1100 |#1| |#2|)) (-619 (-1100 |#1| |#2|))) NIL (-12 (|has| (-1100 |#1| |#2|) (-300 (-1100 |#1| |#2|))) (|has| (-1100 |#1| |#2|) (-1063))))) (-2911 (((-112) $ $) 50)) (-3169 (((-112) $) 22)) (-4011 (($) 24)) (-3329 (((-1100 |#1| |#2|) $ "value") NIL)) (-1887 (((-547) $ $) NIL)) (-2094 (((-112) $) 44)) (-3987 (((-745) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4328))) (((-745) (-1100 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-1100 |#1| |#2|) (-1063))))) (-2265 (($ $) 49)) (-3841 (($ (-1100 |#1| |#2|)) 9) (($ |#1| |#2| (-619 $)) 12) (($ |#1| |#2| (-619 (-1100 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-619 |#2|)) 17)) (-3580 (((-619 |#2|) $) 81)) (-3834 (((-832) $) 73 (|has| (-1100 |#1| |#2|) (-591 (-832))))) (-3668 (((-619 $) $) 28)) (-1770 (((-112) $ $) NIL (|has| (-1100 |#1| |#2|) (-1063)))) (-2583 (((-112) (-1 (-112) (-1100 |#1| |#2|)) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 64 (|has| (-1100 |#1| |#2|) (-1063)))) (-3763 (((-745) $) 58 (|has| $ (-6 -4328))))) +(((-1101 |#1| |#2|) (-13 (-979 (-1100 |#1| |#2|)) (-10 -8 (-6 -4329) (-6 -4328) (-15 -3101 ((-3 $ "failed") $)) (-15 -3592 ($ $)) (-15 -3841 ($ (-1100 |#1| |#2|))) (-15 -3841 ($ |#1| |#2| (-619 $))) (-15 -3841 ($ |#1| |#2| (-619 (-1100 |#1| |#2|)))) (-15 -3841 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3580 ((-619 |#2|) $)) (-15 -1485 ((-619 (-2 (|:| |val| |#1|) (|:| -1965 |#2|))) $)) (-15 -3499 ((-112) (-1100 |#1| |#2|) $)) (-15 -3417 ((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3801 ($ (-1100 |#1| |#2|) $)) (-15 -3342 ($ (-1100 |#1| |#2|) $)) (-15 -3248 ($ $ $ (-619 (-1100 |#1| |#2|)))) (-15 -3248 ($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1063) (-34)) (-13 (-1063) (-34))) (T -1101)) +((-3101 (*1 *1 *1) (|partial| -12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3592 (*1 *1 *1) (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3841 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1101 *2 *3))) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))))) (-3841 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-619 (-1100 *2 *3))) (-4 *2 (-13 (-1063) (-34))) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)))) (-3841 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-619 *3)) (-4 *3 (-13 (-1063) (-34))) (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-619 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))))) (-3499 (*1 *2 *3 *1) (-12 (-5 *3 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)))) (-3417 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1100 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6)))) (-3801 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3342 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3248 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-619 (-1100 *3 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) (-3248 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-1100 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *1 (-1101 *4 *5))))) +(-13 (-979 (-1100 |#1| |#2|)) (-10 -8 (-6 -4329) (-6 -4328) (-15 -3101 ((-3 $ "failed") $)) (-15 -3592 ($ $)) (-15 -3841 ($ (-1100 |#1| |#2|))) (-15 -3841 ($ |#1| |#2| (-619 $))) (-15 -3841 ($ |#1| |#2| (-619 (-1100 |#1| |#2|)))) (-15 -3841 ($ |#1| |#2| |#1| (-619 |#2|))) (-15 -3580 ((-619 |#2|) $)) (-15 -1485 ((-619 (-2 (|:| |val| |#1|) (|:| -1965 |#2|))) $)) (-15 -3499 ((-112) (-1100 |#1| |#2|) $)) (-15 -3417 ((-112) (-1100 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3801 ($ (-1100 |#1| |#2|) $)) (-15 -3342 ($ (-1100 |#1| |#2|) $)) (-15 -3248 ($ $ $ (-619 (-1100 |#1| |#2|)))) (-15 -3248 ($ $ $ (-619 (-1100 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2150 (($ $) NIL)) (-2890 ((|#2| $) NIL)) (-3047 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-2006 (($ (-663 |#2|)) 47)) (-3237 (((-112) $) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-2294 (($ |#2|) 9)) (-3219 (($) NIL T CONST)) (-3340 (($ $) 60 (|has| |#2| (-298)))) (-3578 (((-232 |#1| |#2|) $ (-547)) 34)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 |#2| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) ((|#2| $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) 74)) (-3107 (((-745) $) 62 (|has| |#2| (-539)))) (-1793 ((|#2| $ (-547) (-547)) NIL)) (-2973 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4114 (((-112) $) NIL)) (-1318 (((-745) $) 64 (|has| |#2| (-539)))) (-4273 (((-619 (-232 |#1| |#2|)) $) 68 (|has| |#2| (-539)))) (-2126 (((-745) $) NIL)) (-2139 (((-745) $) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-3015 ((|#2| $) 58 (|has| |#2| (-6 (-4330 "*"))))) (-2865 (((-547) $) NIL)) (-3790 (((-547) $) NIL)) (-3666 (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2769 (((-547) $) NIL)) (-3684 (((-547) $) NIL)) (-3933 (($ (-619 (-619 |#2|))) 29)) (-1850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3051 (((-619 (-619 |#2|)) $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-2793 (((-3 $ "failed") $) 71 (|has| |#2| (-354)))) (-3979 (((-1082) $) NIL)) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539)))) (-2462 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ (-547) (-547) |#2|) NIL) ((|#2| $ (-547) (-547)) NIL)) (-3443 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-1963 ((|#2| $) NIL)) (-2192 (($ (-619 |#2|)) 42)) (-3137 (((-112) $) NIL)) (-2082 (((-232 |#1| |#2|) $) NIL)) (-3096 ((|#2| $) 56 (|has| |#2| (-6 (-4330 "*"))))) (-3987 (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2265 (($ $) NIL)) (-2829 (((-523) $) 83 (|has| |#2| (-592 (-523))))) (-3456 (((-232 |#1| |#2|) $ (-547)) 36)) (-3834 (((-832) $) 39) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#2| (-1007 (-398 (-547))))) (($ |#2|) NIL) (((-663 |#2|) $) 44)) (-2311 (((-745)) 17)) (-2583 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2955 (((-112) $) NIL)) (-3267 (($) 11 T CONST)) (-3277 (($) 14 T CONST)) (-1686 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-745)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) 54) (($ $ (-547)) 73 (|has| |#2| (-354)))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-232 |#1| |#2|) $ (-232 |#1| |#2|)) 50) (((-232 |#1| |#2|) (-232 |#1| |#2|) $) 52)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1102 |#1| |#2|) (-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-10 -8 (-15 -2150 ($ $)) (-15 -2006 ($ (-663 |#2|))) (-15 -3834 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4330 "*"))) (-6 -4317) |%noBranch|) (IF (|has| |#2| (-6 (-4330 "*"))) (IF (|has| |#2| (-6 -4325)) (-6 -4325) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) (-745) (-1016)) (T -1102)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745)) (-4 *4 (-1016)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-1102 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745))))) +(-13 (-1085 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-591 (-663 |#2|)) (-10 -8 (-15 -2150 ($ $)) (-15 -2006 ($ (-663 |#2|))) (-15 -3834 ((-663 |#2|) $)) (IF (|has| |#2| (-6 (-4330 "*"))) (-6 -4317) |%noBranch|) (IF (|has| |#2| (-6 (-4330 "*"))) (IF (|has| |#2| (-6 -4325)) (-6 -4325) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-592 (-523))) (-6 (-592 (-523))) |%noBranch|))) +((-2617 (($ $) 19)) (-2250 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-2332 (((-112) $ $) 24)) (-1493 (($ $) 17)) (-3329 (((-142) $ (-547) (-142)) NIL) (((-142) $ (-547)) NIL) (($ $ (-1185 (-547))) NIL) (($ $ $) 29)) (-3834 (($ (-142)) 27) (((-832) $) NIL))) +(((-1103 |#1|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -3329 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1| (-139))) (-15 -2250 (|#1| |#1| (-142))) (-15 -3834 (|#1| (-142))) (-15 -2332 ((-112) |#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -3329 ((-142) |#1| (-547))) (-15 -3329 ((-142) |#1| (-547) (-142)))) (-1104)) (T -1103)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -3329 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1| (-139))) (-15 -2250 (|#1| |#1| (-142))) (-15 -3834 (|#1| (-142))) (-15 -2332 ((-112) |#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -3329 ((-142) |#1| (-547))) (-15 -3329 ((-142) |#1| (-547) (-142)))) +((-3821 (((-112) $ $) 19 (|has| (-142) (-1063)))) (-2502 (($ $) 120)) (-2617 (($ $) 121)) (-2250 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2305 (((-112) $ $) 118)) (-2277 (((-112) $ $ (-547)) 117)) (-2378 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-2951 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2765 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4329))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2238 (((-142) $ (-547) (-142)) 52 (|has| $ (-6 -4329))) (((-142) $ (-1185 (-547)) (-142)) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3577 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2034 (($ $) 90 (|has| $ (-6 -4329)))) (-3048 (($ $) 100)) (-4118 (($ $ (-1185 (-547)) $) 114)) (-3664 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4328)))) (-2542 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4328))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4328)))) (-1861 (((-142) $ (-547) (-142)) 53 (|has| $ (-6 -4329)))) (-1793 (((-142) $ (-547)) 51)) (-2332 (((-112) $ $) 119)) (-2867 (((-547) (-1 (-112) (-142)) $) 97) (((-547) (-142) $) 96 (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) 95 (|has| (-142) (-1063))) (((-547) $ $ (-547)) 113) (((-547) (-139) $ (-547)) 112)) (-2973 (((-619 (-142)) $) 30 (|has| $ (-6 -4328)))) (-3732 (($ (-745) (-142)) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 87 (|has| (-142) (-821)))) (-1294 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-3666 (((-619 (-142)) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 86 (|has| (-142) (-821)))) (-2295 (((-112) $ $ (-142)) 115)) (-2459 (((-745) $ $ (-142)) 116)) (-1850 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-1372 (($ $) 122)) (-1493 (($ $) 123)) (-2024 (((-112) $ (-745)) 10)) (-3591 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1917 (((-1118) $) 22 (|has| (-142) (-1063)))) (-2599 (($ (-142) $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| (-142) (-1063)))) (-3634 (((-142) $) 42 (|has| (-547) (-821)))) (-3461 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2418 (($ $ (-142)) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-142)))) 26 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) 25 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-1758 (((-619 (-142)) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 (((-142) $ (-547) (-142)) 50) (((-142) $ (-547)) 49) (($ $ (-1185 (-547))) 63) (($ $ $) 102)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3987 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4328))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 91 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| (-142) (-592 (-523))))) (-3841 (($ (-619 (-142))) 70)) (-1935 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (($ (-142)) 111) (((-832) $) 18 (|has| (-142) (-591 (-832))))) (-2583 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2408 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2371 (((-112) $ $) 20 (|has| (-142) (-1063)))) (-2421 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2396 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1104) (-138)) (T -1104)) -((-3574 (*1 *1 *1) (-4 *1 (-1104))) (-3563 (*1 *1 *1) (-4 *1 (-1104))) (-3552 (*1 *1 *1) (-4 *1 (-1104))) (-3541 (*1 *1 *1) (-4 *1 (-1104))) (-2683 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112)))) (-2665 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112)))) (-2642 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-548)) (-5 *2 (-112)))) (-3407 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-745)))) (-2141 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-112)))) (-2541 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1185 (-548))))) (-2621 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548)))) (-2621 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548)) (-5 *3 (-139)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1104)))) (-3530 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) (-3530 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3377 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3377 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3171 (*1 *1 *1 *1) (-4 *1 (-1104)))) -(-13 (-19 (-142)) (-10 -8 (-15 -3574 ($ $)) (-15 -3563 ($ $)) (-15 -3552 ($ $)) (-15 -3541 ($ $)) (-15 -2683 ((-112) $ $)) (-15 -2665 ((-112) $ $)) (-15 -2642 ((-112) $ $ (-548))) (-15 -3407 ((-745) $ $ (-142))) (-15 -2141 ((-112) $ $ (-142))) (-15 -2541 ($ $ (-1185 (-548)) $)) (-15 -2621 ((-548) $ $ (-548))) (-15 -2621 ((-548) (-139) $ (-548))) (-15 -3743 ($ (-142))) (-15 -3530 ((-619 $) $ (-142))) (-15 -3530 ((-619 $) $ (-139))) (-15 -3517 ($ $ (-142))) (-15 -3517 ($ $ (-139))) (-15 -3392 ($ $ (-142))) (-15 -3392 ($ $ (-139))) (-15 -3377 ($ $ (-142))) (-15 -3377 ($ $ (-139))) (-15 -3171 ($ $ $)))) -(((-34) . T) ((-101) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-592 (-832)) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821)) (|has| (-142) (-592 (-832)))) ((-149 #0=(-142)) . T) ((-593 (-524)) |has| (-142) (-593 (-524))) ((-278 #1=(-548) #0#) . T) ((-280 #1# #0#) . T) ((-301 #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-365 #0#) . T) ((-480 #0#) . T) ((-583 #1# #0#) . T) ((-504 #0# #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-821) |has| (-142) (-821)) ((-1063) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-1172) . T)) -((-3653 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745)) 94)) (-3619 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 54)) (-1312 (((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)) 85)) (-3598 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-3630 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745)) 56) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112)) 58)) (-3642 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 77)) (-2591 (((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) 80)) (-3609 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|) 53)) (-3585 (((-745) (-619 |#4|) (-619 |#5|)) 19))) -(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1105)) -((-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1105 *4 *5 *6 *7 *8)))) (-3653 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1105 *7 *8 *9 *10 *11)))) (-3642 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3642 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3630 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3630 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3609 (*1 *2 *3 *4) (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3585 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3598 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -3609 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3619 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5| (-745))) (-15 -3630 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) |#4| |#5|)) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -3642 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3653 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))))) (-745))) (-15 -2591 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|)))) (-15 -1312 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1806 |#5|))) (-745)))) -((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) 110) (((-619 $) (-619 |#4|) (-112)) 111) (((-619 $) (-619 |#4|) (-112) (-112)) 109) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-1688 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| $) 84)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 62)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) 26 (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2213 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 39)) (-2038 ((|#4| |#4| $) 65)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-2258 (((-112) |#4| $) NIL)) (-3425 (((-112) |#4| $) NIL)) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3665 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 124)) (-1934 (((-619 |#4|) $) 16 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 33)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 17 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3960 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 21)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3369 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-3353 (((-619 (-2 (|:| |val| |#4|) (|:| -1806 $))) |#4| |#4| $) 103)) (-3724 (((-3 |#4| "failed") $) 37)) (-3387 (((-619 $) |#4| $) 88)) (-3412 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-3400 (((-619 (-2 (|:| |val| (-112)) (|:| -1806 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-2520 (((-619 $) |#4| $) 107) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 108) (((-619 $) |#4| (-619 $)) NIL)) (-3678 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 119)) (-3688 (($ |#4| $) 75) (($ (-619 |#4|) $) 76) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2179 (((-619 |#4|) $) NIL)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) NIL)) (-2199 (((-112) $ $) NIL)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 35)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) 48)) (-1656 (($ $ |#4|) NIL) (((-619 $) |#4| $) 90) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 86)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 13)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) 12)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 20)) (-2298 (($ $ |#3|) 42)) (-2319 (($ $ |#3|) 44)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) 31) (((-619 |#4|) $) 40)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3338 (((-619 $) |#4| $) 54) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2247 (((-112) |#4| $) NIL)) (-2406 (((-112) |#3| $) 61)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1106 |#1| |#2| |#3| |#4|) (-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-443) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1106)) -((-3688 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *3))) (-5 *1 (-1106 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-3665 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-1106 *5 *6 *7 *8))))) (-5 *1 (-1106 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) -(-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3688 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -2004 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -3678 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -3665 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2088 ((|#1| $) 34)) (-3641 (($ (-619 |#1|)) 39)) (-2028 (((-112) $ (-745)) NIL)) (-3030 (($) NIL T CONST)) (-2043 ((|#1| |#1| $) 36)) (-2032 ((|#1| $) 32)) (-1934 (((-619 |#1|) $) 18 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 22)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1346 ((|#1| $) 35)) (-2539 (($ |#1| $) 37)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1357 ((|#1| $) 33)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 31)) (-3319 (($) 38)) (-3045 (((-745) $) 29)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 27)) (-3743 (((-832) $) 14 (|has| |#1| (-592 (-832))))) (-1368 (($ (-619 |#1|)) NIL)) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 17 (|has| |#1| (-1063)))) (-3643 (((-745) $) 30 (|has| $ (-6 -4327))))) -(((-1107 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3641 ($ (-619 |#1|))))) (-1172)) (T -1107)) -((-3641 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1107 *3))))) -(-13 (-1083 |#1|) (-10 -8 (-15 -3641 ($ (-619 |#1|))))) -((-2089 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1185 (-548)) |#2|) 44) ((|#2| $ (-548) |#2|) 41)) (-3700 (((-112) $) 12)) (-3960 (($ (-1 |#2| |#2|) $) 39)) (-3453 ((|#2| $) NIL) (($ $ (-745)) 17)) (-4159 (($ $ |#2|) 40)) (-3712 (((-112) $) 11)) (-3171 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1185 (-548))) 31) ((|#2| $ (-548)) 23) ((|#2| $ (-548) |#2|) NIL)) (-3659 (($ $ $) 47) (($ $ |#2|) NIL)) (-1831 (($ $ $) 33) (($ |#2| $) NIL) (($ (-619 $)) 36) (($ $ |#2|) NIL))) -(((-1108 |#1| |#2|) (-10 -8 (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| "last")) (-15 -3171 (|#1| |#1| "rest")) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|))) (-1109 |#2|) (-1172)) (T -1108)) -NIL -(-10 -8 (-15 -3700 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)) (-15 -2089 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548) |#2|)) (-15 -3171 (|#2| |#1| (-548))) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1831 (|#1| |#1| |#2|)) (-15 -1831 (|#1| (-619 |#1|))) (-15 -3171 (|#1| |#1| (-1185 (-548)))) (-15 -2089 (|#2| |#1| (-1185 (-548)) |#2|)) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3659 (|#1| |#1| |#2|)) (-15 -3659 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| "last")) (-15 -3171 (|#1| |#1| "rest")) (-15 -3453 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "first")) (-15 -3453 (|#2| |#1|)) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -3171 (|#2| |#1| "value")) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-4149 (((-1223) $ (-548) (-548)) 97 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 117 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 86 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4327)))) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-3484 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4327))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3971 ((|#1| $ (-548) |#1|) 85 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 87)) (-3700 (((-112) $) 83)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) 108)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 95 (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 94 (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-2387 (($ $ $ (-548)) 116) (($ |#1| $ (-548)) 115)) (-4201 (((-619 (-548)) $) 92)) (-4212 (((-112) (-548) $) 91)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-4159 (($ $ |#1|) 96 (|has| $ (-6 -4328)))) (-3712 (((-112) $) 84)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 90)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-548))) 112) ((|#1| $ (-548)) 89) ((|#1| $ (-548) |#1|) 88)) (-4234 (((-548) $ $) 44)) (-2008 (($ $ (-1185 (-548))) 114) (($ $ (-548)) 113)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-2591 (((-524) $) 98 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 107)) (-3659 (($ $ $) 61 (|has| $ (-6 -4328))) (($ $ |#1|) 60 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-1493 (*1 *1 *1) (-4 *1 (-1104))) (-1372 (*1 *1 *1) (-4 *1 (-1104))) (-2617 (*1 *1 *1) (-4 *1 (-1104))) (-2502 (*1 *1 *1) (-4 *1 (-1104))) (-2332 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112)))) (-2305 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112)))) (-2277 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-547)) (-5 *2 (-112)))) (-2459 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-745)))) (-2295 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-112)))) (-4118 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1185 (-547))))) (-2867 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-547)))) (-2867 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-547)) (-5 *3 (-139)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1104)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) (-2378 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) (-2250 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-2250 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3591 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3591 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3577 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142)))) (-3577 (*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) (-3329 (*1 *1 *1 *1) (-4 *1 (-1104)))) +(-13 (-19 (-142)) (-10 -8 (-15 -1493 ($ $)) (-15 -1372 ($ $)) (-15 -2617 ($ $)) (-15 -2502 ($ $)) (-15 -2332 ((-112) $ $)) (-15 -2305 ((-112) $ $)) (-15 -2277 ((-112) $ $ (-547))) (-15 -2459 ((-745) $ $ (-142))) (-15 -2295 ((-112) $ $ (-142))) (-15 -4118 ($ $ (-1185 (-547)) $)) (-15 -2867 ((-547) $ $ (-547))) (-15 -2867 ((-547) (-139) $ (-547))) (-15 -3834 ($ (-142))) (-15 -2378 ((-619 $) $ (-142))) (-15 -2378 ((-619 $) $ (-139))) (-15 -2250 ($ $ (-142))) (-15 -2250 ($ $ (-139))) (-15 -3591 ($ $ (-142))) (-15 -3591 ($ $ (-139))) (-15 -3577 ($ $ (-142))) (-15 -3577 ($ $ (-139))) (-15 -3329 ($ $ $)))) +(((-34) . T) ((-101) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-591 (-832)) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821)) (|has| (-142) (-591 (-832)))) ((-149 #0=(-142)) . T) ((-592 (-523)) |has| (-142) (-592 (-523))) ((-277 #1=(-547) #0#) . T) ((-279 #1# #0#) . T) ((-300 #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-364 #0#) . T) ((-479 #0#) . T) ((-582 #1# #0#) . T) ((-503 #0# #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-821) |has| (-142) (-821)) ((-1063) -1524 (|has| (-142) (-1063)) (|has| (-142) (-821))) ((-1172) . T)) +((-4130 (((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-745)) 94)) (-1958 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745)) 54)) (-3750 (((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-745)) 85)) (-1735 (((-745) (-619 |#4|) (-619 |#5|)) 27)) (-3911 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745)) 56) (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745) (-112)) 58)) (-4030 (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112)) 77)) (-2829 (((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) 80)) (-1853 (((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|) 53)) (-1617 (((-745) (-619 |#4|) (-619 |#5|)) 19))) +(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1617 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1735 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1853 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4130 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-745))) (-15 -2829 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -3750 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-745)))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|) (-1072 |#1| |#2| |#3| |#4|)) (T -1105)) +((-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1105 *4 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-619 *11)) (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1965 *11)))))) (-5 *6 (-745)) (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1965 *11)))) (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-5 *1 (-1105 *7 *8 *9 *10 *11)))) (-4030 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-4030 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-3911 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-3911 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-3911 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767)) (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1105 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) (-1958 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) (-1853 (*1 *2 *3 *4) (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-619 *4)) (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3)))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1617 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1735 ((-745) (-619 |#4|) (-619 |#5|))) (-15 -1853 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -1958 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745) (-112))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5| (-745))) (-15 -3911 ((-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) |#4| |#5|)) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112))) (-15 -4030 ((-619 |#5|) (-619 |#4|) (-619 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4130 ((-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-619 |#4|) (-619 |#5|) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-2 (|:| |done| (-619 |#5|)) (|:| |todo| (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))))) (-745))) (-15 -2829 ((-1118) (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|)))) (-15 -3750 ((-1223) (-619 (-2 (|:| |val| (-619 |#4|)) (|:| -1965 |#5|))) (-745)))) +((-3821 (((-112) $ $) NIL)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) NIL)) (-3759 (((-619 $) (-619 |#4|)) 110) (((-619 $) (-619 |#4|) (-112)) 111) (((-619 $) (-619 |#4|) (-112) (-112)) 109) (((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112)) 112)) (-2259 (((-619 |#3|) $) NIL)) (-4286 (((-112) $) NIL)) (-3312 (((-112) $) NIL (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3144 ((|#4| |#4| $) NIL)) (-2745 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| $) 84)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-1476 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 62)) (-3219 (($) NIL T CONST)) (-3990 (((-112) $) 26 (|has| |#1| (-539)))) (-4154 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4075 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4212 (((-112) $) NIL (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1833 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2643 (($ (-619 |#4|)) NIL)) (-3645 (((-3 $ "failed") $) 39)) (-2903 ((|#4| |#4| $) 65)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-3801 (($ |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2733 ((|#4| |#4| $) NIL)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) NIL)) (-4047 (((-112) |#4| $) NIL)) (-3709 (((-112) |#4| $) NIL)) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4235 (((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112)) 124)) (-2973 (((-619 |#4|) $) 16 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1397 ((|#3| $) 33)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#4|) $) 17 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-1850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 21)) (-3623 (((-619 |#3|) $) NIL)) (-3523 (((-112) |#3| $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3240 (((-3 |#4| (-619 $)) |#4| |#4| $) NIL)) (-4258 (((-619 (-2 (|:| |val| |#4|) (|:| -1965 $))) |#4| |#4| $) 103)) (-3817 (((-3 |#4| "failed") $) 37)) (-3389 (((-619 $) |#4| $) 88)) (-3604 (((-3 (-112) (-619 $)) |#4| $) NIL)) (-3489 (((-619 (-2 (|:| |val| (-112)) (|:| -1965 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-1711 (((-619 $) |#4| $) 107) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 108) (((-619 $) |#4| (-619 $)) NIL)) (-1288 (((-619 $) (-619 |#4|) (-112) (-112) (-112)) 119)) (-3308 (($ |#4| $) 75) (($ (-619 |#4|) $) 76) (((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-1499 (((-619 |#4|) $) NIL)) (-2257 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2979 ((|#4| |#4| $) NIL)) (-1694 (((-112) $ $) NIL)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3062 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-3 |#4| "failed") $) 35)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3505 (((-3 $ "failed") $ |#4|) 48)) (-3558 (($ $ |#4|) NIL) (((-619 $) |#4| $) 90) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) 86)) (-2462 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 15)) (-4011 (($) 13)) (-1618 (((-745) $) NIL)) (-3987 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) 12)) (-2829 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 20)) (-3228 (($ $ |#3|) 42)) (-3429 (($ $ |#3|) 44)) (-2817 (($ $) NIL)) (-3324 (($ $ |#3|) NIL)) (-3834 (((-832) $) 31) (((-619 |#4|) $) 40)) (-3423 (((-745) $) NIL (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-4155 (((-619 $) |#4| $) 54) (((-619 $) |#4| (-619 $)) NIL) (((-619 $) (-619 |#4|) $) NIL) (((-619 $) (-619 |#4|) (-619 $)) NIL)) (-2583 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) NIL)) (-3956 (((-112) |#4| $) NIL)) (-3084 (((-112) |#3| $) 61)) (-2371 (((-112) $ $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1106 |#1| |#2| |#3| |#4|) (-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3308 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1288 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -4235 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) (-442) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1106)) +((-3308 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *3))) (-5 *1 (-1106 *5 *6 *7 *3)) (-4 *3 (-1030 *5 *6 *7)))) (-3759 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-3759 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-1288 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) (-4235 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-1106 *5 *6 *7 *8))))) (-5 *1 (-1106 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(-13 (-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3308 ((-619 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112))) (-15 -3759 ((-619 $) (-619 |#4|) (-112) (-112) (-112) (-112))) (-15 -1288 ((-619 $) (-619 |#4|) (-112) (-112) (-112))) (-15 -4235 ((-2 (|:| |val| (-619 |#4|)) (|:| |towers| (-619 $))) (-619 |#4|) (-112) (-112))))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2303 ((|#1| $) 34)) (-3802 (($ (-619 |#1|)) 39)) (-2826 (((-112) $ (-745)) NIL)) (-3219 (($) NIL T CONST)) (-2936 ((|#1| |#1| $) 36)) (-2853 ((|#1| $) 32)) (-2973 (((-619 |#1|) $) 18 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 22)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1959 ((|#1| $) 35)) (-1885 (($ |#1| $) 37)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1373 ((|#1| $) 33)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 31)) (-4011 (($) 38)) (-1313 (((-745) $) 29)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 27)) (-3834 (((-832) $) 14 (|has| |#1| (-591 (-832))))) (-2731 (($ (-619 |#1|)) NIL)) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 17 (|has| |#1| (-1063)))) (-3763 (((-745) $) 30 (|has| $ (-6 -4328))))) +(((-1107 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -3802 ($ (-619 |#1|))))) (-1172)) (T -1107)) +((-3802 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1107 *3))))) +(-13 (-1083 |#1|) (-10 -8 (-15 -3802 ($ (-619 |#1|))))) +((-2238 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1185 (-547)) |#2|) 44) ((|#2| $ (-547) |#2|) 41)) (-3425 (((-112) $) 12)) (-1850 (($ (-1 |#2| |#2|) $) 39)) (-3634 ((|#2| $) NIL) (($ $ (-745)) 17)) (-2418 (($ $ |#2|) 40)) (-3541 (((-112) $) 11)) (-3329 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1185 (-547))) 31) ((|#2| $ (-547)) 23) ((|#2| $ (-547) |#2|) NIL)) (-4187 (($ $ $) 47) (($ $ |#2|) NIL)) (-1935 (($ $ $) 33) (($ |#2| $) NIL) (($ (-619 $)) 36) (($ $ |#2|) NIL))) +(((-1108 |#1| |#2|) (-10 -8 (-15 -3425 ((-112) |#1|)) (-15 -3541 ((-112) |#1|)) (-15 -2238 (|#2| |#1| (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547))) (-15 -2418 (|#1| |#1| |#2|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -1935 (|#1| (-619 |#1|))) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -2238 (|#2| |#1| (-1185 (-547)) |#2|)) (-15 -2238 (|#2| |#1| "last" |#2|)) (-15 -2238 (|#1| |#1| "rest" |#1|)) (-15 -2238 (|#2| |#1| "first" |#2|)) (-15 -4187 (|#1| |#1| |#2|)) (-15 -4187 (|#1| |#1| |#1|)) (-15 -3329 (|#2| |#1| "last")) (-15 -3329 (|#1| |#1| "rest")) (-15 -3634 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "first")) (-15 -3634 (|#2| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#1|)) (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -3329 (|#2| |#1| "value")) (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|))) (-1109 |#2|) (-1172)) (T -1108)) +NIL +(-10 -8 (-15 -3425 ((-112) |#1|)) (-15 -3541 ((-112) |#1|)) (-15 -2238 (|#2| |#1| (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547) |#2|)) (-15 -3329 (|#2| |#1| (-547))) (-15 -2418 (|#1| |#1| |#2|)) (-15 -1935 (|#1| |#1| |#2|)) (-15 -1935 (|#1| (-619 |#1|))) (-15 -3329 (|#1| |#1| (-1185 (-547)))) (-15 -2238 (|#2| |#1| (-1185 (-547)) |#2|)) (-15 -2238 (|#2| |#1| "last" |#2|)) (-15 -2238 (|#1| |#1| "rest" |#1|)) (-15 -2238 (|#2| |#1| "first" |#2|)) (-15 -4187 (|#1| |#1| |#2|)) (-15 -4187 (|#1| |#1| |#1|)) (-15 -3329 (|#2| |#1| "last")) (-15 -3329 (|#1| |#1| "rest")) (-15 -3634 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "first")) (-15 -3634 (|#2| |#1|)) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#1|)) (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -3329 (|#2| |#1| "value")) (-15 -1850 (|#1| (-1 |#2| |#2|) |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2823 ((|#1| $) 65)) (-1335 (($ $) 67)) (-2290 (((-1223) $ (-547) (-547)) 97 (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) 52 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-3861 (($ $ $) 56 (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) 58 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4329))) (($ $ "rest" $) 55 (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 117 (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) 86 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4328)))) (-2814 ((|#1| $) 66)) (-3219 (($) 7 T CONST)) (-3645 (($ $) 73) (($ $ (-745)) 71)) (-3664 (($ $) 99 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4328))) (($ |#1| $) 100 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1861 ((|#1| $ (-547) |#1|) 85 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 87)) (-3425 (((-112) $) 83)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-3732 (($ (-745) |#1|) 108)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 95 (|has| (-547) (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 94 (|has| (-547) (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3817 ((|#1| $) 70) (($ $ (-745)) 68)) (-2599 (($ $ $ (-547)) 116) (($ |#1| $ (-547)) 115)) (-1520 (((-619 (-547)) $) 92)) (-1641 (((-112) (-547) $) 91)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 76) (($ $ (-745)) 74)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2418 (($ $ |#1|) 96 (|has| $ (-6 -4329)))) (-3541 (((-112) $) 84)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 90)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1185 (-547))) 112) ((|#1| $ (-547)) 89) ((|#1| $ (-547) |#1|) 88)) (-1887 (((-547) $ $) 44)) (-2151 (($ $ (-1185 (-547))) 114) (($ $ (-547)) 113)) (-2094 (((-112) $) 46)) (-4291 (($ $) 62)) (-4080 (($ $) 59 (|has| $ (-6 -4329)))) (-3257 (((-745) $) 63)) (-3360 (($ $) 64)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-2829 (((-523) $) 98 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 107)) (-4187 (($ $ $) 61 (|has| $ (-6 -4329))) (($ $ |#1|) 60 (|has| $ (-6 -4329)))) (-1935 (($ $ $) 78) (($ |#1| $) 77) (($ (-619 $)) 110) (($ $ |#1|) 109)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1109 |#1|) (-138) (-1172)) (T -1109)) -((-3712 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) -(-13 (-1206 |t#1|) (-625 |t#1|) (-10 -8 (-15 -3712 ((-112) $)) (-15 -3700 ((-112) $)))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T) ((-1206 |#1|) . T)) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +((-3541 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(-13 (-1206 |t#1|) (-625 |t#1|) (-10 -8 (-15 -3541 ((-112) $)) (-15 -3425 ((-112) $)))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T) ((-1206 |#1|) . T)) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#2| $ |#1| |#2|) NIL)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) NIL)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3437 (((-619 |#1|) $) NIL)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1520 (((-619 |#1|) $) NIL)) (-1641 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) (((-1110 |#1| |#2| |#3|) (-1148 |#1| |#2|) (-1063) (-1063) |#2|) (T -1110)) NIL (-1148 |#1| |#2|) -((-3730 (((-112) $ $) 7)) (-3725 (((-3 $ "failed") $) 13)) (-2546 (((-1118) $) 9)) (-3410 (($) 14 T CONST)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11)) (-2214 (((-112) $ $) 6))) +((-3821 (((-112) $ $) 7)) (-3652 (((-3 $ "failed") $) 13)) (-1917 (((-1118) $) 9)) (-3045 (($) 14 T CONST)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11)) (-2371 (((-112) $ $) 6))) (((-1111) (-138)) (T -1111)) -((-3410 (*1 *1) (-4 *1 (-1111))) (-3725 (*1 *1 *1) (|partial| -4 *1 (-1111)))) -(-13 (-1063) (-10 -8 (-15 -3410 ($) -2325) (-15 -3725 ((-3 $ "failed") $)))) -(((-101) . T) ((-592 (-832)) . T) ((-1063) . T)) -((-3761 (((-1116 |#1|) (-1116 |#1|)) 17)) (-3738 (((-1116 |#1|) (-1116 |#1|)) 13)) (-3771 (((-1116 |#1|) (-1116 |#1|) (-548) (-548)) 20)) (-3750 (((-1116 |#1|) (-1116 |#1|)) 15))) -(((-1112 |#1|) (-10 -7 (-15 -3738 ((-1116 |#1|) (-1116 |#1|))) (-15 -3750 ((-1116 |#1|) (-1116 |#1|))) (-15 -3761 ((-1116 |#1|) (-1116 |#1|))) (-15 -3771 ((-1116 |#1|) (-1116 |#1|) (-548) (-548)))) (-13 (-540) (-145))) (T -1112)) -((-3771 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-1112 *4)))) (-3761 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1112 *3)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1112 *3)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1112 *3))))) -(-10 -7 (-15 -3738 ((-1116 |#1|) (-1116 |#1|))) (-15 -3750 ((-1116 |#1|) (-1116 |#1|))) (-15 -3761 ((-1116 |#1|) (-1116 |#1|))) (-15 -3771 ((-1116 |#1|) (-1116 |#1|) (-548) (-548)))) -((-1831 (((-1116 |#1|) (-1116 (-1116 |#1|))) 15))) -(((-1113 |#1|) (-10 -7 (-15 -1831 ((-1116 |#1|) (-1116 (-1116 |#1|))))) (-1172)) (T -1113)) -((-1831 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1113 *4)) (-4 *4 (-1172))))) -(-10 -7 (-15 -1831 ((-1116 |#1|) (-1116 (-1116 |#1|))))) -((-4040 (((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)) 25)) (-2061 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)) 26)) (-2540 (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 16))) -(((-1114 |#1| |#2|) (-10 -7 (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (-15 -4040 ((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|))) (-15 -2061 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)))) (-1172) (-1172)) (T -1114)) -((-2061 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-1114 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1116 *6)) (-4 *6 (-1172)) (-4 *3 (-1172)) (-5 *2 (-1116 *3)) (-5 *1 (-1114 *6 *3)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1114 *5 *6))))) -(-10 -7 (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (-15 -4040 ((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|))) (-15 -2061 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)))) -((-2540 (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)) 21))) -(((-1115 |#1| |#2| |#3|) (-10 -7 (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)))) (-1172) (-1172) (-1172)) (T -1115)) -((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-1115 *6 *7 *8))))) -(-10 -7 (-15 -2540 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) NIL)) (-1988 ((|#1| $) NIL)) (-1272 (($ $) 52)) (-4149 (((-1223) $ (-548) (-548)) 77 (|has| $ (-6 -4328)))) (-3604 (($ $ (-548)) 111 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-3793 (((-832) $) 41 (|has| |#1| (-1063)))) (-3781 (((-112)) 40 (|has| |#1| (-1063)))) (-4192 ((|#1| $ |#1|) NIL (|has| $ (-6 -4328)))) (-3624 (($ $ $) 99 (|has| $ (-6 -4328))) (($ $ (-548) $) 123)) (-3614 ((|#1| $ |#1|) 108 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 103 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4328))) (($ $ "rest" $) 107 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 90 (|has| $ (-6 -4328))) ((|#1| $ (-548) |#1|) 56 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 59)) (-1975 ((|#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3703 (($ $) 14)) (-3465 (($ $) 29) (($ $ (-745)) 89)) (-3831 (((-112) (-619 |#1|) $) 117 (|has| |#1| (-1063)))) (-3844 (($ (-619 |#1|)) 113)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) 58)) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-3700 (((-112) $) NIL)) (-1934 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4106 (((-1223) (-548) $) 122 (|has| |#1| (-1063)))) (-3690 (((-745) $) 119)) (-4245 (((-619 $) $) NIL)) (-4213 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4248 (((-112) $ (-745)) NIL)) (-2869 (((-619 |#1|) $) NIL)) (-3010 (((-112) $) NIL)) (-3728 (($ $) 91)) (-3741 (((-112) $) 13)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3724 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2387 (($ $ $ (-548)) NIL) (($ |#1| $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) 75)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1350 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3716 ((|#1| $) 10)) (-3453 ((|#1| $) 28) (($ $ (-745)) 50)) (-3818 (((-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745))) (-745) $) 25)) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1394 (($ (-1 (-112) |#1|) $) 127)) (-1404 (($ (-1 (-112) |#1|) $) 128)) (-4159 (($ $ |#1|) 69 (|has| $ (-6 -4328)))) (-1656 (($ $ (-548)) 32)) (-3712 (((-112) $) 73)) (-3752 (((-112) $) 12)) (-3763 (((-112) $) 118)) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 20)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) 15)) (-3319 (($) 45)) (-3171 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-548))) NIL) ((|#1| $ (-548)) 55) ((|#1| $ (-548) |#1|) NIL)) (-4234 (((-548) $ $) 49)) (-2008 (($ $ (-1185 (-548))) NIL) (($ $ (-548)) NIL)) (-3805 (($ (-1 $)) 48)) (-2740 (((-112) $) 70)) (-3672 (($ $) 71)) (-3648 (($ $) 100 (|has| $ (-6 -4328)))) (-3683 (((-745) $) NIL)) (-3693 (($ $) NIL)) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 44)) (-2591 (((-524) $) NIL (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 54)) (-2979 (($ |#1| $) 98)) (-3659 (($ $ $) 101 (|has| $ (-6 -4328))) (($ $ |#1|) 102 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 79) (($ |#1| $) 46) (($ (-619 $)) 84) (($ $ |#1|) 78)) (-3330 (($ $) 51)) (-3743 (($ (-619 |#1|)) 112) (((-832) $) 42 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) NIL)) (-4224 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 115 (|has| |#1| (-1063)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1116 |#1|) (-13 (-648 |#1|) (-10 -8 (-6 -4328) (-15 -3743 ($ (-619 |#1|))) (-15 -3844 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -3831 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -3818 ((-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -3805 ($ (-1 $))) (-15 -2979 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -4106 ((-1223) (-548) $)) (-15 -3793 ((-832) $)) (-15 -3781 ((-112)))) |%noBranch|) (-15 -3624 ($ $ (-548) $)) (-15 -1350 ($ (-1 |#1|))) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)))) (-1172)) (T -1116)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-3831 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)) (-5 *1 (-1116 *4)))) (-3818 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745)))) (-5 *1 (-1116 *4)) (-4 *4 (-1172)) (-5 *3 (-745)))) (-3805 (*1 *1 *2) (-12 (-5 *2 (-1 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) (-2979 (*1 *1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1172)))) (-4106 (*1 *2 *3 *1) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1116 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)))) (-3781 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)))) (-3624 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) (-1350 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1394 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) -(-13 (-648 |#1|) (-10 -8 (-6 -4328) (-15 -3743 ($ (-619 |#1|))) (-15 -3844 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -3831 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -3818 ((-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -3805 ($ (-1 $))) (-15 -2979 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -4106 ((-1223) (-548) $)) (-15 -3793 ((-832) $)) (-15 -3781 ((-112)))) |%noBranch|) (-15 -3624 ($ $ (-548) $)) (-15 -1350 ($ (-1 |#1|))) (-15 -1350 ($ (-1 |#1| |#1|) |#1|)) (-15 -1394 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)))) -((-3730 (((-112) $ $) 19)) (-3541 (($ $) 120)) (-3552 (($ $) 121)) (-3517 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) 118)) (-2642 (((-112) $ $ (-548)) 117)) (-1504 (($ (-548)) 127)) (-3530 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 (((-142) $ (-548) (-142)) 52 (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3377 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-2541 (($ $ (-1185 (-548)) $) 114)) (-3484 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) 53 (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) 51)) (-2683 (((-112) $ $) 119)) (-2621 (((-548) (-1 (-112) (-142)) $) 97) (((-548) (-142) $) 96 (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) 95 (|has| (-142) (-1063))) (((-548) $ $ (-548)) 113) (((-548) (-139) $ (-548)) 112)) (-1934 (((-619 (-142)) $) 30 (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) 115)) (-3407 (((-745) $ $ (-142)) 116)) (-3960 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3563 (($ $) 122)) (-3574 (($ $) 123)) (-4248 (((-112) $ (-745)) 10)) (-3392 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2546 (((-1118) $) 22)) (-2387 (($ (-142) $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21)) (-3453 (((-142) $) 42 (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-4159 (($ $ (-142)) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) 26 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 (((-142) $ (-548) (-142)) 50) (((-142) $ (-548)) 49) (($ $ (-1185 (-548))) 63) (($ $ $) 102)) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-3945 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4327))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) 70)) (-1831 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (($ (-142)) 111) (((-832) $) 18)) (-3548 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4327)))) (-2739 (((-1118) $) 131) (((-1118) $ (-112)) 130) (((-1223) (-796) $) 129) (((-1223) (-796) $ (-112)) 128)) (-2262 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2241 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2214 (((-112) $ $) 20)) (-2252 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2234 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3045 (*1 *1) (-4 *1 (-1111))) (-3652 (*1 *1 *1) (|partial| -4 *1 (-1111)))) +(-13 (-1063) (-10 -8 (-15 -3045 ($) -2573) (-15 -3652 ((-3 $ "failed") $)))) +(((-101) . T) ((-591 (-832)) . T) ((-1063) . T)) +((-2837 (((-1116 |#1|) (-1116 |#1|)) 17)) (-3749 (((-1116 |#1|) (-1116 |#1|)) 13)) (-2929 (((-1116 |#1|) (-1116 |#1|) (-547) (-547)) 20)) (-2744 (((-1116 |#1|) (-1116 |#1|)) 15))) +(((-1112 |#1|) (-10 -7 (-15 -3749 ((-1116 |#1|) (-1116 |#1|))) (-15 -2744 ((-1116 |#1|) (-1116 |#1|))) (-15 -2837 ((-1116 |#1|) (-1116 |#1|))) (-15 -2929 ((-1116 |#1|) (-1116 |#1|) (-547) (-547)))) (-13 (-539) (-145))) (T -1112)) +((-2929 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-1112 *4)))) (-2837 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1112 *3)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1112 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1112 *3))))) +(-10 -7 (-15 -3749 ((-1116 |#1|) (-1116 |#1|))) (-15 -2744 ((-1116 |#1|) (-1116 |#1|))) (-15 -2837 ((-1116 |#1|) (-1116 |#1|))) (-15 -2929 ((-1116 |#1|) (-1116 |#1|) (-547) (-547)))) +((-1935 (((-1116 |#1|) (-1116 (-1116 |#1|))) 15))) +(((-1113 |#1|) (-10 -7 (-15 -1935 ((-1116 |#1|) (-1116 (-1116 |#1|))))) (-1172)) (T -1113)) +((-1935 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1113 *4)) (-4 *4 (-1172))))) +(-10 -7 (-15 -1935 ((-1116 |#1|) (-1116 (-1116 |#1|))))) +((-3562 (((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)) 25)) (-2542 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)) 26)) (-2781 (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 16))) +(((-1114 |#1| |#2|) (-10 -7 (-15 -2781 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (-15 -3562 ((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|))) (-15 -2542 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)))) (-1172) (-1172)) (T -1114)) +((-2542 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-1114 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1116 *6)) (-4 *6 (-1172)) (-4 *3 (-1172)) (-5 *2 (-1116 *3)) (-5 *1 (-1114 *6 *3)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1114 *5 *6))))) +(-10 -7 (-15 -2781 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (-15 -3562 ((-1116 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|))) (-15 -2542 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1116 |#1|)))) +((-2781 (((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)) 21))) +(((-1115 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)))) (-1172) (-1172) (-1172)) (T -1115)) +((-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) (-5 *1 (-1115 *6 *7 *8))))) +(-10 -7 (-15 -2781 ((-1116 |#3|) (-1 |#3| |#1| |#2|) (-1116 |#1|) (-1116 |#2|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) NIL)) (-2823 ((|#1| $) NIL)) (-1335 (($ $) 52)) (-2290 (((-1223) $ (-547) (-547)) 77 (|has| $ (-6 -4329)))) (-1792 (($ $ (-547)) 111 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-3106 (((-832) $) 41 (|has| |#1| (-1063)))) (-3017 (((-112)) 40 (|has| |#1| (-1063)))) (-2741 ((|#1| $ |#1|) NIL (|has| $ (-6 -4329)))) (-3861 (($ $ $) 99 (|has| $ (-6 -4329))) (($ $ (-547) $) 123)) (-1907 ((|#1| $ |#1|) 108 (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) 103 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4329))) (($ $ "rest" $) 107 (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 90 (|has| $ (-6 -4329))) ((|#1| $ (-547) |#1|) 56 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 59)) (-2814 ((|#1| $) NIL)) (-3219 (($) NIL T CONST)) (-3446 (($ $) 14)) (-3645 (($ $) 29) (($ $ (-745)) 89)) (-2271 (((-112) (-619 |#1|) $) 117 (|has| |#1| (-1063)))) (-2412 (($ (-619 |#1|)) 113)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) 58)) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-3425 (((-112) $) NIL)) (-2973 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-2060 (((-1223) (-547) $) 122 (|has| |#1| (-1063)))) (-3331 (((-745) $) 119)) (-1996 (((-619 $) $) NIL)) (-1655 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-2024 (((-112) $ (-745)) NIL)) (-3579 (((-619 |#1|) $) NIL)) (-3033 (((-112) $) NIL)) (-3673 (($ $) 91)) (-3780 (((-112) $) 13)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3817 ((|#1| $) NIL) (($ $ (-745)) NIL)) (-2599 (($ $ $ (-547)) NIL) (($ |#1| $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) 75)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1399 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3567 ((|#1| $) 10)) (-3634 ((|#1| $) 28) (($ $ (-745)) 50)) (-2132 (((-2 (|:| |cycle?| (-112)) (|:| -1873 (-745)) (|:| |period| (-745))) (-745) $) 25)) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1447 (($ (-1 (-112) |#1|) $) 127)) (-1461 (($ (-1 (-112) |#1|) $) 128)) (-2418 (($ $ |#1|) 69 (|has| $ (-6 -4329)))) (-3558 (($ $ (-547)) 32)) (-3541 (((-112) $) 73)) (-2759 (((-112) $) 12)) (-2855 (((-112) $) 118)) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 20)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) 15)) (-4011 (($) 45)) (-3329 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1185 (-547))) NIL) ((|#1| $ (-547)) 55) ((|#1| $ (-547) |#1|) NIL)) (-1887 (((-547) $ $) 49)) (-2151 (($ $ (-1185 (-547))) NIL) (($ $ (-547)) NIL)) (-3204 (($ (-1 $)) 48)) (-2094 (((-112) $) 70)) (-4291 (($ $) 71)) (-4080 (($ $) 100 (|has| $ (-6 -4329)))) (-3257 (((-745) $) NIL)) (-3360 (($ $) NIL)) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 44)) (-2829 (((-523) $) NIL (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 54)) (-3156 (($ |#1| $) 98)) (-4187 (($ $ $) 101 (|has| $ (-6 -4329))) (($ $ |#1|) 102 (|has| $ (-6 -4329)))) (-1935 (($ $ $) 79) (($ |#1| $) 46) (($ (-619 $)) 84) (($ $ |#1|) 78)) (-4105 (($ $) 51)) (-3834 (($ (-619 |#1|)) 112) (((-832) $) 42 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) NIL)) (-1770 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 115 (|has| |#1| (-1063)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1116 |#1|) (-13 (-648 |#1|) (-10 -8 (-6 -4329) (-15 -3834 ($ (-619 |#1|))) (-15 -2412 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -2271 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -2132 ((-2 (|:| |cycle?| (-112)) (|:| -1873 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -3204 ($ (-1 $))) (-15 -3156 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -2060 ((-1223) (-547) $)) (-15 -3106 ((-832) $)) (-15 -3017 ((-112)))) |%noBranch|) (-15 -3861 ($ $ (-547) $)) (-15 -1399 ($ (-1 |#1|))) (-15 -1399 ($ (-1 |#1| |#1|) |#1|)) (-15 -1447 ($ (-1 (-112) |#1|) $)) (-15 -1461 ($ (-1 (-112) |#1|) $)))) (-1172)) (T -1116)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-2412 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-2271 (*1 *2 *3 *1) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)) (-5 *1 (-1116 *4)))) (-2132 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1873 (-745)) (|:| |period| (-745)))) (-5 *1 (-1116 *4)) (-4 *4 (-1172)) (-5 *3 (-745)))) (-3204 (*1 *1 *2) (-12 (-5 *2 (-1 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) (-3156 (*1 *1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1172)))) (-2060 (*1 *2 *3 *1) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-1116 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)))) (-3017 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) (-4 *3 (-1172)))) (-3861 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1399 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1447 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) (-1461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(-13 (-648 |#1|) (-10 -8 (-6 -4329) (-15 -3834 ($ (-619 |#1|))) (-15 -2412 ($ (-619 |#1|))) (IF (|has| |#1| (-1063)) (-15 -2271 ((-112) (-619 |#1|) $)) |%noBranch|) (-15 -2132 ((-2 (|:| |cycle?| (-112)) (|:| -1873 (-745)) (|:| |period| (-745))) (-745) $)) (-15 -3204 ($ (-1 $))) (-15 -3156 ($ |#1| $)) (IF (|has| |#1| (-1063)) (PROGN (-15 -2060 ((-1223) (-547) $)) (-15 -3106 ((-832) $)) (-15 -3017 ((-112)))) |%noBranch|) (-15 -3861 ($ $ (-547) $)) (-15 -1399 ($ (-1 |#1|))) (-15 -1399 ($ (-1 |#1| |#1|) |#1|)) (-15 -1447 ($ (-1 (-112) |#1|) $)) (-15 -1461 ($ (-1 (-112) |#1|) $)))) +((-3821 (((-112) $ $) 19)) (-2502 (($ $) 120)) (-2617 (($ $) 121)) (-2250 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2305 (((-112) $ $) 118)) (-2277 (((-112) $ $ (-547)) 117)) (-1512 (($ (-547)) 127)) (-2378 (((-619 $) $ (-142)) 110) (((-619 $) $ (-139)) 109)) (-2951 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-821)))) (-2765 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4329))) (($ $) 88 (-12 (|has| (-142) (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2238 (((-142) $ (-547) (-142)) 52 (|has| $ (-6 -4329))) (((-142) $ (-1185 (-547)) (-142)) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-3577 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2034 (($ $) 90 (|has| $ (-6 -4329)))) (-3048 (($ $) 100)) (-4118 (($ $ (-1185 (-547)) $) 114)) (-3664 (($ $) 78 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ (-142) $) 77 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4328)))) (-2542 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4328))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4328)))) (-1861 (((-142) $ (-547) (-142)) 53 (|has| $ (-6 -4329)))) (-1793 (((-142) $ (-547)) 51)) (-2332 (((-112) $ $) 119)) (-2867 (((-547) (-1 (-112) (-142)) $) 97) (((-547) (-142) $) 96 (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) 95 (|has| (-142) (-1063))) (((-547) $ $ (-547)) 113) (((-547) (-139) $ (-547)) 112)) (-2973 (((-619 (-142)) $) 30 (|has| $ (-6 -4328)))) (-3732 (($ (-745) (-142)) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 87 (|has| (-142) (-821)))) (-1294 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-821)))) (-3666 (((-619 (-142)) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 86 (|has| (-142) (-821)))) (-2295 (((-112) $ $ (-142)) 115)) (-2459 (((-745) $ $ (-142)) 116)) (-1850 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-1372 (($ $) 122)) (-1493 (($ $) 123)) (-2024 (((-112) $ (-745)) 10)) (-3591 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-1917 (((-1118) $) 22)) (-2599 (($ (-142) $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21)) (-3634 (((-142) $) 42 (|has| (-547) (-821)))) (-3461 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2418 (($ $ (-142)) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-142)))) 26 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) 25 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) 23 (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-1758 (((-619 (-142)) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 (((-142) $ (-547) (-142)) 50) (((-142) $ (-547)) 49) (($ $ (-1185 (-547))) 63) (($ $ $) 102)) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3987 (((-745) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4328))) (((-745) (-142) $) 28 (-12 (|has| (-142) (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 91 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| (-142) (-592 (-523))))) (-3841 (($ (-619 (-142))) 70)) (-1935 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (($ (-142)) 111) (((-832) $) 18)) (-2583 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4328)))) (-2083 (((-1118) $) 131) (((-1118) $ (-112)) 130) (((-1223) (-796) $) 129) (((-1223) (-796) $ (-112)) 128)) (-2433 (((-112) $ $) 84 (|has| (-142) (-821)))) (-2408 (((-112) $ $) 83 (|has| (-142) (-821)))) (-2371 (((-112) $ $) 20)) (-2421 (((-112) $ $) 85 (|has| (-142) (-821)))) (-2396 (((-112) $ $) 82 (|has| (-142) (-821)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1117) (-138)) (T -1117)) -((-1504 (*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1117))))) -(-13 (-1104) (-1063) (-802) (-10 -8 (-15 -1504 ($ (-548))))) -(((-34) . T) ((-101) . T) ((-592 (-832)) . T) ((-149 #0=(-142)) . T) ((-593 (-524)) |has| (-142) (-593 (-524))) ((-278 #1=(-548) #0#) . T) ((-280 #1# #0#) . T) ((-301 #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-365 #0#) . T) ((-480 #0#) . T) ((-583 #1# #0#) . T) ((-504 #0# #0#) -12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-802) . T) ((-821) |has| (-142) (-821)) ((-1063) . T) ((-1104) . T) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-3541 (($ $) NIL)) (-3552 (($ $) NIL)) (-3517 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-2665 (((-112) $ $) NIL)) (-2642 (((-112) $ $ (-548)) NIL)) (-1504 (($ (-548)) 7)) (-3530 (((-619 $) $ (-142)) NIL) (((-619 $) $ (-139)) NIL)) (-3001 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2980 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-821))))) (-2490 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 (((-142) $ (-548) (-142)) NIL (|has| $ (-6 -4328))) (((-142) $ (-1185 (-548)) (-142)) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3377 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-2541 (($ $ (-1185 (-548)) $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-3699 (($ (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4327))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4327)))) (-3971 (((-142) $ (-548) (-142)) NIL (|has| $ (-6 -4328)))) (-3899 (((-142) $ (-548)) NIL)) (-2683 (((-112) $ $) NIL)) (-2621 (((-548) (-1 (-112) (-142)) $) NIL) (((-548) (-142) $) NIL (|has| (-142) (-1063))) (((-548) (-142) $ (-548)) NIL (|has| (-142) (-1063))) (((-548) $ $ (-548)) NIL) (((-548) (-139) $ (-548)) NIL)) (-1934 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-3550 (($ (-745) (-142)) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| (-142) (-821)))) (-2913 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-2342 (((-619 (-142)) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| (-142) (-821)))) (-2141 (((-112) $ $ (-142)) NIL)) (-3407 (((-745) $ $ (-142)) NIL)) (-3960 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3563 (($ $) NIL)) (-3574 (($ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-3392 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2546 (((-1118) $) NIL)) (-2387 (($ (-142) $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-142) $) NIL (|has| (-548) (-821)))) (-4030 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-4159 (($ $ (-142)) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-142)))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-301 (-142))) (|has| (-142) (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-4223 (((-619 (-142)) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 (((-142) $ (-548) (-142)) NIL) (((-142) $ (-548)) NIL) (($ $ (-1185 (-548))) NIL) (($ $ $) NIL)) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-3945 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-142) (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-142) (-593 (-524))))) (-3754 (($ (-619 (-142))) NIL)) (-1831 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (($ (-142)) NIL) (((-832) $) NIL)) (-3548 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4327)))) (-2739 (((-1118) $) 18) (((-1118) $ (-112)) 20) (((-1223) (-796) $) 21) (((-1223) (-796) $ (-112)) 22)) (-2262 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2241 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2234 (((-112) $ $) NIL (|has| (-142) (-821)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) +((-1512 (*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1117))))) +(-13 (-1104) (-1063) (-802) (-10 -8 (-15 -1512 ($ (-547))))) +(((-34) . T) ((-101) . T) ((-591 (-832)) . T) ((-149 #0=(-142)) . T) ((-592 (-523)) |has| (-142) (-592 (-523))) ((-277 #1=(-547) #0#) . T) ((-279 #1# #0#) . T) ((-300 #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-364 #0#) . T) ((-479 #0#) . T) ((-582 #1# #0#) . T) ((-503 #0# #0#) -12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))) ((-625 #0#) . T) ((-19 #0#) . T) ((-802) . T) ((-821) |has| (-142) (-821)) ((-1063) . T) ((-1104) . T) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-2502 (($ $) NIL)) (-2617 (($ $) NIL)) (-2250 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2305 (((-112) $ $) NIL)) (-2277 (((-112) $ $ (-547)) NIL)) (-1512 (($ (-547)) 7)) (-2378 (((-619 $) $ (-142)) NIL) (((-619 $) $ (-139)) NIL)) (-2951 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-821)))) (-2765 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| (-142) (-821))))) (-3180 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 (((-142) $ (-547) (-142)) NIL (|has| $ (-6 -4329))) (((-142) $ (-1185 (-547)) (-142)) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-3577 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-4118 (($ $ (-1185 (-547)) $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-3801 (($ (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4328))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4328)))) (-1861 (((-142) $ (-547) (-142)) NIL (|has| $ (-6 -4329)))) (-1793 (((-142) $ (-547)) NIL)) (-2332 (((-112) $ $) NIL)) (-2867 (((-547) (-1 (-112) (-142)) $) NIL) (((-547) (-142) $) NIL (|has| (-142) (-1063))) (((-547) (-142) $ (-547)) NIL (|has| (-142) (-1063))) (((-547) $ $ (-547)) NIL) (((-547) (-139) $ (-547)) NIL)) (-2973 (((-619 (-142)) $) NIL (|has| $ (-6 -4328)))) (-3732 (($ (-745) (-142)) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| (-142) (-821)))) (-1294 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-821)))) (-3666 (((-619 (-142)) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| (-142) (-821)))) (-2295 (((-112) $ $ (-142)) NIL)) (-2459 (((-745) $ $ (-142)) NIL)) (-1850 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-1372 (($ $) NIL)) (-1493 (($ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-3591 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1917 (((-1118) $) NIL)) (-2599 (($ (-142) $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-142) $) NIL (|has| (-547) (-821)))) (-3461 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2418 (($ $ (-142)) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-142)))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-285 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063)))) (($ $ (-619 (-142)) (-619 (-142))) NIL (-12 (|has| (-142) (-300 (-142))) (|has| (-142) (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-1758 (((-619 (-142)) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 (((-142) $ (-547) (-142)) NIL) (((-142) $ (-547)) NIL) (($ $ (-1185 (-547))) NIL) (($ $ $) NIL)) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3987 (((-745) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328))) (((-745) (-142) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-142) (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-142) (-592 (-523))))) (-3841 (($ (-619 (-142))) NIL)) (-1935 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (($ (-142)) NIL) (((-832) $) NIL)) (-2583 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4328)))) (-2083 (((-1118) $) 18) (((-1118) $ (-112)) 20) (((-1223) (-796) $) 21) (((-1223) (-796) $ (-112)) 22)) (-2433 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2408 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| (-142) (-821)))) (-2396 (((-112) $ $) NIL (|has| (-142) (-821)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) (((-1118) (-1117)) (T -1118)) NIL (-1117) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-4149 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-1118) |#1|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#1| "failed") (-1118) $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#1| "failed") (-1118) $) NIL)) (-3699 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-1118) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-1118)) NIL)) (-1934 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-1118) $) NIL (|has| (-1118) (-821)))) (-2342 (((-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-4043 (((-619 (-1118)) $) NIL)) (-4233 (((-112) (-1118) $) NIL)) (-1346 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-4201 (((-619 (-1118)) $) NIL)) (-4212 (((-112) (-1118) $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3453 ((|#1| $) NIL (|has| (-1118) (-821)))) (-4030 (((-3 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) "failed") (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL (-12 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-301 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-1118)) NIL) ((|#1| $ (-1118) |#1|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-592 (-832))) (|has| |#1| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 (-1118)) (|:| -1657 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1119 |#1|) (-13 (-1148 (-1118) |#1|) (-10 -7 (-6 -4327))) (-1063)) (T -1119)) -NIL -(-13 (-1148 (-1118) |#1|) (-10 -7 (-6 -4327))) -((-3732 (((-1116 |#1|) (-1116 |#1|)) 77)) (-3859 (((-3 (-1116 |#1|) "failed") (-1116 |#1|)) 37)) (-3990 (((-1116 |#1|) (-399 (-548)) (-1116 |#1|)) 121 (|has| |#1| (-38 (-399 (-548)))))) (-4023 (((-1116 |#1|) |#1| (-1116 |#1|)) 127 (|has| |#1| (-355)))) (-3766 (((-1116 |#1|) (-1116 |#1|)) 90)) (-3883 (((-1116 (-548)) (-548)) 57)) (-3980 (((-1116 |#1|) (-1116 (-1116 |#1|))) 109 (|has| |#1| (-38 (-399 (-548)))))) (-3719 (((-1116 |#1|) (-548) (-548) (-1116 |#1|)) 95)) (-3310 (((-1116 |#1|) |#1| (-548)) 45)) (-3906 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 60)) (-4001 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 124 (|has| |#1| (-355)))) (-3970 (((-1116 |#1|) |#1| (-1 (-1116 |#1|))) 108 (|has| |#1| (-38 (-399 (-548)))))) (-4012 (((-1116 |#1|) (-1 |#1| (-548)) |#1| (-1 (-1116 |#1|))) 125 (|has| |#1| (-355)))) (-3776 (((-1116 |#1|) (-1116 |#1|)) 89)) (-3787 (((-1116 |#1|) (-1116 |#1|)) 76)) (-3706 (((-1116 |#1|) (-548) (-548) (-1116 |#1|)) 96)) (-3810 (((-1116 |#1|) |#1| (-1116 |#1|)) 105 (|has| |#1| (-38 (-399 (-548)))))) (-3870 (((-1116 (-548)) (-548)) 56)) (-3894 (((-1116 |#1|) |#1|) 59)) (-3745 (((-1116 |#1|) (-1116 |#1|) (-548) (-548)) 92)) (-3929 (((-1116 |#1|) (-1 |#1| (-548)) (-1116 |#1|)) 66)) (-1900 (((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|)) 35)) (-3756 (((-1116 |#1|) (-1116 |#1|)) 91)) (-2460 (((-1116 |#1|) (-1116 |#1|) |#1|) 71)) (-3917 (((-1116 |#1|) (-1116 |#1|)) 62)) (-3941 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 72)) (-3743 (((-1116 |#1|) |#1|) 67)) (-3956 (((-1116 |#1|) (-1116 (-1116 |#1|))) 82)) (-2309 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 36)) (-2299 (((-1116 |#1|) (-1116 |#1|)) 21) (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 23)) (-2290 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 17)) (* (((-1116 |#1|) (-1116 |#1|) |#1|) 29) (((-1116 |#1|) |#1| (-1116 |#1|)) 26) (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 27))) -(((-1120 |#1|) (-10 -7 (-15 -2290 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -1900 ((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|))) (-15 -2309 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3859 ((-3 (-1116 |#1|) "failed") (-1116 |#1|))) (-15 -3310 ((-1116 |#1|) |#1| (-548))) (-15 -3870 ((-1116 (-548)) (-548))) (-15 -3883 ((-1116 (-548)) (-548))) (-15 -3894 ((-1116 |#1|) |#1|)) (-15 -3906 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3917 ((-1116 |#1|) (-1116 |#1|))) (-15 -3929 ((-1116 |#1|) (-1 |#1| (-548)) (-1116 |#1|))) (-15 -3743 ((-1116 |#1|) |#1|)) (-15 -2460 ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -3941 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3787 ((-1116 |#1|) (-1116 |#1|))) (-15 -3732 ((-1116 |#1|) (-1116 |#1|))) (-15 -3956 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3776 ((-1116 |#1|) (-1116 |#1|))) (-15 -3766 ((-1116 |#1|) (-1116 |#1|))) (-15 -3756 ((-1116 |#1|) (-1116 |#1|))) (-15 -3745 ((-1116 |#1|) (-1116 |#1|) (-548) (-548))) (-15 -3719 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (-15 -3706 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 -3970 ((-1116 |#1|) |#1| (-1 (-1116 |#1|)))) (-15 -3980 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3990 ((-1116 |#1|) (-399 (-548)) (-1116 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -4001 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4012 ((-1116 |#1|) (-1 |#1| (-548)) |#1| (-1 (-1116 |#1|)))) (-15 -4023 ((-1116 |#1|) |#1| (-1116 |#1|)))) |%noBranch|)) (-1016)) (T -1120)) -((-4023 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-548))) (-5 *5 (-1 (-1116 *4))) (-4 *4 (-355)) (-4 *4 (-1016)) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)))) (-4001 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3990 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) (-5 *3 (-399 (-548))) (-5 *1 (-1120 *4)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1116 *3))) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3706 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3719 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3745 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1016)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3941 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2460 (*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-3929 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-1 *4 (-548))) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3906 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) (-5 *3 (-548)))) (-3870 (*1 *2 *3) (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) (-5 *3 (-548)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-3859 (*1 *2 *2) (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2309 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-1900 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) -(-10 -7 (-15 -2290 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2299 ((-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -1900 ((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|))) (-15 -2309 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3859 ((-3 (-1116 |#1|) "failed") (-1116 |#1|))) (-15 -3310 ((-1116 |#1|) |#1| (-548))) (-15 -3870 ((-1116 (-548)) (-548))) (-15 -3883 ((-1116 (-548)) (-548))) (-15 -3894 ((-1116 |#1|) |#1|)) (-15 -3906 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3917 ((-1116 |#1|) (-1116 |#1|))) (-15 -3929 ((-1116 |#1|) (-1 |#1| (-548)) (-1116 |#1|))) (-15 -3743 ((-1116 |#1|) |#1|)) (-15 -2460 ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -3941 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3787 ((-1116 |#1|) (-1116 |#1|))) (-15 -3732 ((-1116 |#1|) (-1116 |#1|))) (-15 -3956 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3776 ((-1116 |#1|) (-1116 |#1|))) (-15 -3766 ((-1116 |#1|) (-1116 |#1|))) (-15 -3756 ((-1116 |#1|) (-1116 |#1|))) (-15 -3745 ((-1116 |#1|) (-1116 |#1|) (-548) (-548))) (-15 -3719 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (-15 -3706 ((-1116 |#1|) (-548) (-548) (-1116 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 -3970 ((-1116 |#1|) |#1| (-1 (-1116 |#1|)))) (-15 -3980 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -3990 ((-1116 |#1|) (-399 (-548)) (-1116 |#1|)))) |%noBranch|) (IF (|has| |#1| (-355)) (PROGN (-15 -4001 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4012 ((-1116 |#1|) (-1 |#1| (-548)) |#1| (-1 (-1116 |#1|)))) (-15 -4023 ((-1116 |#1|) |#1| (-1116 |#1|)))) |%noBranch|)) -((-2074 (((-1116 |#1|) (-1116 |#1|)) 57)) (-1940 (((-1116 |#1|) (-1116 |#1|)) 39)) (-2054 (((-1116 |#1|) (-1116 |#1|)) 53)) (-1918 (((-1116 |#1|) (-1116 |#1|)) 35)) (-2098 (((-1116 |#1|) (-1116 |#1|)) 60)) (-1963 (((-1116 |#1|) (-1116 |#1|)) 42)) (-3496 (((-1116 |#1|) (-1116 |#1|)) 31)) (-2458 (((-1116 |#1|) (-1116 |#1|)) 27)) (-2110 (((-1116 |#1|) (-1116 |#1|)) 61)) (-1973 (((-1116 |#1|) (-1116 |#1|)) 43)) (-2086 (((-1116 |#1|) (-1116 |#1|)) 58)) (-1952 (((-1116 |#1|) (-1116 |#1|)) 40)) (-2065 (((-1116 |#1|) (-1116 |#1|)) 55)) (-1929 (((-1116 |#1|) (-1116 |#1|)) 37)) (-2145 (((-1116 |#1|) (-1116 |#1|)) 65)) (-2006 (((-1116 |#1|) (-1116 |#1|)) 47)) (-2122 (((-1116 |#1|) (-1116 |#1|)) 63)) (-1986 (((-1116 |#1|) (-1116 |#1|)) 45)) (-2170 (((-1116 |#1|) (-1116 |#1|)) 68)) (-2029 (((-1116 |#1|) (-1116 |#1|)) 50)) (-4026 (((-1116 |#1|) (-1116 |#1|)) 69)) (-2040 (((-1116 |#1|) (-1116 |#1|)) 51)) (-2158 (((-1116 |#1|) (-1116 |#1|)) 67)) (-2017 (((-1116 |#1|) (-1116 |#1|)) 49)) (-2132 (((-1116 |#1|) (-1116 |#1|)) 66)) (-1996 (((-1116 |#1|) (-1116 |#1|)) 48)) (** (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 33))) -(((-1121 |#1|) (-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) (-38 (-399 (-548)))) (T -1121)) -((-4026 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2029 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1121 *3))))) -(-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) -((-2074 (((-1116 |#1|) (-1116 |#1|)) 100)) (-1940 (((-1116 |#1|) (-1116 |#1|)) 64)) (-4046 (((-2 (|:| -2054 (-1116 |#1|)) (|:| -2065 (-1116 |#1|))) (-1116 |#1|)) 96)) (-2054 (((-1116 |#1|) (-1116 |#1|)) 97)) (-4034 (((-2 (|:| -1918 (-1116 |#1|)) (|:| -1929 (-1116 |#1|))) (-1116 |#1|)) 53)) (-1918 (((-1116 |#1|) (-1116 |#1|)) 54)) (-2098 (((-1116 |#1|) (-1116 |#1|)) 102)) (-1963 (((-1116 |#1|) (-1116 |#1|)) 71)) (-3496 (((-1116 |#1|) (-1116 |#1|)) 39)) (-2458 (((-1116 |#1|) (-1116 |#1|)) 36)) (-2110 (((-1116 |#1|) (-1116 |#1|)) 103)) (-1973 (((-1116 |#1|) (-1116 |#1|)) 72)) (-2086 (((-1116 |#1|) (-1116 |#1|)) 101)) (-1952 (((-1116 |#1|) (-1116 |#1|)) 67)) (-2065 (((-1116 |#1|) (-1116 |#1|)) 98)) (-1929 (((-1116 |#1|) (-1116 |#1|)) 55)) (-2145 (((-1116 |#1|) (-1116 |#1|)) 111)) (-2006 (((-1116 |#1|) (-1116 |#1|)) 86)) (-2122 (((-1116 |#1|) (-1116 |#1|)) 105)) (-1986 (((-1116 |#1|) (-1116 |#1|)) 82)) (-2170 (((-1116 |#1|) (-1116 |#1|)) 115)) (-2029 (((-1116 |#1|) (-1116 |#1|)) 90)) (-4026 (((-1116 |#1|) (-1116 |#1|)) 117)) (-2040 (((-1116 |#1|) (-1116 |#1|)) 92)) (-2158 (((-1116 |#1|) (-1116 |#1|)) 113)) (-2017 (((-1116 |#1|) (-1116 |#1|)) 88)) (-2132 (((-1116 |#1|) (-1116 |#1|)) 107)) (-1996 (((-1116 |#1|) (-1116 |#1|)) 84)) (** (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 40))) -(((-1122 |#1|) (-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4034 ((-2 (|:| -1918 (-1116 |#1|)) (|:| -1929 (-1116 |#1|))) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -4046 ((-2 (|:| -2054 (-1116 |#1|)) (|:| -2065 (-1116 |#1|))) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) (-38 (-399 (-548)))) (T -1122)) -((-4026 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-2 (|:| -2054 (-1116 *4)) (|:| -2065 (-1116 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2029 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-2 (|:| -1918 (-1116 *4)) (|:| -1929 (-1116 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1122 *3))))) -(-10 -7 (-15 -2458 ((-1116 |#1|) (-1116 |#1|))) (-15 -3496 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -4034 ((-2 (|:| -1918 (-1116 |#1|)) (|:| -1929 (-1116 |#1|))) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|))) (-15 -1929 ((-1116 |#1|) (-1116 |#1|))) (-15 -1940 ((-1116 |#1|) (-1116 |#1|))) (-15 -1952 ((-1116 |#1|) (-1116 |#1|))) (-15 -1963 ((-1116 |#1|) (-1116 |#1|))) (-15 -1973 ((-1116 |#1|) (-1116 |#1|))) (-15 -1986 ((-1116 |#1|) (-1116 |#1|))) (-15 -1996 ((-1116 |#1|) (-1116 |#1|))) (-15 -2006 ((-1116 |#1|) (-1116 |#1|))) (-15 -2017 ((-1116 |#1|) (-1116 |#1|))) (-15 -2029 ((-1116 |#1|) (-1116 |#1|))) (-15 -2040 ((-1116 |#1|) (-1116 |#1|))) (-15 -4046 ((-2 (|:| -2054 (-1116 |#1|)) (|:| -2065 (-1116 |#1|))) (-1116 |#1|))) (-15 -2054 ((-1116 |#1|) (-1116 |#1|))) (-15 -2065 ((-1116 |#1|) (-1116 |#1|))) (-15 -2074 ((-1116 |#1|) (-1116 |#1|))) (-15 -2086 ((-1116 |#1|) (-1116 |#1|))) (-15 -2098 ((-1116 |#1|) (-1116 |#1|))) (-15 -2110 ((-1116 |#1|) (-1116 |#1|))) (-15 -2122 ((-1116 |#1|) (-1116 |#1|))) (-15 -2132 ((-1116 |#1|) (-1116 |#1|))) (-15 -2145 ((-1116 |#1|) (-1116 |#1|))) (-15 -2158 ((-1116 |#1|) (-1116 |#1|))) (-15 -2170 ((-1116 |#1|) (-1116 |#1|))) (-15 -4026 ((-1116 |#1|) (-1116 |#1|)))) -((-4055 (((-927 |#2|) |#2| |#2|) 35)) (-4065 ((|#2| |#2| |#1|) 19 (|has| |#1| (-299))))) -(((-1123 |#1| |#2|) (-10 -7 (-15 -4055 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-299)) (-15 -4065 (|#2| |#2| |#1|)) |%noBranch|)) (-540) (-1194 |#1|)) (T -1123)) -((-4065 (*1 *2 *2 *3) (-12 (-4 *3 (-299)) (-4 *3 (-540)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1194 *3)))) (-4055 (*1 *2 *3 *3) (-12 (-4 *4 (-540)) (-5 *2 (-927 *3)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -4055 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-299)) (-15 -4065 (|#2| |#2| |#1|)) |%noBranch|)) -((-3730 (((-112) $ $) NIL)) (-2840 (($ $ (-619 (-745))) 67)) (-3127 (($) 26)) (-2934 (($ $) 42)) (-1508 (((-619 $) $) 51)) (-2999 (((-112) $) 16)) (-4076 (((-619 (-912 |#2|)) $) 74)) (-4086 (($ $) 68)) (-2945 (((-745) $) 37)) (-3550 (($) 25)) (-2870 (($ $ (-619 (-745)) (-912 |#2|)) 60) (($ $ (-619 (-745)) (-745)) 61) (($ $ (-745) (-912 |#2|)) 63)) (-2913 (($ $ $) 48) (($ (-619 $)) 50)) (-1433 (((-745) $) 75)) (-3010 (((-112) $) 15)) (-2546 (((-1118) $) NIL)) (-2989 (((-112) $) 18)) (-3932 (((-1082) $) NIL)) (-4094 (((-168) $) 73)) (-2830 (((-912 |#2|) $) 69)) (-4118 (((-745) $) 70)) (-4107 (((-112) $) 72)) (-2850 (($ $ (-619 (-745)) (-168)) 66)) (-2923 (($ $) 43)) (-3743 (((-832) $) 86)) (-2858 (($ $ (-619 (-745)) (-112)) 65)) (-2956 (((-619 $) $) 11)) (-2967 (($ $ (-745)) 36)) (-2978 (($ $) 32)) (-2880 (($ $ $ (-912 |#2|) (-745)) 56)) (-2890 (($ $ (-912 |#2|)) 55)) (-2901 (($ $ (-619 (-745)) (-912 |#2|)) 54) (($ $ (-619 (-745)) (-745)) 58) (((-745) $ (-912 |#2|)) 59)) (-2214 (((-112) $ $) 80))) -(((-1124 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3010 ((-112) $)) (-15 -2999 ((-112) $)) (-15 -2989 ((-112) $)) (-15 -3550 ($)) (-15 -3127 ($)) (-15 -2978 ($ $)) (-15 -2967 ($ $ (-745))) (-15 -2956 ((-619 $) $)) (-15 -2945 ((-745) $)) (-15 -2934 ($ $)) (-15 -2923 ($ $)) (-15 -2913 ($ $ $)) (-15 -2913 ($ (-619 $))) (-15 -1508 ((-619 $) $)) (-15 -2901 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2890 ($ $ (-912 |#2|))) (-15 -2880 ($ $ $ (-912 |#2|) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2901 ($ $ (-619 (-745)) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-745))) (-15 -2901 ((-745) $ (-912 |#2|))) (-15 -2870 ($ $ (-745) (-912 |#2|))) (-15 -2858 ($ $ (-619 (-745)) (-112))) (-15 -2850 ($ $ (-619 (-745)) (-168))) (-15 -2840 ($ $ (-619 (-745)))) (-15 -2830 ((-912 |#2|) $)) (-15 -4118 ((-745) $)) (-15 -4107 ((-112) $)) (-15 -4094 ((-168) $)) (-15 -1433 ((-745) $)) (-15 -4086 ($ $)) (-15 -4076 ((-619 (-912 |#2|)) $)))) (-890) (-1016)) (T -1124)) -((-3010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3550 (*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-3127 (*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2967 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2923 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2913 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2901 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2890 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)))) (-2880 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2901 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2901 (*1 *2 *1 *3) (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2858 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2850 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-912 *4)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4086 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016))))) -(-13 (-1063) (-10 -8 (-15 -3010 ((-112) $)) (-15 -2999 ((-112) $)) (-15 -2989 ((-112) $)) (-15 -3550 ($)) (-15 -3127 ($)) (-15 -2978 ($ $)) (-15 -2967 ($ $ (-745))) (-15 -2956 ((-619 $) $)) (-15 -2945 ((-745) $)) (-15 -2934 ($ $)) (-15 -2923 ($ $)) (-15 -2913 ($ $ $)) (-15 -2913 ($ (-619 $))) (-15 -1508 ((-619 $) $)) (-15 -2901 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2890 ($ $ (-912 |#2|))) (-15 -2880 ($ $ $ (-912 |#2|) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -2901 ($ $ (-619 (-745)) (-745))) (-15 -2870 ($ $ (-619 (-745)) (-745))) (-15 -2901 ((-745) $ (-912 |#2|))) (-15 -2870 ($ $ (-745) (-912 |#2|))) (-15 -2858 ($ $ (-619 (-745)) (-112))) (-15 -2850 ($ $ (-619 (-745)) (-168))) (-15 -2840 ($ $ (-619 (-745)))) (-15 -2830 ((-912 |#2|) $)) (-15 -4118 ((-745) $)) (-15 -4107 ((-112) $)) (-15 -4094 ((-168) $)) (-15 -1433 ((-745) $)) (-15 -4086 ($ $)) (-15 -4076 ((-619 (-912 |#2|)) $)))) -((-3730 (((-112) $ $) NIL)) (-1987 ((|#2| $) 11)) (-1974 ((|#1| $) 10)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3754 (($ |#1| |#2|) 9)) (-3743 (((-832) $) 16)) (-2214 (((-112) $ $) NIL))) -(((-1125 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3754 ($ |#1| |#2|)) (-15 -1974 (|#1| $)) (-15 -1987 (|#2| $)))) (-1063) (-1063)) (T -1125)) -((-3754 (*1 *1 *2 *3) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-1974 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *2 *3)) (-4 *3 (-1063)))) (-1987 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1063))))) -(-13 (-1063) (-10 -8 (-15 -3754 ($ |#1| |#2|)) (-15 -1974 (|#1| $)) (-15 -1987 (|#2| $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3303 (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3279 (((-112) $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-1665 (($ $ (-548)) NIL) (($ $ (-548) (-548)) 66)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) NIL)) (-1318 (((-1133 |#1| |#2| |#3|) $) 36)) (-1295 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 29)) (-2107 (((-1133 |#1| |#2| |#3|) $) 30)) (-2074 (($ $) 107 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 83 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) 103 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 79 (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) 111 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 87 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1135) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-548) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-2375 (((-1133 |#1| |#2| |#3|) $) 131) (((-1135) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-399 (-548)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-548) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-1306 (($ $) 34) (($ (-548) $) 35)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-1133 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-1133 |#1| |#2| |#3|))) (|:| |vec| (-1218 (-1133 |#1| |#2| |#3|)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) 48)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 65 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 67 (|has| |#1| (-540)))) (-2545 (($) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3298 (((-112) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) 25)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-855 (-548))) (|has| |#1| (-355)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-855 (-371))) (|has| |#1| (-355))))) (-1672 (((-548) $) NIL) (((-548) $ (-548)) 24)) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL (|has| |#1| (-355)))) (-2470 (((-1133 |#1| |#2| |#3|) $) 38 (|has| |#1| (-355)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) NIL)) (-3823 (($ (-1 |#1| (-548)) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-548)) 18) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-1795 (($ $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-3091 (($ $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-355)))) (-3496 (($ $) 72 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2119 (($ (-548) (-1133 |#1| |#2| |#3|)) 33)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 70 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 71 (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3862 (($ $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-3887 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 145)) (-1900 (((-3 $ "failed") $ $) 49 (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) 73 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-504 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-504 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-286 (-1133 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-286 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1133 |#1| |#2| |#3|)) (-619 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-301 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) NIL) (($ $ $) 54 (|has| (-548) (-1075))) (($ $ (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-278 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1214 |#2|)) 51) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 50 (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-1993 (($ $) NIL (|has| |#1| (-355)))) (-2480 (((-1133 |#1| |#2| |#3|) $) 41 (|has| |#1| (-355)))) (-2512 (((-548) $) 37)) (-2110 (($ $) 113 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 89 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 109 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 85 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 105 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 81 (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-524) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-593 (-524))) (|has| |#1| (-355)))) (((-371) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-218) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-861 (-371)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 149) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1133 |#1| |#2| |#3|)) 27) (($ (-1214 |#2|)) 23) (($ (-1135)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540)))) (($ (-399 (-548))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))) (|has| |#1| (-38 (-399 (-548))))))) (-1951 ((|#1| $ (-548)) 68)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 12)) (-3897 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-2145 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 95 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-2122 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 91 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 99 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 101 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 97 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 93 (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3107 (($) 20 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2262 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2241 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2234 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 44 (|has| |#1| (-355))) (($ (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) 45 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) 53) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) 74 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 128 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1133 |#1| |#2| |#3|)) 43 (|has| |#1| (-355))) (($ (-1133 |#1| |#2| |#3|) $) 42 (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1126 |#1| |#2| |#3|) (-13 (-1180 |#1| (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1126)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1180 |#1| (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-3087 ((|#2| |#2| (-1056 |#2|)) 26) ((|#2| |#2| (-1135)) 28))) -(((-1127 |#1| |#2|) (-10 -7 (-15 -3087 (|#2| |#2| (-1135))) (-15 -3087 (|#2| |#2| (-1056 |#2|)))) (-13 (-540) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-422 |#1|) (-157) (-27) (-1157))) (T -1127)) -((-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157))) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1127 *4 *2)))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1127 *4 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157)))))) -(-10 -7 (-15 -3087 (|#2| |#2| (-1135))) (-15 -3087 (|#2| |#2| (-1056 |#2|)))) -((-3087 (((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1056 (-399 (-921 |#1|)))) 31) (((-399 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|))) 44) (((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1135)) 33) (((-399 (-921 |#1|)) (-921 |#1|) (-1135)) 36))) -(((-1128 |#1|) (-10 -7 (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1135))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1056 (-399 (-921 |#1|)))))) (-13 (-540) (-821) (-1007 (-548)))) (T -1128)) -((-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-3 *3 (-308 *5))) (-5 *1 (-1128 *5)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-399 *3)) (-5 *1 (-1128 *5)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-3 (-399 (-921 *5)) (-308 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-399 (-921 *5))))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-399 (-921 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-921 *5))))) -(-10 -7 (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1135))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1135))) (-15 -3087 ((-399 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -3087 ((-3 (-399 (-921 |#1|)) (-308 |#1|)) (-399 (-921 |#1|)) (-1056 (-399 (-921 |#1|)))))) -((-2540 (((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 13))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -2540 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)))) (-1016) (-1016)) (T -1129)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-1129 *5 *6))))) -(-10 -7 (-15 -2540 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)))) -((-2634 (((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))) 51)) (-1915 (((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))) 52))) -(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|)))) (-15 -2634 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))))) (-767) (-821) (-443) (-918 |#3| |#1| |#2|)) (T -1130)) -((-2634 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7)))))) -(-10 -7 (-15 -1915 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|)))) (-15 -2634 ((-410 (-1131 (-399 |#4|))) (-1131 (-399 |#4|))))) -((-3730 (((-112) $ $) 137)) (-3324 (((-112) $) 27)) (-1648 (((-1218 |#1|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#1|)) NIL)) (-1884 (((-1131 $) $ (-1045)) 58) (((-1131 |#1|) $) 47)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) 132 (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) 126 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) 71 (|has| |#1| (-878)))) (-1688 (($ $) NIL (|has| |#1| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 91 (|has| |#1| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-1594 (($ $ (-745)) 39)) (-1584 (($ $ (-745)) 40)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#1| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#1| $) NIL) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-1045) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) 56)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-1574 (($ $ $) 104)) (-1529 (($ $ $) NIL (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-4065 (($ $) 133 (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-745) $) 45)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-3020 (((-832) $ (-832)) 117)) (-1672 (((-745) $ $) NIL (|has| |#1| (-540)))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) 49) (($ (-1131 $) (-1045)) 65)) (-3535 (($ $ (-745)) 32)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 121)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-1639 (((-1131 |#1|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) 52)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) NIL (|has| |#1| (-443)))) (-2546 (((-1118) $) NIL)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) 38)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) 31)) (-2175 ((|#1| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 79 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-443))) (($ $ $) 135 (|has| |#1| (-443)))) (-1362 (($ $ (-745) |#1| $) 99)) (-4051 (((-410 (-1131 $)) (-1131 $)) 77 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 76 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 84 (|has| |#1| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) NIL (|has| |#1| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) 35)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 138 (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2512 (((-745) $) 54) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 130 (|has| |#1| (-443))) (($ $ (-1045)) NIL (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#1| (-540)))) (-3743 (((-832) $) 118) (($ (-548)) NIL) (($ |#1|) 53) (($ (-1045)) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) 25 (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 15 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) 96)) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 139 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 66)) (** (($ $ (-890)) 14) (($ $ (-745)) 12)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 24) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1131 |#1|) (-13 (-1194 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))) (-15 -1362 ($ $ (-745) |#1| $)))) (-1016)) (T -1131)) -((-3020 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1131 *3)) (-4 *3 (-1016)))) (-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1131 *3)) (-4 *3 (-1016))))) -(-13 (-1194 |#1|) (-10 -8 (-15 -3020 ((-832) $ (-832))) (-15 -1362 ($ $ (-745) |#1| $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1126 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 36)) (-2375 (((-1126 |#1| |#2| |#3|) $) NIL) (((-1133 |#1| |#2| |#3|) $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3569 (((-399 (-548)) $) 55)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) (-1126 |#1| |#2| |#3|)) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) 20) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3558 (((-1126 |#1| |#2| |#3|) $) 41)) (-3546 (((-3 (-1126 |#1| |#2| |#3|) "failed") $) NIL)) (-2119 (((-1126 |#1| |#2| |#3|) $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 39 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 40 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $ (-1214 |#2|)) 38)) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 58) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1126 |#1| |#2| |#3|)) 30) (($ (-1133 |#1| |#2| |#3|)) 31) (($ (-1214 |#2|)) 26) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 12)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 22 T CONST)) (-3118 (($) 16 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 24)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1132 |#1| |#2| |#3|) (-13 (-1201 |#1| (-1126 |#1| |#2| |#3|)) (-1007 (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1132)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1201 |#1| (-1126 |#1| |#2| |#3|)) (-1007 (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 125)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 116)) (-3799 (((-1191 |#2| |#1|) $ (-745)) 63)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-745)) 79) (($ $ (-745) (-745)) 76)) (-1680 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 102)) (-2074 (($ $) 169 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 145 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 165 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 115) (($ (-1116 |#1|)) 110)) (-2098 (($ $) 173 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 149 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) 23)) (-3837 (($ $) 26)) (-3520 (((-921 |#1|) $ (-745)) 75) (((-921 |#1|) $ (-745) (-745)) 77)) (-3345 (((-112) $) 120)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $) 122) (((-745) $ (-745)) 124)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL)) (-3823 (($ (-1 |#1| (-548)) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 13) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $) 129 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 130 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-1656 (($ $ (-745)) 15)) (-1900 (((-3 $ "failed") $ $) 24 (|has| |#1| (-540)))) (-2458 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3171 ((|#1| $ (-745)) 119) (($ $ $) 128 (|has| (-745) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1214 |#2|)) 29)) (-2512 (((-745) $) NIL)) (-2110 (($ $) 175 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 151 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 171 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 147 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 167 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 143 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 201) (($ (-548)) NIL) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1191 |#2| |#1|)) 51) (($ (-1214 |#2|)) 32)) (-3852 (((-1116 |#1|) $) 98)) (-1951 ((|#1| $ (-745)) 118)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 54)) (-2145 (($ $) 181 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 157 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 177 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 153 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 185 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 161 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-745)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 187 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 163 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 183 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 159 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 179 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 155 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 17 T CONST)) (-3118 (($) 19 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 194)) (-2290 (($ $ $) 31)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 198 (|has| |#1| (-355))) (($ $ $) 134 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 137 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1133 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1133)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-1133 *3 *4 *5)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1133 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-3743 (((-832) $) 27) (($ (-1135)) 29)) (-1524 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 40)) (-1514 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 33) (($ $) 34)) (-3211 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 35)) (-3197 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 37)) (-3184 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 36)) (-3172 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 38)) (-3846 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $))) 39))) -(((-1134) (-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -3211 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3184 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3197 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3172 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3846 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ $))))) (T -1134)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1134)))) (-3211 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3184 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3197 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1524 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3846 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1514 (*1 *1 *1) (-5 *1 (-1134)))) -(-13 (-592 (-832)) (-10 -8 (-15 -3743 ($ (-1135))) (-15 -3211 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3184 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3197 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3172 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -3846 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) (|:| CF (-308 (-166 (-371)))) (|:| |switch| $)))) (-15 -1514 ($ $)))) -((-3730 (((-112) $ $) NIL)) (-3053 (($ $ (-619 (-832))) 59)) (-3063 (($ $ (-619 (-832))) 57)) (-1504 (((-1118) $) 84)) (-3212 (((-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))) $) 87)) (-3074 (((-112) $) 22)) (-3795 (($ $ (-619 (-619 (-832)))) 56) (($ $ (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832))))) 82)) (-3030 (($) 124 T CONST)) (-3085 (((-1223)) 106)) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 66) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 73)) (-3550 (($) 95) (($ $) 101)) (-2275 (($ $) 83)) (-1795 (($ $ $) NIL)) (-3091 (($ $ $) NIL)) (-3309 (((-619 $) $) 107)) (-2546 (((-1118) $) 90)) (-3932 (((-1082) $) NIL)) (-3171 (($ $ (-619 (-832))) 58)) (-2591 (((-524) $) 46) (((-1135) $) 47) (((-861 (-548)) $) 77) (((-861 (-371)) $) 75)) (-3743 (((-832) $) 53) (($ (-1118)) 48)) (-3040 (($ $ (-619 (-832))) 60)) (-2739 (((-1118) $) 33) (((-1118) $ (-112)) 34) (((-1223) (-796) $) 35) (((-1223) (-796) $ (-112)) 36)) (-2262 (((-112) $ $) NIL)) (-2241 (((-112) $ $) NIL)) (-2214 (((-112) $ $) 49)) (-2252 (((-112) $ $) NIL)) (-2234 (((-112) $ $) 50))) -(((-1135) (-13 (-821) (-593 (-524)) (-802) (-593 (-1135)) (-593 (-861 (-548))) (-593 (-861 (-371))) (-855 (-548)) (-855 (-371)) (-10 -8 (-15 -3550 ($)) (-15 -3550 ($ $)) (-15 -3085 ((-1223))) (-15 -3743 ($ (-1118))) (-15 -2275 ($ $)) (-15 -3074 ((-112) $)) (-15 -3212 ((-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -3795 ($ $ (-619 (-619 (-832))))) (-15 -3795 ($ $ (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -3063 ($ $ (-619 (-832)))) (-15 -3053 ($ $ (-619 (-832)))) (-15 -3040 ($ $ (-619 (-832)))) (-15 -3171 ($ $ (-619 (-832)))) (-15 -1504 ((-1118) $)) (-15 -3309 ((-619 $) $)) (-15 -3030 ($) -2325)))) (T -1135)) -((-3550 (*1 *1) (-5 *1 (-1135))) (-3550 (*1 *1 *1) (-5 *1 (-1135))) (-3085 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1135)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) (-2275 (*1 *1 *1) (-5 *1 (-1135))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1135)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1135)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1135)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1135)))) (-3030 (*1 *1) (-5 *1 (-1135)))) -(-13 (-821) (-593 (-524)) (-802) (-593 (-1135)) (-593 (-861 (-548))) (-593 (-861 (-371))) (-855 (-548)) (-855 (-371)) (-10 -8 (-15 -3550 ($)) (-15 -3550 ($ $)) (-15 -3085 ((-1223))) (-15 -3743 ($ (-1118))) (-15 -2275 ($ $)) (-15 -3074 ((-112) $)) (-15 -3212 ((-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -3795 ($ $ (-619 (-619 (-832))))) (-15 -3795 ($ $ (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -3063 ($ $ (-619 (-832)))) (-15 -3053 ($ $ (-619 (-832)))) (-15 -3040 ($ $ (-619 (-832)))) (-15 -3171 ($ $ (-619 (-832)))) (-15 -1504 ((-1118) $)) (-15 -3309 ((-619 $) $)) (-15 -3030 ($) -2325))) -((-3099 (((-1218 |#1|) |#1| (-890)) 16) (((-1218 |#1|) (-619 |#1|)) 20))) -(((-1136 |#1|) (-10 -7 (-15 -3099 ((-1218 |#1|) (-619 |#1|))) (-15 -3099 ((-1218 |#1|) |#1| (-890)))) (-1016)) (T -1136)) -((-3099 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1218 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1016)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)) (-5 *1 (-1136 *4))))) -(-10 -7 (-15 -3099 ((-1218 |#1|) (-619 |#1|))) (-15 -3099 ((-1218 |#1|) |#1| (-890)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| |#1| (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#1| (-1007 (-399 (-548))))) (((-3 |#1| "failed") $) NIL)) (-2375 (((-548) $) NIL (|has| |#1| (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| |#1| (-1007 (-399 (-548))))) ((|#1| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-4065 (($ $) NIL (|has| |#1| (-443)))) (-4256 (($ $ |#1| (-940) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-940)) NIL)) (-3904 (((-940) $) NIL)) (-4267 (($ (-1 (-940) (-940)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#1| $) NIL)) (-1362 (($ $ (-940) |#1| $) NIL (-12 (|has| (-940) (-130)) (|has| |#1| (-540))))) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-540)))) (-2512 (((-940) $) NIL)) (-3881 ((|#1| $) NIL (|has| |#1| (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) NIL) (($ (-399 (-548))) NIL (-1524 (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-1007 (-399 (-548))))))) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ (-940)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-3107 (($) 9 T CONST)) (-3118 (($) 14 T CONST)) (-2214 (((-112) $ $) 16)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1137 |#1|) (-13 (-318 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| (-940) (-130)) (-15 -1362 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) (-1016)) (T -1137)) -((-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1137 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) -(-13 (-318 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-540)) (IF (|has| (-940) (-130)) (-15 -1362 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) -((-3111 (((-1139) (-1135) $) 25)) (-3225 (($) 29)) (-3132 (((-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-1135) $) 22)) (-3152 (((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) $) 41) (((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) 42) (((-1223) (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) 43)) (-3236 (((-1223) (-1135)) 58)) (-3142 (((-1223) (-1135) $) 55) (((-1223) (-1135)) 56) (((-1223)) 57)) (-3200 (((-1223) (-1135)) 37)) (-3175 (((-1135)) 36)) (-3319 (($) 34)) (-3964 (((-429) (-1135) (-429) (-1135) $) 45) (((-429) (-619 (-1135)) (-429) (-1135) $) 49) (((-429) (-1135) (-429)) 46) (((-429) (-1135) (-429) (-1135)) 50)) (-3187 (((-1135)) 35)) (-3743 (((-832) $) 28)) (-3214 (((-1223)) 30) (((-1223) (-1135)) 33)) (-3122 (((-619 (-1135)) (-1135) $) 24)) (-3163 (((-1223) (-1135) (-619 (-1135)) $) 38) (((-1223) (-1135) (-619 (-1135))) 39) (((-1223) (-619 (-1135))) 40))) -(((-1138) (-13 (-592 (-832)) (-10 -8 (-15 -3225 ($)) (-15 -3214 ((-1223))) (-15 -3214 ((-1223) (-1135))) (-15 -3964 ((-429) (-1135) (-429) (-1135) $)) (-15 -3964 ((-429) (-619 (-1135)) (-429) (-1135) $)) (-15 -3964 ((-429) (-1135) (-429))) (-15 -3964 ((-429) (-1135) (-429) (-1135))) (-15 -3200 ((-1223) (-1135))) (-15 -3187 ((-1135))) (-15 -3175 ((-1135))) (-15 -3163 ((-1223) (-1135) (-619 (-1135)) $)) (-15 -3163 ((-1223) (-1135) (-619 (-1135)))) (-15 -3163 ((-1223) (-619 (-1135)))) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3152 ((-1223) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3142 ((-1223) (-1135) $)) (-15 -3142 ((-1223) (-1135))) (-15 -3142 ((-1223))) (-15 -3236 ((-1223) (-1135))) (-15 -3319 ($)) (-15 -3132 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-1135) $)) (-15 -3122 ((-619 (-1135)) (-1135) $)) (-15 -3111 ((-1139) (-1135) $))))) (T -1138)) -((-3225 (*1 *1) (-5 *1 (-1138))) (-3214 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *4 (-1135)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-3964 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3187 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138)))) (-3175 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138)))) (-3163 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3152 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1135)) (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3142 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3142 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-3319 (*1 *1) (-5 *1 (-1138))) (-3132 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *1 (-1138)))) (-3122 (*1 *2 *3 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1138)) (-5 *3 (-1135)))) (-3111 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1139)) (-5 *1 (-1138))))) -(-13 (-592 (-832)) (-10 -8 (-15 -3225 ($)) (-15 -3214 ((-1223))) (-15 -3214 ((-1223) (-1135))) (-15 -3964 ((-429) (-1135) (-429) (-1135) $)) (-15 -3964 ((-429) (-619 (-1135)) (-429) (-1135) $)) (-15 -3964 ((-429) (-1135) (-429))) (-15 -3964 ((-429) (-1135) (-429) (-1135))) (-15 -3200 ((-1223) (-1135))) (-15 -3187 ((-1135))) (-15 -3175 ((-1135))) (-15 -3163 ((-1223) (-1135) (-619 (-1135)) $)) (-15 -3163 ((-1223) (-1135) (-619 (-1135)))) (-15 -3163 ((-1223) (-619 (-1135)))) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")) $)) (-15 -3152 ((-1223) (-1135) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3152 ((-1223) (-3 (|:| |fst| (-426)) (|:| -2648 "void")))) (-15 -3142 ((-1223) (-1135) $)) (-15 -3142 ((-1223) (-1135))) (-15 -3142 ((-1223))) (-15 -3236 ((-1223) (-1135))) (-15 -3319 ($)) (-15 -3132 ((-3 (|:| |fst| (-426)) (|:| -2648 "void")) (-1135) $)) (-15 -3122 ((-619 (-1135)) (-1135) $)) (-15 -3111 ((-1139) (-1135) $)))) -((-3258 (((-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) $) 59)) (-3282 (((-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))) (-426) $) 43)) (-3850 (($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))) 17)) (-3236 (((-1223) $) 67)) (-3293 (((-619 (-1135)) $) 22)) (-3246 (((-1067) $) 55)) (-3306 (((-429) (-1135) $) 27)) (-3270 (((-619 (-1135)) $) 30)) (-3319 (($) 19)) (-3964 (((-429) (-619 (-1135)) (-429) $) 25) (((-429) (-1135) (-429) $) 24)) (-3743 (((-832) $) 9) (((-1145 (-1135) (-429)) $) 13))) -(((-1139) (-13 (-592 (-832)) (-10 -8 (-15 -3743 ((-1145 (-1135) (-429)) $)) (-15 -3319 ($)) (-15 -3964 ((-429) (-619 (-1135)) (-429) $)) (-15 -3964 ((-429) (-1135) (-429) $)) (-15 -3306 ((-429) (-1135) $)) (-15 -3293 ((-619 (-1135)) $)) (-15 -3282 ((-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))) (-426) $)) (-15 -3270 ((-619 (-1135)) $)) (-15 -3258 ((-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) $)) (-15 -3246 ((-1067) $)) (-15 -3236 ((-1223) $)) (-15 -3850 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))))))) (T -1139)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-1145 (-1135) (-429))) (-5 *1 (-1139)))) (-3319 (*1 *1) (-5 *1 (-1139))) (-3964 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *1 (-1139)))) (-3964 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1139)))) (-3306 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-429)) (-5 *1 (-1139)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139)))) (-3282 (*1 *2 *3 *1) (-12 (-5 *3 (-426)) (-5 *2 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) (-5 *1 (-1139)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))))) (-5 *1 (-1139)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1139)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1139)))) (-3850 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))) (-5 *1 (-1139))))) -(-13 (-592 (-832)) (-10 -8 (-15 -3743 ((-1145 (-1135) (-429)) $)) (-15 -3319 ($)) (-15 -3964 ((-429) (-619 (-1135)) (-429) $)) (-15 -3964 ((-429) (-1135) (-429) $)) (-15 -3306 ((-429) (-1135) $)) (-15 -3293 ((-619 (-1135)) $)) (-15 -3282 ((-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))) (-426) $)) (-15 -3270 ((-619 (-1135)) $)) (-15 -3258 ((-619 (-619 (-3 (|:| -2275 (-1135)) (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) $)) (-15 -3246 ((-1067) $)) (-15 -3236 ((-1223) $)) (-15 -3850 ($ (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429)))))))) -((-3730 (((-112) $ $) NIL)) (-3379 (((-112) $) 42)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3362 (((-3 (-548) (-218) (-1135) (-1118) $) $) 50)) (-3347 (((-619 $) $) 55)) (-2591 (((-1067) $) 24) (($ (-1067)) 25)) (-3332 (((-112) $) 52)) (-3743 (((-832) $) NIL) (($ (-548)) 26) (((-548) $) 28) (($ (-218)) 29) (((-218) $) 31) (($ (-1135)) 32) (((-1135) $) 34) (($ (-1118)) 35) (((-1118) $) 37)) (-3095 (((-112) $ (|[\|\|]| (-548))) 11) (((-112) $ (|[\|\|]| (-218))) 15) (((-112) $ (|[\|\|]| (-1135))) 23) (((-112) $ (|[\|\|]| (-1118))) 19)) (-3395 (($ (-1135) (-619 $)) 39) (($ $ (-619 $)) 40)) (-2148 (((-548) $) 27) (((-218) $) 30) (((-1135) $) 33) (((-1118) $) 36)) (-2214 (((-112) $ $) 7))) -(((-1140) (-13 (-1213) (-1063) (-10 -8 (-15 -2591 ((-1067) $)) (-15 -2591 ($ (-1067))) (-15 -3743 ($ (-548))) (-15 -3743 ((-548) $)) (-15 -2148 ((-548) $)) (-15 -3743 ($ (-218))) (-15 -3743 ((-218) $)) (-15 -2148 ((-218) $)) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -2148 ((-1135) $)) (-15 -3743 ($ (-1118))) (-15 -3743 ((-1118) $)) (-15 -2148 ((-1118) $)) (-15 -3395 ($ (-1135) (-619 $))) (-15 -3395 ($ $ (-619 $))) (-15 -3379 ((-112) $)) (-15 -3362 ((-3 (-548) (-218) (-1135) (-1118) $) $)) (-15 -3347 ((-619 $) $)) (-15 -3332 ((-112) $)) (-15 -3095 ((-112) $ (|[\|\|]| (-548)))) (-15 -3095 ((-112) $ (|[\|\|]| (-218)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1135)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1118))))))) (T -1140)) -((-2591 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-3395 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-1140))) (-5 *1 (-1140)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-3 (-548) (-218) (-1135) (-1118) (-1140))) (-5 *1 (-1140)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-548))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)) (-5 *1 (-1140))))) -(-13 (-1213) (-1063) (-10 -8 (-15 -2591 ((-1067) $)) (-15 -2591 ($ (-1067))) (-15 -3743 ($ (-548))) (-15 -3743 ((-548) $)) (-15 -2148 ((-548) $)) (-15 -3743 ($ (-218))) (-15 -3743 ((-218) $)) (-15 -2148 ((-218) $)) (-15 -3743 ($ (-1135))) (-15 -3743 ((-1135) $)) (-15 -2148 ((-1135) $)) (-15 -3743 ($ (-1118))) (-15 -3743 ((-1118) $)) (-15 -2148 ((-1118) $)) (-15 -3395 ($ (-1135) (-619 $))) (-15 -3395 ($ $ (-619 $))) (-15 -3379 ((-112) $)) (-15 -3362 ((-3 (-548) (-218) (-1135) (-1118) $) $)) (-15 -3347 ((-619 $) $)) (-15 -3332 ((-112) $)) (-15 -3095 ((-112) $ (|[\|\|]| (-548)))) (-15 -3095 ((-112) $ (|[\|\|]| (-218)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1135)))) (-15 -3095 ((-112) $ (|[\|\|]| (-1118)))))) -((-3420 (((-619 (-619 (-921 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 57)) (-3408 (((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|)))) 69) (((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|))) 65) (((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135)) 70) (((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135)) 64) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|))))) 93) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|)))) 92) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135))) 94) (((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))) (-619 (-1135))) 91))) -(((-1141 |#1|) (-10 -7 (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))))) (-15 -3420 ((-619 (-619 (-921 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))))) (-540)) (T -1141)) -((-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1141 *5)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) (-5 *1 (-1141 *4)) (-5 *3 (-286 (-399 (-921 *4)))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) (-5 *1 (-1141 *4)) (-5 *3 (-399 (-921 *4))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) (-5 *3 (-286 (-399 (-921 *5)))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) (-5 *3 (-399 (-921 *5))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-1141 *4)) (-5 *3 (-619 (-286 (-399 (-921 *4))))))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-619 (-399 (-921 *4)))) (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-1141 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-1141 *5)) (-5 *3 (-619 (-286 (-399 (-921 *5))))))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-1141 *5))))) -(-10 -7 (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))) (-619 (-1135)))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-399 (-921 |#1|))))) (-15 -3408 ((-619 (-619 (-286 (-399 (-921 |#1|))))) (-619 (-286 (-399 (-921 |#1|)))))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))) (-1135))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-399 (-921 |#1|)))) (-15 -3408 ((-619 (-286 (-399 (-921 |#1|)))) (-286 (-399 (-921 |#1|))))) (-15 -3420 ((-619 (-619 (-921 |#1|))) (-619 (-399 (-921 |#1|))) (-619 (-1135))))) -((-3432 (((-1118)) 7)) (-3450 (((-1118)) 9)) (-2819 (((-1223) (-1118)) 11)) (-3440 (((-1118)) 8))) -(((-1142) (-10 -7 (-15 -3432 ((-1118))) (-15 -3440 ((-1118))) (-15 -3450 ((-1118))) (-15 -2819 ((-1223) (-1118))))) (T -1142)) -((-2819 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1142)))) (-3450 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142)))) (-3440 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142)))) (-3432 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) -(-10 -7 (-15 -3432 ((-1118))) (-15 -3440 ((-1118))) (-15 -3450 ((-1118))) (-15 -2819 ((-1223) (-1118)))) -((-2301 (((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 38)) (-2331 (((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|))) 24)) (-2340 (((-1144 (-619 |#1|)) (-619 |#1|)) 34)) (-2360 (((-619 (-619 |#1|)) (-619 |#1|)) 30)) (-3000 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))) 37)) (-2379 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|)))) 36)) (-2349 (((-619 (-619 |#1|)) (-619 (-619 |#1|))) 28)) (-2369 (((-619 |#1|) (-619 |#1|)) 31)) (-2292 (((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 18)) (-2282 (((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 16)) (-3461 (((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|))) 14)) (-2311 (((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 39)) (-2321 (((-619 (-619 |#1|)) (-1144 (-619 |#1|))) 41))) -(((-1143 |#1|) (-10 -7 (-15 -3461 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -2282 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2292 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2301 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2311 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2321 ((-619 (-619 |#1|)) (-1144 (-619 |#1|)))) (-15 -2331 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -2340 ((-1144 (-619 |#1|)) (-619 |#1|))) (-15 -2349 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -2360 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -2369 ((-619 |#1|) (-619 |#1|))) (-15 -2379 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3000 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) (-821)) (T -1143)) -((-3000 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 (-619 *4)))))) (-2379 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) (|:| |f4| (-619 *5)))) (-5 *1 (-1143 *6)) (-5 *4 (-619 *5)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1143 *3)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) (-5 *3 (-619 *4)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1143 *3)))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-1144 (-619 *4))) (-5 *1 (-1143 *4)) (-5 *3 (-619 *4)))) (-2331 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 *4))))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1144 (-619 *4))) (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) (-4 *4 (-821)))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-4 *4 (-821)) (-5 *1 (-1143 *4)))) (-2292 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *1 (-1143 *4)))) (-2282 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1143 *5)))) (-3461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) (-5 *1 (-1143 *6)) (-5 *5 (-619 *4))))) -(-10 -7 (-15 -3461 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -2282 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2292 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -2301 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2311 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -2321 ((-619 (-619 |#1|)) (-1144 (-619 |#1|)))) (-15 -2331 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -2340 ((-1144 (-619 |#1|)) (-619 |#1|))) (-15 -2349 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -2360 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -2369 ((-619 |#1|) (-619 |#1|))) (-15 -2379 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3000 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) -((-2390 (($ (-619 (-619 |#1|))) 10)) (-2401 (((-619 (-619 |#1|)) $) 11)) (-3743 (((-832) $) 26))) -(((-1144 |#1|) (-10 -8 (-15 -2390 ($ (-619 (-619 |#1|)))) (-15 -2401 ((-619 (-619 |#1|)) $)) (-15 -3743 ((-832) $))) (-1063)) (T -1144)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1144 *3))))) -(-10 -8 (-15 -2390 ($ (-619 (-619 |#1|)))) (-15 -2401 ((-619 (-619 |#1|)) $)) (-15 -3743 ((-832) $))) -((-3730 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3539 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-4149 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#2| $ |#1| |#2|) NIL)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) NIL)) (-3030 (($) NIL T CONST)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) NIL)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) NIL)) (-4171 ((|#1| $) NIL (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-619 |#2|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4181 ((|#1| $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-4043 (((-619 |#1|) $) NIL)) (-4233 (((-112) |#1| $) NIL)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-4201 (((-619 |#1|) $) NIL)) (-4212 (((-112) |#1| $) NIL)) (-3932 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3453 ((|#2| $) NIL (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2801 (($) NIL) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) NIL (-12 (|has| $ (-6 -4327)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3743 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832))) (|has| |#2| (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) NIL)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) NIL (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1145 |#1| |#2|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) (-1063) (-1063)) (T -1145)) -NIL -(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4327))) -((-2412 ((|#1| (-619 |#1|)) 32)) (-2431 ((|#1| |#1| (-548)) 18)) (-2421 (((-1131 |#1|) |#1| (-890)) 15))) -(((-1146 |#1|) (-10 -7 (-15 -2412 (|#1| (-619 |#1|))) (-15 -2421 ((-1131 |#1|) |#1| (-890))) (-15 -2431 (|#1| |#1| (-548)))) (-355)) (T -1146)) -((-2431 (*1 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-1146 *2)) (-4 *2 (-355)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1131 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-355)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1146 *2)) (-4 *2 (-355))))) -(-10 -7 (-15 -2412 (|#1| (-619 |#1|))) (-15 -2421 ((-1131 |#1|) |#1| (-890))) (-15 -2431 (|#1| |#1| (-548)))) -((-3539 (($) 10) (($ (-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)))) 14)) (-1636 (($ (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1934 (((-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 39) (((-619 |#3|) $) 41)) (-3960 (($ (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2540 (($ (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1346 (((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 54)) (-2539 (($ (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 16)) (-4201 (((-619 |#2|) $) 19)) (-4212 (((-112) |#2| $) 59)) (-4030 (((-3 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) "failed") (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) 58)) (-1357 (((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) 63)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-4223 (((-619 |#3|) $) 43)) (-3171 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-745) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) $) NIL) (((-745) |#3| $) NIL) (((-745) (-1 (-112) |#3|) $) 68)) (-3743 (((-832) $) 27)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2214 (((-112) $ $) 49))) -(((-1147 |#1| |#2| |#3|) (-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3539 (|#1| (-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))))) (-15 -3539 (|#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -1934 ((-619 |#3|) |#1|)) (-15 -3945 ((-745) |#3| |#1|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -4212 ((-112) |#2| |#1|)) (-15 -4201 ((-619 |#2|) |#1|)) (-15 -1636 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1636 (|#1| (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1636 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -4030 ((-3 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) "failed") (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1346 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -2539 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -3945 ((-745) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1934 ((-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3945 ((-745) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3537 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3548 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -2540 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|))) (-1148 |#2| |#3|) (-1063) (-1063)) (T -1147)) -NIL -(-10 -8 (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -2540 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3539 (|#1| (-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))))) (-15 -3539 (|#1|)) (-15 -2540 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3548 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3537 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3945 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -1934 ((-619 |#3|) |#1|)) (-15 -3945 ((-745) |#3| |#1|)) (-15 -3171 (|#3| |#1| |#2| |#3|)) (-15 -3171 (|#3| |#1| |#2|)) (-15 -4223 ((-619 |#3|) |#1|)) (-15 -4212 ((-112) |#2| |#1|)) (-15 -4201 ((-619 |#2|) |#1|)) (-15 -1636 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1636 (|#1| (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1636 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -4030 ((-3 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) "failed") (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -1346 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -2539 (|#1| (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1357 ((-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -3945 ((-745) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) |#1|)) (-15 -1934 ((-619 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3945 ((-745) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3537 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3548 ((-112) (-1 (-112) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|)) (-15 -2540 (|#1| (-1 (-2 (|:| -3156 |#2|) (|:| -1657 |#3|)) (-2 (|:| -3156 |#2|) (|:| -1657 |#3|))) |#1|))) -((-3730 (((-112) $ $) 19 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3539 (($) 72) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 71)) (-4149 (((-1223) $ |#1| |#1|) 99 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#2| $ |#1| |#2|) 73)) (-2657 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 45 (|has| $ (-6 -4327)))) (-1415 (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 55 (|has| $ (-6 -4327)))) (-3255 (((-3 |#2| "failed") |#1| $) 61)) (-3030 (($) 7 T CONST)) (-3484 (($ $) 58 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327))))) (-1636 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 47 (|has| $ (-6 -4327))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 46 (|has| $ (-6 -4327))) (((-3 |#2| "failed") |#1| $) 62)) (-3699 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 54 (|has| $ (-6 -4327)))) (-2061 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 56 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 53 (|has| $ (-6 -4327))) (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 52 (|has| $ (-6 -4327)))) (-3971 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4328)))) (-3899 ((|#2| $ |#1|) 88)) (-1934 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 30 (|has| $ (-6 -4327))) (((-619 |#2|) $) 79 (|has| $ (-6 -4327)))) (-4282 (((-112) $ (-745)) 9)) (-4171 ((|#1| $) 96 (|has| |#1| (-821)))) (-2342 (((-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 29 (|has| $ (-6 -4327))) (((-619 |#2|) $) 80 (|has| $ (-6 -4327)))) (-2556 (((-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327))))) (-4181 ((|#1| $) 95 (|has| |#1| (-821)))) (-3960 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 34 (|has| $ (-6 -4328))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4328)))) (-2540 (($ (-1 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4248 (((-112) $ (-745)) 10)) (-2546 (((-1118) $) 22 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-4043 (((-619 |#1|) $) 63)) (-4233 (((-112) |#1| $) 64)) (-1346 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 39)) (-2539 (($ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 40)) (-4201 (((-619 |#1|) $) 93)) (-4212 (((-112) |#1| $) 92)) (-3932 (((-1082) $) 21 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3453 ((|#2| $) 97 (|has| |#1| (-821)))) (-4030 (((-3 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) "failed") (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 51)) (-4159 (($ $ |#2|) 98 (|has| $ (-6 -4328)))) (-1357 (((-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 41)) (-3537 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 32 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))))) 26 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-286 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 25 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) 24 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 23 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-286 |#2|))) 83 (-12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4327)) (|has| |#2| (-1063))))) (-4223 (((-619 |#2|) $) 91)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2801 (($) 49) (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 48)) (-3945 (((-745) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 31 (|has| $ (-6 -4327))) (((-745) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| $ (-6 -4327)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4327)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 59 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))))) (-3754 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 50)) (-3743 (((-832) $) 18 (-1524 (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))))) (-1368 (($ (-619 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) 42)) (-3548 (((-112) (-1 (-112) (-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) $) 33 (|has| $ (-6 -4327))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL)) (-2290 (((-1223) $ (-1118) (-1118)) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-1118) |#1|) NIL)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#1| "failed") (-1118) $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#1| "failed") (-1118) $) NIL)) (-3801 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-1118) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-1118)) NIL)) (-2973 (((-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-1118) $) NIL (|has| (-1118) (-821)))) (-3666 (((-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-1118) $) NIL (|has| (-1118) (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3437 (((-619 (-1118)) $) NIL)) (-1876 (((-112) (-1118) $) NIL)) (-1959 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL)) (-1520 (((-619 (-1118)) $) NIL)) (-1641 (((-112) (-1118) $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3634 ((|#1| $) NIL (|has| (-1118) (-821)))) (-3461 (((-3 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) "failed") (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL (-12 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-300 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-1118)) NIL) ((|#1| $ (-1118) |#1|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-591 (-832))) (|has| |#1| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 (-1118)) (|:| -1777 |#1|)) (-1063)) (|has| |#1| (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1119 |#1|) (-13 (-1148 (-1118) |#1|) (-10 -7 (-6 -4328))) (-1063)) (T -1119)) +NIL +(-13 (-1148 (-1118) |#1|) (-10 -7 (-6 -4328))) +((-3705 (((-1116 |#1|) (-1116 |#1|)) 77)) (-2537 (((-3 (-1116 |#1|) "failed") (-1116 |#1|)) 37)) (-4223 (((-1116 |#1|) (-398 (-547)) (-1116 |#1|)) 121 (|has| |#1| (-38 (-398 (-547)))))) (-3402 (((-1116 |#1|) |#1| (-1116 |#1|)) 127 (|has| |#1| (-354)))) (-2886 (((-1116 |#1|) (-1116 |#1|)) 90)) (-1398 (((-1116 (-547)) (-547)) 57)) (-4127 (((-1116 |#1|) (-1116 (-1116 |#1|))) 109 (|has| |#1| (-38 (-398 (-547)))))) (-3600 (((-1116 |#1|) (-547) (-547) (-1116 |#1|)) 95)) (-3513 (((-1116 |#1|) |#1| (-547)) 45)) (-1650 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 60)) (-1261 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 124 (|has| |#1| (-354)))) (-4037 (((-1116 |#1|) |#1| (-1 (-1116 |#1|))) 108 (|has| |#1| (-38 (-398 (-547)))))) (-3294 (((-1116 |#1|) (-1 |#1| (-547)) |#1| (-1 (-1116 |#1|))) 125 (|has| |#1| (-354)))) (-2972 (((-1116 |#1|) (-1116 |#1|)) 89)) (-3064 (((-1116 |#1|) (-1116 |#1|)) 76)) (-3476 (((-1116 |#1|) (-547) (-547) (-1116 |#1|)) 96)) (-2069 (((-1116 |#1|) |#1| (-1116 |#1|)) 105 (|has| |#1| (-38 (-398 (-547)))))) (-2646 (((-1116 (-547)) (-547)) 56)) (-1528 (((-1116 |#1|) |#1|) 59)) (-3808 (((-1116 |#1|) (-1116 |#1|) (-547) (-547)) 92)) (-1881 (((-1116 |#1|) (-1 |#1| (-547)) (-1116 |#1|)) 66)) (-2025 (((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|)) 35)) (-2790 (((-1116 |#1|) (-1116 |#1|)) 91)) (-2670 (((-1116 |#1|) (-1116 |#1|) |#1|) 71)) (-1765 (((-1116 |#1|) (-1116 |#1|)) 62)) (-1992 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 72)) (-3834 (((-1116 |#1|) |#1|) 67)) (-3927 (((-1116 |#1|) (-1116 (-1116 |#1|))) 82)) (-2497 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 36)) (-2484 (((-1116 |#1|) (-1116 |#1|)) 21) (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 23)) (-2470 (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 17)) (* (((-1116 |#1|) (-1116 |#1|) |#1|) 29) (((-1116 |#1|) |#1| (-1116 |#1|)) 26) (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 27))) +(((-1120 |#1|) (-10 -7 (-15 -2470 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2484 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2484 ((-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -2025 ((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|))) (-15 -2497 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2537 ((-3 (-1116 |#1|) "failed") (-1116 |#1|))) (-15 -3513 ((-1116 |#1|) |#1| (-547))) (-15 -2646 ((-1116 (-547)) (-547))) (-15 -1398 ((-1116 (-547)) (-547))) (-15 -1528 ((-1116 |#1|) |#1|)) (-15 -1650 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1765 ((-1116 |#1|) (-1116 |#1|))) (-15 -1881 ((-1116 |#1|) (-1 |#1| (-547)) (-1116 |#1|))) (-15 -3834 ((-1116 |#1|) |#1|)) (-15 -2670 ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -1992 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3064 ((-1116 |#1|) (-1116 |#1|))) (-15 -3705 ((-1116 |#1|) (-1116 |#1|))) (-15 -3927 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -2972 ((-1116 |#1|) (-1116 |#1|))) (-15 -2886 ((-1116 |#1|) (-1116 |#1|))) (-15 -2790 ((-1116 |#1|) (-1116 |#1|))) (-15 -3808 ((-1116 |#1|) (-1116 |#1|) (-547) (-547))) (-15 -3600 ((-1116 |#1|) (-547) (-547) (-1116 |#1|))) (-15 -3476 ((-1116 |#1|) (-547) (-547) (-1116 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 -4037 ((-1116 |#1|) |#1| (-1 (-1116 |#1|)))) (-15 -4127 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -4223 ((-1116 |#1|) (-398 (-547)) (-1116 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -1261 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3294 ((-1116 |#1|) (-1 |#1| (-547)) |#1| (-1 (-1116 |#1|)))) (-15 -3402 ((-1116 |#1|) |#1| (-1116 |#1|)))) |%noBranch|)) (-1016)) (T -1120)) +((-3402 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3294 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-547))) (-5 *5 (-1 (-1116 *4))) (-4 *4 (-354)) (-4 *4 (-1016)) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)))) (-1261 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-354)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-4223 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) (-5 *3 (-398 (-547))) (-5 *1 (-1120 *4)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1116 *3))) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)))) (-2069 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3476 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3600 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-3808 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1016)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-1992 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2670 (*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-1881 (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *4)) (-5 *3 (-1 *4 (-547))) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-1650 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-1116 (-547))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) (-5 *3 (-547)))) (-2646 (*1 *2 *3) (-12 (-5 *2 (-1116 (-547))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) (-5 *3 (-547)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016)))) (-2537 (*1 *2 *2) (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2497 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2025 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2484 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) (-2470 (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(-10 -7 (-15 -2470 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2484 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2484 ((-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 * ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 * ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -2025 ((-3 (-1116 |#1|) "failed") (-1116 |#1|) (-1116 |#1|))) (-15 -2497 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -2537 ((-3 (-1116 |#1|) "failed") (-1116 |#1|))) (-15 -3513 ((-1116 |#1|) |#1| (-547))) (-15 -2646 ((-1116 (-547)) (-547))) (-15 -1398 ((-1116 (-547)) (-547))) (-15 -1528 ((-1116 |#1|) |#1|)) (-15 -1650 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1765 ((-1116 |#1|) (-1116 |#1|))) (-15 -1881 ((-1116 |#1|) (-1 |#1| (-547)) (-1116 |#1|))) (-15 -3834 ((-1116 |#1|) |#1|)) (-15 -2670 ((-1116 |#1|) (-1116 |#1|) |#1|)) (-15 -1992 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3064 ((-1116 |#1|) (-1116 |#1|))) (-15 -3705 ((-1116 |#1|) (-1116 |#1|))) (-15 -3927 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -2972 ((-1116 |#1|) (-1116 |#1|))) (-15 -2886 ((-1116 |#1|) (-1116 |#1|))) (-15 -2790 ((-1116 |#1|) (-1116 |#1|))) (-15 -3808 ((-1116 |#1|) (-1116 |#1|) (-547) (-547))) (-15 -3600 ((-1116 |#1|) (-547) (-547) (-1116 |#1|))) (-15 -3476 ((-1116 |#1|) (-547) (-547) (-1116 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ((-1116 |#1|) |#1| (-1116 |#1|))) (-15 -4037 ((-1116 |#1|) |#1| (-1 (-1116 |#1|)))) (-15 -4127 ((-1116 |#1|) (-1116 (-1116 |#1|)))) (-15 -4223 ((-1116 |#1|) (-398 (-547)) (-1116 |#1|)))) |%noBranch|) (IF (|has| |#1| (-354)) (PROGN (-15 -1261 ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3294 ((-1116 |#1|) (-1 |#1| (-547)) |#1| (-1 (-1116 |#1|)))) (-15 -3402 ((-1116 |#1|) |#1| (-1116 |#1|)))) |%noBranch|)) +((-1648 (((-1116 |#1|) (-1116 |#1|)) 57)) (-1498 (((-1116 |#1|) (-1116 |#1|)) 39)) (-1624 (((-1116 |#1|) (-1116 |#1|)) 53)) (-1473 (((-1116 |#1|) (-1116 |#1|)) 35)) (-1670 (((-1116 |#1|) (-1116 |#1|)) 60)) (-1526 (((-1116 |#1|) (-1116 |#1|)) 42)) (-3620 (((-1116 |#1|) (-1116 |#1|)) 31)) (-2703 (((-1116 |#1|) (-1116 |#1|)) 27)) (-1681 (((-1116 |#1|) (-1116 |#1|)) 61)) (-1539 (((-1116 |#1|) (-1116 |#1|)) 43)) (-1659 (((-1116 |#1|) (-1116 |#1|)) 58)) (-1513 (((-1116 |#1|) (-1116 |#1|)) 40)) (-1635 (((-1116 |#1|) (-1116 |#1|)) 55)) (-1488 (((-1116 |#1|) (-1116 |#1|)) 37)) (-1717 (((-1116 |#1|) (-1116 |#1|)) 65)) (-1574 (((-1116 |#1|) (-1116 |#1|)) 47)) (-1693 (((-1116 |#1|) (-1116 |#1|)) 63)) (-1550 (((-1116 |#1|) (-1116 |#1|)) 45)) (-1741 (((-1116 |#1|) (-1116 |#1|)) 68)) (-1597 (((-1116 |#1|) (-1116 |#1|)) 50)) (-1918 (((-1116 |#1|) (-1116 |#1|)) 69)) (-1610 (((-1116 |#1|) (-1116 |#1|)) 51)) (-1729 (((-1116 |#1|) (-1116 |#1|)) 67)) (-1586 (((-1116 |#1|) (-1116 |#1|)) 49)) (-1706 (((-1116 |#1|) (-1116 |#1|)) 66)) (-1563 (((-1116 |#1|) (-1116 |#1|)) 48)) (** (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 33))) +(((-1121 |#1|) (-10 -7 (-15 -2703 ((-1116 |#1|) (-1116 |#1|))) (-15 -3620 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1473 ((-1116 |#1|) (-1116 |#1|))) (-15 -1488 ((-1116 |#1|) (-1116 |#1|))) (-15 -1498 ((-1116 |#1|) (-1116 |#1|))) (-15 -1513 ((-1116 |#1|) (-1116 |#1|))) (-15 -1526 ((-1116 |#1|) (-1116 |#1|))) (-15 -1539 ((-1116 |#1|) (-1116 |#1|))) (-15 -1550 ((-1116 |#1|) (-1116 |#1|))) (-15 -1563 ((-1116 |#1|) (-1116 |#1|))) (-15 -1574 ((-1116 |#1|) (-1116 |#1|))) (-15 -1586 ((-1116 |#1|) (-1116 |#1|))) (-15 -1597 ((-1116 |#1|) (-1116 |#1|))) (-15 -1610 ((-1116 |#1|) (-1116 |#1|))) (-15 -1624 ((-1116 |#1|) (-1116 |#1|))) (-15 -1635 ((-1116 |#1|) (-1116 |#1|))) (-15 -1648 ((-1116 |#1|) (-1116 |#1|))) (-15 -1659 ((-1116 |#1|) (-1116 |#1|))) (-15 -1670 ((-1116 |#1|) (-1116 |#1|))) (-15 -1681 ((-1116 |#1|) (-1116 |#1|))) (-15 -1693 ((-1116 |#1|) (-1116 |#1|))) (-15 -1706 ((-1116 |#1|) (-1116 |#1|))) (-15 -1717 ((-1116 |#1|) (-1116 |#1|))) (-15 -1729 ((-1116 |#1|) (-1116 |#1|))) (-15 -1741 ((-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|)))) (-38 (-398 (-547)))) (T -1121)) +((-1918 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1610 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1539 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1498 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3))))) +(-10 -7 (-15 -2703 ((-1116 |#1|) (-1116 |#1|))) (-15 -3620 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -1473 ((-1116 |#1|) (-1116 |#1|))) (-15 -1488 ((-1116 |#1|) (-1116 |#1|))) (-15 -1498 ((-1116 |#1|) (-1116 |#1|))) (-15 -1513 ((-1116 |#1|) (-1116 |#1|))) (-15 -1526 ((-1116 |#1|) (-1116 |#1|))) (-15 -1539 ((-1116 |#1|) (-1116 |#1|))) (-15 -1550 ((-1116 |#1|) (-1116 |#1|))) (-15 -1563 ((-1116 |#1|) (-1116 |#1|))) (-15 -1574 ((-1116 |#1|) (-1116 |#1|))) (-15 -1586 ((-1116 |#1|) (-1116 |#1|))) (-15 -1597 ((-1116 |#1|) (-1116 |#1|))) (-15 -1610 ((-1116 |#1|) (-1116 |#1|))) (-15 -1624 ((-1116 |#1|) (-1116 |#1|))) (-15 -1635 ((-1116 |#1|) (-1116 |#1|))) (-15 -1648 ((-1116 |#1|) (-1116 |#1|))) (-15 -1659 ((-1116 |#1|) (-1116 |#1|))) (-15 -1670 ((-1116 |#1|) (-1116 |#1|))) (-15 -1681 ((-1116 |#1|) (-1116 |#1|))) (-15 -1693 ((-1116 |#1|) (-1116 |#1|))) (-15 -1706 ((-1116 |#1|) (-1116 |#1|))) (-15 -1717 ((-1116 |#1|) (-1116 |#1|))) (-15 -1729 ((-1116 |#1|) (-1116 |#1|))) (-15 -1741 ((-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|)))) +((-1648 (((-1116 |#1|) (-1116 |#1|)) 100)) (-1498 (((-1116 |#1|) (-1116 |#1|)) 64)) (-3614 (((-2 (|:| -1624 (-1116 |#1|)) (|:| -1635 (-1116 |#1|))) (-1116 |#1|)) 96)) (-1624 (((-1116 |#1|) (-1116 |#1|)) 97)) (-3503 (((-2 (|:| -1473 (-1116 |#1|)) (|:| -1488 (-1116 |#1|))) (-1116 |#1|)) 53)) (-1473 (((-1116 |#1|) (-1116 |#1|)) 54)) (-1670 (((-1116 |#1|) (-1116 |#1|)) 102)) (-1526 (((-1116 |#1|) (-1116 |#1|)) 71)) (-3620 (((-1116 |#1|) (-1116 |#1|)) 39)) (-2703 (((-1116 |#1|) (-1116 |#1|)) 36)) (-1681 (((-1116 |#1|) (-1116 |#1|)) 103)) (-1539 (((-1116 |#1|) (-1116 |#1|)) 72)) (-1659 (((-1116 |#1|) (-1116 |#1|)) 101)) (-1513 (((-1116 |#1|) (-1116 |#1|)) 67)) (-1635 (((-1116 |#1|) (-1116 |#1|)) 98)) (-1488 (((-1116 |#1|) (-1116 |#1|)) 55)) (-1717 (((-1116 |#1|) (-1116 |#1|)) 111)) (-1574 (((-1116 |#1|) (-1116 |#1|)) 86)) (-1693 (((-1116 |#1|) (-1116 |#1|)) 105)) (-1550 (((-1116 |#1|) (-1116 |#1|)) 82)) (-1741 (((-1116 |#1|) (-1116 |#1|)) 115)) (-1597 (((-1116 |#1|) (-1116 |#1|)) 90)) (-1918 (((-1116 |#1|) (-1116 |#1|)) 117)) (-1610 (((-1116 |#1|) (-1116 |#1|)) 92)) (-1729 (((-1116 |#1|) (-1116 |#1|)) 113)) (-1586 (((-1116 |#1|) (-1116 |#1|)) 88)) (-1706 (((-1116 |#1|) (-1116 |#1|)) 107)) (-1563 (((-1116 |#1|) (-1116 |#1|)) 84)) (** (((-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) 40))) +(((-1122 |#1|) (-10 -7 (-15 -2703 ((-1116 |#1|) (-1116 |#1|))) (-15 -3620 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3503 ((-2 (|:| -1473 (-1116 |#1|)) (|:| -1488 (-1116 |#1|))) (-1116 |#1|))) (-15 -1473 ((-1116 |#1|) (-1116 |#1|))) (-15 -1488 ((-1116 |#1|) (-1116 |#1|))) (-15 -1498 ((-1116 |#1|) (-1116 |#1|))) (-15 -1513 ((-1116 |#1|) (-1116 |#1|))) (-15 -1526 ((-1116 |#1|) (-1116 |#1|))) (-15 -1539 ((-1116 |#1|) (-1116 |#1|))) (-15 -1550 ((-1116 |#1|) (-1116 |#1|))) (-15 -1563 ((-1116 |#1|) (-1116 |#1|))) (-15 -1574 ((-1116 |#1|) (-1116 |#1|))) (-15 -1586 ((-1116 |#1|) (-1116 |#1|))) (-15 -1597 ((-1116 |#1|) (-1116 |#1|))) (-15 -1610 ((-1116 |#1|) (-1116 |#1|))) (-15 -3614 ((-2 (|:| -1624 (-1116 |#1|)) (|:| -1635 (-1116 |#1|))) (-1116 |#1|))) (-15 -1624 ((-1116 |#1|) (-1116 |#1|))) (-15 -1635 ((-1116 |#1|) (-1116 |#1|))) (-15 -1648 ((-1116 |#1|) (-1116 |#1|))) (-15 -1659 ((-1116 |#1|) (-1116 |#1|))) (-15 -1670 ((-1116 |#1|) (-1116 |#1|))) (-15 -1681 ((-1116 |#1|) (-1116 |#1|))) (-15 -1693 ((-1116 |#1|) (-1116 |#1|))) (-15 -1706 ((-1116 |#1|) (-1116 |#1|))) (-15 -1717 ((-1116 |#1|) (-1116 |#1|))) (-15 -1729 ((-1116 |#1|) (-1116 |#1|))) (-15 -1741 ((-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|)))) (-38 (-398 (-547)))) (T -1122)) +((-1918 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-2 (|:| -1624 (-1116 *4)) (|:| -1635 (-1116 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4)))) (-1610 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1539 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1526 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1498 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-3503 (*1 *2 *3) (-12 (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-2 (|:| -1473 (-1116 *4)) (|:| -1488 (-1116 *4)))) (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3))))) +(-10 -7 (-15 -2703 ((-1116 |#1|) (-1116 |#1|))) (-15 -3620 ((-1116 |#1|) (-1116 |#1|))) (-15 ** ((-1116 |#1|) (-1116 |#1|) (-1116 |#1|))) (-15 -3503 ((-2 (|:| -1473 (-1116 |#1|)) (|:| -1488 (-1116 |#1|))) (-1116 |#1|))) (-15 -1473 ((-1116 |#1|) (-1116 |#1|))) (-15 -1488 ((-1116 |#1|) (-1116 |#1|))) (-15 -1498 ((-1116 |#1|) (-1116 |#1|))) (-15 -1513 ((-1116 |#1|) (-1116 |#1|))) (-15 -1526 ((-1116 |#1|) (-1116 |#1|))) (-15 -1539 ((-1116 |#1|) (-1116 |#1|))) (-15 -1550 ((-1116 |#1|) (-1116 |#1|))) (-15 -1563 ((-1116 |#1|) (-1116 |#1|))) (-15 -1574 ((-1116 |#1|) (-1116 |#1|))) (-15 -1586 ((-1116 |#1|) (-1116 |#1|))) (-15 -1597 ((-1116 |#1|) (-1116 |#1|))) (-15 -1610 ((-1116 |#1|) (-1116 |#1|))) (-15 -3614 ((-2 (|:| -1624 (-1116 |#1|)) (|:| -1635 (-1116 |#1|))) (-1116 |#1|))) (-15 -1624 ((-1116 |#1|) (-1116 |#1|))) (-15 -1635 ((-1116 |#1|) (-1116 |#1|))) (-15 -1648 ((-1116 |#1|) (-1116 |#1|))) (-15 -1659 ((-1116 |#1|) (-1116 |#1|))) (-15 -1670 ((-1116 |#1|) (-1116 |#1|))) (-15 -1681 ((-1116 |#1|) (-1116 |#1|))) (-15 -1693 ((-1116 |#1|) (-1116 |#1|))) (-15 -1706 ((-1116 |#1|) (-1116 |#1|))) (-15 -1717 ((-1116 |#1|) (-1116 |#1|))) (-15 -1729 ((-1116 |#1|) (-1116 |#1|))) (-15 -1741 ((-1116 |#1|) (-1116 |#1|))) (-15 -1918 ((-1116 |#1|) (-1116 |#1|)))) +((-3701 (((-927 |#2|) |#2| |#2|) 35)) (-3786 ((|#2| |#2| |#1|) 19 (|has| |#1| (-298))))) +(((-1123 |#1| |#2|) (-10 -7 (-15 -3701 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-298)) (-15 -3786 (|#2| |#2| |#1|)) |%noBranch|)) (-539) (-1194 |#1|)) (T -1123)) +((-3786 (*1 *2 *2 *3) (-12 (-4 *3 (-298)) (-4 *3 (-539)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1194 *3)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *4 (-539)) (-5 *2 (-927 *3)) (-5 *1 (-1123 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3701 ((-927 |#2|) |#2| |#2|)) (IF (|has| |#1| (-298)) (-15 -3786 (|#2| |#2| |#1|)) |%noBranch|)) +((-3821 (((-112) $ $) NIL)) (-1822 (($ $ (-619 (-745))) 67)) (-1702 (($) 26)) (-3431 (($ $) 42)) (-1374 (((-619 $) $) 51)) (-2944 (((-112) $) 16)) (-2766 (((-619 (-912 |#2|)) $) 74)) (-2862 (($ $) 68)) (-3549 (((-745) $) 37)) (-3732 (($) 25)) (-3939 (($ $ (-619 (-745)) (-912 |#2|)) 60) (($ $ (-619 (-745)) (-745)) 61) (($ $ (-745) (-912 |#2|)) 63)) (-1294 (($ $ $) 48) (($ (-619 $)) 50)) (-1481 (((-745) $) 75)) (-3033 (((-112) $) 15)) (-1917 (((-1118) $) NIL)) (-2852 (((-112) $) 18)) (-3979 (((-1082) $) NIL)) (-2935 (((-168) $) 73)) (-1731 (((-912 |#2|) $) 69)) (-3134 (((-745) $) 70)) (-3032 (((-112) $) 72)) (-1915 (($ $ (-619 (-745)) (-168)) 66)) (-3314 (($ $) 43)) (-3834 (((-832) $) 86)) (-2003 (($ $ (-619 (-745)) (-112)) 65)) (-3668 (((-619 $) $) 11)) (-3776 (($ $ (-745)) 36)) (-2756 (($ $) 32)) (-4049 (($ $ $ (-912 |#2|) (-745)) 56)) (-4147 (($ $ (-912 |#2|)) 55)) (-4242 (($ $ (-619 (-745)) (-912 |#2|)) 54) (($ $ (-619 (-745)) (-745)) 58) (((-745) $ (-912 |#2|)) 59)) (-2371 (((-112) $ $) 80))) +(((-1124 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3033 ((-112) $)) (-15 -2944 ((-112) $)) (-15 -2852 ((-112) $)) (-15 -3732 ($)) (-15 -1702 ($)) (-15 -2756 ($ $)) (-15 -3776 ($ $ (-745))) (-15 -3668 ((-619 $) $)) (-15 -3549 ((-745) $)) (-15 -3431 ($ $)) (-15 -3314 ($ $)) (-15 -1294 ($ $ $)) (-15 -1294 ($ (-619 $))) (-15 -1374 ((-619 $) $)) (-15 -4242 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -4147 ($ $ (-912 |#2|))) (-15 -4049 ($ $ $ (-912 |#2|) (-745))) (-15 -3939 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -4242 ($ $ (-619 (-745)) (-745))) (-15 -3939 ($ $ (-619 (-745)) (-745))) (-15 -4242 ((-745) $ (-912 |#2|))) (-15 -3939 ($ $ (-745) (-912 |#2|))) (-15 -2003 ($ $ (-619 (-745)) (-112))) (-15 -1915 ($ $ (-619 (-745)) (-168))) (-15 -1822 ($ $ (-619 (-745)))) (-15 -1731 ((-912 |#2|) $)) (-15 -3134 ((-745) $)) (-15 -3032 ((-112) $)) (-15 -2935 ((-168) $)) (-15 -1481 ((-745) $)) (-15 -2862 ($ $)) (-15 -2766 ((-619 (-912 |#2|)) $)))) (-890) (-1016)) (T -1124)) +((-3033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3732 (*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-1702 (*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2756 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3431 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-3314 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-1294 (*1 *1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-1294 (*1 *1 *2) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)))) (-4049 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-1915 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)) (-4 *5 (-1016)))) (-1822 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-912 *4)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016)))) (-2862 (*1 *1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016))))) +(-13 (-1063) (-10 -8 (-15 -3033 ((-112) $)) (-15 -2944 ((-112) $)) (-15 -2852 ((-112) $)) (-15 -3732 ($)) (-15 -1702 ($)) (-15 -2756 ($ $)) (-15 -3776 ($ $ (-745))) (-15 -3668 ((-619 $) $)) (-15 -3549 ((-745) $)) (-15 -3431 ($ $)) (-15 -3314 ($ $)) (-15 -1294 ($ $ $)) (-15 -1294 ($ (-619 $))) (-15 -1374 ((-619 $) $)) (-15 -4242 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -4147 ($ $ (-912 |#2|))) (-15 -4049 ($ $ $ (-912 |#2|) (-745))) (-15 -3939 ($ $ (-619 (-745)) (-912 |#2|))) (-15 -4242 ($ $ (-619 (-745)) (-745))) (-15 -3939 ($ $ (-619 (-745)) (-745))) (-15 -4242 ((-745) $ (-912 |#2|))) (-15 -3939 ($ $ (-745) (-912 |#2|))) (-15 -2003 ($ $ (-619 (-745)) (-112))) (-15 -1915 ($ $ (-619 (-745)) (-168))) (-15 -1822 ($ $ (-619 (-745)))) (-15 -1731 ((-912 |#2|) $)) (-15 -3134 ((-745) $)) (-15 -3032 ((-112) $)) (-15 -2935 ((-168) $)) (-15 -1481 ((-745) $)) (-15 -2862 ($ $)) (-15 -2766 ((-619 (-912 |#2|)) $)))) +((-3821 (((-112) $ $) NIL)) (-2186 ((|#2| $) 11)) (-2174 ((|#1| $) 10)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3841 (($ |#1| |#2|) 9)) (-3834 (((-832) $) 16)) (-2371 (((-112) $ $) NIL))) +(((-1125 |#1| |#2|) (-13 (-1063) (-10 -8 (-15 -3841 ($ |#1| |#2|)) (-15 -2174 (|#1| $)) (-15 -2186 (|#2| $)))) (-1063) (-1063)) (T -1125)) +((-3841 (*1 *1 *2 *3) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-2174 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *2 *3)) (-4 *3 (-1063)))) (-2186 (*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1063))))) +(-13 (-1063) (-10 -8 (-15 -3841 ($ |#1| |#2|)) (-15 -2174 (|#1| $)) (-15 -2186 (|#2| $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 11)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3881 (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1832 (((-112) $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3643 (($ $ (-547)) NIL) (($ $ (-547) (-547)) 66)) (-2674 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) NIL)) (-2345 (((-1133 |#1| |#2| |#3|) $) 36)) (-2061 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 29)) (-2324 (((-1133 |#1| |#2| |#3|) $) 30)) (-1648 (($ $) 107 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 83 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) 103 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 79 (|has| |#1| (-38 (-398 (-547)))))) (-3807 (((-547) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-2810 (($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) 111 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 87 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1135) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-547) "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2643 (((-1133 |#1| |#2| |#3|) $) 131) (((-1135) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-354)))) (((-398 (-547)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-547) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2200 (($ $) 34) (($ (-547) $) 35)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-1133 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 (-1133 |#1| |#2| |#3|))) (|:| |vec| (-1218 (-1133 |#1| |#2| |#3|)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354))))) (-2537 (((-3 $ "failed") $) 48)) (-2612 (((-398 (-921 |#1|)) $ (-547)) 65 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 67 (|has| |#1| (-539)))) (-3229 (($) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-3848 (((-112) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-4211 (((-112) $) 25)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-855 (-547))) (|has| |#1| (-354)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-855 (-370))) (|has| |#1| (-354))))) (-3707 (((-547) $) NIL) (((-547) $ (-547)) 24)) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL (|has| |#1| (-354)))) (-1382 (((-1133 |#1| |#2| |#3|) $) 38 (|has| |#1| (-354)))) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3652 (((-3 $ "failed") $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-354))))) (-3937 (((-112) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-2438 (($ $ (-890)) NIL)) (-2194 (($ (-1 |#1| (-547)) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-547)) 18) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2847 (($ $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-3563 (($ $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-354)))) (-3620 (($ $) 72 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2337 (($ (-547) (-1133 |#1| |#2| |#3|)) 33)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2069 (($ $) 70 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 71 (|has| |#1| (-38 (-398 (-547)))))) (-3045 (($) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2567 (($ $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-1435 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-547)) 145)) (-2025 (((-3 $ "failed") $ $) 49 (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) 73 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1135) (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-503 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1135)) (-619 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-503 (-1135) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-285 (-1133 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-300 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-285 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-300 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-300 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1133 |#1| |#2| |#3|)) (-619 (-1133 |#1| |#2| |#3|))) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-300 (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-547)) NIL) (($ $ $) 54 (|has| (-547) (-1075))) (($ $ (-1133 |#1| |#2| |#3|)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-277 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1214 |#2|)) 51) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 50 (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))))) (-3660 (($ $) NIL (|has| |#1| (-354)))) (-1392 (((-1133 |#1| |#2| |#3|) $) 41 (|has| |#1| (-354)))) (-1618 (((-547) $) 37)) (-1681 (($ $) 113 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 89 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 109 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 85 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 105 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 81 (|has| |#1| (-38 (-398 (-547)))))) (-2829 (((-523) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-592 (-523))) (|has| |#1| (-354)))) (((-370) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-217) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-861 (-370)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) 149) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1133 |#1| |#2| |#3|)) 27) (($ (-1214 |#2|)) 23) (($ (-1135)) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-354)))) (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539)))) (($ (-398 (-547))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))) (|has| |#1| (-38 (-398 (-547))))))) (-3338 ((|#1| $ (-547)) 68)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 12)) (-1564 (((-1133 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-1717 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 95 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1693 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 91 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 99 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-547)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 101 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 97 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 93 (|has| |#1| (-38 (-398 (-547)))))) (-2040 (($ $) NIL (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-3267 (($) 20 T CONST)) (-3277 (($) 16 T CONST)) (-1686 (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2433 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2408 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2396 (((-112) $ $) NIL (-1524 (-12 (|has| (-1133 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1133 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 44 (|has| |#1| (-354))) (($ (-1133 |#1| |#2| |#3|) (-1133 |#1| |#2| |#3|)) 45 (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 21)) (** (($ $ (-890)) NIL) (($ $ (-745)) 53) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) 74 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 128 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1133 |#1| |#2| |#3|)) 43 (|has| |#1| (-354))) (($ (-1133 |#1| |#2| |#3|) $) 42 (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1126 |#1| |#2| |#3|) (-13 (-1180 |#1| (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1126)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1180 |#1| (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-2805 ((|#2| |#2| (-1056 |#2|)) 26) ((|#2| |#2| (-1135)) 28))) +(((-1127 |#1| |#2|) (-10 -7 (-15 -2805 (|#2| |#2| (-1135))) (-15 -2805 (|#2| |#2| (-1056 |#2|)))) (-13 (-539) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-421 |#1|) (-157) (-27) (-1157))) (T -1127)) +((-2805 (*1 *2 *2 *3) (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1157))) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1127 *4 *2)))) (-2805 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1127 *4 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1157)))))) +(-10 -7 (-15 -2805 (|#2| |#2| (-1135))) (-15 -2805 (|#2| |#2| (-1056 |#2|)))) +((-2805 (((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1056 (-398 (-921 |#1|)))) 31) (((-398 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|))) 44) (((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1135)) 33) (((-398 (-921 |#1|)) (-921 |#1|) (-1135)) 36))) +(((-1128 |#1|) (-10 -7 (-15 -2805 ((-398 (-921 |#1|)) (-921 |#1|) (-1135))) (-15 -2805 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1135))) (-15 -2805 ((-398 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -2805 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1056 (-398 (-921 |#1|)))))) (-13 (-539) (-821) (-1007 (-547)))) (T -1128)) +((-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-3 *3 (-307 *5))) (-5 *1 (-1128 *5)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-398 *3)) (-5 *1 (-1128 *5)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-3 (-398 (-921 *5)) (-307 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-398 (-921 *5))))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-398 (-921 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-921 *5))))) +(-10 -7 (-15 -2805 ((-398 (-921 |#1|)) (-921 |#1|) (-1135))) (-15 -2805 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1135))) (-15 -2805 ((-398 (-921 |#1|)) (-921 |#1|) (-1056 (-921 |#1|)))) (-15 -2805 ((-3 (-398 (-921 |#1|)) (-307 |#1|)) (-398 (-921 |#1|)) (-1056 (-398 (-921 |#1|)))))) +((-2781 (((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 13))) +(((-1129 |#1| |#2|) (-10 -7 (-15 -2781 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)))) (-1016) (-1016)) (T -1129)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) (-5 *1 (-1129 *5 *6))))) +(-10 -7 (-15 -2781 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)))) +((-3457 (((-409 (-1131 (-398 |#4|))) (-1131 (-398 |#4|))) 51)) (-2106 (((-409 (-1131 (-398 |#4|))) (-1131 (-398 |#4|))) 52))) +(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2106 ((-409 (-1131 (-398 |#4|))) (-1131 (-398 |#4|)))) (-15 -3457 ((-409 (-1131 (-398 |#4|))) (-1131 (-398 |#4|))))) (-767) (-821) (-442) (-918 |#3| |#1| |#2|)) (T -1130)) +((-3457 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1131 (-398 *7)))) (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-398 *7))))) (-2106 (*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442)) (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1131 (-398 *7)))) (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-398 *7)))))) +(-10 -7 (-15 -2106 ((-409 (-1131 (-398 |#4|))) (-1131 (-398 |#4|)))) (-15 -3457 ((-409 (-1131 (-398 |#4|))) (-1131 (-398 |#4|))))) +((-3821 (((-112) $ $) 137)) (-4046 (((-112) $) 27)) (-3468 (((-1218 |#1|) $ (-745)) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-3300 (($ (-1131 |#1|)) NIL)) (-2067 (((-1131 $) $ (-1045)) 58) (((-1131 |#1|) $) 47)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) 132 (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $) 126 (|has| |#1| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) 71 (|has| |#1| (-878)))) (-2745 (($ $) NIL (|has| |#1| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 91 (|has| |#1| (-878)))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-4113 (($ $ (-745)) 39)) (-4021 (($ $ (-745)) 40)) (-1374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-442)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#1| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL)) (-2643 ((|#1| $) NIL) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-1045) $) NIL)) (-3772 (($ $ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) 56)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) NIL) (((-663 |#1|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-3914 (($ $ $) 104)) (-1595 (($ $ $) NIL (|has| |#1| (-539)))) (-1484 (((-2 (|:| -1557 |#1|) (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3786 (($ $) 133 (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-745) $) 45)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3124 (((-832) $ (-832)) 117)) (-3707 (((-745) $ $) NIL (|has| |#1| (-539)))) (-4114 (((-112) $) 30)) (-3570 (((-745) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| |#1| (-1111)))) (-2245 (($ (-1131 |#1|) (-1045)) 49) (($ (-1131 $) (-1045)) 65)) (-2438 (($ $ (-745)) 32)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) 63) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1045)) NIL) (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 121)) (-1626 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-4019 (($ (-1 (-745) (-745)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3376 (((-1131 |#1|) $) NIL)) (-2185 (((-3 (-1045) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) 52)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) NIL (|has| |#1| (-442)))) (-1917 (((-1118) $) NIL)) (-4189 (((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745)) 38)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1045)) (|:| -4248 (-745))) "failed") $) NIL)) (-2069 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3045 (($) NIL (|has| |#1| (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) 31)) (-1999 ((|#1| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 79 (|has| |#1| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-442))) (($ $ $) 135 (|has| |#1| (-442)))) (-2930 (($ $ (-745) |#1| $) 99)) (-3658 (((-409 (-1131 $)) (-1131 $)) 77 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 76 (|has| |#1| (-878)))) (-2106 (((-409 $) $) 84 (|has| |#1| (-878)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#1|) NIL) (($ $ (-619 (-1045)) (-619 |#1|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) NIL (|has| |#1| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#1| (-539)))) (-3215 (((-3 $ "failed") $ (-745)) 35)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 138 (|has| |#1| (-354)))) (-3846 (($ $ (-1045)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-3443 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1618 (((-745) $) 54) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) 130 (|has| |#1| (-442))) (($ $ (-1045)) NIL (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-878))))) (-1704 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#1| (-539)))) (-3834 (((-832) $) 118) (($ (-547)) NIL) (($ |#1|) 53) (($ (-1045)) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) 25 (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) 15 T CONST)) (-3277 (($) 16 T CONST)) (-1686 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) 96)) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2497 (($ $ |#1|) 139 (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 66)) (** (($ $ (-890)) 14) (($ $ (-745)) 12)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 24) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1131 |#1|) (-13 (-1194 |#1|) (-10 -8 (-15 -3124 ((-832) $ (-832))) (-15 -2930 ($ $ (-745) |#1| $)))) (-1016)) (T -1131)) +((-3124 (*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1131 *3)) (-4 *3 (-1016)))) (-2930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1131 *3)) (-4 *3 (-1016))))) +(-13 (-1194 |#1|) (-10 -8 (-15 -3124 ((-832) $ (-832))) (-15 -2930 ($ $ (-745) |#1| $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 11)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-1126 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1133 |#1| |#2| |#3|) "failed") $) 36)) (-2643 (((-1126 |#1| |#2| |#3|) $) NIL) (((-1133 |#1| |#2| |#3|) $) NIL)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1427 (((-398 (-547)) $) 55)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-2351 (($ (-398 (-547)) (-1126 |#1| |#2| |#3|)) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) NIL)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-398 (-547))) 20) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2667 (((-1126 |#1| |#2| |#3|) $) 41)) (-2561 (((-3 (-1126 |#1| |#2| |#3|) "failed") $) NIL)) (-2337 (((-1126 |#1| |#2| |#3|) $) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2069 (($ $) 39 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 40 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) NIL)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $ (-1214 |#2|)) 38)) (-1618 (((-398 (-547)) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) 58) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1126 |#1| |#2| |#3|)) 30) (($ (-1133 |#1| |#2| |#3|)) 31) (($ (-1214 |#2|)) 26) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 12)) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 22 T CONST)) (-3277 (($) 16 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 24)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1132 |#1| |#2| |#3|) (-13 (-1201 |#1| (-1126 |#1| |#2| |#3|)) (-1007 (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1132)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1201 |#1| (-1126 |#1| |#2| |#3|)) (-1007 (-1133 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 125)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 116)) (-3157 (((-1191 |#2| |#1|) $ (-745)) 63)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-745)) 79) (($ $ (-745) (-745)) 76)) (-2674 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 102)) (-1648 (($ $) 169 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 145 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1624 (($ $) 165 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 115) (($ (-1116 |#1|)) 110)) (-1670 (($ $) 173 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 149 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) 23)) (-2339 (($ $) 26)) (-1401 (((-921 |#1|) $ (-745)) 75) (((-921 |#1|) $ (-745) (-745)) 77)) (-4211 (((-112) $) 120)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-745) $) 122) (((-745) $ (-745)) 124)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) NIL)) (-2194 (($ (-1 |#1| (-547)) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) 13) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3620 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-2069 (($ $) 129 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 130 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-3558 (($ $ (-745)) 15)) (-2025 (((-3 $ "failed") $ $) 24 (|has| |#1| (-539)))) (-2703 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3329 ((|#1| $ (-745)) 119) (($ $ $) 128 (|has| (-745) (-1075)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1214 |#2|)) 29)) (-1618 (((-745) $) NIL)) (-1681 (($ $) 175 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 151 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 171 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 147 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 167 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 143 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) 201) (($ (-547)) NIL) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1191 |#2| |#1|)) 51) (($ (-1214 |#2|)) 32)) (-2472 (((-1116 |#1|) $) 98)) (-3338 ((|#1| $ (-745)) 118)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 54)) (-1717 (($ $) 181 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 157 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) 177 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 153 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 185 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 161 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-745)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 187 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 163 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 183 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 159 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 179 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 155 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 17 T CONST)) (-3277 (($) 19 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) 194)) (-2470 (($ $ $) 31)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 198 (|has| |#1| (-354))) (($ $ $) 134 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 137 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1133 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -3834 ($ (-1191 |#2| |#1|))) (-15 -3157 ((-1191 |#2| |#1|) $ (-745))) (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1133)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-1133 *3 *4 *5)))) (-3157 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1133 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1209 |#1|) (-10 -8 (-15 -3834 ($ (-1191 |#2| |#1|))) (-15 -3157 ((-1191 |#2| |#1|) $ (-745))) (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3834 (((-832) $) 27) (($ (-1135)) 29)) (-1524 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 40)) (-1511 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 33) (($ $) 34)) (-3385 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 35)) (-3375 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 37)) (-3362 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 36)) (-3351 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 38)) (-3896 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $))) 39))) +(((-1134) (-13 (-591 (-832)) (-10 -8 (-15 -3834 ($ (-1135))) (-15 -3385 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3362 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3375 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3351 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3896 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1511 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1511 ($ $))))) (T -1134)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1134)))) (-3385 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3362 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3375 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3351 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1524 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-3896 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134)))) (-1511 (*1 *1 *1) (-5 *1 (-1134)))) +(-13 (-591 (-832)) (-10 -8 (-15 -3834 ($ (-1135))) (-15 -3385 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3362 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3375 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3351 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1524 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -3896 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)) (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1511 ($ (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) (|:| CF (-307 (-166 (-370)))) (|:| |switch| $)))) (-15 -1511 ($ $)))) +((-3821 (((-112) $ $) NIL)) (-2278 (($ $ (-619 (-832))) 59)) (-2405 (($ $ (-619 (-832))) 57)) (-1512 (((-1118) $) 84)) (-4210 (((-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832)))) $) 87)) (-2532 (((-112) $) 22)) (-1434 (($ $ (-619 (-619 (-832)))) 56) (($ $ (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832))))) 82)) (-3219 (($) 124 T CONST)) (-2639 (((-1223)) 106)) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 66) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 73)) (-3732 (($) 95) (($ $) 101)) (-2464 (($ $) 83)) (-2847 (($ $ $) NIL)) (-3563 (($ $ $) NIL)) (-3511 (((-619 $) $) 107)) (-1917 (((-1118) $) 90)) (-3979 (((-1082) $) NIL)) (-3329 (($ $ (-619 (-832))) 58)) (-2829 (((-523) $) 46) (((-1135) $) 47) (((-861 (-547)) $) 77) (((-861 (-370)) $) 75)) (-3834 (((-832) $) 53) (($ (-1118)) 48)) (-2152 (($ $ (-619 (-832))) 60)) (-2083 (((-1118) $) 33) (((-1118) $ (-112)) 34) (((-1223) (-796) $) 35) (((-1223) (-796) $ (-112)) 36)) (-2433 (((-112) $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-2371 (((-112) $ $) 49)) (-2421 (((-112) $ $) NIL)) (-2396 (((-112) $ $) 50))) +(((-1135) (-13 (-821) (-592 (-523)) (-802) (-592 (-1135)) (-592 (-861 (-547))) (-592 (-861 (-370))) (-855 (-547)) (-855 (-370)) (-10 -8 (-15 -3732 ($)) (-15 -3732 ($ $)) (-15 -2639 ((-1223))) (-15 -3834 ($ (-1118))) (-15 -2464 ($ $)) (-15 -2532 ((-112) $)) (-15 -4210 ((-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -1434 ($ $ (-619 (-619 (-832))))) (-15 -1434 ($ $ (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -2405 ($ $ (-619 (-832)))) (-15 -2278 ($ $ (-619 (-832)))) (-15 -2152 ($ $ (-619 (-832)))) (-15 -3329 ($ $ (-619 (-832)))) (-15 -1512 ((-1118) $)) (-15 -3511 ((-619 $) $)) (-15 -3219 ($) -2573)))) (T -1135)) +((-3732 (*1 *1) (-5 *1 (-1135))) (-3732 (*1 *1 *1) (-5 *1 (-1135))) (-2639 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1135)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) (-2464 (*1 *1 *1) (-5 *1 (-1135))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1135)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1135)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832))))) (-5 *1 (-1135)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-2152 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1135)))) (-3219 (*1 *1) (-5 *1 (-1135)))) +(-13 (-821) (-592 (-523)) (-802) (-592 (-1135)) (-592 (-861 (-547))) (-592 (-861 (-370))) (-855 (-547)) (-855 (-370)) (-10 -8 (-15 -3732 ($)) (-15 -3732 ($ $)) (-15 -2639 ((-1223))) (-15 -3834 ($ (-1118))) (-15 -2464 ($ $)) (-15 -2532 ((-112) $)) (-15 -4210 ((-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832)))) $)) (-15 -1434 ($ $ (-619 (-619 (-832))))) (-15 -1434 ($ $ (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) (|:| |args| (-619 (-832)))))) (-15 -2405 ($ $ (-619 (-832)))) (-15 -2278 ($ $ (-619 (-832)))) (-15 -2152 ($ $ (-619 (-832)))) (-15 -3329 ($ $ (-619 (-832)))) (-15 -1512 ((-1118) $)) (-15 -3511 ((-619 $) $)) (-15 -3219 ($) -2573))) +((-2730 (((-1218 |#1|) |#1| (-890)) 16) (((-1218 |#1|) (-619 |#1|)) 20))) +(((-1136 |#1|) (-10 -7 (-15 -2730 ((-1218 |#1|) (-619 |#1|))) (-15 -2730 ((-1218 |#1|) |#1| (-890)))) (-1016)) (T -1136)) +((-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1218 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1016)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)) (-5 *1 (-1136 *4))))) +(-10 -7 (-15 -2730 ((-1218 |#1|) (-619 |#1|))) (-15 -2730 ((-1218 |#1|) |#1| (-890)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| |#1| (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#1| (-1007 (-398 (-547))))) (((-3 |#1| "failed") $) NIL)) (-2643 (((-547) $) NIL (|has| |#1| (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| |#1| (-1007 (-398 (-547))))) ((|#1| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-442)))) (-3913 (($ $ |#1| (-940) $) NIL)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-940)) NIL)) (-1626 (((-940) $) NIL)) (-4019 (($ (-1 (-940) (-940)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#1| $) NIL)) (-2930 (($ $ (-940) |#1| $) NIL (-12 (|has| (-940) (-130)) (|has| |#1| (-539))))) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-539)))) (-1618 (((-940) $) NIL)) (-1378 ((|#1| $) NIL (|has| |#1| (-442)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) NIL) (($ (-398 (-547))) NIL (-1524 (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-1007 (-398 (-547))))))) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ (-940)) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#1| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-3267 (($) 9 T CONST)) (-3277 (($) 14 T CONST)) (-2371 (((-112) $ $) 16)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 19)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1137 |#1|) (-13 (-317 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| (-940) (-130)) (-15 -2930 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|))) (-1016)) (T -1137)) +((-2930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1137 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))) +(-13 (-317 |#1| (-940)) (-10 -8 (IF (|has| |#1| (-539)) (IF (|has| (-940) (-130)) (-15 -2930 ($ $ (-940) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|))) +((-1521 (((-1139) (-1135) $) 25)) (-2610 (($) 29)) (-1759 (((-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-1135) $) 22)) (-1986 (((-1223) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void")) $) 41) (((-1223) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) 42) (((-1223) (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) 43)) (-1369 (((-1223) (-1135)) 58)) (-1877 (((-1223) (-1135) $) 55) (((-1223) (-1135)) 56) (((-1223)) 57)) (-2372 (((-1223) (-1135)) 37)) (-2117 (((-1135)) 36)) (-4011 (($) 34)) (-4092 (((-428) (-1135) (-428) (-1135) $) 45) (((-428) (-619 (-1135)) (-428) (-1135) $) 49) (((-428) (-1135) (-428)) 46) (((-428) (-1135) (-428) (-1135)) 50)) (-2244 (((-1135)) 35)) (-3834 (((-832) $) 28)) (-2496 (((-1223)) 30) (((-1223) (-1135)) 33)) (-1642 (((-619 (-1135)) (-1135) $) 24)) (-1990 (((-1223) (-1135) (-619 (-1135)) $) 38) (((-1223) (-1135) (-619 (-1135))) 39) (((-1223) (-619 (-1135))) 40))) +(((-1138) (-13 (-591 (-832)) (-10 -8 (-15 -2610 ($)) (-15 -2496 ((-1223))) (-15 -2496 ((-1223) (-1135))) (-15 -4092 ((-428) (-1135) (-428) (-1135) $)) (-15 -4092 ((-428) (-619 (-1135)) (-428) (-1135) $)) (-15 -4092 ((-428) (-1135) (-428))) (-15 -4092 ((-428) (-1135) (-428) (-1135))) (-15 -2372 ((-1223) (-1135))) (-15 -2244 ((-1135))) (-15 -2117 ((-1135))) (-15 -1990 ((-1223) (-1135) (-619 (-1135)) $)) (-15 -1990 ((-1223) (-1135) (-619 (-1135)))) (-15 -1990 ((-1223) (-619 (-1135)))) (-15 -1986 ((-1223) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void")) $)) (-15 -1986 ((-1223) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void")))) (-15 -1986 ((-1223) (-3 (|:| |fst| (-425)) (|:| -2887 "void")))) (-15 -1877 ((-1223) (-1135) $)) (-15 -1877 ((-1223) (-1135))) (-15 -1877 ((-1223))) (-15 -1369 ((-1223) (-1135))) (-15 -4011 ($)) (-15 -1759 ((-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-1135) $)) (-15 -1642 ((-619 (-1135)) (-1135) $)) (-15 -1521 ((-1139) (-1135) $))))) (T -1138)) +((-2610 (*1 *1) (-5 *1 (-1138))) (-2496 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-4092 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-4092 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1135))) (-5 *4 (-1135)) (-5 *1 (-1138)))) (-4092 (*1 *2 *3 *2) (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-4092 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1138)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-2244 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138)))) (-2117 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138)))) (-1990 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1986 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1135)) (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1877 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1877 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) (-4011 (*1 *1) (-5 *1 (-1138))) (-1759 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *1 (-1138)))) (-1642 (*1 *2 *3 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1138)) (-5 *3 (-1135)))) (-1521 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1139)) (-5 *1 (-1138))))) +(-13 (-591 (-832)) (-10 -8 (-15 -2610 ($)) (-15 -2496 ((-1223))) (-15 -2496 ((-1223) (-1135))) (-15 -4092 ((-428) (-1135) (-428) (-1135) $)) (-15 -4092 ((-428) (-619 (-1135)) (-428) (-1135) $)) (-15 -4092 ((-428) (-1135) (-428))) (-15 -4092 ((-428) (-1135) (-428) (-1135))) (-15 -2372 ((-1223) (-1135))) (-15 -2244 ((-1135))) (-15 -2117 ((-1135))) (-15 -1990 ((-1223) (-1135) (-619 (-1135)) $)) (-15 -1990 ((-1223) (-1135) (-619 (-1135)))) (-15 -1990 ((-1223) (-619 (-1135)))) (-15 -1986 ((-1223) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void")) $)) (-15 -1986 ((-1223) (-1135) (-3 (|:| |fst| (-425)) (|:| -2887 "void")))) (-15 -1986 ((-1223) (-3 (|:| |fst| (-425)) (|:| -2887 "void")))) (-15 -1877 ((-1223) (-1135) $)) (-15 -1877 ((-1223) (-1135))) (-15 -1877 ((-1223))) (-15 -1369 ((-1223) (-1135))) (-15 -4011 ($)) (-15 -1759 ((-3 (|:| |fst| (-425)) (|:| -2887 "void")) (-1135) $)) (-15 -1642 ((-619 (-1135)) (-1135) $)) (-15 -1521 ((-1139) (-1135) $)))) +((-1611 (((-619 (-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547))))))))) $) 59)) (-1869 (((-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547)))))))) (-425) $) 43)) (-3262 (($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-428))))) 17)) (-1369 (((-1223) $) 67)) (-3820 (((-619 (-1135)) $) 22)) (-1487 (((-1067) $) 55)) (-3907 (((-428) (-1135) $) 27)) (-1742 (((-619 (-1135)) $) 30)) (-4011 (($) 19)) (-4092 (((-428) (-619 (-1135)) (-428) $) 25) (((-428) (-1135) (-428) $) 24)) (-3834 (((-832) $) 9) (((-1145 (-1135) (-428)) $) 13))) +(((-1139) (-13 (-591 (-832)) (-10 -8 (-15 -3834 ((-1145 (-1135) (-428)) $)) (-15 -4011 ($)) (-15 -4092 ((-428) (-619 (-1135)) (-428) $)) (-15 -4092 ((-428) (-1135) (-428) $)) (-15 -3907 ((-428) (-1135) $)) (-15 -3820 ((-619 (-1135)) $)) (-15 -1869 ((-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547)))))))) (-425) $)) (-15 -1742 ((-619 (-1135)) $)) (-15 -1611 ((-619 (-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547))))))))) $)) (-15 -1487 ((-1067) $)) (-15 -1369 ((-1223) $)) (-15 -3262 ($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-428))))))))) (T -1139)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-1145 (-1135) (-428))) (-5 *1 (-1139)))) (-4011 (*1 *1) (-5 *1 (-1139))) (-4092 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1135))) (-5 *1 (-1139)))) (-4092 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1139)))) (-3907 (*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-428)) (-5 *1 (-1139)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139)))) (-1869 (*1 *2 *3 *1) (-12 (-5 *3 (-425)) (-5 *2 (-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547))))))))) (-5 *1 (-1139)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547)))))))))) (-5 *1 (-1139)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1139)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1139)))) (-3262 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-428))))) (-5 *1 (-1139))))) +(-13 (-591 (-832)) (-10 -8 (-15 -3834 ((-1145 (-1135) (-428)) $)) (-15 -4011 ($)) (-15 -4092 ((-428) (-619 (-1135)) (-428) $)) (-15 -4092 ((-428) (-1135) (-428) $)) (-15 -3907 ((-428) (-1135) $)) (-15 -3820 ((-619 (-1135)) $)) (-15 -1869 ((-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547)))))))) (-425) $)) (-15 -1742 ((-619 (-1135)) $)) (-15 -1611 ((-619 (-619 (-3 (|:| -2464 (-1135)) (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547))))))))) $)) (-15 -1487 ((-1067) $)) (-15 -1369 ((-1223) $)) (-15 -3262 ($ (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-428)))))))) +((-3821 (((-112) $ $) NIL)) (-3334 (((-112) $) 42)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1282 (((-3 (-547) (-217) (-1135) (-1118) $) $) 50)) (-4229 (((-619 $) $) 55)) (-2829 (((-1067) $) 24) (($ (-1067)) 25)) (-4125 (((-112) $) 52)) (-3834 (((-832) $) NIL) (($ (-547)) 26) (((-547) $) 28) (($ (-217)) 29) (((-217) $) 31) (($ (-1135)) 32) (((-1135) $) 34) (($ (-1118)) 35) (((-1118) $) 37)) (-3254 (((-112) $ (|[\|\|]| (-547))) 11) (((-112) $ (|[\|\|]| (-217))) 15) (((-112) $ (|[\|\|]| (-1135))) 23) (((-112) $ (|[\|\|]| (-1118))) 19)) (-3450 (($ (-1135) (-619 $)) 39) (($ $ (-619 $)) 40)) (-2306 (((-547) $) 27) (((-217) $) 30) (((-1135) $) 33) (((-1118) $) 36)) (-2371 (((-112) $ $) 7))) +(((-1140) (-13 (-1213) (-1063) (-10 -8 (-15 -2829 ((-1067) $)) (-15 -2829 ($ (-1067))) (-15 -3834 ($ (-547))) (-15 -3834 ((-547) $)) (-15 -2306 ((-547) $)) (-15 -3834 ($ (-217))) (-15 -3834 ((-217) $)) (-15 -2306 ((-217) $)) (-15 -3834 ($ (-1135))) (-15 -3834 ((-1135) $)) (-15 -2306 ((-1135) $)) (-15 -3834 ($ (-1118))) (-15 -3834 ((-1118) $)) (-15 -2306 ((-1118) $)) (-15 -3450 ($ (-1135) (-619 $))) (-15 -3450 ($ $ (-619 $))) (-15 -3334 ((-112) $)) (-15 -1282 ((-3 (-547) (-217) (-1135) (-1118) $) $)) (-15 -4229 ((-619 $) $)) (-15 -4125 ((-112) $)) (-15 -3254 ((-112) $ (|[\|\|]| (-547)))) (-15 -3254 ((-112) $ (|[\|\|]| (-217)))) (-15 -3254 ((-112) $ (|[\|\|]| (-1135)))) (-15 -3254 ((-112) $ (|[\|\|]| (-1118))))))) (T -1140)) +((-2829 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1140)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1140)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1140)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1140)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1140)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1140)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) (-3450 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-1140))) (-5 *1 (-1140)))) (-3450 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140)))) (-1282 (*1 *2 *1) (-12 (-5 *2 (-3 (-547) (-217) (-1135) (-1118) (-1140))) (-5 *1 (-1140)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-547))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)) (-5 *1 (-1140)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)) (-5 *1 (-1140))))) +(-13 (-1213) (-1063) (-10 -8 (-15 -2829 ((-1067) $)) (-15 -2829 ($ (-1067))) (-15 -3834 ($ (-547))) (-15 -3834 ((-547) $)) (-15 -2306 ((-547) $)) (-15 -3834 ($ (-217))) (-15 -3834 ((-217) $)) (-15 -2306 ((-217) $)) (-15 -3834 ($ (-1135))) (-15 -3834 ((-1135) $)) (-15 -2306 ((-1135) $)) (-15 -3834 ($ (-1118))) (-15 -3834 ((-1118) $)) (-15 -2306 ((-1118) $)) (-15 -3450 ($ (-1135) (-619 $))) (-15 -3450 ($ $ (-619 $))) (-15 -3334 ((-112) $)) (-15 -1282 ((-3 (-547) (-217) (-1135) (-1118) $) $)) (-15 -4229 ((-619 $) $)) (-15 -4125 ((-112) $)) (-15 -3254 ((-112) $ (|[\|\|]| (-547)))) (-15 -3254 ((-112) $ (|[\|\|]| (-217)))) (-15 -3254 ((-112) $ (|[\|\|]| (-1135)))) (-15 -3254 ((-112) $ (|[\|\|]| (-1118)))))) +((-3677 (((-619 (-619 (-921 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1135))) 57)) (-3571 (((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|)))) 69) (((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|))) 65) (((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))) (-1135)) 70) (((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1135)) 64) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|))))) 93) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|)))) 92) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1135))) 94) (((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))) (-619 (-1135))) 91))) +(((-1141 |#1|) (-10 -7 (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1135)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1135))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))) (-1135))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))))) (-15 -3677 ((-619 (-619 (-921 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1135))))) (-539)) (T -1141)) +((-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1141 *5)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4))))) (-5 *1 (-1141 *4)) (-5 *3 (-285 (-398 (-921 *4)))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4))))) (-5 *1 (-1141 *4)) (-5 *3 (-398 (-921 *4))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1141 *5)) (-5 *3 (-285 (-398 (-921 *5)))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1135)) (-4 *5 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1141 *5)) (-5 *3 (-398 (-921 *5))))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-1141 *4)) (-5 *3 (-619 (-285 (-398 (-921 *4))))))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-619 (-398 (-921 *4)))) (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-1141 *4)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1141 *5)) (-5 *3 (-619 (-285 (-398 (-921 *5))))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1141 *5))))) +(-10 -7 (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))) (-619 (-1135)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))) (-619 (-1135)))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-398 (-921 |#1|))))) (-15 -3571 ((-619 (-619 (-285 (-398 (-921 |#1|))))) (-619 (-285 (-398 (-921 |#1|)))))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)) (-1135))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))) (-1135))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-398 (-921 |#1|)))) (-15 -3571 ((-619 (-285 (-398 (-921 |#1|)))) (-285 (-398 (-921 |#1|))))) (-15 -3677 ((-619 (-619 (-921 |#1|))) (-619 (-398 (-921 |#1|))) (-619 (-1135))))) +((-3773 (((-1118)) 7)) (-2831 (((-1118)) 9)) (-3005 (((-1223) (-1118)) 11)) (-2739 (((-1118)) 8))) +(((-1142) (-10 -7 (-15 -3773 ((-1118))) (-15 -2739 ((-1118))) (-15 -2831 ((-1118))) (-15 -3005 ((-1223) (-1118))))) (T -1142)) +((-3005 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1142)))) (-2831 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142)))) (-2739 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142)))) (-3773 (*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(-10 -7 (-15 -3773 ((-1118))) (-15 -2739 ((-1118))) (-15 -2831 ((-1118))) (-15 -3005 ((-1223) (-1118)))) +((-3250 (((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 38)) (-3547 (((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|))) 24)) (-3644 (((-1144 (-619 |#1|)) (-619 |#1|)) 34)) (-2713 (((-619 (-619 |#1|)) (-619 |#1|)) 30)) (-3236 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))) 37)) (-2879 (((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|)))) 36)) (-3736 (((-619 (-619 |#1|)) (-619 (-619 |#1|))) 28)) (-2793 (((-619 |#1|) (-619 |#1|)) 31)) (-4305 (((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 18)) (-4230 (((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|)))) 16)) (-2924 (((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|))) 14)) (-3344 (((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|)))) 39)) (-3451 (((-619 (-619 |#1|)) (-1144 (-619 |#1|))) 41))) +(((-1143 |#1|) (-10 -7 (-15 -2924 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -4230 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -4305 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -3250 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -3344 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -3451 ((-619 (-619 |#1|)) (-1144 (-619 |#1|)))) (-15 -3547 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -3644 ((-1144 (-619 |#1|)) (-619 |#1|))) (-15 -3736 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -2713 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -2793 ((-619 |#1|) (-619 |#1|))) (-15 -2879 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3236 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) (-821)) (T -1143)) +((-3236 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 (-619 *4)))))) (-2879 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) (|:| |f4| (-619 *5)))) (-5 *1 (-1143 *6)) (-5 *4 (-619 *5)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1143 *3)))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) (-5 *3 (-619 *4)))) (-3736 (*1 *2 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1143 *3)))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-1144 (-619 *4))) (-5 *1 (-1143 *4)) (-5 *3 (-619 *4)))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 *4))))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-1144 (-619 *4))) (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) (-4 *4 (-821)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) (-4 *4 (-821)) (-5 *1 (-1143 *4)))) (-4305 (*1 *2 *3 *2) (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *1 (-1143 *4)))) (-4230 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1143 *5)))) (-2924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) (-5 *1 (-1143 *6)) (-5 *5 (-619 *4))))) +(-10 -7 (-15 -2924 ((-2 (|:| |fs| (-112)) (|:| |sd| (-619 |#1|)) (|:| |td| (-619 (-619 |#1|)))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 |#1|)))) (-15 -4230 ((-619 (-619 (-619 |#1|))) (-1 (-112) |#1| |#1|) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -4305 ((-619 (-619 (-619 |#1|))) (-619 |#1|) (-619 (-619 (-619 |#1|))))) (-15 -3250 ((-619 (-619 |#1|)) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -3344 ((-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))))) (-15 -3451 ((-619 (-619 |#1|)) (-1144 (-619 |#1|)))) (-15 -3547 ((-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)))) (-15 -3644 ((-1144 (-619 |#1|)) (-619 |#1|))) (-15 -3736 ((-619 (-619 |#1|)) (-619 (-619 |#1|)))) (-15 -2713 ((-619 (-619 |#1|)) (-619 |#1|))) (-15 -2793 ((-619 |#1|) (-619 |#1|))) (-15 -2879 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 |#1|) (-619 (-619 (-619 |#1|))) (-619 (-619 |#1|)) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))) (-619 (-619 (-619 |#1|))))) (-15 -3236 ((-2 (|:| |f1| (-619 |#1|)) (|:| |f2| (-619 (-619 (-619 |#1|)))) (|:| |f3| (-619 (-619 |#1|))) (|:| |f4| (-619 (-619 (-619 |#1|))))) (-619 (-619 (-619 |#1|)))))) +((-2958 (($ (-619 (-619 |#1|))) 10)) (-3051 (((-619 (-619 |#1|)) $) 11)) (-3834 (((-832) $) 26))) +(((-1144 |#1|) (-10 -8 (-15 -2958 ($ (-619 (-619 |#1|)))) (-15 -3051 ((-619 (-619 |#1|)) $)) (-15 -3834 ((-832) $))) (-1063)) (T -1144)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1144 *3))))) +(-10 -8 (-15 -2958 ($ (-619 (-619 |#1|)))) (-15 -3051 ((-619 (-619 |#1|)) $)) (-15 -3834 ((-832) $))) +((-3821 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3722 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2290 (((-1223) $ |#1| |#1|) NIL (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#2| $ |#1| |#2|) NIL)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) NIL)) (-3219 (($) NIL T CONST)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) NIL)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) NIL)) (-2528 ((|#1| $) NIL (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-619 |#2|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-2638 ((|#1| $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3437 (((-619 |#1|) $) NIL)) (-1876 (((-112) |#1| $) NIL)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-1520 (((-619 |#1|) $) NIL)) (-1641 (((-112) |#1| $) NIL)) (-3979 (((-1082) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3634 ((|#2| $) NIL (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL)) (-2418 (($ $ |#2|) NIL (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1404 (($) NIL) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) NIL (-12 (|has| $ (-6 -4328)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (((-745) |#2| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063)))) (((-745) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-3834 (((-832) $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832))) (|has| |#2| (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) NIL)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) NIL (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) NIL (-1524 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| |#2| (-1063))))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1145 |#1| |#2|) (-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) (-1063) (-1063)) (T -1145)) +NIL +(-13 (-1148 |#1| |#2|) (-10 -7 (-6 -4328))) +((-3132 ((|#1| (-619 |#1|)) 32)) (-2136 ((|#1| |#1| (-547)) 18)) (-2019 (((-1131 |#1|) |#1| (-890)) 15))) +(((-1146 |#1|) (-10 -7 (-15 -3132 (|#1| (-619 |#1|))) (-15 -2019 ((-1131 |#1|) |#1| (-890))) (-15 -2136 (|#1| |#1| (-547)))) (-354)) (T -1146)) +((-2136 (*1 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-1146 *2)) (-4 *2 (-354)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-890)) (-5 *2 (-1131 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-354)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1146 *2)) (-4 *2 (-354))))) +(-10 -7 (-15 -3132 (|#1| (-619 |#1|))) (-15 -2019 ((-1131 |#1|) |#1| (-890))) (-15 -2136 (|#1| |#1| (-547)))) +((-3722 (($) 10) (($ (-619 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)))) 14)) (-3342 (($ (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2973 (((-619 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) 39) (((-619 |#3|) $) 41)) (-1850 (($ (-1 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2781 (($ (-1 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1959 (((-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) $) 54)) (-1885 (($ (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) $) 16)) (-1520 (((-619 |#2|) $) 19)) (-1641 (((-112) |#2| $) 59)) (-3461 (((-3 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) "failed") (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) 58)) (-1373 (((-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) $) 63)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-1758 (((-619 |#3|) $) 43)) (-3329 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) NIL) (((-745) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) $) NIL) (((-745) |#3| $) NIL) (((-745) (-1 (-112) |#3|) $) 68)) (-3834 (((-832) $) 27)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2371 (((-112) $ $) 49))) +(((-1147 |#1| |#2| |#3|) (-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -2781 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3722 (|#1| (-619 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))))) (-15 -3722 (|#1|)) (-15 -2781 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3987 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -2973 ((-619 |#3|) |#1|)) (-15 -3987 ((-745) |#3| |#1|)) (-15 -3329 (|#3| |#1| |#2| |#3|)) (-15 -3329 (|#3| |#1| |#2|)) (-15 -1758 ((-619 |#3|) |#1|)) (-15 -1641 ((-112) |#2| |#1|)) (-15 -1520 ((-619 |#2|) |#1|)) (-15 -3342 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3342 (|#1| (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -3342 (|#1| (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -3461 ((-3 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) "failed") (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -1959 ((-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -1885 (|#1| (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -1373 ((-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -3987 ((-745) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -2973 ((-619 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -3987 ((-745) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -2462 ((-112) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -2583 ((-112) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -1850 (|#1| (-1 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -2781 (|#1| (-1 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|))) (-1148 |#2| |#3|) (-1063) (-1063)) (T -1147)) +NIL +(-10 -8 (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -2781 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3722 (|#1| (-619 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))))) (-15 -3722 (|#1|)) (-15 -2781 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2583 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2462 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3987 ((-745) (-1 (-112) |#3|) |#1|)) (-15 -2973 ((-619 |#3|) |#1|)) (-15 -3987 ((-745) |#3| |#1|)) (-15 -3329 (|#3| |#1| |#2| |#3|)) (-15 -3329 (|#3| |#1| |#2|)) (-15 -1758 ((-619 |#3|) |#1|)) (-15 -1641 ((-112) |#2| |#1|)) (-15 -1520 ((-619 |#2|) |#1|)) (-15 -3342 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3342 (|#1| (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -3342 (|#1| (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -3461 ((-3 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) "failed") (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -1959 ((-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -1885 (|#1| (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -1373 ((-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -3987 ((-745) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) |#1|)) (-15 -2973 ((-619 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -3987 ((-745) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -2462 ((-112) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -2583 ((-112) (-1 (-112) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -1850 (|#1| (-1 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|)) (-15 -2781 (|#1| (-1 (-2 (|:| -3326 |#2|) (|:| -1777 |#3|)) (-2 (|:| -3326 |#2|) (|:| -1777 |#3|))) |#1|))) +((-3821 (((-112) $ $) 19 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3722 (($) 72) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 71)) (-2290 (((-1223) $ |#1| |#1|) 99 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#2| $ |#1| |#2|) 73)) (-3681 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 45 (|has| $ (-6 -4328)))) (-1476 (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 55 (|has| $ (-6 -4328)))) (-3477 (((-3 |#2| "failed") |#1| $) 61)) (-3219 (($) 7 T CONST)) (-3664 (($ $) 58 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328))))) (-3342 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 47 (|has| $ (-6 -4328))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 46 (|has| $ (-6 -4328))) (((-3 |#2| "failed") |#1| $) 62)) (-3801 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 54 (|has| $ (-6 -4328)))) (-2542 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 56 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 53 (|has| $ (-6 -4328))) (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 52 (|has| $ (-6 -4328)))) (-1861 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4329)))) (-1793 ((|#2| $ |#1|) 88)) (-2973 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 30 (|has| $ (-6 -4328))) (((-619 |#2|) $) 79 (|has| $ (-6 -4328)))) (-4161 (((-112) $ (-745)) 9)) (-2528 ((|#1| $) 96 (|has| |#1| (-821)))) (-3666 (((-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 29 (|has| $ (-6 -4328))) (((-619 |#2|) $) 80 (|has| $ (-6 -4328)))) (-3860 (((-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328))))) (-2638 ((|#1| $) 95 (|has| |#1| (-821)))) (-1850 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 34 (|has| $ (-6 -4329))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4329)))) (-2781 (($ (-1 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2024 (((-112) $ (-745)) 10)) (-1917 (((-1118) $) 22 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3437 (((-619 |#1|) $) 63)) (-1876 (((-112) |#1| $) 64)) (-1959 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 39)) (-1885 (($ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 40)) (-1520 (((-619 |#1|) $) 93)) (-1641 (((-112) |#1| $) 92)) (-3979 (((-1082) $) 21 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3634 ((|#2| $) 97 (|has| |#1| (-821)))) (-3461 (((-3 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) "failed") (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 51)) (-2418 (($ $ |#2|) 98 (|has| $ (-6 -4329)))) (-1373 (((-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 41)) (-2462 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 32 (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))))) 26 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-285 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 25 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) 24 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 23 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)))) (($ $ (-619 |#2|) (-619 |#2|)) 86 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-285 |#2|)) 84 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063)))) (($ $ (-619 (-285 |#2|))) 83 (-12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4328)) (|has| |#2| (-1063))))) (-1758 (((-619 |#2|) $) 91)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1404 (($) 49) (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 48)) (-3987 (((-745) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 31 (|has| $ (-6 -4328))) (((-745) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| $ (-6 -4328)))) (((-745) |#2| $) 81 (-12 (|has| |#2| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4328)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 59 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))))) (-3841 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 50)) (-3834 (((-832) $) 18 (-1524 (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832)))))) (-2731 (($ (-619 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) 42)) (-2583 (((-112) (-1 (-112) (-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) $) 33 (|has| $ (-6 -4328))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (-1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1148 |#1| |#2|) (-138) (-1063) (-1063)) (T -1148)) -((-2089 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3539 (*1 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3156 *3) (|:| -1657 *4)))) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1148 *3 *4)))) (-2540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1148 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) -(-13 (-589 |t#1| |t#2|) (-583 |t#1| |t#2|) (-10 -8 (-15 -2089 (|t#2| $ |t#1| |t#2|)) (-15 -3539 ($)) (-15 -3539 ($ (-619 (-2 (|:| -3156 |t#1|) (|:| -1657 |t#2|))))) (-15 -2540 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -3156 |#1|) (|:| -1657 |#2|))) . T) ((-101) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-592 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-592 (-832))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-592 (-832)))) ((-149 #0#) . T) ((-593 (-524)) |has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-593 (-524))) ((-222 #0#) . T) ((-228 #0#) . T) ((-278 |#1| |#2|) . T) ((-280 |#1| |#2|) . T) ((-301 #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-301 |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-480 #0#) . T) ((-480 |#2|) . T) ((-583 |#1| |#2|) . T) ((-504 #0# #0#) -12 (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-301 (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)))) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-504 |#2| |#2|) -12 (|has| |#2| (-301 |#2|)) (|has| |#2| (-1063))) ((-589 |#1| |#2|) . T) ((-1063) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3156 |#1|) (|:| -1657 |#2|)) (-1063))) ((-1172) . T)) -((-2498 (((-112)) 24)) (-2465 (((-1223) (-1118)) 26)) (-2508 (((-112)) 36)) (-2476 (((-1223)) 34)) (-2453 (((-1223) (-1118) (-1118)) 25)) (-2517 (((-112)) 37)) (-2539 (((-1223) |#1| |#2|) 44)) (-2442 (((-1223)) 20)) (-2527 (((-3 |#2| "failed") |#1|) 42)) (-2486 (((-1223)) 35))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -2442 ((-1223))) (-15 -2453 ((-1223) (-1118) (-1118))) (-15 -2465 ((-1223) (-1118))) (-15 -2476 ((-1223))) (-15 -2486 ((-1223))) (-15 -2498 ((-112))) (-15 -2508 ((-112))) (-15 -2517 ((-112))) (-15 -2527 ((-3 |#2| "failed") |#1|)) (-15 -2539 ((-1223) |#1| |#2|))) (-1063) (-1063)) (T -1149)) -((-2539 (*1 *2 *3 *4) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2527 (*1 *2 *3) (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1063)))) (-2517 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2508 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2498 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2486 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2476 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-2453 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-2442 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) -(-10 -7 (-15 -2442 ((-1223))) (-15 -2453 ((-1223) (-1118) (-1118))) (-15 -2465 ((-1223) (-1118))) (-15 -2476 ((-1223))) (-15 -2486 ((-1223))) (-15 -2498 ((-112))) (-15 -2508 ((-112))) (-15 -2517 ((-112))) (-15 -2527 ((-3 |#2| "failed") |#1|)) (-15 -2539 ((-1223) |#1| |#2|))) -((-2563 (((-1118) (-1118)) 18)) (-2552 (((-52) (-1118)) 21))) -(((-1150) (-10 -7 (-15 -2552 ((-52) (-1118))) (-15 -2563 ((-1118) (-1118))))) (T -1150)) -((-2563 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1150)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-1150))))) -(-10 -7 (-15 -2552 ((-52) (-1118))) (-15 -2563 ((-1118) (-1118)))) -((-3743 (((-1152) |#1|) 11))) -(((-1151 |#1|) (-10 -7 (-15 -3743 ((-1152) |#1|))) (-1063)) (T -1151)) -((-3743 (*1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1151 *3)) (-4 *3 (-1063))))) -(-10 -7 (-15 -3743 ((-1152) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3833 (((-619 (-1118)) $) 34)) (-2581 (((-619 (-1118)) $ (-619 (-1118))) 37)) (-2572 (((-619 (-1118)) $ (-619 (-1118))) 36)) (-2590 (((-619 (-1118)) $ (-619 (-1118))) 38)) (-2601 (((-619 (-1118)) $) 33)) (-3550 (($) 22)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2611 (((-619 (-1118)) $) 35)) (-2487 (((-1223) $ (-548)) 29) (((-1223) $) 30)) (-2591 (($ (-832) (-548)) 26) (($ (-832) (-548) (-832)) NIL)) (-3743 (((-832) $) 40) (($ (-832)) 24)) (-2214 (((-112) $ $) NIL))) -(((-1152) (-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2591 ($ (-832) (-548) (-832))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -3833 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2581 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118))))))) (T -1152)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1152)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) (-2591 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) (-2487 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1152)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1152)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-3550 (*1 *1) (-5 *1 (-1152))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-2590 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-2581 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-2572 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(-13 (-1063) (-10 -8 (-15 -3743 ($ (-832))) (-15 -2591 ($ (-832) (-548))) (-15 -2591 ($ (-832) (-548) (-832))) (-15 -2487 ((-1223) $ (-548))) (-15 -2487 ((-1223) $)) (-15 -2611 ((-619 (-1118)) $)) (-15 -3833 ((-619 (-1118)) $)) (-15 -3550 ($)) (-15 -2601 ((-619 (-1118)) $)) (-15 -2590 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2581 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -2572 ((-619 (-1118)) $ (-619 (-1118)))))) -((-3730 (((-112) $ $) NIL)) (-2661 (((-1118) $ (-1118)) 17) (((-1118) $) 16)) (-3930 (((-1118) $ (-1118)) 15)) (-3981 (($ $ (-1118)) NIL)) (-2639 (((-3 (-1118) "failed") $) 11)) (-2651 (((-1118) $) 8)) (-2630 (((-3 (-1118) "failed") $) 12)) (-3943 (((-1118) $) 9)) (-1280 (($ (-380)) NIL) (($ (-380) (-1118)) NIL)) (-2275 (((-380) $) NIL)) (-2546 (((-1118) $) NIL)) (-3959 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2620 (((-112) $) 18)) (-3743 (((-832) $) NIL)) (-3972 (($ $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-1153) (-13 (-356 (-380) (-1118)) (-10 -8 (-15 -2661 ((-1118) $ (-1118))) (-15 -2661 ((-1118) $)) (-15 -2651 ((-1118) $)) (-15 -2639 ((-3 (-1118) "failed") $)) (-15 -2630 ((-3 (-1118) "failed") $)) (-15 -2620 ((-112) $))))) (T -1153)) -((-2661 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2639 (*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2630 (*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153))))) -(-13 (-356 (-380) (-1118)) (-10 -8 (-15 -2661 ((-1118) $ (-1118))) (-15 -2661 ((-1118) $)) (-15 -2651 ((-1118) $)) (-15 -2639 ((-3 (-1118) "failed") $)) (-15 -2630 ((-3 (-1118) "failed") $)) (-15 -2620 ((-112) $)))) -((-2672 (((-3 (-548) "failed") |#1|) 19)) (-2680 (((-3 (-548) "failed") |#1|) 14)) (-2690 (((-548) (-1118)) 28))) -(((-1154 |#1|) (-10 -7 (-15 -2672 ((-3 (-548) "failed") |#1|)) (-15 -2680 ((-3 (-548) "failed") |#1|)) (-15 -2690 ((-548) (-1118)))) (-1016)) (T -1154)) -((-2690 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-1154 *4)) (-4 *4 (-1016)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016)))) (-2672 (*1 *2 *3) (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) -(-10 -7 (-15 -2672 ((-3 (-548) "failed") |#1|)) (-15 -2680 ((-3 (-548) "failed") |#1|)) (-15 -2690 ((-548) (-1118)))) -((-2699 (((-1095 (-218))) 9))) -(((-1155) (-10 -7 (-15 -2699 ((-1095 (-218)))))) (T -1155)) -((-2699 (*1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1155))))) -(-10 -7 (-15 -2699 ((-1095 (-218))))) -((-1365 (($) 11)) (-2145 (($ $) 35)) (-2122 (($ $) 33)) (-1986 (($ $) 25)) (-2170 (($ $) 17)) (-4026 (($ $) 15)) (-2158 (($ $) 19)) (-2017 (($ $) 30)) (-2132 (($ $) 34)) (-1996 (($ $) 29))) -(((-1156 |#1|) (-10 -8 (-15 -1365 (|#1|)) (-15 -2145 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -1996 (|#1| |#1|))) (-1157)) (T -1156)) -NIL -(-10 -8 (-15 -1365 (|#1|)) (-15 -2145 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -1996 (|#1| |#1|))) -((-2074 (($ $) 26)) (-1940 (($ $) 11)) (-2054 (($ $) 27)) (-1918 (($ $) 10)) (-2098 (($ $) 28)) (-1963 (($ $) 9)) (-1365 (($) 16)) (-3496 (($ $) 19)) (-2458 (($ $) 18)) (-2110 (($ $) 29)) (-1973 (($ $) 8)) (-2086 (($ $) 30)) (-1952 (($ $) 7)) (-2065 (($ $) 31)) (-1929 (($ $) 6)) (-2145 (($ $) 20)) (-2006 (($ $) 32)) (-2122 (($ $) 21)) (-1986 (($ $) 33)) (-2170 (($ $) 22)) (-2029 (($ $) 34)) (-4026 (($ $) 23)) (-2040 (($ $) 35)) (-2158 (($ $) 24)) (-2017 (($ $) 36)) (-2132 (($ $) 25)) (-1996 (($ $) 37)) (** (($ $ $) 17))) +((-2238 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) (-3722 (*1 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-619 (-2 (|:| -3326 *3) (|:| -1777 *4)))) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1148 *3 *4)))) (-2781 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1148 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) +(-13 (-588 |t#1| |t#2|) (-582 |t#1| |t#2|) (-10 -8 (-15 -2238 (|t#2| $ |t#1| |t#2|)) (-15 -3722 ($)) (-15 -3722 ($ (-619 (-2 (|:| -3326 |t#1|) (|:| -1777 |t#2|))))) (-15 -2781 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3326 |#1|) (|:| -1777 |#2|))) . T) ((-101) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-591 (-832)) -1524 (|has| |#2| (-1063)) (|has| |#2| (-591 (-832))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-591 (-832)))) ((-149 #0#) . T) ((-592 (-523)) |has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-592 (-523))) ((-221 #0#) . T) ((-227 #0#) . T) ((-277 |#1| |#2|) . T) ((-279 |#1| |#2|) . T) ((-300 #0#) -12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-300 |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-479 #0#) . T) ((-479 |#2|) . T) ((-582 |#1| |#2|) . T) ((-503 #0# #0#) -12 (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-300 (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)))) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-503 |#2| |#2|) -12 (|has| |#2| (-300 |#2|)) (|has| |#2| (-1063))) ((-588 |#1| |#2|) . T) ((-1063) -1524 (|has| |#2| (-1063)) (|has| (-2 (|:| -3326 |#1|) (|:| -1777 |#2|)) (-1063))) ((-1172) . T)) +((-1452 (((-112)) 24)) (-2503 (((-1223) (-1118)) 26)) (-1568 (((-112)) 36)) (-2604 (((-1223)) 34)) (-2379 (((-1223) (-1118) (-1118)) 25)) (-1675 (((-112)) 37)) (-1885 (((-1223) |#1| |#2|) 44)) (-2251 (((-1223)) 20)) (-1780 (((-3 |#2| "failed") |#1|) 42)) (-1357 (((-1223)) 35))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -2251 ((-1223))) (-15 -2379 ((-1223) (-1118) (-1118))) (-15 -2503 ((-1223) (-1118))) (-15 -2604 ((-1223))) (-15 -1357 ((-1223))) (-15 -1452 ((-112))) (-15 -1568 ((-112))) (-15 -1675 ((-112))) (-15 -1780 ((-3 |#2| "failed") |#1|)) (-15 -1885 ((-1223) |#1| |#2|))) (-1063) (-1063)) (T -1149)) +((-1885 (*1 *2 *3 *4) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-1780 (*1 *2 *3) (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1063)))) (-1675 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-1568 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-1452 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-1357 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2604 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-2379 (*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)))) (-2251 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) +(-10 -7 (-15 -2251 ((-1223))) (-15 -2379 ((-1223) (-1118) (-1118))) (-15 -2503 ((-1223) (-1118))) (-15 -2604 ((-1223))) (-15 -1357 ((-1223))) (-15 -1452 ((-112))) (-15 -1568 ((-112))) (-15 -1675 ((-112))) (-15 -1780 ((-3 |#2| "failed") |#1|)) (-15 -1885 ((-1223) |#1| |#2|))) +((-3912 (((-1118) (-1118)) 18)) (-1983 (((-52) (-1118)) 21))) +(((-1150) (-10 -7 (-15 -1983 ((-52) (-1118))) (-15 -3912 ((-1118) (-1118))))) (T -1150)) +((-3912 (*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1150)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-1150))))) +(-10 -7 (-15 -1983 ((-52) (-1118))) (-15 -3912 ((-1118) (-1118)))) +((-3834 (((-1152) |#1|) 11))) +(((-1151 |#1|) (-10 -7 (-15 -3834 ((-1152) |#1|))) (-1063)) (T -1151)) +((-3834 (*1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1151 *3)) (-4 *3 (-1063))))) +(-10 -7 (-15 -3834 ((-1152) |#1|))) +((-3821 (((-112) $ $) NIL)) (-1472 (((-619 (-1118)) $) 34)) (-4100 (((-619 (-1118)) $ (-619 (-1118))) 37)) (-4008 (((-619 (-1118)) $ (-619 (-1118))) 36)) (-4186 (((-619 (-1118)) $ (-619 (-1118))) 38)) (-4274 (((-619 (-1118)) $) 33)) (-3732 (($) 22)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1307 (((-619 (-1118)) $) 35)) (-2683 (((-1223) $ (-547)) 29) (((-1223) $) 30)) (-2829 (($ (-832) (-547)) 26) (($ (-832) (-547) (-832)) NIL)) (-3834 (((-832) $) 40) (($ (-832)) 24)) (-2371 (((-112) $ $) NIL))) +(((-1152) (-13 (-1063) (-10 -8 (-15 -3834 ($ (-832))) (-15 -2829 ($ (-832) (-547))) (-15 -2829 ($ (-832) (-547) (-832))) (-15 -2683 ((-1223) $ (-547))) (-15 -2683 ((-1223) $)) (-15 -1307 ((-619 (-1118)) $)) (-15 -1472 ((-619 (-1118)) $)) (-15 -3732 ($)) (-15 -4274 ((-619 (-1118)) $)) (-15 -4186 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -4100 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -4008 ((-619 (-1118)) $ (-619 (-1118))))))) (T -1152)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1152)))) (-2829 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1152)))) (-2829 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1152)))) (-2683 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-1152)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1152)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-3732 (*1 *1) (-5 *1 (-1152))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-4186 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-4100 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152)))) (-4008 (*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(-13 (-1063) (-10 -8 (-15 -3834 ($ (-832))) (-15 -2829 ($ (-832) (-547))) (-15 -2829 ($ (-832) (-547) (-832))) (-15 -2683 ((-1223) $ (-547))) (-15 -2683 ((-1223) $)) (-15 -1307 ((-619 (-1118)) $)) (-15 -1472 ((-619 (-1118)) $)) (-15 -3732 ($)) (-15 -4274 ((-619 (-1118)) $)) (-15 -4186 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -4100 ((-619 (-1118)) $ (-619 (-1118)))) (-15 -4008 ((-619 (-1118)) $ (-619 (-1118)))))) +((-3821 (((-112) $ $) NIL)) (-3724 (((-1118) $ (-1118)) 17) (((-1118) $) 16)) (-1891 (((-1118) $ (-1118)) 15)) (-4135 (($ $ (-1118)) NIL)) (-3507 (((-3 (-1118) "failed") $) 11)) (-3619 (((-1118) $) 8)) (-3415 (((-3 (-1118) "failed") $) 12)) (-2002 (((-1118) $) 9)) (-1351 (($ (-379)) NIL) (($ (-379) (-1118)) NIL)) (-2464 (((-379) $) NIL)) (-1917 (((-1118) $) NIL)) (-3938 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3319 (((-112) $) 18)) (-3834 (((-832) $) NIL)) (-4048 (($ $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-1153) (-13 (-355 (-379) (-1118)) (-10 -8 (-15 -3724 ((-1118) $ (-1118))) (-15 -3724 ((-1118) $)) (-15 -3619 ((-1118) $)) (-15 -3507 ((-3 (-1118) "failed") $)) (-15 -3415 ((-3 (-1118) "failed") $)) (-15 -3319 ((-112) $))))) (T -1153)) +((-3724 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-3507 (*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-3415 (*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153))))) +(-13 (-355 (-379) (-1118)) (-10 -8 (-15 -3724 ((-1118) $ (-1118))) (-15 -3724 ((-1118) $)) (-15 -3619 ((-1118) $)) (-15 -3507 ((-3 (-1118) "failed") $)) (-15 -3415 ((-3 (-1118) "failed") $)) (-15 -3319 ((-112) $)))) +((-3807 (((-3 (-547) "failed") |#1|) 19)) (-2770 (((-3 (-547) "failed") |#1|) 14)) (-2846 (((-547) (-1118)) 28))) +(((-1154 |#1|) (-10 -7 (-15 -3807 ((-3 (-547) "failed") |#1|)) (-15 -2770 ((-3 (-547) "failed") |#1|)) (-15 -2846 ((-547) (-1118)))) (-1016)) (T -1154)) +((-2846 (*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-547)) (-5 *1 (-1154 *4)) (-4 *4 (-1016)))) (-2770 (*1 *2 *3) (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1154 *3)) (-4 *3 (-1016)))) (-3807 (*1 *2 *3) (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) +(-10 -7 (-15 -3807 ((-3 (-547) "failed") |#1|)) (-15 -2770 ((-3 (-547) "failed") |#1|)) (-15 -2846 ((-547) (-1118)))) +((-2921 (((-1095 (-217))) 9))) +(((-1155) (-10 -7 (-15 -2921 ((-1095 (-217)))))) (T -1155)) +((-2921 (*1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1155))))) +(-10 -7 (-15 -2921 ((-1095 (-217))))) +((-1413 (($) 11)) (-1717 (($ $) 35)) (-1693 (($ $) 33)) (-1550 (($ $) 25)) (-1741 (($ $) 17)) (-1918 (($ $) 15)) (-1729 (($ $) 19)) (-1586 (($ $) 30)) (-1706 (($ $) 34)) (-1563 (($ $) 29))) +(((-1156 |#1|) (-10 -8 (-15 -1413 (|#1|)) (-15 -1717 (|#1| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1563 (|#1| |#1|))) (-1157)) (T -1156)) +NIL +(-10 -8 (-15 -1413 (|#1|)) (-15 -1717 (|#1| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1563 (|#1| |#1|))) +((-1648 (($ $) 26)) (-1498 (($ $) 11)) (-1624 (($ $) 27)) (-1473 (($ $) 10)) (-1670 (($ $) 28)) (-1526 (($ $) 9)) (-1413 (($) 16)) (-3620 (($ $) 19)) (-2703 (($ $) 18)) (-1681 (($ $) 29)) (-1539 (($ $) 8)) (-1659 (($ $) 30)) (-1513 (($ $) 7)) (-1635 (($ $) 31)) (-1488 (($ $) 6)) (-1717 (($ $) 20)) (-1574 (($ $) 32)) (-1693 (($ $) 21)) (-1550 (($ $) 33)) (-1741 (($ $) 22)) (-1597 (($ $) 34)) (-1918 (($ $) 23)) (-1610 (($ $) 35)) (-1729 (($ $) 24)) (-1586 (($ $) 36)) (-1706 (($ $) 25)) (-1563 (($ $) 37)) (** (($ $ $) 17))) (((-1157) (-138)) (T -1157)) -((-1365 (*1 *1) (-4 *1 (-1157)))) -(-13 (-1160) (-94) (-483) (-35) (-276) (-10 -8 (-15 -1365 ($)))) -(((-35) . T) ((-94) . T) ((-276) . T) ((-483) . T) ((-1160) . T)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4056 ((|#1| $) 17)) (-2686 (($ |#1| (-619 $)) 23) (($ (-619 |#1|)) 27) (($ |#1|) 25)) (-2028 (((-112) $ (-745)) 48)) (-4192 ((|#1| $ |#1|) 14 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 13 (|has| $ (-6 -4328)))) (-3030 (($) NIL T CONST)) (-1934 (((-619 |#1|) $) 52 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 43)) (-4213 (((-112) $ $) 33 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 41)) (-2342 (((-619 |#1|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3960 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 22)) (-4248 (((-112) $ (-745)) 40)) (-2869 (((-619 |#1|) $) 37)) (-3010 (((-112) $) 36)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3537 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 74)) (-1616 (((-112) $) 9)) (-3319 (($) 10)) (-3171 ((|#1| $ "value") NIL)) (-4234 (((-548) $ $) 32)) (-2706 (((-619 $) $) 59)) (-2715 (((-112) $ $) 77)) (-2724 (((-619 $) $) 72)) (-2732 (($ $) 73)) (-2740 (((-112) $) 56)) (-3945 (((-745) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4327))) (((-745) |#1| $) 16 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2113 (($ $) 58)) (-3743 (((-832) $) 61 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 12)) (-4224 (((-112) $ $) 29 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 28 (|has| |#1| (-1063)))) (-3643 (((-745) $) 39 (|has| $ (-6 -4327))))) -(((-1158 |#1|) (-13 (-979 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2686 ($ |#1| (-619 $))) (-15 -2686 ($ (-619 |#1|))) (-15 -2686 ($ |#1|)) (-15 -2740 ((-112) $)) (-15 -2732 ($ $)) (-15 -2724 ((-619 $) $)) (-15 -2715 ((-112) $ $)) (-15 -2706 ((-619 $) $)))) (-1063)) (T -1158)) -((-2740 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2686 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1158 *2))) (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1158 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-2732 (*1 *1 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2715 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) -(-13 (-979 |#1|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2686 ($ |#1| (-619 $))) (-15 -2686 ($ (-619 |#1|))) (-15 -2686 ($ |#1|)) (-15 -2740 ((-112) $)) (-15 -2732 ($ $)) (-15 -2724 ((-619 $) $)) (-15 -2715 ((-112) $ $)) (-15 -2706 ((-619 $) $)))) -((-1940 (($ $) 15)) (-1963 (($ $) 12)) (-1973 (($ $) 10)) (-1952 (($ $) 17))) -(((-1159 |#1|) (-10 -8 (-15 -1952 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1940 (|#1| |#1|))) (-1160)) (T -1159)) -NIL -(-10 -8 (-15 -1952 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1940 (|#1| |#1|))) -((-1940 (($ $) 11)) (-1918 (($ $) 10)) (-1963 (($ $) 9)) (-1973 (($ $) 8)) (-1952 (($ $) 7)) (-1929 (($ $) 6))) +((-1413 (*1 *1) (-4 *1 (-1157)))) +(-13 (-1160) (-94) (-482) (-35) (-275) (-10 -8 (-15 -1413 ($)))) +(((-35) . T) ((-94) . T) ((-275) . T) ((-482) . T) ((-1160) . T)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4152 ((|#1| $) 17)) (-1644 (($ |#1| (-619 $)) 23) (($ (-619 |#1|)) 27) (($ |#1|) 25)) (-2826 (((-112) $ (-745)) 48)) (-2741 ((|#1| $ |#1|) 14 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 13 (|has| $ (-6 -4329)))) (-3219 (($) NIL T CONST)) (-2973 (((-619 |#1|) $) 52 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 43)) (-1655 (((-112) $ $) 33 (|has| |#1| (-1063)))) (-4161 (((-112) $ (-745)) 41)) (-3666 (((-619 |#1|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1850 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 22)) (-2024 (((-112) $ (-745)) 40)) (-3579 (((-619 |#1|) $) 37)) (-3033 (((-112) $) 36)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-2462 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 74)) (-3169 (((-112) $) 9)) (-4011 (($) 10)) (-3329 ((|#1| $ "value") NIL)) (-1887 (((-547) $ $) 32)) (-2981 (((-619 $) $) 59)) (-3056 (((-112) $ $) 77)) (-3127 (((-619 $) $) 72)) (-3205 (($ $) 73)) (-2094 (((-112) $) 56)) (-3987 (((-745) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4328))) (((-745) |#1| $) 16 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2265 (($ $) 58)) (-3834 (((-832) $) 61 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 12)) (-1770 (((-112) $ $) 29 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 28 (|has| |#1| (-1063)))) (-3763 (((-745) $) 39 (|has| $ (-6 -4328))))) +(((-1158 |#1|) (-13 (-979 |#1|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -1644 ($ |#1| (-619 $))) (-15 -1644 ($ (-619 |#1|))) (-15 -1644 ($ |#1|)) (-15 -2094 ((-112) $)) (-15 -3205 ($ $)) (-15 -3127 ((-619 $) $)) (-15 -3056 ((-112) $ $)) (-15 -2981 ((-619 $) $)))) (-1063)) (T -1158)) +((-2094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-1644 (*1 *1 *2 *3) (-12 (-5 *3 (-619 (-1158 *2))) (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1158 *3)))) (-1644 (*1 *1 *2) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-3205 (*1 *1 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(-13 (-979 |#1|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -1644 ($ |#1| (-619 $))) (-15 -1644 ($ (-619 |#1|))) (-15 -1644 ($ |#1|)) (-15 -2094 ((-112) $)) (-15 -3205 ($ $)) (-15 -3127 ((-619 $) $)) (-15 -3056 ((-112) $ $)) (-15 -2981 ((-619 $) $)))) +((-1498 (($ $) 15)) (-1526 (($ $) 12)) (-1539 (($ $) 10)) (-1513 (($ $) 17))) +(((-1159 |#1|) (-10 -8 (-15 -1513 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -1498 (|#1| |#1|))) (-1160)) (T -1159)) +NIL +(-10 -8 (-15 -1513 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -1498 (|#1| |#1|))) +((-1498 (($ $) 11)) (-1473 (($ $) 10)) (-1526 (($ $) 9)) (-1539 (($ $) 8)) (-1513 (($ $) 7)) (-1488 (($ $) 6))) (((-1160) (-138)) (T -1160)) -((-1940 (*1 *1 *1) (-4 *1 (-1160))) (-1918 (*1 *1 *1) (-4 *1 (-1160))) (-1963 (*1 *1 *1) (-4 *1 (-1160))) (-1973 (*1 *1 *1) (-4 *1 (-1160))) (-1952 (*1 *1 *1) (-4 *1 (-1160))) (-1929 (*1 *1 *1) (-4 *1 (-1160)))) -(-13 (-10 -8 (-15 -1929 ($ $)) (-15 -1952 ($ $)) (-15 -1973 ($ $)) (-15 -1963 ($ $)) (-15 -1918 ($ $)) (-15 -1940 ($ $)))) -((-2765 ((|#2| |#2|) 88)) (-2773 (((-112) |#2|) 26)) (-1937 ((|#2| |#2|) 30)) (-1948 ((|#2| |#2|) 32)) (-2749 ((|#2| |#2| (-1135)) 83) ((|#2| |#2|) 84)) (-2781 (((-166 |#2|) |#2|) 28)) (-2758 ((|#2| |#2| (-1135)) 85) ((|#2| |#2|) 86))) -(((-1161 |#1| |#2|) (-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -2765 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2781 ((-166 |#2|) |#2|))) (-13 (-443) (-821) (-1007 (-548)) (-615 (-548))) (-13 (-27) (-1157) (-422 |#1|))) (T -1161)) -((-2781 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-166 *3)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *4))))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) (-2749 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) -(-10 -7 (-15 -2749 (|#2| |#2|)) (-15 -2749 (|#2| |#2| (-1135))) (-15 -2758 (|#2| |#2|)) (-15 -2758 (|#2| |#2| (-1135))) (-15 -2765 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2773 ((-112) |#2|)) (-15 -2781 ((-166 |#2|) |#2|))) -((-2789 ((|#4| |#4| |#1|) 27)) (-2795 ((|#4| |#4| |#1|) 28))) -(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2789 (|#4| |#4| |#1|)) (-15 -2795 (|#4| |#4| |#1|))) (-540) (-365 |#1|) (-365 |#1|) (-661 |#1| |#2| |#3|)) (T -1162)) -((-2795 (*1 *2 *2 *3) (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2789 (*1 *2 *2 *3) (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(-10 -7 (-15 -2789 (|#4| |#4| |#1|)) (-15 -2795 (|#4| |#4| |#1|))) -((-1839 ((|#2| |#2|) 133)) (-1857 ((|#2| |#2|) 130)) (-1830 ((|#2| |#2|) 121)) (-1848 ((|#2| |#2|) 118)) (-1821 ((|#2| |#2|) 126)) (-1810 ((|#2| |#2|) 114)) (-1710 ((|#2| |#2|) 43)) (-1702 ((|#2| |#2|) 94)) (-2805 ((|#2| |#2|) 74)) (-1800 ((|#2| |#2|) 128)) (-1790 ((|#2| |#2|) 116)) (-1917 ((|#2| |#2|) 138)) (-1895 ((|#2| |#2|) 136)) (-1906 ((|#2| |#2|) 137)) (-1886 ((|#2| |#2|) 135)) (-2814 ((|#2| |#2|) 148)) (-1928 ((|#2| |#2|) 30 (-12 (|has| |#2| (-593 (-861 |#1|))) (|has| |#2| (-855 |#1|)) (|has| |#1| (-593 (-861 |#1|))) (|has| |#1| (-855 |#1|))))) (-1719 ((|#2| |#2|) 75)) (-1728 ((|#2| |#2|) 139)) (-1384 ((|#2| |#2|) 140)) (-1782 ((|#2| |#2|) 127)) (-1774 ((|#2| |#2|) 115)) (-1766 ((|#2| |#2|) 134)) (-1876 ((|#2| |#2|) 132)) (-1757 ((|#2| |#2|) 122)) (-1866 ((|#2| |#2|) 120)) (-1748 ((|#2| |#2|) 124)) (-1738 ((|#2| |#2|) 112))) -(((-1163 |#1| |#2|) (-10 -7 (-15 -1384 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1886 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-593 (-861 |#1|))) (IF (|has| |#2| (-593 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -1928 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-821) (-443)) (-13 (-422 |#1|) (-1157))) (T -1163)) -((-1928 (*1 *2 *2) (-12 (-4 *3 (-593 (-861 *3))) (-4 *3 (-855 *3)) (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-593 (-861 *3))) (-4 *2 (-855 *3)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1886 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1857 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1848 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1782 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1702 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-2805 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157))))) (-1384 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-422 *3) (-1157)))))) -(-10 -7 (-15 -1384 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -1702 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1782 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1886 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-593 (-861 |#1|))) (IF (|has| |#2| (-593 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -1928 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2131 (((-112) |#5| $) 60) (((-112) $) 102)) (-2073 ((|#5| |#5| $) 75)) (-1415 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2082 (((-619 |#5|) (-619 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2441 (((-3 $ "failed") (-619 |#5|)) 126)) (-3465 (((-3 $ "failed") $) 112)) (-2038 ((|#5| |#5| $) 94)) (-2143 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-2015 ((|#5| |#5| $) 98)) (-2061 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2169 (((-2 (|:| -2466 (-619 |#5|)) (|:| -1280 (-619 |#5|))) $) 55)) (-2157 (((-112) |#5| $) 58) (((-112) $) 103)) (-3239 ((|#4| $) 108)) (-3724 (((-3 |#5| "failed") $) 110)) (-2179 (((-619 |#5|) $) 49)) (-2109 (((-112) |#5| $) 67) (((-112) $) 107)) (-2052 ((|#5| |#5| $) 81)) (-2199 (((-112) $ $) 27)) (-2121 (((-112) |#5| $) 63) (((-112) $) 105)) (-2063 ((|#5| |#5| $) 78)) (-3453 (((-3 |#5| "failed") $) 109)) (-1656 (($ $ |#5|) 127)) (-2512 (((-745) $) 52)) (-3754 (($ (-619 |#5|)) 124)) (-2298 (($ $ |#4|) 122)) (-2319 (($ $ |#4|) 121)) (-2027 (($ $) 120)) (-3743 (((-832) $) NIL) (((-619 |#5|) $) 113)) (-1962 (((-745) $) 130)) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-2096 (((-112) $ (-1 (-112) |#5| (-619 |#5|))) 100)) (-1983 (((-619 |#4|) $) 115)) (-2406 (((-112) |#4| $) 118)) (-2214 (((-112) $ $) 19))) -(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1962 ((-745) |#1|)) (-15 -1656 (|#1| |#1| |#5|)) (-15 -1415 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2406 ((-112) |#4| |#1|)) (-15 -1983 ((-619 |#4|) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1|)) (-15 -3724 ((-3 |#5| "failed") |#1|)) (-15 -3453 ((-3 |#5| "failed") |#1|)) (-15 -2015 (|#5| |#5| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2038 (|#5| |#5| |#1|)) (-15 -2052 (|#5| |#5| |#1|)) (-15 -2063 (|#5| |#5| |#1|)) (-15 -2073 (|#5| |#5| |#1|)) (-15 -2082 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2061 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2109 ((-112) |#1|)) (-15 -2121 ((-112) |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -2096 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -2109 ((-112) |#5| |#1|)) (-15 -2121 ((-112) |#5| |#1|)) (-15 -2131 ((-112) |#5| |#1|)) (-15 -2143 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2157 ((-112) |#1|)) (-15 -2157 ((-112) |#5| |#1|)) (-15 -2169 ((-2 (|:| -2466 (-619 |#5|)) (|:| -1280 (-619 |#5|))) |#1|)) (-15 -2512 ((-745) |#1|)) (-15 -2179 ((-619 |#5|) |#1|)) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2199 ((-112) |#1| |#1|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -3239 (|#4| |#1|)) (-15 -2441 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3743 ((-619 |#5|) |#1|)) (-15 -3754 (|#1| (-619 |#5|))) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1415 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) (-1165 |#2| |#3| |#4| |#5|) (-540) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1164)) -NIL -(-10 -8 (-15 -1962 ((-745) |#1|)) (-15 -1656 (|#1| |#1| |#5|)) (-15 -1415 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2406 ((-112) |#4| |#1|)) (-15 -1983 ((-619 |#4|) |#1|)) (-15 -3465 ((-3 |#1| "failed") |#1|)) (-15 -3724 ((-3 |#5| "failed") |#1|)) (-15 -3453 ((-3 |#5| "failed") |#1|)) (-15 -2015 (|#5| |#5| |#1|)) (-15 -2027 (|#1| |#1|)) (-15 -2038 (|#5| |#5| |#1|)) (-15 -2052 (|#5| |#5| |#1|)) (-15 -2063 (|#5| |#5| |#1|)) (-15 -2073 (|#5| |#5| |#1|)) (-15 -2082 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2061 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2109 ((-112) |#1|)) (-15 -2121 ((-112) |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -2096 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -2109 ((-112) |#5| |#1|)) (-15 -2121 ((-112) |#5| |#1|)) (-15 -2131 ((-112) |#5| |#1|)) (-15 -2143 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2157 ((-112) |#1|)) (-15 -2157 ((-112) |#5| |#1|)) (-15 -2169 ((-2 (|:| -2466 (-619 |#5|)) (|:| -1280 (-619 |#5|))) |#1|)) (-15 -2512 ((-745) |#1|)) (-15 -2179 ((-619 |#5|) |#1|)) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2188 ((-3 (-2 (|:| |bas| |#1|) (|:| -2088 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2199 ((-112) |#1| |#1|)) (-15 -2298 (|#1| |#1| |#4|)) (-15 -2319 (|#1| |#1| |#4|)) (-15 -3239 (|#4| |#1|)) (-15 -2441 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3743 ((-619 |#5|) |#1|)) (-15 -3754 (|#1| (-619 |#5|))) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1415 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2061 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3743 ((-832) |#1|)) (-15 -2214 ((-112) |#1| |#1|))) -((-3730 (((-112) $ $) 7)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) 85)) (-2004 (((-619 $) (-619 |#4|)) 86)) (-2049 (((-619 |#3|) $) 33)) (-2289 (((-112) $) 26)) (-3376 (((-112) $) 17 (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) 101) (((-112) $) 97)) (-2073 ((|#4| |#4| $) 92)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) 27)) (-2028 (((-112) $ (-745)) 44)) (-1415 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) 79)) (-3030 (($) 45 T CONST)) (-2251 (((-112) $) 22 (|has| |#1| (-540)))) (-2271 (((-112) $ $) 24 (|has| |#1| (-540)))) (-2261 (((-112) $ $) 23 (|has| |#1| (-540)))) (-2280 (((-112) $) 25 (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2213 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) 36)) (-2375 (($ (-619 |#4|)) 35)) (-3465 (((-3 $ "failed") $) 82)) (-2038 ((|#4| |#4| $) 89)) (-3484 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2015 ((|#4| |#4| $) 87)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) 105)) (-1934 (((-619 |#4|) $) 52 (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) 104) (((-112) $) 103)) (-3239 ((|#3| $) 34)) (-4282 (((-112) $ (-745)) 43)) (-2342 (((-619 |#4|) $) 53 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) 47)) (-2338 (((-619 |#3|) $) 32)) (-2329 (((-112) |#3| $) 31)) (-4248 (((-112) $ (-745)) 42)) (-2546 (((-1118) $) 9)) (-3724 (((-3 |#4| "failed") $) 83)) (-2179 (((-619 |#4|) $) 107)) (-2109 (((-112) |#4| $) 99) (((-112) $) 95)) (-2052 ((|#4| |#4| $) 90)) (-2199 (((-112) $ $) 110)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) 100) (((-112) $) 96)) (-2063 ((|#4| |#4| $) 91)) (-3932 (((-1082) $) 10)) (-3453 (((-3 |#4| "failed") $) 84)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1971 (((-3 $ "failed") $ |#4|) 78)) (-1656 (($ $ |#4|) 77)) (-3537 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) 56 (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) 38)) (-1616 (((-112) $) 41)) (-3319 (($) 40)) (-2512 (((-745) $) 106)) (-3945 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4327)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4327)))) (-2113 (($ $) 39)) (-2591 (((-524) $) 69 (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) 60)) (-2298 (($ $ |#3|) 28)) (-2319 (($ $ |#3|) 30)) (-2027 (($ $) 88)) (-2308 (($ $ |#3|) 29)) (-3743 (((-832) $) 11) (((-619 |#4|) $) 37)) (-1962 (((-745) $) 76 (|has| |#3| (-360)))) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-3548 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) 81)) (-2406 (((-112) |#3| $) 80)) (-2214 (((-112) $ $) 6)) (-3643 (((-745) $) 46 (|has| $ (-6 -4327))))) -(((-1165 |#1| |#2| |#3| |#4|) (-138) (-540) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1165)) -((-2199 (*1 *2 *1 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2188 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *8)))) (-5 *3 (-619 *8)) (-4 *1 (-1165 *5 *6 *7 *8)))) (-2188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *9)))) (-5 *3 (-619 *9)) (-4 *1 (-1165 *6 *7 *8 *9)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-2 (|:| -2466 (-619 *6)) (|:| -1280 (-619 *6)))))) (-2157 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2143 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1165 *5 *6 *7 *3)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)))) (-2131 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2121 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2109 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2096 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1165 *4 *5 *6 *7)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2061 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1165 *5 *6 *7 *2)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) (-2082 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1165 *5 *6 *7 *8)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)))) (-2073 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2063 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2052 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2038 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2027 (*1 *1 *1) (-12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-2015 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1165 *4 *5 *6 *7)))) (-1995 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| -2466 *1) (|:| -1280 (-619 *7))))) (-5 *3 (-619 *7)) (-4 *1 (-1165 *4 *5 *6 *7)))) (-3453 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3724 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3465 (*1 *1 *1) (|partial| -12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-2406 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *3 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-1415 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1165 *4 *5 *3 *2)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3)))) (-1971 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-360)) (-5 *2 (-745))))) -(-13 (-945 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4327) (-6 -4328) (-15 -2199 ((-112) $ $)) (-15 -2188 ((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2188 ((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2179 ((-619 |t#4|) $)) (-15 -2512 ((-745) $)) (-15 -2169 ((-2 (|:| -2466 (-619 |t#4|)) (|:| -1280 (-619 |t#4|))) $)) (-15 -2157 ((-112) |t#4| $)) (-15 -2157 ((-112) $)) (-15 -2143 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2131 ((-112) |t#4| $)) (-15 -2121 ((-112) |t#4| $)) (-15 -2109 ((-112) |t#4| $)) (-15 -2096 ((-112) $ (-1 (-112) |t#4| (-619 |t#4|)))) (-15 -2131 ((-112) $)) (-15 -2121 ((-112) $)) (-15 -2109 ((-112) $)) (-15 -2061 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2082 ((-619 |t#4|) (-619 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2073 (|t#4| |t#4| $)) (-15 -2063 (|t#4| |t#4| $)) (-15 -2052 (|t#4| |t#4| $)) (-15 -2038 (|t#4| |t#4| $)) (-15 -2027 ($ $)) (-15 -2015 (|t#4| |t#4| $)) (-15 -2004 ((-619 $) (-619 |t#4|))) (-15 -1995 ((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |t#4|)))) (-619 |t#4|))) (-15 -3453 ((-3 |t#4| "failed") $)) (-15 -3724 ((-3 |t#4| "failed") $)) (-15 -3465 ((-3 $ "failed") $)) (-15 -1983 ((-619 |t#3|) $)) (-15 -2406 ((-112) |t#3| $)) (-15 -1415 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1971 ((-3 $ "failed") $ |t#4|)) (-15 -1656 ($ $ |t#4|)) (IF (|has| |t#3| (-360)) (-15 -1962 ((-745) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-592 (-619 |#4|)) . T) ((-592 (-832)) . T) ((-149 |#4|) . T) ((-593 (-524)) |has| |#4| (-593 (-524))) ((-301 |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-480 |#4|) . T) ((-504 |#4| |#4|) -12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1172) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1135)) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3520 (((-921 |#1|) $ (-745)) 17) (((-921 |#1|) $ (-745) (-745)) NIL)) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $ (-1135)) NIL) (((-745) $ (-1135) (-745)) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2435 (((-112) $) NIL)) (-2024 (($ $ (-619 (-1135)) (-619 (-520 (-1135)))) NIL) (($ $ (-1135) (-520 (-1135))) NIL) (($ |#1| (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3810 (($ $ (-1135)) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-1939 (($ (-1 $) (-1135) |#1|) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1656 (($ $ (-745)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (($ $ (-1135) $) NIL) (($ $ (-619 (-1135)) (-619 $)) NIL) (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-4050 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2512 (((-520 (-1135)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-540))) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-1135)) NIL) (($ (-921 |#1|)) NIL)) (-1951 ((|#1| $ (-520 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (((-921 |#1|) $ (-745)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) NIL T CONST)) (-3118 (($) NIL T CONST)) (-3296 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1166 |#1|) (-13 (-715 |#1| (-1135)) (-10 -8 (-15 -1951 ((-921 |#1|) $ (-745))) (-15 -3743 ($ (-1135))) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ (-1135) |#1|)) (-15 -1939 ($ (-1 $) (-1135) |#1|))) |%noBranch|))) (-1016)) (T -1166)) -((-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1166 *4)) (-4 *4 (-1016)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-1016)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-1166 *3)))) (-3810 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)))) (-1939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1166 *4))) (-5 *3 (-1135)) (-5 *1 (-1166 *4)) (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016))))) -(-13 (-715 |#1| (-1135)) (-10 -8 (-15 -1951 ((-921 |#1|) $ (-745))) (-15 -3743 ($ (-1135))) (-15 -3743 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $ (-1135) |#1|)) (-15 -1939 ($ (-1 $) (-1135) |#1|))) |%noBranch|))) -((-2254 (($ |#1| (-619 (-619 (-912 (-218)))) (-112)) 19)) (-2243 (((-112) $ (-112)) 18)) (-2236 (((-112) $) 17)) (-2216 (((-619 (-619 (-912 (-218)))) $) 13)) (-2207 ((|#1| $) 8)) (-2225 (((-112) $) 15))) -(((-1167 |#1|) (-10 -8 (-15 -2207 (|#1| $)) (-15 -2216 ((-619 (-619 (-912 (-218)))) $)) (-15 -2225 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -2243 ((-112) $ (-112))) (-15 -2254 ($ |#1| (-619 (-619 (-912 (-218)))) (-112)))) (-943)) (T -1167)) -((-2254 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-112)) (-5 *1 (-1167 *2)) (-4 *2 (-943)))) (-2243 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-2207 (*1 *2 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-943))))) -(-10 -8 (-15 -2207 (|#1| $)) (-15 -2216 ((-619 (-619 (-912 (-218)))) $)) (-15 -2225 ((-112) $)) (-15 -2236 ((-112) $)) (-15 -2243 ((-112) $ (-112))) (-15 -2254 ($ |#1| (-619 (-619 (-912 (-218)))) (-112)))) -((-2264 (((-912 (-218)) (-912 (-218))) 25)) (-1733 (((-912 (-218)) (-218) (-218) (-218) (-218)) 10)) (-4184 (((-619 (-912 (-218))) (-912 (-218)) (-912 (-218)) (-912 (-218)) (-218) (-619 (-619 (-218)))) 37)) (-4029 (((-218) (-912 (-218)) (-912 (-218))) 21)) (-4018 (((-912 (-218)) (-912 (-218)) (-912 (-218))) 22)) (-4174 (((-619 (-619 (-218))) (-548)) 31)) (-2299 (((-912 (-218)) (-912 (-218)) (-912 (-218))) 20)) (-2290 (((-912 (-218)) (-912 (-218)) (-912 (-218))) 19)) (* (((-912 (-218)) (-218) (-912 (-218))) 18))) -(((-1168) (-10 -7 (-15 -1733 ((-912 (-218)) (-218) (-218) (-218) (-218))) (-15 * ((-912 (-218)) (-218) (-912 (-218)))) (-15 -2290 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2299 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -4029 ((-218) (-912 (-218)) (-912 (-218)))) (-15 -4018 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2264 ((-912 (-218)) (-912 (-218)))) (-15 -4174 ((-619 (-619 (-218))) (-548))) (-15 -4184 ((-619 (-912 (-218))) (-912 (-218)) (-912 (-218)) (-912 (-218)) (-218) (-619 (-619 (-218))))))) (T -1168)) -((-4184 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-619 (-619 (-218)))) (-5 *4 (-218)) (-5 *2 (-619 (-912 *4))) (-5 *1 (-1168)) (-5 *3 (-912 *4)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-1168)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (-4029 (*1 *2 *3 *3) (-12 (-5 *3 (-912 (-218))) (-5 *2 (-218)) (-5 *1 (-1168)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (-2290 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-912 (-218))) (-5 *3 (-218)) (-5 *1 (-1168)))) (-1733 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)) (-5 *3 (-218))))) -(-10 -7 (-15 -1733 ((-912 (-218)) (-218) (-218) (-218) (-218))) (-15 * ((-912 (-218)) (-218) (-912 (-218)))) (-15 -2290 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2299 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -4029 ((-218) (-912 (-218)) (-912 (-218)))) (-15 -4018 ((-912 (-218)) (-912 (-218)) (-912 (-218)))) (-15 -2264 ((-912 (-218)) (-912 (-218)))) (-15 -4174 ((-619 (-619 (-218))) (-548))) (-15 -4184 ((-619 (-912 (-218))) (-912 (-218)) (-912 (-218)) (-912 (-218)) (-218) (-619 (-619 (-218)))))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1415 ((|#1| $ (-745)) 13)) (-3198 (((-745) $) 12)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3743 (((-927 |#1|) $) 10) (($ (-927 |#1|)) 9) (((-832) $) 23 (|has| |#1| (-592 (-832))))) (-2214 (((-112) $ $) 16 (|has| |#1| (-1063))))) -(((-1169 |#1|) (-13 (-592 (-927 |#1|)) (-10 -8 (-15 -3743 ($ (-927 |#1|))) (-15 -1415 (|#1| $ (-745))) (-15 -3198 ((-745) $)) (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -1169)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-1172)) (-5 *1 (-1169 *3)))) (-1415 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-1169 *2)) (-4 *2 (-1172)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1169 *3)) (-4 *3 (-1172))))) -(-13 (-592 (-927 |#1|)) (-10 -8 (-15 -3743 ($ (-927 |#1|))) (-15 -1415 (|#1| $ (-745))) (-15 -3198 ((-745) $)) (IF (|has| |#1| (-592 (-832))) (-6 (-592 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) -((-4215 (((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-548)) 80)) (-4194 (((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|))) 74)) (-4204 (((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|))) 59))) -(((-1170 |#1|) (-10 -7 (-15 -4194 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4204 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4215 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-548)))) (-341)) (T -1170)) -((-4215 (*1 *2 *3 *4) (-12 (-5 *4 (-548)) (-4 *5 (-341)) (-5 *2 (-410 (-1131 (-1131 *5)))) (-5 *1 (-1170 *5)) (-5 *3 (-1131 (-1131 *5))))) (-4204 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4))))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) -(-10 -7 (-15 -4194 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4204 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -4215 ((-410 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-548)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL) (($ (-1140)) 8)) (-2214 (((-112) $ $) NIL))) -(((-1171) (-13 (-1047) (-10 -8 (-15 -3743 ($ (-1140)))))) (T -1171)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1171))))) -(-13 (-1047) (-10 -8 (-15 -3743 ($ (-1140))))) +((-1498 (*1 *1 *1) (-4 *1 (-1160))) (-1473 (*1 *1 *1) (-4 *1 (-1160))) (-1526 (*1 *1 *1) (-4 *1 (-1160))) (-1539 (*1 *1 *1) (-4 *1 (-1160))) (-1513 (*1 *1 *1) (-4 *1 (-1160))) (-1488 (*1 *1 *1) (-4 *1 (-1160)))) +(-13 (-10 -8 (-15 -1488 ($ $)) (-15 -1513 ($ $)) (-15 -1539 ($ $)) (-15 -1526 ($ $)) (-15 -1473 ($ $)) (-15 -1498 ($ $)))) +((-2375 ((|#2| |#2|) 88)) (-2471 (((-112) |#2|) 26)) (-2129 ((|#2| |#2|) 30)) (-2145 ((|#2| |#2|) 32)) (-2193 ((|#2| |#2| (-1135)) 83) ((|#2| |#2|) 84)) (-2568 (((-166 |#2|) |#2|) 28)) (-2296 ((|#2| |#2| (-1135)) 85) ((|#2| |#2|) 86))) +(((-1161 |#1| |#2|) (-10 -7 (-15 -2193 (|#2| |#2|)) (-15 -2193 (|#2| |#2| (-1135))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1135))) (-15 -2375 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2471 ((-112) |#2|)) (-15 -2568 ((-166 |#2|) |#2|))) (-13 (-442) (-821) (-1007 (-547)) (-615 (-547))) (-13 (-27) (-1157) (-421 |#1|))) (T -1161)) +((-2568 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-166 *3)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4))))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 (-112)) (-5 *1 (-1161 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *4))))) (-2145 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) (-2296 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) (-2193 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3)))))) +(-10 -7 (-15 -2193 (|#2| |#2|)) (-15 -2193 (|#2| |#2| (-1135))) (-15 -2296 (|#2| |#2|)) (-15 -2296 (|#2| |#2| (-1135))) (-15 -2375 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2145 (|#2| |#2|)) (-15 -2471 ((-112) |#2|)) (-15 -2568 ((-166 |#2|) |#2|))) +((-2655 ((|#4| |#4| |#1|) 27)) (-2709 ((|#4| |#4| |#1|) 28))) +(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2655 (|#4| |#4| |#1|)) (-15 -2709 (|#4| |#4| |#1|))) (-539) (-364 |#1|) (-364 |#1|) (-661 |#1| |#2| |#3|)) (T -1162)) +((-2709 (*1 *2 *2 *3) (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) (-2655 (*1 *2 *2 *3) (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(-10 -7 (-15 -2655 (|#4| |#4| |#1|)) (-15 -2709 (|#4| |#4| |#1|))) +((-1720 ((|#2| |#2|) 133)) (-1905 ((|#2| |#2|) 130)) (-1627 ((|#2| |#2|) 121)) (-1814 ((|#2| |#2|) 118)) (-1517 ((|#2| |#2|) 126)) (-1391 ((|#2| |#2|) 114)) (-2948 ((|#2| |#2|) 43)) (-2878 ((|#2| |#2|) 94)) (-1458 ((|#2| |#2|) 74)) (-1305 ((|#2| |#2|) 128)) (-2559 ((|#2| |#2|) 116)) (-4233 ((|#2| |#2|) 138)) (-4078 ((|#2| |#2|) 136)) (-4158 ((|#2| |#2|) 137)) (-3994 ((|#2| |#2|) 135)) (-1565 ((|#2| |#2|) 148)) (-4308 ((|#2| |#2|) 30 (-12 (|has| |#2| (-592 (-861 |#1|))) (|has| |#2| (-855 |#1|)) (|has| |#1| (-592 (-861 |#1|))) (|has| |#1| (-855 |#1|))))) (-3018 ((|#2| |#2|) 75)) (-3091 ((|#2| |#2|) 139)) (-1436 ((|#2| |#2|) 140)) (-2461 ((|#2| |#2|) 127)) (-2364 ((|#2| |#2|) 115)) (-2262 ((|#2| |#2|) 134)) (-3910 ((|#2| |#2|) 132)) (-2160 ((|#2| |#2|) 122)) (-3843 ((|#2| |#2|) 120)) (-2058 ((|#2| |#2|) 124)) (-1955 ((|#2| |#2|) 112))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -1436 (|#2| |#2|)) (-15 -1458 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -3018 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2559 (|#2| |#2|)) (-15 -1305 (|#2| |#2|)) (-15 -1391 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1905 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4158 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-592 (-861 |#1|))) (IF (|has| |#2| (-592 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -4308 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-821) (-442)) (-13 (-421 |#1|) (-1157))) (T -1163)) +((-4308 (*1 *2 *2) (-12 (-4 *3 (-592 (-861 *3))) (-4 *3 (-855 *3)) (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-592 (-861 *3))) (-4 *2 (-855 *3)) (-4 *2 (-13 (-421 *3) (-1157))))) (-4233 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-4158 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1391 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1305 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2559 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2058 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-3018 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-2878 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1458 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157))))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-421 *3) (-1157)))))) +(-10 -7 (-15 -1436 (|#2| |#2|)) (-15 -1458 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -3018 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2559 (|#2| |#2|)) (-15 -1305 (|#2| |#2|)) (-15 -1391 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1627 (|#2| |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1905 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4158 (|#2| |#2|)) (-15 -4233 (|#2| |#2|)) (IF (|has| |#1| (-855 |#1|)) (IF (|has| |#1| (-592 (-861 |#1|))) (IF (|has| |#2| (-592 (-861 |#1|))) (IF (|has| |#2| (-855 |#1|)) (-15 -4308 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2469 (((-112) |#5| $) 60) (((-112) $) 102)) (-3144 ((|#5| |#5| $) 75)) (-1476 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2028 (((-619 |#5|) (-619 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-2698 (((-3 $ "failed") (-619 |#5|)) 126)) (-3645 (((-3 $ "failed") $) 112)) (-2903 ((|#5| |#5| $) 94)) (-2577 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-2733 ((|#5| |#5| $) 98)) (-2542 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-1407 (((-2 (|:| -2665 (-619 |#5|)) (|:| -1351 (-619 |#5|))) $) 55)) (-1331 (((-112) |#5| $) 58) (((-112) $) 103)) (-1397 ((|#4| $) 108)) (-3817 (((-3 |#5| "failed") $) 110)) (-1499 (((-619 |#5|) $) 49)) (-2257 (((-112) |#5| $) 67) (((-112) $) 107)) (-2979 ((|#5| |#5| $) 81)) (-1694 (((-112) $ $) 27)) (-2373 (((-112) |#5| $) 63) (((-112) $) 105)) (-3062 ((|#5| |#5| $) 78)) (-3634 (((-3 |#5| "failed") $) 109)) (-3558 (($ $ |#5|) 127)) (-1618 (((-745) $) 52)) (-3841 (($ (-619 |#5|)) 124)) (-3228 (($ $ |#4|) 122)) (-3429 (($ $ |#4|) 121)) (-2817 (($ $) 120)) (-3834 (((-832) $) NIL) (((-619 |#5|) $) 113)) (-3423 (((-745) $) 130)) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-2143 (((-112) $ (-1 (-112) |#5| (-619 |#5|))) 100)) (-3598 (((-619 |#4|) $) 115)) (-3084 (((-112) |#4| $) 118)) (-2371 (((-112) $ $) 19))) +(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3423 ((-745) |#1|)) (-15 -3558 (|#1| |#1| |#5|)) (-15 -1476 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3084 ((-112) |#4| |#1|)) (-15 -3598 ((-619 |#4|) |#1|)) (-15 -3645 ((-3 |#1| "failed") |#1|)) (-15 -3817 ((-3 |#5| "failed") |#1|)) (-15 -3634 ((-3 |#5| "failed") |#1|)) (-15 -2733 (|#5| |#5| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2903 (|#5| |#5| |#1|)) (-15 -2979 (|#5| |#5| |#1|)) (-15 -3062 (|#5| |#5| |#1|)) (-15 -3144 (|#5| |#5| |#1|)) (-15 -2028 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2542 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2257 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -2469 ((-112) |#1|)) (-15 -2143 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -2257 ((-112) |#5| |#1|)) (-15 -2373 ((-112) |#5| |#1|)) (-15 -2469 ((-112) |#5| |#1|)) (-15 -2577 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1331 ((-112) |#1|)) (-15 -1331 ((-112) |#5| |#1|)) (-15 -1407 ((-2 (|:| -2665 (-619 |#5|)) (|:| -1351 (-619 |#5|))) |#1|)) (-15 -1618 ((-745) |#1|)) (-15 -1499 ((-619 |#5|) |#1|)) (-15 -1598 ((-3 (-2 (|:| |bas| |#1|) (|:| -2303 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1598 ((-3 (-2 (|:| |bas| |#1|) (|:| -2303 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3228 (|#1| |#1| |#4|)) (-15 -3429 (|#1| |#1| |#4|)) (-15 -1397 (|#4| |#1|)) (-15 -2698 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3834 ((-619 |#5|) |#1|)) (-15 -3841 (|#1| (-619 |#5|))) (-15 -2542 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2542 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1476 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2542 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) (-1165 |#2| |#3| |#4| |#5|) (-539) (-767) (-821) (-1030 |#2| |#3| |#4|)) (T -1164)) +NIL +(-10 -8 (-15 -3423 ((-745) |#1|)) (-15 -3558 (|#1| |#1| |#5|)) (-15 -1476 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3084 ((-112) |#4| |#1|)) (-15 -3598 ((-619 |#4|) |#1|)) (-15 -3645 ((-3 |#1| "failed") |#1|)) (-15 -3817 ((-3 |#5| "failed") |#1|)) (-15 -3634 ((-3 |#5| "failed") |#1|)) (-15 -2733 (|#5| |#5| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2903 (|#5| |#5| |#1|)) (-15 -2979 (|#5| |#5| |#1|)) (-15 -3062 (|#5| |#5| |#1|)) (-15 -3144 (|#5| |#5| |#1|)) (-15 -2028 ((-619 |#5|) (-619 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2542 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2257 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -2469 ((-112) |#1|)) (-15 -2143 ((-112) |#1| (-1 (-112) |#5| (-619 |#5|)))) (-15 -2257 ((-112) |#5| |#1|)) (-15 -2373 ((-112) |#5| |#1|)) (-15 -2469 ((-112) |#5| |#1|)) (-15 -2577 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1331 ((-112) |#1|)) (-15 -1331 ((-112) |#5| |#1|)) (-15 -1407 ((-2 (|:| -2665 (-619 |#5|)) (|:| -1351 (-619 |#5|))) |#1|)) (-15 -1618 ((-745) |#1|)) (-15 -1499 ((-619 |#5|) |#1|)) (-15 -1598 ((-3 (-2 (|:| |bas| |#1|) (|:| -2303 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1598 ((-3 (-2 (|:| |bas| |#1|) (|:| -2303 (-619 |#5|))) "failed") (-619 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3228 (|#1| |#1| |#4|)) (-15 -3429 (|#1| |#1| |#4|)) (-15 -1397 (|#4| |#1|)) (-15 -2698 ((-3 |#1| "failed") (-619 |#5|))) (-15 -3834 ((-619 |#5|) |#1|)) (-15 -3841 (|#1| (-619 |#5|))) (-15 -2542 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2542 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1476 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2542 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3834 ((-832) |#1|)) (-15 -2371 ((-112) |#1| |#1|))) +((-3821 (((-112) $ $) 7)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) 85)) (-3759 (((-619 $) (-619 |#4|)) 86)) (-2259 (((-619 |#3|) $) 33)) (-4286 (((-112) $) 26)) (-3312 (((-112) $) 17 (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) 101) (((-112) $) 97)) (-3144 ((|#4| |#4| $) 92)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) 27)) (-2826 (((-112) $ (-745)) 44)) (-1476 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) 79)) (-3219 (($) 45 T CONST)) (-3990 (((-112) $) 22 (|has| |#1| (-539)))) (-4154 (((-112) $ $) 24 (|has| |#1| (-539)))) (-4075 (((-112) $ $) 23 (|has| |#1| (-539)))) (-4212 (((-112) $) 25 (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1833 (((-619 |#4|) (-619 |#4|) $) 18 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) 19 (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) 36)) (-2643 (($ (-619 |#4|)) 35)) (-3645 (((-3 $ "failed") $) 82)) (-2903 ((|#4| |#4| $) 89)) (-3664 (($ $) 68 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#4| $) 67 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2733 ((|#4| |#4| $) 87)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) 105)) (-2973 (((-619 |#4|) $) 52 (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) 104) (((-112) $) 103)) (-1397 ((|#3| $) 34)) (-4161 (((-112) $ (-745)) 43)) (-3666 (((-619 |#4|) $) 53 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) 47)) (-3623 (((-619 |#3|) $) 32)) (-3523 (((-112) |#3| $) 31)) (-2024 (((-112) $ (-745)) 42)) (-1917 (((-1118) $) 9)) (-3817 (((-3 |#4| "failed") $) 83)) (-1499 (((-619 |#4|) $) 107)) (-2257 (((-112) |#4| $) 99) (((-112) $) 95)) (-2979 ((|#4| |#4| $) 90)) (-1694 (((-112) $ $) 110)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) 100) (((-112) $) 96)) (-3062 ((|#4| |#4| $) 91)) (-3979 (((-1082) $) 10)) (-3634 (((-3 |#4| "failed") $) 84)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3505 (((-3 $ "failed") $ |#4|) 78)) (-3558 (($ $ |#4|) 77)) (-2462 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) 59 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) 57 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) 56 (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) 38)) (-3169 (((-112) $) 41)) (-4011 (($) 40)) (-1618 (((-745) $) 106)) (-3987 (((-745) |#4| $) 54 (-12 (|has| |#4| (-1063)) (|has| $ (-6 -4328)))) (((-745) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4328)))) (-2265 (($ $) 39)) (-2829 (((-523) $) 69 (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) 60)) (-3228 (($ $ |#3|) 28)) (-3429 (($ $ |#3|) 30)) (-2817 (($ $) 88)) (-3324 (($ $ |#3|) 29)) (-3834 (((-832) $) 11) (((-619 |#4|) $) 37)) (-3423 (((-745) $) 76 (|has| |#3| (-359)))) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) 98)) (-2583 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) 81)) (-3084 (((-112) |#3| $) 80)) (-2371 (((-112) $ $) 6)) (-3763 (((-745) $) 46 (|has| $ (-6 -4328))))) +(((-1165 |#1| |#2| |#3| |#4|) (-138) (-539) (-767) (-821) (-1030 |t#1| |t#2| |t#3|)) (T -1165)) +((-1694 (*1 *2 *1 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-1598 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2303 (-619 *8)))) (-5 *3 (-619 *8)) (-4 *1 (-1165 *5 *6 *7 *8)))) (-1598 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2303 (-619 *9)))) (-5 *3 (-619 *9)) (-4 *1 (-1165 *6 *7 *8 *9)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-2 (|:| -2665 (-619 *6)) (|:| -1351 (-619 *6)))))) (-1331 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2577 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1165 *5 *6 *7 *3)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)))) (-2469 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2373 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2257 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2143 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1165 *4 *5 *6 *7)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2257 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) (-2542 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1165 *5 *6 *7 *2)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) (-2028 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1165 *5 *6 *7 *8)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)))) (-3144 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3062 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2979 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2903 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-2817 (*1 *1 *1) (-12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-2733 (*1 *2 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1165 *4 *5 *6 *7)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-619 (-2 (|:| -2665 *1) (|:| -1351 (-619 *7))))) (-5 *3 (-619 *7)) (-4 *1 (-1165 *4 *5 *6 *7)))) (-3634 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3817 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3645 (*1 *1 *1) (|partial| -12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) (-3084 (*1 *2 *3 *1) (-12 (-4 *1 (-1165 *4 *5 *3 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) (-1476 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1165 *4 *5 *3 *2)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3)))) (-3505 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3558 (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-359)) (-5 *2 (-745))))) +(-13 (-945 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4328) (-6 -4329) (-15 -1694 ((-112) $ $)) (-15 -1598 ((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1598 ((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |t#4|))) "failed") (-619 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1499 ((-619 |t#4|) $)) (-15 -1618 ((-745) $)) (-15 -1407 ((-2 (|:| -2665 (-619 |t#4|)) (|:| -1351 (-619 |t#4|))) $)) (-15 -1331 ((-112) |t#4| $)) (-15 -1331 ((-112) $)) (-15 -2577 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2469 ((-112) |t#4| $)) (-15 -2373 ((-112) |t#4| $)) (-15 -2257 ((-112) |t#4| $)) (-15 -2143 ((-112) $ (-1 (-112) |t#4| (-619 |t#4|)))) (-15 -2469 ((-112) $)) (-15 -2373 ((-112) $)) (-15 -2257 ((-112) $)) (-15 -2542 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2028 ((-619 |t#4|) (-619 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3144 (|t#4| |t#4| $)) (-15 -3062 (|t#4| |t#4| $)) (-15 -2979 (|t#4| |t#4| $)) (-15 -2903 (|t#4| |t#4| $)) (-15 -2817 ($ $)) (-15 -2733 (|t#4| |t#4| $)) (-15 -3759 ((-619 $) (-619 |t#4|))) (-15 -3682 ((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |t#4|)))) (-619 |t#4|))) (-15 -3634 ((-3 |t#4| "failed") $)) (-15 -3817 ((-3 |t#4| "failed") $)) (-15 -3645 ((-3 $ "failed") $)) (-15 -3598 ((-619 |t#3|) $)) (-15 -3084 ((-112) |t#3| $)) (-15 -1476 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3505 ((-3 $ "failed") $ |t#4|)) (-15 -3558 ($ $ |t#4|)) (IF (|has| |t#3| (-359)) (-15 -3423 ((-745) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-591 (-619 |#4|)) . T) ((-591 (-832)) . T) ((-149 |#4|) . T) ((-592 (-523)) |has| |#4| (-592 (-523))) ((-300 |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-479 |#4|) . T) ((-503 |#4| |#4|) -12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))) ((-945 |#1| |#2| |#3| |#4|) . T) ((-1063) . T) ((-1172) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1135)) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1401 (((-921 |#1|) $ (-745)) 17) (((-921 |#1|) $ (-745) (-745)) NIL)) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-745) $ (-1135)) NIL) (((-745) $ (-1135) (-745)) NIL)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2187 (((-112) $) NIL)) (-2229 (($ $ (-619 (-1135)) (-619 (-519 (-1135)))) NIL) (($ $ (-1135) (-519 (-1135))) NIL) (($ |#1| (-519 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-2069 (($ $ (-1135)) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135) |#1|) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-3255 (($ (-1 $) (-1135) |#1|) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3558 (($ $ (-745)) NIL)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2670 (($ $ (-1135) $) NIL) (($ $ (-619 (-1135)) (-619 $)) NIL) (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL)) (-3443 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-1618 (((-519 (-1135)) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-539))) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-1135)) NIL) (($ (-921 |#1|)) NIL)) (-3338 ((|#1| $ (-519 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (((-921 |#1|) $ (-745)) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) NIL T CONST)) (-3277 (($) NIL T CONST)) (-1686 (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1166 |#1|) (-13 (-715 |#1| (-1135)) (-10 -8 (-15 -3338 ((-921 |#1|) $ (-745))) (-15 -3834 ($ (-1135))) (-15 -3834 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $ (-1135) |#1|)) (-15 -3255 ($ (-1 $) (-1135) |#1|))) |%noBranch|))) (-1016)) (T -1166)) +((-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1166 *4)) (-4 *4 (-1016)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-1016)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-1166 *3)))) (-2069 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)))) (-3255 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1166 *4))) (-5 *3 (-1135)) (-5 *1 (-1166 *4)) (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016))))) +(-13 (-715 |#1| (-1135)) (-10 -8 (-15 -3338 ((-921 |#1|) $ (-745))) (-15 -3834 ($ (-1135))) (-15 -3834 ($ (-921 |#1|))) (IF (|has| |#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $ (-1135) |#1|)) (-15 -3255 ($ (-1 $) (-1135) |#1|))) |%noBranch|))) +((-4012 (($ |#1| (-619 (-619 (-912 (-217)))) (-112)) 19)) (-3925 (((-112) $ (-112)) 18)) (-3872 (((-112) $) 17)) (-1858 (((-619 (-619 (-912 (-217)))) $) 13)) (-1763 ((|#1| $) 8)) (-1944 (((-112) $) 15))) +(((-1167 |#1|) (-10 -8 (-15 -1763 (|#1| $)) (-15 -1858 ((-619 (-619 (-912 (-217)))) $)) (-15 -1944 ((-112) $)) (-15 -3872 ((-112) $)) (-15 -3925 ((-112) $ (-112))) (-15 -4012 ($ |#1| (-619 (-619 (-912 (-217)))) (-112)))) (-943)) (T -1167)) +((-4012 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-112)) (-5 *1 (-1167 *2)) (-4 *2 (-943)))) (-3925 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-1167 *3)) (-4 *3 (-943)))) (-1763 (*1 *2 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-943))))) +(-10 -8 (-15 -1763 (|#1| $)) (-15 -1858 ((-619 (-619 (-912 (-217)))) $)) (-15 -1944 ((-112) $)) (-15 -3872 ((-112) $)) (-15 -3925 ((-112) $ (-112))) (-15 -4012 ($ |#1| (-619 (-619 (-912 (-217)))) (-112)))) +((-4095 (((-912 (-217)) (-912 (-217))) 25)) (-2782 (((-912 (-217)) (-217) (-217) (-217) (-217)) 10)) (-2669 (((-619 (-912 (-217))) (-912 (-217)) (-912 (-217)) (-912 (-217)) (-217) (-619 (-619 (-217)))) 37)) (-3453 (((-217) (-912 (-217)) (-912 (-217))) 21)) (-3346 (((-912 (-217)) (-912 (-217)) (-912 (-217))) 22)) (-2563 (((-619 (-619 (-217))) (-547)) 31)) (-2484 (((-912 (-217)) (-912 (-217)) (-912 (-217))) 20)) (-2470 (((-912 (-217)) (-912 (-217)) (-912 (-217))) 19)) (* (((-912 (-217)) (-217) (-912 (-217))) 18))) +(((-1168) (-10 -7 (-15 -2782 ((-912 (-217)) (-217) (-217) (-217) (-217))) (-15 * ((-912 (-217)) (-217) (-912 (-217)))) (-15 -2470 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -2484 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -3453 ((-217) (-912 (-217)) (-912 (-217)))) (-15 -3346 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -4095 ((-912 (-217)) (-912 (-217)))) (-15 -2563 ((-619 (-619 (-217))) (-547))) (-15 -2669 ((-619 (-912 (-217))) (-912 (-217)) (-912 (-217)) (-912 (-217)) (-217) (-619 (-619 (-217))))))) (T -1168)) +((-2669 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-619 (-619 (-217)))) (-5 *4 (-217)) (-5 *2 (-619 (-912 *4))) (-5 *1 (-1168)) (-5 *3 (-912 *4)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-1168)))) (-4095 (*1 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) (-3346 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) (-3453 (*1 *2 *3 *3) (-12 (-5 *3 (-912 (-217))) (-5 *2 (-217)) (-5 *1 (-1168)))) (-2484 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) (-2470 (*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-912 (-217))) (-5 *3 (-217)) (-5 *1 (-1168)))) (-2782 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)) (-5 *3 (-217))))) +(-10 -7 (-15 -2782 ((-912 (-217)) (-217) (-217) (-217) (-217))) (-15 * ((-912 (-217)) (-217) (-912 (-217)))) (-15 -2470 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -2484 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -3453 ((-217) (-912 (-217)) (-912 (-217)))) (-15 -3346 ((-912 (-217)) (-912 (-217)) (-912 (-217)))) (-15 -4095 ((-912 (-217)) (-912 (-217)))) (-15 -2563 ((-619 (-619 (-217))) (-547))) (-15 -2669 ((-619 (-912 (-217))) (-912 (-217)) (-912 (-217)) (-912 (-217)) (-217) (-619 (-619 (-217)))))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-1476 ((|#1| $ (-745)) 13)) (-4202 (((-745) $) 12)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3834 (((-927 |#1|) $) 10) (($ (-927 |#1|)) 9) (((-832) $) 23 (|has| |#1| (-591 (-832))))) (-2371 (((-112) $ $) 16 (|has| |#1| (-1063))))) +(((-1169 |#1|) (-13 (-591 (-927 |#1|)) (-10 -8 (-15 -3834 ($ (-927 |#1|))) (-15 -1476 (|#1| $ (-745))) (-15 -4202 ((-745) $)) (IF (|has| |#1| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) (-1172)) (T -1169)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-927 *3)) (-4 *3 (-1172)) (-5 *1 (-1169 *3)))) (-1476 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-1169 *2)) (-4 *2 (-1172)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1169 *3)) (-4 *3 (-1172))))) +(-13 (-591 (-927 |#1|)) (-10 -8 (-15 -3834 ($ (-927 |#1|))) (-15 -1476 (|#1| $ (-745))) (-15 -4202 ((-745) $)) (IF (|has| |#1| (-591 (-832))) (-6 (-591 (-832))) |%noBranch|) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|))) +((-1678 (((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-547)) 80)) (-1429 (((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|))) 74)) (-1559 (((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|))) 59))) +(((-1170 |#1|) (-10 -7 (-15 -1429 ((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -1559 ((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -1678 ((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-547)))) (-340)) (T -1170)) +((-1678 (*1 *2 *3 *4) (-12 (-5 *4 (-547)) (-4 *5 (-340)) (-5 *2 (-409 (-1131 (-1131 *5)))) (-5 *1 (-1170 *5)) (-5 *3 (-1131 (-1131 *5))))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1131 (-1131 *4)))) (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4))))) (-1429 (*1 *2 *3) (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1131 (-1131 *4)))) (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) +(-10 -7 (-15 -1429 ((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -1559 ((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)))) (-15 -1678 ((-409 (-1131 (-1131 |#1|))) (-1131 (-1131 |#1|)) (-547)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL) (($ (-1140)) 8)) (-2371 (((-112) $ $) NIL))) +(((-1171) (-13 (-1047) (-10 -8 (-15 -3834 ($ (-1140)))))) (T -1171)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-1171))))) +(-13 (-1047) (-10 -8 (-15 -3834 ($ (-1140))))) NIL (((-1172) (-138)) (T -1172)) NIL -(-13 (-10 -7 (-6 -2409))) -((-4261 (((-112)) 15)) (-4226 (((-1223) (-619 |#1|) (-619 |#1|)) 19) (((-1223) (-619 |#1|)) 20)) (-4282 (((-112) |#1| |#1|) 32 (|has| |#1| (-821)))) (-4248 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4272 ((|#1| (-619 |#1|)) 33 (|has| |#1| (-821))) ((|#1| (-619 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4236 (((-2 (|:| -2479 (-619 |#1|)) (|:| -2469 (-619 |#1|)))) 17))) -(((-1173 |#1|) (-10 -7 (-15 -4226 ((-1223) (-619 |#1|))) (-15 -4226 ((-1223) (-619 |#1|) (-619 |#1|))) (-15 -4236 ((-2 (|:| -2479 (-619 |#1|)) (|:| -2469 (-619 |#1|))))) (-15 -4248 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4248 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4272 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4261 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -4272 (|#1| (-619 |#1|))) (-15 -4282 ((-112) |#1| |#1|))) |%noBranch|)) (-1063)) (T -1173)) -((-4282 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-1173 *2)))) (-4261 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1173 *2)) (-4 *2 (-1063)))) (-4248 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) (-5 *1 (-1173 *3)))) (-4248 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4236 (*1 *2) (-12 (-5 *2 (-2 (|:| -2479 (-619 *3)) (|:| -2469 (-619 *3)))) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4226 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) (-5 *1 (-1173 *4)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) (-5 *1 (-1173 *4))))) -(-10 -7 (-15 -4226 ((-1223) (-619 |#1|))) (-15 -4226 ((-1223) (-619 |#1|) (-619 |#1|))) (-15 -4236 ((-2 (|:| -2479 (-619 |#1|)) (|:| -2469 (-619 |#1|))))) (-15 -4248 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4248 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4272 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4261 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -4272 (|#1| (-619 |#1|))) (-15 -4282 ((-112) |#1| |#1|))) |%noBranch|)) -((-4292 (((-1223) (-619 (-1135)) (-619 (-1135))) 13) (((-1223) (-619 (-1135))) 11)) (-1260 (((-1223)) 14)) (-4304 (((-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135))))) 18))) -(((-1174) (-10 -7 (-15 -4292 ((-1223) (-619 (-1135)))) (-15 -4292 ((-1223) (-619 (-1135)) (-619 (-1135)))) (-15 -4304 ((-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135)))))) (-15 -1260 ((-1223))))) (T -1174)) -((-1260 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1174)))) (-4304 (*1 *2) (-12 (-5 *2 (-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135))))) (-5 *1 (-1174)))) (-4292 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174))))) -(-10 -7 (-15 -4292 ((-1223) (-619 (-1135)))) (-15 -4292 ((-1223) (-619 (-1135)) (-619 (-1135)))) (-15 -4304 ((-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135)))))) (-15 -1260 ((-1223)))) -((-1688 (($ $) 17)) (-1271 (((-112) $) 24))) -(((-1175 |#1|) (-10 -8 (-15 -1688 (|#1| |#1|)) (-15 -1271 ((-112) |#1|))) (-1176)) (T -1175)) -NIL -(-10 -8 (-15 -1688 (|#1| |#1|)) (-15 -1271 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 49)) (-2634 (((-410 $) $) 50)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-1271 (((-112) $) 51)) (-2266 (((-112) $) 30)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 48)) (-1900 (((-3 $ "failed") $ $) 40)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41)) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24))) +(-13 (-10 -7 (-6 -2608))) +((-3954 (((-112)) 15)) (-1795 (((-1223) (-619 |#1|) (-619 |#1|)) 19) (((-1223) (-619 |#1|)) 20)) (-4161 (((-112) |#1| |#1|) 32 (|has| |#1| (-821)))) (-2024 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4062 ((|#1| (-619 |#1|)) 33 (|has| |#1| (-821))) ((|#1| (-619 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-1909 (((-2 (|:| -2637 (-619 |#1|)) (|:| -2541 (-619 |#1|)))) 17))) +(((-1173 |#1|) (-10 -7 (-15 -1795 ((-1223) (-619 |#1|))) (-15 -1795 ((-1223) (-619 |#1|) (-619 |#1|))) (-15 -1909 ((-2 (|:| -2637 (-619 |#1|)) (|:| -2541 (-619 |#1|))))) (-15 -2024 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2024 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4062 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3954 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -4062 (|#1| (-619 |#1|))) (-15 -4161 ((-112) |#1| |#1|))) |%noBranch|)) (-1063)) (T -1173)) +((-4161 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-821)) (-4 *3 (-1063)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) (-5 *1 (-1173 *2)))) (-3954 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-4062 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1173 *2)) (-4 *2 (-1063)))) (-2024 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) (-5 *1 (-1173 *3)))) (-2024 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-1909 (*1 *2) (-12 (-5 *2 (-2 (|:| -2637 (-619 *3)) (|:| -2541 (-619 *3)))) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) (-1795 (*1 *2 *3 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) (-5 *1 (-1173 *4)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) (-5 *1 (-1173 *4))))) +(-10 -7 (-15 -1795 ((-1223) (-619 |#1|))) (-15 -1795 ((-1223) (-619 |#1|) (-619 |#1|))) (-15 -1909 ((-2 (|:| -2637 (-619 |#1|)) (|:| -2541 (-619 |#1|))))) (-15 -2024 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2024 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4062 (|#1| (-619 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3954 ((-112))) (IF (|has| |#1| (-821)) (PROGN (-15 -4062 (|#1| (-619 |#1|))) (-15 -4161 ((-112) |#1| |#1|))) |%noBranch|)) +((-4256 (((-1223) (-619 (-1135)) (-619 (-1135))) 13) (((-1223) (-619 (-1135))) 11)) (-3203 (((-1223)) 14)) (-1319 (((-2 (|:| -2541 (-619 (-1135))) (|:| -2637 (-619 (-1135))))) 18))) +(((-1174) (-10 -7 (-15 -4256 ((-1223) (-619 (-1135)))) (-15 -4256 ((-1223) (-619 (-1135)) (-619 (-1135)))) (-15 -1319 ((-2 (|:| -2541 (-619 (-1135))) (|:| -2637 (-619 (-1135)))))) (-15 -3203 ((-1223))))) (T -1174)) +((-3203 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1174)))) (-1319 (*1 *2) (-12 (-5 *2 (-2 (|:| -2541 (-619 (-1135))) (|:| -2637 (-619 (-1135))))) (-5 *1 (-1174)))) (-4256 (*1 *2 *3 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174))))) +(-10 -7 (-15 -4256 ((-1223) (-619 (-1135)))) (-15 -4256 ((-1223) (-619 (-1135)) (-619 (-1135)))) (-15 -1319 ((-2 (|:| -2541 (-619 (-1135))) (|:| -2637 (-619 (-1135)))))) (-15 -3203 ((-1223)))) +((-2745 (($ $) 17)) (-3674 (((-112) $) 24))) +(((-1175 |#1|) (-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -3674 ((-112) |#1|))) (-1176)) (T -1175)) +NIL +(-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -3674 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 49)) (-3457 (((-409 $) $) 50)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-3674 (((-112) $) 51)) (-4114 (((-112) $) 30)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2106 (((-409 $) $) 48)) (-2025 (((-3 $ "failed") $ $) 40)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41)) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24))) (((-1176) (-138)) (T -1176)) -((-1271 (*1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-112)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176)))) (-1688 (*1 *1 *1) (-4 *1 (-1176))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176))))) -(-13 (-443) (-10 -8 (-15 -1271 ((-112) $)) (-15 -2634 ((-410 $) $)) (-15 -1688 ($ $)) (-15 -1915 ((-410 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-592 (-832)) . T) ((-169) . T) ((-282) . T) ((-443) . T) ((-540) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-2540 (((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)) 23))) -(((-1177 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2540 ((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)))) (-1016) (-1016) (-1135) (-1135) |#1| |#2|) (T -1177)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1182 *6 *8 *10)) (-5 *1 (-1177 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1135))))) -(-10 -7 (-15 -2540 ((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 96) (($ $ (-548) (-548)) 95)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 171)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 169 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 168 (|has| |#1| (-540)))) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-548) $) 98) (((-548) $ (-548)) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99)) (-3823 (($ (-1 |#1| (-548)) $) 170)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-548)) 59) (($ $ (-1045) (-548)) 74) (($ $ (-619 (-1045)) (-619 (-548))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-548)))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) 102) (($ $ $) 79 (|has| (-548) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2512 (((-548) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-548)) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-548) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-3674 (*1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-112)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1176)))) (-2745 (*1 *1 *1) (-4 *1 (-1176))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1176))))) +(-13 (-442) (-10 -8 (-15 -3674 ((-112) $)) (-15 -3457 ((-409 $) $)) (-15 -2745 ($ $)) (-15 -2106 ((-409 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-591 (-832)) . T) ((-169) . T) ((-281) . T) ((-442) . T) ((-539) . T) ((-622 $) . T) ((-692 $) . T) ((-701) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2781 (((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)) 23))) +(((-1177 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2781 ((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)))) (-1016) (-1016) (-1135) (-1135) |#1| |#2|) (T -1177)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1182 *6 *8 *10)) (-5 *1 (-1177 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1135))))) +(-10 -7 (-15 -2781 ((-1182 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1182 |#1| |#3| |#5|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 (-1045)) $) 72)) (-2995 (((-1135) $) 101)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3643 (($ $ (-547)) 96) (($ $ (-547) (-547)) 95)) (-2674 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 103)) (-1648 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 160 (|has| |#1| (-354)))) (-3457 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2118 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1624 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 171)) (-1670 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) 17 T CONST)) (-2079 (($ $ $) 155 (|has| |#1| (-354)))) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-2612 (((-398 (-921 |#1|)) $ (-547)) 169 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 168 (|has| |#1| (-539)))) (-2052 (($ $ $) 154 (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-3674 (((-112) $) 162 (|has| |#1| (-354)))) (-4211 (((-112) $) 71)) (-1413 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-547) $) 98) (((-547) $ (-547)) 97)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) 99)) (-2194 (($ (-1 |#1| (-547)) $) 170)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-2187 (((-112) $) 60)) (-2229 (($ |#1| (-547)) 59) (($ $ (-1045) (-547)) 74) (($ $ (-619 (-1045)) (-619 (-547))) 73)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-3620 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-3685 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-1917 (((-1118) $) 9)) (-1976 (($ $) 163 (|has| |#1| (-354)))) (-2069 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-354)))) (-3715 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2106 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 156 (|has| |#1| (-354)))) (-3558 (($ $ (-547)) 93)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2703 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-547)))))) (-2776 (((-745) $) 152 (|has| |#1| (-354)))) (-3329 ((|#1| $ (-547)) 102) (($ $ $) 79 (|has| (-547) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 153 (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-1618 (((-547) $) 62)) (-1681 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-3338 ((|#1| $ (-547)) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2582 ((|#1| $) 100)) (-1717 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1693 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-547)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-547) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-1178 |#1|) (-138) (-1016)) (T -1178)) -((-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1178 *3)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1178 *3)) (-4 *3 (-1016)))) (-1284 (*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) (-5 *2 (-399 (-921 *4))))) (-1284 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) (-5 *2 (-399 (-921 *4))))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) (-3810 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-399 (-548)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548))))))))) -(-13 (-1196 |t#1| (-548)) (-10 -8 (-15 -1761 ($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |t#1|))))) (-15 -3823 ($ (-1 |t#1| (-548)) $)) (IF (|has| |t#1| (-540)) (PROGN (-15 -1284 ((-399 (-921 |t#1|)) $ (-548))) (-15 -1284 ((-399 (-921 |t#1|)) $ (-548) (-548)))) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2049 ((-619 (-1135)) |t#1|))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-548))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-355)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-548)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-548) |#1|))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-548) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-355) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1176) |has| |#1| (-355)) ((-1196 |#1| #0#) . T)) -((-3324 (((-112) $) 12)) (-2441 (((-3 |#3| "failed") $) 17) (((-3 (-1135) "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL)) (-2375 ((|#3| $) 14) (((-1135) $) NIL) (((-399 (-548)) $) NIL) (((-548) $) NIL))) -(((-1179 |#1| |#2| |#3|) (-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) (-1180 |#2| |#3|) (-1016) (-1209 |#2|)) (T -1179)) -NIL -(-10 -8 (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -2375 ((-1135) |#1|)) (-15 -2441 ((-3 (-1135) "failed") |#1|)) (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3875 ((|#2| $) 228 (-1723 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 96) (($ $ (-548) (-548)) 95)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 103)) (-1318 ((|#2| $) 264)) (-1295 (((-3 |#2| "failed") $) 260)) (-2107 ((|#2| $) 261)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-4070 (((-410 (-1131 $)) (-1131 $)) 237 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 234 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) 246 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 171)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#2| "failed") $) 267) (((-3 (-548) "failed") $) 256 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) 254 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-1135) "failed") $) 239 (-1723 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-2375 ((|#2| $) 266) (((-548) $) 257 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-399 (-548)) $) 255 (-1723 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-1135) $) 240 (-1723 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-1306 (($ $) 263) (($ (-548) $) 262)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-1608 (((-663 |#2|) (-663 $)) 218 (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 217 (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 216 (-1723 (|has| |#2| (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) 215 (-1723 (|has| |#2| (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) 32)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 169 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 168 (|has| |#1| (-540)))) (-2545 (($) 230 (-1723 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3298 (((-112) $) 244 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 222 (-1723 (|has| |#2| (-855 (-371))) (|has| |#1| (-355)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 221 (-1723 (|has| |#2| (-855 (-548))) (|has| |#1| (-355))))) (-1672 (((-548) $) 98) (((-548) $ (-548)) 97)) (-2266 (((-112) $) 30)) (-2002 (($ $) 226 (|has| |#1| (-355)))) (-2470 ((|#2| $) 224 (|has| |#1| (-355)))) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) 258 (-1723 (|has| |#2| (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) 245 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) 99)) (-3823 (($ (-1 |#1| (-548)) $) 170)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-548)) 59) (($ $ (-1045) (-548)) 74) (($ $ (-619 (-1045)) (-619 (-548))) 73)) (-1795 (($ $ $) 248 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-3091 (($ $ $) 249 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2540 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-355)))) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-2119 (($ (-548) |#2|) 265)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3410 (($) 259 (-1723 (|has| |#2| (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-3862 (($ $) 229 (-1723 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-3887 ((|#2| $) 232 (-1723 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) 235 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) 236 (-1723 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) |#2|) 209 (-1723 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 |#2|)) 208 (-1723 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-286 |#2|))) 207 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-286 |#2|)) 206 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ |#2| |#2|) 205 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-619 |#2|) (-619 |#2|)) 204 (-1723 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) 102) (($ $ $) 79 (|has| (-548) (-1075))) (($ $ |#2|) 203 (-1723 (|has| |#2| (-278 |#2| |#2|)) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) 213 (|has| |#1| (-355))) (($ $ (-745)) 82 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 80 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) 87 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135) (-745)) 86 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-619 (-1135))) 85 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135)) 84 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))))) (-1993 (($ $) 227 (|has| |#1| (-355)))) (-2480 ((|#2| $) 225 (|has| |#1| (-355)))) (-2512 (((-548) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-218) $) 243 (-1723 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-371) $) 242 (-1723 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-524) $) 241 (-1723 (|has| |#2| (-593 (-524))) (|has| |#1| (-355)))) (((-861 (-371)) $) 220 (-1723 (|has| |#2| (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) 219 (-1723 (|has| |#2| (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 233 (-1723 (-1723 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#1| (-355))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1135)) 238 (-1723 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355)))) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-548)) 57)) (-4017 (((-3 $ "failed") $) 46 (-1524 (-1723 (-1524 (|has| |#2| (-143)) (-1723 (|has| $ (-143)) (|has| |#2| (-878)))) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-3897 ((|#2| $) 231 (-1723 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) 247 (-1723 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) 211 (|has| |#1| (-355))) (($ $ (-745)) 83 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 81 (-1524 (-1723 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) 91 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135) (-745)) 90 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-619 (-1135))) 89 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))))) (($ $ (-1135)) 88 (-1524 (-1723 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))))) (-2262 (((-112) $ $) 251 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2241 (((-112) $ $) 252 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 250 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2234 (((-112) $ $) 253 (-1723 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355))) (($ |#2| |#2|) 223 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-355))) (($ |#2| $) 201 (|has| |#1| (-355))) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-2810 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1178 *3)))) (-2194 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1178 *3)) (-4 *3 (-1016)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-539)) (-5 *2 (-398 (-921 *4))))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-539)) (-5 *2 (-398 (-921 *4))))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) (-2069 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-398 (-547)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2259 ((-619 *2) *3))) (|has| *3 (-15 -2069 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547))))))))) +(-13 (-1196 |t#1| (-547)) (-10 -8 (-15 -2810 ($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |t#1|))))) (-15 -2194 ($ (-1 |t#1| (-547)) $)) (IF (|has| |t#1| (-539)) (PROGN (-15 -2612 ((-398 (-921 |t#1|)) $ (-547))) (-15 -2612 ((-398 (-921 |t#1|)) $ (-547) (-547)))) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $)) (IF (|has| |t#1| (-15 -2069 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2259 ((-619 (-1135)) |t#1|))) (-15 -2069 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-547))) (-15 -2069 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-547)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-547) |#1|))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-547) (-1075)) ((-281) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-354) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-398 (-547)))) ((-1160) |has| |#1| (-38 (-398 (-547)))) ((-1176) |has| |#1| (-354)) ((-1196 |#1| #0#) . T)) +((-4046 (((-112) $) 12)) (-2698 (((-3 |#3| "failed") $) 17) (((-3 (-1135) "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL)) (-2643 ((|#3| $) 14) (((-1135) $) NIL) (((-398 (-547)) $) NIL) (((-547) $) NIL))) +(((-1179 |#1| |#2| |#3|) (-10 -8 (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-1135) |#1|)) (-15 -2698 ((-3 (-1135) "failed") |#1|)) (-15 -2643 (|#3| |#1|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -4046 ((-112) |#1|))) (-1180 |#2| |#3|) (-1016) (-1209 |#2|)) (T -1179)) +NIL +(-10 -8 (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -2643 ((-1135) |#1|)) (-15 -2698 ((-3 (-1135) "failed") |#1|)) (-15 -2643 (|#3| |#1|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -4046 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2673 ((|#2| $) 228 (-1806 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-2259 (((-619 (-1045)) $) 72)) (-2995 (((-1135) $) 101)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3643 (($ $ (-547)) 96) (($ $ (-547) (-547)) 95)) (-2674 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 103)) (-2345 ((|#2| $) 264)) (-2061 (((-3 |#2| "failed") $) 260)) (-2324 ((|#2| $) 261)) (-1648 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) 19)) (-3833 (((-409 (-1131 $)) (-1131 $)) 237 (-1806 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2745 (($ $) 160 (|has| |#1| (-354)))) (-3457 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2118 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 234 (-1806 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2873 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1624 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-3807 (((-547) $) 246 (-1806 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-2810 (($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 171)) (-1670 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#2| "failed") $) 267) (((-3 (-547) "failed") $) 256 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) 254 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-1135) "failed") $) 239 (-1806 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-354))))) (-2643 ((|#2| $) 266) (((-547) $) 257 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-398 (-547)) $) 255 (-1806 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-1135) $) 240 (-1806 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-354))))) (-2200 (($ $) 263) (($ (-547) $) 262)) (-2079 (($ $ $) 155 (|has| |#1| (-354)))) (-2054 (($ $) 58)) (-4238 (((-663 |#2|) (-663 $)) 218 (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) 217 (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 216 (-1806 (|has| |#2| (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) 215 (-1806 (|has| |#2| (-615 (-547))) (|has| |#1| (-354))))) (-2537 (((-3 $ "failed") $) 32)) (-2612 (((-398 (-921 |#1|)) $ (-547)) 169 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 168 (|has| |#1| (-539)))) (-3229 (($) 230 (-1806 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-2052 (($ $ $) 154 (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-3674 (((-112) $) 162 (|has| |#1| (-354)))) (-3848 (((-112) $) 244 (-1806 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-4211 (((-112) $) 71)) (-1413 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 222 (-1806 (|has| |#2| (-855 (-370))) (|has| |#1| (-354)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 221 (-1806 (|has| |#2| (-855 (-547))) (|has| |#1| (-354))))) (-3707 (((-547) $) 98) (((-547) $ (-547)) 97)) (-4114 (((-112) $) 30)) (-3739 (($ $) 226 (|has| |#1| (-354)))) (-1382 ((|#2| $) 224 (|has| |#1| (-354)))) (-1311 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-3652 (((-3 $ "failed") $) 258 (-1806 (|has| |#2| (-1111)) (|has| |#1| (-354))))) (-3937 (((-112) $) 245 (-1806 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-2438 (($ $ (-890)) 99)) (-2194 (($ (-1 |#1| (-547)) $) 170)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-2187 (((-112) $) 60)) (-2229 (($ |#1| (-547)) 59) (($ $ (-1045) (-547)) 74) (($ $ (-619 (-1045)) (-619 (-547))) 73)) (-2847 (($ $ $) 248 (-1806 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-3563 (($ $ $) 249 (-1806 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2781 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-354)))) (-3620 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-3685 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-2337 (($ (-547) |#2|) 265)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 163 (|has| |#1| (-354)))) (-2069 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3045 (($) 259 (-1806 (|has| |#2| (-1111)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-354)))) (-3715 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2567 (($ $) 229 (-1806 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-1435 ((|#2| $) 232 (-1806 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-3658 (((-409 (-1131 $)) (-1131 $)) 235 (-1806 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-3738 (((-409 (-1131 $)) (-1131 $)) 236 (-1806 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2106 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 156 (|has| |#1| (-354)))) (-3558 (($ $ (-547)) 93)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2703 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1135) |#2|) 209 (-1806 (|has| |#2| (-503 (-1135) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-1135)) (-619 |#2|)) 208 (-1806 (|has| |#2| (-503 (-1135) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-285 |#2|))) 207 (-1806 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-285 |#2|)) 206 (-1806 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ |#2| |#2|) 205 (-1806 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-619 |#2|) (-619 |#2|)) 204 (-1806 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354))))) (-2776 (((-745) $) 152 (|has| |#1| (-354)))) (-3329 ((|#1| $ (-547)) 102) (($ $ $) 79 (|has| (-547) (-1075))) (($ $ |#2|) 203 (-1806 (|has| |#2| (-277 |#2| |#2|)) (|has| |#1| (-354))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 153 (|has| |#1| (-354)))) (-3443 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) 213 (|has| |#1| (-354))) (($ $ (-745)) 82 (-1524 (-1806 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 80 (-1524 (-1806 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) 87 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1135) (-745)) 86 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-619 (-1135))) 85 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1135)) 84 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))))) (-3660 (($ $) 227 (|has| |#1| (-354)))) (-1392 ((|#2| $) 225 (|has| |#1| (-354)))) (-1618 (((-547) $) 62)) (-1681 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-2829 (((-217) $) 243 (-1806 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-370) $) 242 (-1806 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-523) $) 241 (-1806 (|has| |#2| (-592 (-523))) (|has| |#1| (-354)))) (((-861 (-370)) $) 220 (-1806 (|has| |#2| (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) 219 (-1806 (|has| |#2| (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 233 (-1806 (-1806 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#1| (-354))))) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1135)) 238 (-1806 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-354)))) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-3338 ((|#1| $ (-547)) 57)) (-3336 (((-3 $ "failed") $) 46 (-1524 (-1806 (-1524 (|has| |#2| (-143)) (-1806 (|has| $ (-143)) (|has| |#2| (-878)))) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2311 (((-745)) 28)) (-2582 ((|#1| $) 100)) (-1564 ((|#2| $) 231 (-1806 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-1717 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1693 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-547)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-2040 (($ $) 247 (-1806 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) 211 (|has| |#1| (-354))) (($ $ (-745)) 83 (-1524 (-1806 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 81 (-1524 (-1806 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) 91 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1135) (-745)) 90 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-619 (-1135))) 89 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))))) (($ $ (-1135)) 88 (-1524 (-1806 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))))) (-2433 (((-112) $ $) 251 (-1806 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2408 (((-112) $ $) 252 (-1806 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 250 (-1806 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2396 (((-112) $ $) 253 (-1806 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354))) (($ |#2| |#2|) 223 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-354))) (($ |#2| $) 201 (|has| |#1| (-354))) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-1180 |#1| |#2|) (-138) (-1016) (-1209 |t#1|)) (T -1180)) -((-2512 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)) (-5 *2 (-548)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1180 *3 *2)) (-4 *2 (-1209 *3)))) (-2119 (*1 *1 *2 *3) (-12 (-5 *2 (-548)) (-4 *4 (-1016)) (-4 *1 (-1180 *4 *3)) (-4 *3 (-1209 *4)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3)))) (-1306 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1209 *2)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3)))) (-1295 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) -(-13 (-1178 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2119 ($ (-548) |t#2|)) (-15 -2512 ((-548) $)) (-15 -1318 (|t#2| $)) (-15 -1306 ($ $)) (-15 -1306 ($ (-548) $)) (-15 -3743 ($ |t#2|)) (-15 -2107 (|t#2| $)) (-15 -1295 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-355)) (-6 (-961 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-548)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-355)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-355)) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-593 (-218)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) ((-593 (-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) ((-593 (-524)) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-593 (-861 (-548))))) ((-224 |#2|) |has| |#1| (-355)) ((-226) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-226))) (|has| |#1| (-15 * (|#1| (-548) |#1|)))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 |#2| $) -12 (|has| |#1| (-355)) (|has| |#2| (-278 |#2| |#2|))) ((-278 $ $) |has| (-548) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-301 |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|))) ((-355) |has| |#1| (-355)) ((-330 |#2|) |has| |#1| (-355)) ((-369 |#2|) |has| |#1| (-355)) ((-392 |#2|) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-504 (-1135) |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-504 (-1135) |#2|))) ((-504 |#2| |#2|) -12 (|has| |#1| (-355)) (|has| |#2| (-301 |#2|))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 |#2|) |has| |#1| (-355)) ((-622 $) . T) ((-615 (-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-615 (-548)))) ((-615 |#2|) |has| |#1| (-355)) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 |#2|) |has| |#1| (-355)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-765) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-766) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-768) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-769) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-794) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-819) -12 (|has| |#1| (-355)) (|has| |#2| (-794))) ((-821) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-821))) (-12 (|has| |#1| (-355)) (|has| |#2| (-794)))) ((-869 (-1135)) -1524 (-12 (|has| |#1| (-355)) (|has| |#2| (-869 (-1135)))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))) ((-855 (-371)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-371)))) ((-855 (-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-855 (-548)))) ((-853 |#2|) |has| |#1| (-355)) ((-878) -12 (|has| |#1| (-355)) (|has| |#2| (-878))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-961 |#2|) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-991) -12 (|has| |#1| (-355)) (|has| |#2| (-991))) ((-1007 (-399 (-548))) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548)))) ((-1007 (-548)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-548)))) ((-1007 (-1135)) -12 (|has| |#1| (-355)) (|has| |#2| (-1007 (-1135)))) ((-1007 |#2|) . T) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 |#2|) |has| |#1| (-355)) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) -12 (|has| |#1| (-355)) (|has| |#2| (-1111))) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1172) |has| |#1| (-355)) ((-1176) |has| |#1| (-355)) ((-1178 |#1|) . T) ((-1196 |#1| #0#) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 70)) (-3875 ((|#2| $) NIL (-12 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 88)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-548)) 97) (($ $ (-548) (-548)) 99)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) 47)) (-1318 ((|#2| $) 11)) (-1295 (((-3 |#2| "failed") $) 30)) (-2107 ((|#2| $) 31)) (-2074 (($ $) 192 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 168 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) 188 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 164 (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) 57)) (-2098 (($ $) 196 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 172 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) 144) (((-3 (-548) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-1135) "failed") $) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-2375 ((|#2| $) 143) (((-548) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-399 (-548)) $) NIL (-12 (|has| |#2| (-1007 (-548))) (|has| |#1| (-355)))) (((-1135) $) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355))))) (-1306 (($ $) 61) (($ (-548) $) 24)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 |#2|) (-663 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) 77)) (-1284 (((-399 (-921 |#1|)) $ (-548)) 112 (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) 114 (|has| |#1| (-540)))) (-2545 (($) NIL (-12 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3298 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) 64)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| |#2| (-855 (-371))) (|has| |#1| (-355)))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| |#2| (-855 (-548))) (|has| |#1| (-355))))) (-1672 (((-548) $) 93) (((-548) $ (-548)) 95)) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL (|has| |#1| (-355)))) (-2470 ((|#2| $) 151 (|has| |#1| (-355)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) 136)) (-3823 (($ (-1 |#1| (-548)) $) 132)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-548)) 19) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-1795 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-3091 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2540 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-355)))) (-3496 (($ $) 162 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2119 (($ (-548) |#2|) 10)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 145 (|has| |#1| (-355)))) (-3810 (($ $) 214 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 219 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3410 (($) NIL (-12 (|has| |#2| (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3862 (($ $) NIL (-12 (|has| |#2| (-299)) (|has| |#1| (-355))))) (-3887 ((|#2| $) NIL (-12 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-548)) 126)) (-1900 (((-3 $ "failed") $ $) 116 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) 160 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) |#2|) NIL (-12 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 |#2|)) NIL (-12 (|has| |#2| (-504 (-1135) |#2|)) (|has| |#1| (-355)))) (($ $ (-619 (-286 |#2|))) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-301 |#2|)) (|has| |#1| (-355))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) 91) (($ $ $) 79 (|has| (-548) (-1075))) (($ $ |#2|) NIL (-12 (|has| |#2| (-278 |#2| |#2|)) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 137 (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) 140 (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-1993 (($ $) NIL (|has| |#1| (-355)))) (-2480 ((|#2| $) 152 (|has| |#1| (-355)))) (-2512 (((-548) $) 12)) (-2110 (($ $) 198 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 174 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 194 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 170 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 190 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 166 (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-218) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-371) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-355)))) (((-524) $) NIL (-12 (|has| |#2| (-593 (-524))) (|has| |#1| (-355)))) (((-861 (-371)) $) NIL (-12 (|has| |#2| (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) NIL (-12 (|has| |#2| (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-355))))) (-3330 (($ $) 124)) (-3743 (((-832) $) 245) (($ (-548)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1135)) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-355)))) (($ (-399 (-548))) 155 (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-548)) 74)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-355))) (-12 (|has| |#2| (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) 142)) (-2278 ((|#1| $) 90)) (-3897 ((|#2| $) NIL (-12 (|has| |#2| (-533)) (|has| |#1| (-355))))) (-2145 (($ $) 204 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 180 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 200 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 176 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 208 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 184 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 210 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 186 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 206 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 182 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 202 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 178 (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-355))))) (-3107 (($) 13 T CONST)) (-3118 (($) 17 T CONST)) (-3296 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-355))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) NIL (-1524 (-12 (|has| |#2| (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2262 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2241 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2214 (((-112) $ $) 63)) (-2252 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2234 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-355))))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 149 (|has| |#1| (-355))) (($ |#2| |#2|) 150 (|has| |#1| (-355)))) (-2299 (($ $) 213) (($ $ $) 68)) (-2290 (($ $ $) 66)) (** (($ $ (-890)) NIL) (($ $ (-745)) 73) (($ $ (-548)) 146 (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 158 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-355))) (($ |#2| $) 147 (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +((-1618 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)) (-5 *2 (-547)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1180 *3 *2)) (-4 *2 (-1209 *3)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *2 (-547)) (-4 *4 (-1016)) (-4 *1 (-1180 *4 *3)) (-4 *3 (-1209 *4)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3)))) (-2200 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1209 *2)))) (-2200 (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3)))) (-2061 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) +(-13 (-1178 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2337 ($ (-547) |t#2|)) (-15 -1618 ((-547) $)) (-15 -2345 (|t#2| $)) (-15 -2200 ($ $)) (-15 -2200 ($ (-547) $)) (-15 -3834 ($ |t#2|)) (-15 -2324 (|t#2| $)) (-15 -2061 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-354)) (-6 (-961 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-547)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-354)) ((-38 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-354)) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) -1524 (-12 (|has| |#1| (-354)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1524 (-12 (|has| |#1| (-354)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-592 (-217)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) ((-592 (-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) ((-592 (-523)) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-592 (-861 (-547))))) ((-223 |#2|) |has| |#1| (-354)) ((-225) -1524 (-12 (|has| |#1| (-354)) (|has| |#2| (-225))) (|has| |#1| (-15 * (|#1| (-547) |#1|)))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 |#2| $) -12 (|has| |#1| (-354)) (|has| |#2| (-277 |#2| |#2|))) ((-277 $ $) |has| (-547) (-1075)) ((-281) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-300 |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))) ((-354) |has| |#1| (-354)) ((-329 |#2|) |has| |#1| (-354)) ((-368 |#2|) |has| |#1| (-354)) ((-391 |#2|) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-503 (-1135) |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-503 (-1135) |#2|))) ((-503 |#2| |#2|) -12 (|has| |#1| (-354)) (|has| |#2| (-300 |#2|))) ((-539) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 |#2|) |has| |#1| (-354)) ((-622 $) . T) ((-615 (-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-615 (-547)))) ((-615 |#2|) |has| |#1| (-354)) ((-692 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 |#2|) |has| |#1| (-354)) ((-692 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-765) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-766) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-768) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-769) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-794) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-819) -12 (|has| |#1| (-354)) (|has| |#2| (-794))) ((-821) -1524 (-12 (|has| |#1| (-354)) (|has| |#2| (-821))) (-12 (|has| |#1| (-354)) (|has| |#2| (-794)))) ((-869 (-1135)) -1524 (-12 (|has| |#1| (-354)) (|has| |#2| (-869 (-1135)))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))) ((-855 (-370)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-370)))) ((-855 (-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-855 (-547)))) ((-853 |#2|) |has| |#1| (-354)) ((-878) -12 (|has| |#1| (-354)) (|has| |#2| (-878))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-961 |#2|) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-991) -12 (|has| |#1| (-354)) (|has| |#2| (-991))) ((-1007 (-398 (-547))) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))) ((-1007 (-547)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-547)))) ((-1007 (-1135)) -12 (|has| |#1| (-354)) (|has| |#2| (-1007 (-1135)))) ((-1007 |#2|) . T) ((-1022 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 |#2|) |has| |#1| (-354)) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) -12 (|has| |#1| (-354)) (|has| |#2| (-1111))) ((-1157) |has| |#1| (-38 (-398 (-547)))) ((-1160) |has| |#1| (-38 (-398 (-547)))) ((-1172) |has| |#1| (-354)) ((-1176) |has| |#1| (-354)) ((-1178 |#1|) . T) ((-1196 |#1| #0#) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 70)) (-2673 ((|#2| $) NIL (-12 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 88)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-547)) 97) (($ $ (-547) (-547)) 99)) (-2674 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) 47)) (-2345 ((|#2| $) 11)) (-2061 (((-3 |#2| "failed") $) 30)) (-2324 ((|#2| $) 31)) (-1648 (($ $) 192 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 168 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) 188 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 164 (|has| |#1| (-38 (-398 (-547)))))) (-3807 (((-547) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-2810 (($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) 57)) (-1670 (($ $) 196 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 172 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) 144) (((-3 (-547) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-1135) "failed") $) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-354))))) (-2643 ((|#2| $) 143) (((-547) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-398 (-547)) $) NIL (-12 (|has| |#2| (-1007 (-547))) (|has| |#1| (-354)))) (((-1135) $) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-354))))) (-2200 (($ $) 61) (($ (-547) $) 24)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-4238 (((-663 |#2|) (-663 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| |#2| (-615 (-547))) (|has| |#1| (-354))))) (-2537 (((-3 $ "failed") $) 77)) (-2612 (((-398 (-921 |#1|)) $ (-547)) 112 (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) 114 (|has| |#1| (-539)))) (-3229 (($) NIL (-12 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-3848 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-4211 (((-112) $) 64)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| |#2| (-855 (-370))) (|has| |#1| (-354)))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| |#2| (-855 (-547))) (|has| |#1| (-354))))) (-3707 (((-547) $) 93) (((-547) $ (-547)) 95)) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL (|has| |#1| (-354)))) (-1382 ((|#2| $) 151 (|has| |#1| (-354)))) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3652 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1111)) (|has| |#1| (-354))))) (-3937 (((-112) $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-2438 (($ $ (-890)) 136)) (-2194 (($ (-1 |#1| (-547)) $) 132)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-547)) 19) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2847 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-3563 (($ $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2781 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-354)))) (-3620 (($ $) 162 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2337 (($ (-547) |#2|) 10)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 145 (|has| |#1| (-354)))) (-2069 (($ $) 214 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 219 (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3045 (($) NIL (-12 (|has| |#2| (-1111)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2567 (($ $) NIL (-12 (|has| |#2| (-298)) (|has| |#1| (-354))))) (-1435 ((|#2| $) NIL (-12 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| |#2| (-878)) (|has| |#1| (-354))))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-547)) 126)) (-2025 (((-3 $ "failed") $ $) 116 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) 160 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1135) |#2|) NIL (-12 (|has| |#2| (-503 (-1135) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-1135)) (-619 |#2|)) NIL (-12 (|has| |#2| (-503 (-1135) |#2|)) (|has| |#1| (-354)))) (($ $ (-619 (-285 |#2|))) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-285 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354)))) (($ $ (-619 |#2|) (-619 |#2|)) NIL (-12 (|has| |#2| (-300 |#2|)) (|has| |#1| (-354))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-547)) 91) (($ $ $) 79 (|has| (-547) (-1075))) (($ $ |#2|) NIL (-12 (|has| |#2| (-277 |#2| |#2|)) (|has| |#1| (-354))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 137 (-1524 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) 140 (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))))) (-3660 (($ $) NIL (|has| |#1| (-354)))) (-1392 ((|#2| $) 152 (|has| |#1| (-354)))) (-1618 (((-547) $) 12)) (-1681 (($ $) 198 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 174 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 194 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 170 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 190 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 166 (|has| |#1| (-38 (-398 (-547)))))) (-2829 (((-217) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-370) $) NIL (-12 (|has| |#2| (-991)) (|has| |#1| (-354)))) (((-523) $) NIL (-12 (|has| |#2| (-592 (-523))) (|has| |#1| (-354)))) (((-861 (-370)) $) NIL (-12 (|has| |#2| (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) NIL (-12 (|has| |#2| (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-354))))) (-4105 (($ $) 124)) (-3834 (((-832) $) 245) (($ (-547)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1135)) NIL (-12 (|has| |#2| (-1007 (-1135))) (|has| |#1| (-354)))) (($ (-398 (-547))) 155 (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-3338 ((|#1| $ (-547)) 74)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878)) (|has| |#1| (-354))) (-12 (|has| |#2| (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2311 (((-745)) 142)) (-2582 ((|#1| $) 90)) (-1564 ((|#2| $) NIL (-12 (|has| |#2| (-532)) (|has| |#1| (-354))))) (-1717 (($ $) 204 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 180 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) 200 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 176 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 208 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 184 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-547)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 210 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 186 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 206 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 182 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 202 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 178 (|has| |#1| (-38 (-398 (-547)))))) (-2040 (($ $) NIL (-12 (|has| |#2| (-794)) (|has| |#1| (-354))))) (-3267 (($) 13 T CONST)) (-3277 (($) 17 T CONST)) (-1686 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-354))) (($ $ (-1 |#2| |#2|) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1524 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) NIL (-1524 (-12 (|has| |#2| (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#2| (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2433 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2408 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2371 (((-112) $ $) 63)) (-2421 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2396 (((-112) $ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-354))))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 149 (|has| |#1| (-354))) (($ |#2| |#2|) 150 (|has| |#1| (-354)))) (-2484 (($ $) 213) (($ $ $) 68)) (-2470 (($ $ $) 66)) (** (($ $ (-890)) NIL) (($ $ (-745)) 73) (($ $ (-547)) 146 (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 158 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-354))) (($ |#2| $) 147 (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) (((-1181 |#1| |#2|) (-1180 |#1| |#2|) (-1016) (-1209 |#1|)) (T -1181)) NIL (-1180 |#1| |#2|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3875 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 10)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3303 (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3279 (((-112) $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-1665 (($ $ (-548)) NIL) (($ $ (-548) (-548)) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|))) $) NIL)) (-1318 (((-1210 |#1| |#2| |#3|) $) NIL)) (-1295 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL)) (-2107 (((-1210 |#1| |#2| |#3|) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2672 (((-548) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-1761 (($ (-1116 (-2 (|:| |k| (-548)) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-3 (-399 (-548)) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-3 (-548) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-2375 (((-1210 |#1| |#2| |#3|) $) NIL) (((-1135) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (((-399 (-548)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355)))) (((-548) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))))) (-1306 (($ $) NIL) (($ (-548) $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-1210 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-1210 |#1| |#2| |#3|))) (|:| |vec| (-1218 (-1210 |#1| |#2| |#3|)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-355))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355)))) (((-663 (-548)) (-663 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-615 (-548))) (|has| |#1| (-355))))) (-3859 (((-3 $ "failed") $) NIL)) (-1284 (((-399 (-921 |#1|)) $ (-548)) NIL (|has| |#1| (-540))) (((-399 (-921 |#1|)) $ (-548) (-548)) NIL (|has| |#1| (-540)))) (-2545 (($) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3298 (((-112) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3628 (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-855 (-548))) (|has| |#1| (-355)))) (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-855 (-371))) (|has| |#1| (-355))))) (-1672 (((-548) $) NIL) (((-548) $ (-548)) NIL)) (-2266 (((-112) $) NIL)) (-2002 (($ $) NIL (|has| |#1| (-355)))) (-2470 (((-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-355)))) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3725 (((-3 $ "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))))) (-3312 (((-112) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3535 (($ $ (-890)) NIL)) (-3823 (($ (-1 |#1| (-548)) $) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-548)) 17) (($ $ (-1045) (-548)) NIL) (($ $ (-619 (-1045)) (-619 (-548))) NIL)) (-1795 (($ $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-3091 (($ $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-355)))) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2119 (($ (-548) (-1210 |#1| |#2| |#3|)) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 25 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 26 (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-355))) CONST)) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3862 (($ $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-299)) (|has| |#1| (-355))))) (-3887 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-548)) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-548))))) (($ $ (-1135) (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-504 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1135)) (-619 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-504 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-286 (-1210 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-286 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355)))) (($ $ (-619 (-1210 |#1| |#2| |#3|)) (-619 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-301 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-548)) NIL) (($ $ $) NIL (|has| (-548) (-1075))) (($ $ (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-278 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-355))))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-1214 |#2|)) 24) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) 23 (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-1993 (($ $) NIL (|has| |#1| (-355)))) (-2480 (((-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-355)))) (-2512 (((-548) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2591 (((-524) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-593 (-524))) (|has| |#1| (-355)))) (((-371) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-218) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-991)) (|has| |#1| (-355)))) (((-861 (-371)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-593 (-861 (-371)))) (|has| |#1| (-355)))) (((-861 (-548)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-593 (-861 (-548)))) (|has| |#1| (-355))))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1210 |#1| |#2| |#3|)) NIL) (($ (-1214 |#2|)) 22) (($ (-1135)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-355)))) (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540)))) (($ (-399 (-548))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-548))) (|has| |#1| (-355))) (|has| |#1| (-38 (-399 (-548))))))) (-1951 ((|#1| $ (-548)) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-143)) (|has| |#1| (-355))) (|has| |#1| (-143))))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 11)) (-3897 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-533)) (|has| |#1| (-355))))) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-355))) (|has| |#1| (-540))))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-548)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-548)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1446 (($ $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))))) (-3107 (($) 19 T CONST)) (-3118 (($) 15 T CONST)) (-3296 (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) NIL (|has| |#1| (-355))) (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-355))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-226)) (|has| |#1| (-355))) (|has| |#1| (-15 * (|#1| (-548) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-355))) (-12 (|has| |#1| (-15 * (|#1| (-548) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2262 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2241 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2234 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-355))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-355)))))) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355))) (($ (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1210 |#1| |#2| |#3|)) NIL (|has| |#1| (-355))) (($ (-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-355))) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1182 |#1| |#2| |#3|) (-13 (-1180 |#1| (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1182)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1180 |#1| (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-1341 (((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)) 12)) (-1329 (((-410 |#1|) |#1|) 22)) (-1915 (((-410 |#1|) |#1|) 21))) -(((-1183 |#1|) (-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)))) (-1194 (-548))) (T -1183)) -((-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548))))) (-1329 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548))))) (-1915 (*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) -(-10 -7 (-15 -1915 ((-410 |#1|) |#1|)) (-15 -1329 ((-410 |#1|) |#1|)) (-15 -1341 ((-2 (|:| |contp| (-548)) (|:| -3213 (-619 (-2 (|:| |irr| |#1|) (|:| -3286 (-548)))))) |#1| (-112)))) -((-2540 (((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 23 (|has| |#1| (-819))) (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 17))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -2540 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) |%noBranch|)) (-1172) (-1172)) (T -1184)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-819)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1184 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1185 *6)) (-5 *1 (-1184 *5 *6))))) -(-10 -7 (-15 -2540 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (IF (|has| |#1| (-819)) (-15 -2540 ((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) |%noBranch|)) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-4100 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2540 (((-1116 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-819)))) (-2479 ((|#1| $) 14)) (-4246 ((|#1| $) 10)) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-4259 (((-548) $) 18)) (-2469 ((|#1| $) 17)) (-4270 ((|#1| $) 11)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-1352 (((-112) $) 16)) (-1384 (((-1116 |#1|) $) 38 (|has| |#1| (-819))) (((-1116 |#1|) (-619 $)) 37 (|has| |#1| (-819)))) (-2591 (($ |#1|) 25)) (-3743 (($ (-1058 |#1|)) 24) (((-832) $) 34 (|has| |#1| (-1063)))) (-1794 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1984 (($ $ (-548)) 13)) (-2214 (((-112) $ $) 27 (|has| |#1| (-1063))))) -(((-1185 |#1|) (-13 (-1057 |#1|) (-10 -8 (-15 -1794 ($ |#1|)) (-15 -4100 ($ |#1|)) (-15 -3743 ($ (-1058 |#1|))) (-15 -1352 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1116 |#1|))) |%noBranch|))) (-1172)) (T -1185)) -((-1794 (*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172)))) (-4100 (*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-1172)) (-5 *1 (-1185 *3)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1172))))) -(-13 (-1057 |#1|) (-10 -8 (-15 -1794 ($ |#1|)) (-15 -4100 ($ |#1|)) (-15 -3743 ($ (-1058 |#1|))) (-15 -1352 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1116 |#1|))) |%noBranch|))) -((-2540 (((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)) 15))) -(((-1186 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 ((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)))) (-1135) (-1016) (-1135) (-1016)) (T -1186)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1191 *5 *6)) (-14 *5 (-1135)) (-4 *6 (-1016)) (-4 *8 (-1016)) (-5 *2 (-1191 *7 *8)) (-5 *1 (-1186 *5 *6 *7 *8)) (-14 *7 (-1135))))) -(-10 -7 (-15 -2540 ((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)))) -((-1396 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1374 ((|#1| |#3|) 13)) (-1386 ((|#3| |#3|) 19))) -(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-540) (-961 |#1|) (-1194 |#2|)) (T -1187)) -((-1396 (*1 *2 *3) (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1187 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-1187 *3 *4 *2)) (-4 *2 (-1194 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-1187 *2 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -1374 (|#1| |#3|)) (-15 -1386 (|#3| |#3|)) (-15 -1396 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1417 (((-3 |#2| "failed") |#2| (-745) |#1|) 29)) (-1406 (((-3 |#2| "failed") |#2| (-745)) 30)) (-1440 (((-3 (-2 (|:| -3663 |#2|) (|:| -3676 |#2|)) "failed") |#2|) 43)) (-1451 (((-619 |#2|) |#2|) 45)) (-1428 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -1406 ((-3 |#2| "failed") |#2| (-745))) (-15 -1417 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -1428 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1440 ((-3 (-2 (|:| -3663 |#2|) (|:| -3676 |#2|)) "failed") |#2|)) (-15 -1451 ((-619 |#2|) |#2|))) (-13 (-540) (-145)) (-1194 |#1|)) (T -1188)) -((-1451 (*1 *2 *3) (-12 (-4 *4 (-13 (-540) (-145))) (-5 *2 (-619 *3)) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4)))) (-1440 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-540) (-145))) (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4)))) (-1428 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1188 *3 *2)) (-4 *2 (-1194 *3)))) (-1417 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4)))) (-1406 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) -(-10 -7 (-15 -1406 ((-3 |#2| "failed") |#2| (-745))) (-15 -1417 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -1428 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1440 ((-3 (-2 (|:| -3663 |#2|) (|:| -3676 |#2|)) "failed") |#2|)) (-15 -1451 ((-619 |#2|) |#2|))) -((-1461 (((-3 (-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) "failed") |#2| |#2|) 32))) -(((-1189 |#1| |#2|) (-10 -7 (-15 -1461 ((-3 (-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) "failed") |#2| |#2|))) (-540) (-1194 |#1|)) (T -1189)) -((-1461 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-1189 *4 *3)) (-4 *3 (-1194 *4))))) -(-10 -7 (-15 -1461 ((-3 (-2 (|:| -3826 |#2|) (|:| -2233 |#2|)) "failed") |#2| |#2|))) -((-1473 ((|#2| |#2| |#2|) 19)) (-1484 ((|#2| |#2| |#2|) 30)) (-1496 ((|#2| |#2| |#2| (-745) (-745)) 36))) -(((-1190 |#1| |#2|) (-10 -7 (-15 -1473 (|#2| |#2| |#2|)) (-15 -1484 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2| |#2| (-745) (-745)))) (-1016) (-1194 |#1|)) (T -1190)) -((-1496 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1190 *4 *2)) (-4 *2 (-1194 *4)))) (-1484 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3)))) (-1473 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) -(-10 -7 (-15 -1473 (|#2| |#2| |#2|)) (-15 -1484 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2| |#2| (-745) (-745)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-1648 (((-1218 |#2|) $ (-745)) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-1632 (($ (-1131 |#2|)) NIL)) (-1884 (((-1131 $) $ (-1045)) NIL) (((-1131 |#2|) $) NIL)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#2| (-540)))) (-3303 (($ $) NIL (|has| |#2| (-540)))) (-3279 (((-112) $) NIL (|has| |#2| (-540)))) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-1548 (($ $ $) NIL (|has| |#2| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1688 (($ $) NIL (|has| |#2| (-443)))) (-2634 (((-410 $) $) NIL (|has| |#2| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4087 (((-112) $ $) NIL (|has| |#2| (-355)))) (-1594 (($ $ (-745)) NIL)) (-1584 (($ $ (-745)) NIL)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-443)))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL) (((-3 (-399 (-548)) "failed") $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) NIL (|has| |#2| (-1007 (-548)))) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#2| $) NIL) (((-399 (-548)) $) NIL (|has| |#2| (-1007 (-399 (-548))))) (((-548) $) NIL (|has| |#2| (-1007 (-548)))) (((-1045) $) NIL)) (-1557 (($ $ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-1945 (($ $ $) NIL (|has| |#2| (-355)))) (-1872 (($ $) NIL)) (-1608 (((-663 (-548)) (-663 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-1922 (($ $ $) NIL (|has| |#2| (-355)))) (-1574 (($ $ $) NIL)) (-1529 (($ $ $) NIL (|has| |#2| (-540)))) (-1519 (((-2 (|:| -1489 |#2|) (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#2| (-355)))) (-4065 (($ $) NIL (|has| |#2| (-443))) (($ $ (-1045)) NIL (|has| |#2| (-443)))) (-1862 (((-619 $) $) NIL)) (-1271 (((-112) $) NIL (|has| |#2| (-878)))) (-4256 (($ $ |#2| (-745) $) NIL)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) NIL (-12 (|has| (-1045) (-855 (-371))) (|has| |#2| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) NIL (-12 (|has| (-1045) (-855 (-548))) (|has| |#2| (-855 (-548)))))) (-1672 (((-745) $ $) NIL (|has| |#2| (-540)))) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3725 (((-3 $ "failed") $) NIL (|has| |#2| (-1111)))) (-2036 (($ (-1131 |#2|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-3535 (($ $ (-745)) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-2024 (($ |#2| (-745)) 17) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) NIL) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-1795 (($ $ $) NIL (|has| |#2| (-821)))) (-3091 (($ $ $) NIL (|has| |#2| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-1639 (((-1131 |#2|) $) NIL)) (-3511 (((-3 (-1045) "failed") $) NIL)) (-2185 (($ $) NIL)) (-2197 ((|#2| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-2546 (((-1118) $) NIL)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) NIL)) (-3939 (((-3 (-619 $) "failed") $) NIL)) (-3927 (((-3 (-619 $) "failed") $) NIL)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) NIL)) (-3810 (($ $) NIL (|has| |#2| (-38 (-399 (-548)))))) (-3410 (($) NIL (|has| |#2| (-1111)) CONST)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 ((|#2| $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-443)))) (-3587 (($ (-619 $)) NIL (|has| |#2| (-443))) (($ $ $) NIL (|has| |#2| (-443)))) (-1362 (($ $ (-745) |#2| $) NIL)) (-4051 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-1915 (((-410 $) $) NIL (|has| |#2| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#2| (-355)))) (-1900 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-540))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-355)))) (-2460 (($ $ (-619 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) NIL) (($ $ (-619 (-1045)) (-619 |#2|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-4077 (((-745) $) NIL (|has| |#2| (-355)))) (-3171 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) NIL (|has| |#2| (-540))) ((|#2| (-399 $) |#2|) NIL (|has| |#2| (-355))) (((-399 $) $ (-399 $)) NIL (|has| |#2| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) NIL)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#2| (-355)))) (-1566 (($ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-4050 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2512 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2591 (((-861 (-371)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#2| (-593 (-861 (-371)))))) (((-861 (-548)) $) NIL (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#2| (-593 (-861 (-548)))))) (((-524) $) NIL (-12 (|has| (-1045) (-593 (-524))) (|has| |#2| (-593 (-524)))))) (-3881 ((|#2| $) NIL (|has| |#2| (-443))) (($ $ (-1045)) NIL (|has| |#2| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-1539 (((-3 $ "failed") $ $) NIL (|has| |#2| (-540))) (((-3 (-399 $) "failed") (-399 $) $) NIL (|has| |#2| (-540)))) (-3743 (((-832) $) 13) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-1045)) NIL) (($ (-1214 |#1|)) 19) (($ (-399 (-548))) NIL (-1524 (|has| |#2| (-38 (-399 (-548)))) (|has| |#2| (-1007 (-399 (-548)))))) (($ $) NIL (|has| |#2| (-540)))) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4017 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-3290 (((-112) $ $) NIL (|has| |#2| (-540)))) (-3107 (($) NIL T CONST)) (-3118 (($) 14 T CONST)) (-3296 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2262 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2214 (((-112) $ $) NIL)) (-2252 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2309 (($ $ |#2|) NIL (|has| |#2| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-399 (-548))) NIL (|has| |#2| (-38 (-399 (-548))))) (($ (-399 (-548)) $) NIL (|has| |#2| (-38 (-399 (-548))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1191 |#1| |#2|) (-13 (-1194 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))) (-15 -1362 ($ $ (-745) |#2| $)))) (-1135) (-1016)) (T -1191)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-1016)))) (-1362 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1191 *4 *3)) (-14 *4 (-1135)) (-4 *3 (-1016))))) -(-13 (-1194 |#2|) (-10 -8 (-15 -3743 ($ (-1214 |#1|))) (-15 -1362 ($ $ (-745) |#2| $)))) -((-2540 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) (-1016) (-1194 |#1|) (-1016) (-1194 |#3|)) (T -1192)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1194 *6)) (-5 *1 (-1192 *5 *4 *6 *2)) (-4 *4 (-1194 *5))))) -(-10 -7 (-15 -2540 (|#4| (-1 |#3| |#1|) |#2|))) -((-1648 (((-1218 |#2|) $ (-745)) 114)) (-2049 (((-619 (-1045)) $) 15)) (-1632 (($ (-1131 |#2|)) 67)) (-3892 (((-745) $) NIL) (((-745) $ (-619 (-1045))) 18)) (-4070 (((-410 (-1131 $)) (-1131 $)) 185)) (-1688 (($ $) 175)) (-2634 (((-410 $) $) 173)) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 82)) (-1594 (($ $ (-745)) 71)) (-1584 (($ $ (-745)) 73)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2441 (((-3 |#2| "failed") $) 117) (((-3 (-399 (-548)) "failed") $) NIL) (((-3 (-548) "failed") $) NIL) (((-3 (-1045) "failed") $) NIL)) (-2375 ((|#2| $) 115) (((-399 (-548)) $) NIL) (((-548) $) NIL) (((-1045) $) NIL)) (-1529 (($ $ $) 151)) (-1519 (((-2 (|:| -1489 |#2|) (|:| -3826 $) (|:| -2233 $)) $ $) 153)) (-1672 (((-745) $ $) 170)) (-3725 (((-3 $ "failed") $) 123)) (-2024 (($ |#2| (-745)) NIL) (($ $ (-1045) (-745)) 47) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3904 (((-745) $) NIL) (((-745) $ (-1045)) 42) (((-619 (-745)) $ (-619 (-1045))) 43)) (-1639 (((-1131 |#2|) $) 59)) (-3511 (((-3 (-1045) "failed") $) 40)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) 70)) (-3810 (($ $) 197)) (-3410 (($) 119)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 182)) (-4051 (((-410 (-1131 $)) (-1131 $)) 88)) (-4060 (((-410 (-1131 $)) (-1131 $)) 86)) (-1915 (((-410 $) $) 107)) (-2460 (($ $ (-619 (-286 $))) 39) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) 31) (($ $ (-619 (-1045)) (-619 |#2|)) 28) (($ $ (-1045) $) 25) (($ $ (-619 (-1045)) (-619 $)) 23)) (-4077 (((-745) $) 188)) (-3171 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-399 $) (-399 $) (-399 $)) 147) ((|#2| (-399 $) |#2|) 187) (((-399 $) $ (-399 $)) 169)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 191)) (-4050 (($ $ (-1045)) 140) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) 138) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2512 (((-745) $) NIL) (((-745) $ (-1045)) 16) (((-619 (-745)) $ (-619 (-1045))) 20)) (-3881 ((|#2| $) NIL) (($ $ (-1045)) 125)) (-1539 (((-3 $ "failed") $ $) 161) (((-3 (-399 $) "failed") (-399 $) $) 157)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#2|) NIL) (($ (-1045)) 51) (($ (-399 (-548))) NIL) (($ $) NIL))) -(((-1193 |#1| |#2|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -3171 ((-399 |#1|) |#1| (-399 |#1|))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3171 (|#2| (-399 |#1|) |#2|)) (-15 -1508 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1519 ((-2 (|:| -1489 |#2|) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1539 ((-3 (-399 |#1|) "failed") (-399 |#1|) |#1|)) (-15 -1539 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1672 ((-745) |#1| |#1|)) (-15 -3171 ((-399 |#1|) (-399 |#1|) (-399 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1584 (|#1| |#1| (-745))) (-15 -1594 (|#1| |#1| (-745))) (-15 -1602 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| (-745))) (-15 -1632 (|#1| (-1131 |#2|))) (-15 -1639 ((-1131 |#2|) |#1|)) (-15 -1648 ((-1218 |#2|) |#1| (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| |#2|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4070 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -3881 (|#1| |#1| (-1045))) (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -3892 ((-745) |#1| (-619 (-1045)))) (-15 -3892 ((-745) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2024 (|#1| |#1| (-1045) (-745))) (-15 -3904 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3904 ((-745) |#1| (-1045))) (-15 -3511 ((-3 (-1045) "failed") |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -2512 ((-745) |#1| (-1045))) (-15 -2375 ((-1045) |#1|)) (-15 -2441 ((-3 (-1045) "failed") |#1|)) (-15 -3743 (|#1| (-1045))) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-1045) |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1045) |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 ((-745) |#1|)) (-15 -2024 (|#1| |#2| (-745))) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3904 ((-745) |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1045) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1045)))) (-15 -4050 (|#1| |#1| (-1045))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) (-1194 |#2|) (-1016)) (T -1193)) -NIL -(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -4081 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -2634 ((-410 |#1|) |#1|)) (-15 -1688 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3410 (|#1|)) (-15 -3725 ((-3 |#1| "failed") |#1|)) (-15 -3171 ((-399 |#1|) |#1| (-399 |#1|))) (-15 -4077 ((-745) |#1|)) (-15 -3209 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3171 (|#2| (-399 |#1|) |#2|)) (-15 -1508 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1519 ((-2 (|:| -1489 |#2|) (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1539 ((-3 (-399 |#1|) "failed") (-399 |#1|) |#1|)) (-15 -1539 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1672 ((-745) |#1| |#1|)) (-15 -3171 ((-399 |#1|) (-399 |#1|) (-399 |#1|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1584 (|#1| |#1| (-745))) (-15 -1594 (|#1| |#1| (-745))) (-15 -1602 ((-2 (|:| -3826 |#1|) (|:| -2233 |#1|)) |#1| (-745))) (-15 -1632 (|#1| (-1131 |#2|))) (-15 -1639 ((-1131 |#2|) |#1|)) (-15 -1648 ((-1218 |#2|) |#1| (-745))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4050 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1135) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1135)))) (-15 -4050 (|#1| |#1| (-1135))) (-15 -4050 (|#1| |#1|)) (-15 -4050 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| |#1|)) (-15 -3171 (|#2| |#1| |#2|)) (-15 -1915 ((-410 |#1|) |#1|)) (-15 -4070 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4060 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4051 ((-410 (-1131 |#1|)) (-1131 |#1|))) (-15 -4039 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -3881 (|#1| |#1| (-1045))) (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -3892 ((-745) |#1| (-619 (-1045)))) (-15 -3892 ((-745) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2024 (|#1| |#1| (-1045) (-745))) (-15 -3904 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -3904 ((-745) |#1| (-1045))) (-15 -3511 ((-3 (-1045) "failed") |#1|)) (-15 -2512 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -2512 ((-745) |#1| (-1045))) (-15 -2375 ((-1045) |#1|)) (-15 -2441 ((-3 (-1045) "failed") |#1|)) (-15 -3743 (|#1| (-1045))) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2460 (|#1| |#1| (-1045) |#1|)) (-15 -2460 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2460 (|#1| |#1| (-1045) |#2|)) (-15 -2460 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2460 (|#1| |#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-286 |#1|))) (-15 -2460 (|#1| |#1| (-619 (-286 |#1|)))) (-15 -2512 ((-745) |#1|)) (-15 -2024 (|#1| |#2| (-745))) (-15 -2375 ((-548) |#1|)) (-15 -2441 ((-3 (-548) "failed") |#1|)) (-15 -2375 ((-399 (-548)) |#1|)) (-15 -2441 ((-3 (-399 (-548)) "failed") |#1|)) (-15 -3743 (|#1| |#2|)) (-15 -2441 ((-3 |#2| "failed") |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -3904 ((-745) |#1|)) (-15 -3881 (|#2| |#1|)) (-15 -4050 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -4050 (|#1| |#1| (-1045) (-745))) (-15 -4050 (|#1| |#1| (-619 (-1045)))) (-15 -4050 (|#1| |#1| (-1045))) (-15 -3743 (|#1| (-548))) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-1648 (((-1218 |#1|) $ (-745)) 236)) (-2049 (((-619 (-1045)) $) 108)) (-1632 (($ (-1131 |#1|)) 234)) (-1884 (((-1131 $) $ (-1045)) 123) (((-1131 |#1|) $) 122)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 85 (|has| |#1| (-540)))) (-3303 (($ $) 86 (|has| |#1| (-540)))) (-3279 (((-112) $) 88 (|has| |#1| (-540)))) (-3892 (((-745) $) 110) (((-745) $ (-619 (-1045))) 109)) (-4104 (((-3 $ "failed") $ $) 19)) (-1548 (($ $ $) 221 (|has| |#1| (-540)))) (-4070 (((-410 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-1688 (($ $) 96 (|has| |#1| (-443)))) (-2634 (((-410 $) $) 95 (|has| |#1| (-443)))) (-4039 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-4087 (((-112) $ $) 206 (|has| |#1| (-355)))) (-1594 (($ $ (-745)) 229)) (-1584 (($ $ (-745)) 228)) (-1508 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-443)))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 162) (((-3 (-399 (-548)) "failed") $) 160 (|has| |#1| (-1007 (-399 (-548))))) (((-3 (-548) "failed") $) 158 (|has| |#1| (-1007 (-548)))) (((-3 (-1045) "failed") $) 134)) (-2375 ((|#1| $) 163) (((-399 (-548)) $) 159 (|has| |#1| (-1007 (-399 (-548))))) (((-548) $) 157 (|has| |#1| (-1007 (-548)))) (((-1045) $) 133)) (-1557 (($ $ $ (-1045)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-1945 (($ $ $) 210 (|has| |#1| (-355)))) (-1872 (($ $) 152)) (-1608 (((-663 (-548)) (-663 $)) 132 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 (-548))) (|:| |vec| (-1218 (-548)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-548)))) (((-2 (|:| -4035 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 209 (|has| |#1| (-355)))) (-1574 (($ $ $) 227)) (-1529 (($ $ $) 218 (|has| |#1| (-540)))) (-1519 (((-2 (|:| -1489 |#1|) (|:| -3826 $) (|:| -2233 $)) $ $) 217 (|has| |#1| (-540)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 204 (|has| |#1| (-355)))) (-4065 (($ $) 174 (|has| |#1| (-443))) (($ $ (-1045)) 103 (|has| |#1| (-443)))) (-1862 (((-619 $) $) 107)) (-1271 (((-112) $) 94 (|has| |#1| (-878)))) (-4256 (($ $ |#1| (-745) $) 170)) (-3628 (((-858 (-371) $) $ (-861 (-371)) (-858 (-371) $)) 82 (-12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371))))) (((-858 (-548) $) $ (-861 (-548)) (-858 (-548) $)) 81 (-12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))))) (-1672 (((-745) $ $) 222 (|has| |#1| (-540)))) (-2266 (((-112) $) 30)) (-2333 (((-745) $) 167)) (-3725 (((-3 $ "failed") $) 202 (|has| |#1| (-1111)))) (-2036 (($ (-1131 |#1|) (-1045)) 115) (($ (-1131 $) (-1045)) 114)) (-3535 (($ $ (-745)) 233)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 213 (|has| |#1| (-355)))) (-3915 (((-619 $) $) 124)) (-2435 (((-112) $) 150)) (-2024 (($ |#1| (-745)) 151) (($ $ (-1045) (-745)) 117) (($ $ (-619 (-1045)) (-619 (-745))) 116)) (-1611 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $ (-1045)) 118) (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 231)) (-3904 (((-745) $) 168) (((-745) $ (-1045)) 120) (((-619 (-745)) $ (-619 (-1045))) 119)) (-1795 (($ $ $) 77 (|has| |#1| (-821)))) (-3091 (($ $ $) 76 (|has| |#1| (-821)))) (-4267 (($ (-1 (-745) (-745)) $) 169)) (-2540 (($ (-1 |#1| |#1|) $) 149)) (-1639 (((-1131 |#1|) $) 235)) (-3511 (((-3 (-1045) "failed") $) 121)) (-2185 (($ $) 147)) (-2197 ((|#1| $) 146)) (-3553 (($ (-619 $)) 92 (|has| |#1| (-443))) (($ $ $) 91 (|has| |#1| (-443)))) (-2546 (((-1118) $) 9)) (-1602 (((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745)) 230)) (-3939 (((-3 (-619 $) "failed") $) 112)) (-3927 (((-3 (-619 $) "failed") $) 113)) (-3954 (((-3 (-2 (|:| |var| (-1045)) (|:| -3352 (-745))) "failed") $) 111)) (-3810 (($ $) 214 (|has| |#1| (-38 (-399 (-548)))))) (-3410 (($) 201 (|has| |#1| (-1111)) CONST)) (-3932 (((-1082) $) 10)) (-2164 (((-112) $) 164)) (-2175 ((|#1| $) 165)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-443)))) (-3587 (($ (-619 $)) 90 (|has| |#1| (-443))) (($ $ $) 89 (|has| |#1| (-443)))) (-4051 (((-410 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-4060 (((-410 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-1915 (((-410 $) $) 97 (|has| |#1| (-878)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 211 (|has| |#1| (-355)))) (-1900 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-540))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 205 (|has| |#1| (-355)))) (-2460 (($ $ (-619 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ (-1045) |#1|) 139) (($ $ (-619 (-1045)) (-619 |#1|)) 138) (($ $ (-1045) $) 137) (($ $ (-619 (-1045)) (-619 $)) 136)) (-4077 (((-745) $) 207 (|has| |#1| (-355)))) (-3171 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-399 $) (-399 $) (-399 $)) 223 (|has| |#1| (-540))) ((|#1| (-399 $) |#1|) 215 (|has| |#1| (-355))) (((-399 $) $ (-399 $)) 203 (|has| |#1| (-540)))) (-1623 (((-3 $ "failed") $ (-745)) 232)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 208 (|has| |#1| (-355)))) (-1566 (($ $ (-1045)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-4050 (($ $ (-1045)) 40) (($ $ (-619 (-1045))) 39) (($ $ (-1045) (-745)) 38) (($ $ (-619 (-1045)) (-619 (-745))) 37) (($ $ (-745)) 251) (($ $) 249) (($ $ (-1135)) 248 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 247 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 246 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 245 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2512 (((-745) $) 148) (((-745) $ (-1045)) 128) (((-619 (-745)) $ (-619 (-1045))) 127)) (-2591 (((-861 (-371)) $) 80 (-12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371)))))) (((-861 (-548)) $) 79 (-12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548)))))) (((-524) $) 78 (-12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))))) (-3881 ((|#1| $) 173 (|has| |#1| (-443))) (($ $ (-1045)) 104 (|has| |#1| (-443)))) (-4028 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1723 (|has| $ (-143)) (|has| |#1| (-878))))) (-1539 (((-3 $ "failed") $ $) 220 (|has| |#1| (-540))) (((-3 (-399 $) "failed") (-399 $) $) 219 (|has| |#1| (-540)))) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 161) (($ (-1045)) 135) (($ (-399 (-548))) 70 (-1524 (|has| |#1| (-1007 (-399 (-548)))) (|has| |#1| (-38 (-399 (-548)))))) (($ $) 83 (|has| |#1| (-540)))) (-3852 (((-619 |#1|) $) 166)) (-1951 ((|#1| $ (-745)) 153) (($ $ (-1045) (-745)) 126) (($ $ (-619 (-1045)) (-619 (-745))) 125)) (-4017 (((-3 $ "failed") $) 71 (-1524 (-1723 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-3835 (((-745)) 28)) (-4243 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-3290 (((-112) $ $) 87 (|has| |#1| (-540)))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-1045)) 36) (($ $ (-619 (-1045))) 35) (($ $ (-1045) (-745)) 34) (($ $ (-619 (-1045)) (-619 (-745))) 33) (($ $ (-745)) 252) (($ $) 250) (($ $ (-1135)) 244 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 243 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 242 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 241 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2262 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 6)) (-2252 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2309 (($ $ |#1|) 154 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 156 (|has| |#1| (-38 (-399 (-548))))) (($ (-399 (-548)) $) 155 (|has| |#1| (-38 (-399 (-548))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2673 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 10)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3881 (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1832 (((-112) $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-3643 (($ $ (-547)) NIL) (($ $ (-547) (-547)) NIL)) (-2674 (((-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|))) $) NIL)) (-2345 (((-1210 |#1| |#2| |#3|) $) NIL)) (-2061 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL)) (-2324 (((-1210 |#1| |#2| |#3|) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3807 (((-547) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-2810 (($ (-1116 (-2 (|:| |k| (-547)) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-1210 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1135) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-354)))) (((-3 (-398 (-547)) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-3 (-547) "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2643 (((-1210 |#1| |#2| |#3|) $) NIL) (((-1135) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-354)))) (((-398 (-547)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354)))) (((-547) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))))) (-2200 (($ $) NIL) (($ (-547) $) NIL)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-1210 |#1| |#2| |#3|)) (-663 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 (-1210 |#1| |#2| |#3|))) (|:| |vec| (-1218 (-1210 |#1| |#2| |#3|)))) (-663 $) (-1218 $)) NIL (|has| |#1| (-354))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354)))) (((-663 (-547)) (-663 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-615 (-547))) (|has| |#1| (-354))))) (-2537 (((-3 $ "failed") $) NIL)) (-2612 (((-398 (-921 |#1|)) $ (-547)) NIL (|has| |#1| (-539))) (((-398 (-921 |#1|)) $ (-547) (-547)) NIL (|has| |#1| (-539)))) (-3229 (($) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-3848 (((-112) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3893 (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-855 (-547))) (|has| |#1| (-354)))) (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-855 (-370))) (|has| |#1| (-354))))) (-3707 (((-547) $) NIL) (((-547) $ (-547)) NIL)) (-4114 (((-112) $) NIL)) (-3739 (($ $) NIL (|has| |#1| (-354)))) (-1382 (((-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-354)))) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3652 (((-3 $ "failed") $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-354))))) (-3937 (((-112) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-2438 (($ $ (-890)) NIL)) (-2194 (($ (-1 |#1| (-547)) $) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-547)) 17) (($ $ (-1045) (-547)) NIL) (($ $ (-619 (-1045)) (-619 (-547))) NIL)) (-2847 (($ $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-3563 (($ $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-354)))) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2337 (($ (-547) (-1210 |#1| |#2| |#3|)) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2069 (($ $) 25 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 26 (|has| |#1| (-38 (-398 (-547)))))) (-3045 (($) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1111)) (|has| |#1| (-354))) CONST)) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2567 (($ $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-298)) (|has| |#1| (-354))))) (-1435 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-547)) NIL)) (-2025 (((-3 $ "failed") $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-547))))) (($ $ (-1135) (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-503 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1135)) (-619 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-503 (-1135) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-285 (-1210 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-300 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-285 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-300 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-300 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354)))) (($ $ (-619 (-1210 |#1| |#2| |#3|)) (-619 (-1210 |#1| |#2| |#3|))) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-300 (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-547)) NIL) (($ $ $) NIL (|has| (-547) (-1075))) (($ $ (-1210 |#1| |#2| |#3|)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-277 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) (|has| |#1| (-354))))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-1214 |#2|)) 24) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) 23 (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))))) (-3660 (($ $) NIL (|has| |#1| (-354)))) (-1392 (((-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-354)))) (-1618 (((-547) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2829 (((-523) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-592 (-523))) (|has| |#1| (-354)))) (((-370) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-217) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-991)) (|has| |#1| (-354)))) (((-861 (-370)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-592 (-861 (-370)))) (|has| |#1| (-354)))) (((-861 (-547)) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-592 (-861 (-547)))) (|has| |#1| (-354))))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1210 |#1| |#2| |#3|)) NIL) (($ (-1214 |#2|)) 22) (($ (-1135)) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-1135))) (|has| |#1| (-354)))) (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539)))) (($ (-398 (-547))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-1007 (-547))) (|has| |#1| (-354))) (|has| |#1| (-38 (-398 (-547))))))) (-3338 ((|#1| $ (-547)) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-143)) (|has| |#1| (-354))) (|has| |#1| (-143))))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 11)) (-1564 (((-1210 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-532)) (|has| |#1| (-354))))) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-878)) (|has| |#1| (-354))) (|has| |#1| (-539))))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-547)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-547)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2040 (($ $) NIL (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))))) (-3267 (($) 19 T CONST)) (-3277 (($) 15 T CONST)) (-1686 (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|))) NIL (|has| |#1| (-354))) (($ $ (-1 (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) (-745)) NIL (|has| |#1| (-354))) (($ $ (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-225)) (|has| |#1| (-354))) (|has| |#1| (-15 * (|#1| (-547) |#1|))))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135) (-745)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-619 (-1135))) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135)))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-869 (-1135))) (|has| |#1| (-354))) (-12 (|has| |#1| (-15 * (|#1| (-547) |#1|))) (|has| |#1| (-869 (-1135))))))) (-2433 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2408 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2396 (((-112) $ $) NIL (-1524 (-12 (|has| (-1210 |#1| |#2| |#3|) (-794)) (|has| |#1| (-354))) (-12 (|has| (-1210 |#1| |#2| |#3|) (-821)) (|has| |#1| (-354)))))) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354))) (($ (-1210 |#1| |#2| |#3|) (-1210 |#1| |#2| |#3|)) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1210 |#1| |#2| |#3|)) NIL (|has| |#1| (-354))) (($ (-1210 |#1| |#2| |#3|) $) NIL (|has| |#1| (-354))) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1182 |#1| |#2| |#3|) (-13 (-1180 |#1| (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1182)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1180 |#1| (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-2880 (((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112)) 12)) (-2236 (((-409 |#1|) |#1|) 22)) (-2106 (((-409 |#1|) |#1|) 21))) +(((-1183 |#1|) (-10 -7 (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2236 ((-409 |#1|) |#1|)) (-15 -2880 ((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112)))) (-1194 (-547))) (T -1183)) +((-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-547))))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-547))))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-547)))))) +(-10 -7 (-15 -2106 ((-409 |#1|) |#1|)) (-15 -2236 ((-409 |#1|) |#1|)) (-15 -2880 ((-2 (|:| |contp| (-547)) (|:| -2483 (-619 (-2 (|:| |irr| |#1|) (|:| -1889 (-547)))))) |#1| (-112)))) +((-2781 (((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 23 (|has| |#1| (-819))) (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 17))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -2781 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (IF (|has| |#1| (-819)) (-15 -2781 ((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) |%noBranch|)) (-1172) (-1172)) (T -1184)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-819)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1116 *6)) (-5 *1 (-1184 *5 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1185 *6)) (-5 *1 (-1184 *5 *6))))) +(-10 -7 (-15 -2781 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (IF (|has| |#1| (-819)) (-15 -2781 ((-1116 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) |%noBranch|)) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3114 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2781 (((-1116 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-819)))) (-2637 ((|#1| $) 14)) (-1257 ((|#1| $) 10)) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-1269 (((-547) $) 18)) (-2541 ((|#1| $) 17)) (-1280 ((|#1| $) 11)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-4038 (((-112) $) 16)) (-1436 (((-1116 |#1|) $) 38 (|has| |#1| (-819))) (((-1116 |#1|) (-619 $)) 37 (|has| |#1| (-819)))) (-2829 (($ |#1|) 25)) (-3834 (($ (-1058 |#1|)) 24) (((-832) $) 34 (|has| |#1| (-1063)))) (-1842 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2107 (($ $ (-547)) 13)) (-2371 (((-112) $ $) 27 (|has| |#1| (-1063))))) +(((-1185 |#1|) (-13 (-1057 |#1|) (-10 -8 (-15 -1842 ($ |#1|)) (-15 -3114 ($ |#1|)) (-15 -3834 ($ (-1058 |#1|))) (-15 -4038 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1116 |#1|))) |%noBranch|))) (-1172)) (T -1185)) +((-1842 (*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172)))) (-3114 (*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-1172)) (-5 *1 (-1185 *3)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1172))))) +(-13 (-1057 |#1|) (-10 -8 (-15 -1842 ($ |#1|)) (-15 -3114 ($ |#1|)) (-15 -3834 ($ (-1058 |#1|))) (-15 -4038 ((-112) $)) (IF (|has| |#1| (-1063)) (-6 (-1063)) |%noBranch|) (IF (|has| |#1| (-819)) (-6 (-1059 |#1| (-1116 |#1|))) |%noBranch|))) +((-2781 (((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)) 15))) +(((-1186 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 ((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)))) (-1135) (-1016) (-1135) (-1016)) (T -1186)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1191 *5 *6)) (-14 *5 (-1135)) (-4 *6 (-1016)) (-4 *8 (-1016)) (-5 *2 (-1191 *7 *8)) (-5 *1 (-1186 *5 *6 *7 *8)) (-14 *7 (-1135))))) +(-10 -7 (-15 -2781 ((-1191 |#3| |#4|) (-1 |#4| |#2|) (-1191 |#1| |#2|)))) +((-3393 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3201 ((|#1| |#3|) 13)) (-3295 ((|#3| |#3|) 19))) +(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -3201 (|#1| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3393 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-539) (-961 |#1|) (-1194 |#2|)) (T -1187)) +((-3393 (*1 *2 *3) (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1187 *4 *5 *3)) (-4 *3 (-1194 *5)))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-1187 *3 *4 *2)) (-4 *2 (-1194 *4)))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-1187 *2 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -3201 (|#1| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3393 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3587 (((-3 |#2| "failed") |#2| (-745) |#1|) 29)) (-3484 (((-3 |#2| "failed") |#2| (-745)) 30)) (-1975 (((-3 (-2 (|:| -3826 |#2|) (|:| -3836 |#2|)) "failed") |#2|) 43)) (-2102 (((-619 |#2|) |#2|) 45)) (-3680 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1188 |#1| |#2|) (-10 -7 (-15 -3484 ((-3 |#2| "failed") |#2| (-745))) (-15 -3587 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -3680 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1975 ((-3 (-2 (|:| -3826 |#2|) (|:| -3836 |#2|)) "failed") |#2|)) (-15 -2102 ((-619 |#2|) |#2|))) (-13 (-539) (-145)) (-1194 |#1|)) (T -1188)) +((-2102 (*1 *2 *3) (-12 (-4 *4 (-13 (-539) (-145))) (-5 *2 (-619 *3)) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4)))) (-1975 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-539) (-145))) (-5 *2 (-2 (|:| -3826 *3) (|:| -3836 *3))) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4)))) (-3680 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1188 *3 *2)) (-4 *2 (-1194 *3)))) (-3587 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4)))) (-3484 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) +(-10 -7 (-15 -3484 ((-3 |#2| "failed") |#2| (-745))) (-15 -3587 ((-3 |#2| "failed") |#2| (-745) |#1|)) (-15 -3680 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1975 ((-3 (-2 (|:| -3826 |#2|) (|:| -3836 |#2|)) "failed") |#2|)) (-15 -2102 ((-619 |#2|) |#2|))) +((-2226 (((-3 (-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) "failed") |#2| |#2|) 32))) +(((-1189 |#1| |#2|) (-10 -7 (-15 -2226 ((-3 (-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) "failed") |#2| |#2|))) (-539) (-1194 |#1|)) (T -1189)) +((-2226 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-1189 *4 *3)) (-4 *3 (-1194 *4))))) +(-10 -7 (-15 -2226 ((-3 (-2 (|:| -2225 |#2|) (|:| -3856 |#2|)) "failed") |#2| |#2|))) +((-2358 ((|#2| |#2| |#2|) 19)) (-2481 ((|#2| |#2| |#2|) 30)) (-1266 ((|#2| |#2| |#2| (-745) (-745)) 36))) +(((-1190 |#1| |#2|) (-10 -7 (-15 -2358 (|#2| |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2|)) (-15 -1266 (|#2| |#2| |#2| (-745) (-745)))) (-1016) (-1194 |#1|)) (T -1190)) +((-1266 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1190 *4 *2)) (-4 *2 (-1194 *4)))) (-2481 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) +(-10 -7 (-15 -2358 (|#2| |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2|)) (-15 -1266 (|#2| |#2| |#2| (-745) (-745)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3468 (((-1218 |#2|) $ (-745)) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-3300 (($ (-1131 |#2|)) NIL)) (-2067 (((-1131 $) $ (-1045)) NIL) (((-1131 |#2|) $) NIL)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#2| (-539)))) (-3881 (($ $) NIL (|has| |#2| (-539)))) (-1832 (((-112) $) NIL (|has| |#2| (-539)))) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1045))) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-1808 (($ $ $) NIL (|has| |#2| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2745 (($ $) NIL (|has| |#2| (-442)))) (-3457 (((-409 $) $) NIL (|has| |#2| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2873 (((-112) $ $) NIL (|has| |#2| (-354)))) (-4113 (($ $ (-745)) NIL)) (-4021 (($ $ (-745)) NIL)) (-1374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-442)))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL) (((-3 (-398 (-547)) "failed") $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) NIL (|has| |#2| (-1007 (-547)))) (((-3 (-1045) "failed") $) NIL)) (-2643 ((|#2| $) NIL) (((-398 (-547)) $) NIL (|has| |#2| (-1007 (-398 (-547))))) (((-547) $) NIL (|has| |#2| (-1007 (-547)))) (((-1045) $) NIL)) (-3772 (($ $ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-2079 (($ $ $) NIL (|has| |#2| (-354)))) (-2054 (($ $) NIL)) (-4238 (((-663 (-547)) (-663 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) NIL (|has| |#2| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#2|)) (|:| |vec| (-1218 |#2|))) (-663 $) (-1218 $)) NIL) (((-663 |#2|) (-663 $)) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2052 (($ $ $) NIL (|has| |#2| (-354)))) (-3914 (($ $ $) NIL)) (-1595 (($ $ $) NIL (|has| |#2| (-539)))) (-1484 (((-2 (|:| -1557 |#2|) (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#2| (-354)))) (-3786 (($ $) NIL (|has| |#2| (-442))) (($ $ (-1045)) NIL (|has| |#2| (-442)))) (-2042 (((-619 $) $) NIL)) (-3674 (((-112) $) NIL (|has| |#2| (-878)))) (-3913 (($ $ |#2| (-745) $) NIL)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) NIL (-12 (|has| (-1045) (-855 (-370))) (|has| |#2| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) NIL (-12 (|has| (-1045) (-855 (-547))) (|has| |#2| (-855 (-547)))))) (-3707 (((-745) $ $) NIL (|has| |#2| (-539)))) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-3652 (((-3 $ "failed") $) NIL (|has| |#2| (-1111)))) (-2245 (($ (-1131 |#2|) (-1045)) NIL) (($ (-1131 $) (-1045)) NIL)) (-2438 (($ $ (-745)) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-2229 (($ |#2| (-745)) 17) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1045)) NIL) (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL)) (-1626 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2847 (($ $ $) NIL (|has| |#2| (-821)))) (-3563 (($ $ $) NIL (|has| |#2| (-821)))) (-4019 (($ (-1 (-745) (-745)) $) NIL)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-3376 (((-1131 |#2|) $) NIL)) (-2185 (((-3 (-1045) "failed") $) NIL)) (-2013 (($ $) NIL)) (-2027 ((|#2| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-1917 (((-1118) $) NIL)) (-4189 (((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745)) NIL)) (-1967 (((-3 (-619 $) "failed") $) NIL)) (-1859 (((-3 (-619 $) "failed") $) NIL)) (-3909 (((-3 (-2 (|:| |var| (-1045)) (|:| -4248 (-745))) "failed") $) NIL)) (-2069 (($ $) NIL (|has| |#2| (-38 (-398 (-547)))))) (-3045 (($) NIL (|has| |#2| (-1111)) CONST)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 ((|#2| $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#2| (-442)))) (-3715 (($ (-619 $)) NIL (|has| |#2| (-442))) (($ $ $) NIL (|has| |#2| (-442)))) (-2930 (($ $ (-745) |#2| $) NIL)) (-3658 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) NIL (|has| |#2| (-878)))) (-2106 (((-409 $) $) NIL (|has| |#2| (-878)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#2| (-354)))) (-2025 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-539))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#2| (-354)))) (-2670 (($ $ (-619 (-285 $))) NIL) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) NIL) (($ $ (-619 (-1045)) (-619 |#2|)) NIL) (($ $ (-1045) $) NIL) (($ $ (-619 (-1045)) (-619 $)) NIL)) (-2776 (((-745) $) NIL (|has| |#2| (-354)))) (-3329 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) NIL (|has| |#2| (-539))) ((|#2| (-398 $) |#2|) NIL (|has| |#2| (-354))) (((-398 $) $ (-398 $)) NIL (|has| |#2| (-539)))) (-3215 (((-3 $ "failed") $ (-745)) NIL)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#2| (-354)))) (-3846 (($ $ (-1045)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-3443 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1618 (((-745) $) NIL) (((-745) $ (-1045)) NIL) (((-619 (-745)) $ (-619 (-1045))) NIL)) (-2829 (((-861 (-370)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#2| (-592 (-861 (-370)))))) (((-861 (-547)) $) NIL (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#2| (-592 (-861 (-547)))))) (((-523) $) NIL (-12 (|has| (-1045) (-592 (-523))) (|has| |#2| (-592 (-523)))))) (-1378 ((|#2| $) NIL (|has| |#2| (-442))) (($ $ (-1045)) NIL (|has| |#2| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-878))))) (-1704 (((-3 $ "failed") $ $) NIL (|has| |#2| (-539))) (((-3 (-398 $) "failed") (-398 $) $) NIL (|has| |#2| (-539)))) (-3834 (((-832) $) 13) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-1045)) NIL) (($ (-1214 |#1|)) 19) (($ (-398 (-547))) NIL (-1524 (|has| |#2| (-38 (-398 (-547)))) (|has| |#2| (-1007 (-398 (-547)))))) (($ $) NIL (|has| |#2| (-539)))) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-745)) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-3336 (((-3 $ "failed") $) NIL (-1524 (-12 (|has| $ (-143)) (|has| |#2| (-878))) (|has| |#2| (-143))))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| |#2| (-169)))) (-1932 (((-112) $ $) NIL (|has| |#2| (-539)))) (-3267 (($) NIL T CONST)) (-3277 (($) 14 T CONST)) (-1686 (($ $ (-1045)) NIL) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) NIL) (($ $ (-1135)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1135) (-745)) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) NIL (|has| |#2| (-869 (-1135)))) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2433 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2371 (((-112) $ $) NIL)) (-2421 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#2| (-821)))) (-2497 (($ $ |#2|) NIL (|has| |#2| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-398 (-547))) NIL (|has| |#2| (-38 (-398 (-547))))) (($ (-398 (-547)) $) NIL (|has| |#2| (-38 (-398 (-547))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1191 |#1| |#2|) (-13 (-1194 |#2|) (-10 -8 (-15 -3834 ($ (-1214 |#1|))) (-15 -2930 ($ $ (-745) |#2| $)))) (-1135) (-1016)) (T -1191)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-1016)))) (-2930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1191 *4 *3)) (-14 *4 (-1135)) (-4 *3 (-1016))))) +(-13 (-1194 |#2|) (-10 -8 (-15 -3834 ($ (-1214 |#1|))) (-15 -2930 ($ $ (-745) |#2| $)))) +((-2781 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|))) (-1016) (-1194 |#1|) (-1016) (-1194 |#3|)) (T -1192)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1194 *6)) (-5 *1 (-1192 *5 *4 *6 *2)) (-4 *4 (-1194 *5))))) +(-10 -7 (-15 -2781 (|#4| (-1 |#3| |#1|) |#2|))) +((-3468 (((-1218 |#2|) $ (-745)) 114)) (-2259 (((-619 (-1045)) $) 15)) (-3300 (($ (-1131 |#2|)) 67)) (-1500 (((-745) $) NIL) (((-745) $ (-619 (-1045))) 18)) (-3833 (((-409 (-1131 $)) (-1131 $)) 185)) (-2745 (($ $) 175)) (-3457 (((-409 $) $) 173)) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 82)) (-4113 (($ $ (-745)) 71)) (-4021 (($ $ (-745)) 73)) (-1374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2698 (((-3 |#2| "failed") $) 117) (((-3 (-398 (-547)) "failed") $) NIL) (((-3 (-547) "failed") $) NIL) (((-3 (-1045) "failed") $) NIL)) (-2643 ((|#2| $) 115) (((-398 (-547)) $) NIL) (((-547) $) NIL) (((-1045) $) NIL)) (-1595 (($ $ $) 151)) (-1484 (((-2 (|:| -1557 |#2|) (|:| -2225 $) (|:| -3856 $)) $ $) 153)) (-3707 (((-745) $ $) 170)) (-3652 (((-3 $ "failed") $) 123)) (-2229 (($ |#2| (-745)) NIL) (($ $ (-1045) (-745)) 47) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-1626 (((-745) $) NIL) (((-745) $ (-1045)) 42) (((-619 (-745)) $ (-619 (-1045))) 43)) (-3376 (((-1131 |#2|) $) 59)) (-2185 (((-3 (-1045) "failed") $) 40)) (-4189 (((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745)) 70)) (-2069 (($ $) 197)) (-3045 (($) 119)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 182)) (-3658 (((-409 (-1131 $)) (-1131 $)) 88)) (-3738 (((-409 (-1131 $)) (-1131 $)) 86)) (-2106 (((-409 $) $) 107)) (-2670 (($ $ (-619 (-285 $))) 39) (($ $ (-285 $)) NIL) (($ $ $ $) NIL) (($ $ (-619 $) (-619 $)) NIL) (($ $ (-1045) |#2|) 31) (($ $ (-619 (-1045)) (-619 |#2|)) 28) (($ $ (-1045) $) 25) (($ $ (-619 (-1045)) (-619 $)) 23)) (-2776 (((-745) $) 188)) (-3329 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-398 $) (-398 $) (-398 $)) 147) ((|#2| (-398 $) |#2|) 187) (((-398 $) $ (-398 $)) 169)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 191)) (-3443 (($ $ (-1045)) 140) (($ $ (-619 (-1045))) NIL) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL) (($ $ (-745)) NIL) (($ $) 138) (($ $ (-1135)) NIL) (($ $ (-619 (-1135))) NIL) (($ $ (-1135) (-745)) NIL) (($ $ (-619 (-1135)) (-619 (-745))) NIL) (($ $ (-1 |#2| |#2|) (-745)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-1618 (((-745) $) NIL) (((-745) $ (-1045)) 16) (((-619 (-745)) $ (-619 (-1045))) 20)) (-1378 ((|#2| $) NIL) (($ $ (-1045)) 125)) (-1704 (((-3 $ "failed") $ $) 161) (((-3 (-398 $) "failed") (-398 $) $) 157)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#2|) NIL) (($ (-1045)) 51) (($ (-398 (-547))) NIL) (($ $) NIL))) +(((-1193 |#1| |#2|) (-10 -8 (-15 -3834 (|#1| |#1|)) (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -3329 ((-398 |#1|) |#1| (-398 |#1|))) (-15 -2776 ((-745) |#1|)) (-15 -2468 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2069 (|#1| |#1|)) (-15 -3329 (|#2| (-398 |#1|) |#2|)) (-15 -1374 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1484 ((-2 (|:| -1557 |#2|) (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -1595 (|#1| |#1| |#1|)) (-15 -1704 ((-3 (-398 |#1|) "failed") (-398 |#1|) |#1|)) (-15 -1704 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3707 ((-745) |#1| |#1|)) (-15 -3329 ((-398 |#1|) (-398 |#1|) (-398 |#1|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4021 (|#1| |#1| (-745))) (-15 -4113 (|#1| |#1| (-745))) (-15 -4189 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| (-745))) (-15 -3300 (|#1| (-1131 |#2|))) (-15 -3376 ((-1131 |#2|) |#1|)) (-15 -3468 ((-1218 |#2|) |#1| (-745))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3329 (|#1| |#1| |#1|)) (-15 -3329 (|#2| |#1| |#2|)) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3833 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3738 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3658 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -1378 (|#1| |#1| (-1045))) (-15 -2259 ((-619 (-1045)) |#1|)) (-15 -1500 ((-745) |#1| (-619 (-1045)))) (-15 -1500 ((-745) |#1|)) (-15 -2229 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2229 (|#1| |#1| (-1045) (-745))) (-15 -1626 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -1626 ((-745) |#1| (-1045))) (-15 -2185 ((-3 (-1045) "failed") |#1|)) (-15 -1618 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -1618 ((-745) |#1| (-1045))) (-15 -2643 ((-1045) |#1|)) (-15 -2698 ((-3 (-1045) "failed") |#1|)) (-15 -3834 (|#1| (-1045))) (-15 -2670 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2670 (|#1| |#1| (-1045) |#1|)) (-15 -2670 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2670 (|#1| |#1| (-1045) |#2|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -1618 ((-745) |#1|)) (-15 -2229 (|#1| |#2| (-745))) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -1626 ((-745) |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -3443 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1045) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1045)))) (-15 -3443 (|#1| |#1| (-1045))) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) (-1194 |#2|) (-1016)) (T -1193)) +NIL +(-10 -8 (-15 -3834 (|#1| |#1|)) (-15 -2816 ((-1131 |#1|) (-1131 |#1|) (-1131 |#1|))) (-15 -3457 ((-409 |#1|) |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3045 (|#1|)) (-15 -3652 ((-3 |#1| "failed") |#1|)) (-15 -3329 ((-398 |#1|) |#1| (-398 |#1|))) (-15 -2776 ((-745) |#1|)) (-15 -2468 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -2069 (|#1| |#1|)) (-15 -3329 (|#2| (-398 |#1|) |#2|)) (-15 -1374 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1484 ((-2 (|:| -1557 |#2|) (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| |#1|)) (-15 -1595 (|#1| |#1| |#1|)) (-15 -1704 ((-3 (-398 |#1|) "failed") (-398 |#1|) |#1|)) (-15 -1704 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3707 ((-745) |#1| |#1|)) (-15 -3329 ((-398 |#1|) (-398 |#1|) (-398 |#1|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4021 (|#1| |#1| (-745))) (-15 -4113 (|#1| |#1| (-745))) (-15 -4189 ((-2 (|:| -2225 |#1|) (|:| -3856 |#1|)) |#1| (-745))) (-15 -3300 (|#1| (-1131 |#2|))) (-15 -3376 ((-1131 |#2|) |#1|)) (-15 -3468 ((-1218 |#2|) |#1| (-745))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3443 (|#1| |#1| (-1 |#2| |#2|) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1135) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1135)))) (-15 -3443 (|#1| |#1| (-1135))) (-15 -3443 (|#1| |#1|)) (-15 -3443 (|#1| |#1| (-745))) (-15 -3329 (|#1| |#1| |#1|)) (-15 -3329 (|#2| |#1| |#2|)) (-15 -2106 ((-409 |#1|) |#1|)) (-15 -3833 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3738 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3658 ((-409 (-1131 |#1|)) (-1131 |#1|))) (-15 -3548 ((-3 (-619 (-1131 |#1|)) "failed") (-619 (-1131 |#1|)) (-1131 |#1|))) (-15 -1378 (|#1| |#1| (-1045))) (-15 -2259 ((-619 (-1045)) |#1|)) (-15 -1500 ((-745) |#1| (-619 (-1045)))) (-15 -1500 ((-745) |#1|)) (-15 -2229 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -2229 (|#1| |#1| (-1045) (-745))) (-15 -1626 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -1626 ((-745) |#1| (-1045))) (-15 -2185 ((-3 (-1045) "failed") |#1|)) (-15 -1618 ((-619 (-745)) |#1| (-619 (-1045)))) (-15 -1618 ((-745) |#1| (-1045))) (-15 -2643 ((-1045) |#1|)) (-15 -2698 ((-3 (-1045) "failed") |#1|)) (-15 -3834 (|#1| (-1045))) (-15 -2670 (|#1| |#1| (-619 (-1045)) (-619 |#1|))) (-15 -2670 (|#1| |#1| (-1045) |#1|)) (-15 -2670 (|#1| |#1| (-619 (-1045)) (-619 |#2|))) (-15 -2670 (|#1| |#1| (-1045) |#2|)) (-15 -2670 (|#1| |#1| (-619 |#1|) (-619 |#1|))) (-15 -2670 (|#1| |#1| |#1| |#1|)) (-15 -2670 (|#1| |#1| (-285 |#1|))) (-15 -2670 (|#1| |#1| (-619 (-285 |#1|)))) (-15 -1618 ((-745) |#1|)) (-15 -2229 (|#1| |#2| (-745))) (-15 -2643 ((-547) |#1|)) (-15 -2698 ((-3 (-547) "failed") |#1|)) (-15 -2643 ((-398 (-547)) |#1|)) (-15 -2698 ((-3 (-398 (-547)) "failed") |#1|)) (-15 -3834 (|#1| |#2|)) (-15 -2698 ((-3 |#2| "failed") |#1|)) (-15 -2643 (|#2| |#1|)) (-15 -1626 ((-745) |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -3443 (|#1| |#1| (-619 (-1045)) (-619 (-745)))) (-15 -3443 (|#1| |#1| (-1045) (-745))) (-15 -3443 (|#1| |#1| (-619 (-1045)))) (-15 -3443 (|#1| |#1| (-1045))) (-15 -3834 (|#1| (-547))) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3468 (((-1218 |#1|) $ (-745)) 236)) (-2259 (((-619 (-1045)) $) 108)) (-3300 (($ (-1131 |#1|)) 234)) (-2067 (((-1131 $) $ (-1045)) 123) (((-1131 |#1|) $) 122)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 85 (|has| |#1| (-539)))) (-3881 (($ $) 86 (|has| |#1| (-539)))) (-1832 (((-112) $) 88 (|has| |#1| (-539)))) (-1500 (((-745) $) 110) (((-745) $ (-619 (-1045))) 109)) (-3013 (((-3 $ "failed") $ $) 19)) (-1808 (($ $ $) 221 (|has| |#1| (-539)))) (-3833 (((-409 (-1131 $)) (-1131 $)) 98 (|has| |#1| (-878)))) (-2745 (($ $) 96 (|has| |#1| (-442)))) (-3457 (((-409 $) $) 95 (|has| |#1| (-442)))) (-3548 (((-3 (-619 (-1131 $)) "failed") (-619 (-1131 $)) (-1131 $)) 101 (|has| |#1| (-878)))) (-2873 (((-112) $ $) 206 (|has| |#1| (-354)))) (-4113 (($ $ (-745)) 229)) (-4021 (($ $ (-745)) 228)) (-1374 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-442)))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 162) (((-3 (-398 (-547)) "failed") $) 160 (|has| |#1| (-1007 (-398 (-547))))) (((-3 (-547) "failed") $) 158 (|has| |#1| (-1007 (-547)))) (((-3 (-1045) "failed") $) 134)) (-2643 ((|#1| $) 163) (((-398 (-547)) $) 159 (|has| |#1| (-1007 (-398 (-547))))) (((-547) $) 157 (|has| |#1| (-1007 (-547)))) (((-1045) $) 133)) (-3772 (($ $ $ (-1045)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-2079 (($ $ $) 210 (|has| |#1| (-354)))) (-2054 (($ $) 152)) (-4238 (((-663 (-547)) (-663 $)) 132 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 (-547))) (|:| |vec| (-1218 (-547)))) (-663 $) (-1218 $)) 131 (|has| |#1| (-615 (-547)))) (((-2 (|:| -3509 (-663 |#1|)) (|:| |vec| (-1218 |#1|))) (-663 $) (-1218 $)) 130) (((-663 |#1|) (-663 $)) 129)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 209 (|has| |#1| (-354)))) (-3914 (($ $ $) 227)) (-1595 (($ $ $) 218 (|has| |#1| (-539)))) (-1484 (((-2 (|:| -1557 |#1|) (|:| -2225 $) (|:| -3856 $)) $ $) 217 (|has| |#1| (-539)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 204 (|has| |#1| (-354)))) (-3786 (($ $) 174 (|has| |#1| (-442))) (($ $ (-1045)) 103 (|has| |#1| (-442)))) (-2042 (((-619 $) $) 107)) (-3674 (((-112) $) 94 (|has| |#1| (-878)))) (-3913 (($ $ |#1| (-745) $) 170)) (-3893 (((-858 (-370) $) $ (-861 (-370)) (-858 (-370) $)) 82 (-12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370))))) (((-858 (-547) $) $ (-861 (-547)) (-858 (-547) $)) 81 (-12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))))) (-3707 (((-745) $ $) 222 (|has| |#1| (-539)))) (-4114 (((-112) $) 30)) (-3570 (((-745) $) 167)) (-3652 (((-3 $ "failed") $) 202 (|has| |#1| (-1111)))) (-2245 (($ (-1131 |#1|) (-1045)) 115) (($ (-1131 $) (-1045)) 114)) (-2438 (($ $ (-745)) 233)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 213 (|has| |#1| (-354)))) (-1744 (((-619 $) $) 124)) (-2187 (((-112) $) 150)) (-2229 (($ |#1| (-745)) 151) (($ $ (-1045) (-745)) 117) (($ $ (-619 (-1045)) (-619 (-745))) 116)) (-4267 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $ (-1045)) 118) (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 231)) (-1626 (((-745) $) 168) (((-745) $ (-1045)) 120) (((-619 (-745)) $ (-619 (-1045))) 119)) (-2847 (($ $ $) 77 (|has| |#1| (-821)))) (-3563 (($ $ $) 76 (|has| |#1| (-821)))) (-4019 (($ (-1 (-745) (-745)) $) 169)) (-2781 (($ (-1 |#1| |#1|) $) 149)) (-3376 (((-1131 |#1|) $) 235)) (-2185 (((-3 (-1045) "failed") $) 121)) (-2013 (($ $) 147)) (-2027 ((|#1| $) 146)) (-3685 (($ (-619 $)) 92 (|has| |#1| (-442))) (($ $ $) 91 (|has| |#1| (-442)))) (-1917 (((-1118) $) 9)) (-4189 (((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745)) 230)) (-1967 (((-3 (-619 $) "failed") $) 112)) (-1859 (((-3 (-619 $) "failed") $) 113)) (-3909 (((-3 (-2 (|:| |var| (-1045)) (|:| -4248 (-745))) "failed") $) 111)) (-2069 (($ $) 214 (|has| |#1| (-38 (-398 (-547)))))) (-3045 (($) 201 (|has| |#1| (-1111)) CONST)) (-3979 (((-1082) $) 10)) (-1988 (((-112) $) 164)) (-1999 ((|#1| $) 165)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 93 (|has| |#1| (-442)))) (-3715 (($ (-619 $)) 90 (|has| |#1| (-442))) (($ $ $) 89 (|has| |#1| (-442)))) (-3658 (((-409 (-1131 $)) (-1131 $)) 100 (|has| |#1| (-878)))) (-3738 (((-409 (-1131 $)) (-1131 $)) 99 (|has| |#1| (-878)))) (-2106 (((-409 $) $) 97 (|has| |#1| (-878)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 211 (|has| |#1| (-354)))) (-2025 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-539))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 205 (|has| |#1| (-354)))) (-2670 (($ $ (-619 (-285 $))) 143) (($ $ (-285 $)) 142) (($ $ $ $) 141) (($ $ (-619 $) (-619 $)) 140) (($ $ (-1045) |#1|) 139) (($ $ (-619 (-1045)) (-619 |#1|)) 138) (($ $ (-1045) $) 137) (($ $ (-619 (-1045)) (-619 $)) 136)) (-2776 (((-745) $) 207 (|has| |#1| (-354)))) (-3329 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-398 $) (-398 $) (-398 $)) 223 (|has| |#1| (-539))) ((|#1| (-398 $) |#1|) 215 (|has| |#1| (-354))) (((-398 $) $ (-398 $)) 203 (|has| |#1| (-539)))) (-3215 (((-3 $ "failed") $ (-745)) 232)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 208 (|has| |#1| (-354)))) (-3846 (($ $ (-1045)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-3443 (($ $ (-1045)) 40) (($ $ (-619 (-1045))) 39) (($ $ (-1045) (-745)) 38) (($ $ (-619 (-1045)) (-619 (-745))) 37) (($ $ (-745)) 251) (($ $) 249) (($ $ (-1135)) 248 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 247 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 246 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 245 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-1618 (((-745) $) 148) (((-745) $ (-1045)) 128) (((-619 (-745)) $ (-619 (-1045))) 127)) (-2829 (((-861 (-370)) $) 80 (-12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370)))))) (((-861 (-547)) $) 79 (-12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547)))))) (((-523) $) 78 (-12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))))) (-1378 ((|#1| $) 173 (|has| |#1| (-442))) (($ $ (-1045)) 104 (|has| |#1| (-442)))) (-3442 (((-3 (-1218 $) "failed") (-663 $)) 102 (-1806 (|has| $ (-143)) (|has| |#1| (-878))))) (-1704 (((-3 $ "failed") $ $) 220 (|has| |#1| (-539))) (((-3 (-398 $) "failed") (-398 $) $) 219 (|has| |#1| (-539)))) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 161) (($ (-1045)) 135) (($ (-398 (-547))) 70 (-1524 (|has| |#1| (-1007 (-398 (-547)))) (|has| |#1| (-38 (-398 (-547)))))) (($ $) 83 (|has| |#1| (-539)))) (-2472 (((-619 |#1|) $) 166)) (-3338 ((|#1| $ (-745)) 153) (($ $ (-1045) (-745)) 126) (($ $ (-619 (-1045)) (-619 (-745))) 125)) (-3336 (((-3 $ "failed") $) 71 (-1524 (-1806 (|has| $ (-143)) (|has| |#1| (-878))) (|has| |#1| (-143))))) (-2311 (((-745)) 28)) (-1969 (($ $ $ (-745)) 171 (|has| |#1| (-169)))) (-1932 (((-112) $ $) 87 (|has| |#1| (-539)))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-1045)) 36) (($ $ (-619 (-1045))) 35) (($ $ (-1045) (-745)) 34) (($ $ (-619 (-1045)) (-619 (-745))) 33) (($ $ (-745)) 252) (($ $) 250) (($ $ (-1135)) 244 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135))) 243 (|has| |#1| (-869 (-1135)))) (($ $ (-1135) (-745)) 242 (|has| |#1| (-869 (-1135)))) (($ $ (-619 (-1135)) (-619 (-745))) 241 (|has| |#1| (-869 (-1135)))) (($ $ (-1 |#1| |#1|) (-745)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2433 (((-112) $ $) 74 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 73 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 6)) (-2421 (((-112) $ $) 75 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 72 (|has| |#1| (-821)))) (-2497 (($ $ |#1|) 154 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 156 (|has| |#1| (-38 (-398 (-547))))) (($ (-398 (-547)) $) 155 (|has| |#1| (-38 (-398 (-547))))) (($ |#1| $) 145) (($ $ |#1|) 144))) (((-1194 |#1|) (-138) (-1016)) (T -1194)) -((-1648 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1194 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-5 *2 (-1131 *3)))) (-1632 (*1 *1 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-1016)) (-4 *1 (-1194 *3)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1623 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1611 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *3)))) (-1602 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *4)))) (-1594 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1584 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1574 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)))) (-4050 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-1557 (*1 *2 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-3171 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)))) (-1672 (*1 *2 *1 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)) (-5 *2 (-745)))) (-1548 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1539 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1539 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)))) (-1529 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) (-1519 (*1 *2 *1 *1) (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -1489 *3) (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *3)))) (-1508 (*1 *2 *1 *1) (-12 (-4 *3 (-443)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1194 *3)))) (-3171 (*1 *2 *3 *2) (-12 (-5 *3 (-399 *1)) (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548))))))) -(-13 (-918 |t#1| (-745) (-1045)) (-278 |t#1| |t#1|) (-278 $ $) (-226) (-224 |t#1|) (-10 -8 (-15 -1648 ((-1218 |t#1|) $ (-745))) (-15 -1639 ((-1131 |t#1|) $)) (-15 -1632 ($ (-1131 |t#1|))) (-15 -3535 ($ $ (-745))) (-15 -1623 ((-3 $ "failed") $ (-745))) (-15 -1611 ((-2 (|:| -3826 $) (|:| -2233 $)) $ $)) (-15 -1602 ((-2 (|:| -3826 $) (|:| -2233 $)) $ (-745))) (-15 -1594 ($ $ (-745))) (-15 -1584 ($ $ (-745))) (-15 -1574 ($ $ $)) (-15 -4050 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1566 (|t#1| $)) (-15 -1557 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-540)) (PROGN (-6 (-278 (-399 $) (-399 $))) (-15 -3171 ((-399 $) (-399 $) (-399 $))) (-15 -1672 ((-745) $ $)) (-15 -1548 ($ $ $)) (-15 -1539 ((-3 $ "failed") $ $)) (-15 -1539 ((-3 (-399 $) "failed") (-399 $) $)) (-15 -1529 ($ $ $)) (-15 -1519 ((-2 (|:| -1489 |t#1|) (|:| -3826 $) (|:| -2233 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-443)) (-15 -1508 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-355)) (PROGN (-6 (-299)) (-6 -4323) (-15 -3171 (|t#1| (-399 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (-15 -3810 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-593 (-524)) -12 (|has| (-1045) (-593 (-524))) (|has| |#1| (-593 (-524)))) ((-593 (-861 (-371))) -12 (|has| (-1045) (-593 (-861 (-371)))) (|has| |#1| (-593 (-861 (-371))))) ((-593 (-861 (-548))) -12 (|has| (-1045) (-593 (-861 (-548)))) (|has| |#1| (-593 (-861 (-548))))) ((-224 |#1|) . T) ((-226) . T) ((-278 (-399 $) (-399 $)) |has| |#1| (-540)) ((-278 |#1| |#1|) . T) ((-278 $ $) . T) ((-282) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-301 $) . T) ((-318 |#1| #0#) . T) ((-369 |#1|) . T) ((-403 |#1|) . T) ((-443) -1524 (|has| |#1| (-878)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-504 #2=(-1045) |#1|) . T) ((-504 #2# $) . T) ((-504 $ $) . T) ((-540) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-622 #1#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-548)) |has| |#1| (-615 (-548))) ((-615 |#1|) . T) ((-692 #1#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 #2#) . T) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-371)) -12 (|has| (-1045) (-855 (-371))) (|has| |#1| (-855 (-371)))) ((-855 (-548)) -12 (|has| (-1045) (-855 (-548))) (|has| |#1| (-855 (-548)))) ((-918 |#1| #0# #2#) . T) ((-878) |has| |#1| (-878)) ((-889) |has| |#1| (-355)) ((-1007 (-399 (-548))) |has| |#1| (-1007 (-399 (-548)))) ((-1007 (-548)) |has| |#1| (-1007 (-548))) ((-1007 #2#) . T) ((-1007 |#1|) . T) ((-1022 #1#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-540)) (|has| |#1| (-443)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-1111)) ((-1176) |has| |#1| (-878))) -((-2049 (((-619 (-1045)) $) 28)) (-1872 (($ $) 25)) (-2024 (($ |#2| |#3|) NIL) (($ $ (-1045) |#3|) 22) (($ $ (-619 (-1045)) (-619 |#3|)) 21)) (-2185 (($ $) 14)) (-2197 ((|#2| $) 12)) (-2512 ((|#3| $) 10))) -(((-1195 |#1| |#2| |#3|) (-10 -8 (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2024 (|#1| |#1| (-1045) |#3|)) (-15 -1872 (|#1| |#1|)) (-15 -2024 (|#1| |#2| |#3|)) (-15 -2512 (|#3| |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -2197 (|#2| |#1|))) (-1196 |#2| |#3|) (-1016) (-766)) (T -1195)) -NIL -(-10 -8 (-15 -2049 ((-619 (-1045)) |#1|)) (-15 -2024 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2024 (|#1| |#1| (-1045) |#3|)) (-15 -1872 (|#1| |#1|)) (-15 -2024 (|#1| |#2| |#3|)) (-15 -2512 (|#3| |#1|)) (-15 -2185 (|#1| |#1|)) (-15 -2197 (|#2| |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-1680 (((-1116 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3345 (((-112) $) 71)) (-1672 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2266 (((-112) $) 30)) (-3535 (($ $ (-890)) 99)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| |#2|) 59) (($ $ (-1045) |#2|) 74) (($ $ (-619 (-1045)) (-619 |#2|)) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-1656 (($ $ |#2|) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3171 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2512 ((|#2| $) 62)) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1951 ((|#1| $ |#2|) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2439 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1194 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-5 *2 (-1131 *3)))) (-3300 (*1 *1 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-1016)) (-4 *1 (-1194 *3)))) (-2438 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-3215 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1194 *3)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1194 *4)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-3914 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)))) (-3443 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-3772 (*1 *2 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169)))) (-3329 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-539)))) (-3707 (*1 *2 *1 *1) (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-539)) (-5 *2 (-745)))) (-1808 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-1704 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-1704 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-398 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-539)))) (-1595 (*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) (-1484 (*1 *2 *1 *1) (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| -1557 *3) (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1194 *3)))) (-1374 (*1 *2 *1 *1) (-12 (-4 *3 (-442)) (-4 *3 (-1016)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1194 *3)))) (-3329 (*1 *2 *3 *2) (-12 (-5 *3 (-398 *1)) (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547))))))) +(-13 (-918 |t#1| (-745) (-1045)) (-277 |t#1| |t#1|) (-277 $ $) (-225) (-223 |t#1|) (-10 -8 (-15 -3468 ((-1218 |t#1|) $ (-745))) (-15 -3376 ((-1131 |t#1|) $)) (-15 -3300 ($ (-1131 |t#1|))) (-15 -2438 ($ $ (-745))) (-15 -3215 ((-3 $ "failed") $ (-745))) (-15 -4267 ((-2 (|:| -2225 $) (|:| -3856 $)) $ $)) (-15 -4189 ((-2 (|:| -2225 $) (|:| -3856 $)) $ (-745))) (-15 -4113 ($ $ (-745))) (-15 -4021 ($ $ (-745))) (-15 -3914 ($ $ $)) (-15 -3443 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -3846 (|t#1| $)) (-15 -3772 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-539)) (PROGN (-6 (-277 (-398 $) (-398 $))) (-15 -3329 ((-398 $) (-398 $) (-398 $))) (-15 -3707 ((-745) $ $)) (-15 -1808 ($ $ $)) (-15 -1704 ((-3 $ "failed") $ $)) (-15 -1704 ((-3 (-398 $) "failed") (-398 $) $)) (-15 -1595 ($ $ $)) (-15 -1484 ((-2 (|:| -1557 |t#1|) (|:| -2225 $) (|:| -3856 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-15 -1374 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-354)) (PROGN (-6 (-298)) (-6 -4324) (-15 -3329 (|t#1| (-398 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (-15 -2069 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-592 (-523)) -12 (|has| (-1045) (-592 (-523))) (|has| |#1| (-592 (-523)))) ((-592 (-861 (-370))) -12 (|has| (-1045) (-592 (-861 (-370)))) (|has| |#1| (-592 (-861 (-370))))) ((-592 (-861 (-547))) -12 (|has| (-1045) (-592 (-861 (-547)))) (|has| |#1| (-592 (-861 (-547))))) ((-223 |#1|) . T) ((-225) . T) ((-277 (-398 $) (-398 $)) |has| |#1| (-539)) ((-277 |#1| |#1|) . T) ((-277 $ $) . T) ((-281) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-300 $) . T) ((-317 |#1| #0#) . T) ((-368 |#1|) . T) ((-402 |#1|) . T) ((-442) -1524 (|has| |#1| (-878)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-503 #2=(-1045) |#1|) . T) ((-503 #2# $) . T) ((-503 $ $) . T) ((-539) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-622 #1#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-615 (-547)) |has| |#1| (-615 (-547))) ((-615 |#1|) . T) ((-692 #1#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354))) ((-701) . T) ((-821) |has| |#1| (-821)) ((-869 #2#) . T) ((-869 (-1135)) |has| |#1| (-869 (-1135))) ((-855 (-370)) -12 (|has| (-1045) (-855 (-370))) (|has| |#1| (-855 (-370)))) ((-855 (-547)) -12 (|has| (-1045) (-855 (-547))) (|has| |#1| (-855 (-547)))) ((-918 |#1| #0# #2#) . T) ((-878) |has| |#1| (-878)) ((-889) |has| |#1| (-354)) ((-1007 (-398 (-547))) |has| |#1| (-1007 (-398 (-547)))) ((-1007 (-547)) |has| |#1| (-1007 (-547))) ((-1007 #2#) . T) ((-1007 |#1|) . T) ((-1022 #1#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-878)) (|has| |#1| (-539)) (|has| |#1| (-442)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1111) |has| |#1| (-1111)) ((-1176) |has| |#1| (-878))) +((-2259 (((-619 (-1045)) $) 28)) (-2054 (($ $) 25)) (-2229 (($ |#2| |#3|) NIL) (($ $ (-1045) |#3|) 22) (($ $ (-619 (-1045)) (-619 |#3|)) 21)) (-2013 (($ $) 14)) (-2027 ((|#2| $) 12)) (-1618 ((|#3| $) 10))) +(((-1195 |#1| |#2| |#3|) (-10 -8 (-15 -2259 ((-619 (-1045)) |#1|)) (-15 -2229 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2229 (|#1| |#1| (-1045) |#3|)) (-15 -2054 (|#1| |#1|)) (-15 -2229 (|#1| |#2| |#3|)) (-15 -1618 (|#3| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2027 (|#2| |#1|))) (-1196 |#2| |#3|) (-1016) (-766)) (T -1195)) +NIL +(-10 -8 (-15 -2259 ((-619 (-1045)) |#1|)) (-15 -2229 (|#1| |#1| (-619 (-1045)) (-619 |#3|))) (-15 -2229 (|#1| |#1| (-1045) |#3|)) (-15 -2054 (|#1| |#1|)) (-15 -2229 (|#1| |#2| |#3|)) (-15 -1618 (|#3| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2027 (|#2| |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 (-1045)) $) 72)) (-2995 (((-1135) $) 101)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3643 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2674 (((-1116 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-4211 (((-112) $) 71)) (-3707 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-4114 (((-112) $) 30)) (-2438 (($ $ (-890)) 99)) (-2187 (((-112) $) 60)) (-2229 (($ |#1| |#2|) 59) (($ $ (-1045) |#2|) 74) (($ $ (-619 (-1045)) (-619 |#2|)) 73)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3558 (($ $ |#2|) 93)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2670 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3329 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1075)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1618 ((|#2| $) 62)) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-3338 ((|#1| $ |#2|) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2582 ((|#1| $) 100)) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-2645 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-1196 |#1| |#2|) (-138) (-1016) (-766)) (T -1196)) -((-1680 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1116 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3171 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1135)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-1672 (*1 *2 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-1665 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-1665 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2439 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3743 (*2 (-1135)))) (-4 *2 (-1016)))) (-1656 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2460 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1116 *3))))) -(-13 (-942 |t#1| |t#2| (-1045)) (-10 -8 (-15 -1680 ((-1116 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3171 (|t#1| $ |t#2|)) (-15 -2754 ((-1135) $)) (-15 -2278 (|t#1| $)) (-15 -3535 ($ $ (-890))) (-15 -1672 (|t#2| $)) (-15 -1672 (|t#2| $ |t#2|)) (-15 -1665 ($ $ |t#2|)) (-15 -1665 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3743 (|t#1| (-1135)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2439 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1656 ($ $ |t#2|)) (IF (|has| |t#2| (-1075)) (-6 (-278 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-226)) (IF (|has| |t#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2460 ((-1116 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-278 $ $) |has| |#2| (-1075)) ((-282) |has| |#1| (-540)) ((-540) |has| |#1| (-540)) ((-622 #0#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| |#2| (-1045)) . T) ((-1022 #0#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-1688 ((|#2| |#2|) 12)) (-2634 (((-410 |#2|) |#2|) 14)) (-3524 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548)))) 30))) -(((-1197 |#1| |#2|) (-10 -7 (-15 -2634 ((-410 |#2|) |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -3524 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548)))))) (-540) (-13 (-1194 |#1|) (-540) (-10 -8 (-15 -3587 ($ $ $))))) (T -1197)) -((-3524 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-548)))) (-4 *4 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $))))) (-4 *3 (-540)) (-5 *1 (-1197 *3 *4)))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-540)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $))))))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-1194 *4) (-540) (-10 -8 (-15 -3587 ($ $ $)))))))) -(-10 -7 (-15 -2634 ((-410 |#2|) |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -3524 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-548)))))) -((-2540 (((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)) 24))) -(((-1198 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2540 ((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)))) (-1016) (-1016) (-1135) (-1135) |#1| |#2|) (T -1198)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1203 *6 *8 *10)) (-5 *1 (-1198 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1135))))) -(-10 -7 (-15 -2540 ((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) 96) (($ $ (-399 (-548)) (-399 (-548))) 95)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) 169)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) 98) (((-399 (-548)) $ (-399 (-548))) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99) (($ $ (-399 (-548))) 168)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-399 (-548))) 59) (($ $ (-1045) (-399 (-548))) 74) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) 102) (($ $ $) 79 (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-2674 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1116 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3329 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1135)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) (-2438 (*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-3707 (*1 *2 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-3643 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-3643 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2645 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3834 (*2 (-1135)))) (-4 *2 (-1016)))) (-3558 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) (-2670 (*1 *2 *1 *3) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1116 *3))))) +(-13 (-942 |t#1| |t#2| (-1045)) (-10 -8 (-15 -2674 ((-1116 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3329 (|t#1| $ |t#2|)) (-15 -2995 ((-1135) $)) (-15 -2582 (|t#1| $)) (-15 -2438 ($ $ (-890))) (-15 -3707 (|t#2| $)) (-15 -3707 (|t#2| $ |t#2|)) (-15 -3643 ($ $ |t#2|)) (-15 -3643 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3834 (|t#1| (-1135)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2645 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3558 ($ $ |t#2|)) (IF (|has| |t#2| (-1075)) (-6 (-277 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-225)) (IF (|has| |t#1| (-869 (-1135))) (-6 (-869 (-1135))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2670 ((-1116 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-277 $ $) |has| |#2| (-1075)) ((-281) |has| |#1| (-539)) ((-539) |has| |#1| (-539)) ((-622 #0#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| |#2| (-1045)) . T) ((-1022 #0#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-2745 ((|#2| |#2|) 12)) (-3457 (((-409 |#2|) |#2|) 14)) (-2316 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547)))) 30))) +(((-1197 |#1| |#2|) (-10 -7 (-15 -3457 ((-409 |#2|) |#2|)) (-15 -2745 (|#2| |#2|)) (-15 -2316 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547)))))) (-539) (-13 (-1194 |#1|) (-539) (-10 -8 (-15 -3715 ($ $ $))))) (T -1197)) +((-2316 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-547)))) (-4 *4 (-13 (-1194 *3) (-539) (-10 -8 (-15 -3715 ($ $ $))))) (-4 *3 (-539)) (-5 *1 (-1197 *3 *4)))) (-2745 (*1 *2 *2) (-12 (-4 *3 (-539)) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-1194 *3) (-539) (-10 -8 (-15 -3715 ($ $ $))))))) (-3457 (*1 *2 *3) (-12 (-4 *4 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-1194 *4) (-539) (-10 -8 (-15 -3715 ($ $ $)))))))) +(-10 -7 (-15 -3457 ((-409 |#2|) |#2|)) (-15 -2745 (|#2| |#2|)) (-15 -2316 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-547)))))) +((-2781 (((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)) 24))) +(((-1198 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2781 ((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)))) (-1016) (-1016) (-1135) (-1135) |#1| |#2|) (T -1198)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5 *7 *9)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-14 *7 (-1135)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1203 *6 *8 *10)) (-5 *1 (-1198 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1135))))) +(-10 -7 (-15 -2781 ((-1203 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1203 |#1| |#3| |#5|)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 (-1045)) $) 72)) (-2995 (((-1135) $) 101)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) 96) (($ $ (-398 (-547)) (-398 (-547))) 95)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 103)) (-1648 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 160 (|has| |#1| (-354)))) (-3457 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2118 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1624 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) 169)) (-1670 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) 17 T CONST)) (-2079 (($ $ $) 155 (|has| |#1| (-354)))) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 154 (|has| |#1| (-354)))) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-3674 (((-112) $) 162 (|has| |#1| (-354)))) (-4211 (((-112) $) 71)) (-1413 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) 98) (((-398 (-547)) $ (-398 (-547))) 97)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) 99) (($ $ (-398 (-547))) 168)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-2187 (((-112) $) 60)) (-2229 (($ |#1| (-398 (-547))) 59) (($ $ (-1045) (-398 (-547))) 74) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) 73)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-3620 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-3685 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-1917 (((-1118) $) 9)) (-1976 (($ $) 163 (|has| |#1| (-354)))) (-2069 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-354)))) (-3715 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2106 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 156 (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) 93)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2703 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) 152 (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) 102) (($ $ $) 79 (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 153 (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-1618 (((-398 (-547)) $) 62)) (-1681 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2582 ((|#1| $) 100)) (-1717 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1693 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-1199 |#1|) (-138) (-1016)) (T -1199)) -((-1761 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))) (-4 *4 (-1016)) (-4 *1 (-1199 *4)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-1199 *3)) (-4 *3 (-1016)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) (-3810 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-399 (-548)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548))))))))) -(-13 (-1196 |t#1| (-399 (-548))) (-10 -8 (-15 -1761 ($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |t#1|))))) (-15 -3535 ($ $ (-399 (-548)))) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2049 ((-619 (-1135)) |t#1|))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-548))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|) (IF (|has| |t#1| (-355)) (-6 (-355)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-399 (-548))) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-399 (-548)) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-355) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1176) |has| |#1| (-355)) ((-1196 |#1| #0#) . T)) -((-3324 (((-112) $) 12)) (-2441 (((-3 |#3| "failed") $) 17)) (-2375 ((|#3| $) 14))) -(((-1200 |#1| |#2| |#3|) (-10 -8 (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) (-1201 |#2| |#3|) (-1016) (-1178 |#2|)) (T -1200)) -NIL -(-10 -8 (-15 -2375 (|#3| |#1|)) (-15 -2441 ((-3 |#3| "failed") |#1|)) (-15 -3324 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) 96) (($ $ (-399 (-548)) (-399 (-548))) 95)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 160 (|has| |#1| (-355)))) (-2634 (((-410 $) $) 161 (|has| |#1| (-355)))) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) 151 (|has| |#1| (-355)))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) 169)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#2| "failed") $) 180)) (-2375 ((|#2| $) 179)) (-1945 (($ $ $) 155 (|has| |#1| (-355)))) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3569 (((-399 (-548)) $) 177)) (-1922 (($ $ $) 154 (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) |#2|) 178)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 149 (|has| |#1| (-355)))) (-1271 (((-112) $) 162 (|has| |#1| (-355)))) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) 98) (((-399 (-548)) $ (-399 (-548))) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99) (($ $ (-399 (-548))) 168)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-355)))) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-399 (-548))) 59) (($ $ (-1045) (-399 (-548))) 74) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-3553 (($ (-619 $)) 147 (|has| |#1| (-355))) (($ $ $) 146 (|has| |#1| (-355)))) (-3558 ((|#2| $) 176)) (-3546 (((-3 |#2| "failed") $) 174)) (-2119 ((|#2| $) 175)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 163 (|has| |#1| (-355)))) (-3810 (($ $) 167 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-355)))) (-3587 (($ (-619 $)) 145 (|has| |#1| (-355))) (($ $ $) 144 (|has| |#1| (-355)))) (-1915 (((-410 $) $) 159 (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 156 (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-355)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) 152 (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) 102) (($ $ $) 79 (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 153 (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355))) (($ $ $) 165 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 164 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-2810 (*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4)))) (-4 *4 (-1016)) (-4 *1 (-1199 *4)))) (-2438 (*1 *1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-1199 *3)) (-4 *3 (-1016)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) (-2069 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-398 (-547)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2259 ((-619 *2) *3))) (|has| *3 (-15 -2069 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547))))))))) +(-13 (-1196 |t#1| (-398 (-547))) (-10 -8 (-15 -2810 ($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |t#1|))))) (-15 -2438 ($ $ (-398 (-547)))) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $)) (IF (|has| |t#1| (-15 -2069 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2259 ((-619 (-1135)) |t#1|))) (-15 -2069 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-547))) (-15 -2069 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-398 (-547))) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-398 (-547)) (-1075)) ((-281) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-354) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-398 (-547)))) ((-1160) |has| |#1| (-38 (-398 (-547)))) ((-1176) |has| |#1| (-354)) ((-1196 |#1| #0#) . T)) +((-4046 (((-112) $) 12)) (-2698 (((-3 |#3| "failed") $) 17)) (-2643 ((|#3| $) 14))) +(((-1200 |#1| |#2| |#3|) (-10 -8 (-15 -2643 (|#3| |#1|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -4046 ((-112) |#1|))) (-1201 |#2| |#3|) (-1016) (-1178 |#2|)) (T -1200)) +NIL +(-10 -8 (-15 -2643 (|#3| |#1|)) (-15 -2698 ((-3 |#3| "failed") |#1|)) (-15 -4046 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 (-1045)) $) 72)) (-2995 (((-1135) $) 101)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) 96) (($ $ (-398 (-547)) (-398 (-547))) 95)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 103)) (-1648 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 160 (|has| |#1| (-354)))) (-3457 (((-409 $) $) 161 (|has| |#1| (-354)))) (-2118 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) 151 (|has| |#1| (-354)))) (-1624 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) 169)) (-1670 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#2| "failed") $) 180)) (-2643 ((|#2| $) 179)) (-2079 (($ $ $) 155 (|has| |#1| (-354)))) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-1427 (((-398 (-547)) $) 177)) (-2052 (($ $ $) 154 (|has| |#1| (-354)))) (-2351 (($ (-398 (-547)) |#2|) 178)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 149 (|has| |#1| (-354)))) (-3674 (((-112) $) 162 (|has| |#1| (-354)))) (-4211 (((-112) $) 71)) (-1413 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) 98) (((-398 (-547)) $ (-398 (-547))) 97)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) 99) (($ $ (-398 (-547))) 168)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 158 (|has| |#1| (-354)))) (-2187 (((-112) $) 60)) (-2229 (($ |#1| (-398 (-547))) 59) (($ $ (-1045) (-398 (-547))) 74) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) 73)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-3620 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-3685 (($ (-619 $)) 147 (|has| |#1| (-354))) (($ $ $) 146 (|has| |#1| (-354)))) (-2667 ((|#2| $) 176)) (-2561 (((-3 |#2| "failed") $) 174)) (-2337 ((|#2| $) 175)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 163 (|has| |#1| (-354)))) (-2069 (($ $) 167 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 166 (-1524 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 148 (|has| |#1| (-354)))) (-3715 (($ (-619 $)) 145 (|has| |#1| (-354))) (($ $ $) 144 (|has| |#1| (-354)))) (-2106 (((-409 $) $) 159 (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 156 (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) 93)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 150 (|has| |#1| (-354)))) (-2703 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) 152 (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) 102) (($ $ $) 79 (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 153 (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-1618 (((-398 (-547)) $) 62)) (-1681 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2582 ((|#1| $) 100)) (-1717 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1693 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354))) (($ $ $) 165 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 164 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-1201 |#1| |#2|) (-138) (-1016) (-1178 |t#1|)) (T -1201)) -((-2512 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) (-5 *2 (-399 (-548))))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1201 *3 *2)) (-4 *2 (-1178 *3)))) (-2129 (*1 *1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-4 *4 (-1016)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-1178 *4)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) (-5 *2 (-399 (-548))))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3)))) (-3546 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) -(-13 (-1199 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2129 ($ (-399 (-548)) |t#2|)) (-15 -3569 ((-399 (-548)) $)) (-15 -3558 (|t#2| $)) (-15 -2512 ((-399 (-548)) $)) (-15 -3743 ($ |t#2|)) (-15 -2119 (|t#2| $)) (-15 -3546 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-399 (-548))) . T) ((-25) . T) ((-38 #1=(-399 (-548))) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) ((-236) |has| |#1| (-355)) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-399 (-548)) (-1075)) ((-282) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-299) |has| |#1| (-355)) ((-355) |has| |#1| (-355)) ((-443) |has| |#1| (-355)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-622 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-355)) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1007 |#2|) . T) ((-1022 #1#) -1524 (|has| |#1| (-355)) (|has| |#1| (-38 (-399 (-548))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-355)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1176) |has| |#1| (-355)) ((-1196 |#1| #0#) . T) ((-1199 |#1|) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 96)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) 106) (($ $ (-399 (-548)) (-399 (-548))) 108)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) 51)) (-2074 (($ $) 180 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 156 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) 176 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 152 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) 61)) (-2098 (($ $) 184 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 160 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL)) (-2375 ((|#2| $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) 79)) (-3569 (((-399 (-548)) $) 13)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) |#2|) 11)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) 68)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) 103) (((-399 (-548)) $ (-399 (-548))) 104)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 120) (($ $ (-399 (-548))) 118)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) 31) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 115)) (-3496 (($ $) 150 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3558 ((|#2| $) 12)) (-3546 (((-3 |#2| "failed") $) 41)) (-2119 ((|#2| $) 42)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) 93 (|has| |#1| (-355)))) (-3810 (($ $) 135 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 140 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) 112)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) 148 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) 100) (($ $ $) 86 (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 127 (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2512 (((-399 (-548)) $) 16)) (-2110 (($ $) 186 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 162 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 182 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 158 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 178 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 154 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 110)) (-3743 (((-832) $) NIL) (($ (-548)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-399 (-548))) 128 (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) 99)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) 117)) (-2278 ((|#1| $) 98)) (-2145 (($ $) 192 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 168 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) 188 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 164 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 196 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 172 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 198 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 174 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 194 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 170 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 190 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 166 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 21 T CONST)) (-3118 (($) 17 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) 66)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) 92 (|has| |#1| (-355)))) (-2299 (($ $) 131) (($ $ $) 72)) (-2290 (($ $ $) 70)) (** (($ $ (-890)) NIL) (($ $ (-745)) 76) (($ $ (-548)) 145 (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 146 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) +((-1618 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) (-5 *2 (-398 (-547))))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *1 (-1201 *3 *2)) (-4 *2 (-1178 *3)))) (-2351 (*1 *1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-4 *4 (-1016)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-1178 *4)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) (-5 *2 (-398 (-547))))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3)))) (-2561 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) +(-13 (-1199 |t#1|) (-1007 |t#2|) (-10 -8 (-15 -2351 ($ (-398 (-547)) |t#2|)) (-15 -1427 ((-398 (-547)) $)) (-15 -2667 (|t#2| $)) (-15 -1618 ((-398 (-547)) $)) (-15 -3834 ($ |t#2|)) (-15 -2337 (|t#2| $)) (-15 -2561 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-398 (-547))) . T) ((-25) . T) ((-38 #1=(-398 (-547))) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) ((-235) |has| |#1| (-354)) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-398 (-547)) (-1075)) ((-281) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-298) |has| |#1| (-354)) ((-354) |has| |#1| (-354)) ((-442) |has| |#1| (-354)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-622 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354))) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-889) |has| |#1| (-354)) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1007 |#2|) . T) ((-1022 #1#) -1524 (|has| |#1| (-354)) (|has| |#1| (-38 (-398 (-547))))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-354)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-398 (-547)))) ((-1160) |has| |#1| (-38 (-398 (-547)))) ((-1176) |has| |#1| (-354)) ((-1196 |#1| #0#) . T) ((-1199 |#1|) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 96)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) 106) (($ $ (-398 (-547)) (-398 (-547))) 108)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) 51)) (-1648 (($ $) 180 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 156 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) 176 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 152 (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) 61)) (-1670 (($ $) 184 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 160 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL)) (-2643 ((|#2| $) NIL)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) 79)) (-1427 (((-398 (-547)) $) 13)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-2351 (($ (-398 (-547)) |#2|) 11)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-4211 (((-112) $) 68)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) 103) (((-398 (-547)) $ (-398 (-547))) 104)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) 120) (($ $ (-398 (-547))) 118)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-398 (-547))) 31) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) 115)) (-3620 (($ $) 150 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2667 ((|#2| $) 12)) (-2561 (((-3 |#2| "failed") $) 41)) (-2337 ((|#2| $) 42)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) 93 (|has| |#1| (-354)))) (-2069 (($ $) 135 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 140 (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157)))))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) 112)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) 148 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) 100) (($ $ $) 86 (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 127 (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-1618 (((-398 (-547)) $) 16)) (-1681 (($ $) 186 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 162 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 182 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 158 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 178 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 154 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 110)) (-3834 (((-832) $) NIL) (($ (-547)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-398 (-547))) 128 (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) 99)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) 117)) (-2582 ((|#1| $) 98)) (-1717 (($ $) 192 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 168 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) 188 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 164 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 196 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 172 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 198 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 174 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 194 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 170 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 190 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 166 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 21 T CONST)) (-3277 (($) 17 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2371 (((-112) $ $) 66)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) 92 (|has| |#1| (-354)))) (-2484 (($ $) 131) (($ $ $) 72)) (-2470 (($ $ $) 70)) (** (($ $ (-890)) NIL) (($ $ (-745)) 76) (($ $ (-547)) 145 (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 146 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) (((-1202 |#1| |#2|) (-1201 |#1| |#2|) (-1016) (-1178 |#1|)) (T -1202)) NIL (-1201 |#1| |#2|) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 11)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) NIL (|has| |#1| (-540)))) (-1665 (($ $ (-399 (-548))) NIL) (($ $ (-399 (-548)) (-399 (-548))) NIL)) (-1680 (((-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|))) $) NIL)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1688 (($ $) NIL (|has| |#1| (-355)))) (-2634 (((-410 $) $) NIL (|has| |#1| (-355)))) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4087 (((-112) $ $) NIL (|has| |#1| (-355)))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-745) (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#1|)))) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-1182 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1210 |#1| |#2| |#3|) "failed") $) 22)) (-2375 (((-1182 |#1| |#2| |#3|) $) NIL) (((-1210 |#1| |#2| |#3|) $) NIL)) (-1945 (($ $ $) NIL (|has| |#1| (-355)))) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3569 (((-399 (-548)) $) 57)) (-1922 (($ $ $) NIL (|has| |#1| (-355)))) (-2129 (($ (-399 (-548)) (-1182 |#1| |#2| |#3|)) NIL)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) NIL (|has| |#1| (-355)))) (-1271 (((-112) $) NIL (|has| |#1| (-355)))) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-399 (-548)) $) NIL) (((-399 (-548)) $ (-399 (-548))) NIL)) (-2266 (((-112) $) NIL)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) NIL) (($ $ (-399 (-548))) NIL)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-399 (-548))) 30) (($ $ (-1045) (-399 (-548))) NIL) (($ $ (-619 (-1045)) (-619 (-399 (-548)))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-3553 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-3558 (((-1182 |#1| |#2| |#3|) $) 60)) (-3546 (((-3 (-1182 |#1| |#2| |#3|) "failed") $) NIL)) (-2119 (((-1182 |#1| |#2| |#3|) $) NIL)) (-2546 (((-1118) $) NIL)) (-2153 (($ $) NIL (|has| |#1| (-355)))) (-3810 (($ $) 39 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 40 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-355)))) (-3587 (($ (-619 $)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-1915 (((-410 $) $) NIL (|has| |#1| (-355)))) (-4066 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-355))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) NIL (|has| |#1| (-355)))) (-1656 (($ $ (-399 (-548))) NIL)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-3126 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-355)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))))) (-4077 (((-745) $) NIL (|has| |#1| (-355)))) (-3171 ((|#1| $ (-399 (-548))) NIL) (($ $ $) NIL (|has| (-399 (-548)) (-1075)))) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) NIL (|has| |#1| (-355)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $ (-1214 |#2|)) 38)) (-2512 (((-399 (-548)) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) NIL)) (-3743 (((-832) $) 89) (($ (-548)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1182 |#1| |#2| |#3|)) 16) (($ (-1210 |#1| |#2| |#3|)) 17) (($ (-1214 |#2|)) 36) (($ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540)))) (-1951 ((|#1| $ (-399 (-548))) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 12)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-399 (-548))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-399 (-548))))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 32 T CONST)) (-3118 (($) 26 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-399 (-548)) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-548)) NIL (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1203 |#1| |#2| |#3|) (-13 (-1201 |#1| (-1182 |#1| |#2| |#3|)) (-1007 (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1203)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1201 |#1| (-1182 |#1| |#2| |#3|)) (-1007 (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 34)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL)) (-3303 (($ $) NIL)) (-3279 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 (-548) "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-548)))) (((-3 (-399 (-548)) "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-399 (-548))))) (((-3 (-1203 |#2| |#3| |#4|) "failed") $) 20)) (-2375 (((-548) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-548)))) (((-399 (-548)) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-399 (-548))))) (((-1203 |#2| |#3| |#4|) $) NIL)) (-1872 (($ $) 35)) (-3859 (((-3 $ "failed") $) 25)) (-4065 (($ $) NIL (|has| (-1203 |#2| |#3| |#4|) (-443)))) (-4256 (($ $ (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|) $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) 11)) (-2435 (((-112) $) NIL)) (-2024 (($ (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) 23)) (-3904 (((-311 |#2| |#3| |#4|) $) NIL)) (-4267 (($ (-1 (-311 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) $) NIL)) (-2540 (($ (-1 (-1203 |#2| |#3| |#4|) (-1203 |#2| |#3| |#4|)) $) NIL)) (-3592 (((-3 (-814 |#2|) "failed") $) 75)) (-2185 (($ $) NIL)) (-2197 (((-1203 |#2| |#3| |#4|) $) 18)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2164 (((-112) $) NIL)) (-2175 (((-1203 |#2| |#3| |#4|) $) NIL)) (-1900 (((-3 $ "failed") $ (-1203 |#2| |#3| |#4|)) NIL (|has| (-1203 |#2| |#3| |#4|) (-540))) (((-3 $ "failed") $ $) NIL)) (-3580 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-311 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $) 58)) (-2512 (((-311 |#2| |#3| |#4|) $) 14)) (-3881 (((-1203 |#2| |#3| |#4|) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-443)))) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ (-1203 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-399 (-548))) NIL (-1524 (|has| (-1203 |#2| |#3| |#4|) (-38 (-399 (-548)))) (|has| (-1203 |#2| |#3| |#4|) (-1007 (-399 (-548))))))) (-3852 (((-619 (-1203 |#2| |#3| |#4|)) $) NIL)) (-1951 (((-1203 |#2| |#3| |#4|) $ (-311 |#2| |#3| |#4|)) NIL)) (-4017 (((-3 $ "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-143)))) (-3835 (((-745)) NIL)) (-4243 (($ $ $ (-745)) NIL (|has| (-1203 |#2| |#3| |#4|) (-169)))) (-3290 (((-112) $ $) NIL)) (-3107 (($) 63 T CONST)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ (-1203 |#2| |#3| |#4|)) NIL (|has| (-1203 |#2| |#3| |#4|) (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ (-1203 |#2| |#3| |#4|)) NIL) (($ (-1203 |#2| |#3| |#4|) $) NIL) (($ (-399 (-548)) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| (-1203 |#2| |#3| |#4|) (-38 (-399 (-548))))))) -(((-1204 |#1| |#2| |#3| |#4|) (-13 (-318 (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) (-540) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3580 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-311 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $)))) (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443)) (-13 (-27) (-1157) (-422 |#1|)) (-1135) |#2|) (T -1204)) -((-3592 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *2 (-814 *4)) (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4))) (-3580 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 *4 *5 *6)) (|:| |%expon| (-311 *4 *5 *6)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))))) (|:| |%type| (-1118)))) (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) (-14 *6 *4)))) -(-13 (-318 (-1203 |#2| |#3| |#4|) (-311 |#2| |#3| |#4|)) (-540) (-10 -8 (-15 -3592 ((-3 (-814 |#2|) "failed") $)) (-15 -3580 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-311 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $)))) -((-4056 ((|#2| $) 29)) (-1988 ((|#2| $) 18)) (-1272 (($ $) 36)) (-3604 (($ $ (-548)) 64)) (-2028 (((-112) $ (-745)) 33)) (-4192 ((|#2| $ |#2|) 61)) (-3614 ((|#2| $ |#2|) 59)) (-2089 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4202 (($ $ (-619 $)) 60)) (-1975 ((|#2| $) 17)) (-3465 (($ $) NIL) (($ $ (-745)) 42)) (-4245 (((-619 $) $) 26)) (-4213 (((-112) $ $) 50)) (-4282 (((-112) $ (-745)) 32)) (-4248 (((-112) $ (-745)) 31)) (-3010 (((-112) $) 28)) (-3724 ((|#2| $) 24) (($ $ (-745)) 46)) (-3171 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2740 (((-112) $) 22)) (-3672 (($ $) 39)) (-3648 (($ $) 65)) (-3683 (((-745) $) 41)) (-3693 (($ $) 40)) (-1831 (($ $ $) 58) (($ |#2| $) NIL)) (-2956 (((-619 $) $) 27)) (-2214 (((-112) $ $) 48)) (-3643 (((-745) $) 35))) -(((-1205 |#1| |#2|) (-10 -8 (-15 -3604 (|#1| |#1| (-548))) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -3614 (|#2| |#1| |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3648 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1988 (|#2| |#1|)) (-15 -1975 (|#2| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3171 (|#2| |#1| "first")) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-619 |#1|))) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) (-1206 |#2|) (-1172)) (T -1205)) -NIL -(-10 -8 (-15 -3604 (|#1| |#1| (-548))) (-15 -2089 (|#2| |#1| "last" |#2|)) (-15 -3614 (|#2| |#1| |#2|)) (-15 -2089 (|#1| |#1| "rest" |#1|)) (-15 -2089 (|#2| |#1| "first" |#2|)) (-15 -3648 (|#1| |#1|)) (-15 -3672 (|#1| |#1|)) (-15 -3683 ((-745) |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -1988 (|#2| |#1|)) (-15 -1975 (|#2| |#1|)) (-15 -1272 (|#1| |#1|)) (-15 -3724 (|#1| |#1| (-745))) (-15 -3171 (|#2| |#1| "last")) (-15 -3724 (|#2| |#1|)) (-15 -3465 (|#1| |#1| (-745))) (-15 -3171 (|#1| |#1| "rest")) (-15 -3465 (|#1| |#1|)) (-15 -3171 (|#2| |#1| "first")) (-15 -1831 (|#1| |#2| |#1|)) (-15 -1831 (|#1| |#1| |#1|)) (-15 -4192 (|#2| |#1| |#2|)) (-15 -2089 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-619 |#1|))) (-15 -4213 ((-112) |#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3171 (|#2| |#1| "value")) (-15 -4056 (|#2| |#1|)) (-15 -3010 ((-112) |#1|)) (-15 -4245 ((-619 |#1|) |#1|)) (-15 -2956 ((-619 |#1|) |#1|)) (-15 -2214 ((-112) |#1| |#1|)) (-15 -3643 ((-745) |#1|)) (-15 -2028 ((-112) |#1| (-745))) (-15 -4282 ((-112) |#1| (-745))) (-15 -4248 ((-112) |#1| (-745)))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4056 ((|#1| $) 48)) (-1988 ((|#1| $) 65)) (-1272 (($ $) 67)) (-3604 (($ $ (-548)) 52 (|has| $ (-6 -4328)))) (-2028 (((-112) $ (-745)) 8)) (-4192 ((|#1| $ |#1|) 39 (|has| $ (-6 -4328)))) (-3624 (($ $ $) 56 (|has| $ (-6 -4328)))) (-3614 ((|#1| $ |#1|) 54 (|has| $ (-6 -4328)))) (-3635 ((|#1| $ |#1|) 58 (|has| $ (-6 -4328)))) (-2089 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4328))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4328))) (($ $ "rest" $) 55 (|has| $ (-6 -4328))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4328)))) (-4202 (($ $ (-619 $)) 41 (|has| $ (-6 -4328)))) (-1975 ((|#1| $) 66)) (-3030 (($) 7 T CONST)) (-3465 (($ $) 73) (($ $ (-745)) 71)) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-4245 (((-619 $) $) 50)) (-4213 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4282 (((-112) $ (-745)) 9)) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35)) (-4248 (((-112) $ (-745)) 10)) (-2869 (((-619 |#1|) $) 45)) (-3010 (((-112) $) 49)) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3724 ((|#1| $) 70) (($ $ (-745)) 68)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 76) (($ $ (-745)) 74)) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4234 (((-548) $ $) 44)) (-2740 (((-112) $) 46)) (-3672 (($ $) 62)) (-3648 (($ $) 59 (|has| $ (-6 -4328)))) (-3683 (((-745) $) 63)) (-3693 (($ $) 64)) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2113 (($ $) 13)) (-3659 (($ $ $) 61 (|has| $ (-6 -4328))) (($ $ |#1|) 60 (|has| $ (-6 -4328)))) (-1831 (($ $ $) 78) (($ |#1| $) 77)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-2956 (((-619 $) $) 51)) (-4224 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 11)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) NIL (|has| |#1| (-539)))) (-3643 (($ $ (-398 (-547))) NIL) (($ $ (-398 (-547)) (-398 (-547))) NIL)) (-2674 (((-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|))) $) NIL)) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2745 (($ $) NIL (|has| |#1| (-354)))) (-3457 (((-409 $) $) NIL (|has| |#1| (-354)))) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2873 (((-112) $ $) NIL (|has| |#1| (-354)))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-745) (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#1|)))) NIL)) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-1182 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1210 |#1| |#2| |#3|) "failed") $) 22)) (-2643 (((-1182 |#1| |#2| |#3|) $) NIL) (((-1210 |#1| |#2| |#3|) $) NIL)) (-2079 (($ $ $) NIL (|has| |#1| (-354)))) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1427 (((-398 (-547)) $) 57)) (-2052 (($ $ $) NIL (|has| |#1| (-354)))) (-2351 (($ (-398 (-547)) (-1182 |#1| |#2| |#3|)) NIL)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) NIL (|has| |#1| (-354)))) (-3674 (((-112) $) NIL (|has| |#1| (-354)))) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-398 (-547)) $) NIL) (((-398 (-547)) $ (-398 (-547))) NIL)) (-4114 (((-112) $) NIL)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) NIL) (($ $ (-398 (-547))) NIL)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-398 (-547))) 30) (($ $ (-1045) (-398 (-547))) NIL) (($ $ (-619 (-1045)) (-619 (-398 (-547)))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-3685 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2667 (((-1182 |#1| |#2| |#3|) $) 60)) (-2561 (((-3 (-1182 |#1| |#2| |#3|) "failed") $) NIL)) (-2337 (((-1182 |#1| |#2| |#3|) $) NIL)) (-1917 (((-1118) $) NIL)) (-1976 (($ $) NIL (|has| |#1| (-354)))) (-2069 (($ $) 39 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) NIL (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 40 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) NIL (|has| |#1| (-354)))) (-3715 (($ (-619 $)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2106 (((-409 $) $) NIL (|has| |#1| (-354)))) (-3793 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-354))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) NIL (|has| |#1| (-354)))) (-3558 (($ $ (-398 (-547))) NIL)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-1690 (((-3 (-619 $) "failed") (-619 $) $) NIL (|has| |#1| (-354)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))))) (-2776 (((-745) $) NIL (|has| |#1| (-354)))) (-3329 ((|#1| $ (-398 (-547))) NIL) (($ $ $) NIL (|has| (-398 (-547)) (-1075)))) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) NIL (|has| |#1| (-354)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $ (-1214 |#2|)) 38)) (-1618 (((-398 (-547)) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) NIL)) (-3834 (((-832) $) 89) (($ (-547)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1182 |#1| |#2| |#3|)) 16) (($ (-1210 |#1| |#2| |#3|)) 17) (($ (-1214 |#2|)) 36) (($ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539)))) (-3338 ((|#1| $ (-398 (-547))) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 12)) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-398 (-547))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-398 (-547))))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 32 T CONST)) (-3277 (($) 26 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-398 (-547)) |#1|))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 34)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ (-547)) NIL (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1203 |#1| |#2| |#3|) (-13 (-1201 |#1| (-1182 |#1| |#2| |#3|)) (-1007 (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1203)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1201 |#1| (-1182 |#1| |#2| |#3|)) (-1007 (-1210 |#1| |#2| |#3|)) (-10 -8 (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 34)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL)) (-3881 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 (-547) "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-547)))) (((-3 (-398 (-547)) "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-398 (-547))))) (((-3 (-1203 |#2| |#3| |#4|) "failed") $) 20)) (-2643 (((-547) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-547)))) (((-398 (-547)) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-1007 (-398 (-547))))) (((-1203 |#2| |#3| |#4|) $) NIL)) (-2054 (($ $) 35)) (-2537 (((-3 $ "failed") $) 25)) (-3786 (($ $) NIL (|has| (-1203 |#2| |#3| |#4|) (-442)))) (-3913 (($ $ (-1203 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|) $) NIL)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) 11)) (-2187 (((-112) $) NIL)) (-2229 (($ (-1203 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) 23)) (-1626 (((-310 |#2| |#3| |#4|) $) NIL)) (-4019 (($ (-1 (-310 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) $) NIL)) (-2781 (($ (-1 (-1203 |#2| |#3| |#4|) (-1203 |#2| |#3| |#4|)) $) NIL)) (-1676 (((-3 (-814 |#2|) "failed") $) 75)) (-2013 (($ $) NIL)) (-2027 (((-1203 |#2| |#3| |#4|) $) 18)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1988 (((-112) $) NIL)) (-1999 (((-1203 |#2| |#3| |#4|) $) NIL)) (-2025 (((-3 $ "failed") $ (-1203 |#2| |#3| |#4|)) NIL (|has| (-1203 |#2| |#3| |#4|) (-539))) (((-3 $ "failed") $ $) NIL)) (-1556 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-310 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $) 58)) (-1618 (((-310 |#2| |#3| |#4|) $) 14)) (-1378 (((-1203 |#2| |#3| |#4|) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-442)))) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ (-1203 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-398 (-547))) NIL (-1524 (|has| (-1203 |#2| |#3| |#4|) (-38 (-398 (-547)))) (|has| (-1203 |#2| |#3| |#4|) (-1007 (-398 (-547))))))) (-2472 (((-619 (-1203 |#2| |#3| |#4|)) $) NIL)) (-3338 (((-1203 |#2| |#3| |#4|) $ (-310 |#2| |#3| |#4|)) NIL)) (-3336 (((-3 $ "failed") $) NIL (|has| (-1203 |#2| |#3| |#4|) (-143)))) (-2311 (((-745)) NIL)) (-1969 (($ $ $ (-745)) NIL (|has| (-1203 |#2| |#3| |#4|) (-169)))) (-1932 (((-112) $ $) NIL)) (-3267 (($) 63 T CONST)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ (-1203 |#2| |#3| |#4|)) NIL (|has| (-1203 |#2| |#3| |#4|) (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ (-1203 |#2| |#3| |#4|)) NIL) (($ (-1203 |#2| |#3| |#4|) $) NIL) (($ (-398 (-547)) $) NIL (|has| (-1203 |#2| |#3| |#4|) (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| (-1203 |#2| |#3| |#4|) (-38 (-398 (-547))))))) +(((-1204 |#1| |#2| |#3| |#4|) (-13 (-317 (-1203 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) (-539) (-10 -8 (-15 -1676 ((-3 (-814 |#2|) "failed") $)) (-15 -1556 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-310 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $)))) (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442)) (-13 (-27) (-1157) (-421 |#1|)) (-1135) |#2|) (T -1204)) +((-1676 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *2 (-814 *4)) (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) (-14 *6 *4))) (-1556 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 *4 *5 *6)) (|:| |%expon| (-310 *4 *5 *6)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4)))))) (|:| |%type| (-1118)))) (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) (-14 *6 *4)))) +(-13 (-317 (-1203 |#2| |#3| |#4|) (-310 |#2| |#3| |#4|)) (-539) (-10 -8 (-15 -1676 ((-3 (-814 |#2|) "failed") $)) (-15 -1556 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1203 |#2| |#3| |#4|)) (|:| |%expon| (-310 |#2| |#3| |#4|)) (|:| |%expTerms| (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| |#2|)))))) (|:| |%type| (-1118))) "failed") $)))) +((-4152 ((|#2| $) 29)) (-2823 ((|#2| $) 18)) (-1335 (($ $) 36)) (-1792 (($ $ (-547)) 64)) (-2826 (((-112) $ (-745)) 33)) (-2741 ((|#2| $ |#2|) 61)) (-1907 ((|#2| $ |#2|) 59)) (-2238 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1534 (($ $ (-619 $)) 60)) (-2814 ((|#2| $) 17)) (-3645 (($ $) NIL) (($ $ (-745)) 42)) (-1996 (((-619 $) $) 26)) (-1655 (((-112) $ $) 50)) (-4161 (((-112) $ (-745)) 32)) (-2024 (((-112) $ (-745)) 31)) (-3033 (((-112) $) 28)) (-3817 ((|#2| $) 24) (($ $ (-745)) 46)) (-3329 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2094 (((-112) $) 22)) (-4291 (($ $) 39)) (-4080 (($ $) 65)) (-3257 (((-745) $) 41)) (-3360 (($ $) 40)) (-1935 (($ $ $) 58) (($ |#2| $) NIL)) (-3668 (((-619 $) $) 27)) (-2371 (((-112) $ $) 48)) (-3763 (((-745) $) 35))) +(((-1205 |#1| |#2|) (-10 -8 (-15 -1792 (|#1| |#1| (-547))) (-15 -2238 (|#2| |#1| "last" |#2|)) (-15 -1907 (|#2| |#1| |#2|)) (-15 -2238 (|#1| |#1| "rest" |#1|)) (-15 -2238 (|#2| |#1| "first" |#2|)) (-15 -4080 (|#1| |#1|)) (-15 -4291 (|#1| |#1|)) (-15 -3257 ((-745) |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -2814 (|#2| |#1|)) (-15 -1335 (|#1| |#1|)) (-15 -3817 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "last")) (-15 -3817 (|#2| |#1|)) (-15 -3645 (|#1| |#1| (-745))) (-15 -3329 (|#1| |#1| "rest")) (-15 -3645 (|#1| |#1|)) (-15 -3329 (|#2| |#1| "first")) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#1|)) (-15 -2741 (|#2| |#1| |#2|)) (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -1534 (|#1| |#1| (-619 |#1|))) (-15 -1655 ((-112) |#1| |#1|)) (-15 -2094 ((-112) |#1|)) (-15 -3329 (|#2| |#1| "value")) (-15 -4152 (|#2| |#1|)) (-15 -3033 ((-112) |#1|)) (-15 -1996 ((-619 |#1|) |#1|)) (-15 -3668 ((-619 |#1|) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745)))) (-1206 |#2|) (-1172)) (T -1205)) +NIL +(-10 -8 (-15 -1792 (|#1| |#1| (-547))) (-15 -2238 (|#2| |#1| "last" |#2|)) (-15 -1907 (|#2| |#1| |#2|)) (-15 -2238 (|#1| |#1| "rest" |#1|)) (-15 -2238 (|#2| |#1| "first" |#2|)) (-15 -4080 (|#1| |#1|)) (-15 -4291 (|#1| |#1|)) (-15 -3257 ((-745) |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -2823 (|#2| |#1|)) (-15 -2814 (|#2| |#1|)) (-15 -1335 (|#1| |#1|)) (-15 -3817 (|#1| |#1| (-745))) (-15 -3329 (|#2| |#1| "last")) (-15 -3817 (|#2| |#1|)) (-15 -3645 (|#1| |#1| (-745))) (-15 -3329 (|#1| |#1| "rest")) (-15 -3645 (|#1| |#1|)) (-15 -3329 (|#2| |#1| "first")) (-15 -1935 (|#1| |#2| |#1|)) (-15 -1935 (|#1| |#1| |#1|)) (-15 -2741 (|#2| |#1| |#2|)) (-15 -2238 (|#2| |#1| "value" |#2|)) (-15 -1534 (|#1| |#1| (-619 |#1|))) (-15 -1655 ((-112) |#1| |#1|)) (-15 -2094 ((-112) |#1|)) (-15 -3329 (|#2| |#1| "value")) (-15 -4152 (|#2| |#1|)) (-15 -3033 ((-112) |#1|)) (-15 -1996 ((-619 |#1|) |#1|)) (-15 -3668 ((-619 |#1|) |#1|)) (-15 -2371 ((-112) |#1| |#1|)) (-15 -3763 ((-745) |#1|)) (-15 -2826 ((-112) |#1| (-745))) (-15 -4161 ((-112) |#1| (-745))) (-15 -2024 ((-112) |#1| (-745)))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-4152 ((|#1| $) 48)) (-2823 ((|#1| $) 65)) (-1335 (($ $) 67)) (-1792 (($ $ (-547)) 52 (|has| $ (-6 -4329)))) (-2826 (((-112) $ (-745)) 8)) (-2741 ((|#1| $ |#1|) 39 (|has| $ (-6 -4329)))) (-3861 (($ $ $) 56 (|has| $ (-6 -4329)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4329)))) (-3962 ((|#1| $ |#1|) 58 (|has| $ (-6 -4329)))) (-2238 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4329))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4329))) (($ $ "rest" $) 55 (|has| $ (-6 -4329))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4329)))) (-1534 (($ $ (-619 $)) 41 (|has| $ (-6 -4329)))) (-2814 ((|#1| $) 66)) (-3219 (($) 7 T CONST)) (-3645 (($ $) 73) (($ $ (-745)) 71)) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-1996 (((-619 $) $) 50)) (-1655 (((-112) $ $) 42 (|has| |#1| (-1063)))) (-4161 (((-112) $ (-745)) 9)) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35)) (-2024 (((-112) $ (-745)) 10)) (-3579 (((-619 |#1|) $) 45)) (-3033 (((-112) $) 49)) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-3817 ((|#1| $) 70) (($ $ (-745)) 68)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 76) (($ $ (-745)) 74)) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1887 (((-547) $ $) 44)) (-2094 (((-112) $) 46)) (-4291 (($ $) 62)) (-4080 (($ $) 59 (|has| $ (-6 -4329)))) (-3257 (((-745) $) 63)) (-3360 (($ $) 64)) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2265 (($ $) 13)) (-4187 (($ $ $) 61 (|has| $ (-6 -4329))) (($ $ |#1|) 60 (|has| $ (-6 -4329)))) (-1935 (($ $ $) 78) (($ |#1| $) 77)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-3668 (((-619 $) $) 51)) (-1770 (((-112) $ $) 43 (|has| |#1| (-1063)))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1206 |#1|) (-138) (-1172)) (T -1206)) -((-1831 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1831 (*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3453 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3465 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3724 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-1272 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3693 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-3672 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3659 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3648 (*1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3635 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3624 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3614 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2089 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3604 (*1 *1 *1 *2) (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) (-4 *3 (-1172))))) -(-13 (-979 |t#1|) (-10 -8 (-15 -1831 ($ $ $)) (-15 -1831 ($ |t#1| $)) (-15 -3453 (|t#1| $)) (-15 -3171 (|t#1| $ "first")) (-15 -3453 ($ $ (-745))) (-15 -3465 ($ $)) (-15 -3171 ($ $ "rest")) (-15 -3465 ($ $ (-745))) (-15 -3724 (|t#1| $)) (-15 -3171 (|t#1| $ "last")) (-15 -3724 ($ $ (-745))) (-15 -1272 ($ $)) (-15 -1975 (|t#1| $)) (-15 -1988 (|t#1| $)) (-15 -3693 ($ $)) (-15 -3683 ((-745) $)) (-15 -3672 ($ $)) (IF (|has| $ (-6 -4328)) (PROGN (-15 -3659 ($ $ $)) (-15 -3659 ($ $ |t#1|)) (-15 -3648 ($ $)) (-15 -3635 (|t#1| $ |t#1|)) (-15 -2089 (|t#1| $ "first" |t#1|)) (-15 -3624 ($ $ $)) (-15 -2089 ($ $ "rest" $)) (-15 -3614 (|t#1| $ |t#1|)) (-15 -2089 (|t#1| $ "last" |t#1|)) (-15 -3604 ($ $ (-548)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1063)) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-592 (-832)))) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-480 |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) -((-2540 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1207 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) (-1016) (-1016) (-1209 |#1|) (-1209 |#2|)) (T -1207)) -((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1209 *6)) (-5 *1 (-1207 *5 *6 *4 *2)) (-4 *4 (-1209 *5))))) -(-10 -7 (-15 -2540 (|#4| (-1 |#2| |#1|) |#3|))) -((-3324 (((-112) $) 15)) (-2074 (($ $) 92)) (-1940 (($ $) 68)) (-2054 (($ $) 88)) (-1918 (($ $) 64)) (-2098 (($ $) 96)) (-1963 (($ $) 72)) (-3496 (($ $) 62)) (-2458 (($ $) 60)) (-2110 (($ $) 98)) (-1973 (($ $) 74)) (-2086 (($ $) 94)) (-1952 (($ $) 70)) (-2065 (($ $) 90)) (-1929 (($ $) 66)) (-3743 (((-832) $) 48) (($ (-548)) NIL) (($ (-399 (-548))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2145 (($ $) 104)) (-2006 (($ $) 80)) (-2122 (($ $) 100)) (-1986 (($ $) 76)) (-2170 (($ $) 108)) (-2029 (($ $) 84)) (-4026 (($ $) 110)) (-2040 (($ $) 86)) (-2158 (($ $) 106)) (-2017 (($ $) 82)) (-2132 (($ $) 102)) (-1996 (($ $) 78)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-399 (-548))) 58))) -(((-1208 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1952 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3324 ((-112) |#1|)) (-15 -3743 ((-832) |#1|))) (-1209 |#2|) (-1016)) (T -1208)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-399 (-548)))) (-15 -1940 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -1952 (|#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2029 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2065 (|#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2110 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2054 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2170 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2145 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3743 (|#1| |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3743 (|#1| (-399 (-548)))) (-15 -3743 (|#1| (-548))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -3324 ((-112) |#1|)) (-15 -3743 ((-832) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-2049 (((-619 (-1045)) $) 72)) (-2754 (((-1135) $) 101)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 49 (|has| |#1| (-540)))) (-3303 (($ $) 50 (|has| |#1| (-540)))) (-3279 (((-112) $) 52 (|has| |#1| (-540)))) (-1665 (($ $ (-745)) 96) (($ $ (-745) (-745)) 95)) (-1680 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 103)) (-2074 (($ $) 133 (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) 116 (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) 19)) (-1926 (($ $) 115 (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) 132 (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) 117 (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 153) (($ (-1116 |#1|)) 151)) (-2098 (($ $) 131 (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) 118 (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) 17 T CONST)) (-1872 (($ $) 58)) (-3859 (((-3 $ "failed") $) 32)) (-3837 (($ $) 150)) (-3520 (((-921 |#1|) $ (-745)) 148) (((-921 |#1|) $ (-745) (-745)) 147)) (-3345 (((-112) $) 71)) (-1365 (($) 143 (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $) 98) (((-745) $ (-745)) 97)) (-2266 (((-112) $) 30)) (-2154 (($ $ (-548)) 114 (|has| |#1| (-38 (-399 (-548)))))) (-3535 (($ $ (-890)) 99)) (-3823 (($ (-1 |#1| (-548)) $) 149)) (-2435 (((-112) $) 60)) (-2024 (($ |#1| (-745)) 59) (($ $ (-1045) (-745)) 74) (($ $ (-619 (-1045)) (-619 (-745))) 73)) (-2540 (($ (-1 |#1| |#1|) $) 61)) (-3496 (($ $) 140 (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) 63)) (-2197 ((|#1| $) 64)) (-2546 (((-1118) $) 9)) (-3810 (($ $) 145 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 144 (-1524 (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-399 (-548)))))))) (-3932 (((-1082) $) 10)) (-1656 (($ $ (-745)) 93)) (-1900 (((-3 $ "failed") $ $) 48 (|has| |#1| (-540)))) (-2458 (($ $) 141 (|has| |#1| (-38 (-399 (-548)))))) (-2460 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3171 ((|#1| $ (-745)) 102) (($ $ $) 79 (|has| (-745) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2512 (((-745) $) 62)) (-2110 (($ $) 130 (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) 119 (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) 129 (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) 120 (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) 128 (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) 121 (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 70)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ (-399 (-548))) 55 (|has| |#1| (-38 (-399 (-548))))) (($ $) 47 (|has| |#1| (-540))) (($ |#1|) 45 (|has| |#1| (-169)))) (-3852 (((-1116 |#1|) $) 152)) (-1951 ((|#1| $ (-745)) 57)) (-4017 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3835 (((-745)) 28)) (-2278 ((|#1| $) 100)) (-2145 (($ $) 139 (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) 127 (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) 51 (|has| |#1| (-540)))) (-2122 (($ $) 138 (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) 126 (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) 137 (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) 125 (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-745)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) 136 (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) 124 (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) 135 (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) 123 (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) 134 (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) 122 (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 56 (|has| |#1| (-355)))) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ |#1|) 146 (|has| |#1| (-355))) (($ $ $) 142 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 113 (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-399 (-548)) $) 54 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) 53 (|has| |#1| (-38 (-399 (-548))))))) +((-1935 (*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1935 (*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3634 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3645 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3329 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3645 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-1335 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3360 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) (-4291 (*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-4187 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-4187 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-4080 (*1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3962 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2238 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-3861 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2238 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4329)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) (-1907 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-2238 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) (-1792 (*1 *1 *1 *2) (-12 (-5 *2 (-547)) (|has| *1 (-6 -4329)) (-4 *1 (-1206 *3)) (-4 *3 (-1172))))) +(-13 (-979 |t#1|) (-10 -8 (-15 -1935 ($ $ $)) (-15 -1935 ($ |t#1| $)) (-15 -3634 (|t#1| $)) (-15 -3329 (|t#1| $ "first")) (-15 -3634 ($ $ (-745))) (-15 -3645 ($ $)) (-15 -3329 ($ $ "rest")) (-15 -3645 ($ $ (-745))) (-15 -3817 (|t#1| $)) (-15 -3329 (|t#1| $ "last")) (-15 -3817 ($ $ (-745))) (-15 -1335 ($ $)) (-15 -2814 (|t#1| $)) (-15 -2823 (|t#1| $)) (-15 -3360 ($ $)) (-15 -3257 ((-745) $)) (-15 -4291 ($ $)) (IF (|has| $ (-6 -4329)) (PROGN (-15 -4187 ($ $ $)) (-15 -4187 ($ $ |t#1|)) (-15 -4080 ($ $)) (-15 -3962 (|t#1| $ |t#1|)) (-15 -2238 (|t#1| $ "first" |t#1|)) (-15 -3861 ($ $ $)) (-15 -2238 ($ $ "rest" $)) (-15 -1907 (|t#1| $ |t#1|)) (-15 -2238 (|t#1| $ "last" |t#1|)) (-15 -1792 ($ $ (-547)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1063)) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-591 (-832)))) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-479 |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-979 |#1|) . T) ((-1063) |has| |#1| (-1063)) ((-1172) . T)) +((-2781 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1207 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| (-1 |#2| |#1|) |#3|))) (-1016) (-1016) (-1209 |#1|) (-1209 |#2|)) (T -1207)) +((-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1016)) (-4 *6 (-1016)) (-4 *2 (-1209 *6)) (-5 *1 (-1207 *5 *6 *4 *2)) (-4 *4 (-1209 *5))))) +(-10 -7 (-15 -2781 (|#4| (-1 |#2| |#1|) |#3|))) +((-4046 (((-112) $) 15)) (-1648 (($ $) 92)) (-1498 (($ $) 68)) (-1624 (($ $) 88)) (-1473 (($ $) 64)) (-1670 (($ $) 96)) (-1526 (($ $) 72)) (-3620 (($ $) 62)) (-2703 (($ $) 60)) (-1681 (($ $) 98)) (-1539 (($ $) 74)) (-1659 (($ $) 94)) (-1513 (($ $) 70)) (-1635 (($ $) 90)) (-1488 (($ $) 66)) (-3834 (((-832) $) 48) (($ (-547)) NIL) (($ (-398 (-547))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1717 (($ $) 104)) (-1574 (($ $) 80)) (-1693 (($ $) 100)) (-1550 (($ $) 76)) (-1741 (($ $) 108)) (-1597 (($ $) 84)) (-1918 (($ $) 110)) (-1610 (($ $) 86)) (-1729 (($ $) 106)) (-1586 (($ $) 82)) (-1706 (($ $) 102)) (-1563 (($ $) 78)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-398 (-547))) 58))) +(((-1208 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -1498 (|#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1610 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -4046 ((-112) |#1|)) (-15 -3834 ((-832) |#1|))) (-1209 |#2|) (-1016)) (T -1208)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-398 (-547)))) (-15 -1498 (|#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1526 (|#1| |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1488 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1610 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1574 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1729 (|#1| |#1|)) (-15 -1918 (|#1| |#1|)) (-15 -1741 (|#1| |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3834 (|#1| |#2|)) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| (-398 (-547)))) (-15 -3834 (|#1| (-547))) (-15 ** (|#1| |#1| (-745))) (-15 ** (|#1| |#1| (-890))) (-15 -4046 ((-112) |#1|)) (-15 -3834 ((-832) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-2259 (((-619 (-1045)) $) 72)) (-2995 (((-1135) $) 101)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 49 (|has| |#1| (-539)))) (-3881 (($ $) 50 (|has| |#1| (-539)))) (-1832 (((-112) $) 52 (|has| |#1| (-539)))) (-3643 (($ $ (-745)) 96) (($ $ (-745) (-745)) 95)) (-2674 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 103)) (-1648 (($ $) 133 (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) 116 (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) 19)) (-2118 (($ $) 115 (|has| |#1| (-38 (-398 (-547)))))) (-1624 (($ $) 132 (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) 117 (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 153) (($ (-1116 |#1|)) 151)) (-1670 (($ $) 131 (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) 118 (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) 17 T CONST)) (-2054 (($ $) 58)) (-2537 (((-3 $ "failed") $) 32)) (-2339 (($ $) 150)) (-1401 (((-921 |#1|) $ (-745)) 148) (((-921 |#1|) $ (-745) (-745)) 147)) (-4211 (((-112) $) 71)) (-1413 (($) 143 (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-745) $) 98) (((-745) $ (-745)) 97)) (-4114 (((-112) $) 30)) (-1311 (($ $ (-547)) 114 (|has| |#1| (-38 (-398 (-547)))))) (-2438 (($ $ (-890)) 99)) (-2194 (($ (-1 |#1| (-547)) $) 149)) (-2187 (((-112) $) 60)) (-2229 (($ |#1| (-745)) 59) (($ $ (-1045) (-745)) 74) (($ $ (-619 (-1045)) (-619 (-745))) 73)) (-2781 (($ (-1 |#1| |#1|) $) 61)) (-3620 (($ $) 140 (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) 63)) (-2027 ((|#1| $) 64)) (-1917 (((-1118) $) 9)) (-2069 (($ $) 145 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 144 (-1524 (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-928)) (|has| |#1| (-1157)) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-38 (-398 (-547)))))))) (-3979 (((-1082) $) 10)) (-3558 (($ $ (-745)) 93)) (-2025 (((-3 $ "failed") $ $) 48 (|has| |#1| (-539)))) (-2703 (($ $) 141 (|has| |#1| (-38 (-398 (-547)))))) (-2670 (((-1116 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3329 ((|#1| $ (-745)) 102) (($ $ $) 79 (|has| (-745) (-1075)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) 87 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135) (-745)) 86 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1135))) 85 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135)) 84 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 82 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-1618 (((-745) $) 62)) (-1681 (($ $) 130 (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) 119 (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) 129 (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) 120 (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) 128 (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) 121 (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 70)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ (-398 (-547))) 55 (|has| |#1| (-38 (-398 (-547))))) (($ $) 47 (|has| |#1| (-539))) (($ |#1|) 45 (|has| |#1| (-169)))) (-2472 (((-1116 |#1|) $) 152)) (-3338 ((|#1| $ (-745)) 57)) (-3336 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-2311 (((-745)) 28)) (-2582 ((|#1| $) 100)) (-1717 (($ $) 139 (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) 127 (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) 51 (|has| |#1| (-539)))) (-1693 (($ $) 138 (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) 126 (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) 137 (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) 125 (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-745)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) 136 (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) 124 (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) 135 (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) 123 (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) 134 (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) 122 (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) 91 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135) (-745)) 90 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-619 (-1135))) 89 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-1135)) 88 (-12 (|has| |#1| (-869 (-1135))) (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (($ $ (-745)) 83 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 56 (|has| |#1| (-354)))) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ |#1|) 146 (|has| |#1| (-354))) (($ $ $) 142 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 113 (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-398 (-547)) $) 54 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) 53 (|has| |#1| (-38 (-398 (-547))))))) (((-1209 |#1|) (-138) (-1016)) (T -1209)) -((-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-745)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-5 *2 (-1116 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1209 *3)) (-4 *3 (-1016)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) (-3810 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-399 (-548)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548))))))))) -(-13 (-1196 |t#1| (-745)) (-10 -8 (-15 -1761 ($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |t#1|))))) (-15 -3852 ((-1116 |t#1|) $)) (-15 -1761 ($ (-1116 |t#1|))) (-15 -3837 ($ $)) (-15 -3823 ($ (-1 |t#1| (-548)) $)) (-15 -3520 ((-921 |t#1|) $ (-745))) (-15 -3520 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-355)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-399 (-548)))) (PROGN (-15 -3810 ($ $)) (IF (|has| |t#1| (-15 -3810 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2049 ((-619 (-1135)) |t#1|))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-548))) (-15 -3810 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-399 (-548))) |has| |#1| (-38 (-399 (-548)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-540)) ((-35) |has| |#1| (-38 (-399 (-548)))) ((-94) |has| |#1| (-38 (-399 (-548)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-399 (-548)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-226) |has| |#1| (-15 * (|#1| (-745) |#1|))) ((-276) |has| |#1| (-38 (-399 (-548)))) ((-278 $ $) |has| (-745) (-1075)) ((-282) |has| |#1| (-540)) ((-483) |has| |#1| (-38 (-399 (-548)))) ((-540) |has| |#1| (-540)) ((-622 #1#) |has| |#1| (-38 (-399 (-548)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-399 (-548)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-540)) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-971) |has| |#1| (-38 (-399 (-548)))) ((-1022 #1#) |has| |#1| (-38 (-399 (-548)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-540)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-399 (-548)))) ((-1160) |has| |#1| (-38 (-399 (-548)))) ((-1196 |#1| #0#) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-2049 (((-619 (-1045)) $) NIL)) (-2754 (((-1135) $) 87)) (-3799 (((-1191 |#2| |#1|) $ (-745)) 73)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) NIL (|has| |#1| (-540)))) (-3303 (($ $) NIL (|has| |#1| (-540)))) (-3279 (((-112) $) 137 (|has| |#1| (-540)))) (-1665 (($ $ (-745)) 122) (($ $ (-745) (-745)) 124)) (-1680 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 42)) (-2074 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1940 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-4104 (((-3 $ "failed") $ $) NIL)) (-1926 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2054 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1761 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 53) (($ (-1116 |#1|)) NIL)) (-2098 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1963 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3030 (($) NIL T CONST)) (-3732 (($ $) 128)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-3837 (($ $) 135)) (-3520 (((-921 |#1|) $ (-745)) 63) (((-921 |#1|) $ (-745) (-745)) 65)) (-3345 (((-112) $) NIL)) (-1365 (($) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1672 (((-745) $) NIL) (((-745) $ (-745)) NIL)) (-2266 (((-112) $) NIL)) (-3766 (($ $) 112)) (-2154 (($ $ (-548)) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3719 (($ (-548) (-548) $) 130)) (-3535 (($ $ (-890)) 134)) (-3823 (($ (-1 |#1| (-548)) $) 106)) (-2435 (((-112) $) NIL)) (-2024 (($ |#1| (-745)) 15) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2540 (($ (-1 |#1| |#1|) $) 94)) (-3496 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2185 (($ $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3776 (($ $) 110)) (-3787 (($ $) 108)) (-3706 (($ (-548) (-548) $) 132)) (-3810 (($ $) 145 (|has| |#1| (-38 (-399 (-548))))) (($ $ (-1135)) 151 (-1524 (-12 (|has| |#1| (-15 -3810 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2049 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-399 (-548))))) (-12 (|has| |#1| (-29 (-548))) (|has| |#1| (-38 (-399 (-548)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 146 (|has| |#1| (-38 (-399 (-548)))))) (-3932 (((-1082) $) NIL)) (-3745 (($ $ (-548) (-548)) 116)) (-1656 (($ $ (-745)) 118)) (-1900 (((-3 $ "failed") $ $) NIL (|has| |#1| (-540)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3756 (($ $) 114)) (-2460 (((-1116 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3171 ((|#1| $ (-745)) 91) (($ $ $) 126 (|has| (-745) (-1075)))) (-4050 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 103 (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1214 |#2|)) 99)) (-2512 (((-745) $) NIL)) (-2110 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1973 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2086 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1952 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2065 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1929 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3330 (($ $) 120)) (-3743 (((-832) $) NIL) (($ (-548)) 24) (($ (-399 (-548))) 143 (|has| |#1| (-38 (-399 (-548))))) (($ $) NIL (|has| |#1| (-540))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1191 |#2| |#1|)) 80) (($ (-1214 |#2|)) 20)) (-3852 (((-1116 |#1|) $) NIL)) (-1951 ((|#1| $ (-745)) 90)) (-4017 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3835 (((-745)) NIL)) (-2278 ((|#1| $) 88)) (-2145 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2006 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3290 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2122 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1986 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2170 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2029 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2439 ((|#1| $ (-745)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3743 (|#1| (-1135))))))) (-4026 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2040 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2158 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-2132 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-1996 (($ $) NIL (|has| |#1| (-38 (-399 (-548)))))) (-3107 (($) 17 T CONST)) (-3118 (($) 13 T CONST)) (-3296 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2214 (((-112) $ $) NIL)) (-2309 (($ $ |#1|) NIL (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) 102)) (-2290 (($ $ $) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 140 (|has| |#1| (-355))) (($ $ $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-399 (-548)) $) NIL (|has| |#1| (-38 (-399 (-548))))) (($ $ (-399 (-548))) NIL (|has| |#1| (-38 (-399 (-548))))))) -(((-1210 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (-15 -3787 ($ $)) (-15 -3776 ($ $)) (-15 -3766 ($ $)) (-15 -3756 ($ $)) (-15 -3745 ($ $ (-548) (-548))) (-15 -3732 ($ $)) (-15 -3719 ($ (-548) (-548) $)) (-15 -3706 ($ (-548) (-548) $)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1210)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-1210 *3 *4 *5)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1210 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-4050 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3776 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3745 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3719 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3706 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(-13 (-1209 |#1|) (-10 -8 (-15 -3743 ($ (-1191 |#2| |#1|))) (-15 -3799 ((-1191 |#2| |#1|) $ (-745))) (-15 -3743 ($ (-1214 |#2|))) (-15 -4050 ($ $ (-1214 |#2|))) (-15 -3787 ($ $)) (-15 -3776 ($ $)) (-15 -3766 ($ $)) (-15 -3756 ($ $)) (-15 -3745 ($ $ (-548) (-548))) (-15 -3732 ($ $)) (-15 -3719 ($ (-548) (-548) $)) (-15 -3706 ($ (-548) (-548) $)) (IF (|has| |#1| (-38 (-399 (-548)))) (-15 -3810 ($ $ (-1214 |#2|))) |%noBranch|))) -((-3889 (((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|))) 24)) (-3878 (((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3864 (((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|)) 13)) (-3923 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3912 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3936 ((|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|)) 54)) (-3950 (((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))) 61)) (-3901 ((|#2| |#2| |#2|) 43))) -(((-1211 |#1| |#2|) (-10 -7 (-15 -3864 ((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|))) (-15 -3878 ((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3889 ((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -3901 (|#2| |#2| |#2|)) (-15 -3912 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3923 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3936 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3950 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) (-38 (-399 (-548))) (-1209 |#1|)) (T -1211)) -((-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) (-4 *5 (-38 (-399 (-548)))) (-4 *6 (-1209 *5)) (-5 *2 (-619 *6)) (-5 *1 (-1211 *5 *6)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) (-4 *5 (-38 (-399 (-548)))) (-4 *2 (-1209 *5)) (-5 *1 (-1211 *5 *2)))) (-3923 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) (-4 *4 (-38 (-399 (-548)))))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) (-4 *4 (-38 (-399 (-548)))))) (-3901 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1211 *3 *2)) (-4 *2 (-1209 *3)))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-619 (-1116 *4)))) (-5 *1 (-1211 *4 *5)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5))))) -(-10 -7 (-15 -3864 ((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|))) (-15 -3878 ((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3889 ((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -3901 (|#2| |#2| |#2|)) (-15 -3912 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3923 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3936 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3950 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) -((-3976 ((|#2| |#4| (-745)) 30)) (-3965 ((|#4| |#2|) 25)) (-3995 ((|#4| (-399 |#2|)) 52 (|has| |#1| (-540)))) (-3985 (((-1 |#4| (-619 |#4|)) |#3|) 46))) -(((-1212 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 (|#4| |#2|)) (-15 -3976 (|#2| |#4| (-745))) (-15 -3985 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-540)) (-15 -3995 (|#4| (-399 |#2|))) |%noBranch|)) (-1016) (-1194 |#1|) (-630 |#2|) (-1209 |#1|)) (T -1212)) -((-3995 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-540)) (-4 *4 (-1016)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *5 *6 *2)) (-4 *6 (-630 *5)))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-1194 *4)) (-5 *2 (-1 *6 (-619 *6))) (-5 *1 (-1212 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1209 *4)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-1212 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1209 *5)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-1194 *4)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *3 *5 *2)) (-4 *5 (-630 *3))))) -(-10 -7 (-15 -3965 (|#4| |#2|)) (-15 -3976 (|#2| |#4| (-745))) (-15 -3985 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-540)) (-15 -3995 (|#4| (-399 |#2|))) |%noBranch|)) +((-2810 (*1 *1 *2) (-12 (-5 *2 (-1116 (-2 (|:| |k| (-745)) (|:| |c| *3)))) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-5 *2 (-1116 *3)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) (-2339 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)))) (-2194 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1209 *3)) (-4 *3 (-1016)))) (-1401 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (-1401 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) (-5 *2 (-921 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) (-2069 (*1 *1 *1 *2) (-1524 (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1157)) (-4 *3 (-38 (-398 (-547)))))) (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-12 (|has| *3 (-15 -2259 ((-619 *2) *3))) (|has| *3 (-15 -2069 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547))))))))) +(-13 (-1196 |t#1| (-745)) (-10 -8 (-15 -2810 ($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |t#1|))))) (-15 -2472 ((-1116 |t#1|) $)) (-15 -2810 ($ (-1116 |t#1|))) (-15 -2339 ($ $)) (-15 -2194 ($ (-1 |t#1| (-547)) $)) (-15 -1401 ((-921 |t#1|) $ (-745))) (-15 -1401 ((-921 |t#1|) $ (-745) (-745))) (IF (|has| |t#1| (-354)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-398 (-547)))) (PROGN (-15 -2069 ($ $)) (IF (|has| |t#1| (-15 -2069 (|t#1| |t#1| (-1135)))) (IF (|has| |t#1| (-15 -2259 ((-619 (-1135)) |t#1|))) (-15 -2069 ($ $ (-1135))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1157)) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-29 (-547))) (-15 -2069 ($ $ (-1135))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-971)) (-6 (-1157))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-745)) . T) ((-25) . T) ((-38 #1=(-398 (-547))) |has| |#1| (-38 (-398 (-547)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-539)) ((-35) |has| |#1| (-38 (-398 (-547)))) ((-94) |has| |#1| (-38 (-398 (-547)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-398 (-547)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-225) |has| |#1| (-15 * (|#1| (-745) |#1|))) ((-275) |has| |#1| (-38 (-398 (-547)))) ((-277 $ $) |has| (-745) (-1075)) ((-281) |has| |#1| (-539)) ((-482) |has| |#1| (-38 (-398 (-547)))) ((-539) |has| |#1| (-539)) ((-622 #1#) |has| |#1| (-38 (-398 (-547)))) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #1#) |has| |#1| (-38 (-398 (-547)))) ((-692 |#1|) |has| |#1| (-169)) ((-692 $) |has| |#1| (-539)) ((-701) . T) ((-869 (-1135)) -12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135)))) ((-942 |#1| #0# (-1045)) . T) ((-971) |has| |#1| (-38 (-398 (-547)))) ((-1022 #1#) |has| |#1| (-38 (-398 (-547)))) ((-1022 |#1|) . T) ((-1022 $) -1524 (|has| |#1| (-539)) (|has| |#1| (-169))) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1157) |has| |#1| (-38 (-398 (-547)))) ((-1160) |has| |#1| (-38 (-398 (-547)))) ((-1196 |#1| #0#) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-2259 (((-619 (-1045)) $) NIL)) (-2995 (((-1135) $) 87)) (-3157 (((-1191 |#2| |#1|) $ (-745)) 73)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) NIL (|has| |#1| (-539)))) (-3881 (($ $) NIL (|has| |#1| (-539)))) (-1832 (((-112) $) 137 (|has| |#1| (-539)))) (-3643 (($ $ (-745)) 122) (($ $ (-745) (-745)) 124)) (-2674 (((-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|))) $) 42)) (-1648 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1498 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3013 (((-3 $ "failed") $ $) NIL)) (-2118 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1624 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1473 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2810 (($ (-1116 (-2 (|:| |k| (-745)) (|:| |c| |#1|)))) 53) (($ (-1116 |#1|)) NIL)) (-1670 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1526 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3219 (($) NIL T CONST)) (-3705 (($ $) 128)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-2339 (($ $) 135)) (-1401 (((-921 |#1|) $ (-745)) 63) (((-921 |#1|) $ (-745) (-745)) 65)) (-4211 (((-112) $) NIL)) (-1413 (($) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3707 (((-745) $) NIL) (((-745) $ (-745)) NIL)) (-4114 (((-112) $) NIL)) (-2886 (($ $) 112)) (-1311 (($ $ (-547)) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3600 (($ (-547) (-547) $) 130)) (-2438 (($ $ (-890)) 134)) (-2194 (($ (-1 |#1| (-547)) $) 106)) (-2187 (((-112) $) NIL)) (-2229 (($ |#1| (-745)) 15) (($ $ (-1045) (-745)) NIL) (($ $ (-619 (-1045)) (-619 (-745))) NIL)) (-2781 (($ (-1 |#1| |#1|) $) 94)) (-3620 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2013 (($ $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-2972 (($ $) 110)) (-3064 (($ $) 108)) (-3476 (($ (-547) (-547) $) 132)) (-2069 (($ $) 145 (|has| |#1| (-38 (-398 (-547))))) (($ $ (-1135)) 151 (-1524 (-12 (|has| |#1| (-15 -2069 (|#1| |#1| (-1135)))) (|has| |#1| (-15 -2259 ((-619 (-1135)) |#1|))) (|has| |#1| (-38 (-398 (-547))))) (-12 (|has| |#1| (-29 (-547))) (|has| |#1| (-38 (-398 (-547)))) (|has| |#1| (-928)) (|has| |#1| (-1157))))) (($ $ (-1214 |#2|)) 146 (|has| |#1| (-38 (-398 (-547)))))) (-3979 (((-1082) $) NIL)) (-3808 (($ $ (-547) (-547)) 116)) (-3558 (($ $ (-745)) 118)) (-2025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-539)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2790 (($ $) 114)) (-2670 (((-1116 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-745)))))) (-3329 ((|#1| $ (-745)) 91) (($ $ $) 126 (|has| (-745) (-1075)))) (-3443 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) 103 (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $ (-1214 |#2|)) 99)) (-1618 (((-745) $) NIL)) (-1681 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1539 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1659 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1635 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1488 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-4105 (($ $) 120)) (-3834 (((-832) $) NIL) (($ (-547)) 24) (($ (-398 (-547))) 143 (|has| |#1| (-38 (-398 (-547))))) (($ $) NIL (|has| |#1| (-539))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1191 |#2| |#1|)) 80) (($ (-1214 |#2|)) 20)) (-2472 (((-1116 |#1|) $) NIL)) (-3338 ((|#1| $ (-745)) 90)) (-3336 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2311 (((-745)) NIL)) (-2582 ((|#1| $) 88)) (-1717 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1574 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1932 (((-112) $ $) NIL (|has| |#1| (-539)))) (-1693 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1550 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1741 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1597 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-2645 ((|#1| $ (-745)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-745)))) (|has| |#1| (-15 -3834 (|#1| (-1135))))))) (-1918 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1610 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1729 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1586 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1706 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-1563 (($ $) NIL (|has| |#1| (-38 (-398 (-547)))))) (-3267 (($) 17 T CONST)) (-3277 (($) 13 T CONST)) (-1686 (($ $ (-619 (-1135)) (-619 (-745))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135) (-745)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-619 (-1135))) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-1135)) NIL (-12 (|has| |#1| (-15 * (|#1| (-745) |#1|))) (|has| |#1| (-869 (-1135))))) (($ $ (-745)) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-745) |#1|))))) (-2371 (((-112) $ $) NIL)) (-2497 (($ $ |#1|) NIL (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) 102)) (-2470 (($ $ $) 18)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL) (($ $ |#1|) 140 (|has| |#1| (-354))) (($ $ $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547)))))) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-398 (-547)) $) NIL (|has| |#1| (-38 (-398 (-547))))) (($ $ (-398 (-547))) NIL (|has| |#1| (-38 (-398 (-547))))))) +(((-1210 |#1| |#2| |#3|) (-13 (-1209 |#1|) (-10 -8 (-15 -3834 ($ (-1191 |#2| |#1|))) (-15 -3157 ((-1191 |#2| |#1|) $ (-745))) (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (-15 -3064 ($ $)) (-15 -2972 ($ $)) (-15 -2886 ($ $)) (-15 -2790 ($ $)) (-15 -3808 ($ $ (-547) (-547))) (-15 -3705 ($ $)) (-15 -3600 ($ (-547) (-547) $)) (-15 -3476 ($ (-547) (-547) $)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) (-1016) (-1135) |#1|) (T -1210)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-1191 *4 *3)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-1210 *3 *4 *5)))) (-3157 (*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1210 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) (-3064 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-2972 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-2886 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-2790 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3808 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3705 (*1 *1 *1) (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) (-14 *4 *2))) (-3600 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-3476 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3))) (-2069 (*1 *1 *1 *2) (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(-13 (-1209 |#1|) (-10 -8 (-15 -3834 ($ (-1191 |#2| |#1|))) (-15 -3157 ((-1191 |#2| |#1|) $ (-745))) (-15 -3834 ($ (-1214 |#2|))) (-15 -3443 ($ $ (-1214 |#2|))) (-15 -3064 ($ $)) (-15 -2972 ($ $)) (-15 -2886 ($ $)) (-15 -2790 ($ $)) (-15 -3808 ($ $ (-547) (-547))) (-15 -3705 ($ $)) (-15 -3600 ($ (-547) (-547) $)) (-15 -3476 ($ (-547) (-547) $)) (IF (|has| |#1| (-38 (-398 (-547)))) (-15 -2069 ($ $ (-1214 |#2|))) |%noBranch|))) +((-1460 (((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|))) 24)) (-2688 (((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2590 (((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|)) 13)) (-1823 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1708 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1936 ((|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|)) 54)) (-3883 (((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))) 61)) (-1588 ((|#2| |#2| |#2|) 43))) +(((-1211 |#1| |#2|) (-10 -7 (-15 -2590 ((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|))) (-15 -2688 ((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1460 ((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -1588 (|#2| |#2| |#2|)) (-15 -1708 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1823 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1936 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3883 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) (-38 (-398 (-547))) (-1209 |#1|)) (T -1211)) +((-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) (-4 *5 (-38 (-398 (-547)))) (-4 *6 (-1209 *5)) (-5 *2 (-619 *6)) (-5 *1 (-1211 *5 *6)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) (-4 *5 (-38 (-398 (-547)))) (-4 *2 (-1209 *5)) (-5 *1 (-1211 *5 *2)))) (-1823 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) (-4 *4 (-38 (-398 (-547)))))) (-1708 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) (-4 *4 (-38 (-398 (-547)))))) (-1588 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1211 *3 *2)) (-4 *2 (-1209 *3)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1116 *4) (-619 (-1116 *4)))) (-5 *1 (-1211 *4 *5)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1116 *4) (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1209 *4)) (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5))))) +(-10 -7 (-15 -2590 ((-1 (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2|))) (-15 -2688 ((-1 (-1116 |#1|) (-1116 |#1|) (-1116 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1460 ((-1 (-1116 |#1|) (-619 (-1116 |#1|))) (-1 |#2| (-619 |#2|)))) (-15 -1588 (|#2| |#2| |#2|)) (-15 -1708 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1823 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1936 (|#2| (-1 |#2| (-619 |#2|)) (-619 |#1|))) (-15 -3883 ((-619 |#2|) (-619 |#1|) (-619 (-1 |#2| (-619 |#2|)))))) +((-4086 ((|#2| |#4| (-745)) 30)) (-3981 ((|#4| |#2|) 25)) (-4271 ((|#4| (-398 |#2|)) 52 (|has| |#1| (-539)))) (-4175 (((-1 |#4| (-619 |#4|)) |#3|) 46))) +(((-1212 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3981 (|#4| |#2|)) (-15 -4086 (|#2| |#4| (-745))) (-15 -4175 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-539)) (-15 -4271 (|#4| (-398 |#2|))) |%noBranch|)) (-1016) (-1194 |#1|) (-630 |#2|) (-1209 |#1|)) (T -1212)) +((-4271 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-539)) (-4 *4 (-1016)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *5 *6 *2)) (-4 *6 (-630 *5)))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-1194 *4)) (-5 *2 (-1 *6 (-619 *6))) (-5 *1 (-1212 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1209 *4)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-1212 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1209 *5)))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-1194 *4)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *3 *5 *2)) (-4 *5 (-630 *3))))) +(-10 -7 (-15 -3981 (|#4| |#2|)) (-15 -4086 (|#2| |#4| (-745))) (-15 -4175 ((-1 |#4| (-619 |#4|)) |#3|)) (IF (|has| |#1| (-539)) (-15 -4271 (|#4| (-398 |#2|))) |%noBranch|)) NIL (((-1213) (-138)) (T -1213)) NIL -(-13 (-10 -7 (-6 -2409))) -((-3730 (((-112) $ $) NIL)) (-2754 (((-1135)) 12)) (-2546 (((-1118) $) 17)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 11) (((-1135) $) 8)) (-2214 (((-112) $ $) 14))) -(((-1214 |#1|) (-13 (-1063) (-592 (-1135)) (-10 -8 (-15 -3743 ((-1135) $)) (-15 -2754 ((-1135))))) (-1135)) (T -1214)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2))) (-2754 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2)))) -(-13 (-1063) (-592 (-1135)) (-10 -8 (-15 -3743 ((-1135) $)) (-15 -2754 ((-1135))))) -((-3320 (($ (-745)) 18)) (-3953 (((-663 |#2|) $ $) 40)) (-4007 ((|#2| $) 48)) (-3198 ((|#2| $) 47)) (-4029 ((|#2| $ $) 35)) (-4018 (($ $ $) 44)) (-2299 (($ $) 22) (($ $ $) 28)) (-2290 (($ $ $) 15)) (* (($ (-548) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1215 |#1| |#2|) (-10 -8 (-15 -4007 (|#2| |#1|)) (-15 -3198 (|#2| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -3953 ((-663 |#2|) |#1| |#1|)) (-15 -4029 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3320 (|#1| (-745))) (-15 -2290 (|#1| |#1| |#1|))) (-1216 |#2|) (-1172)) (T -1215)) +(-13 (-10 -7 (-6 -2608))) +((-3821 (((-112) $ $) NIL)) (-2995 (((-1135)) 12)) (-1917 (((-1118) $) 17)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 11) (((-1135) $) 8)) (-2371 (((-112) $ $) 14))) +(((-1214 |#1|) (-13 (-1063) (-591 (-1135)) (-10 -8 (-15 -3834 ((-1135) $)) (-15 -2995 ((-1135))))) (-1135)) (T -1214)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2))) (-2995 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2)))) +(-13 (-1063) (-591 (-1135)) (-10 -8 (-15 -3834 ((-1135) $)) (-15 -2995 ((-1135))))) +((-3757 (($ (-745)) 18)) (-4042 (((-663 |#2|) $ $) 40)) (-1324 ((|#2| $) 48)) (-4202 ((|#2| $) 47)) (-3453 ((|#2| $ $) 35)) (-3346 (($ $ $) 44)) (-2484 (($ $) 22) (($ $ $) 28)) (-2470 (($ $ $) 15)) (* (($ (-547) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1215 |#1| |#2|) (-10 -8 (-15 -1324 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -3346 (|#1| |#1| |#1|)) (-15 -4042 ((-663 |#2|) |#1| |#1|)) (-15 -3453 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3757 (|#1| (-745))) (-15 -2470 (|#1| |#1| |#1|))) (-1216 |#2|) (-1172)) (T -1215)) NIL -(-10 -8 (-15 -4007 (|#2| |#1|)) (-15 -3198 (|#2| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -3953 ((-663 |#2|) |#1| |#1|)) (-15 -4029 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-548) |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3320 (|#1| (-745))) (-15 -2290 (|#1| |#1| |#1|))) -((-3730 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3320 (($ (-745)) 112 (|has| |#1| (-23)))) (-4149 (((-1223) $ (-548) (-548)) 40 (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4328))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4328))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) 8)) (-2089 ((|#1| $ (-548) |#1|) 52 (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) 58 (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4327)))) (-3030 (($) 7 T CONST)) (-3499 (($ $) 90 (|has| $ (-6 -4328)))) (-2796 (($ $) 100)) (-3484 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-3699 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) 53 (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) 51)) (-2621 (((-548) (-1 (-112) |#1|) $) 97) (((-548) |#1| $) 96 (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) 95 (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 30 (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) 69)) (-4282 (((-112) $ (-745)) 9)) (-4171 (((-548) $) 43 (|has| (-548) (-821)))) (-1795 (($ $ $) 87 (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-4181 (((-548) $) 44 (|has| (-548) (-821)))) (-3091 (($ $ $) 86 (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4007 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-4248 (((-112) $ (-745)) 10)) (-3198 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-2546 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) 60) (($ $ $ (-548)) 59)) (-4201 (((-619 (-548)) $) 46)) (-4212 (((-112) (-548) $) 47)) (-3932 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3453 ((|#1| $) 42 (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-4159 (($ $ |#1|) 41 (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) 26 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) 14)) (-4191 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) 48)) (-1616 (((-112) $) 11)) (-3319 (($) 12)) (-3171 ((|#1| $ (-548) |#1|) 50) ((|#1| $ (-548)) 49) (($ $ (-1185 (-548))) 63)) (-4029 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-2008 (($ $ (-548)) 62) (($ $ (-1185 (-548))) 61)) (-4018 (($ $ $) 104 (|has| |#1| (-1016)))) (-3945 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4327))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4327))))) (-2990 (($ $ $ (-548)) 91 (|has| $ (-6 -4328)))) (-2113 (($ $) 13)) (-2591 (((-524) $) 79 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 70)) (-1831 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3743 (((-832) $) 18 (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2241 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2214 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2252 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2234 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2299 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2290 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-548) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3643 (((-745) $) 6 (|has| $ (-6 -4327))))) +(-10 -8 (-15 -1324 (|#2| |#1|)) (-15 -4202 (|#2| |#1|)) (-15 -3346 (|#1| |#1| |#1|)) (-15 -4042 ((-663 |#2|) |#1| |#1|)) (-15 -3453 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-547) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3757 (|#1| (-745))) (-15 -2470 (|#1| |#1| |#1|))) +((-3821 (((-112) $ $) 19 (|has| |#1| (-1063)))) (-3757 (($ (-745)) 112 (|has| |#1| (-23)))) (-2290 (((-1223) $ (-547) (-547)) 40 (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4329))) (($ $) 88 (-12 (|has| |#1| (-821)) (|has| $ (-6 -4329))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) 8)) (-2238 ((|#1| $ (-547) |#1|) 52 (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) 58 (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4328)))) (-3219 (($) 7 T CONST)) (-2034 (($ $) 90 (|has| $ (-6 -4329)))) (-3048 (($ $) 100)) (-3664 (($ $) 78 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-3801 (($ |#1| $) 77 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) 53 (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) 51)) (-2867 (((-547) (-1 (-112) |#1|) $) 97) (((-547) |#1| $) 96 (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) 95 (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) 30 (|has| $ (-6 -4328)))) (-4042 (((-663 |#1|) $ $) 105 (|has| |#1| (-1016)))) (-3732 (($ (-745) |#1|) 69)) (-4161 (((-112) $ (-745)) 9)) (-2528 (((-547) $) 43 (|has| (-547) (-821)))) (-2847 (($ $ $) 87 (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2638 (((-547) $) 44 (|has| (-547) (-821)))) (-3563 (($ $ $) 86 (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1324 ((|#1| $) 102 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-2024 (((-112) $ (-745)) 10)) (-4202 ((|#1| $) 103 (-12 (|has| |#1| (-1016)) (|has| |#1| (-971))))) (-1917 (((-1118) $) 22 (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) 60) (($ $ $ (-547)) 59)) (-1520 (((-619 (-547)) $) 46)) (-1641 (((-112) (-547) $) 47)) (-3979 (((-1082) $) 21 (|has| |#1| (-1063)))) (-3634 ((|#1| $) 42 (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2418 (($ $ |#1|) 41 (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) 26 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) 25 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) 23 (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) 14)) (-2729 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) 48)) (-3169 (((-112) $) 11)) (-4011 (($) 12)) (-3329 ((|#1| $ (-547) |#1|) 50) ((|#1| $ (-547)) 49) (($ $ (-1185 (-547))) 63)) (-3453 ((|#1| $ $) 106 (|has| |#1| (-1016)))) (-2151 (($ $ (-547)) 62) (($ $ (-1185 (-547))) 61)) (-3346 (($ $ $) 104 (|has| |#1| (-1016)))) (-3987 (((-745) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4328))) (((-745) |#1| $) 28 (-12 (|has| |#1| (-1063)) (|has| $ (-6 -4328))))) (-2861 (($ $ $ (-547)) 91 (|has| $ (-6 -4329)))) (-2265 (($ $) 13)) (-2829 (((-523) $) 79 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 70)) (-1935 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-619 $)) 65)) (-3834 (((-832) $) 18 (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) 84 (|has| |#1| (-821)))) (-2408 (((-112) $ $) 83 (|has| |#1| (-821)))) (-2371 (((-112) $ $) 20 (|has| |#1| (-1063)))) (-2421 (((-112) $ $) 85 (|has| |#1| (-821)))) (-2396 (((-112) $ $) 82 (|has| |#1| (-821)))) (-2484 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2470 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-547) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-701))) (($ $ |#1|) 107 (|has| |#1| (-701)))) (-3763 (((-745) $) 6 (|has| $ (-6 -4328))))) (((-1216 |#1|) (-138) (-1172)) (T -1216)) -((-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-25)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1216 *3)) (-4 *3 (-23)) (-4 *3 (-1172)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (-4029 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-1016)) (-5 *2 (-663 *3)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) (-4 *2 (-1016)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) (-4 *2 (-1016))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2290 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3320 ($ (-745))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2299 ($ $)) (-15 -2299 ($ $ $)) (-15 * ($ (-548) $))) |%noBranch|) (IF (|has| |t#1| (-701)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-15 -4029 (|t#1| $ $)) (-15 -3953 ((-663 |t#1|) $ $)) (-15 -4018 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-971)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3198 (|t#1| $)) (-15 -4007 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-592 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-592 (-832)))) ((-149 |#1|) . T) ((-593 (-524)) |has| |#1| (-593 (-524))) ((-278 #0=(-548) |#1|) . T) ((-280 #0# |#1|) . T) ((-301 |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-365 |#1|) . T) ((-480 |#1|) . T) ((-583 #0# |#1|) . T) ((-504 |#1| |#1|) -12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) -((-4040 (((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|) 13)) (-2061 ((|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|) 15)) (-2540 (((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)) 28) (((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|)) 18))) -(((-1217 |#1| |#2|) (-10 -7 (-15 -4040 ((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2540 ((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|))) (-15 -2540 ((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)))) (-1172) (-1172)) (T -1217)) -((-2540 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) (-2061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-1217 *5 *2)))) (-4040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1218 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-1218 *5)) (-5 *1 (-1217 *6 *5))))) -(-10 -7 (-15 -4040 ((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2061 (|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2540 ((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|))) (-15 -2540 ((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)))) -((-3730 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3320 (($ (-745)) NIL (|has| |#1| (-23)))) (-4038 (($ (-619 |#1|)) 9)) (-4149 (((-1223) $ (-548) (-548)) NIL (|has| $ (-6 -4328)))) (-3001 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2980 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4328))) (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-821))))) (-2490 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2028 (((-112) $ (-745)) NIL)) (-2089 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328))) ((|#1| $ (-1185 (-548)) |#1|) NIL (|has| $ (-6 -4328)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-3030 (($) NIL T CONST)) (-3499 (($ $) NIL (|has| $ (-6 -4328)))) (-2796 (($ $) NIL)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-3699 (($ |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2061 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4327))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4327)))) (-3971 ((|#1| $ (-548) |#1|) NIL (|has| $ (-6 -4328)))) (-3899 ((|#1| $ (-548)) NIL)) (-2621 (((-548) (-1 (-112) |#1|) $) NIL) (((-548) |#1| $) NIL (|has| |#1| (-1063))) (((-548) |#1| $ (-548)) NIL (|has| |#1| (-1063)))) (-1934 (((-619 |#1|) $) 15 (|has| $ (-6 -4327)))) (-3953 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3550 (($ (-745) |#1|) NIL)) (-4282 (((-112) $ (-745)) NIL)) (-4171 (((-548) $) NIL (|has| (-548) (-821)))) (-1795 (($ $ $) NIL (|has| |#1| (-821)))) (-2913 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-2342 (((-619 |#1|) $) NIL (|has| $ (-6 -4327)))) (-2556 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4181 (((-548) $) NIL (|has| (-548) (-821)))) (-3091 (($ $ $) NIL (|has| |#1| (-821)))) (-3960 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4007 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-4248 (((-112) $ (-745)) NIL)) (-3198 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2546 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2387 (($ |#1| $ (-548)) NIL) (($ $ $ (-548)) NIL)) (-4201 (((-619 (-548)) $) NIL)) (-4212 (((-112) (-548) $) NIL)) (-3932 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3453 ((|#1| $) NIL (|has| (-548) (-821)))) (-4030 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| $ (-6 -4328)))) (-3537 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 (-286 |#1|))) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-301 |#1|)) (|has| |#1| (-1063))))) (-2039 (((-112) $ $) NIL)) (-4191 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-4223 (((-619 |#1|) $) NIL)) (-1616 (((-112) $) NIL)) (-3319 (($) NIL)) (-3171 ((|#1| $ (-548) |#1|) NIL) ((|#1| $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4029 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2008 (($ $ (-548)) NIL) (($ $ (-1185 (-548))) NIL)) (-4018 (($ $ $) NIL (|has| |#1| (-1016)))) (-3945 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#1| (-1063))))) (-2990 (($ $ $ (-548)) NIL (|has| $ (-6 -4328)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) 19 (|has| |#1| (-593 (-524))))) (-3754 (($ (-619 |#1|)) 8)) (-1831 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3743 (((-832) $) NIL (|has| |#1| (-592 (-832))))) (-3548 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4327)))) (-2262 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2241 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2214 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2252 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2234 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2299 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2290 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-548) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1218 |#1|) (-13 (-1216 |#1|) (-10 -8 (-15 -4038 ($ (-619 |#1|))))) (-1172)) (T -1218)) -((-4038 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1218 *3))))) -(-13 (-1216 |#1|) (-10 -8 (-15 -4038 ($ (-619 |#1|))))) -((-3730 (((-112) $ $) NIL)) (-2269 (((-1118) $ (-1118)) 90) (((-1118) $ (-1118) (-1118)) 88) (((-1118) $ (-1118) (-619 (-1118))) 87)) (-2875 (($) 59)) (-3782 (((-1223) $ (-459) (-890)) 45)) (-1841 (((-1223) $ (-890) (-1118)) 73) (((-1223) $ (-890) (-843)) 74)) (-2534 (((-1223) $ (-890) (-371) (-371)) 48)) (-1560 (((-1223) $ (-1118)) 69)) (-2691 (((-1223) $ (-890) (-1118)) 78)) (-4071 (((-1223) $ (-890) (-371) (-371)) 49)) (-3092 (((-1223) $ (-890) (-890)) 46)) (-2250 (((-1223) $) 70)) (-4090 (((-1223) $ (-890) (-1118)) 77)) (-4125 (((-1223) $ (-459) (-890)) 31)) (-4101 (((-1223) $ (-890) (-1118)) 76)) (-1469 (((-619 (-255)) $) 23) (($ $ (-619 (-255))) 24)) (-3104 (((-1223) $ (-745) (-745)) 43)) (-2864 (($ $) 60) (($ (-459) (-619 (-255))) 61)) (-2546 (((-1118) $) NIL)) (-3156 (((-548) $) 38)) (-3932 (((-1082) $) NIL)) (-4133 (((-1218 (-3 (-459) "undefined")) $) 37)) (-4143 (((-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548)))) $) 36)) (-4153 (((-1223) $ (-890) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-843) (-548) (-843) (-548)) 68)) (-2885 (((-619 (-912 (-218))) $) NIL)) (-4113 (((-459) $ (-890)) 33)) (-3079 (((-1223) $ (-745) (-745) (-890) (-890)) 40)) (-3058 (((-1223) $ (-1118)) 79)) (-4082 (((-1223) $ (-890) (-1118)) 75)) (-3743 (((-832) $) 85)) (-2466 (((-1223) $) 80)) (-3047 (((-1223) $ (-890) (-1118)) 71) (((-1223) $ (-890) (-843)) 72)) (-2214 (((-112) $ $) NIL))) -(((-1219) (-13 (-1063) (-10 -8 (-15 -2885 ((-619 (-912 (-218))) $)) (-15 -2875 ($)) (-15 -2864 ($ $)) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -2864 ($ (-459) (-619 (-255)))) (-15 -4153 ((-1223) $ (-890) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-843) (-548) (-843) (-548))) (-15 -4143 ((-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548)))) $)) (-15 -4133 ((-1218 (-3 (-459) "undefined")) $)) (-15 -1560 ((-1223) $ (-1118))) (-15 -4125 ((-1223) $ (-459) (-890))) (-15 -4113 ((-459) $ (-890))) (-15 -3047 ((-1223) $ (-890) (-1118))) (-15 -3047 ((-1223) $ (-890) (-843))) (-15 -1841 ((-1223) $ (-890) (-1118))) (-15 -1841 ((-1223) $ (-890) (-843))) (-15 -4101 ((-1223) $ (-890) (-1118))) (-15 -4090 ((-1223) $ (-890) (-1118))) (-15 -4082 ((-1223) $ (-890) (-1118))) (-15 -3058 ((-1223) $ (-1118))) (-15 -2466 ((-1223) $)) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -4071 ((-1223) $ (-890) (-371) (-371))) (-15 -2534 ((-1223) $ (-890) (-371) (-371))) (-15 -2691 ((-1223) $ (-890) (-1118))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3782 ((-1223) $ (-459) (-890))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2250 ((-1223) $)) (-15 -3156 ((-548) $)) (-15 -3743 ((-832) $))))) (T -1219)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1219)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-218)))) (-5 *1 (-1219)))) (-2875 (*1 *1) (-5 *1 (-1219))) (-2864 (*1 *1 *1) (-5 *1 (-1219))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) (-2864 (*1 *1 *2 *3) (-12 (-5 *2 (-459)) (-5 *3 (-619 (-255))) (-5 *1 (-1219)))) (-4153 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-890)) (-5 *4 (-218)) (-5 *5 (-548)) (-5 *6 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548))))) (-5 *1 (-1219)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1218 (-3 (-459) "undefined"))) (-5 *1 (-1219)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4125 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4113 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-459)) (-5 *1 (-1219)))) (-3047 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3047 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-1841 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-1841 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4101 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4090 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4082 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3079 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-4071 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2534 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2691 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3104 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3782 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2269 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1219))))) -(-13 (-1063) (-10 -8 (-15 -2885 ((-619 (-912 (-218))) $)) (-15 -2875 ($)) (-15 -2864 ($ $)) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -2864 ($ (-459) (-619 (-255)))) (-15 -4153 ((-1223) $ (-890) (-218) (-218) (-218) (-218) (-548) (-548) (-548) (-548) (-843) (-548) (-843) (-548))) (-15 -4143 ((-1218 (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) (|:| |axesColor| (-843)) (|:| -1841 (-548)) (|:| |unitsColor| (-843)) (|:| |showing| (-548)))) $)) (-15 -4133 ((-1218 (-3 (-459) "undefined")) $)) (-15 -1560 ((-1223) $ (-1118))) (-15 -4125 ((-1223) $ (-459) (-890))) (-15 -4113 ((-459) $ (-890))) (-15 -3047 ((-1223) $ (-890) (-1118))) (-15 -3047 ((-1223) $ (-890) (-843))) (-15 -1841 ((-1223) $ (-890) (-1118))) (-15 -1841 ((-1223) $ (-890) (-843))) (-15 -4101 ((-1223) $ (-890) (-1118))) (-15 -4090 ((-1223) $ (-890) (-1118))) (-15 -4082 ((-1223) $ (-890) (-1118))) (-15 -3058 ((-1223) $ (-1118))) (-15 -2466 ((-1223) $)) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -4071 ((-1223) $ (-890) (-371) (-371))) (-15 -2534 ((-1223) $ (-890) (-371) (-371))) (-15 -2691 ((-1223) $ (-890) (-1118))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3782 ((-1223) $ (-459) (-890))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2250 ((-1223) $)) (-15 -3156 ((-548) $)) (-15 -3743 ((-832) $)))) -((-3730 (((-112) $ $) NIL)) (-2994 (((-1223) $ (-371)) 140) (((-1223) $ (-371) (-371) (-371)) 141)) (-2269 (((-1118) $ (-1118)) 148) (((-1118) $ (-1118) (-1118)) 146) (((-1118) $ (-1118) (-619 (-1118))) 145)) (-3147 (($) 50)) (-3069 (((-1223) $ (-371) (-371) (-371) (-371) (-371)) 116) (((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) $) 114) (((-1223) $ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) 115) (((-1223) $ (-548) (-548) (-371) (-371) (-371)) 117) (((-1223) $ (-371) (-371)) 118) (((-1223) $ (-371) (-371) (-371)) 125)) (-3181 (((-371)) 97) (((-371) (-371)) 98)) (-3206 (((-371)) 92) (((-371) (-371)) 94)) (-3193 (((-371)) 95) (((-371) (-371)) 96)) (-3158 (((-371)) 101) (((-371) (-371)) 102)) (-3168 (((-371)) 99) (((-371) (-371)) 100)) (-2534 (((-1223) $ (-371) (-371)) 142)) (-1560 (((-1223) $ (-1118)) 126)) (-3127 (((-1095 (-218)) $) 51) (($ $ (-1095 (-218))) 52)) (-2951 (((-1223) $ (-1118)) 154)) (-2940 (((-1223) $ (-1118)) 155)) (-3005 (((-1223) $ (-371) (-371)) 124) (((-1223) $ (-548) (-548)) 139)) (-3092 (((-1223) $ (-890) (-890)) 132)) (-2250 (((-1223) $) 112)) (-2984 (((-1223) $ (-1118)) 153)) (-3025 (((-1223) $ (-1118)) 109)) (-1469 (((-619 (-255)) $) 53) (($ $ (-619 (-255))) 54)) (-3104 (((-1223) $ (-745) (-745)) 131)) (-3116 (((-1223) $ (-745) (-912 (-218))) 160)) (-3137 (($ $) 56) (($ (-1095 (-218)) (-1118)) 57) (($ (-1095 (-218)) (-619 (-255))) 58)) (-2918 (((-1223) $ (-371) (-371) (-371)) 106)) (-2546 (((-1118) $) NIL)) (-3156 (((-548) $) 103)) (-2907 (((-1223) $ (-371)) 143)) (-2962 (((-1223) $ (-371)) 158)) (-3932 (((-1082) $) NIL)) (-2973 (((-1223) $ (-371)) 157)) (-3015 (((-1223) $ (-1118)) 111)) (-3079 (((-1223) $ (-745) (-745) (-890) (-890)) 130)) (-3035 (((-1223) $ (-1118)) 108)) (-3058 (((-1223) $ (-1118)) 110)) (-2895 (((-1223) $ (-154) (-154)) 129)) (-3743 (((-832) $) 137)) (-2466 (((-1223) $) 113)) (-2929 (((-1223) $ (-1118)) 156)) (-3047 (((-1223) $ (-1118)) 107)) (-2214 (((-112) $ $) NIL))) -(((-1220) (-13 (-1063) (-10 -8 (-15 -3206 ((-371))) (-15 -3206 ((-371) (-371))) (-15 -3193 ((-371))) (-15 -3193 ((-371) (-371))) (-15 -3181 ((-371))) (-15 -3181 ((-371) (-371))) (-15 -3168 ((-371))) (-15 -3168 ((-371) (-371))) (-15 -3158 ((-371))) (-15 -3158 ((-371) (-371))) (-15 -3147 ($)) (-15 -3137 ($ $)) (-15 -3137 ($ (-1095 (-218)) (-1118))) (-15 -3137 ($ (-1095 (-218)) (-619 (-255)))) (-15 -3127 ((-1095 (-218)) $)) (-15 -3127 ($ $ (-1095 (-218)))) (-15 -3116 ((-1223) $ (-745) (-912 (-218)))) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -1560 ((-1223) $ (-1118))) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -3069 ((-1223) $ (-371) (-371) (-371) (-371) (-371))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) $)) (-15 -3069 ((-1223) $ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -3069 ((-1223) $ (-548) (-548) (-371) (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371) (-371))) (-15 -3058 ((-1223) $ (-1118))) (-15 -3047 ((-1223) $ (-1118))) (-15 -3035 ((-1223) $ (-1118))) (-15 -3025 ((-1223) $ (-1118))) (-15 -3015 ((-1223) $ (-1118))) (-15 -3005 ((-1223) $ (-371) (-371))) (-15 -3005 ((-1223) $ (-548) (-548))) (-15 -2994 ((-1223) $ (-371))) (-15 -2994 ((-1223) $ (-371) (-371) (-371))) (-15 -2534 ((-1223) $ (-371) (-371))) (-15 -2984 ((-1223) $ (-1118))) (-15 -2973 ((-1223) $ (-371))) (-15 -2962 ((-1223) $ (-371))) (-15 -2951 ((-1223) $ (-1118))) (-15 -2940 ((-1223) $ (-1118))) (-15 -2929 ((-1223) $ (-1118))) (-15 -2918 ((-1223) $ (-371) (-371) (-371))) (-15 -2907 ((-1223) $ (-371))) (-15 -2250 ((-1223) $)) (-15 -2895 ((-1223) $ (-154) (-154))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2466 ((-1223) $)) (-15 -3156 ((-548) $))))) (T -1220)) -((-3206 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3206 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3193 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3181 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3168 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3158 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) (-3147 (*1 *1) (-5 *1 (-1220))) (-3137 (*1 *1 *1) (-5 *1 (-1220))) (-3137 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1118)) (-5 *1 (-1220)))) (-3137 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-619 (-255))) (-5 *1 (-1220)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220)))) (-3116 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220)))) (-3104 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3079 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-548)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3069 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3047 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3015 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3005 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3005 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2994 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2984 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2973 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2962 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2929 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2918 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2907 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2895 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2269 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2269 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2269 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1220))))) -(-13 (-1063) (-10 -8 (-15 -3206 ((-371))) (-15 -3206 ((-371) (-371))) (-15 -3193 ((-371))) (-15 -3193 ((-371) (-371))) (-15 -3181 ((-371))) (-15 -3181 ((-371) (-371))) (-15 -3168 ((-371))) (-15 -3168 ((-371) (-371))) (-15 -3158 ((-371))) (-15 -3158 ((-371) (-371))) (-15 -3147 ($)) (-15 -3137 ($ $)) (-15 -3137 ($ (-1095 (-218)) (-1118))) (-15 -3137 ($ (-1095 (-218)) (-619 (-255)))) (-15 -3127 ((-1095 (-218)) $)) (-15 -3127 ($ $ (-1095 (-218)))) (-15 -3116 ((-1223) $ (-745) (-912 (-218)))) (-15 -1469 ((-619 (-255)) $)) (-15 -1469 ($ $ (-619 (-255)))) (-15 -3104 ((-1223) $ (-745) (-745))) (-15 -3092 ((-1223) $ (-890) (-890))) (-15 -1560 ((-1223) $ (-1118))) (-15 -3079 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -3069 ((-1223) $ (-371) (-371) (-371) (-371) (-371))) (-15 -3069 ((-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))) $)) (-15 -3069 ((-1223) $ (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) (|:| |deltaX| (-218)) (|:| |deltaY| (-218))))) (-15 -3069 ((-1223) $ (-548) (-548) (-371) (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371))) (-15 -3069 ((-1223) $ (-371) (-371) (-371))) (-15 -3058 ((-1223) $ (-1118))) (-15 -3047 ((-1223) $ (-1118))) (-15 -3035 ((-1223) $ (-1118))) (-15 -3025 ((-1223) $ (-1118))) (-15 -3015 ((-1223) $ (-1118))) (-15 -3005 ((-1223) $ (-371) (-371))) (-15 -3005 ((-1223) $ (-548) (-548))) (-15 -2994 ((-1223) $ (-371))) (-15 -2994 ((-1223) $ (-371) (-371) (-371))) (-15 -2534 ((-1223) $ (-371) (-371))) (-15 -2984 ((-1223) $ (-1118))) (-15 -2973 ((-1223) $ (-371))) (-15 -2962 ((-1223) $ (-371))) (-15 -2951 ((-1223) $ (-1118))) (-15 -2940 ((-1223) $ (-1118))) (-15 -2929 ((-1223) $ (-1118))) (-15 -2918 ((-1223) $ (-371) (-371) (-371))) (-15 -2907 ((-1223) $ (-371))) (-15 -2250 ((-1223) $)) (-15 -2895 ((-1223) $ (-154) (-154))) (-15 -2269 ((-1118) $ (-1118))) (-15 -2269 ((-1118) $ (-1118) (-1118))) (-15 -2269 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2466 ((-1223) $)) (-15 -3156 ((-548) $)))) -((-3314 (((-619 (-1118)) (-619 (-1118))) 94) (((-619 (-1118))) 90)) (-3326 (((-619 (-1118))) 88)) (-3289 (((-619 (-890)) (-619 (-890))) 63) (((-619 (-890))) 60)) (-3276 (((-619 (-745)) (-619 (-745))) 57) (((-619 (-745))) 53)) (-3300 (((-1223)) 65)) (-3355 (((-890) (-890)) 81) (((-890)) 80)) (-3340 (((-890) (-890)) 79) (((-890)) 78)) (-3252 (((-843) (-843)) 75) (((-843)) 74)) (-3389 (((-218)) 85) (((-218) (-371)) 87)) (-3371 (((-890)) 82) (((-890) (-890)) 83)) (-3265 (((-890) (-890)) 77) (((-890)) 76)) (-3220 (((-843) (-843)) 69) (((-843)) 67)) (-3231 (((-843) (-843)) 71) (((-843)) 70)) (-3241 (((-843) (-843)) 73) (((-843)) 72))) -(((-1221) (-10 -7 (-15 -3220 ((-843))) (-15 -3220 ((-843) (-843))) (-15 -3231 ((-843))) (-15 -3231 ((-843) (-843))) (-15 -3241 ((-843))) (-15 -3241 ((-843) (-843))) (-15 -3252 ((-843))) (-15 -3252 ((-843) (-843))) (-15 -3265 ((-890))) (-15 -3265 ((-890) (-890))) (-15 -3276 ((-619 (-745)))) (-15 -3276 ((-619 (-745)) (-619 (-745)))) (-15 -3289 ((-619 (-890)))) (-15 -3289 ((-619 (-890)) (-619 (-890)))) (-15 -3300 ((-1223))) (-15 -3314 ((-619 (-1118)))) (-15 -3314 ((-619 (-1118)) (-619 (-1118)))) (-15 -3326 ((-619 (-1118)))) (-15 -3340 ((-890))) (-15 -3355 ((-890))) (-15 -3340 ((-890) (-890))) (-15 -3355 ((-890) (-890))) (-15 -3371 ((-890) (-890))) (-15 -3371 ((-890))) (-15 -3389 ((-218) (-371))) (-15 -3389 ((-218))))) (T -1221)) -((-3389 (*1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1221)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-1221)))) (-3371 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3371 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3355 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3340 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3326 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3314 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3300 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1221)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) (-3289 (*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) (-3276 (*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3265 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3252 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3241 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3231 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3231 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3220 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-3220 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) -(-10 -7 (-15 -3220 ((-843))) (-15 -3220 ((-843) (-843))) (-15 -3231 ((-843))) (-15 -3231 ((-843) (-843))) (-15 -3241 ((-843))) (-15 -3241 ((-843) (-843))) (-15 -3252 ((-843))) (-15 -3252 ((-843) (-843))) (-15 -3265 ((-890))) (-15 -3265 ((-890) (-890))) (-15 -3276 ((-619 (-745)))) (-15 -3276 ((-619 (-745)) (-619 (-745)))) (-15 -3289 ((-619 (-890)))) (-15 -3289 ((-619 (-890)) (-619 (-890)))) (-15 -3300 ((-1223))) (-15 -3314 ((-619 (-1118)))) (-15 -3314 ((-619 (-1118)) (-619 (-1118)))) (-15 -3326 ((-619 (-1118)))) (-15 -3340 ((-890))) (-15 -3355 ((-890))) (-15 -3340 ((-890) (-890))) (-15 -3355 ((-890) (-890))) (-15 -3371 ((-890) (-890))) (-15 -3371 ((-890))) (-15 -3389 ((-218) (-371))) (-15 -3389 ((-218)))) -((-4052 (((-459) (-619 (-619 (-912 (-218)))) (-619 (-255))) 21) (((-459) (-619 (-619 (-912 (-218))))) 20) (((-459) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255))) 19)) (-4061 (((-1219) (-619 (-619 (-912 (-218)))) (-619 (-255))) 27) (((-1219) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255))) 26)) (-3743 (((-1219) (-459)) 38))) -(((-1222) (-10 -7 (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -3743 ((-1219) (-459))))) (T -1222)) -((-3743 (*1 *2 *3) (-12 (-5 *3 (-459)) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-4061 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) (-5 *2 (-459)) (-5 *1 (-1222)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-459)) (-5 *1 (-1222)))) (-4052 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-459)) (-5 *1 (-1222))))) -(-10 -7 (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))))) (-15 -4052 ((-459) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-843) (-843) (-890) (-619 (-255)))) (-15 -4061 ((-1219) (-619 (-619 (-912 (-218)))) (-619 (-255)))) (-15 -3743 ((-1219) (-459)))) -((-2648 (($) 7)) (-3743 (((-832) $) 10))) -(((-1223) (-10 -8 (-15 -2648 ($)) (-15 -3743 ((-832) $)))) (T -1223)) -((-3743 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1223)))) (-2648 (*1 *1) (-5 *1 (-1223)))) -(-10 -8 (-15 -2648 ($)) (-15 -3743 ((-832) $))) -((-2309 (($ $ |#2|) 10))) -(((-1224 |#1| |#2|) (-10 -8 (-15 -2309 (|#1| |#1| |#2|))) (-1225 |#2|) (-355)) (T -1224)) -NIL -(-10 -8 (-15 -2309 (|#1| |#1| |#2|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3402 (((-133)) 28)) (-3743 (((-832) $) 11)) (-3107 (($) 18 T CONST)) (-2214 (((-112) $ $) 6)) (-2309 (($ $ |#1|) 29)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1225 |#1|) (-138) (-355)) (T -1225)) -((-2309 (*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-355)))) (-3402 (*1 *2) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-355)) (-5 *2 (-133))))) -(-13 (-692 |t#1|) (-10 -8 (-15 -2309 ($ $ |t#1|)) (-15 -3402 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) -((-3456 (((-619 (-1166 |#1|)) (-1135) (-1166 |#1|)) 74)) (-3435 (((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|))) 53)) (-3468 (((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))) 64)) (-3414 (((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745)) 55)) (-3445 (((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135)) 29)) (-3427 (((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745)) 54))) -(((-1226 |#1|) (-10 -7 (-15 -3414 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3427 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3435 ((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|)))) (-15 -3445 ((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135))) (-15 -3456 ((-619 (-1166 |#1|)) (-1135) (-1166 |#1|))) (-15 -3468 ((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))))) (-355)) (T -1226)) -((-3468 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-745)) (-4 *6 (-355)) (-5 *4 (-1166 *6)) (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1226 *6)) (-5 *5 (-1116 *4)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-619 (-1166 *5))) (-5 *1 (-1226 *5)) (-5 *4 (-1166 *5)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 (-1131 (-921 *4)) (-921 *4))) (-5 *1 (-1226 *4)) (-4 *4 (-355)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-1116 (-1116 (-921 *5)))) (-5 *1 (-1226 *5)) (-5 *4 (-1116 (-921 *5))))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) (-5 *1 (-1226 *4)) (-4 *4 (-355)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) (-5 *1 (-1226 *4)) (-4 *4 (-355))))) -(-10 -7 (-15 -3414 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3427 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3435 ((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|)))) (-15 -3445 ((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135))) (-15 -3456 ((-619 (-1166 |#1|)) (-1135) (-1166 |#1|))) (-15 -3468 ((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))))) -((-3490 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 75)) (-3478 (((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 74))) -(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) (-341) (-1194 |#1|) (-1194 |#2|) (-401 |#2| |#3|)) (T -1227)) -((-3490 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-1227 *4 *3 *5 *6)) (-4 *6 (-401 *3 *5)))) (-3478 (*1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *6 (-401 *4 *5))))) -(-10 -7 (-15 -3478 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3490 ((-2 (|:| -2877 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) -((-3730 (((-112) $ $) NIL)) (-1604 (((-1140) $) 11)) (-1615 (((-1140) $) 9)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-1228) (-13 (-1047) (-10 -8 (-15 -1615 ((-1140) $)) (-15 -1604 ((-1140) $))))) (T -1228)) -((-1615 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) -(-13 (-1047) (-10 -8 (-15 -1615 ((-1140) $)) (-15 -1604 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2897 (((-1140) $) 9)) (-3743 (((-832) $) NIL) (((-1140) $) NIL)) (-2214 (((-112) $ $) NIL))) -(((-1229) (-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $))))) (T -1229)) -((-2897 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1229))))) -(-13 (-1047) (-10 -8 (-15 -2897 ((-1140) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 43)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) NIL)) (-2266 (((-112) $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-3743 (((-832) $) 64) (($ (-548)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-3835 (((-745)) NIL)) (-3503 (((-1223) (-745)) 16)) (-3107 (($) 27 T CONST)) (-3118 (($) 67 T CONST)) (-2214 (((-112) $ $) 69)) (-2309 (((-3 $ "failed") $ $) NIL (|has| |#1| (-355)))) (-2299 (($ $) 71) (($ $ $) NIL)) (-2290 (($ $ $) 47)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) -(((-1230 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 (|#4| $)) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3743 ($ |#4|)) (-15 -3503 ((-1223) (-745))))) (-1016) (-821) (-767) (-918 |#1| |#3| |#2|) (-619 |#2|) (-619 (-745)) (-745)) (T -1230)) -((-3743 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-2309 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-355)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-767)) (-14 *6 (-619 *3)) (-5 *1 (-1230 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-3743 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-918 *3 *5 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-14 *8 (-619 *5)) (-5 *2 (-1223)) (-5 *1 (-1230 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) (-14 *9 (-619 *3)) (-14 *10 *3)))) -(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3743 (|#4| $)) (IF (|has| |#1| (-355)) (-15 -2309 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3743 ($ |#4|)) (-15 -3503 ((-1223) (-745))))) -((-3730 (((-112) $ $) NIL)) (-1995 (((-619 (-2 (|:| -2466 $) (|:| -1280 (-619 |#4|)))) (-619 |#4|)) NIL)) (-2004 (((-619 $) (-619 |#4|)) 88)) (-2049 (((-619 |#3|) $) NIL)) (-2289 (((-112) $) NIL)) (-3376 (((-112) $) NIL (|has| |#1| (-540)))) (-2131 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2073 ((|#4| |#4| $) NIL)) (-2490 (((-2 (|:| |under| $) (|:| -3887 $) (|:| |upper| $)) $ |#3|) NIL)) (-2028 (((-112) $ (-745)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3030 (($) NIL T CONST)) (-2251 (((-112) $) NIL (|has| |#1| (-540)))) (-2271 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2261 (((-112) $ $) NIL (|has| |#1| (-540)))) (-2280 (((-112) $) NIL (|has| |#1| (-540)))) (-2082 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-2213 (((-619 |#4|) (-619 |#4|) $) 25 (|has| |#1| (-540)))) (-2223 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-540)))) (-2441 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2375 (($ (-619 |#4|)) NIL)) (-3465 (((-3 $ "failed") $) 70)) (-2038 ((|#4| |#4| $) 75)) (-3484 (($ $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-3699 (($ |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2233 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2143 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-2061 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4327))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4327))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2169 (((-2 (|:| -2466 (-619 |#4|)) (|:| -1280 (-619 |#4|))) $) NIL)) (-1934 (((-619 |#4|) $) NIL (|has| $ (-6 -4327)))) (-2157 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3239 ((|#3| $) 76)) (-4282 (((-112) $ (-745)) NIL)) (-2342 (((-619 |#4|) $) 29 (|has| $ (-6 -4327)))) (-2556 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063))))) (-2335 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-619 |#4|)) 35)) (-3960 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4328)))) (-2540 (($ (-1 |#4| |#4|) $) NIL)) (-2338 (((-619 |#3|) $) NIL)) (-2329 (((-112) |#3| $) NIL)) (-4248 (((-112) $ (-745)) NIL)) (-2546 (((-1118) $) NIL)) (-3724 (((-3 |#4| "failed") $) NIL)) (-2179 (((-619 |#4|) $) 50)) (-2109 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2052 ((|#4| |#4| $) 74)) (-2199 (((-112) $ $) 85)) (-2240 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-540)))) (-2121 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2063 ((|#4| |#4| $) NIL)) (-3932 (((-1082) $) NIL)) (-3453 (((-3 |#4| "failed") $) 69)) (-4030 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1971 (((-3 $ "failed") $ |#4|) NIL)) (-1656 (($ $ |#4|) NIL)) (-3537 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2460 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-286 |#4|))) NIL (-12 (|has| |#4| (-301 |#4|)) (|has| |#4| (-1063))))) (-2039 (((-112) $ $) NIL)) (-1616 (((-112) $) 67)) (-3319 (($) 42)) (-2512 (((-745) $) NIL)) (-3945 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4327)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-2113 (($ $) NIL)) (-2591 (((-524) $) NIL (|has| |#4| (-593 (-524))))) (-3754 (($ (-619 |#4|)) NIL)) (-2298 (($ $ |#3|) NIL)) (-2319 (($ $ |#3|) NIL)) (-2027 (($ $) NIL)) (-2308 (($ $ |#3|) NIL)) (-3743 (((-832) $) NIL) (((-619 |#4|) $) 57)) (-1962 (((-745) $) NIL (|has| |#3| (-360)))) (-2326 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-619 |#4|)) 41)) (-2315 (((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-619 $) (-619 |#4|)) 66)) (-2188 (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2088 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2096 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-3548 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4327)))) (-1983 (((-619 |#3|) $) NIL)) (-2406 (((-112) |#3| $) NIL)) (-2214 (((-112) $ $) NIL)) (-3643 (((-745) $) NIL (|has| $ (-6 -4327))))) -(((-1231 |#1| |#2| |#3| |#4|) (-13 (-1165 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2335 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2335 ((-3 $ "failed") (-619 |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|))) (-15 -2315 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2315 ((-619 $) (-619 |#4|))))) (-540) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1231)) -((-2335 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8)))) (-2335 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1231 *3 *4 *5 *6)))) (-2326 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8)))) (-2326 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1231 *3 *4 *5 *6)))) (-2315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1231 *6 *7 *8 *9))) (-5 *1 (-1231 *6 *7 *8 *9)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1231 *4 *5 *6 *7))) (-5 *1 (-1231 *4 *5 *6 *7))))) -(-13 (-1165 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2335 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2335 ((-3 $ "failed") (-619 |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2326 ((-3 $ "failed") (-619 |#4|))) (-15 -2315 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2315 ((-619 $) (-619 |#4|))))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-4104 (((-3 $ "failed") $ $) 19)) (-3030 (($) 17 T CONST)) (-3859 (((-3 $ "failed") $) 32)) (-2266 (((-112) $) 30)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#1|) 36)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +((-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-25)))) (-3757 (*1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1216 *3)) (-4 *3 (-23)) (-4 *3 (-1172)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) (-3453 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (-4042 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-1016)) (-5 *2 (-663 *3)))) (-3346 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) (-4 *2 (-1016)))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) (-4 *2 (-1016))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2470 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3757 ($ (-745))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2484 ($ $)) (-15 -2484 ($ $ $)) (-15 * ($ (-547) $))) |%noBranch|) (IF (|has| |t#1| (-701)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-15 -3453 (|t#1| $ $)) (-15 -4042 ((-663 |t#1|) $ $)) (-15 -3346 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-971)) (IF (|has| |t#1| (-1016)) (PROGN (-15 -4202 (|t#1| $)) (-15 -1324 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-591 (-832)) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821)) (|has| |#1| (-591 (-832)))) ((-149 |#1|) . T) ((-592 (-523)) |has| |#1| (-592 (-523))) ((-277 #0=(-547) |#1|) . T) ((-279 #0# |#1|) . T) ((-300 |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-364 |#1|) . T) ((-479 |#1|) . T) ((-582 #0# |#1|) . T) ((-503 |#1| |#1|) -12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))) ((-625 |#1|) . T) ((-19 |#1|) . T) ((-821) |has| |#1| (-821)) ((-1063) -1524 (|has| |#1| (-1063)) (|has| |#1| (-821))) ((-1172) . T)) +((-3562 (((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|) 13)) (-2542 ((|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|) 15)) (-2781 (((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)) 28) (((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|)) 18))) +(((-1217 |#1| |#2|) (-10 -7 (-15 -3562 ((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2781 ((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|))) (-15 -2781 ((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)))) (-1172) (-1172)) (T -1217)) +((-2781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1218 *6)) (-5 *1 (-1217 *5 *6)))) (-2542 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) (-4 *2 (-1172)) (-5 *1 (-1217 *5 *2)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1218 *6)) (-4 *6 (-1172)) (-4 *5 (-1172)) (-5 *2 (-1218 *5)) (-5 *1 (-1217 *6 *5))))) +(-10 -7 (-15 -3562 ((-1218 |#2|) (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2542 (|#2| (-1 |#2| |#1| |#2|) (-1218 |#1|) |#2|)) (-15 -2781 ((-1218 |#2|) (-1 |#2| |#1|) (-1218 |#1|))) (-15 -2781 ((-3 (-1218 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1218 |#1|)))) +((-3821 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-3757 (($ (-745)) NIL (|has| |#1| (-23)))) (-3432 (($ (-619 |#1|)) 9)) (-2290 (((-1223) $ (-547) (-547)) NIL (|has| $ (-6 -4329)))) (-2951 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-821)))) (-2765 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4329))) (($ $) NIL (-12 (|has| $ (-6 -4329)) (|has| |#1| (-821))))) (-3180 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-821)))) (-2826 (((-112) $ (-745)) NIL)) (-2238 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329))) ((|#1| $ (-1185 (-547)) |#1|) NIL (|has| $ (-6 -4329)))) (-1476 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-3219 (($) NIL T CONST)) (-2034 (($ $) NIL (|has| $ (-6 -4329)))) (-3048 (($ $) NIL)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-3801 (($ |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2542 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4328))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4328)))) (-1861 ((|#1| $ (-547) |#1|) NIL (|has| $ (-6 -4329)))) (-1793 ((|#1| $ (-547)) NIL)) (-2867 (((-547) (-1 (-112) |#1|) $) NIL) (((-547) |#1| $) NIL (|has| |#1| (-1063))) (((-547) |#1| $ (-547)) NIL (|has| |#1| (-1063)))) (-2973 (((-619 |#1|) $) 15 (|has| $ (-6 -4328)))) (-4042 (((-663 |#1|) $ $) NIL (|has| |#1| (-1016)))) (-3732 (($ (-745) |#1|) NIL)) (-4161 (((-112) $ (-745)) NIL)) (-2528 (((-547) $) NIL (|has| (-547) (-821)))) (-2847 (($ $ $) NIL (|has| |#1| (-821)))) (-1294 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-821)))) (-3666 (((-619 |#1|) $) NIL (|has| $ (-6 -4328)))) (-3860 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2638 (((-547) $) NIL (|has| (-547) (-821)))) (-3563 (($ $ $) NIL (|has| |#1| (-821)))) (-1850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1324 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-2024 (((-112) $ (-745)) NIL)) (-4202 ((|#1| $) NIL (-12 (|has| |#1| (-971)) (|has| |#1| (-1016))))) (-1917 (((-1118) $) NIL (|has| |#1| (-1063)))) (-2599 (($ |#1| $ (-547)) NIL) (($ $ $ (-547)) NIL)) (-1520 (((-619 (-547)) $) NIL)) (-1641 (((-112) (-547) $) NIL)) (-3979 (((-1082) $) NIL (|has| |#1| (-1063)))) (-3634 ((|#1| $) NIL (|has| (-547) (-821)))) (-3461 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2418 (($ $ |#1|) NIL (|has| $ (-6 -4329)))) (-2462 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 (-285 |#1|))) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-285 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063)))) (($ $ (-619 |#1|) (-619 |#1|)) NIL (-12 (|has| |#1| (-300 |#1|)) (|has| |#1| (-1063))))) (-2911 (((-112) $ $) NIL)) (-2729 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-1758 (((-619 |#1|) $) NIL)) (-3169 (((-112) $) NIL)) (-4011 (($) NIL)) (-3329 ((|#1| $ (-547) |#1|) NIL) ((|#1| $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3453 ((|#1| $ $) NIL (|has| |#1| (-1016)))) (-2151 (($ $ (-547)) NIL) (($ $ (-1185 (-547))) NIL)) (-3346 (($ $ $) NIL (|has| |#1| (-1016)))) (-3987 (((-745) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328))) (((-745) |#1| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#1| (-1063))))) (-2861 (($ $ $ (-547)) NIL (|has| $ (-6 -4329)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) 19 (|has| |#1| (-592 (-523))))) (-3841 (($ (-619 |#1|)) 8)) (-1935 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-619 $)) NIL)) (-3834 (((-832) $) NIL (|has| |#1| (-591 (-832))))) (-2583 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4328)))) (-2433 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2371 (((-112) $ $) NIL (|has| |#1| (-1063)))) (-2421 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2396 (((-112) $ $) NIL (|has| |#1| (-821)))) (-2484 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2470 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-547) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-701))) (($ $ |#1|) NIL (|has| |#1| (-701)))) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1218 |#1|) (-13 (-1216 |#1|) (-10 -8 (-15 -3432 ($ (-619 |#1|))))) (-1172)) (T -1218)) +((-3432 (*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1218 *3))))) +(-13 (-1216 |#1|) (-10 -8 (-15 -3432 ($ (-619 |#1|))))) +((-3821 (((-112) $ $) NIL)) (-2509 (((-1118) $ (-1118)) 90) (((-1118) $ (-1118) (-1118)) 88) (((-1118) $ (-1118) (-619 (-1118))) 87)) (-3992 (($) 59)) (-2809 (((-1223) $ (-458) (-890)) 45)) (-2020 (((-1223) $ (-890) (-1118)) 73) (((-1223) $ (-890) (-843)) 74)) (-2767 (((-1223) $ (-890) (-370) (-370)) 48)) (-1581 (((-1223) $ (-1118)) 69)) (-2869 (((-1223) $ (-890) (-1118)) 78)) (-3842 (((-1223) $ (-890) (-370) (-370)) 49)) (-2685 (((-1223) $ (-890) (-890)) 46)) (-2482 (((-1223) $) 70)) (-2901 (((-1223) $ (-890) (-1118)) 77)) (-3191 (((-1223) $ (-458) (-890)) 31)) (-2985 (((-1223) $ (-890) (-1118)) 76)) (-1474 (((-619 (-254)) $) 23) (($ $ (-619 (-254))) 24)) (-1454 (((-1223) $ (-745) (-745)) 43)) (-3891 (($ $) 60) (($ (-458) (-619 (-254))) 61)) (-1917 (((-1118) $) NIL)) (-3326 (((-547) $) 38)) (-3979 (((-1082) $) NIL)) (-3273 (((-1218 (-3 (-458) "undefined")) $) 37)) (-2210 (((-1218 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2985 (-547)) (|:| -2825 (-547)) (|:| |spline| (-547)) (|:| -2211 (-547)) (|:| |axesColor| (-843)) (|:| -2020 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547)))) $) 36)) (-2343 (((-1223) $ (-890) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-843) (-547) (-843) (-547)) 68)) (-4097 (((-619 (-912 (-217))) $) NIL)) (-3086 (((-458) $ (-890)) 33)) (-2586 (((-1223) $ (-745) (-745) (-890) (-890)) 40)) (-2344 (((-1223) $ (-1118)) 79)) (-2825 (((-1223) $ (-890) (-1118)) 75)) (-3834 (((-832) $) 85)) (-2665 (((-1223) $) 80)) (-2211 (((-1223) $ (-890) (-1118)) 71) (((-1223) $ (-890) (-843)) 72)) (-2371 (((-112) $ $) NIL))) +(((-1219) (-13 (-1063) (-10 -8 (-15 -4097 ((-619 (-912 (-217))) $)) (-15 -3992 ($)) (-15 -3891 ($ $)) (-15 -1474 ((-619 (-254)) $)) (-15 -1474 ($ $ (-619 (-254)))) (-15 -3891 ($ (-458) (-619 (-254)))) (-15 -2343 ((-1223) $ (-890) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-843) (-547) (-843) (-547))) (-15 -2210 ((-1218 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2985 (-547)) (|:| -2825 (-547)) (|:| |spline| (-547)) (|:| -2211 (-547)) (|:| |axesColor| (-843)) (|:| -2020 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547)))) $)) (-15 -3273 ((-1218 (-3 (-458) "undefined")) $)) (-15 -1581 ((-1223) $ (-1118))) (-15 -3191 ((-1223) $ (-458) (-890))) (-15 -3086 ((-458) $ (-890))) (-15 -2211 ((-1223) $ (-890) (-1118))) (-15 -2211 ((-1223) $ (-890) (-843))) (-15 -2020 ((-1223) $ (-890) (-1118))) (-15 -2020 ((-1223) $ (-890) (-843))) (-15 -2985 ((-1223) $ (-890) (-1118))) (-15 -2901 ((-1223) $ (-890) (-1118))) (-15 -2825 ((-1223) $ (-890) (-1118))) (-15 -2344 ((-1223) $ (-1118))) (-15 -2665 ((-1223) $)) (-15 -2586 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -3842 ((-1223) $ (-890) (-370) (-370))) (-15 -2767 ((-1223) $ (-890) (-370) (-370))) (-15 -2869 ((-1223) $ (-890) (-1118))) (-15 -1454 ((-1223) $ (-745) (-745))) (-15 -2809 ((-1223) $ (-458) (-890))) (-15 -2685 ((-1223) $ (-890) (-890))) (-15 -2509 ((-1118) $ (-1118))) (-15 -2509 ((-1118) $ (-1118) (-1118))) (-15 -2509 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2482 ((-1223) $)) (-15 -3326 ((-547) $)) (-15 -3834 ((-832) $))))) (T -1219)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1219)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-217)))) (-5 *1 (-1219)))) (-3992 (*1 *1) (-5 *1 (-1219))) (-3891 (*1 *1 *1) (-5 *1 (-1219))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1219)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1219)))) (-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-458)) (-5 *3 (-619 (-254))) (-5 *1 (-1219)))) (-2343 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-890)) (-5 *4 (-217)) (-5 *5 (-547)) (-5 *6 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-1218 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2985 (-547)) (|:| -2825 (-547)) (|:| |spline| (-547)) (|:| -2211 (-547)) (|:| |axesColor| (-843)) (|:| -2020 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547))))) (-5 *1 (-1219)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-1218 (-3 (-458) "undefined"))) (-5 *1 (-1219)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3191 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-458)) (-5 *1 (-1219)))) (-2211 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2211 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2020 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2020 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2985 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2901 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2825 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2344 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2586 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3842 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2767 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2869 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2809 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2685 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) (-2509 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2509 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2509 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1219)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1219))))) +(-13 (-1063) (-10 -8 (-15 -4097 ((-619 (-912 (-217))) $)) (-15 -3992 ($)) (-15 -3891 ($ $)) (-15 -1474 ((-619 (-254)) $)) (-15 -1474 ($ $ (-619 (-254)))) (-15 -3891 ($ (-458) (-619 (-254)))) (-15 -2343 ((-1223) $ (-890) (-217) (-217) (-217) (-217) (-547) (-547) (-547) (-547) (-843) (-547) (-843) (-547))) (-15 -2210 ((-1218 (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2985 (-547)) (|:| -2825 (-547)) (|:| |spline| (-547)) (|:| -2211 (-547)) (|:| |axesColor| (-843)) (|:| -2020 (-547)) (|:| |unitsColor| (-843)) (|:| |showing| (-547)))) $)) (-15 -3273 ((-1218 (-3 (-458) "undefined")) $)) (-15 -1581 ((-1223) $ (-1118))) (-15 -3191 ((-1223) $ (-458) (-890))) (-15 -3086 ((-458) $ (-890))) (-15 -2211 ((-1223) $ (-890) (-1118))) (-15 -2211 ((-1223) $ (-890) (-843))) (-15 -2020 ((-1223) $ (-890) (-1118))) (-15 -2020 ((-1223) $ (-890) (-843))) (-15 -2985 ((-1223) $ (-890) (-1118))) (-15 -2901 ((-1223) $ (-890) (-1118))) (-15 -2825 ((-1223) $ (-890) (-1118))) (-15 -2344 ((-1223) $ (-1118))) (-15 -2665 ((-1223) $)) (-15 -2586 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -3842 ((-1223) $ (-890) (-370) (-370))) (-15 -2767 ((-1223) $ (-890) (-370) (-370))) (-15 -2869 ((-1223) $ (-890) (-1118))) (-15 -1454 ((-1223) $ (-745) (-745))) (-15 -2809 ((-1223) $ (-458) (-890))) (-15 -2685 ((-1223) $ (-890) (-890))) (-15 -2509 ((-1118) $ (-1118))) (-15 -2509 ((-1118) $ (-1118) (-1118))) (-15 -2509 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2482 ((-1223) $)) (-15 -3326 ((-547) $)) (-15 -3834 ((-832) $)))) +((-3821 (((-112) $ $) NIL)) (-2902 (((-1223) $ (-370)) 140) (((-1223) $ (-370) (-370) (-370)) 141)) (-2509 (((-1118) $ (-1118)) 148) (((-1118) $ (-1118) (-1118)) 146) (((-1118) $ (-1118) (-619 (-1118))) 145)) (-1930 (($) 50)) (-2465 (((-1223) $ (-370) (-370) (-370) (-370) (-370)) 116) (((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) $) 114) (((-1223) $ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) 115) (((-1223) $ (-547) (-547) (-370) (-370) (-370)) 117) (((-1223) $ (-370) (-370)) 118) (((-1223) $ (-370) (-370) (-370)) 125)) (-2180 (((-370)) 97) (((-370) (-370)) 98)) (-2434 (((-370)) 92) (((-370) (-370)) 94)) (-2309 (((-370)) 95) (((-370) (-370)) 96)) (-2050 (((-370)) 101) (((-370) (-370)) 102)) (-2053 (((-370)) 99) (((-370) (-370)) 100)) (-2767 (((-1223) $ (-370) (-370)) 142)) (-1581 (((-1223) $ (-1118)) 126)) (-1702 (((-1095 (-217)) $) 51) (($ $ (-1095 (-217))) 52)) (-3615 (((-1223) $ (-1118)) 154)) (-3492 (((-1223) $ (-1118)) 155)) (-2986 (((-1223) $ (-370) (-370)) 124) (((-1223) $ (-547) (-547)) 139)) (-2685 (((-1223) $ (-890) (-890)) 132)) (-2482 (((-1223) $) 112)) (-2803 (((-1223) $ (-1118)) 153)) (-3173 (((-1223) $ (-1118)) 109)) (-1474 (((-619 (-254)) $) 53) (($ $ (-619 (-254))) 54)) (-1454 (((-1223) $ (-745) (-745)) 131)) (-1582 (((-1223) $ (-745) (-912 (-217))) 160)) (-1818 (($ $) 56) (($ (-1095 (-217)) (-1118)) 57) (($ (-1095 (-217)) (-619 (-254))) 58)) (-1342 (((-1223) $ (-370) (-370) (-370)) 106)) (-1917 (((-1118) $) NIL)) (-3326 (((-547) $) 103)) (-4288 (((-1223) $ (-370)) 143)) (-3730 (((-1223) $ (-370)) 158)) (-3979 (((-1082) $) NIL)) (-3823 (((-1223) $ (-370)) 157)) (-3078 (((-1223) $ (-1118)) 111)) (-2586 (((-1223) $ (-745) (-745) (-890) (-890)) 130)) (-3274 (((-1223) $ (-1118)) 108)) (-2344 (((-1223) $ (-1118)) 110)) (-4193 (((-1223) $ (-154) (-154)) 129)) (-3834 (((-832) $) 137)) (-2665 (((-1223) $) 113)) (-3380 (((-1223) $ (-1118)) 156)) (-2211 (((-1223) $ (-1118)) 107)) (-2371 (((-112) $ $) NIL))) +(((-1220) (-13 (-1063) (-10 -8 (-15 -2434 ((-370))) (-15 -2434 ((-370) (-370))) (-15 -2309 ((-370))) (-15 -2309 ((-370) (-370))) (-15 -2180 ((-370))) (-15 -2180 ((-370) (-370))) (-15 -2053 ((-370))) (-15 -2053 ((-370) (-370))) (-15 -2050 ((-370))) (-15 -2050 ((-370) (-370))) (-15 -1930 ($)) (-15 -1818 ($ $)) (-15 -1818 ($ (-1095 (-217)) (-1118))) (-15 -1818 ($ (-1095 (-217)) (-619 (-254)))) (-15 -1702 ((-1095 (-217)) $)) (-15 -1702 ($ $ (-1095 (-217)))) (-15 -1582 ((-1223) $ (-745) (-912 (-217)))) (-15 -1474 ((-619 (-254)) $)) (-15 -1474 ($ $ (-619 (-254)))) (-15 -1454 ((-1223) $ (-745) (-745))) (-15 -2685 ((-1223) $ (-890) (-890))) (-15 -1581 ((-1223) $ (-1118))) (-15 -2586 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -2465 ((-1223) $ (-370) (-370) (-370) (-370) (-370))) (-15 -2465 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) $)) (-15 -2465 ((-1223) $ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -2465 ((-1223) $ (-547) (-547) (-370) (-370) (-370))) (-15 -2465 ((-1223) $ (-370) (-370))) (-15 -2465 ((-1223) $ (-370) (-370) (-370))) (-15 -2344 ((-1223) $ (-1118))) (-15 -2211 ((-1223) $ (-1118))) (-15 -3274 ((-1223) $ (-1118))) (-15 -3173 ((-1223) $ (-1118))) (-15 -3078 ((-1223) $ (-1118))) (-15 -2986 ((-1223) $ (-370) (-370))) (-15 -2986 ((-1223) $ (-547) (-547))) (-15 -2902 ((-1223) $ (-370))) (-15 -2902 ((-1223) $ (-370) (-370) (-370))) (-15 -2767 ((-1223) $ (-370) (-370))) (-15 -2803 ((-1223) $ (-1118))) (-15 -3823 ((-1223) $ (-370))) (-15 -3730 ((-1223) $ (-370))) (-15 -3615 ((-1223) $ (-1118))) (-15 -3492 ((-1223) $ (-1118))) (-15 -3380 ((-1223) $ (-1118))) (-15 -1342 ((-1223) $ (-370) (-370) (-370))) (-15 -4288 ((-1223) $ (-370))) (-15 -2482 ((-1223) $)) (-15 -4193 ((-1223) $ (-154) (-154))) (-15 -2509 ((-1118) $ (-1118))) (-15 -2509 ((-1118) $ (-1118) (-1118))) (-15 -2509 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2665 ((-1223) $)) (-15 -3326 ((-547) $))))) (T -1220)) +((-2434 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2309 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2180 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2053 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2050 (*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) (-1930 (*1 *1) (-5 *1 (-1220))) (-1818 (*1 *1 *1) (-5 *1 (-1220))) (-1818 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1118)) (-5 *1 (-1220)))) (-1818 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-619 (-254))) (-5 *1 (-1220)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1220)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1220)))) (-1582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-912 (-217))) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2685 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2586 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2465 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *1 (-1220)))) (-2465 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2465 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-547)) (-5 *4 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2465 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2465 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2344 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2211 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3274 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3078 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2902 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2767 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3823 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3730 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3615 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3492 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-1342 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-4288 (*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220)))) (-4193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1223)) (-5 *1 (-1220)))) (-2509 (*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2509 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2509 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1220)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1220))))) +(-13 (-1063) (-10 -8 (-15 -2434 ((-370))) (-15 -2434 ((-370) (-370))) (-15 -2309 ((-370))) (-15 -2309 ((-370) (-370))) (-15 -2180 ((-370))) (-15 -2180 ((-370) (-370))) (-15 -2053 ((-370))) (-15 -2053 ((-370) (-370))) (-15 -2050 ((-370))) (-15 -2050 ((-370) (-370))) (-15 -1930 ($)) (-15 -1818 ($ $)) (-15 -1818 ($ (-1095 (-217)) (-1118))) (-15 -1818 ($ (-1095 (-217)) (-619 (-254)))) (-15 -1702 ((-1095 (-217)) $)) (-15 -1702 ($ $ (-1095 (-217)))) (-15 -1582 ((-1223) $ (-745) (-912 (-217)))) (-15 -1474 ((-619 (-254)) $)) (-15 -1474 ($ $ (-619 (-254)))) (-15 -1454 ((-1223) $ (-745) (-745))) (-15 -2685 ((-1223) $ (-890) (-890))) (-15 -1581 ((-1223) $ (-1118))) (-15 -2586 ((-1223) $ (-745) (-745) (-890) (-890))) (-15 -2465 ((-1223) $ (-370) (-370) (-370) (-370) (-370))) (-15 -2465 ((-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))) $)) (-15 -2465 ((-1223) $ (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) (|:| |deltaX| (-217)) (|:| |deltaY| (-217))))) (-15 -2465 ((-1223) $ (-547) (-547) (-370) (-370) (-370))) (-15 -2465 ((-1223) $ (-370) (-370))) (-15 -2465 ((-1223) $ (-370) (-370) (-370))) (-15 -2344 ((-1223) $ (-1118))) (-15 -2211 ((-1223) $ (-1118))) (-15 -3274 ((-1223) $ (-1118))) (-15 -3173 ((-1223) $ (-1118))) (-15 -3078 ((-1223) $ (-1118))) (-15 -2986 ((-1223) $ (-370) (-370))) (-15 -2986 ((-1223) $ (-547) (-547))) (-15 -2902 ((-1223) $ (-370))) (-15 -2902 ((-1223) $ (-370) (-370) (-370))) (-15 -2767 ((-1223) $ (-370) (-370))) (-15 -2803 ((-1223) $ (-1118))) (-15 -3823 ((-1223) $ (-370))) (-15 -3730 ((-1223) $ (-370))) (-15 -3615 ((-1223) $ (-1118))) (-15 -3492 ((-1223) $ (-1118))) (-15 -3380 ((-1223) $ (-1118))) (-15 -1342 ((-1223) $ (-370) (-370) (-370))) (-15 -4288 ((-1223) $ (-370))) (-15 -2482 ((-1223) $)) (-15 -4193 ((-1223) $ (-154) (-154))) (-15 -2509 ((-1118) $ (-1118))) (-15 -2509 ((-1118) $ (-1118) (-1118))) (-15 -2509 ((-1118) $ (-1118) (-619 (-1118)))) (-15 -2665 ((-1223) $)) (-15 -3326 ((-547) $)))) +((-3957 (((-619 (-1118)) (-619 (-1118))) 94) (((-619 (-1118))) 90)) (-4066 (((-619 (-1118))) 88)) (-1923 (((-619 (-890)) (-619 (-890))) 63) (((-619 (-890))) 60)) (-1810 (((-619 (-745)) (-619 (-745))) 57) (((-619 (-745))) 53)) (-3865 (((-1223)) 65)) (-4278 (((-890) (-890)) 81) (((-890)) 80)) (-4173 (((-890) (-890)) 79) (((-890)) 78)) (-1551 (((-843) (-843)) 75) (((-843)) 74)) (-3409 (((-217)) 85) (((-217) (-370)) 87)) (-3260 (((-890)) 82) (((-890) (-890)) 83)) (-1682 (((-890) (-890)) 77) (((-890)) 76)) (-2556 (((-843) (-843)) 69) (((-843)) 67)) (-1322 (((-843) (-843)) 71) (((-843)) 70)) (-1420 (((-843) (-843)) 73) (((-843)) 72))) +(((-1221) (-10 -7 (-15 -2556 ((-843))) (-15 -2556 ((-843) (-843))) (-15 -1322 ((-843))) (-15 -1322 ((-843) (-843))) (-15 -1420 ((-843))) (-15 -1420 ((-843) (-843))) (-15 -1551 ((-843))) (-15 -1551 ((-843) (-843))) (-15 -1682 ((-890))) (-15 -1682 ((-890) (-890))) (-15 -1810 ((-619 (-745)))) (-15 -1810 ((-619 (-745)) (-619 (-745)))) (-15 -1923 ((-619 (-890)))) (-15 -1923 ((-619 (-890)) (-619 (-890)))) (-15 -3865 ((-1223))) (-15 -3957 ((-619 (-1118)))) (-15 -3957 ((-619 (-1118)) (-619 (-1118)))) (-15 -4066 ((-619 (-1118)))) (-15 -4173 ((-890))) (-15 -4278 ((-890))) (-15 -4173 ((-890) (-890))) (-15 -4278 ((-890) (-890))) (-15 -3260 ((-890) (-890))) (-15 -3260 ((-890))) (-15 -3409 ((-217) (-370))) (-15 -3409 ((-217))))) (T -1221)) +((-3409 (*1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1221)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-1221)))) (-3260 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-4278 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-4278 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-4173 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-4066 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3957 (*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) (-3865 (*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1221)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) (-1923 (*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) (-1810 (*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-1682 (*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-1551 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-1420 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-1322 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-1322 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) (-2556 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(-10 -7 (-15 -2556 ((-843))) (-15 -2556 ((-843) (-843))) (-15 -1322 ((-843))) (-15 -1322 ((-843) (-843))) (-15 -1420 ((-843))) (-15 -1420 ((-843) (-843))) (-15 -1551 ((-843))) (-15 -1551 ((-843) (-843))) (-15 -1682 ((-890))) (-15 -1682 ((-890) (-890))) (-15 -1810 ((-619 (-745)))) (-15 -1810 ((-619 (-745)) (-619 (-745)))) (-15 -1923 ((-619 (-890)))) (-15 -1923 ((-619 (-890)) (-619 (-890)))) (-15 -3865 ((-1223))) (-15 -3957 ((-619 (-1118)))) (-15 -3957 ((-619 (-1118)) (-619 (-1118)))) (-15 -4066 ((-619 (-1118)))) (-15 -4173 ((-890))) (-15 -4278 ((-890))) (-15 -4173 ((-890) (-890))) (-15 -4278 ((-890) (-890))) (-15 -3260 ((-890) (-890))) (-15 -3260 ((-890))) (-15 -3409 ((-217) (-370))) (-15 -3409 ((-217)))) +((-3669 (((-458) (-619 (-619 (-912 (-217)))) (-619 (-254))) 21) (((-458) (-619 (-619 (-912 (-217))))) 20) (((-458) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254))) 19)) (-3746 (((-1219) (-619 (-619 (-912 (-217)))) (-619 (-254))) 27) (((-1219) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254))) 26)) (-3834 (((-1219) (-458)) 38))) +(((-1222) (-10 -7 (-15 -3669 ((-458) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -3669 ((-458) (-619 (-619 (-912 (-217)))))) (-15 -3669 ((-458) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3746 ((-1219) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -3746 ((-1219) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3834 ((-1219) (-458))))) (T -1222)) +((-3834 (*1 *2 *3) (-12 (-5 *3 (-458)) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-3746 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-1222)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254))) (-5 *2 (-458)) (-5 *1 (-1222)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-458)) (-5 *1 (-1222)))) (-3669 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843)) (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-458)) (-5 *1 (-1222))))) +(-10 -7 (-15 -3669 ((-458) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -3669 ((-458) (-619 (-619 (-912 (-217)))))) (-15 -3669 ((-458) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3746 ((-1219) (-619 (-619 (-912 (-217)))) (-843) (-843) (-890) (-619 (-254)))) (-15 -3746 ((-1219) (-619 (-619 (-912 (-217)))) (-619 (-254)))) (-15 -3834 ((-1219) (-458)))) +((-2887 (($) 7)) (-3834 (((-832) $) 10))) +(((-1223) (-10 -8 (-15 -2887 ($)) (-15 -3834 ((-832) $)))) (T -1223)) +((-3834 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1223)))) (-2887 (*1 *1) (-5 *1 (-1223)))) +(-10 -8 (-15 -2887 ($)) (-15 -3834 ((-832) $))) +((-2497 (($ $ |#2|) 10))) +(((-1224 |#1| |#2|) (-10 -8 (-15 -2497 (|#1| |#1| |#2|))) (-1225 |#2|) (-354)) (T -1224)) +NIL +(-10 -8 (-15 -2497 (|#1| |#1| |#2|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3512 (((-133)) 28)) (-3834 (((-832) $) 11)) (-3267 (($) 18 T CONST)) (-2371 (((-112) $ $) 6)) (-2497 (($ $ |#1|) 29)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1225 |#1|) (-138) (-354)) (T -1225)) +((-2497 (*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-354)))) (-3512 (*1 *2) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-354)) (-5 *2 (-133))))) +(-13 (-692 |t#1|) (-10 -8 (-15 -2497 ($ $ |t#1|)) (-15 -3512 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-692 |#1|) . T) ((-1022 |#1|) . T) ((-1063) . T)) +((-2881 (((-619 (-1166 |#1|)) (-1135) (-1166 |#1|)) 74)) (-2691 (((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|))) 53)) (-2976 (((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))) 64)) (-3624 (((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745)) 55)) (-2785 (((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135)) 29)) (-3728 (((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745)) 54))) +(((-1226 |#1|) (-10 -7 (-15 -3624 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3728 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -2691 ((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|)))) (-15 -2785 ((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135))) (-15 -2881 ((-619 (-1166 |#1|)) (-1135) (-1166 |#1|))) (-15 -2976 ((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))))) (-354)) (T -1226)) +((-2976 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-745)) (-4 *6 (-354)) (-5 *4 (-1166 *6)) (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1226 *6)) (-5 *5 (-1116 *4)))) (-2881 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-4 *5 (-354)) (-5 *2 (-619 (-1166 *5))) (-5 *1 (-1226 *5)) (-5 *4 (-1166 *5)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1 (-1131 (-921 *4)) (-921 *4))) (-5 *1 (-1226 *4)) (-4 *4 (-354)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-4 *5 (-354)) (-5 *2 (-1116 (-1116 (-921 *5)))) (-5 *1 (-1226 *5)) (-5 *4 (-1116 (-921 *5))))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) (-5 *1 (-1226 *4)) (-4 *4 (-354)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) (-5 *1 (-1226 *4)) (-4 *4 (-354))))) +(-10 -7 (-15 -3624 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -3728 ((-1 (-1116 (-921 |#1|)) (-1116 (-921 |#1|))) (-745))) (-15 -2691 ((-1116 (-1116 (-921 |#1|))) (-1135) (-1116 (-921 |#1|)))) (-15 -2785 ((-1 (-1131 (-921 |#1|)) (-921 |#1|)) (-1135))) (-15 -2881 ((-619 (-1166 |#1|)) (-1135) (-1166 |#1|))) (-15 -2976 ((-1 (-1116 (-1166 |#1|)) (-1116 (-1166 |#1|))) (-745) (-1166 |#1|) (-1116 (-1166 |#1|))))) +((-3161 (((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|) 75)) (-3059 (((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|)))) 74))) +(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3059 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3161 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) (-340) (-1194 |#1|) (-1194 |#2|) (-400 |#2| |#3|)) (T -1227)) +((-3161 (*1 *2 *3) (-12 (-4 *4 (-340)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) (-5 *2 (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-663 *3)))) (-5 *1 (-1227 *4 *3 *5 *6)) (-4 *6 (-400 *3 *5)))) (-3059 (*1 *2) (-12 (-4 *3 (-340)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) (-5 *2 (-2 (|:| -4013 (-663 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-663 *4)))) (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *6 (-400 *4 *5))))) +(-10 -7 (-15 -3059 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))))) (-15 -3161 ((-2 (|:| -4013 (-663 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-663 |#2|))) |#2|))) +((-3821 (((-112) $ $) NIL)) (-4209 (((-1140) $) 11)) (-3159 (((-1140) $) 9)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-1228) (-13 (-1047) (-10 -8 (-15 -3159 ((-1140) $)) (-15 -4209 ((-1140) $))))) (T -1228)) +((-3159 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) +(-13 (-1047) (-10 -8 (-15 -3159 ((-1140) $)) (-15 -4209 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1911 (((-1140) $) 9)) (-3834 (((-832) $) NIL) (((-1140) $) NIL)) (-2371 (((-112) $ $) NIL))) +(((-1229) (-13 (-1047) (-10 -8 (-15 -1911 ((-1140) $))))) (T -1229)) +((-1911 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1229))))) +(-13 (-1047) (-10 -8 (-15 -1911 ((-1140) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 43)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) NIL)) (-4114 (((-112) $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-3834 (((-832) $) 64) (($ (-547)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-2311 (((-745)) NIL)) (-2088 (((-1223) (-745)) 16)) (-3267 (($) 27 T CONST)) (-3277 (($) 67 T CONST)) (-2371 (((-112) $ $) 69)) (-2497 (((-3 $ "failed") $ $) NIL (|has| |#1| (-354)))) (-2484 (($ $) 71) (($ $ $) NIL)) (-2470 (($ $ $) 47)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-1230 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3834 (|#4| $)) (IF (|has| |#1| (-354)) (-15 -2497 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3834 ($ |#4|)) (-15 -2088 ((-1223) (-745))))) (-1016) (-821) (-767) (-918 |#1| |#3| |#2|) (-619 |#2|) (-619 (-745)) (-745)) (T -1230)) +((-3834 (*1 *2 *1) (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-2497 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-767)) (-14 *6 (-619 *3)) (-5 *1 (-1230 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) (-5 *1 (-1230 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-918 *3 *5 *4)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) (-14 *8 (-619 *5)) (-5 *2 (-1223)) (-5 *1 (-1230 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) (-14 *9 (-619 *3)) (-14 *10 *3)))) +(-13 (-1016) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -3834 (|#4| $)) (IF (|has| |#1| (-354)) (-15 -2497 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3834 ($ |#4|)) (-15 -2088 ((-1223) (-745))))) +((-3821 (((-112) $ $) NIL)) (-3682 (((-619 (-2 (|:| -2665 $) (|:| -1351 (-619 |#4|)))) (-619 |#4|)) NIL)) (-3759 (((-619 $) (-619 |#4|)) 88)) (-2259 (((-619 |#3|) $) NIL)) (-4286 (((-112) $) NIL)) (-3312 (((-112) $) NIL (|has| |#1| (-539)))) (-2469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3144 ((|#4| |#4| $) NIL)) (-3180 (((-2 (|:| |under| $) (|:| -1435 $) (|:| |upper| $)) $ |#3|) NIL)) (-2826 (((-112) $ (-745)) NIL)) (-1476 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3219 (($) NIL T CONST)) (-3990 (((-112) $) NIL (|has| |#1| (-539)))) (-4154 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4075 (((-112) $ $) NIL (|has| |#1| (-539)))) (-4212 (((-112) $) NIL (|has| |#1| (-539)))) (-2028 (((-619 |#4|) (-619 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-1833 (((-619 |#4|) (-619 |#4|) $) 25 (|has| |#1| (-539)))) (-1922 (((-619 |#4|) (-619 |#4|) $) NIL (|has| |#1| (-539)))) (-2698 (((-3 $ "failed") (-619 |#4|)) NIL)) (-2643 (($ (-619 |#4|)) NIL)) (-3645 (((-3 $ "failed") $) 70)) (-2903 ((|#4| |#4| $) 75)) (-3664 (($ $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-3801 (($ |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3856 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2577 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2733 ((|#4| |#4| $) NIL)) (-2542 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4328))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4328))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1407 (((-2 (|:| -2665 (-619 |#4|)) (|:| -1351 (-619 |#4|))) $) NIL)) (-2973 (((-619 |#4|) $) NIL (|has| $ (-6 -4328)))) (-1331 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1397 ((|#3| $) 76)) (-4161 (((-112) $ (-745)) NIL)) (-3666 (((-619 |#4|) $) 29 (|has| $ (-6 -4328)))) (-3860 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063))))) (-3594 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-619 |#4|)) 35)) (-1850 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4329)))) (-2781 (($ (-1 |#4| |#4|) $) NIL)) (-3623 (((-619 |#3|) $) NIL)) (-3523 (((-112) |#3| $) NIL)) (-2024 (((-112) $ (-745)) NIL)) (-1917 (((-1118) $) NIL)) (-3817 (((-3 |#4| "failed") $) NIL)) (-1499 (((-619 |#4|) $) 50)) (-2257 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2979 ((|#4| |#4| $) 74)) (-1694 (((-112) $ $) 85)) (-3906 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-539)))) (-2373 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3062 ((|#4| |#4| $) NIL)) (-3979 (((-1082) $) NIL)) (-3634 (((-3 |#4| "failed") $) 69)) (-3461 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3505 (((-3 $ "failed") $ |#4|) NIL)) (-3558 (($ $ |#4|) NIL)) (-2462 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2670 (($ $ (-619 |#4|) (-619 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-285 |#4|)) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063)))) (($ $ (-619 (-285 |#4|))) NIL (-12 (|has| |#4| (-300 |#4|)) (|has| |#4| (-1063))))) (-2911 (((-112) $ $) NIL)) (-3169 (((-112) $) 67)) (-4011 (($) 42)) (-1618 (((-745) $) NIL)) (-3987 (((-745) |#4| $) NIL (-12 (|has| $ (-6 -4328)) (|has| |#4| (-1063)))) (((-745) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-2265 (($ $) NIL)) (-2829 (((-523) $) NIL (|has| |#4| (-592 (-523))))) (-3841 (($ (-619 |#4|)) NIL)) (-3228 (($ $ |#3|) NIL)) (-3429 (($ $ |#3|) NIL)) (-2817 (($ $) NIL)) (-3324 (($ $ |#3|) NIL)) (-3834 (((-832) $) NIL) (((-619 |#4|) $) 57)) (-3423 (((-745) $) NIL (|has| |#3| (-359)))) (-3490 (((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-619 |#4|)) 41)) (-3390 (((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-619 $) (-619 |#4|)) 66)) (-1598 (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2303 (-619 |#4|))) "failed") (-619 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2143 (((-112) $ (-1 (-112) |#4| (-619 |#4|))) NIL)) (-2583 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4328)))) (-3598 (((-619 |#3|) $) NIL)) (-3084 (((-112) |#3| $) NIL)) (-2371 (((-112) $ $) NIL)) (-3763 (((-745) $) NIL (|has| $ (-6 -4328))))) +(((-1231 |#1| |#2| |#3| |#4|) (-13 (-1165 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3594 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3594 ((-3 $ "failed") (-619 |#4|))) (-15 -3490 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3490 ((-3 $ "failed") (-619 |#4|))) (-15 -3390 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3390 ((-619 $) (-619 |#4|))))) (-539) (-767) (-821) (-1030 |#1| |#2| |#3|)) (T -1231)) +((-3594 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8)))) (-3594 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1231 *3 *4 *5 *6)))) (-3490 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8)))) (-3490 (*1 *1 *2) (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1231 *3 *4 *5 *6)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1231 *6 *7 *8 *9))) (-5 *1 (-1231 *6 *7 *8 *9)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1231 *4 *5 *6 *7))) (-5 *1 (-1231 *4 *5 *6 *7))))) +(-13 (-1165 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3594 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3594 ((-3 $ "failed") (-619 |#4|))) (-15 -3490 ((-3 $ "failed") (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3490 ((-3 $ "failed") (-619 |#4|))) (-15 -3390 ((-619 $) (-619 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3390 ((-619 $) (-619 |#4|))))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3013 (((-3 $ "failed") $ $) 19)) (-3219 (($) 17 T CONST)) (-2537 (((-3 $ "failed") $) 32)) (-4114 (((-112) $) 30)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#1|) 36)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) (((-1232 |#1|) (-138) (-1016)) (T -1232)) -((-3743 (*1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1016))))) -(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -3743 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) -((-3730 (((-112) $ $) 60)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 45)) (-2502 (($ $ (-745)) 39)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ (-745)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ $) 63) (($ $ (-793 |#1|)) 49) (($ $ |#1|) 53)) (-2441 (((-3 (-793 |#1|) "failed") $) NIL)) (-2375 (((-793 |#1|) $) NIL)) (-1872 (($ $) 32)) (-3859 (((-3 $ "failed") $) NIL)) (-2532 (((-112) $) NIL)) (-2521 (($ $) NIL)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 |#1|) |#2|) 31)) (-2425 (($ $) 33)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 12)) (-2557 (((-793 |#1|) $) NIL)) (-2567 (((-793 |#1|) $) 34)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2459 (($ $ $) 62) (($ $ (-793 |#1|)) 51) (($ $ |#1|) 55)) (-3176 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2185 (((-793 |#1|) $) 28)) (-2197 ((|#2| $) 30)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2512 (((-745) $) 36)) (-2547 (((-112) $) 40)) (-2325 ((|#2| $) NIL)) (-3743 (((-832) $) NIL) (($ (-793 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-548)) NIL)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-793 |#1|)) NIL)) (-1489 ((|#2| $ $) 65) ((|#2| $ (-793 |#1|)) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) 13 T CONST)) (-3118 (($) 15 T CONST)) (-3623 (((-619 (-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2214 (((-112) $ $) 38)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 22)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-793 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1233 |#1| |#2|) (-13 (-374 |#2| (-793 |#1|)) (-1239 |#1| |#2|)) (-821) (-1016)) (T -1233)) -NIL -(-13 (-374 |#2| (-793 |#1|)) (-1239 |#1| |#2|)) -((-3496 ((|#3| |#3| (-745)) 23)) (-2458 ((|#3| |#3| (-745)) 27)) (-2344 ((|#3| |#3| |#3| (-745)) 28))) -(((-1234 |#1| |#2| |#3|) (-10 -7 (-15 -2458 (|#3| |#3| (-745))) (-15 -3496 (|#3| |#3| (-745))) (-15 -2344 (|#3| |#3| |#3| (-745)))) (-13 (-1016) (-692 (-399 (-548)))) (-821) (-1239 |#2| |#1|)) (T -1234)) -((-2344 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) (-2458 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4))))) -(-10 -7 (-15 -2458 (|#3| |#3| (-745))) (-15 -3496 (|#3| |#3| (-745))) (-15 -2344 (|#3| |#3| |#3| (-745)))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3065 (((-619 |#1|) $) 38)) (-4104 (((-3 $ "failed") $ $) 19)) (-2416 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-3030 (($) 17 T CONST)) (-2448 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2441 (((-3 (-793 |#1|) "failed") $) 62)) (-2375 (((-793 |#1|) $) 61)) (-3859 (((-3 $ "failed") $) 32)) (-2532 (((-112) $) 43)) (-2521 (($ $) 42)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 48)) (-3310 (($ (-793 |#1|) |#2|) 49)) (-2425 (($ $) 47)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-2557 (((-793 |#1|) $) 59)) (-2540 (($ (-1 |#2| |#2|) $) 39)) (-2459 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2547 (((-112) $) 45)) (-2325 ((|#2| $) 44)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1489 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +((-3834 (*1 *1 *2) (-12 (-4 *1 (-1232 *2)) (-4 *2 (-1016))))) +(-13 (-1016) (-111 |t#1| |t#1|) (-10 -8 (-15 -3834 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 |#1|) |has| |#1| (-169)) ((-701) . T) ((-1022 |#1|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T)) +((-3821 (((-112) $ $) 60)) (-4046 (((-112) $) NIL)) (-3292 (((-619 |#1|) $) 45)) (-1505 (($ $ (-745)) 39)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3171 (($ $ (-745)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-3219 (($) NIL T CONST)) (-2317 (($ $ $) 63) (($ $ (-793 |#1|)) 49) (($ $ |#1|) 53)) (-2698 (((-3 (-793 |#1|) "failed") $) NIL)) (-2643 (((-793 |#1|) $) NIL)) (-2054 (($ $) 32)) (-2537 (((-3 $ "failed") $) NIL)) (-1826 (((-112) $) NIL)) (-1722 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-3513 (($ (-793 |#1|) |#2|) 31)) (-2074 (($ $) 33)) (-2551 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 12)) (-3868 (((-793 |#1|) $) NIL)) (-3952 (((-793 |#1|) $) 34)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2439 (($ $ $) 62) (($ $ (-793 |#1|)) 51) (($ $ |#1|) 55)) (-2128 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2013 (((-793 |#1|) $) 28)) (-2027 ((|#2| $) 30)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1618 (((-745) $) 36)) (-1928 (((-112) $) 40)) (-2573 ((|#2| $) NIL)) (-3834 (((-832) $) NIL) (($ (-793 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-547)) NIL)) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-793 |#1|)) NIL)) (-1557 ((|#2| $ $) 65) ((|#2| $ (-793 |#1|)) NIL)) (-2311 (((-745)) NIL)) (-3267 (($) 13 T CONST)) (-3277 (($) 15 T CONST)) (-3853 (((-619 (-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2371 (((-112) $ $) 38)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 22)) (** (($ $ (-745)) NIL) (($ $ (-890)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-793 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1233 |#1| |#2|) (-13 (-373 |#2| (-793 |#1|)) (-1239 |#1| |#2|)) (-821) (-1016)) (T -1233)) +NIL +(-13 (-373 |#2| (-793 |#1|)) (-1239 |#1| |#2|)) +((-3620 ((|#3| |#3| (-745)) 23)) (-2703 ((|#3| |#3| (-745)) 27)) (-3689 ((|#3| |#3| |#3| (-745)) 28))) +(((-1234 |#1| |#2| |#3|) (-10 -7 (-15 -2703 (|#3| |#3| (-745))) (-15 -3620 (|#3| |#3| (-745))) (-15 -3689 (|#3| |#3| |#3| (-745)))) (-13 (-1016) (-692 (-398 (-547)))) (-821) (-1239 |#2| |#1|)) (T -1234)) +((-3689 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) (-3620 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) (-2703 (*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4))))) +(-10 -7 (-15 -2703 (|#3| |#3| (-745))) (-15 -3620 (|#3| |#3| (-745))) (-15 -3689 (|#3| |#3| |#3| (-745)))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3292 (((-619 |#1|) $) 38)) (-3013 (((-3 $ "failed") $ $) 19)) (-3171 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-3219 (($) 17 T CONST)) (-2317 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2698 (((-3 (-793 |#1|) "failed") $) 62)) (-2643 (((-793 |#1|) $) 61)) (-2537 (((-3 $ "failed") $) 32)) (-1826 (((-112) $) 43)) (-1722 (($ $) 42)) (-4114 (((-112) $) 30)) (-2187 (((-112) $) 48)) (-3513 (($ (-793 |#1|) |#2|) 49)) (-2074 (($ $) 47)) (-2551 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-3868 (((-793 |#1|) $) 59)) (-2781 (($ (-1 |#2| |#2|) $) 39)) (-2439 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1928 (((-112) $) 45)) (-2573 ((|#2| $) 44)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1557 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) (((-1235 |#1| |#2|) (-138) (-821) (-1016)) (T -1235)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4))))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-793 *4)) (-4 *1 (-1235 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-1489 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-2459 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2459 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2459 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2448 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2448 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3310 (*1 *1 *2 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1235 *4 *3)) (-4 *3 (-1016)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2425 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3743 (*1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2547 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2416 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) (-4 *3 (-169)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-4 *4 (-169)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-619 *3))))) -(-13 (-1016) (-1232 |t#2|) (-1007 (-793 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2557 ((-793 |t#1|) $)) (-15 -2471 ((-2 (|:| |k| (-793 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1489 (|t#2| $ (-793 |t#1|))) (-15 -1489 (|t#2| $ $)) (-15 -2459 ($ $ |t#1|)) (-15 -2459 ($ $ (-793 |t#1|))) (-15 -2459 ($ $ $)) (-15 -2448 ($ $ |t#1|)) (-15 -2448 ($ $ (-793 |t#1|))) (-15 -2448 ($ $ $)) (-15 -3310 ($ (-793 |t#1|) |t#2|)) (-15 -2435 ((-112) $)) (-15 -2425 ($ $)) (-15 -3743 ($ |t#1|)) (-15 -2547 ((-112) $)) (-15 -2325 (|t#2| $)) (-15 -2532 ((-112) $)) (-15 -2521 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -2416 ($ $ $)) (-15 -2416 ($ $ (-745)))) |%noBranch|) (-15 -2540 ($ (-1 |t#2| |t#2|) $)) (-15 -3065 ((-619 |t#1|) $)) (IF (|has| |t#2| (-6 -4320)) (-6 -4320) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1232 |#2|) . T)) -((-2395 (((-112) $) 15)) (-2406 (((-112) $) 14)) (-2354 (($ $) 19) (($ $ (-745)) 20))) -(((-1236 |#1| |#2|) (-10 -8 (-15 -2354 (|#1| |#1| (-745))) (-15 -2354 (|#1| |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|))) (-1237 |#2|) (-355)) (T -1236)) -NIL -(-10 -8 (-15 -2354 (|#1| |#1| (-745))) (-15 -2354 (|#1| |#1|)) (-15 -2395 ((-112) |#1|)) (-15 -2406 ((-112) |#1|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3316 (((-2 (|:| -2265 $) (|:| -4314 $) (|:| |associate| $)) $) 39)) (-3303 (($ $) 38)) (-3279 (((-112) $) 36)) (-2395 (((-112) $) 91)) (-2364 (((-745)) 87)) (-4104 (((-3 $ "failed") $ $) 19)) (-1688 (($ $) 70)) (-2634 (((-410 $) $) 69)) (-4087 (((-112) $ $) 57)) (-3030 (($) 17 T CONST)) (-2441 (((-3 |#1| "failed") $) 98)) (-2375 ((|#1| $) 97)) (-1945 (($ $ $) 53)) (-3859 (((-3 $ "failed") $) 32)) (-1922 (($ $ $) 54)) (-3136 (((-2 (|:| -1489 (-619 $)) (|:| -4160 $)) (-619 $)) 49)) (-2208 (($ $ (-745)) 84 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360)))) (($ $) 83 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-1271 (((-112) $) 68)) (-1672 (((-807 (-890)) $) 81 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-2266 (((-112) $) 30)) (-4057 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3553 (($ $ $) 44) (($ (-619 $)) 43)) (-2546 (((-1118) $) 9)) (-2153 (($ $) 67)) (-2384 (((-112) $) 90)) (-3932 (((-1082) $) 10)) (-4081 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3587 (($ $ $) 46) (($ (-619 $)) 45)) (-1915 (((-410 $) $) 71)) (-2373 (((-807 (-890))) 88)) (-4066 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4160 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1900 (((-3 $ "failed") $ $) 40)) (-3126 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-4077 (((-745) $) 56)) (-3209 (((-2 (|:| -3826 $) (|:| -2233 $)) $ $) 55)) (-2217 (((-3 (-745) "failed") $ $) 82 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3402 (((-133)) 96)) (-2512 (((-807 (-890)) $) 89)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ $) 41) (($ (-399 (-548))) 63) (($ |#1|) 99)) (-4017 (((-3 $ "failed") $) 80 (-1524 (|has| |#1| (-143)) (|has| |#1| (-360))))) (-3835 (((-745)) 28)) (-3290 (((-112) $ $) 37)) (-2406 (((-112) $) 92)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2354 (($ $) 86 (|has| |#1| (-360))) (($ $ (-745)) 85 (|has| |#1| (-360)))) (-2214 (((-112) $ $) 6)) (-2309 (($ $ $) 62) (($ $ |#1|) 95)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-548)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ $ (-399 (-548))) 65) (($ (-399 (-548)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1237 |#1|) (-138) (-355)) (T -1237)) -((-2406 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112)))) (-2384 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890))))) (-2373 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890))))) (-2364 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-745)))) (-2354 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-355)) (-4 *2 (-360)))) (-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-4 *3 (-360))))) -(-13 (-355) (-1007 |t#1|) (-1225 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-394)) |%noBranch|) (-15 -2406 ((-112) $)) (-15 -2395 ((-112) $)) (-15 -2384 ((-112) $)) (-15 -2512 ((-807 (-890)) $)) (-15 -2373 ((-807 (-890)))) (-15 -2364 ((-745))) (IF (|has| |t#1| (-360)) (PROGN (-6 (-394)) (-15 -2354 ($ $)) (-15 -2354 ($ $ (-745)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-399 (-548))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-592 (-832)) . T) ((-169) . T) ((-236) . T) ((-282) . T) ((-299) . T) ((-355) . T) ((-394) -1524 (|has| |#1| (-360)) (|has| |#1| (-143))) ((-443) . T) ((-540) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T) ((-1225 |#1|) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 86)) (-2502 (($ $ (-745)) 89)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-745)) NIL (|has| |#2| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-2441 (((-3 (-793 |#1|) "failed") $) NIL) (((-3 (-862 |#1|) "failed") $) NIL)) (-2375 (((-793 |#1|) $) NIL) (((-862 |#1|) $) NIL)) (-1872 (($ $) 88)) (-3859 (((-3 $ "failed") $) NIL)) (-2532 (((-112) $) 77)) (-2521 (($ $) 81)) (-2481 (($ $ $ (-745)) 90)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 |#1|) |#2|) NIL) (($ (-862 |#1|) |#2|) 26)) (-2425 (($ $) 103)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2557 (((-793 |#1|) $) NIL)) (-2567 (((-793 |#1|) $) NIL)) (-2540 (($ (-1 |#2| |#2|) $) NIL)) (-2459 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-3496 (($ $ (-745)) 97 (|has| |#2| (-692 (-399 (-548)))))) (-3176 (((-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2185 (((-862 |#1|) $) 70)) (-2197 ((|#2| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2458 (($ $ (-745)) 94 (|has| |#2| (-692 (-399 (-548)))))) (-2512 (((-745) $) 87)) (-2547 (((-112) $) 71)) (-2325 ((|#2| $) 75)) (-3743 (((-832) $) 57) (($ (-548)) NIL) (($ |#2|) 51) (($ (-793 |#1|)) NIL) (($ |#1|) 59) (($ (-862 |#1|)) NIL) (($ (-638 |#1| |#2|)) 43) (((-1233 |#1| |#2|) $) 64) (((-1242 |#1| |#2|) $) 69)) (-3852 (((-619 |#2|) $) NIL)) (-1951 ((|#2| $ (-862 |#1|)) NIL)) (-1489 ((|#2| $ (-793 |#1|)) NIL) ((|#2| $ $) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) 21 T CONST)) (-3118 (($) 25 T CONST)) (-3623 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2493 (((-3 (-638 |#1| |#2|) "failed") $) 102)) (-2214 (((-112) $ $) 65)) (-2299 (($ $) 96) (($ $ $) 95)) (-2290 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-862 |#1|)) NIL))) -(((-1238 |#1| |#2|) (-13 (-1239 |#1| |#2|) (-374 |#2| (-862 |#1|)) (-10 -8 (-15 -3743 ($ (-638 |#1| |#2|))) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1242 |#1| |#2|) $)) (-15 -2493 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -2481 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-399 (-548)))) (PROGN (-15 -2458 ($ $ (-745))) (-15 -3496 ($ $ (-745)))) |%noBranch|))) (-821) (-169)) (T -1238)) -((-3743 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-1238 *3 *4)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2493 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2481 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169)))) (-3496 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169))))) -(-13 (-1239 |#1| |#2|) (-374 |#2| (-862 |#1|)) (-10 -8 (-15 -3743 ($ (-638 |#1| |#2|))) (-15 -3743 ((-1233 |#1| |#2|) $)) (-15 -3743 ((-1242 |#1| |#2|) $)) (-15 -2493 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -2481 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-399 (-548)))) (PROGN (-15 -2458 ($ $ (-745))) (-15 -3496 ($ $ (-745)))) |%noBranch|))) -((-3730 (((-112) $ $) 7)) (-3324 (((-112) $) 16)) (-3065 (((-619 |#1|) $) 38)) (-2502 (($ $ (-745)) 71)) (-4104 (((-3 $ "failed") $ $) 19)) (-2416 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-3030 (($) 17 T CONST)) (-2448 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2441 (((-3 (-793 |#1|) "failed") $) 62)) (-2375 (((-793 |#1|) $) 61)) (-3859 (((-3 $ "failed") $) 32)) (-2532 (((-112) $) 43)) (-2521 (($ $) 42)) (-2266 (((-112) $) 30)) (-2435 (((-112) $) 48)) (-3310 (($ (-793 |#1|) |#2|) 49)) (-2425 (($ $) 47)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-2557 (((-793 |#1|) $) 59)) (-2567 (((-793 |#1|) $) 73)) (-2540 (($ (-1 |#2| |#2|) $) 39)) (-2459 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-2546 (((-1118) $) 9)) (-3932 (((-1082) $) 10)) (-2512 (((-745) $) 72)) (-2547 (((-112) $) 45)) (-2325 ((|#2| $) 44)) (-3743 (((-832) $) 11) (($ (-548)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1489 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-3835 (((-745)) 28)) (-3107 (($) 18 T CONST)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 6)) (-2299 (($ $) 22) (($ $ $) 21)) (-2290 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-548) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4))))) (-1557 (*1 *2 *1 *3) (-12 (-5 *3 (-793 *4)) (-4 *1 (-1235 *4 *2)) (-4 *4 (-821)) (-4 *2 (-1016)))) (-1557 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-2439 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2439 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2317 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-2317 (*1 *1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2317 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1235 *4 *3)) (-4 *3 (-1016)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3834 (*1 *1 *2) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-112)))) (-1722 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) (-3171 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) (-4 *3 (-169)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-4 *4 (-169)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-619 *3))))) +(-13 (-1016) (-1232 |t#2|) (-1007 (-793 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3868 ((-793 |t#1|) $)) (-15 -2551 ((-2 (|:| |k| (-793 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1557 (|t#2| $ (-793 |t#1|))) (-15 -1557 (|t#2| $ $)) (-15 -2439 ($ $ |t#1|)) (-15 -2439 ($ $ (-793 |t#1|))) (-15 -2439 ($ $ $)) (-15 -2317 ($ $ |t#1|)) (-15 -2317 ($ $ (-793 |t#1|))) (-15 -2317 ($ $ $)) (-15 -3513 ($ (-793 |t#1|) |t#2|)) (-15 -2187 ((-112) $)) (-15 -2074 ($ $)) (-15 -3834 ($ |t#1|)) (-15 -1928 ((-112) $)) (-15 -2573 (|t#2| $)) (-15 -1826 ((-112) $)) (-15 -1722 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -3171 ($ $ $)) (-15 -3171 ($ $ (-745)))) |%noBranch|) (-15 -2781 ($ (-1 |t#2| |t#2|) $)) (-15 -3292 ((-619 |t#1|) $)) (IF (|has| |t#2| (-6 -4321)) (-6 -4321) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1232 |#2|) . T)) +((-2992 (((-112) $) 15)) (-3084 (((-112) $) 14)) (-3774 (($ $) 19) (($ $ (-745)) 20))) +(((-1236 |#1| |#2|) (-10 -8 (-15 -3774 (|#1| |#1| (-745))) (-15 -3774 (|#1| |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -3084 ((-112) |#1|))) (-1237 |#2|) (-354)) (T -1236)) +NIL +(-10 -8 (-15 -3774 (|#1| |#1| (-745))) (-15 -3774 (|#1| |#1|)) (-15 -2992 ((-112) |#1|)) (-15 -3084 ((-112) |#1|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3977 (((-2 (|:| -4104 $) (|:| -4315 $) (|:| |associate| $)) $) 39)) (-3881 (($ $) 38)) (-1832 (((-112) $) 36)) (-2992 (((-112) $) 91)) (-2747 (((-745)) 87)) (-3013 (((-3 $ "failed") $ $) 19)) (-2745 (($ $) 70)) (-3457 (((-409 $) $) 69)) (-2873 (((-112) $ $) 57)) (-3219 (($) 17 T CONST)) (-2698 (((-3 |#1| "failed") $) 98)) (-2643 ((|#1| $) 97)) (-2079 (($ $ $) 53)) (-2537 (((-3 $ "failed") $) 32)) (-2052 (($ $ $) 54)) (-1805 (((-2 (|:| -1557 (-619 $)) (|:| -4240 $)) (-619 $)) 49)) (-1771 (($ $ (-745)) 84 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359)))) (($ $) 83 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3674 (((-112) $) 68)) (-3707 (((-807 (-890)) $) 81 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-4114 (((-112) $) 30)) (-3710 (((-3 (-619 $) "failed") (-619 $) $) 50)) (-3685 (($ $ $) 44) (($ (-619 $)) 43)) (-1917 (((-1118) $) 9)) (-1976 (($ $) 67)) (-2916 (((-112) $) 90)) (-3979 (((-1082) $) 10)) (-2816 (((-1131 $) (-1131 $) (-1131 $)) 42)) (-3715 (($ $ $) 46) (($ (-619 $)) 45)) (-2106 (((-409 $) $) 71)) (-2832 (((-807 (-890))) 88)) (-3793 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4240 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2025 (((-3 $ "failed") $ $) 40)) (-1690 (((-3 (-619 $) "failed") (-619 $) $) 48)) (-2776 (((-745) $) 56)) (-2468 (((-2 (|:| -2225 $) (|:| -3856 $)) $ $) 55)) (-1868 (((-3 (-745) "failed") $ $) 82 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-3512 (((-133)) 96)) (-1618 (((-807 (-890)) $) 89)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ $) 41) (($ (-398 (-547))) 63) (($ |#1|) 99)) (-3336 (((-3 $ "failed") $) 80 (-1524 (|has| |#1| (-143)) (|has| |#1| (-359))))) (-2311 (((-745)) 28)) (-1932 (((-112) $ $) 37)) (-3084 (((-112) $) 92)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-3774 (($ $) 86 (|has| |#1| (-359))) (($ $ (-745)) 85 (|has| |#1| (-359)))) (-2371 (((-112) $ $) 6)) (-2497 (($ $ $) 62) (($ $ |#1|) 95)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31) (($ $ (-547)) 66)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ $ (-398 (-547))) 65) (($ (-398 (-547)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1237 |#1|) (-138) (-354)) (T -1237)) +((-3084 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-112)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-112)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-112)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890))))) (-2832 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890))))) (-2747 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-745)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-354)) (-4 *2 (-359)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-4 *3 (-359))))) +(-13 (-354) (-1007 |t#1|) (-1225 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-393)) |%noBranch|) (-15 -3084 ((-112) $)) (-15 -2992 ((-112) $)) (-15 -2916 ((-112) $)) (-15 -1618 ((-807 (-890)) $)) (-15 -2832 ((-807 (-890)))) (-15 -2747 ((-745))) (IF (|has| |t#1| (-359)) (PROGN (-6 (-393)) (-15 -3774 ($ $)) (-15 -3774 ($ $ (-745)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-398 (-547))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1524 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-591 (-832)) . T) ((-169) . T) ((-235) . T) ((-281) . T) ((-298) . T) ((-354) . T) ((-393) -1524 (|has| |#1| (-359)) (|has| |#1| (-143))) ((-442) . T) ((-539) . T) ((-622 #0#) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-692 #0#) . T) ((-692 |#1|) . T) ((-692 $) . T) ((-701) . T) ((-889) . T) ((-1007 |#1|) . T) ((-1022 #0#) . T) ((-1022 |#1|) . T) ((-1022 $) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1176) . T) ((-1225 |#1|) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3292 (((-619 |#1|) $) 86)) (-1505 (($ $ (-745)) 89)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3171 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-745)) NIL (|has| |#2| (-169)))) (-3219 (($) NIL T CONST)) (-2317 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-2698 (((-3 (-793 |#1|) "failed") $) NIL) (((-3 (-862 |#1|) "failed") $) NIL)) (-2643 (((-793 |#1|) $) NIL) (((-862 |#1|) $) NIL)) (-2054 (($ $) 88)) (-2537 (((-3 $ "failed") $) NIL)) (-1826 (((-112) $) 77)) (-1722 (($ $) 81)) (-2651 (($ $ $ (-745)) 90)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-3513 (($ (-793 |#1|) |#2|) NIL) (($ (-862 |#1|) |#2|) 26)) (-2074 (($ $) 103)) (-2551 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3868 (((-793 |#1|) $) NIL)) (-3952 (((-793 |#1|) $) NIL)) (-2781 (($ (-1 |#2| |#2|) $) NIL)) (-2439 (($ $ |#1|) NIL) (($ $ (-793 |#1|)) NIL) (($ $ $) NIL)) (-3620 (($ $ (-745)) 97 (|has| |#2| (-692 (-398 (-547)))))) (-2128 (((-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2013 (((-862 |#1|) $) 70)) (-2027 ((|#2| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-2703 (($ $ (-745)) 94 (|has| |#2| (-692 (-398 (-547)))))) (-1618 (((-745) $) 87)) (-1928 (((-112) $) 71)) (-2573 ((|#2| $) 75)) (-3834 (((-832) $) 57) (($ (-547)) NIL) (($ |#2|) 51) (($ (-793 |#1|)) NIL) (($ |#1|) 59) (($ (-862 |#1|)) NIL) (($ (-638 |#1| |#2|)) 43) (((-1233 |#1| |#2|) $) 64) (((-1242 |#1| |#2|) $) 69)) (-2472 (((-619 |#2|) $) NIL)) (-3338 ((|#2| $ (-862 |#1|)) NIL)) (-1557 ((|#2| $ (-793 |#1|)) NIL) ((|#2| $ $) NIL)) (-2311 (((-745)) NIL)) (-3267 (($) 21 T CONST)) (-3277 (($) 25 T CONST)) (-3853 (((-619 (-2 (|:| |k| (-862 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1393 (((-3 (-638 |#1| |#2|) "failed") $) 102)) (-2371 (((-112) $ $) 65)) (-2484 (($ $) 96) (($ $ $) 95)) (-2470 (($ $ $) 20)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-862 |#1|)) NIL))) +(((-1238 |#1| |#2|) (-13 (-1239 |#1| |#2|) (-373 |#2| (-862 |#1|)) (-10 -8 (-15 -3834 ($ (-638 |#1| |#2|))) (-15 -3834 ((-1233 |#1| |#2|) $)) (-15 -3834 ((-1242 |#1| |#2|) $)) (-15 -1393 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -2651 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-398 (-547)))) (PROGN (-15 -2703 ($ $ (-745))) (-15 -3620 ($ $ (-745)))) |%noBranch|))) (-821) (-169)) (T -1238)) +((-3834 (*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *1 (-1238 *3 *4)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-1393 (*1 *2 *1) (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2651 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169))))) +(-13 (-1239 |#1| |#2|) (-373 |#2| (-862 |#1|)) (-10 -8 (-15 -3834 ($ (-638 |#1| |#2|))) (-15 -3834 ((-1233 |#1| |#2|) $)) (-15 -3834 ((-1242 |#1| |#2|) $)) (-15 -1393 ((-3 (-638 |#1| |#2|) "failed") $)) (-15 -2651 ($ $ $ (-745))) (IF (|has| |#2| (-692 (-398 (-547)))) (PROGN (-15 -2703 ($ $ (-745))) (-15 -3620 ($ $ (-745)))) |%noBranch|))) +((-3821 (((-112) $ $) 7)) (-4046 (((-112) $) 16)) (-3292 (((-619 |#1|) $) 38)) (-1505 (($ $ (-745)) 71)) (-3013 (((-3 $ "failed") $ $) 19)) (-3171 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-745)) 40 (|has| |#2| (-169)))) (-3219 (($) 17 T CONST)) (-2317 (($ $ |#1|) 52) (($ $ (-793 |#1|)) 51) (($ $ $) 50)) (-2698 (((-3 (-793 |#1|) "failed") $) 62)) (-2643 (((-793 |#1|) $) 61)) (-2537 (((-3 $ "failed") $) 32)) (-1826 (((-112) $) 43)) (-1722 (($ $) 42)) (-4114 (((-112) $) 30)) (-2187 (((-112) $) 48)) (-3513 (($ (-793 |#1|) |#2|) 49)) (-2074 (($ $) 47)) (-2551 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) 58)) (-3868 (((-793 |#1|) $) 59)) (-3952 (((-793 |#1|) $) 73)) (-2781 (($ (-1 |#2| |#2|) $) 39)) (-2439 (($ $ |#1|) 55) (($ $ (-793 |#1|)) 54) (($ $ $) 53)) (-1917 (((-1118) $) 9)) (-3979 (((-1082) $) 10)) (-1618 (((-745) $) 72)) (-1928 (((-112) $) 45)) (-2573 ((|#2| $) 44)) (-3834 (((-832) $) 11) (($ (-547)) 27) (($ |#2|) 66) (($ (-793 |#1|)) 63) (($ |#1|) 46)) (-1557 ((|#2| $ (-793 |#1|)) 57) ((|#2| $ $) 56)) (-2311 (((-745)) 28)) (-3267 (($) 18 T CONST)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 6)) (-2484 (($ $) 22) (($ $ $) 21)) (-2470 (($ $ $) 14)) (** (($ $ (-890)) 25) (($ $ (-745)) 31)) (* (($ (-890) $) 13) (($ (-745) $) 15) (($ (-547) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) (((-1239 |#1| |#2|) (-138) (-821) (-1016)) (T -1239)) -((-2567 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) -(-13 (-1235 |t#1| |t#2|) (-10 -8 (-15 -2567 ((-793 |t#1|) $)) (-15 -2512 ((-745) $)) (-15 -2502 ($ $ (-745))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-592 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1232 |#2|) . T) ((-1235 |#1| |#2|) . T)) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-3065 (((-619 (-1135)) $) NIL)) (-2585 (($ (-1233 (-1135) |#1|)) NIL)) (-2502 (($ $ (-745)) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-745)) NIL (|has| |#1| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ (-1135)) NIL) (($ $ (-793 (-1135))) NIL) (($ $ $) NIL)) (-2441 (((-3 (-793 (-1135)) "failed") $) NIL)) (-2375 (((-793 (-1135)) $) NIL)) (-3859 (((-3 $ "failed") $) NIL)) (-2532 (((-112) $) NIL)) (-2521 (($ $) NIL)) (-2266 (((-112) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 (-1135)) |#1|) NIL)) (-2425 (($ $) NIL)) (-2471 (((-2 (|:| |k| (-793 (-1135))) (|:| |c| |#1|)) $) NIL)) (-2557 (((-793 (-1135)) $) NIL)) (-2567 (((-793 (-1135)) $) NIL)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-2459 (($ $ (-1135)) NIL) (($ $ (-793 (-1135))) NIL) (($ $ $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1384 (((-1233 (-1135) |#1|) $) NIL)) (-2512 (((-745) $) NIL)) (-2547 (((-112) $) NIL)) (-2325 ((|#1| $) NIL)) (-3743 (((-832) $) NIL) (($ (-548)) NIL) (($ |#1|) NIL) (($ (-793 (-1135))) NIL) (($ (-1135)) NIL)) (-1489 ((|#1| $ (-793 (-1135))) NIL) ((|#1| $ $) NIL)) (-3835 (((-745)) NIL)) (-3107 (($) NIL T CONST)) (-2576 (((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $) NIL)) (-3118 (($) NIL T CONST)) (-2214 (((-112) $ $) NIL)) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1135) $) NIL))) -(((-1240 |#1|) (-13 (-1239 (-1135) |#1|) (-10 -8 (-15 -1384 ((-1233 (-1135) |#1|) $)) (-15 -2585 ($ (-1233 (-1135) |#1|))) (-15 -2576 ((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $)))) (-1016)) (T -1240)) -((-1384 (*1 *2 *1) (-12 (-5 *2 (-1233 (-1135) *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1233 (-1135) *3)) (-4 *3 (-1016)) (-5 *1 (-1240 *3)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-1135)) (|:| |c| (-1240 *3))))) (-5 *1 (-1240 *3)) (-4 *3 (-1016))))) -(-13 (-1239 (-1135) |#1|) (-10 -8 (-15 -1384 ((-1233 (-1135) |#1|) $)) (-15 -2585 ($ (-1233 (-1135) |#1|))) (-15 -2576 ((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $)))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) NIL)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3030 (($) NIL T CONST)) (-2441 (((-3 |#2| "failed") $) NIL)) (-2375 ((|#2| $) NIL)) (-1872 (($ $) NIL)) (-3859 (((-3 $ "failed") $) 36)) (-2532 (((-112) $) 30)) (-2521 (($ $) 32)) (-2266 (((-112) $) NIL)) (-2333 (((-745) $) NIL)) (-3915 (((-619 $) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ |#2| |#1|) NIL)) (-2557 ((|#2| $) 19)) (-2567 ((|#2| $) 16)) (-2540 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2185 ((|#2| $) NIL)) (-2197 ((|#1| $) NIL)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-2547 (((-112) $) 27)) (-2325 ((|#1| $) 28)) (-3743 (((-832) $) 55) (($ (-548)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3852 (((-619 |#1|) $) NIL)) (-1951 ((|#1| $ |#2|) NIL)) (-1489 ((|#1| $ |#2|) 24)) (-3835 (((-745)) 14)) (-3107 (($) 25 T CONST)) (-3118 (($) 11 T CONST)) (-3623 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2214 (((-112) $ $) 26)) (-2309 (($ $ |#1|) 57 (|has| |#1| (-355)))) (-2299 (($ $) NIL) (($ $ $) NIL)) (-2290 (($ $ $) 44)) (** (($ $ (-890)) NIL) (($ $ (-745)) 46)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3643 (((-745) $) 15))) -(((-1241 |#1| |#2|) (-13 (-1016) (-1232 |#1|) (-374 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3643 ((-745) $)) (-15 -3743 ($ |#2|)) (-15 -2567 (|#2| $)) (-15 -2557 (|#2| $)) (-15 -1872 ($ $)) (-15 -1489 (|#1| $ |#2|)) (-15 -2547 ((-112) $)) (-15 -2325 (|#1| $)) (-15 -2532 ((-112) $)) (-15 -2521 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-355)) (-15 -2309 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4320)) (-6 -4320) |%noBranch|) (IF (|has| |#1| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) (-1016) (-817)) (T -1241)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3 *4)) (-4 *4 (-817)))) (-3743 (*1 *1 *2) (-12 (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2567 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)))) (-2557 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2325 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2521 (*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-355)) (-4 *2 (-1016)) (-4 *3 (-817))))) -(-13 (-1016) (-1232 |#1|) (-374 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3643 ((-745) $)) (-15 -3743 ($ |#2|)) (-15 -2567 (|#2| $)) (-15 -2557 (|#2| $)) (-15 -1872 ($ $)) (-15 -1489 (|#1| $ |#2|)) (-15 -2547 ((-112) $)) (-15 -2325 (|#1| $)) (-15 -2532 ((-112) $)) (-15 -2521 ($ $)) (-15 -2540 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-355)) (-15 -2309 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4320)) (-6 -4320) |%noBranch|) (IF (|has| |#1| (-6 -4324)) (-6 -4324) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|))) -((-3730 (((-112) $ $) 26)) (-3324 (((-112) $) NIL)) (-3065 (((-619 |#1|) $) 120)) (-2585 (($ (-1233 |#1| |#2|)) 44)) (-2502 (($ $ (-745)) 32)) (-4104 (((-3 $ "failed") $ $) NIL)) (-2416 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-745)) 46 (|has| |#2| (-169)))) (-3030 (($) NIL T CONST)) (-2448 (($ $ |#1|) 102) (($ $ (-793 |#1|)) 103) (($ $ $) 25)) (-2441 (((-3 (-793 |#1|) "failed") $) NIL)) (-2375 (((-793 |#1|) $) NIL)) (-3859 (((-3 $ "failed") $) 110)) (-2532 (((-112) $) 105)) (-2521 (($ $) 106)) (-2266 (((-112) $) NIL)) (-2435 (((-112) $) NIL)) (-3310 (($ (-793 |#1|) |#2|) 19)) (-2425 (($ $) NIL)) (-2471 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2557 (((-793 |#1|) $) 111)) (-2567 (((-793 |#1|) $) 114)) (-2540 (($ (-1 |#2| |#2|) $) 119)) (-2459 (($ $ |#1|) 100) (($ $ (-793 |#1|)) 101) (($ $ $) 56)) (-2546 (((-1118) $) NIL)) (-3932 (((-1082) $) NIL)) (-1384 (((-1233 |#1| |#2|) $) 84)) (-2512 (((-745) $) 117)) (-2547 (((-112) $) 70)) (-2325 ((|#2| $) 28)) (-3743 (((-832) $) 63) (($ (-548)) 77) (($ |#2|) 74) (($ (-793 |#1|)) 17) (($ |#1|) 73)) (-1489 ((|#2| $ (-793 |#1|)) 104) ((|#2| $ $) 27)) (-3835 (((-745)) 108)) (-3107 (($) 14 T CONST)) (-2576 (((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3118 (($) 29 T CONST)) (-2214 (((-112) $ $) 13)) (-2299 (($ $) 88) (($ $ $) 91)) (-2290 (($ $ $) 55)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) 47) (($ (-548) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1242 |#1| |#2|) (-13 (-1239 |#1| |#2|) (-10 -8 (-15 -1384 ((-1233 |#1| |#2|) $)) (-15 -2585 ($ (-1233 |#1| |#2|))) (-15 -2576 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-821) (-1016)) (T -1242)) -((-1384 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *1 (-1242 *3 *4)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1242 *3 *4))))) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) -(-13 (-1239 |#1| |#2|) (-10 -8 (-15 -1384 ((-1233 |#1| |#2|) $)) (-15 -2585 ($ (-1233 |#1| |#2|))) (-15 -2576 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2428 (((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-548)) 15) (((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|))) 11))) -(((-1243 |#1|) (-10 -7 (-15 -2428 ((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|)))) (-15 -2428 ((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-548)))) (-1172)) (T -1243)) -((-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 (-1116 *5)) (-619 (-1116 *5)))) (-5 *4 (-548)) (-5 *2 (-619 (-1116 *5))) (-5 *1 (-1243 *5)) (-4 *5 (-1172)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-1 (-1116 *4) (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1243 *4)) (-4 *4 (-1172))))) -(-10 -7 (-15 -2428 ((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|)))) (-15 -2428 ((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-548)))) -((-2605 (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 148) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 147) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 146) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 145) (((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-1013 |#1| |#2|)) 130)) (-2596 (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|))) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112)) 71) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112)) 70)) (-2634 (((-619 (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|)) 61)) (-2615 (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|))) 115) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112)) 114) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 113) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 112) (((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|)) 107)) (-2625 (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|))) 120) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112)) 119) (((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 118) (((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|)) 117)) (-2591 (((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) 98) (((-1131 (-993 (-399 |#1|))) (-1131 |#1|)) 89) (((-921 (-993 (-399 |#1|))) (-754 |#1| (-834 |#3|))) 96) (((-921 (-993 (-399 |#1|))) (-921 |#1|)) 94) (((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|))) 33))) -(((-1244 |#1| |#2| |#3|) (-10 -7 (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2634 ((-619 (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2591 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-921 |#1|))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2591 ((-1131 (-993 (-399 |#1|))) (-1131 |#1|))) (-15 -2591 ((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) (-13 (-819) (-299) (-145) (-991)) (-619 (-1135)) (-619 (-1135))) (T -1244)) -((-2591 (*1 *2 *3) (-12 (-5 *3 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-1131 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *6))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *5))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2625 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2615 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2615 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) (-5 *1 (-1244 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2605 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2605 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2605 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-2596 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135)))))) -(-10 -7 (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -2596 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -2605 ((-619 (-2 (|:| -3153 (-1131 |#1|)) (|:| -2447 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2615 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-1013 |#1| |#2|))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -2625 ((-619 (-619 (-993 (-399 |#1|)))) (-619 (-921 |#1|)))) (-15 -2634 ((-619 (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2591 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-921 |#1|))) (-15 -2591 ((-921 (-993 (-399 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2591 ((-1131 (-993 (-399 |#1|))) (-1131 |#1|))) (-15 -2591 ((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-520 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) -((-2667 (((-3 (-1218 (-399 (-548))) "failed") (-1218 |#1|) |#1|) 21)) (-2644 (((-112) (-1218 |#1|)) 12)) (-2655 (((-3 (-1218 (-548)) "failed") (-1218 |#1|)) 16))) -(((-1245 |#1|) (-10 -7 (-15 -2644 ((-112) (-1218 |#1|))) (-15 -2655 ((-3 (-1218 (-548)) "failed") (-1218 |#1|))) (-15 -2667 ((-3 (-1218 (-399 (-548))) "failed") (-1218 |#1|) |#1|))) (-615 (-548))) (T -1245)) -((-2667 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-1218 (-399 (-548)))) (-5 *1 (-1245 *4)))) (-2655 (*1 *2 *3) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-1218 (-548))) (-5 *1 (-1245 *4)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-112)) (-5 *1 (-1245 *4))))) -(-10 -7 (-15 -2644 ((-112) (-1218 |#1|))) (-15 -2655 ((-3 (-1218 (-548)) "failed") (-1218 |#1|))) (-15 -2667 ((-3 (-1218 (-399 (-548))) "failed") (-1218 |#1|) |#1|))) -((-3730 (((-112) $ $) NIL)) (-3324 (((-112) $) 11)) (-4104 (((-3 $ "failed") $ $) NIL)) (-3423 (((-745)) 8)) (-3030 (($) NIL T CONST)) (-3859 (((-3 $ "failed") $) 43)) (-2545 (($) 36)) (-2266 (((-112) $) NIL)) (-3725 (((-3 $ "failed") $) 29)) (-2855 (((-890) $) 15)) (-2546 (((-1118) $) NIL)) (-3410 (($) 25 T CONST)) (-3337 (($ (-890)) 37)) (-3932 (((-1082) $) NIL)) (-2591 (((-548) $) 13)) (-3743 (((-832) $) 22) (($ (-548)) 19)) (-3835 (((-745)) 9)) (-3107 (($) 23 T CONST)) (-3118 (($) 24 T CONST)) (-2214 (((-112) $ $) 27)) (-2299 (($ $) 38) (($ $ $) 35)) (-2290 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) 40)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-548) $) 32) (($ $ $) 31))) -(((-1246 |#1|) (-13 (-169) (-360) (-593 (-548)) (-1111)) (-890)) (T -1246)) +((-3952 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-793 *3)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *2 (-745)))) (-1505 (*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) +(-13 (-1235 |t#1| |t#2|) (-10 -8 (-15 -3952 ((-793 |t#1|) $)) (-15 -1618 ((-745) $)) (-15 -1505 ($ $ (-745))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-591 (-832)) . T) ((-622 |#2|) . T) ((-622 $) . T) ((-692 |#2|) |has| |#2| (-169)) ((-701) . T) ((-1007 (-793 |#1|)) . T) ((-1022 |#2|) . T) ((-1016) . T) ((-1023) . T) ((-1075) . T) ((-1063) . T) ((-1232 |#2|) . T) ((-1235 |#1| |#2|) . T)) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3292 (((-619 (-1135)) $) NIL)) (-4139 (($ (-1233 (-1135) |#1|)) NIL)) (-1505 (($ $ (-745)) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3171 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-745)) NIL (|has| |#1| (-169)))) (-3219 (($) NIL T CONST)) (-2317 (($ $ (-1135)) NIL) (($ $ (-793 (-1135))) NIL) (($ $ $) NIL)) (-2698 (((-3 (-793 (-1135)) "failed") $) NIL)) (-2643 (((-793 (-1135)) $) NIL)) (-2537 (((-3 $ "failed") $) NIL)) (-1826 (((-112) $) NIL)) (-1722 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-2187 (((-112) $) NIL)) (-3513 (($ (-793 (-1135)) |#1|) NIL)) (-2074 (($ $) NIL)) (-2551 (((-2 (|:| |k| (-793 (-1135))) (|:| |c| |#1|)) $) NIL)) (-3868 (((-793 (-1135)) $) NIL)) (-3952 (((-793 (-1135)) $) NIL)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2439 (($ $ (-1135)) NIL) (($ $ (-793 (-1135))) NIL) (($ $ $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1436 (((-1233 (-1135) |#1|) $) NIL)) (-1618 (((-745) $) NIL)) (-1928 (((-112) $) NIL)) (-2573 ((|#1| $) NIL)) (-3834 (((-832) $) NIL) (($ (-547)) NIL) (($ |#1|) NIL) (($ (-793 (-1135))) NIL) (($ (-1135)) NIL)) (-1557 ((|#1| $ (-793 (-1135))) NIL) ((|#1| $ $) NIL)) (-2311 (((-745)) NIL)) (-3267 (($) NIL T CONST)) (-4052 (((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $) NIL)) (-3277 (($) NIL T CONST)) (-2371 (((-112) $ $) NIL)) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) NIL)) (** (($ $ (-890)) NIL) (($ $ (-745)) NIL)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1135) $) NIL))) +(((-1240 |#1|) (-13 (-1239 (-1135) |#1|) (-10 -8 (-15 -1436 ((-1233 (-1135) |#1|) $)) (-15 -4139 ($ (-1233 (-1135) |#1|))) (-15 -4052 ((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $)))) (-1016)) (T -1240)) +((-1436 (*1 *2 *1) (-12 (-5 *2 (-1233 (-1135) *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) (-4139 (*1 *1 *2) (-12 (-5 *2 (-1233 (-1135) *3)) (-4 *3 (-1016)) (-5 *1 (-1240 *3)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| (-1135)) (|:| |c| (-1240 *3))))) (-5 *1 (-1240 *3)) (-4 *3 (-1016))))) +(-13 (-1239 (-1135) |#1|) (-10 -8 (-15 -1436 ((-1233 (-1135) |#1|) $)) (-15 -4139 ($ (-1233 (-1135) |#1|))) (-15 -4052 ((-619 (-2 (|:| |k| (-1135)) (|:| |c| $))) $)))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) NIL)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3219 (($) NIL T CONST)) (-2698 (((-3 |#2| "failed") $) NIL)) (-2643 ((|#2| $) NIL)) (-2054 (($ $) NIL)) (-2537 (((-3 $ "failed") $) 36)) (-1826 (((-112) $) 30)) (-1722 (($ $) 32)) (-4114 (((-112) $) NIL)) (-3570 (((-745) $) NIL)) (-1744 (((-619 $) $) NIL)) (-2187 (((-112) $) NIL)) (-3513 (($ |#2| |#1|) NIL)) (-3868 ((|#2| $) 19)) (-3952 ((|#2| $) 16)) (-2781 (($ (-1 |#1| |#1|) $) NIL)) (-2128 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2013 ((|#2| $) NIL)) (-2027 ((|#1| $) NIL)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1928 (((-112) $) 27)) (-2573 ((|#1| $) 28)) (-3834 (((-832) $) 55) (($ (-547)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2472 (((-619 |#1|) $) NIL)) (-3338 ((|#1| $ |#2|) NIL)) (-1557 ((|#1| $ |#2|) 24)) (-2311 (((-745)) 14)) (-3267 (($) 25 T CONST)) (-3277 (($) 11 T CONST)) (-3853 (((-619 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2371 (((-112) $ $) 26)) (-2497 (($ $ |#1|) 57 (|has| |#1| (-354)))) (-2484 (($ $) NIL) (($ $ $) NIL)) (-2470 (($ $ $) 44)) (** (($ $ (-890)) NIL) (($ $ (-745)) 46)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3763 (((-745) $) 15))) +(((-1241 |#1| |#2|) (-13 (-1016) (-1232 |#1|) (-373 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3763 ((-745) $)) (-15 -3834 ($ |#2|)) (-15 -3952 (|#2| $)) (-15 -3868 (|#2| $)) (-15 -2054 ($ $)) (-15 -1557 (|#1| $ |#2|)) (-15 -1928 ((-112) $)) (-15 -2573 (|#1| $)) (-15 -1826 ((-112) $)) (-15 -1722 ($ $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-354)) (-15 -2497 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4321)) (-6 -4321) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|))) (-1016) (-817)) (T -1241)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2781 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3 *4)) (-4 *4 (-817)))) (-3834 (*1 *1 *2) (-12 (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)))) (-3868 (*1 *2 *1) (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)))) (-1557 (*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-2573 (*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817)))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817)))) (-2497 (*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-817))))) +(-13 (-1016) (-1232 |#1|) (-373 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3763 ((-745) $)) (-15 -3834 ($ |#2|)) (-15 -3952 (|#2| $)) (-15 -3868 (|#2| $)) (-15 -2054 ($ $)) (-15 -1557 (|#1| $ |#2|)) (-15 -1928 ((-112) $)) (-15 -2573 (|#1| $)) (-15 -1826 ((-112) $)) (-15 -1722 ($ $)) (-15 -2781 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-354)) (-15 -2497 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4321)) (-6 -4321) |%noBranch|) (IF (|has| |#1| (-6 -4325)) (-6 -4325) |%noBranch|) (IF (|has| |#1| (-6 -4326)) (-6 -4326) |%noBranch|))) +((-3821 (((-112) $ $) 26)) (-4046 (((-112) $) NIL)) (-3292 (((-619 |#1|) $) 120)) (-4139 (($ (-1233 |#1| |#2|)) 44)) (-1505 (($ $ (-745)) 32)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3171 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-745)) 46 (|has| |#2| (-169)))) (-3219 (($) NIL T CONST)) (-2317 (($ $ |#1|) 102) (($ $ (-793 |#1|)) 103) (($ $ $) 25)) (-2698 (((-3 (-793 |#1|) "failed") $) NIL)) (-2643 (((-793 |#1|) $) NIL)) (-2537 (((-3 $ "failed") $) 110)) (-1826 (((-112) $) 105)) (-1722 (($ $) 106)) (-4114 (((-112) $) NIL)) (-2187 (((-112) $) NIL)) (-3513 (($ (-793 |#1|) |#2|) 19)) (-2074 (($ $) NIL)) (-2551 (((-2 (|:| |k| (-793 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3868 (((-793 |#1|) $) 111)) (-3952 (((-793 |#1|) $) 114)) (-2781 (($ (-1 |#2| |#2|) $) 119)) (-2439 (($ $ |#1|) 100) (($ $ (-793 |#1|)) 101) (($ $ $) 56)) (-1917 (((-1118) $) NIL)) (-3979 (((-1082) $) NIL)) (-1436 (((-1233 |#1| |#2|) $) 84)) (-1618 (((-745) $) 117)) (-1928 (((-112) $) 70)) (-2573 ((|#2| $) 28)) (-3834 (((-832) $) 63) (($ (-547)) 77) (($ |#2|) 74) (($ (-793 |#1|)) 17) (($ |#1|) 73)) (-1557 ((|#2| $ (-793 |#1|)) 104) ((|#2| $ $) 27)) (-2311 (((-745)) 108)) (-3267 (($) 14 T CONST)) (-4052 (((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3277 (($) 29 T CONST)) (-2371 (((-112) $ $) 13)) (-2484 (($ $) 88) (($ $ $) 91)) (-2470 (($ $ $) 55)) (** (($ $ (-890)) NIL) (($ $ (-745)) 49)) (* (($ (-890) $) NIL) (($ (-745) $) 47) (($ (-547) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1242 |#1| |#2|) (-13 (-1239 |#1| |#2|) (-10 -8 (-15 -1436 ((-1233 |#1| |#2|) $)) (-15 -4139 ($ (-1233 |#1| |#2|))) (-15 -4052 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-821) (-1016)) (T -1242)) +((-1436 (*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)))) (-4139 (*1 *1 *2) (-12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) (-5 *1 (-1242 *3 *4)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1242 *3 *4))))) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) +(-13 (-1239 |#1| |#2|) (-10 -8 (-15 -1436 ((-1233 |#1| |#2|) $)) (-15 -4139 ($ (-1233 |#1| |#2|))) (-15 -4052 ((-619 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2647 (((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-547)) 15) (((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|))) 11))) +(((-1243 |#1|) (-10 -7 (-15 -2647 ((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|)))) (-15 -2647 ((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-547)))) (-1172)) (T -1243)) +((-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-619 (-1116 *5)) (-619 (-1116 *5)))) (-5 *4 (-547)) (-5 *2 (-619 (-1116 *5))) (-5 *1 (-1243 *5)) (-4 *5 (-1172)))) (-2647 (*1 *2 *3) (-12 (-5 *3 (-1 (-1116 *4) (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1243 *4)) (-4 *4 (-1172))))) +(-10 -7 (-15 -2647 ((-1116 |#1|) (-1 (-1116 |#1|) (-1116 |#1|)))) (-15 -2647 ((-619 (-1116 |#1|)) (-1 (-619 (-1116 |#1|)) (-619 (-1116 |#1|))) (-547)))) +((-1252 (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|))) 148) (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112)) 147) (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112)) 146) (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 145) (((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-1013 |#1| |#2|)) 130)) (-4226 (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|))) 72) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112)) 71) (((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112)) 70)) (-3457 (((-619 (-1106 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|)) 61)) (-3269 (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|))) 115) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112)) 114) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 113) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112)) 112) (((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|)) 107)) (-3361 (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|))) 120) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112)) 119) (((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112)) 118) (((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|)) 117)) (-2829 (((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) 98) (((-1131 (-993 (-398 |#1|))) (-1131 |#1|)) 89) (((-921 (-993 (-398 |#1|))) (-754 |#1| (-834 |#3|))) 96) (((-921 (-993 (-398 |#1|))) (-921 |#1|)) 94) (((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|))) 33))) +(((-1244 |#1| |#2| |#3|) (-10 -7 (-15 -4226 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -4226 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -4226 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -3457 ((-619 (-1106 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2829 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2829 ((-921 (-993 (-398 |#1|))) (-921 |#1|))) (-15 -2829 ((-921 (-993 (-398 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2829 ((-1131 (-993 (-398 |#1|))) (-1131 |#1|))) (-15 -2829 ((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) (-13 (-819) (-298) (-145) (-991)) (-619 (-1135)) (-619 (-1135))) (T -1244)) +((-2829 (*1 *2 *3) (-12 (-5 *3 (-1106 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-1131 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-1131 (-993 (-398 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *6))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *5))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-1106 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-3361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-3269 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-3269 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-3269 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-1252 (*1 *2 *3) (-12 (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *4)) (|:| -2301 (-619 (-921 *4)))))) (-5 *1 (-1244 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-1252 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-1252 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-1252 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-1252 (*1 *2 *3) (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-2 (|:| -1995 (-1131 *4)) (|:| -2301 (-619 (-921 *4)))))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) (-4226 (*1 *2 *3 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) (-4226 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135)))))) +(-10 -7 (-15 -4226 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112) (-112))) (-15 -4226 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)) (-112))) (-15 -4226 ((-619 (-1013 |#1| |#2|)) (-619 (-921 |#1|)))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-1013 |#1| |#2|))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)) (-112))) (-15 -1252 ((-619 (-2 (|:| -1995 (-1131 |#1|)) (|:| -2301 (-619 (-921 |#1|))))) (-619 (-921 |#1|)))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112) (-112))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -3269 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-1013 |#1| |#2|))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112) (-112))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)) (-112))) (-15 -3361 ((-619 (-619 (-993 (-398 |#1|)))) (-619 (-921 |#1|)))) (-15 -3457 ((-619 (-1106 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))) (-1013 |#1| |#2|))) (-15 -2829 ((-754 |#1| (-834 |#3|)) (-754 |#1| (-834 |#2|)))) (-15 -2829 ((-921 (-993 (-398 |#1|))) (-921 |#1|))) (-15 -2829 ((-921 (-993 (-398 |#1|))) (-754 |#1| (-834 |#3|)))) (-15 -2829 ((-1131 (-993 (-398 |#1|))) (-1131 |#1|))) (-15 -2829 ((-619 (-754 |#1| (-834 |#3|))) (-1106 |#1| (-519 (-834 |#3|)) (-834 |#3|) (-754 |#1| (-834 |#3|)))))) +((-3761 (((-3 (-1218 (-398 (-547))) "failed") (-1218 |#1|) |#1|) 21)) (-3554 (((-112) (-1218 |#1|)) 12)) (-3662 (((-3 (-1218 (-547)) "failed") (-1218 |#1|)) 16))) +(((-1245 |#1|) (-10 -7 (-15 -3554 ((-112) (-1218 |#1|))) (-15 -3662 ((-3 (-1218 (-547)) "failed") (-1218 |#1|))) (-15 -3761 ((-3 (-1218 (-398 (-547))) "failed") (-1218 |#1|) |#1|))) (-615 (-547))) (T -1245)) +((-3761 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-1218 (-398 (-547)))) (-5 *1 (-1245 *4)))) (-3662 (*1 *2 *3) (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-1218 (-547))) (-5 *1 (-1245 *4)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-112)) (-5 *1 (-1245 *4))))) +(-10 -7 (-15 -3554 ((-112) (-1218 |#1|))) (-15 -3662 ((-3 (-1218 (-547)) "failed") (-1218 |#1|))) (-15 -3761 ((-3 (-1218 (-398 (-547))) "failed") (-1218 |#1|) |#1|))) +((-3821 (((-112) $ $) NIL)) (-4046 (((-112) $) 11)) (-3013 (((-3 $ "failed") $ $) NIL)) (-3603 (((-745)) 8)) (-3219 (($) NIL T CONST)) (-2537 (((-3 $ "failed") $) 43)) (-3229 (($) 36)) (-4114 (((-112) $) NIL)) (-3652 (((-3 $ "failed") $) 29)) (-1966 (((-890) $) 15)) (-1917 (((-1118) $) NIL)) (-3045 (($) 25 T CONST)) (-3479 (($ (-890)) 37)) (-3979 (((-1082) $) NIL)) (-2829 (((-547) $) 13)) (-3834 (((-832) $) 22) (($ (-547)) 19)) (-2311 (((-745)) 9)) (-3267 (($) 23 T CONST)) (-3277 (($) 24 T CONST)) (-2371 (((-112) $ $) 27)) (-2484 (($ $) 38) (($ $ $) 35)) (-2470 (($ $ $) 26)) (** (($ $ (-890)) NIL) (($ $ (-745)) 40)) (* (($ (-890) $) NIL) (($ (-745) $) NIL) (($ (-547) $) 32) (($ $ $) 31))) +(((-1246 |#1|) (-13 (-169) (-359) (-592 (-547)) (-1111)) (-890)) (T -1246)) NIL -(-13 (-169) (-360) (-593 (-548)) (-1111)) +(-13 (-169) (-359) (-592 (-547)) (-1111)) NIL NIL NIL @@ -5119,4 +5120,4 @@ NIL NIL NIL NIL -((-3 3159659 3159664 3159669 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3159644 3159649 3159654 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3159629 3159634 3159639 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3159614 3159619 3159624 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1246 3158790 3159489 3159566 "ZMOD" 3159571 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1245 3157900 3158064 3158273 "ZLINDEP" 3158622 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1244 3147276 3149028 3150987 "ZDSOLVE" 3156042 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1243 3146522 3146663 3146852 "YSTREAM" 3147122 NIL YSTREAM (NIL T) -7 NIL NIL) (-1242 3144333 3145823 3146027 "XRPOLY" 3146365 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1241 3140825 3142108 3142692 "XPR" 3143796 NIL XPR (NIL T T) -8 NIL NIL) (-1240 3138581 3140156 3140360 "XPOLY" 3140656 NIL XPOLY (NIL T) -8 NIL NIL) (-1239 3136430 3137764 3137819 "XPOLYC" 3138107 NIL XPOLYC (NIL T T) -9 NIL 3138220) (-1238 3132848 3134947 3135335 "XPBWPOLY" 3136088 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1237 3128833 3131081 3131123 "XF" 3131744 NIL XF (NIL T) -9 NIL 3132144) (-1236 3128454 3128542 3128711 "XF-" 3128716 NIL XF- (NIL T T) -8 NIL NIL) (-1235 3123846 3125101 3125156 "XFALG" 3127328 NIL XFALG (NIL T T) -9 NIL 3128117) (-1234 3122979 3123083 3123288 "XEXPPKG" 3123738 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1233 3121123 3122829 3122925 "XDPOLY" 3122930 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1232 3120039 3120605 3120648 "XALG" 3120711 NIL XALG (NIL T) -9 NIL 3120831) (-1231 3113508 3118016 3118510 "WUTSET" 3119631 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1230 3111359 3112120 3112473 "WP" 3113289 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1229 3111005 3111181 3111251 "WHILEAST" 3111311 T WHILEAST (NIL) -8 NIL NIL) (-1228 3110521 3110722 3110816 "WHEREAST" 3110933 T WHEREAST (NIL) -8 NIL NIL) (-1227 3109407 3109605 3109900 "WFFINTBS" 3110318 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1226 3107311 3107738 3108200 "WEIER" 3108979 NIL WEIER (NIL T) -7 NIL NIL) (-1225 3106458 3106882 3106924 "VSPACE" 3107060 NIL VSPACE (NIL T) -9 NIL 3107134) (-1224 3106296 3106323 3106414 "VSPACE-" 3106419 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1223 3106042 3106085 3106156 "VOID" 3106247 T VOID (NIL) -8 NIL NIL) (-1222 3104178 3104537 3104943 "VIEW" 3105658 T VIEW (NIL) -7 NIL NIL) (-1221 3100603 3101241 3101978 "VIEWDEF" 3103463 T VIEWDEF (NIL) -7 NIL NIL) (-1220 3089941 3092151 3094324 "VIEW3D" 3098452 T VIEW3D (NIL) -8 NIL NIL) (-1219 3082223 3083852 3085431 "VIEW2D" 3088384 T VIEW2D (NIL) -8 NIL NIL) (-1218 3077627 3081993 3082085 "VECTOR" 3082166 NIL VECTOR (NIL T) -8 NIL NIL) (-1217 3076204 3076463 3076781 "VECTOR2" 3077357 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1216 3069731 3073988 3074031 "VECTCAT" 3075024 NIL VECTCAT (NIL T) -9 NIL 3075610) (-1215 3068745 3068999 3069389 "VECTCAT-" 3069394 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1214 3068226 3068396 3068516 "VARIABLE" 3068660 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1213 3068159 3068164 3068194 "UTYPE" 3068199 T UTYPE (NIL) -9 NIL NIL) (-1212 3066989 3067143 3067405 "UTSODETL" 3067985 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1211 3064429 3064889 3065413 "UTSODE" 3066530 NIL UTSODE (NIL T T) -7 NIL NIL) (-1210 3056305 3062055 3062544 "UTS" 3063998 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1209 3047678 3052997 3053040 "UTSCAT" 3054152 NIL UTSCAT (NIL T) -9 NIL 3054909) (-1208 3045032 3045748 3046737 "UTSCAT-" 3046742 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1207 3044659 3044702 3044835 "UTS2" 3044983 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1206 3038934 3041499 3041542 "URAGG" 3043612 NIL URAGG (NIL T) -9 NIL 3044334) (-1205 3035873 3036736 3037859 "URAGG-" 3037864 NIL URAGG- (NIL T T) -8 NIL NIL) (-1204 3031597 3034487 3034959 "UPXSSING" 3035537 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1203 3023567 3030712 3030994 "UPXS" 3031373 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1202 3016680 3023471 3023543 "UPXSCONS" 3023548 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1201 3007038 3013783 3013845 "UPXSCCA" 3014501 NIL UPXSCCA (NIL T T) -9 NIL 3014743) (-1200 3006676 3006761 3006935 "UPXSCCA-" 3006940 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1199 2996960 3003478 3003521 "UPXSCAT" 3004169 NIL UPXSCAT (NIL T) -9 NIL 3004777) (-1198 2996390 2996469 2996648 "UPXS2" 2996875 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1197 2995044 2995297 2995648 "UPSQFREE" 2996133 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1196 2988962 2991971 2992026 "UPSCAT" 2993187 NIL UPSCAT (NIL T T) -9 NIL 2993961) (-1195 2988166 2988373 2988700 "UPSCAT-" 2988705 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1194 2974257 2982253 2982296 "UPOLYC" 2984397 NIL UPOLYC (NIL T) -9 NIL 2985618) (-1193 2965586 2968011 2971158 "UPOLYC-" 2971163 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1192 2965213 2965256 2965389 "UPOLYC2" 2965537 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1191 2956670 2964779 2964917 "UP" 2965123 NIL UP (NIL NIL T) -8 NIL NIL) (-1190 2956009 2956116 2956280 "UPMP" 2956559 NIL UPMP (NIL T T) -7 NIL NIL) (-1189 2955562 2955643 2955782 "UPDIVP" 2955922 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1188 2954130 2954379 2954695 "UPDECOMP" 2955311 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1187 2953365 2953477 2953662 "UPCDEN" 2954014 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1186 2952884 2952953 2953102 "UP2" 2953290 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1185 2951401 2952088 2952365 "UNISEG" 2952642 NIL UNISEG (NIL T) -8 NIL NIL) (-1184 2950616 2950743 2950948 "UNISEG2" 2951244 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1183 2949676 2949856 2950082 "UNIFACT" 2950432 NIL UNIFACT (NIL T) -7 NIL NIL) (-1182 2933645 2948853 2949104 "ULS" 2949483 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1181 2921687 2933549 2933621 "ULSCONS" 2933626 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1180 2904491 2916426 2916488 "ULSCCAT" 2917208 NIL ULSCCAT (NIL T T) -9 NIL 2917505) (-1179 2903541 2903786 2904174 "ULSCCAT-" 2904179 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1178 2893602 2900034 2900077 "ULSCAT" 2900940 NIL ULSCAT (NIL T) -9 NIL 2901670) (-1177 2893032 2893111 2893290 "ULS2" 2893517 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1176 2891470 2892393 2892423 "UFD" 2892635 T UFD (NIL) -9 NIL 2892749) (-1175 2891264 2891310 2891405 "UFD-" 2891410 NIL UFD- (NIL T) -8 NIL NIL) (-1174 2890346 2890529 2890745 "UDVO" 2891070 T UDVO (NIL) -7 NIL NIL) (-1173 2888162 2888571 2889042 "UDPO" 2889910 NIL UDPO (NIL T) -7 NIL NIL) (-1172 2888095 2888100 2888130 "TYPE" 2888135 T TYPE (NIL) -9 NIL NIL) (-1171 2887749 2887917 2887987 "TYPEAST" 2888047 T TYPEAST (NIL) -8 NIL NIL) (-1170 2886720 2886922 2887162 "TWOFACT" 2887543 NIL TWOFACT (NIL T) -7 NIL NIL) (-1169 2885658 2885995 2886258 "TUPLE" 2886492 NIL TUPLE (NIL T) -8 NIL NIL) (-1168 2883349 2883868 2884407 "TUBETOOL" 2885141 T TUBETOOL (NIL) -7 NIL NIL) (-1167 2882198 2882403 2882644 "TUBE" 2883142 NIL TUBE (NIL T) -8 NIL NIL) (-1166 2876962 2881170 2881453 "TS" 2881950 NIL TS (NIL T) -8 NIL NIL) (-1165 2865629 2869721 2869818 "TSETCAT" 2875087 NIL TSETCAT (NIL T T T T) -9 NIL 2876618) (-1164 2860363 2861961 2863852 "TSETCAT-" 2863857 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1163 2854626 2855472 2856414 "TRMANIP" 2859499 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1162 2854067 2854130 2854293 "TRIMAT" 2854558 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1161 2851863 2852100 2852464 "TRIGMNIP" 2853816 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1160 2851383 2851496 2851526 "TRIGCAT" 2851739 T TRIGCAT (NIL) -9 NIL NIL) (-1159 2851052 2851131 2851272 "TRIGCAT-" 2851277 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1158 2847951 2849912 2850192 "TREE" 2850807 NIL TREE (NIL T) -8 NIL NIL) (-1157 2847225 2847753 2847783 "TRANFUN" 2847818 T TRANFUN (NIL) -9 NIL 2847884) (-1156 2846504 2846695 2846975 "TRANFUN-" 2846980 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1155 2846308 2846340 2846401 "TOPSP" 2846465 T TOPSP (NIL) -7 NIL NIL) (-1154 2845656 2845771 2845925 "TOOLSIGN" 2846189 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1153 2844317 2844833 2845072 "TEXTFILE" 2845439 T TEXTFILE (NIL) -8 NIL NIL) (-1152 2842182 2842696 2843134 "TEX" 2843901 T TEX (NIL) -8 NIL NIL) (-1151 2841963 2841994 2842066 "TEX1" 2842145 NIL TEX1 (NIL T) -7 NIL NIL) (-1150 2841611 2841674 2841764 "TEMUTL" 2841895 T TEMUTL (NIL) -7 NIL NIL) (-1149 2839765 2840045 2840370 "TBCMPPK" 2841334 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1148 2831653 2837925 2837981 "TBAGG" 2838381 NIL TBAGG (NIL T T) -9 NIL 2838592) (-1147 2826723 2828211 2829965 "TBAGG-" 2829970 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1146 2826107 2826214 2826359 "TANEXP" 2826612 NIL TANEXP (NIL T) -7 NIL NIL) (-1145 2819608 2825964 2826057 "TABLE" 2826062 NIL TABLE (NIL T T) -8 NIL NIL) (-1144 2819020 2819119 2819257 "TABLEAU" 2819505 NIL TABLEAU (NIL T) -8 NIL NIL) (-1143 2813628 2814848 2816096 "TABLBUMP" 2817806 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1142 2813056 2813156 2813284 "SYSTEM" 2813522 T SYSTEM (NIL) -7 NIL NIL) (-1141 2809519 2810214 2810997 "SYSSOLP" 2812307 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1140 2805810 2806518 2807252 "SYNTAX" 2808807 T SYNTAX (NIL) -8 NIL NIL) (-1139 2802968 2803570 2804202 "SYMTAB" 2805200 T SYMTAB (NIL) -8 NIL NIL) (-1138 2798217 2799119 2800102 "SYMS" 2802007 T SYMS (NIL) -8 NIL NIL) (-1137 2795489 2797675 2797905 "SYMPOLY" 2798022 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1136 2795006 2795081 2795204 "SYMFUNC" 2795401 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1135 2790983 2792243 2793065 "SYMBOL" 2794206 T SYMBOL (NIL) -8 NIL NIL) (-1134 2784522 2786211 2787931 "SWITCH" 2789285 T SWITCH (NIL) -8 NIL NIL) (-1133 2777792 2783343 2783646 "SUTS" 2784277 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1132 2769761 2776907 2777189 "SUPXS" 2777568 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1131 2761290 2769379 2769505 "SUP" 2769670 NIL SUP (NIL T) -8 NIL NIL) (-1130 2760449 2760576 2760793 "SUPFRACF" 2761158 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1129 2760070 2760129 2760242 "SUP2" 2760384 NIL SUP2 (NIL T T) -7 NIL NIL) (-1128 2758483 2758757 2759120 "SUMRF" 2759769 NIL SUMRF (NIL T) -7 NIL NIL) (-1127 2757797 2757863 2758062 "SUMFS" 2758404 NIL SUMFS (NIL T T) -7 NIL NIL) (-1126 2741806 2756974 2757225 "SULS" 2757604 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1125 2741128 2741331 2741471 "SUCH" 2741714 NIL SUCH (NIL T T) -8 NIL NIL) (-1124 2735022 2736034 2736993 "SUBSPACE" 2740216 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1123 2734452 2734542 2734706 "SUBRESP" 2734910 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1122 2727821 2729117 2730428 "STTF" 2733188 NIL STTF (NIL T) -7 NIL NIL) (-1121 2721994 2723114 2724261 "STTFNC" 2726721 NIL STTFNC (NIL T) -7 NIL NIL) (-1120 2713309 2715176 2716970 "STTAYLOR" 2720235 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1119 2706553 2713173 2713256 "STRTBL" 2713261 NIL STRTBL (NIL T) -8 NIL NIL) (-1118 2701944 2706508 2706539 "STRING" 2706544 T STRING (NIL) -8 NIL NIL) (-1117 2696832 2701317 2701347 "STRICAT" 2701406 T STRICAT (NIL) -9 NIL 2701468) (-1116 2689545 2694355 2694975 "STREAM" 2696247 NIL STREAM (NIL T) -8 NIL NIL) (-1115 2689055 2689132 2689276 "STREAM3" 2689462 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1114 2688037 2688220 2688455 "STREAM2" 2688868 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1113 2687725 2687777 2687870 "STREAM1" 2687979 NIL STREAM1 (NIL T) -7 NIL NIL) (-1112 2686741 2686922 2687153 "STINPROD" 2687541 NIL STINPROD (NIL T) -7 NIL NIL) (-1111 2686319 2686503 2686533 "STEP" 2686613 T STEP (NIL) -9 NIL 2686691) (-1110 2679862 2686218 2686295 "STBL" 2686300 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1109 2675037 2679084 2679127 "STAGG" 2679280 NIL STAGG (NIL T) -9 NIL 2679369) (-1108 2672739 2673341 2674213 "STAGG-" 2674218 NIL STAGG- (NIL T T) -8 NIL NIL) (-1107 2670934 2672509 2672601 "STACK" 2672682 NIL STACK (NIL T) -8 NIL NIL) (-1106 2663659 2669075 2669531 "SREGSET" 2670564 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1105 2656085 2657453 2658966 "SRDCMPK" 2662265 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1104 2649052 2653525 2653555 "SRAGG" 2654858 T SRAGG (NIL) -9 NIL 2655466) (-1103 2648069 2648324 2648703 "SRAGG-" 2648708 NIL SRAGG- (NIL T) -8 NIL NIL) (-1102 2642555 2646984 2647412 "SQMATRIX" 2647688 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1101 2636307 2639275 2640001 "SPLTREE" 2641901 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1100 2632297 2632963 2633609 "SPLNODE" 2635733 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1099 2631344 2631577 2631607 "SPFCAT" 2632051 T SPFCAT (NIL) -9 NIL NIL) (-1098 2630081 2630291 2630555 "SPECOUT" 2631102 T SPECOUT (NIL) -7 NIL NIL) (-1097 2629842 2629882 2629951 "SPADPRSR" 2630034 T SPADPRSR (NIL) -7 NIL NIL) (-1096 2621813 2623560 2623603 "SPACEC" 2627976 NIL SPACEC (NIL T) -9 NIL 2629792) (-1095 2619984 2621745 2621794 "SPACE3" 2621799 NIL SPACE3 (NIL T) -8 NIL NIL) (-1094 2618736 2618907 2619198 "SORTPAK" 2619789 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1093 2616786 2617089 2617508 "SOLVETRA" 2618400 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1092 2615797 2616019 2616293 "SOLVESER" 2616559 NIL SOLVESER (NIL T) -7 NIL NIL) (-1091 2611017 2611898 2612900 "SOLVERAD" 2614849 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1090 2606832 2607441 2608170 "SOLVEFOR" 2610384 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1089 2601129 2606181 2606278 "SNTSCAT" 2606283 NIL SNTSCAT (NIL T T T T) -9 NIL 2606353) (-1088 2595272 2599452 2599843 "SMTS" 2600819 NIL SMTS (NIL T T T) -8 NIL NIL) (-1087 2589722 2595160 2595237 "SMP" 2595242 NIL SMP (NIL T T) -8 NIL NIL) (-1086 2587881 2588182 2588580 "SMITH" 2589419 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1085 2580864 2585019 2585122 "SMATCAT" 2586473 NIL SMATCAT (NIL NIL T T T) -9 NIL 2587023) (-1084 2577804 2578627 2579805 "SMATCAT-" 2579810 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1083 2575517 2577040 2577083 "SKAGG" 2577344 NIL SKAGG (NIL T) -9 NIL 2577479) (-1082 2571633 2574621 2574899 "SINT" 2575261 T SINT (NIL) -8 NIL NIL) (-1081 2571405 2571443 2571509 "SIMPAN" 2571589 T SIMPAN (NIL) -7 NIL NIL) (-1080 2570712 2570940 2571080 "SIG" 2571287 T SIG (NIL) -8 NIL NIL) (-1079 2569550 2569771 2570046 "SIGNRF" 2570471 NIL SIGNRF (NIL T) -7 NIL NIL) (-1078 2568355 2568506 2568797 "SIGNEF" 2569379 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1077 2566045 2566499 2567005 "SHP" 2567896 NIL SHP (NIL T NIL) -7 NIL NIL) (-1076 2559951 2565946 2566022 "SHDP" 2566027 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1075 2559550 2559716 2559746 "SGROUP" 2559839 T SGROUP (NIL) -9 NIL 2559901) (-1074 2559408 2559434 2559507 "SGROUP-" 2559512 NIL SGROUP- (NIL T) -8 NIL NIL) (-1073 2556244 2556941 2557664 "SGCF" 2558707 T SGCF (NIL) -7 NIL NIL) (-1072 2550639 2555691 2555788 "SFRTCAT" 2555793 NIL SFRTCAT (NIL T T T T) -9 NIL 2555832) (-1071 2544063 2545078 2546214 "SFRGCD" 2549622 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1070 2537191 2538262 2539448 "SFQCMPK" 2542996 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1069 2536813 2536902 2537012 "SFORT" 2537132 NIL SFORT (NIL T T) -8 NIL NIL) (-1068 2535958 2536653 2536774 "SEXOF" 2536779 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1067 2535092 2535839 2535907 "SEX" 2535912 T SEX (NIL) -8 NIL NIL) (-1066 2529868 2530557 2530652 "SEXCAT" 2534423 NIL SEXCAT (NIL T T T T T) -9 NIL 2535042) (-1065 2527048 2529802 2529850 "SET" 2529855 NIL SET (NIL T) -8 NIL NIL) (-1064 2525299 2525761 2526066 "SETMN" 2526789 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1063 2524905 2525031 2525061 "SETCAT" 2525178 T SETCAT (NIL) -9 NIL 2525263) (-1062 2524685 2524737 2524836 "SETCAT-" 2524841 NIL SETCAT- (NIL T) -8 NIL NIL) (-1061 2521072 2523146 2523189 "SETAGG" 2524059 NIL SETAGG (NIL T) -9 NIL 2524399) (-1060 2520530 2520646 2520883 "SETAGG-" 2520888 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1059 2519734 2520027 2520088 "SEGXCAT" 2520374 NIL SEGXCAT (NIL T T) -9 NIL 2520494) (-1058 2518790 2519400 2519582 "SEG" 2519587 NIL SEG (NIL T) -8 NIL NIL) (-1057 2517697 2517910 2517953 "SEGCAT" 2518535 NIL SEGCAT (NIL T) -9 NIL 2518773) (-1056 2516746 2517076 2517276 "SEGBIND" 2517532 NIL SEGBIND (NIL T) -8 NIL NIL) (-1055 2516367 2516426 2516539 "SEGBIND2" 2516681 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1054 2515985 2516168 2516245 "SEGAST" 2516312 T SEGAST (NIL) -8 NIL NIL) (-1053 2515204 2515330 2515534 "SEG2" 2515829 NIL SEG2 (NIL T T) -7 NIL NIL) (-1052 2514641 2515139 2515186 "SDVAR" 2515191 NIL SDVAR (NIL T) -8 NIL NIL) (-1051 2506931 2514411 2514541 "SDPOL" 2514546 NIL SDPOL (NIL T) -8 NIL NIL) (-1050 2505524 2505790 2506109 "SCPKG" 2506646 NIL SCPKG (NIL T) -7 NIL NIL) (-1049 2504660 2504840 2505040 "SCOPE" 2505346 T SCOPE (NIL) -8 NIL NIL) (-1048 2503881 2504014 2504193 "SCACHE" 2504515 NIL SCACHE (NIL T) -7 NIL NIL) (-1047 2503607 2503750 2503780 "SASTCAT" 2503785 T SASTCAT (NIL) -9 NIL 2503798) (-1046 2503396 2503441 2503539 "SASTCAT-" 2503544 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1045 2502835 2503156 2503241 "SAOS" 2503333 T SAOS (NIL) -8 NIL NIL) (-1044 2502400 2502435 2502608 "SAERFFC" 2502794 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1043 2496374 2502297 2502377 "SAE" 2502382 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1042 2495967 2496002 2496161 "SAEFACT" 2496333 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1041 2494288 2494602 2495003 "RURPK" 2495633 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1040 2492924 2493203 2493515 "RULESET" 2494122 NIL RULESET (NIL T T T) -8 NIL NIL) (-1039 2490111 2490614 2491079 "RULE" 2492605 NIL RULE (NIL T T T) -8 NIL NIL) (-1038 2489750 2489905 2489988 "RULECOLD" 2490063 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1037 2484599 2485393 2486313 "RSETGCD" 2488949 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1036 2473856 2478908 2479005 "RSETCAT" 2483124 NIL RSETCAT (NIL T T T T) -9 NIL 2484221) (-1035 2471783 2472322 2473146 "RSETCAT-" 2473151 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1034 2464170 2465545 2467065 "RSDCMPK" 2470382 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2462175 2462616 2462690 "RRCC" 2463776 NIL RRCC (NIL T T) -9 NIL 2464120) (-1032 2461526 2461700 2461979 "RRCC-" 2461984 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1031 2461013 2461222 2461323 "RPTAST" 2461447 T RPTAST (NIL) -8 NIL NIL) (-1030 2435241 2444826 2444893 "RPOLCAT" 2455557 NIL RPOLCAT (NIL T T T) -9 NIL 2458716) (-1029 2426741 2429079 2432201 "RPOLCAT-" 2432206 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1028 2417788 2424952 2425434 "ROUTINE" 2426281 T ROUTINE (NIL) -8 NIL NIL) (-1027 2414534 2417339 2417488 "ROMAN" 2417661 T ROMAN (NIL) -8 NIL NIL) (-1026 2412809 2413394 2413654 "ROIRC" 2414339 NIL ROIRC (NIL T T) -8 NIL NIL) (-1025 2409260 2411499 2411529 "RNS" 2411833 T RNS (NIL) -9 NIL 2412105) (-1024 2407769 2408152 2408686 "RNS-" 2408761 NIL RNS- (NIL T) -8 NIL NIL) (-1023 2407218 2407600 2407630 "RNG" 2407635 T RNG (NIL) -9 NIL 2407656) (-1022 2406610 2406972 2407015 "RMODULE" 2407077 NIL RMODULE (NIL T) -9 NIL 2407119) (-1021 2405446 2405540 2405876 "RMCAT2" 2406511 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1020 2402151 2404620 2404945 "RMATRIX" 2405180 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1019 2395093 2397327 2397442 "RMATCAT" 2400801 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2401783) (-1018 2394468 2394615 2394922 "RMATCAT-" 2394927 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1017 2394035 2394110 2394238 "RINTERP" 2394387 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1016 2393123 2393643 2393673 "RING" 2393785 T RING (NIL) -9 NIL 2393880) (-1015 2392915 2392959 2393056 "RING-" 2393061 NIL RING- (NIL T) -8 NIL NIL) (-1014 2391756 2391993 2392251 "RIDIST" 2392679 T RIDIST (NIL) -7 NIL NIL) (-1013 2383072 2391224 2391430 "RGCHAIN" 2391604 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1012 2380066 2380680 2381350 "RF" 2382436 NIL RF (NIL T) -7 NIL NIL) (-1011 2379712 2379775 2379878 "RFFACTOR" 2379997 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1010 2379437 2379472 2379569 "RFFACT" 2379671 NIL RFFACT (NIL T) -7 NIL NIL) (-1009 2377554 2377918 2378300 "RFDIST" 2379077 T RFDIST (NIL) -7 NIL NIL) (-1008 2377007 2377099 2377262 "RETSOL" 2377456 NIL RETSOL (NIL T T) -7 NIL NIL) (-1007 2376595 2376675 2376718 "RETRACT" 2376911 NIL RETRACT (NIL T) -9 NIL NIL) (-1006 2376444 2376469 2376556 "RETRACT-" 2376561 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1005 2376090 2376266 2376336 "RETAST" 2376396 T RETAST (NIL) -8 NIL NIL) (-1004 2368944 2375743 2375870 "RESULT" 2375985 T RESULT (NIL) -8 NIL NIL) (-1003 2367570 2368213 2368412 "RESRING" 2368847 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1002 2367206 2367255 2367353 "RESLATC" 2367507 NIL RESLATC (NIL T) -7 NIL NIL) (-1001 2366912 2366946 2367053 "REPSQ" 2367165 NIL REPSQ (NIL T) -7 NIL NIL) (-1000 2364334 2364914 2365516 "REP" 2366332 T REP (NIL) -7 NIL NIL) (-999 2364035 2364069 2364178 "REPDB" 2364293 NIL REPDB (NIL T) -7 NIL NIL) (-998 2357963 2359342 2360563 "REP2" 2362847 NIL REP2 (NIL T) -7 NIL NIL) (-997 2354355 2355036 2355842 "REP1" 2357190 NIL REP1 (NIL T) -7 NIL NIL) (-996 2347093 2352508 2352962 "REGSET" 2353985 NIL REGSET (NIL T T T T) -8 NIL NIL) (-995 2345914 2346249 2346497 "REF" 2346878 NIL REF (NIL T) -8 NIL NIL) (-994 2345295 2345398 2345563 "REDORDER" 2345798 NIL REDORDER (NIL T T) -7 NIL NIL) (-993 2341315 2344523 2344746 "RECLOS" 2345124 NIL RECLOS (NIL T) -8 NIL NIL) (-992 2340372 2340553 2340766 "REALSOLV" 2341122 T REALSOLV (NIL) -7 NIL NIL) (-991 2340220 2340261 2340289 "REAL" 2340294 T REAL (NIL) -9 NIL 2340329) (-990 2336711 2337513 2338395 "REAL0Q" 2339385 NIL REAL0Q (NIL T) -7 NIL NIL) (-989 2332322 2333310 2334369 "REAL0" 2335692 NIL REAL0 (NIL T) -7 NIL NIL) (-988 2331842 2332043 2332135 "RDUCEAST" 2332250 T RDUCEAST (NIL) -8 NIL NIL) (-987 2331250 2331322 2331527 "RDIV" 2331764 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-986 2330323 2330497 2330708 "RDIST" 2331072 NIL RDIST (NIL T) -7 NIL NIL) (-985 2328924 2329211 2329581 "RDETRS" 2330031 NIL RDETRS (NIL T T) -7 NIL NIL) (-984 2326741 2327195 2327731 "RDETR" 2328466 NIL RDETR (NIL T T) -7 NIL NIL) (-983 2325355 2325633 2326035 "RDEEFS" 2326457 NIL RDEEFS (NIL T T) -7 NIL NIL) (-982 2323853 2324159 2324589 "RDEEF" 2325043 NIL RDEEF (NIL T T) -7 NIL NIL) (-981 2318190 2321061 2321089 "RCFIELD" 2322366 T RCFIELD (NIL) -9 NIL 2323096) (-980 2316259 2316763 2317456 "RCFIELD-" 2317529 NIL RCFIELD- (NIL T) -8 NIL NIL) (-979 2312590 2314375 2314416 "RCAGG" 2315487 NIL RCAGG (NIL T) -9 NIL 2315952) (-978 2312221 2312315 2312475 "RCAGG-" 2312480 NIL RCAGG- (NIL T T) -8 NIL NIL) (-977 2311561 2311673 2311836 "RATRET" 2312105 NIL RATRET (NIL T) -7 NIL NIL) (-976 2311118 2311185 2311304 "RATFACT" 2311489 NIL RATFACT (NIL T) -7 NIL NIL) (-975 2310433 2310553 2310703 "RANDSRC" 2310988 T RANDSRC (NIL) -7 NIL NIL) (-974 2310170 2310214 2310285 "RADUTIL" 2310382 T RADUTIL (NIL) -7 NIL NIL) (-973 2303235 2308913 2309230 "RADIX" 2309885 NIL RADIX (NIL NIL) -8 NIL NIL) (-972 2294891 2303079 2303207 "RADFF" 2303212 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-971 2294543 2294618 2294646 "RADCAT" 2294803 T RADCAT (NIL) -9 NIL NIL) (-970 2294328 2294376 2294473 "RADCAT-" 2294478 NIL RADCAT- (NIL T) -8 NIL NIL) (-969 2292479 2294103 2294192 "QUEUE" 2294272 NIL QUEUE (NIL T) -8 NIL NIL) (-968 2289055 2292416 2292461 "QUAT" 2292466 NIL QUAT (NIL T) -8 NIL NIL) (-967 2288693 2288736 2288863 "QUATCT2" 2289006 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-966 2282553 2285854 2285894 "QUATCAT" 2286674 NIL QUATCAT (NIL T) -9 NIL 2287440) (-965 2278697 2279734 2281121 "QUATCAT-" 2281215 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-964 2276217 2277781 2277822 "QUAGG" 2278197 NIL QUAGG (NIL T) -9 NIL 2278372) (-963 2275866 2276042 2276110 "QQUTAST" 2276169 T QQUTAST (NIL) -8 NIL NIL) (-962 2274791 2275264 2275436 "QFORM" 2275738 NIL QFORM (NIL NIL T) -8 NIL NIL) (-961 2266124 2271327 2271367 "QFCAT" 2272025 NIL QFCAT (NIL T) -9 NIL 2273024) (-960 2261696 2262897 2264488 "QFCAT-" 2264582 NIL QFCAT- (NIL T T) -8 NIL NIL) (-959 2261334 2261377 2261504 "QFCAT2" 2261647 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-958 2260794 2260904 2261034 "QEQUAT" 2261224 T QEQUAT (NIL) -8 NIL NIL) (-957 2253942 2255013 2256197 "QCMPACK" 2259727 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-956 2251518 2251939 2252367 "QALGSET" 2253597 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-955 2250763 2250937 2251169 "QALGSET2" 2251338 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-954 2249454 2249677 2249994 "PWFFINTB" 2250536 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-953 2247636 2247804 2248158 "PUSHVAR" 2249268 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-952 2243554 2244608 2244649 "PTRANFN" 2246533 NIL PTRANFN (NIL T) -9 NIL NIL) (-951 2241956 2242247 2242569 "PTPACK" 2243265 NIL PTPACK (NIL T) -7 NIL NIL) (-950 2241588 2241645 2241754 "PTFUNC2" 2241893 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-949 2236054 2240399 2240440 "PTCAT" 2240813 NIL PTCAT (NIL T) -9 NIL 2240975) (-948 2235712 2235747 2235871 "PSQFR" 2236013 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-947 2234307 2234605 2234939 "PSEUDLIN" 2235410 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-946 2221076 2223441 2225765 "PSETPK" 2232067 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-945 2214120 2216834 2216930 "PSETCAT" 2219951 NIL PSETCAT (NIL T T T T) -9 NIL 2220765) (-944 2211956 2212590 2213411 "PSETCAT-" 2213416 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-943 2211305 2211470 2211498 "PSCURVE" 2211766 T PSCURVE (NIL) -9 NIL 2211933) (-942 2207786 2209268 2209333 "PSCAT" 2210177 NIL PSCAT (NIL T T T) -9 NIL 2210417) (-941 2206849 2207065 2207465 "PSCAT-" 2207470 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-940 2205501 2206134 2206348 "PRTITION" 2206655 T PRTITION (NIL) -8 NIL NIL) (-939 2205021 2205222 2205314 "PRTDAST" 2205429 T PRTDAST (NIL) -8 NIL NIL) (-938 2194119 2196325 2198513 "PRS" 2202883 NIL PRS (NIL T T) -7 NIL NIL) (-937 2191977 2193469 2193509 "PRQAGG" 2193692 NIL PRQAGG (NIL T) -9 NIL 2193794) (-936 2191548 2191650 2191678 "PROPLOG" 2191863 T PROPLOG (NIL) -9 NIL NIL) (-935 2188671 2189236 2189763 "PROPFRML" 2191053 NIL PROPFRML (NIL T) -8 NIL NIL) (-934 2188131 2188241 2188371 "PROPERTY" 2188561 T PROPERTY (NIL) -8 NIL NIL) (-933 2182216 2186297 2187117 "PRODUCT" 2187357 NIL PRODUCT (NIL T T) -8 NIL NIL) (-932 2179529 2181674 2181908 "PR" 2182027 NIL PR (NIL T T) -8 NIL NIL) (-931 2179325 2179357 2179416 "PRINT" 2179490 T PRINT (NIL) -7 NIL NIL) (-930 2178665 2178782 2178934 "PRIMES" 2179205 NIL PRIMES (NIL T) -7 NIL NIL) (-929 2176730 2177131 2177597 "PRIMELT" 2178244 NIL PRIMELT (NIL T) -7 NIL NIL) (-928 2176459 2176508 2176536 "PRIMCAT" 2176660 T PRIMCAT (NIL) -9 NIL NIL) (-927 2172620 2176397 2176442 "PRIMARR" 2176447 NIL PRIMARR (NIL T) -8 NIL NIL) (-926 2171627 2171805 2172033 "PRIMARR2" 2172438 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-925 2171270 2171326 2171437 "PREASSOC" 2171565 NIL PREASSOC (NIL T T) -7 NIL NIL) (-924 2170745 2170878 2170906 "PPCURVE" 2171111 T PPCURVE (NIL) -9 NIL 2171247) (-923 2170367 2170540 2170623 "PORTNUM" 2170682 T PORTNUM (NIL) -8 NIL NIL) (-922 2167726 2168125 2168717 "POLYROOT" 2169948 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-921 2161671 2167330 2167490 "POLY" 2167599 NIL POLY (NIL T) -8 NIL NIL) (-920 2161054 2161112 2161346 "POLYLIFT" 2161607 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-919 2157329 2157778 2158407 "POLYCATQ" 2160599 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-918 2144368 2149724 2149789 "POLYCAT" 2153303 NIL POLYCAT (NIL T T T) -9 NIL 2155231) (-917 2137818 2139679 2142063 "POLYCAT-" 2142068 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-916 2137405 2137473 2137593 "POLY2UP" 2137744 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-915 2137037 2137094 2137203 "POLY2" 2137342 NIL POLY2 (NIL T T) -7 NIL NIL) (-914 2135722 2135961 2136237 "POLUTIL" 2136811 NIL POLUTIL (NIL T T) -7 NIL NIL) (-913 2134077 2134354 2134685 "POLTOPOL" 2135444 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-912 2129595 2134013 2134059 "POINT" 2134064 NIL POINT (NIL T) -8 NIL NIL) (-911 2127782 2128139 2128514 "PNTHEORY" 2129240 T PNTHEORY (NIL) -7 NIL NIL) (-910 2126201 2126498 2126910 "PMTOOLS" 2127480 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-909 2125794 2125872 2125989 "PMSYM" 2126117 NIL PMSYM (NIL T) -7 NIL NIL) (-908 2125304 2125373 2125547 "PMQFCAT" 2125719 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-907 2124659 2124769 2124925 "PMPRED" 2125181 NIL PMPRED (NIL T) -7 NIL NIL) (-906 2124055 2124141 2124302 "PMPREDFS" 2124560 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-905 2122698 2122906 2123291 "PMPLCAT" 2123817 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-904 2122230 2122309 2122461 "PMLSAGG" 2122613 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-903 2121705 2121781 2121962 "PMKERNEL" 2122148 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-902 2121322 2121397 2121510 "PMINS" 2121624 NIL PMINS (NIL T) -7 NIL NIL) (-901 2120750 2120819 2121035 "PMFS" 2121247 NIL PMFS (NIL T T T) -7 NIL NIL) (-900 2119978 2120096 2120301 "PMDOWN" 2120627 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-899 2119141 2119300 2119482 "PMASS" 2119816 T PMASS (NIL) -7 NIL NIL) (-898 2118415 2118526 2118689 "PMASSFS" 2119027 NIL PMASSFS (NIL T T) -7 NIL NIL) (-897 2118070 2118138 2118232 "PLOTTOOL" 2118341 T PLOTTOOL (NIL) -7 NIL NIL) (-896 2112692 2113881 2115029 "PLOT" 2116942 T PLOT (NIL) -8 NIL NIL) (-895 2108506 2109540 2110461 "PLOT3D" 2111791 T PLOT3D (NIL) -8 NIL NIL) (-894 2107418 2107595 2107830 "PLOT1" 2108310 NIL PLOT1 (NIL T) -7 NIL NIL) (-893 2082812 2087484 2092335 "PLEQN" 2102684 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-892 2082130 2082252 2082432 "PINTERP" 2082677 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-891 2081823 2081870 2081973 "PINTERPA" 2082077 NIL PINTERPA (NIL T T) -7 NIL NIL) (-890 2081108 2081629 2081716 "PI" 2081756 T PI (NIL) -8 NIL NIL) (-889 2079540 2080481 2080509 "PID" 2080691 T PID (NIL) -9 NIL 2080825) (-888 2079265 2079302 2079390 "PICOERCE" 2079497 NIL PICOERCE (NIL T) -7 NIL NIL) (-887 2078585 2078724 2078900 "PGROEB" 2079121 NIL PGROEB (NIL T) -7 NIL NIL) (-886 2074172 2074986 2075891 "PGE" 2077700 T PGE (NIL) -7 NIL NIL) (-885 2072296 2072542 2072908 "PGCD" 2073889 NIL PGCD (NIL T T T T) -7 NIL NIL) (-884 2071634 2071737 2071898 "PFRPAC" 2072180 NIL PFRPAC (NIL T) -7 NIL NIL) (-883 2068314 2070182 2070535 "PFR" 2071313 NIL PFR (NIL T) -8 NIL NIL) (-882 2066703 2066947 2067272 "PFOTOOLS" 2068061 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-881 2065236 2065475 2065826 "PFOQ" 2066460 NIL PFOQ (NIL T T T) -7 NIL NIL) (-880 2063709 2063921 2064284 "PFO" 2065020 NIL PFO (NIL T T T T T) -7 NIL NIL) (-879 2060297 2063598 2063667 "PF" 2063672 NIL PF (NIL NIL) -8 NIL NIL) (-878 2057766 2059003 2059031 "PFECAT" 2059616 T PFECAT (NIL) -9 NIL 2060000) (-877 2057211 2057365 2057579 "PFECAT-" 2057584 NIL PFECAT- (NIL T) -8 NIL NIL) (-876 2055815 2056066 2056367 "PFBRU" 2056960 NIL PFBRU (NIL T T) -7 NIL NIL) (-875 2053682 2054033 2054465 "PFBR" 2055466 NIL PFBR (NIL T T T T) -7 NIL NIL) (-874 2049598 2051058 2051734 "PERM" 2053039 NIL PERM (NIL T) -8 NIL NIL) (-873 2044864 2045805 2046675 "PERMGRP" 2048761 NIL PERMGRP (NIL T) -8 NIL NIL) (-872 2042996 2043927 2043968 "PERMCAT" 2044414 NIL PERMCAT (NIL T) -9 NIL 2044719) (-871 2042649 2042690 2042814 "PERMAN" 2042949 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-870 2040089 2042218 2042349 "PENDTREE" 2042551 NIL PENDTREE (NIL T) -8 NIL NIL) (-869 2038202 2038936 2038977 "PDRING" 2039634 NIL PDRING (NIL T) -9 NIL 2039920) (-868 2037305 2037523 2037885 "PDRING-" 2037890 NIL PDRING- (NIL T T) -8 NIL NIL) (-867 2034446 2035197 2035888 "PDEPROB" 2036634 T PDEPROB (NIL) -8 NIL NIL) (-866 2031993 2032495 2033050 "PDEPACK" 2033911 T PDEPACK (NIL) -7 NIL NIL) (-865 2030905 2031095 2031346 "PDECOMP" 2031792 NIL PDECOMP (NIL T T) -7 NIL NIL) (-864 2028510 2029327 2029355 "PDECAT" 2030142 T PDECAT (NIL) -9 NIL 2030855) (-863 2028261 2028294 2028384 "PCOMP" 2028471 NIL PCOMP (NIL T T) -7 NIL NIL) (-862 2026466 2027062 2027359 "PBWLB" 2027990 NIL PBWLB (NIL T) -8 NIL NIL) (-861 2018970 2020539 2021877 "PATTERN" 2025149 NIL PATTERN (NIL T) -8 NIL NIL) (-860 2018602 2018659 2018768 "PATTERN2" 2018907 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-859 2016359 2016747 2017204 "PATTERN1" 2018191 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-858 2013754 2014308 2014789 "PATRES" 2015924 NIL PATRES (NIL T T) -8 NIL NIL) (-857 2013318 2013385 2013517 "PATRES2" 2013681 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-856 2011201 2011606 2012013 "PATMATCH" 2012985 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-855 2010737 2010920 2010961 "PATMAB" 2011068 NIL PATMAB (NIL T) -9 NIL 2011151) (-854 2009282 2009591 2009849 "PATLRES" 2010542 NIL PATLRES (NIL T T T) -8 NIL NIL) (-853 2008828 2008951 2008992 "PATAB" 2008997 NIL PATAB (NIL T) -9 NIL 2009169) (-852 2006309 2006841 2007414 "PARTPERM" 2008275 T PARTPERM (NIL) -7 NIL NIL) (-851 2005930 2005993 2006095 "PARSURF" 2006240 NIL PARSURF (NIL T) -8 NIL NIL) (-850 2005562 2005619 2005728 "PARSU2" 2005867 NIL PARSU2 (NIL T T) -7 NIL NIL) (-849 2005326 2005366 2005433 "PARSER" 2005515 T PARSER (NIL) -7 NIL NIL) (-848 2004947 2005010 2005112 "PARSCURV" 2005257 NIL PARSCURV (NIL T) -8 NIL NIL) (-847 2004579 2004636 2004745 "PARSC2" 2004884 NIL PARSC2 (NIL T T) -7 NIL NIL) (-846 2004218 2004276 2004373 "PARPCURV" 2004515 NIL PARPCURV (NIL T) -8 NIL NIL) (-845 2003850 2003907 2004016 "PARPC2" 2004155 NIL PARPC2 (NIL T T) -7 NIL NIL) (-844 2003370 2003456 2003575 "PAN2EXPR" 2003751 T PAN2EXPR (NIL) -7 NIL NIL) (-843 2002176 2002491 2002719 "PALETTE" 2003162 T PALETTE (NIL) -8 NIL NIL) (-842 2000644 2001181 2001541 "PAIR" 2001862 NIL PAIR (NIL T T) -8 NIL NIL) (-841 1994552 1999903 2000097 "PADICRC" 2000499 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-840 1987818 1993898 1994082 "PADICRAT" 1994400 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-839 1986168 1987755 1987800 "PADIC" 1987805 NIL PADIC (NIL NIL) -8 NIL NIL) (-838 1983413 1984943 1984983 "PADICCT" 1985564 NIL PADICCT (NIL NIL) -9 NIL 1985846) (-837 1982370 1982570 1982838 "PADEPAC" 1983200 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-836 1981582 1981715 1981921 "PADE" 1982232 NIL PADE (NIL T T T) -7 NIL NIL) (-835 1979632 1980418 1980735 "OWP" 1981349 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-834 1978741 1979237 1979409 "OVAR" 1979500 NIL OVAR (NIL NIL) -8 NIL NIL) (-833 1978005 1978126 1978287 "OUT" 1978600 T OUT (NIL) -7 NIL NIL) (-832 1967059 1969230 1971400 "OUTFORM" 1975855 T OUTFORM (NIL) -8 NIL NIL) (-831 1966696 1966779 1966807 "OUTBCON" 1966958 T OUTBCON (NIL) -9 NIL 1967043) (-830 1966536 1966571 1966647 "OUTBCON-" 1966652 NIL OUTBCON- (NIL T) -8 NIL NIL) (-829 1965944 1966265 1966354 "OSI" 1966467 T OSI (NIL) -8 NIL NIL) (-828 1965500 1965812 1965840 "OSGROUP" 1965845 T OSGROUP (NIL) -9 NIL 1965867) (-827 1964245 1964472 1964757 "ORTHPOL" 1965247 NIL ORTHPOL (NIL T) -7 NIL NIL) (-826 1961655 1963904 1964043 "OREUP" 1964188 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-825 1959093 1961346 1961473 "ORESUP" 1961597 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-824 1956621 1957121 1957682 "OREPCTO" 1958582 NIL OREPCTO (NIL T T) -7 NIL NIL) (-823 1950532 1952699 1952740 "OREPCAT" 1955088 NIL OREPCAT (NIL T) -9 NIL 1956192) (-822 1947679 1948461 1949519 "OREPCAT-" 1949524 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-821 1946856 1947128 1947156 "ORDSET" 1947465 T ORDSET (NIL) -9 NIL 1947629) (-820 1946375 1946497 1946690 "ORDSET-" 1946695 NIL ORDSET- (NIL T) -8 NIL NIL) (-819 1945029 1945786 1945814 "ORDRING" 1946016 T ORDRING (NIL) -9 NIL 1946141) (-818 1944674 1944768 1944912 "ORDRING-" 1944917 NIL ORDRING- (NIL T) -8 NIL NIL) (-817 1944080 1944517 1944545 "ORDMON" 1944550 T ORDMON (NIL) -9 NIL 1944571) (-816 1943242 1943389 1943584 "ORDFUNS" 1943929 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-815 1942753 1943112 1943140 "ORDFIN" 1943145 T ORDFIN (NIL) -9 NIL 1943166) (-814 1939345 1941339 1941748 "ORDCOMP" 1942377 NIL ORDCOMP (NIL T) -8 NIL NIL) (-813 1938611 1938738 1938924 "ORDCOMP2" 1939205 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-812 1935118 1936001 1936838 "OPTPROB" 1937794 T OPTPROB (NIL) -8 NIL NIL) (-811 1931920 1932559 1933263 "OPTPACK" 1934434 T OPTPACK (NIL) -7 NIL NIL) (-810 1929633 1930373 1930401 "OPTCAT" 1931220 T OPTCAT (NIL) -9 NIL 1931870) (-809 1929401 1929440 1929506 "OPQUERY" 1929587 T OPQUERY (NIL) -7 NIL NIL) (-808 1926567 1927712 1928216 "OP" 1928930 NIL OP (NIL T) -8 NIL NIL) (-807 1923412 1925364 1925733 "ONECOMP" 1926231 NIL ONECOMP (NIL T) -8 NIL NIL) (-806 1922717 1922832 1923006 "ONECOMP2" 1923284 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-805 1922136 1922242 1922372 "OMSERVER" 1922607 T OMSERVER (NIL) -7 NIL NIL) (-804 1919024 1921576 1921616 "OMSAGG" 1921677 NIL OMSAGG (NIL T) -9 NIL 1921741) (-803 1917647 1917910 1918192 "OMPKG" 1918762 T OMPKG (NIL) -7 NIL NIL) (-802 1917077 1917180 1917208 "OM" 1917507 T OM (NIL) -9 NIL NIL) (-801 1915659 1916626 1916795 "OMLO" 1916958 NIL OMLO (NIL T T) -8 NIL NIL) (-800 1914584 1914731 1914958 "OMEXPR" 1915485 NIL OMEXPR (NIL T) -7 NIL NIL) (-799 1913902 1914130 1914266 "OMERR" 1914468 T OMERR (NIL) -8 NIL NIL) (-798 1913080 1913323 1913483 "OMERRK" 1913762 T OMERRK (NIL) -8 NIL NIL) (-797 1912558 1912757 1912865 "OMENC" 1912992 T OMENC (NIL) -8 NIL NIL) (-796 1906453 1907638 1908809 "OMDEV" 1911407 T OMDEV (NIL) -8 NIL NIL) (-795 1905522 1905693 1905887 "OMCONN" 1906279 T OMCONN (NIL) -8 NIL NIL) (-794 1904178 1905120 1905148 "OINTDOM" 1905153 T OINTDOM (NIL) -9 NIL 1905174) (-793 1899984 1901168 1901884 "OFMONOID" 1903494 NIL OFMONOID (NIL T) -8 NIL NIL) (-792 1899422 1899921 1899966 "ODVAR" 1899971 NIL ODVAR (NIL T) -8 NIL NIL) (-791 1896632 1898919 1899104 "ODR" 1899297 NIL ODR (NIL T T NIL) -8 NIL NIL) (-790 1888976 1896408 1896534 "ODPOL" 1896539 NIL ODPOL (NIL T) -8 NIL NIL) (-789 1882852 1888848 1888953 "ODP" 1888958 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-788 1881618 1881833 1882108 "ODETOOLS" 1882626 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-787 1878587 1879243 1879959 "ODESYS" 1880951 NIL ODESYS (NIL T T) -7 NIL NIL) (-786 1873469 1874377 1875402 "ODERTRIC" 1877662 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-785 1872895 1872977 1873171 "ODERED" 1873381 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-784 1869783 1870331 1871008 "ODERAT" 1872318 NIL ODERAT (NIL T T) -7 NIL NIL) (-783 1866743 1867207 1867804 "ODEPRRIC" 1869312 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-782 1864612 1865181 1865690 "ODEPROB" 1866254 T ODEPROB (NIL) -8 NIL NIL) (-781 1861134 1861617 1862264 "ODEPRIM" 1864091 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-780 1860383 1860485 1860745 "ODEPAL" 1861026 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-779 1856545 1857336 1858200 "ODEPACK" 1859539 T ODEPACK (NIL) -7 NIL NIL) (-778 1855578 1855685 1855914 "ODEINT" 1856434 NIL ODEINT (NIL T T) -7 NIL NIL) (-777 1849679 1851104 1852551 "ODEIFTBL" 1854151 T ODEIFTBL (NIL) -8 NIL NIL) (-776 1845014 1845800 1846759 "ODEEF" 1848838 NIL ODEEF (NIL T T) -7 NIL NIL) (-775 1844349 1844438 1844668 "ODECONST" 1844919 NIL ODECONST (NIL T T T) -7 NIL NIL) (-774 1842500 1843135 1843163 "ODECAT" 1843768 T ODECAT (NIL) -9 NIL 1844299) (-773 1839407 1842212 1842331 "OCT" 1842413 NIL OCT (NIL T) -8 NIL NIL) (-772 1839045 1839088 1839215 "OCTCT2" 1839358 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-771 1833906 1836306 1836346 "OC" 1837443 NIL OC (NIL T) -9 NIL 1838301) (-770 1831133 1831881 1832871 "OC-" 1832965 NIL OC- (NIL T T) -8 NIL NIL) (-769 1830511 1830953 1830981 "OCAMON" 1830986 T OCAMON (NIL) -9 NIL 1831007) (-768 1830068 1830383 1830411 "OASGP" 1830416 T OASGP (NIL) -9 NIL 1830436) (-767 1829355 1829818 1829846 "OAMONS" 1829886 T OAMONS (NIL) -9 NIL 1829929) (-766 1828795 1829202 1829230 "OAMON" 1829235 T OAMON (NIL) -9 NIL 1829255) (-765 1828099 1828591 1828619 "OAGROUP" 1828624 T OAGROUP (NIL) -9 NIL 1828644) (-764 1827789 1827839 1827927 "NUMTUBE" 1828043 NIL NUMTUBE (NIL T) -7 NIL NIL) (-763 1821362 1822880 1824416 "NUMQUAD" 1826273 T NUMQUAD (NIL) -7 NIL NIL) (-762 1817118 1818106 1819131 "NUMODE" 1820357 T NUMODE (NIL) -7 NIL NIL) (-761 1814499 1815353 1815381 "NUMINT" 1816304 T NUMINT (NIL) -9 NIL 1817068) (-760 1813447 1813644 1813862 "NUMFMT" 1814301 T NUMFMT (NIL) -7 NIL NIL) (-759 1799806 1802751 1805283 "NUMERIC" 1810954 NIL NUMERIC (NIL T) -7 NIL NIL) (-758 1794203 1799255 1799350 "NTSCAT" 1799355 NIL NTSCAT (NIL T T T T) -9 NIL 1799394) (-757 1793397 1793562 1793755 "NTPOLFN" 1794042 NIL NTPOLFN (NIL T) -7 NIL NIL) (-756 1781237 1790222 1791034 "NSUP" 1792618 NIL NSUP (NIL T) -8 NIL NIL) (-755 1780869 1780926 1781035 "NSUP2" 1781174 NIL NSUP2 (NIL T T) -7 NIL NIL) (-754 1770866 1780643 1780776 "NSMP" 1780781 NIL NSMP (NIL T T) -8 NIL NIL) (-753 1769298 1769599 1769956 "NREP" 1770554 NIL NREP (NIL T) -7 NIL NIL) (-752 1767889 1768141 1768499 "NPCOEF" 1769041 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-751 1766955 1767070 1767286 "NORMRETR" 1767770 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-750 1764996 1765286 1765695 "NORMPK" 1766663 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-749 1764681 1764709 1764833 "NORMMA" 1764962 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-748 1764508 1764638 1764667 "NONE" 1764672 T NONE (NIL) -8 NIL NIL) (-747 1764297 1764326 1764395 "NONE1" 1764472 NIL NONE1 (NIL T) -7 NIL NIL) (-746 1763780 1763842 1764028 "NODE1" 1764229 NIL NODE1 (NIL T T) -7 NIL NIL) (-745 1762120 1762943 1763198 "NNI" 1763545 T NNI (NIL) -8 NIL NIL) (-744 1760540 1760853 1761217 "NLINSOL" 1761788 NIL NLINSOL (NIL T) -7 NIL NIL) (-743 1756707 1757675 1758597 "NIPROB" 1759638 T NIPROB (NIL) -8 NIL NIL) (-742 1755464 1755698 1756000 "NFINTBAS" 1756469 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-741 1754172 1754403 1754684 "NCODIV" 1755232 NIL NCODIV (NIL T T) -7 NIL NIL) (-740 1753934 1753971 1754046 "NCNTFRAC" 1754129 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-739 1752114 1752478 1752898 "NCEP" 1753559 NIL NCEP (NIL T) -7 NIL NIL) (-738 1751025 1751764 1751792 "NASRING" 1751902 T NASRING (NIL) -9 NIL 1751976) (-737 1750820 1750864 1750958 "NASRING-" 1750963 NIL NASRING- (NIL T) -8 NIL NIL) (-736 1749973 1750472 1750500 "NARNG" 1750617 T NARNG (NIL) -9 NIL 1750708) (-735 1749665 1749732 1749866 "NARNG-" 1749871 NIL NARNG- (NIL T) -8 NIL NIL) (-734 1748544 1748751 1748986 "NAGSP" 1749450 T NAGSP (NIL) -7 NIL NIL) (-733 1739816 1741500 1743173 "NAGS" 1746891 T NAGS (NIL) -7 NIL NIL) (-732 1738364 1738672 1739003 "NAGF07" 1739505 T NAGF07 (NIL) -7 NIL NIL) (-731 1732902 1734193 1735500 "NAGF04" 1737077 T NAGF04 (NIL) -7 NIL NIL) (-730 1725870 1727484 1729117 "NAGF02" 1731289 T NAGF02 (NIL) -7 NIL NIL) (-729 1721094 1722194 1723311 "NAGF01" 1724773 T NAGF01 (NIL) -7 NIL NIL) (-728 1714722 1716288 1717873 "NAGE04" 1719529 T NAGE04 (NIL) -7 NIL NIL) (-727 1705891 1708012 1710142 "NAGE02" 1712612 T NAGE02 (NIL) -7 NIL NIL) (-726 1701844 1702791 1703755 "NAGE01" 1704947 T NAGE01 (NIL) -7 NIL NIL) (-725 1699639 1700173 1700731 "NAGD03" 1701306 T NAGD03 (NIL) -7 NIL NIL) (-724 1691389 1693317 1695271 "NAGD02" 1697705 T NAGD02 (NIL) -7 NIL NIL) (-723 1685200 1686625 1688065 "NAGD01" 1689969 T NAGD01 (NIL) -7 NIL NIL) (-722 1681409 1682231 1683068 "NAGC06" 1684383 T NAGC06 (NIL) -7 NIL NIL) (-721 1679874 1680206 1680562 "NAGC05" 1681073 T NAGC05 (NIL) -7 NIL NIL) (-720 1679250 1679369 1679513 "NAGC02" 1679750 T NAGC02 (NIL) -7 NIL NIL) (-719 1678310 1678867 1678907 "NAALG" 1678986 NIL NAALG (NIL T) -9 NIL 1679047) (-718 1678145 1678174 1678264 "NAALG-" 1678269 NIL NAALG- (NIL T T) -8 NIL NIL) (-717 1672095 1673203 1674390 "MULTSQFR" 1677041 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-716 1671414 1671489 1671673 "MULTFACT" 1672007 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-715 1664637 1668502 1668555 "MTSCAT" 1669625 NIL MTSCAT (NIL T T) -9 NIL 1670139) (-714 1664349 1664403 1664495 "MTHING" 1664577 NIL MTHING (NIL T) -7 NIL NIL) (-713 1664141 1664174 1664234 "MSYSCMD" 1664309 T MSYSCMD (NIL) -7 NIL NIL) (-712 1660253 1662896 1663216 "MSET" 1663854 NIL MSET (NIL T) -8 NIL NIL) (-711 1657348 1659814 1659855 "MSETAGG" 1659860 NIL MSETAGG (NIL T) -9 NIL 1659894) (-710 1653231 1654727 1655472 "MRING" 1656648 NIL MRING (NIL T T) -8 NIL NIL) (-709 1652797 1652864 1652995 "MRF2" 1653158 NIL MRF2 (NIL T T T) -7 NIL NIL) (-708 1652415 1652450 1652594 "MRATFAC" 1652756 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-707 1650027 1650322 1650753 "MPRFF" 1652120 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-706 1644087 1649881 1649978 "MPOLY" 1649983 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-705 1643577 1643612 1643820 "MPCPF" 1644046 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-704 1643091 1643134 1643318 "MPC3" 1643528 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-703 1642286 1642367 1642588 "MPC2" 1643006 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-702 1640587 1640924 1641314 "MONOTOOL" 1641946 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-701 1639838 1640129 1640157 "MONOID" 1640376 T MONOID (NIL) -9 NIL 1640523) (-700 1639384 1639503 1639684 "MONOID-" 1639689 NIL MONOID- (NIL T) -8 NIL NIL) (-699 1630434 1636340 1636399 "MONOGEN" 1637073 NIL MONOGEN (NIL T T) -9 NIL 1637529) (-698 1627652 1628387 1629387 "MONOGEN-" 1629506 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-697 1626511 1626931 1626959 "MONADWU" 1627351 T MONADWU (NIL) -9 NIL 1627589) (-696 1625883 1626042 1626290 "MONADWU-" 1626295 NIL MONADWU- (NIL T) -8 NIL NIL) (-695 1625268 1625486 1625514 "MONAD" 1625721 T MONAD (NIL) -9 NIL 1625833) (-694 1624953 1625031 1625163 "MONAD-" 1625168 NIL MONAD- (NIL T) -8 NIL NIL) (-693 1623269 1623866 1624145 "MOEBIUS" 1624706 NIL MOEBIUS (NIL T) -8 NIL NIL) (-692 1622661 1623039 1623079 "MODULE" 1623084 NIL MODULE (NIL T) -9 NIL 1623110) (-691 1622229 1622325 1622515 "MODULE-" 1622520 NIL MODULE- (NIL T T) -8 NIL NIL) (-690 1619944 1620593 1620920 "MODRING" 1622053 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1616930 1618049 1618570 "MODOP" 1619473 NIL MODOP (NIL T T) -8 NIL NIL) (-688 1615117 1615569 1615910 "MODMONOM" 1616729 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-687 1604825 1613309 1613732 "MODMON" 1614745 NIL MODMON (NIL T T) -8 NIL NIL) (-686 1602016 1603669 1603945 "MODFIELD" 1604700 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-685 1601020 1601297 1601487 "MMLFORM" 1601846 T MMLFORM (NIL) -8 NIL NIL) (-684 1600546 1600589 1600768 "MMAP" 1600971 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-683 1598815 1599548 1599589 "MLO" 1600012 NIL MLO (NIL T) -9 NIL 1600254) (-682 1596182 1596697 1597299 "MLIFT" 1598296 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-681 1595573 1595657 1595811 "MKUCFUNC" 1596093 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-680 1595172 1595242 1595365 "MKRECORD" 1595496 NIL MKRECORD (NIL T T) -7 NIL NIL) (-679 1594220 1594381 1594609 "MKFUNC" 1594983 NIL MKFUNC (NIL T) -7 NIL NIL) (-678 1593608 1593712 1593868 "MKFLCFN" 1594103 NIL MKFLCFN (NIL T) -7 NIL NIL) (-677 1593034 1593401 1593490 "MKCHSET" 1593552 NIL MKCHSET (NIL T) -8 NIL NIL) (-676 1592311 1592413 1592598 "MKBCFUNC" 1592927 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-675 1589041 1591865 1592001 "MINT" 1592195 T MINT (NIL) -8 NIL NIL) (-674 1587853 1588096 1588373 "MHROWRED" 1588796 NIL MHROWRED (NIL T) -7 NIL NIL) (-673 1583185 1586294 1586720 "MFLOAT" 1587447 T MFLOAT (NIL) -8 NIL NIL) (-672 1582542 1582618 1582789 "MFINFACT" 1583097 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-671 1578857 1579705 1580589 "MESH" 1581678 T MESH (NIL) -7 NIL NIL) (-670 1577247 1577559 1577912 "MDDFACT" 1578544 NIL MDDFACT (NIL T) -7 NIL NIL) (-669 1574089 1576406 1576447 "MDAGG" 1576702 NIL MDAGG (NIL T) -9 NIL 1576845) (-668 1563869 1573382 1573589 "MCMPLX" 1573902 T MCMPLX (NIL) -8 NIL NIL) (-667 1563010 1563156 1563356 "MCDEN" 1563718 NIL MCDEN (NIL T T) -7 NIL NIL) (-666 1560900 1561170 1561550 "MCALCFN" 1562740 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-665 1559811 1559984 1560225 "MAYBE" 1560698 NIL MAYBE (NIL T) -8 NIL NIL) (-664 1557423 1557946 1558508 "MATSTOR" 1559282 NIL MATSTOR (NIL T) -7 NIL NIL) (-663 1553429 1556795 1557043 "MATRIX" 1557208 NIL MATRIX (NIL T) -8 NIL NIL) (-662 1549198 1549902 1550638 "MATLIN" 1552786 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-661 1539352 1542490 1542567 "MATCAT" 1547447 NIL MATCAT (NIL T T T) -9 NIL 1548864) (-660 1535716 1536729 1538085 "MATCAT-" 1538090 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-659 1534310 1534463 1534796 "MATCAT2" 1535551 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-658 1532422 1532746 1533130 "MAPPKG3" 1533985 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-657 1531403 1531576 1531798 "MAPPKG2" 1532246 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-656 1529902 1530186 1530513 "MAPPKG1" 1531109 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-655 1529025 1529308 1529485 "MAPPAST" 1529745 T MAPPAST (NIL) -8 NIL NIL) (-654 1528636 1528694 1528817 "MAPHACK3" 1528961 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-653 1528228 1528289 1528403 "MAPHACK2" 1528568 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-652 1527666 1527769 1527911 "MAPHACK1" 1528119 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-651 1525772 1526366 1526670 "MAGMA" 1527394 NIL MAGMA (NIL T) -8 NIL NIL) (-650 1525267 1525475 1525573 "MACROAST" 1525694 T MACROAST (NIL) -8 NIL NIL) (-649 1521734 1523506 1523967 "M3D" 1524839 NIL M3D (NIL T) -8 NIL NIL) (-648 1515889 1520104 1520145 "LZSTAGG" 1520927 NIL LZSTAGG (NIL T) -9 NIL 1521222) (-647 1511862 1513020 1514477 "LZSTAGG-" 1514482 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-646 1508976 1509753 1510240 "LWORD" 1511407 NIL LWORD (NIL T) -8 NIL NIL) (-645 1508596 1508780 1508855 "LSTAST" 1508921 T LSTAST (NIL) -8 NIL NIL) (-644 1501797 1508367 1508501 "LSQM" 1508506 NIL LSQM (NIL NIL T) -8 NIL NIL) (-643 1501021 1501160 1501388 "LSPP" 1501652 NIL LSPP (NIL T T T T) -7 NIL NIL) (-642 1498833 1499134 1499590 "LSMP" 1500710 NIL LSMP (NIL T T T T) -7 NIL NIL) (-641 1495612 1496286 1497016 "LSMP1" 1498135 NIL LSMP1 (NIL T) -7 NIL NIL) (-640 1489538 1494780 1494821 "LSAGG" 1494883 NIL LSAGG (NIL T) -9 NIL 1494961) (-639 1486233 1487157 1488370 "LSAGG-" 1488375 NIL LSAGG- (NIL T T) -8 NIL NIL) (-638 1483859 1485377 1485626 "LPOLY" 1486028 NIL LPOLY (NIL T T) -8 NIL NIL) (-637 1483441 1483526 1483649 "LPEFRAC" 1483768 NIL LPEFRAC (NIL T) -7 NIL NIL) (-636 1481788 1482535 1482788 "LO" 1483273 NIL LO (NIL T T T) -8 NIL NIL) (-635 1481440 1481552 1481580 "LOGIC" 1481691 T LOGIC (NIL) -9 NIL 1481772) (-634 1481302 1481325 1481396 "LOGIC-" 1481401 NIL LOGIC- (NIL T) -8 NIL NIL) (-633 1480495 1480635 1480828 "LODOOPS" 1481158 NIL LODOOPS (NIL T T) -7 NIL NIL) (-632 1477953 1480411 1480477 "LODO" 1480482 NIL LODO (NIL T NIL) -8 NIL NIL) (-631 1476491 1476726 1477079 "LODOF" 1477700 NIL LODOF (NIL T T) -7 NIL NIL) (-630 1472934 1475331 1475372 "LODOCAT" 1475810 NIL LODOCAT (NIL T) -9 NIL 1476021) (-629 1472667 1472725 1472852 "LODOCAT-" 1472857 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-628 1470022 1472508 1472626 "LODO2" 1472631 NIL LODO2 (NIL T T) -8 NIL NIL) (-627 1467492 1469959 1470004 "LODO1" 1470009 NIL LODO1 (NIL T) -8 NIL NIL) (-626 1466352 1466517 1466829 "LODEEF" 1467315 NIL LODEEF (NIL T T T) -7 NIL NIL) (-625 1461638 1464482 1464523 "LNAGG" 1465470 NIL LNAGG (NIL T) -9 NIL 1465914) (-624 1460785 1460999 1461341 "LNAGG-" 1461346 NIL LNAGG- (NIL T T) -8 NIL NIL) (-623 1456948 1457710 1458349 "LMOPS" 1460200 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-622 1456343 1456705 1456746 "LMODULE" 1456807 NIL LMODULE (NIL T) -9 NIL 1456849) (-621 1453589 1455988 1456111 "LMDICT" 1456253 NIL LMDICT (NIL T) -8 NIL NIL) (-620 1453333 1453497 1453557 "LITERAL" 1453562 NIL LITERAL (NIL T) -8 NIL NIL) (-619 1446560 1452279 1452577 "LIST" 1453068 NIL LIST (NIL T) -8 NIL NIL) (-618 1446085 1446159 1446298 "LIST3" 1446480 NIL LIST3 (NIL T T T) -7 NIL NIL) (-617 1445092 1445270 1445498 "LIST2" 1445903 NIL LIST2 (NIL T T) -7 NIL NIL) (-616 1443226 1443538 1443937 "LIST2MAP" 1444739 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-615 1441976 1442612 1442653 "LINEXP" 1442908 NIL LINEXP (NIL T) -9 NIL 1443057) (-614 1440623 1440883 1441180 "LINDEP" 1441728 NIL LINDEP (NIL T T) -7 NIL NIL) (-613 1437390 1438109 1438886 "LIMITRF" 1439878 NIL LIMITRF (NIL T) -7 NIL NIL) (-612 1435666 1435961 1436377 "LIMITPS" 1437085 NIL LIMITPS (NIL T T) -7 NIL NIL) (-611 1430121 1435177 1435405 "LIE" 1435487 NIL LIE (NIL T T) -8 NIL NIL) (-610 1429170 1429613 1429653 "LIECAT" 1429793 NIL LIECAT (NIL T) -9 NIL 1429944) (-609 1429011 1429038 1429126 "LIECAT-" 1429131 NIL LIECAT- (NIL T T) -8 NIL NIL) (-608 1421623 1428460 1428625 "LIB" 1428866 T LIB (NIL) -8 NIL NIL) (-607 1417260 1418141 1419076 "LGROBP" 1420740 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-606 1415126 1415400 1415762 "LF" 1416981 NIL LF (NIL T T) -7 NIL NIL) (-605 1413966 1414658 1414686 "LFCAT" 1414893 T LFCAT (NIL) -9 NIL 1415032) (-604 1410870 1411498 1412186 "LEXTRIPK" 1413330 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-603 1407641 1408440 1408943 "LEXP" 1410450 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-602 1407161 1407362 1407454 "LETAST" 1407569 T LETAST (NIL) -8 NIL NIL) (-601 1405559 1405872 1406273 "LEADCDET" 1406843 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-600 1404749 1404823 1405052 "LAZM3PK" 1405480 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-599 1399705 1402826 1403364 "LAUPOL" 1404261 NIL LAUPOL (NIL T T) -8 NIL NIL) (-598 1399270 1399314 1399482 "LAPLACE" 1399655 NIL LAPLACE (NIL T T) -7 NIL NIL) (-597 1397244 1398371 1398622 "LA" 1399103 NIL LA (NIL T T T) -8 NIL NIL) (-596 1396345 1396895 1396936 "LALG" 1396998 NIL LALG (NIL T) -9 NIL 1397057) (-595 1396059 1396118 1396254 "LALG-" 1396259 NIL LALG- (NIL T T) -8 NIL NIL) (-594 1394963 1395150 1395449 "KOVACIC" 1395859 NIL KOVACIC (NIL T T) -7 NIL NIL) (-593 1394798 1394822 1394863 "KONVERT" 1394925 NIL KONVERT (NIL T) -9 NIL NIL) (-592 1394633 1394657 1394698 "KOERCE" 1394760 NIL KOERCE (NIL T) -9 NIL NIL) (-591 1392367 1393127 1393520 "KERNEL" 1394272 NIL KERNEL (NIL T) -8 NIL NIL) (-590 1391869 1391950 1392080 "KERNEL2" 1392281 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-589 1385720 1390408 1390462 "KDAGG" 1390839 NIL KDAGG (NIL T T) -9 NIL 1391045) (-588 1385249 1385373 1385578 "KDAGG-" 1385583 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-587 1378424 1384910 1385065 "KAFILE" 1385127 NIL KAFILE (NIL T) -8 NIL NIL) (-586 1372879 1377935 1378163 "JORDAN" 1378245 NIL JORDAN (NIL T T) -8 NIL NIL) (-585 1372303 1372528 1372649 "JOINAST" 1372778 T JOINAST (NIL) -8 NIL NIL) (-584 1372032 1372091 1372178 "JAVACODE" 1372236 T JAVACODE (NIL) -8 NIL NIL) (-583 1368331 1370237 1370291 "IXAGG" 1371220 NIL IXAGG (NIL T T) -9 NIL 1371679) (-582 1367250 1367556 1367975 "IXAGG-" 1367980 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-581 1362830 1367172 1367231 "IVECTOR" 1367236 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-580 1361596 1361833 1362099 "ITUPLE" 1362597 NIL ITUPLE (NIL T) -8 NIL NIL) (-579 1360032 1360209 1360515 "ITRIGMNP" 1361418 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-578 1358777 1358981 1359264 "ITFUN3" 1359808 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-577 1358409 1358466 1358575 "ITFUN2" 1358714 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-576 1356246 1357271 1357570 "ITAYLOR" 1358143 NIL ITAYLOR (NIL T) -8 NIL NIL) (-575 1345240 1350392 1351552 "ISUPS" 1355119 NIL ISUPS (NIL T) -8 NIL NIL) (-574 1344344 1344484 1344720 "ISUMP" 1345087 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-573 1339608 1344145 1344224 "ISTRING" 1344297 NIL ISTRING (NIL NIL) -8 NIL NIL) (-572 1339128 1339329 1339421 "ISAST" 1339536 T ISAST (NIL) -8 NIL NIL) (-571 1338338 1338419 1338635 "IRURPK" 1339042 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-570 1337274 1337475 1337715 "IRSN" 1338118 T IRSN (NIL) -7 NIL NIL) (-569 1335303 1335658 1336094 "IRRF2F" 1336912 NIL IRRF2F (NIL T) -7 NIL NIL) (-568 1335050 1335088 1335164 "IRREDFFX" 1335259 NIL IRREDFFX (NIL T) -7 NIL NIL) (-567 1333665 1333924 1334223 "IROOT" 1334783 NIL IROOT (NIL T) -7 NIL NIL) (-566 1330297 1331349 1332041 "IR" 1333005 NIL IR (NIL T) -8 NIL NIL) (-565 1327910 1328405 1328971 "IR2" 1329775 NIL IR2 (NIL T T) -7 NIL NIL) (-564 1326982 1327095 1327316 "IR2F" 1327793 NIL IR2F (NIL T T) -7 NIL NIL) (-563 1326773 1326807 1326867 "IPRNTPK" 1326942 T IPRNTPK (NIL) -7 NIL NIL) (-562 1323392 1326662 1326731 "IPF" 1326736 NIL IPF (NIL NIL) -8 NIL NIL) (-561 1321755 1323317 1323374 "IPADIC" 1323379 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-560 1321519 1321659 1321687 "IOBCON" 1321692 T IOBCON (NIL) -9 NIL 1321713) (-559 1321016 1321074 1321264 "INVLAPLA" 1321455 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-558 1310665 1313018 1315404 "INTTR" 1318680 NIL INTTR (NIL T T) -7 NIL NIL) (-557 1307009 1307751 1308615 "INTTOOLS" 1309850 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-556 1306595 1306686 1306803 "INTSLPE" 1306912 T INTSLPE (NIL) -7 NIL NIL) (-555 1304590 1306518 1306577 "INTRVL" 1306582 NIL INTRVL (NIL T) -8 NIL NIL) (-554 1302192 1302704 1303279 "INTRF" 1304075 NIL INTRF (NIL T) -7 NIL NIL) (-553 1301603 1301700 1301842 "INTRET" 1302090 NIL INTRET (NIL T) -7 NIL NIL) (-552 1299600 1299989 1300459 "INTRAT" 1301211 NIL INTRAT (NIL T T) -7 NIL NIL) (-551 1296828 1297411 1298037 "INTPM" 1299085 NIL INTPM (NIL T T) -7 NIL NIL) (-550 1293531 1294130 1294875 "INTPAF" 1296214 NIL INTPAF (NIL T T T) -7 NIL NIL) (-549 1288710 1289672 1290723 "INTPACK" 1292500 T INTPACK (NIL) -7 NIL NIL) (-548 1285622 1288439 1288566 "INT" 1288603 T INT (NIL) -8 NIL NIL) (-547 1284874 1285026 1285234 "INTHERTR" 1285464 NIL INTHERTR (NIL T T) -7 NIL NIL) (-546 1284313 1284393 1284581 "INTHERAL" 1284788 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-545 1282159 1282602 1283059 "INTHEORY" 1283876 T INTHEORY (NIL) -7 NIL NIL) (-544 1273467 1275088 1276867 "INTG0" 1280511 NIL INTG0 (NIL T T T) -7 NIL NIL) (-543 1254040 1258830 1263640 "INTFTBL" 1268677 T INTFTBL (NIL) -8 NIL NIL) (-542 1253289 1253427 1253600 "INTFACT" 1253899 NIL INTFACT (NIL T) -7 NIL NIL) (-541 1250674 1251120 1251684 "INTEF" 1252843 NIL INTEF (NIL T T) -7 NIL NIL) (-540 1249176 1249881 1249909 "INTDOM" 1250210 T INTDOM (NIL) -9 NIL 1250417) (-539 1248545 1248719 1248961 "INTDOM-" 1248966 NIL INTDOM- (NIL T) -8 NIL NIL) (-538 1245078 1246964 1247018 "INTCAT" 1247817 NIL INTCAT (NIL T) -9 NIL 1248137) (-537 1244551 1244653 1244781 "INTBIT" 1244970 T INTBIT (NIL) -7 NIL NIL) (-536 1243222 1243376 1243690 "INTALG" 1244396 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-535 1242679 1242769 1242939 "INTAF" 1243126 NIL INTAF (NIL T T) -7 NIL NIL) (-534 1236133 1242489 1242629 "INTABL" 1242634 NIL INTABL (NIL T T T) -8 NIL NIL) (-533 1231188 1233859 1233887 "INS" 1234821 T INS (NIL) -9 NIL 1235485) (-532 1228428 1229199 1230173 "INS-" 1230246 NIL INS- (NIL T) -8 NIL NIL) (-531 1227203 1227430 1227728 "INPSIGN" 1228181 NIL INPSIGN (NIL T T) -7 NIL NIL) (-530 1226321 1226438 1226635 "INPRODPF" 1227083 NIL INPRODPF (NIL T T) -7 NIL NIL) (-529 1225215 1225332 1225569 "INPRODFF" 1226201 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-528 1224215 1224367 1224627 "INNMFACT" 1225051 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-527 1223412 1223509 1223697 "INMODGCD" 1224114 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-526 1221921 1222165 1222489 "INFSP" 1223157 NIL INFSP (NIL T T T) -7 NIL NIL) (-525 1221105 1221222 1221405 "INFPROD0" 1221801 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-524 1217987 1219170 1219685 "INFORM" 1220598 T INFORM (NIL) -8 NIL NIL) (-523 1217597 1217657 1217755 "INFORM1" 1217922 NIL INFORM1 (NIL T) -7 NIL NIL) (-522 1217120 1217209 1217323 "INFINITY" 1217503 T INFINITY (NIL) -7 NIL NIL) (-521 1215737 1215986 1216307 "INEP" 1216868 NIL INEP (NIL T T T) -7 NIL NIL) (-520 1215013 1215634 1215699 "INDE" 1215704 NIL INDE (NIL T) -8 NIL NIL) (-519 1214577 1214645 1214762 "INCRMAPS" 1214940 NIL INCRMAPS (NIL T) -7 NIL NIL) (-518 1209888 1210813 1211757 "INBFF" 1213665 NIL INBFF (NIL T) -7 NIL NIL) (-517 1209557 1209633 1209661 "INBCON" 1209794 T INBCON (NIL) -9 NIL 1209872) (-516 1209397 1209432 1209508 "INBCON-" 1209513 NIL INBCON- (NIL T) -8 NIL NIL) (-515 1208916 1209118 1209210 "INAST" 1209325 T INAST (NIL) -8 NIL NIL) (-514 1208387 1208595 1208701 "IMPTAST" 1208830 T IMPTAST (NIL) -8 NIL NIL) (-513 1204881 1208231 1208335 "IMATRIX" 1208340 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-512 1203593 1203716 1204031 "IMATQF" 1204737 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-511 1201813 1202040 1202377 "IMATLIN" 1203349 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-510 1196439 1201737 1201795 "ILIST" 1201800 NIL ILIST (NIL T NIL) -8 NIL NIL) (-509 1194392 1196299 1196412 "IIARRAY2" 1196417 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-508 1189825 1194303 1194367 "IFF" 1194372 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-507 1189216 1189442 1189558 "IFAST" 1189729 T IFAST (NIL) -8 NIL NIL) (-506 1184259 1188508 1188696 "IFARRAY" 1189073 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-505 1183466 1184163 1184236 "IFAMON" 1184241 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-504 1183050 1183115 1183169 "IEVALAB" 1183376 NIL IEVALAB (NIL T T) -9 NIL NIL) (-503 1182725 1182793 1182953 "IEVALAB-" 1182958 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-502 1182383 1182639 1182702 "IDPO" 1182707 NIL IDPO (NIL T T) -8 NIL NIL) (-501 1181660 1182272 1182347 "IDPOAMS" 1182352 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-500 1180994 1181549 1181624 "IDPOAM" 1181629 NIL IDPOAM (NIL T T) -8 NIL NIL) (-499 1180079 1180329 1180382 "IDPC" 1180795 NIL IDPC (NIL T T) -9 NIL 1180944) (-498 1179575 1179971 1180044 "IDPAM" 1180049 NIL IDPAM (NIL T T) -8 NIL NIL) (-497 1178978 1179467 1179540 "IDPAG" 1179545 NIL IDPAG (NIL T T) -8 NIL NIL) (-496 1178726 1178893 1178943 "IDENT" 1178948 T IDENT (NIL) -8 NIL NIL) (-495 1174981 1175829 1176724 "IDECOMP" 1177883 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-494 1167854 1168904 1169951 "IDEAL" 1174017 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-493 1167018 1167130 1167329 "ICDEN" 1167738 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-492 1166117 1166498 1166645 "ICARD" 1166891 T ICARD (NIL) -8 NIL NIL) (-491 1164177 1164490 1164895 "IBPTOOLS" 1165794 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-490 1159811 1163797 1163910 "IBITS" 1164096 NIL IBITS (NIL NIL) -8 NIL NIL) (-489 1156534 1157110 1157805 "IBATOOL" 1159228 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-488 1154314 1154775 1155308 "IBACHIN" 1156069 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-487 1152191 1154160 1154263 "IARRAY2" 1154268 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-486 1148344 1152117 1152174 "IARRAY1" 1152179 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-485 1142339 1146758 1147238 "IAN" 1147884 T IAN (NIL) -8 NIL NIL) (-484 1141850 1141907 1142080 "IALGFACT" 1142276 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-483 1141378 1141491 1141519 "HYPCAT" 1141726 T HYPCAT (NIL) -9 NIL NIL) (-482 1140916 1141033 1141219 "HYPCAT-" 1141224 NIL HYPCAT- (NIL T) -8 NIL NIL) (-481 1140538 1140711 1140794 "HOSTNAME" 1140853 T HOSTNAME (NIL) -8 NIL NIL) (-480 1137217 1138548 1138589 "HOAGG" 1139570 NIL HOAGG (NIL T) -9 NIL 1140249) (-479 1135811 1136210 1136736 "HOAGG-" 1136741 NIL HOAGG- (NIL T T) -8 NIL NIL) (-478 1129699 1135252 1135418 "HEXADEC" 1135665 T HEXADEC (NIL) -8 NIL NIL) (-477 1128447 1128669 1128932 "HEUGCD" 1129476 NIL HEUGCD (NIL T) -7 NIL NIL) (-476 1127550 1128284 1128414 "HELLFDIV" 1128419 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-475 1125778 1127327 1127415 "HEAP" 1127494 NIL HEAP (NIL T) -8 NIL NIL) (-474 1125086 1125330 1125464 "HEADAST" 1125664 T HEADAST (NIL) -8 NIL NIL) (-473 1119006 1125001 1125063 "HDP" 1125068 NIL HDP (NIL NIL T) -8 NIL NIL) (-472 1112757 1118641 1118793 "HDMP" 1118907 NIL HDMP (NIL NIL T) -8 NIL NIL) (-471 1112082 1112221 1112385 "HB" 1112613 T HB (NIL) -7 NIL NIL) (-470 1105579 1111928 1112032 "HASHTBL" 1112037 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-469 1105099 1105300 1105392 "HASAST" 1105507 T HASAST (NIL) -8 NIL NIL) (-468 1102913 1104723 1104904 "HACKPI" 1104938 T HACKPI (NIL) -8 NIL NIL) (-467 1098608 1102766 1102879 "GTSET" 1102884 NIL GTSET (NIL T T T T) -8 NIL NIL) (-466 1092134 1098486 1098584 "GSTBL" 1098589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-465 1084447 1091165 1091430 "GSERIES" 1091925 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-464 1083614 1084005 1084033 "GROUP" 1084236 T GROUP (NIL) -9 NIL 1084370) (-463 1082980 1083139 1083390 "GROUP-" 1083395 NIL GROUP- (NIL T) -8 NIL NIL) (-462 1081349 1081668 1082055 "GROEBSOL" 1082657 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-461 1080289 1080551 1080602 "GRMOD" 1081131 NIL GRMOD (NIL T T) -9 NIL 1081299) (-460 1080057 1080093 1080221 "GRMOD-" 1080226 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-459 1075382 1076411 1077411 "GRIMAGE" 1079077 T GRIMAGE (NIL) -8 NIL NIL) (-458 1073849 1074109 1074433 "GRDEF" 1075078 T GRDEF (NIL) -7 NIL NIL) (-457 1073293 1073409 1073550 "GRAY" 1073728 T GRAY (NIL) -7 NIL NIL) (-456 1072524 1072904 1072955 "GRALG" 1073108 NIL GRALG (NIL T T) -9 NIL 1073201) (-455 1072185 1072258 1072421 "GRALG-" 1072426 NIL GRALG- (NIL T T T) -8 NIL NIL) (-454 1068989 1071770 1071948 "GPOLSET" 1072092 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-453 1068343 1068400 1068658 "GOSPER" 1068926 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-452 1064102 1064781 1065307 "GMODPOL" 1068042 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-451 1063107 1063291 1063529 "GHENSEL" 1063914 NIL GHENSEL (NIL T T) -7 NIL NIL) (-450 1057158 1058001 1059028 "GENUPS" 1062191 NIL GENUPS (NIL T T) -7 NIL NIL) (-449 1056855 1056906 1056995 "GENUFACT" 1057101 NIL GENUFACT (NIL T) -7 NIL NIL) (-448 1056267 1056344 1056509 "GENPGCD" 1056773 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-447 1055741 1055776 1055989 "GENMFACT" 1056226 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-446 1054309 1054564 1054871 "GENEEZ" 1055484 NIL GENEEZ (NIL T T) -7 NIL NIL) (-445 1048222 1053920 1054082 "GDMP" 1054232 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-444 1037599 1041993 1043099 "GCNAALG" 1047205 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-443 1036061 1036889 1036917 "GCDDOM" 1037172 T GCDDOM (NIL) -9 NIL 1037329) (-442 1035531 1035658 1035873 "GCDDOM-" 1035878 NIL GCDDOM- (NIL T) -8 NIL NIL) (-441 1034203 1034388 1034692 "GB" 1035310 NIL GB (NIL T T T T) -7 NIL NIL) (-440 1022823 1025149 1027541 "GBINTERN" 1031894 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-439 1020660 1020952 1021373 "GBF" 1022498 NIL GBF (NIL T T T T) -7 NIL NIL) (-438 1019441 1019606 1019873 "GBEUCLID" 1020476 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-437 1018790 1018915 1019064 "GAUSSFAC" 1019312 T GAUSSFAC (NIL) -7 NIL NIL) (-436 1017157 1017459 1017773 "GALUTIL" 1018509 NIL GALUTIL (NIL T) -7 NIL NIL) (-435 1015465 1015739 1016063 "GALPOLYU" 1016884 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-434 1012830 1013120 1013527 "GALFACTU" 1015162 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-433 1004636 1006135 1007743 "GALFACT" 1011262 NIL GALFACT (NIL T) -7 NIL NIL) (-432 1002024 1002682 1002710 "FVFUN" 1003866 T FVFUN (NIL) -9 NIL 1004586) (-431 1001290 1001472 1001500 "FVC" 1001791 T FVC (NIL) -9 NIL 1001974) (-430 1000932 1001087 1001168 "FUNCTION" 1001242 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-429 998602 999153 999642 "FT" 1000463 T FT (NIL) -8 NIL NIL) (-428 997420 997903 998106 "FTEM" 998419 T FTEM (NIL) -8 NIL NIL) (-427 995676 995965 996369 "FSUPFACT" 997111 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-426 994073 994362 994694 "FST" 995364 T FST (NIL) -8 NIL NIL) (-425 993244 993350 993545 "FSRED" 993955 NIL FSRED (NIL T T) -7 NIL NIL) (-424 991923 992178 992532 "FSPRMELT" 992959 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-423 989008 989446 989945 "FSPECF" 991486 NIL FSPECF (NIL T T) -7 NIL NIL) (-422 971450 979892 979932 "FS" 983780 NIL FS (NIL T) -9 NIL 986069) (-421 960100 963090 967146 "FS-" 967443 NIL FS- (NIL T T) -8 NIL NIL) (-420 959614 959668 959845 "FSINT" 960041 NIL FSINT (NIL T T) -7 NIL NIL) (-419 957941 958607 958910 "FSERIES" 959393 NIL FSERIES (NIL T T) -8 NIL NIL) (-418 956955 957071 957302 "FSCINT" 957821 NIL FSCINT (NIL T T) -7 NIL NIL) (-417 953189 955899 955940 "FSAGG" 956310 NIL FSAGG (NIL T) -9 NIL 956569) (-416 950951 951552 952348 "FSAGG-" 952443 NIL FSAGG- (NIL T T) -8 NIL NIL) (-415 949993 950136 950363 "FSAGG2" 950804 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-414 947648 947927 948481 "FS2UPS" 949711 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-413 947230 947273 947428 "FS2" 947599 NIL FS2 (NIL T T T T) -7 NIL NIL) (-412 946087 946258 946567 "FS2EXPXP" 947055 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-411 945513 945628 945780 "FRUTIL" 945967 NIL FRUTIL (NIL T) -7 NIL NIL) (-410 936974 941012 942368 "FR" 944189 NIL FR (NIL T) -8 NIL NIL) (-409 932049 934692 934732 "FRNAALG" 936128 NIL FRNAALG (NIL T) -9 NIL 936735) (-408 927727 928798 930073 "FRNAALG-" 930823 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-407 927365 927408 927535 "FRNAAF2" 927678 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-406 925772 926219 926514 "FRMOD" 927177 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-405 923551 924155 924472 "FRIDEAL" 925563 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-404 922746 922833 923122 "FRIDEAL2" 923458 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-403 921988 922402 922443 "FRETRCT" 922448 NIL FRETRCT (NIL T) -9 NIL 922624) (-402 921100 921331 921682 "FRETRCT-" 921687 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-401 918350 919526 919585 "FRAMALG" 920467 NIL FRAMALG (NIL T T) -9 NIL 920759) (-400 916484 916939 917569 "FRAMALG-" 917792 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-399 910444 915959 916235 "FRAC" 916240 NIL FRAC (NIL T) -8 NIL NIL) (-398 910080 910137 910244 "FRAC2" 910381 NIL FRAC2 (NIL T T) -7 NIL NIL) (-397 909716 909773 909880 "FR2" 910017 NIL FR2 (NIL T T) -7 NIL NIL) (-396 904446 907294 907322 "FPS" 908441 T FPS (NIL) -9 NIL 908998) (-395 903895 904004 904168 "FPS-" 904314 NIL FPS- (NIL T) -8 NIL NIL) (-394 901401 903036 903064 "FPC" 903289 T FPC (NIL) -9 NIL 903431) (-393 901194 901234 901331 "FPC-" 901336 NIL FPC- (NIL T) -8 NIL NIL) (-392 900072 900682 900723 "FPATMAB" 900728 NIL FPATMAB (NIL T) -9 NIL 900880) (-391 897772 898248 898674 "FPARFRAC" 899709 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-390 893165 893664 894346 "FORTRAN" 897204 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-389 890881 891381 891920 "FORT" 892646 T FORT (NIL) -7 NIL NIL) (-388 888557 889119 889147 "FORTFN" 890207 T FORTFN (NIL) -9 NIL 890831) (-387 888321 888371 888399 "FORTCAT" 888458 T FORTCAT (NIL) -9 NIL 888520) (-386 886381 886864 887263 "FORMULA" 887942 T FORMULA (NIL) -8 NIL NIL) (-385 886169 886199 886268 "FORMULA1" 886345 NIL FORMULA1 (NIL T) -7 NIL NIL) (-384 885692 885744 885917 "FORDER" 886111 NIL FORDER (NIL T T T T) -7 NIL NIL) (-383 884788 884952 885145 "FOP" 885519 T FOP (NIL) -7 NIL NIL) (-382 883396 884068 884242 "FNLA" 884670 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-381 882064 882453 882481 "FNCAT" 883053 T FNCAT (NIL) -9 NIL 883346) (-380 881630 882023 882051 "FNAME" 882056 T FNAME (NIL) -8 NIL NIL) (-379 880328 881257 881285 "FMTC" 881290 T FMTC (NIL) -9 NIL 881326) (-378 876690 877851 878480 "FMONOID" 879732 NIL FMONOID (NIL T) -8 NIL NIL) (-377 875909 876432 876581 "FM" 876586 NIL FM (NIL T T) -8 NIL NIL) (-376 873333 873979 874007 "FMFUN" 875151 T FMFUN (NIL) -9 NIL 875859) (-375 872602 872783 872811 "FMC" 873101 T FMC (NIL) -9 NIL 873283) (-374 869814 870648 870702 "FMCAT" 871897 NIL FMCAT (NIL T T) -9 NIL 872392) (-373 868707 869580 869680 "FM1" 869759 NIL FM1 (NIL T T) -8 NIL NIL) (-372 866481 866897 867391 "FLOATRP" 868258 NIL FLOATRP (NIL T) -7 NIL NIL) (-371 860032 864137 864767 "FLOAT" 865871 T FLOAT (NIL) -8 NIL NIL) (-370 857470 857970 858548 "FLOATCP" 859499 NIL FLOATCP (NIL T) -7 NIL NIL) (-369 856299 857103 857144 "FLINEXP" 857149 NIL FLINEXP (NIL T) -9 NIL 857242) (-368 855453 855688 856016 "FLINEXP-" 856021 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-367 854529 854673 854897 "FLASORT" 855305 NIL FLASORT (NIL T T) -7 NIL NIL) (-366 851746 852588 852640 "FLALG" 853867 NIL FLALG (NIL T T) -9 NIL 854334) (-365 845530 849232 849273 "FLAGG" 850535 NIL FLAGG (NIL T) -9 NIL 851187) (-364 844256 844595 845085 "FLAGG-" 845090 NIL FLAGG- (NIL T T) -8 NIL NIL) (-363 843298 843441 843668 "FLAGG2" 844109 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-362 840311 841285 841344 "FINRALG" 842472 NIL FINRALG (NIL T T) -9 NIL 842980) (-361 839471 839700 840039 "FINRALG-" 840044 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-360 838877 839090 839118 "FINITE" 839314 T FINITE (NIL) -9 NIL 839421) (-359 831335 833496 833536 "FINAALG" 837203 NIL FINAALG (NIL T) -9 NIL 838656) (-358 826676 827717 828861 "FINAALG-" 830240 NIL FINAALG- (NIL T T) -8 NIL NIL) (-357 826071 826431 826534 "FILE" 826606 NIL FILE (NIL T) -8 NIL NIL) (-356 824755 825067 825121 "FILECAT" 825805 NIL FILECAT (NIL T T) -9 NIL 826021) (-355 822675 824169 824197 "FIELD" 824237 T FIELD (NIL) -9 NIL 824317) (-354 821295 821680 822191 "FIELD-" 822196 NIL FIELD- (NIL T) -8 NIL NIL) (-353 819173 819930 820277 "FGROUP" 820981 NIL FGROUP (NIL T) -8 NIL NIL) (-352 818263 818427 818647 "FGLMICPK" 819005 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-351 814130 818188 818245 "FFX" 818250 NIL FFX (NIL T NIL) -8 NIL NIL) (-350 813731 813792 813927 "FFSLPE" 814063 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-349 809724 810503 811299 "FFPOLY" 812967 NIL FFPOLY (NIL T) -7 NIL NIL) (-348 809228 809264 809473 "FFPOLY2" 809682 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-347 805114 809147 809210 "FFP" 809215 NIL FFP (NIL T NIL) -8 NIL NIL) (-346 800547 805025 805089 "FF" 805094 NIL FF (NIL NIL NIL) -8 NIL NIL) (-345 795708 799890 800080 "FFNBX" 800401 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-344 790682 794843 795101 "FFNBP" 795562 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-343 785350 789966 790177 "FFNB" 790515 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-342 784182 784380 784695 "FFINTBAS" 785147 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-341 780466 782641 782669 "FFIELDC" 783289 T FFIELDC (NIL) -9 NIL 783665) (-340 779129 779499 779996 "FFIELDC-" 780001 NIL FFIELDC- (NIL T) -8 NIL NIL) (-339 778699 778744 778868 "FFHOM" 779071 NIL FFHOM (NIL T T T) -7 NIL NIL) (-338 776397 776881 777398 "FFF" 778214 NIL FFF (NIL T) -7 NIL NIL) (-337 772050 776139 776240 "FFCGX" 776340 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-336 767717 771782 771889 "FFCGP" 771993 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-335 762935 767444 767552 "FFCG" 767653 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-334 744993 754029 754115 "FFCAT" 759280 NIL FFCAT (NIL T T T) -9 NIL 760731) (-333 740191 741238 742552 "FFCAT-" 743782 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-332 739602 739645 739880 "FFCAT2" 740142 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-331 728814 732574 733794 "FEXPR" 738454 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-330 727814 728249 728290 "FEVALAB" 728374 NIL FEVALAB (NIL T) -9 NIL 728635) (-329 726973 727183 727521 "FEVALAB-" 727526 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-328 725566 726356 726559 "FDIV" 726872 NIL FDIV (NIL T T T T) -8 NIL NIL) (-327 722632 723347 723462 "FDIVCAT" 725030 NIL FDIVCAT (NIL T T T T) -9 NIL 725467) (-326 722394 722421 722591 "FDIVCAT-" 722596 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-325 721614 721701 721978 "FDIV2" 722301 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-324 720300 720559 720848 "FCPAK1" 721345 T FCPAK1 (NIL) -7 NIL NIL) (-323 719428 719800 719941 "FCOMP" 720191 NIL FCOMP (NIL T) -8 NIL NIL) (-322 703063 706477 710038 "FC" 715887 T FC (NIL) -8 NIL NIL) (-321 695716 699697 699737 "FAXF" 701539 NIL FAXF (NIL T) -9 NIL 702231) (-320 692995 693650 694475 "FAXF-" 694940 NIL FAXF- (NIL T T) -8 NIL NIL) (-319 688095 692371 692547 "FARRAY" 692852 NIL FARRAY (NIL T) -8 NIL NIL) (-318 683502 685534 685587 "FAMR" 686610 NIL FAMR (NIL T T) -9 NIL 687070) (-317 682392 682694 683129 "FAMR-" 683134 NIL FAMR- (NIL T T T) -8 NIL NIL) (-316 681588 682314 682367 "FAMONOID" 682372 NIL FAMONOID (NIL T) -8 NIL NIL) (-315 679418 680102 680155 "FAMONC" 681096 NIL FAMONC (NIL T T) -9 NIL 681482) (-314 678110 679172 679309 "FAGROUP" 679314 NIL FAGROUP (NIL T) -8 NIL NIL) (-313 675905 676224 676627 "FACUTIL" 677791 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-312 675004 675189 675411 "FACTFUNC" 675715 NIL FACTFUNC (NIL T) -7 NIL NIL) (-311 667409 674255 674467 "EXPUPXS" 674860 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-310 664892 665432 666018 "EXPRTUBE" 666843 T EXPRTUBE (NIL) -7 NIL NIL) (-309 661086 661678 662415 "EXPRODE" 664231 NIL EXPRODE (NIL T T) -7 NIL NIL) (-308 646460 659741 660169 "EXPR" 660690 NIL EXPR (NIL T) -8 NIL NIL) (-307 640867 641454 642267 "EXPR2UPS" 645758 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-306 640503 640560 640667 "EXPR2" 640804 NIL EXPR2 (NIL T T) -7 NIL NIL) (-305 631910 639635 639932 "EXPEXPAN" 640340 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-304 631737 631867 631896 "EXIT" 631901 T EXIT (NIL) -8 NIL NIL) (-303 631261 631461 631552 "EXITAST" 631666 T EXITAST (NIL) -8 NIL NIL) (-302 630888 630950 631063 "EVALCYC" 631193 NIL EVALCYC (NIL T) -7 NIL NIL) (-301 630429 630547 630588 "EVALAB" 630758 NIL EVALAB (NIL T) -9 NIL 630862) (-300 629910 630032 630253 "EVALAB-" 630258 NIL EVALAB- (NIL T T) -8 NIL NIL) (-299 627413 628681 628709 "EUCDOM" 629264 T EUCDOM (NIL) -9 NIL 629614) (-298 625818 626260 626850 "EUCDOM-" 626855 NIL EUCDOM- (NIL T) -8 NIL NIL) (-297 613358 616116 618866 "ESTOOLS" 623088 T ESTOOLS (NIL) -7 NIL NIL) (-296 612990 613047 613156 "ESTOOLS2" 613295 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-295 612741 612783 612863 "ESTOOLS1" 612942 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-294 606666 608394 608422 "ES" 611190 T ES (NIL) -9 NIL 612599) (-293 601613 602900 604717 "ES-" 604881 NIL ES- (NIL T) -8 NIL NIL) (-292 597988 598748 599528 "ESCONT" 600853 T ESCONT (NIL) -7 NIL NIL) (-291 597733 597765 597847 "ESCONT1" 597950 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-290 597408 597458 597558 "ES2" 597677 NIL ES2 (NIL T T) -7 NIL NIL) (-289 597038 597096 597205 "ES1" 597344 NIL ES1 (NIL T T) -7 NIL NIL) (-288 596254 596383 596559 "ERROR" 596882 T ERROR (NIL) -7 NIL NIL) (-287 589757 596113 596204 "EQTBL" 596209 NIL EQTBL (NIL T T) -8 NIL NIL) (-286 582314 585071 586520 "EQ" 588341 NIL -3846 (NIL T) -8 NIL NIL) (-285 581946 582003 582112 "EQ2" 582251 NIL EQ2 (NIL T T) -7 NIL NIL) (-284 577238 578284 579377 "EP" 580885 NIL EP (NIL T) -7 NIL NIL) (-283 575820 576121 576438 "ENV" 576941 T ENV (NIL) -8 NIL NIL) (-282 575019 575539 575567 "ENTIRER" 575572 T ENTIRER (NIL) -9 NIL 575618) (-281 571521 572974 573344 "EMR" 574818 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-280 570665 570850 570904 "ELTAGG" 571284 NIL ELTAGG (NIL T T) -9 NIL 571495) (-279 570384 570446 570587 "ELTAGG-" 570592 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-278 570173 570202 570256 "ELTAB" 570340 NIL ELTAB (NIL T T) -9 NIL NIL) (-277 569299 569445 569644 "ELFUTS" 570024 NIL ELFUTS (NIL T T) -7 NIL NIL) (-276 569041 569097 569125 "ELEMFUN" 569230 T ELEMFUN (NIL) -9 NIL NIL) (-275 568911 568932 569000 "ELEMFUN-" 569005 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-274 563802 567011 567052 "ELAGG" 567992 NIL ELAGG (NIL T) -9 NIL 568455) (-273 562087 562521 563184 "ELAGG-" 563189 NIL ELAGG- (NIL T T) -8 NIL NIL) (-272 560744 561024 561319 "ELABEXPR" 561812 T ELABEXPR (NIL) -8 NIL NIL) (-271 553610 555411 556238 "EFUPXS" 560020 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-270 547060 548861 549671 "EFULS" 552886 NIL EFULS (NIL T T T) -8 NIL NIL) (-269 544482 544840 545319 "EFSTRUC" 546692 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-268 533554 535119 536679 "EF" 542997 NIL EF (NIL T T) -7 NIL NIL) (-267 532655 533039 533188 "EAB" 533425 T EAB (NIL) -8 NIL NIL) (-266 531864 532614 532642 "E04UCFA" 532647 T E04UCFA (NIL) -8 NIL NIL) (-265 531073 531823 531851 "E04NAFA" 531856 T E04NAFA (NIL) -8 NIL NIL) (-264 530282 531032 531060 "E04MBFA" 531065 T E04MBFA (NIL) -8 NIL NIL) (-263 529491 530241 530269 "E04JAFA" 530274 T E04JAFA (NIL) -8 NIL NIL) (-262 528702 529450 529478 "E04GCFA" 529483 T E04GCFA (NIL) -8 NIL NIL) (-261 527913 528661 528689 "E04FDFA" 528694 T E04FDFA (NIL) -8 NIL NIL) (-260 527122 527872 527900 "E04DGFA" 527905 T E04DGFA (NIL) -8 NIL NIL) (-259 521300 522647 524011 "E04AGNT" 525778 T E04AGNT (NIL) -7 NIL NIL) (-258 520024 520504 520544 "DVARCAT" 521019 NIL DVARCAT (NIL T) -9 NIL 521218) (-257 519228 519440 519754 "DVARCAT-" 519759 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-256 512128 519027 519156 "DSMP" 519161 NIL DSMP (NIL T T T) -8 NIL NIL) (-255 506938 508073 509141 "DROPT" 511080 T DROPT (NIL) -8 NIL NIL) (-254 506603 506662 506760 "DROPT1" 506873 NIL DROPT1 (NIL T) -7 NIL NIL) (-253 501718 502844 503981 "DROPT0" 505486 T DROPT0 (NIL) -7 NIL NIL) (-252 500063 500388 500774 "DRAWPT" 501352 T DRAWPT (NIL) -7 NIL NIL) (-251 494650 495573 496652 "DRAW" 499037 NIL DRAW (NIL T) -7 NIL NIL) (-250 494283 494336 494454 "DRAWHACK" 494591 NIL DRAWHACK (NIL T) -7 NIL NIL) (-249 493014 493283 493574 "DRAWCX" 494012 T DRAWCX (NIL) -7 NIL NIL) (-248 492530 492598 492749 "DRAWCURV" 492940 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-247 483001 484960 487075 "DRAWCFUN" 490435 T DRAWCFUN (NIL) -7 NIL NIL) (-246 479814 481696 481737 "DQAGG" 482366 NIL DQAGG (NIL T) -9 NIL 482639) (-245 468333 475030 475113 "DPOLCAT" 476965 NIL DPOLCAT (NIL T T T T) -9 NIL 477510) (-244 463172 464518 466476 "DPOLCAT-" 466481 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-243 456327 463033 463131 "DPMO" 463136 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-242 449385 456107 456274 "DPMM" 456279 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-241 448805 449008 449122 "DOMAIN" 449291 T DOMAIN (NIL) -8 NIL NIL) (-240 442556 448440 448592 "DMP" 448706 NIL DMP (NIL NIL T) -8 NIL NIL) (-239 442156 442212 442356 "DLP" 442494 NIL DLP (NIL T) -7 NIL NIL) (-238 435800 441257 441484 "DLIST" 441961 NIL DLIST (NIL T) -8 NIL NIL) (-237 432646 434655 434696 "DLAGG" 435246 NIL DLAGG (NIL T) -9 NIL 435475) (-236 431496 432126 432154 "DIVRING" 432246 T DIVRING (NIL) -9 NIL 432329) (-235 430733 430923 431223 "DIVRING-" 431228 NIL DIVRING- (NIL T) -8 NIL NIL) (-234 428835 429192 429598 "DISPLAY" 430347 T DISPLAY (NIL) -7 NIL NIL) (-233 422777 428749 428812 "DIRPROD" 428817 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-232 421625 421828 422093 "DIRPROD2" 422570 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-231 411163 417115 417168 "DIRPCAT" 417578 NIL DIRPCAT (NIL NIL T) -9 NIL 418418) (-230 408489 409131 410012 "DIRPCAT-" 410349 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-229 407776 407936 408122 "DIOSP" 408323 T DIOSP (NIL) -7 NIL NIL) (-228 404478 406688 406729 "DIOPS" 407163 NIL DIOPS (NIL T) -9 NIL 407392) (-227 404027 404141 404332 "DIOPS-" 404337 NIL DIOPS- (NIL T T) -8 NIL NIL) (-226 402939 403533 403561 "DIFRING" 403748 T DIFRING (NIL) -9 NIL 403858) (-225 402585 402662 402814 "DIFRING-" 402819 NIL DIFRING- (NIL T) -8 NIL NIL) (-224 400410 401648 401689 "DIFEXT" 402052 NIL DIFEXT (NIL T) -9 NIL 402346) (-223 398695 399123 399789 "DIFEXT-" 399794 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-222 396017 398227 398268 "DIAGG" 398273 NIL DIAGG (NIL T) -9 NIL 398293) (-221 395401 395558 395810 "DIAGG-" 395815 NIL DIAGG- (NIL T T) -8 NIL NIL) (-220 390866 394360 394637 "DHMATRIX" 395170 NIL DHMATRIX (NIL T) -8 NIL NIL) (-219 386478 387387 388397 "DFSFUN" 389876 T DFSFUN (NIL) -7 NIL NIL) (-218 381446 385293 385635 "DFLOAT" 386156 T DFLOAT (NIL) -8 NIL NIL) (-217 379674 379955 380351 "DFINTTLS" 381154 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-216 376739 377695 378095 "DERHAM" 379340 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-215 374588 376514 376603 "DEQUEUE" 376683 NIL DEQUEUE (NIL T) -8 NIL NIL) (-214 373803 373936 374132 "DEGRED" 374450 NIL DEGRED (NIL T T) -7 NIL NIL) (-213 370198 370943 371796 "DEFINTRF" 373031 NIL DEFINTRF (NIL T) -7 NIL NIL) (-212 367725 368194 368793 "DEFINTEF" 369717 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-211 367091 367324 367446 "DEFAST" 367623 T DEFAST (NIL) -8 NIL NIL) (-210 360979 366532 366698 "DECIMAL" 366945 T DECIMAL (NIL) -8 NIL NIL) (-209 358491 358949 359455 "DDFACT" 360523 NIL DDFACT (NIL T T) -7 NIL NIL) (-208 358087 358130 358281 "DBLRESP" 358442 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-207 355797 356131 356500 "DBASE" 357845 NIL DBASE (NIL T) -8 NIL NIL) (-206 355066 355277 355423 "DATABUF" 355696 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-205 354199 355025 355053 "D03FAFA" 355058 T D03FAFA (NIL) -8 NIL NIL) (-204 353333 354158 354186 "D03EEFA" 354191 T D03EEFA (NIL) -8 NIL NIL) (-203 351283 351749 352238 "D03AGNT" 352864 T D03AGNT (NIL) -7 NIL NIL) (-202 350599 351242 351270 "D02EJFA" 351275 T D02EJFA (NIL) -8 NIL NIL) (-201 349915 350558 350586 "D02CJFA" 350591 T D02CJFA (NIL) -8 NIL NIL) (-200 349231 349874 349902 "D02BHFA" 349907 T D02BHFA (NIL) -8 NIL NIL) (-199 348547 349190 349218 "D02BBFA" 349223 T D02BBFA (NIL) -8 NIL NIL) (-198 341745 343333 344939 "D02AGNT" 346961 T D02AGNT (NIL) -7 NIL NIL) (-197 339514 340036 340582 "D01WGTS" 341219 T D01WGTS (NIL) -7 NIL NIL) (-196 338609 339473 339501 "D01TRNS" 339506 T D01TRNS (NIL) -8 NIL NIL) (-195 337704 338568 338596 "D01GBFA" 338601 T D01GBFA (NIL) -8 NIL NIL) (-194 336799 337663 337691 "D01FCFA" 337696 T D01FCFA (NIL) -8 NIL NIL) (-193 335894 336758 336786 "D01ASFA" 336791 T D01ASFA (NIL) -8 NIL NIL) (-192 334989 335853 335881 "D01AQFA" 335886 T D01AQFA (NIL) -8 NIL NIL) (-191 334084 334948 334976 "D01APFA" 334981 T D01APFA (NIL) -8 NIL NIL) (-190 333179 334043 334071 "D01ANFA" 334076 T D01ANFA (NIL) -8 NIL NIL) (-189 332274 333138 333166 "D01AMFA" 333171 T D01AMFA (NIL) -8 NIL NIL) (-188 331369 332233 332261 "D01ALFA" 332266 T D01ALFA (NIL) -8 NIL NIL) (-187 330464 331328 331356 "D01AKFA" 331361 T D01AKFA (NIL) -8 NIL NIL) (-186 329559 330423 330451 "D01AJFA" 330456 T D01AJFA (NIL) -8 NIL NIL) (-185 322856 324407 325968 "D01AGNT" 328018 T D01AGNT (NIL) -7 NIL NIL) (-184 322193 322321 322473 "CYCLOTOM" 322724 T CYCLOTOM (NIL) -7 NIL NIL) (-183 318928 319641 320368 "CYCLES" 321486 T CYCLES (NIL) -7 NIL NIL) (-182 318240 318374 318545 "CVMP" 318789 NIL CVMP (NIL T) -7 NIL NIL) (-181 316011 316269 316645 "CTRIGMNP" 317968 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-180 315522 315711 315810 "CTORCALL" 315932 T CTORCALL (NIL) -8 NIL NIL) (-179 314896 314995 315148 "CSTTOOLS" 315419 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 310695 311352 312110 "CRFP" 314208 NIL CRFP (NIL T T) -7 NIL NIL) (-177 310215 310416 310508 "CRCAST" 310623 T CRCAST (NIL) -8 NIL NIL) (-176 309262 309447 309675 "CRAPACK" 310019 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 308646 308747 308951 "CPMATCH" 309138 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 308371 308399 308505 "CPIMA" 308612 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 304735 305407 306125 "COORDSYS" 307706 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304119 304248 304398 "CONTOUR" 304605 T CONTOUR (NIL) -8 NIL NIL) (-171 300045 302122 302614 "CONTFRAC" 303659 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 299925 299946 299974 "CONDUIT" 300011 T CONDUIT (NIL) -9 NIL NIL) (-169 299118 299638 299666 "COMRING" 299671 T COMRING (NIL) -9 NIL 299723) (-168 298199 298476 298660 "COMPPROP" 298954 T COMPPROP (NIL) -8 NIL NIL) (-167 297860 297895 298023 "COMPLPAT" 298158 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 287919 297669 297778 "COMPLEX" 297783 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287555 287612 287719 "COMPLEX2" 287856 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287273 287308 287406 "COMPFACT" 287514 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 271671 281887 281927 "COMPCAT" 282931 NIL COMPCAT (NIL T) -9 NIL 284326) (-162 261186 264110 267737 "COMPCAT-" 268093 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 260915 260943 261046 "COMMUPC" 261152 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 260710 260743 260802 "COMMONOP" 260876 T COMMONOP (NIL) -7 NIL NIL) (-159 260293 260461 260548 "COMM" 260643 T COMM (NIL) -8 NIL NIL) (-158 259914 260097 260172 "COMMAAST" 260238 T COMMAAST (NIL) -8 NIL NIL) (-157 259163 259357 259385 "COMBOPC" 259723 T COMBOPC (NIL) -9 NIL 259898) (-156 258059 258269 258511 "COMBINAT" 258953 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254257 254830 255470 "COMBF" 257481 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253043 253373 253608 "COLOR" 254042 T COLOR (NIL) -8 NIL NIL) (-153 252563 252764 252856 "COLONAST" 252971 T COLONAST (NIL) -8 NIL NIL) (-152 252203 252250 252375 "CMPLXRT" 252510 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 247705 248733 249813 "CLIP" 251143 T CLIP (NIL) -7 NIL NIL) (-150 246087 246811 247050 "CLIF" 247532 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242309 244233 244274 "CLAGG" 245203 NIL CLAGG (NIL T) -9 NIL 245739) (-148 240731 241188 241771 "CLAGG-" 241776 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240275 240360 240500 "CINTSLPE" 240640 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237776 238247 238795 "CHVAR" 239803 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237039 237559 237587 "CHARZ" 237592 T CHARZ (NIL) -9 NIL 237607) (-144 236793 236833 236911 "CHARPOL" 236993 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235940 236493 236521 "CHARNZ" 236568 T CHARNZ (NIL) -9 NIL 236624) (-142 233965 234630 234965 "CHAR" 235625 T CHAR (NIL) -8 NIL NIL) (-141 233691 233752 233780 "CFCAT" 233891 T CFCAT (NIL) -9 NIL NIL) (-140 232936 233047 233229 "CDEN" 233575 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228928 232089 232369 "CCLASS" 232676 T CCLASS (NIL) -8 NIL NIL) (-138 228847 228873 228908 "CATEGORY" 228913 T -10 (NIL) -8 NIL NIL) (-137 228338 228547 228646 "CATAST" 228768 T CATAST (NIL) -8 NIL NIL) (-136 227858 228059 228151 "CASEAST" 228266 T CASEAST (NIL) -8 NIL NIL) (-135 222910 223887 224640 "CARTEN" 227161 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222018 222166 222387 "CARTEN2" 222757 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220360 221168 221425 "CARD" 221781 T CARD (NIL) -8 NIL NIL) (-132 219980 220164 220239 "CAPSLAST" 220305 T CAPSLAST (NIL) -8 NIL NIL) (-131 219352 219680 219708 "CACHSET" 219840 T CACHSET (NIL) -9 NIL 219917) (-130 218848 219144 219172 "CABMON" 219222 T CABMON (NIL) -9 NIL 219278) (-129 218016 218395 218538 "BYTE" 218725 T BYTE (NIL) -8 NIL NIL) (-128 213964 217963 217997 "BYTEARY" 218002 T BYTEARY (NIL) -8 NIL NIL) (-127 211521 213656 213763 "BTREE" 213890 NIL BTREE (NIL T) -8 NIL NIL) (-126 209019 211169 211291 "BTOURN" 211431 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206437 208490 208531 "BTCAT" 208599 NIL BTCAT (NIL T) -9 NIL 208676) (-124 206104 206184 206333 "BTCAT-" 206338 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201396 205247 205275 "BTAGG" 205497 T BTAGG (NIL) -9 NIL 205658) (-122 200886 201011 201217 "BTAGG-" 201222 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197930 200164 200379 "BSTREE" 200703 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197068 197194 197378 "BRILL" 197786 NIL BRILL (NIL T) -7 NIL NIL) (-119 193769 195796 195837 "BRAGG" 196486 NIL BRAGG (NIL T) -9 NIL 196743) (-118 192298 192704 193259 "BRAGG-" 193264 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185564 191644 191828 "BPADICRT" 192146 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183914 185501 185546 "BPADIC" 185551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183612 183642 183756 "BOUNDZRO" 183878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179127 180218 181085 "BOP" 182765 T BOP (NIL) -8 NIL NIL) (-113 176748 177192 177712 "BOP1" 178640 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175472 176158 176358 "BOOLEAN" 176568 T BOOLEAN (NIL) -8 NIL NIL) (-111 174834 175212 175266 "BMODULE" 175271 NIL BMODULE (NIL T T) -9 NIL 175336) (-110 170664 174632 174705 "BITS" 174781 T BITS (NIL) -8 NIL NIL) (-109 169761 170196 170348 "BINFILE" 170532 T BINFILE (NIL) -8 NIL NIL) (-108 169173 169295 169437 "BINDING" 169639 T BINDING (NIL) -8 NIL NIL) (-107 163065 168617 168782 "BINARY" 169028 T BINARY (NIL) -8 NIL NIL) (-106 160892 162320 162361 "BGAGG" 162621 NIL BGAGG (NIL T) -9 NIL 162758) (-105 160723 160755 160846 "BGAGG-" 160851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159821 160107 160312 "BFUNCT" 160538 T BFUNCT (NIL) -8 NIL NIL) (-103 158511 158689 158977 "BEZOUT" 159645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155028 157363 157693 "BBTREE" 158214 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154762 154815 154843 "BASTYPE" 154962 T BASTYPE (NIL) -9 NIL NIL) (-100 154614 154643 154716 "BASTYPE-" 154721 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154052 154128 154278 "BALFACT" 154525 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152935 153467 153653 "AUTOMOR" 153897 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152661 152666 152692 "ATTREG" 152697 T ATTREG (NIL) -9 NIL NIL) (-96 150940 151358 151710 "ATTRBUT" 152327 T ATTRBUT (NIL) -8 NIL NIL) (-95 150592 150768 150834 "ATTRAST" 150892 T ATTRAST (NIL) -8 NIL NIL) (-94 150128 150241 150267 "ATRIG" 150468 T ATRIG (NIL) -9 NIL NIL) (-93 149937 149978 150065 "ATRIG-" 150070 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149662 149805 149831 "ASTCAT" 149836 T ASTCAT (NIL) -9 NIL 149866) (-91 149459 149502 149594 "ASTCAT-" 149599 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147656 149235 149323 "ASTACK" 149402 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146161 146458 146823 "ASSOCEQ" 147338 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145193 145820 145944 "ASP9" 146068 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144957 145141 145180 "ASP8" 145185 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143826 144562 144704 "ASP80" 144846 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142725 143461 143593 "ASP7" 143725 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141679 142402 142520 "ASP78" 142638 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140648 141359 141476 "ASP77" 141593 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139560 140286 140417 "ASP74" 140548 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138460 139195 139327 "ASP73" 139459 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137415 138137 138255 "ASP6" 138373 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136363 137092 137210 "ASP55" 137328 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135313 136037 136156 "ASP50" 136275 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134401 135014 135124 "ASP4" 135234 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133489 134102 134212 "ASP49" 134322 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132274 133028 133196 "ASP42" 133378 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131051 131807 131977 "ASP41" 132161 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130001 130728 130846 "ASP35" 130964 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129766 129949 129988 "ASP34" 129993 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129503 129570 129646 "ASP33" 129721 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128398 129138 129270 "ASP31" 129402 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128163 128346 128385 "ASP30" 128390 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127898 127967 128043 "ASP29" 128118 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127663 127846 127885 "ASP28" 127890 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127428 127611 127650 "ASP27" 127655 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126512 127126 127237 "ASP24" 127348 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125428 126153 126283 "ASP20" 126413 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124516 125129 125239 "ASP1" 125349 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123460 124190 124309 "ASP19" 124428 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123197 123264 123340 "ASP12" 123415 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122049 122796 122940 "ASP10" 123084 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119948 121893 121984 "ARRAY2" 121989 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115764 119596 119710 "ARRAY1" 119865 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114796 114969 115190 "ARRAY12" 115587 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109155 111026 111101 "ARR2CAT" 113731 NIL ARR2CAT (NIL T T T) -9 NIL 114489) (-55 106589 107333 108287 "ARR2CAT-" 108292 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105337 105489 105795 "APPRULE" 106425 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104988 105036 105155 "APPLYORE" 105283 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103962 104253 104448 "ANY" 104811 T ANY (NIL) -8 NIL NIL) (-51 103240 103363 103520 "ANY1" 103836 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100805 101677 102004 "ANTISYM" 102964 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100320 100509 100606 "ANON" 100726 T ANON (NIL) -8 NIL NIL) (-48 94454 98861 99314 "AN" 99885 T AN (NIL) -8 NIL NIL) (-47 90835 92189 92240 "AMR" 92988 NIL AMR (NIL T T) -9 NIL 93588) (-46 89947 90168 90531 "AMR-" 90536 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74497 89864 89925 "ALIST" 89930 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71334 74091 74260 "ALGSC" 74415 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67890 68444 69051 "ALGPKG" 70774 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67167 67268 67452 "ALGMFACT" 67776 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62906 63591 64246 "ALGMANIP" 66690 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54312 62532 62682 "ALGFF" 62839 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53508 53639 53818 "ALGFACT" 54170 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52538 53104 53142 "ALGEBRA" 53202 NIL ALGEBRA (NIL T) -9 NIL 53261) (-37 52256 52315 52447 "ALGEBRA-" 52452 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34516 50259 50311 "ALAGG" 50447 NIL ALAGG (NIL T T) -9 NIL 50608) (-35 34052 34165 34191 "AHYP" 34392 T AHYP (NIL) -9 NIL NIL) (-34 32983 33231 33257 "AGG" 33756 T AGG (NIL) -9 NIL 34035) (-33 32417 32579 32793 "AGG-" 32798 NIL AGG- (NIL T) -8 NIL NIL) (-32 30094 30516 30934 "AF" 32059 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29819 29909 "ADDAST" 30022 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-3 3160516 3160521 3160526 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3160501 3160506 3160511 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3160486 3160491 3160496 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3160471 3160476 3160481 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1246 3159647 3160346 3160423 "ZMOD" 3160428 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1245 3158757 3158921 3159130 "ZLINDEP" 3159479 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1244 3148133 3149885 3151844 "ZDSOLVE" 3156899 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1243 3147379 3147520 3147709 "YSTREAM" 3147979 NIL YSTREAM (NIL T) -7 NIL NIL) (-1242 3145190 3146680 3146884 "XRPOLY" 3147222 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1241 3141682 3142965 3143549 "XPR" 3144653 NIL XPR (NIL T T) -8 NIL NIL) (-1240 3139438 3141013 3141217 "XPOLY" 3141513 NIL XPOLY (NIL T) -8 NIL NIL) (-1239 3137287 3138621 3138676 "XPOLYC" 3138964 NIL XPOLYC (NIL T T) -9 NIL 3139077) (-1238 3133705 3135804 3136192 "XPBWPOLY" 3136945 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1237 3129690 3131938 3131980 "XF" 3132601 NIL XF (NIL T) -9 NIL 3133001) (-1236 3129311 3129399 3129568 "XF-" 3129573 NIL XF- (NIL T T) -8 NIL NIL) (-1235 3124703 3125958 3126013 "XFALG" 3128185 NIL XFALG (NIL T T) -9 NIL 3128974) (-1234 3123836 3123940 3124145 "XEXPPKG" 3124595 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1233 3121980 3123686 3123782 "XDPOLY" 3123787 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1232 3120896 3121462 3121505 "XALG" 3121568 NIL XALG (NIL T) -9 NIL 3121688) (-1231 3114365 3118873 3119367 "WUTSET" 3120488 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1230 3112216 3112977 3113330 "WP" 3114146 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1229 3111862 3112038 3112108 "WHILEAST" 3112168 T WHILEAST (NIL) -8 NIL NIL) (-1228 3111378 3111579 3111673 "WHEREAST" 3111790 T WHEREAST (NIL) -8 NIL NIL) (-1227 3110264 3110462 3110757 "WFFINTBS" 3111175 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1226 3108168 3108595 3109057 "WEIER" 3109836 NIL WEIER (NIL T) -7 NIL NIL) (-1225 3107315 3107739 3107781 "VSPACE" 3107917 NIL VSPACE (NIL T) -9 NIL 3107991) (-1224 3107153 3107180 3107271 "VSPACE-" 3107276 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1223 3106899 3106942 3107013 "VOID" 3107104 T VOID (NIL) -8 NIL NIL) (-1222 3105035 3105394 3105800 "VIEW" 3106515 T VIEW (NIL) -7 NIL NIL) (-1221 3101460 3102098 3102835 "VIEWDEF" 3104320 T VIEWDEF (NIL) -7 NIL NIL) (-1220 3090798 3093008 3095181 "VIEW3D" 3099309 T VIEW3D (NIL) -8 NIL NIL) (-1219 3083080 3084709 3086288 "VIEW2D" 3089241 T VIEW2D (NIL) -8 NIL NIL) (-1218 3078484 3082850 3082942 "VECTOR" 3083023 NIL VECTOR (NIL T) -8 NIL NIL) (-1217 3077061 3077320 3077638 "VECTOR2" 3078214 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1216 3070588 3074845 3074888 "VECTCAT" 3075881 NIL VECTCAT (NIL T) -9 NIL 3076467) (-1215 3069602 3069856 3070246 "VECTCAT-" 3070251 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1214 3069083 3069253 3069373 "VARIABLE" 3069517 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1213 3069016 3069021 3069051 "UTYPE" 3069056 T UTYPE (NIL) -9 NIL NIL) (-1212 3067846 3068000 3068262 "UTSODETL" 3068842 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1211 3065286 3065746 3066270 "UTSODE" 3067387 NIL UTSODE (NIL T T) -7 NIL NIL) (-1210 3057162 3062912 3063401 "UTS" 3064855 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1209 3048535 3053854 3053897 "UTSCAT" 3055009 NIL UTSCAT (NIL T) -9 NIL 3055766) (-1208 3045889 3046605 3047594 "UTSCAT-" 3047599 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1207 3045516 3045559 3045692 "UTS2" 3045840 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1206 3039791 3042356 3042399 "URAGG" 3044469 NIL URAGG (NIL T) -9 NIL 3045191) (-1205 3036730 3037593 3038716 "URAGG-" 3038721 NIL URAGG- (NIL T T) -8 NIL NIL) (-1204 3032454 3035344 3035816 "UPXSSING" 3036394 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1203 3024424 3031569 3031851 "UPXS" 3032230 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1202 3017537 3024328 3024400 "UPXSCONS" 3024405 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1201 3007895 3014640 3014702 "UPXSCCA" 3015358 NIL UPXSCCA (NIL T T) -9 NIL 3015600) (-1200 3007533 3007618 3007792 "UPXSCCA-" 3007797 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1199 2997817 3004335 3004378 "UPXSCAT" 3005026 NIL UPXSCAT (NIL T) -9 NIL 3005634) (-1198 2997247 2997326 2997505 "UPXS2" 2997732 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1197 2995901 2996154 2996505 "UPSQFREE" 2996990 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1196 2989819 2992828 2992883 "UPSCAT" 2994044 NIL UPSCAT (NIL T T) -9 NIL 2994818) (-1195 2989023 2989230 2989557 "UPSCAT-" 2989562 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1194 2975114 2983110 2983153 "UPOLYC" 2985254 NIL UPOLYC (NIL T) -9 NIL 2986475) (-1193 2966443 2968868 2972015 "UPOLYC-" 2972020 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1192 2966070 2966113 2966246 "UPOLYC2" 2966394 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1191 2957527 2965636 2965774 "UP" 2965980 NIL UP (NIL NIL T) -8 NIL NIL) (-1190 2956866 2956973 2957137 "UPMP" 2957416 NIL UPMP (NIL T T) -7 NIL NIL) (-1189 2956419 2956500 2956639 "UPDIVP" 2956779 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1188 2954987 2955236 2955552 "UPDECOMP" 2956168 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1187 2954222 2954334 2954519 "UPCDEN" 2954871 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1186 2953741 2953810 2953959 "UP2" 2954147 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1185 2952258 2952945 2953222 "UNISEG" 2953499 NIL UNISEG (NIL T) -8 NIL NIL) (-1184 2951473 2951600 2951805 "UNISEG2" 2952101 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1183 2950533 2950713 2950939 "UNIFACT" 2951289 NIL UNIFACT (NIL T) -7 NIL NIL) (-1182 2934502 2949710 2949961 "ULS" 2950340 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1181 2922544 2934406 2934478 "ULSCONS" 2934483 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1180 2905348 2917283 2917345 "ULSCCAT" 2918065 NIL ULSCCAT (NIL T T) -9 NIL 2918362) (-1179 2904398 2904643 2905031 "ULSCCAT-" 2905036 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1178 2894459 2900891 2900934 "ULSCAT" 2901797 NIL ULSCAT (NIL T) -9 NIL 2902527) (-1177 2893889 2893968 2894147 "ULS2" 2894374 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1176 2892327 2893250 2893280 "UFD" 2893492 T UFD (NIL) -9 NIL 2893606) (-1175 2892121 2892167 2892262 "UFD-" 2892267 NIL UFD- (NIL T) -8 NIL NIL) (-1174 2891203 2891386 2891602 "UDVO" 2891927 T UDVO (NIL) -7 NIL NIL) (-1173 2889019 2889428 2889899 "UDPO" 2890767 NIL UDPO (NIL T) -7 NIL NIL) (-1172 2888952 2888957 2888987 "TYPE" 2888992 T TYPE (NIL) -9 NIL NIL) (-1171 2888606 2888774 2888844 "TYPEAST" 2888904 T TYPEAST (NIL) -8 NIL NIL) (-1170 2887577 2887779 2888019 "TWOFACT" 2888400 NIL TWOFACT (NIL T) -7 NIL NIL) (-1169 2886515 2886852 2887115 "TUPLE" 2887349 NIL TUPLE (NIL T) -8 NIL NIL) (-1168 2884206 2884725 2885264 "TUBETOOL" 2885998 T TUBETOOL (NIL) -7 NIL NIL) (-1167 2883055 2883260 2883501 "TUBE" 2883999 NIL TUBE (NIL T) -8 NIL NIL) (-1166 2877819 2882027 2882310 "TS" 2882807 NIL TS (NIL T) -8 NIL NIL) (-1165 2866486 2870578 2870675 "TSETCAT" 2875944 NIL TSETCAT (NIL T T T T) -9 NIL 2877475) (-1164 2861220 2862818 2864709 "TSETCAT-" 2864714 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1163 2855483 2856329 2857271 "TRMANIP" 2860356 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1162 2854924 2854987 2855150 "TRIMAT" 2855415 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1161 2852720 2852957 2853321 "TRIGMNIP" 2854673 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1160 2852240 2852353 2852383 "TRIGCAT" 2852596 T TRIGCAT (NIL) -9 NIL NIL) (-1159 2851909 2851988 2852129 "TRIGCAT-" 2852134 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1158 2848808 2850769 2851049 "TREE" 2851664 NIL TREE (NIL T) -8 NIL NIL) (-1157 2848082 2848610 2848640 "TRANFUN" 2848675 T TRANFUN (NIL) -9 NIL 2848741) (-1156 2847361 2847552 2847832 "TRANFUN-" 2847837 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1155 2847165 2847197 2847258 "TOPSP" 2847322 T TOPSP (NIL) -7 NIL NIL) (-1154 2846513 2846628 2846782 "TOOLSIGN" 2847046 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1153 2845174 2845690 2845929 "TEXTFILE" 2846296 T TEXTFILE (NIL) -8 NIL NIL) (-1152 2843039 2843553 2843991 "TEX" 2844758 T TEX (NIL) -8 NIL NIL) (-1151 2842820 2842851 2842923 "TEX1" 2843002 NIL TEX1 (NIL T) -7 NIL NIL) (-1150 2842468 2842531 2842621 "TEMUTL" 2842752 T TEMUTL (NIL) -7 NIL NIL) (-1149 2840622 2840902 2841227 "TBCMPPK" 2842191 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1148 2832510 2838782 2838838 "TBAGG" 2839238 NIL TBAGG (NIL T T) -9 NIL 2839449) (-1147 2827580 2829068 2830822 "TBAGG-" 2830827 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1146 2826964 2827071 2827216 "TANEXP" 2827469 NIL TANEXP (NIL T) -7 NIL NIL) (-1145 2820465 2826821 2826914 "TABLE" 2826919 NIL TABLE (NIL T T) -8 NIL NIL) (-1144 2819877 2819976 2820114 "TABLEAU" 2820362 NIL TABLEAU (NIL T) -8 NIL NIL) (-1143 2814485 2815705 2816953 "TABLBUMP" 2818663 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1142 2813913 2814013 2814141 "SYSTEM" 2814379 T SYSTEM (NIL) -7 NIL NIL) (-1141 2810376 2811071 2811854 "SYSSOLP" 2813164 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1140 2806667 2807375 2808109 "SYNTAX" 2809664 T SYNTAX (NIL) -8 NIL NIL) (-1139 2803825 2804427 2805059 "SYMTAB" 2806057 T SYMTAB (NIL) -8 NIL NIL) (-1138 2799074 2799976 2800959 "SYMS" 2802864 T SYMS (NIL) -8 NIL NIL) (-1137 2796346 2798532 2798762 "SYMPOLY" 2798879 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1136 2795863 2795938 2796061 "SYMFUNC" 2796258 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1135 2791840 2793100 2793922 "SYMBOL" 2795063 T SYMBOL (NIL) -8 NIL NIL) (-1134 2785379 2787068 2788788 "SWITCH" 2790142 T SWITCH (NIL) -8 NIL NIL) (-1133 2778649 2784200 2784503 "SUTS" 2785134 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1132 2770618 2777764 2778046 "SUPXS" 2778425 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1131 2762147 2770236 2770362 "SUP" 2770527 NIL SUP (NIL T) -8 NIL NIL) (-1130 2761306 2761433 2761650 "SUPFRACF" 2762015 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1129 2760927 2760986 2761099 "SUP2" 2761241 NIL SUP2 (NIL T T) -7 NIL NIL) (-1128 2759340 2759614 2759977 "SUMRF" 2760626 NIL SUMRF (NIL T) -7 NIL NIL) (-1127 2758654 2758720 2758919 "SUMFS" 2759261 NIL SUMFS (NIL T T) -7 NIL NIL) (-1126 2742663 2757831 2758082 "SULS" 2758461 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1125 2741985 2742188 2742328 "SUCH" 2742571 NIL SUCH (NIL T T) -8 NIL NIL) (-1124 2735879 2736891 2737850 "SUBSPACE" 2741073 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1123 2735309 2735399 2735563 "SUBRESP" 2735767 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1122 2728678 2729974 2731285 "STTF" 2734045 NIL STTF (NIL T) -7 NIL NIL) (-1121 2722851 2723971 2725118 "STTFNC" 2727578 NIL STTFNC (NIL T) -7 NIL NIL) (-1120 2714166 2716033 2717827 "STTAYLOR" 2721092 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1119 2707410 2714030 2714113 "STRTBL" 2714118 NIL STRTBL (NIL T) -8 NIL NIL) (-1118 2702801 2707365 2707396 "STRING" 2707401 T STRING (NIL) -8 NIL NIL) (-1117 2697689 2702174 2702204 "STRICAT" 2702263 T STRICAT (NIL) -9 NIL 2702325) (-1116 2690402 2695212 2695832 "STREAM" 2697104 NIL STREAM (NIL T) -8 NIL NIL) (-1115 2689912 2689989 2690133 "STREAM3" 2690319 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1114 2688894 2689077 2689312 "STREAM2" 2689725 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1113 2688582 2688634 2688727 "STREAM1" 2688836 NIL STREAM1 (NIL T) -7 NIL NIL) (-1112 2687598 2687779 2688010 "STINPROD" 2688398 NIL STINPROD (NIL T) -7 NIL NIL) (-1111 2687176 2687360 2687390 "STEP" 2687470 T STEP (NIL) -9 NIL 2687548) (-1110 2680719 2687075 2687152 "STBL" 2687157 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1109 2675894 2679941 2679984 "STAGG" 2680137 NIL STAGG (NIL T) -9 NIL 2680226) (-1108 2673596 2674198 2675070 "STAGG-" 2675075 NIL STAGG- (NIL T T) -8 NIL NIL) (-1107 2671791 2673366 2673458 "STACK" 2673539 NIL STACK (NIL T) -8 NIL NIL) (-1106 2664516 2669932 2670388 "SREGSET" 2671421 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1105 2656942 2658310 2659823 "SRDCMPK" 2663122 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1104 2649909 2654382 2654412 "SRAGG" 2655715 T SRAGG (NIL) -9 NIL 2656323) (-1103 2648926 2649181 2649560 "SRAGG-" 2649565 NIL SRAGG- (NIL T) -8 NIL NIL) (-1102 2643412 2647841 2648269 "SQMATRIX" 2648545 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1101 2637164 2640132 2640858 "SPLTREE" 2642758 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1100 2633154 2633820 2634466 "SPLNODE" 2636590 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1099 2632201 2632434 2632464 "SPFCAT" 2632908 T SPFCAT (NIL) -9 NIL NIL) (-1098 2630938 2631148 2631412 "SPECOUT" 2631959 T SPECOUT (NIL) -7 NIL NIL) (-1097 2630699 2630739 2630808 "SPADPRSR" 2630891 T SPADPRSR (NIL) -7 NIL NIL) (-1096 2622670 2624417 2624460 "SPACEC" 2628833 NIL SPACEC (NIL T) -9 NIL 2630649) (-1095 2620841 2622602 2622651 "SPACE3" 2622656 NIL SPACE3 (NIL T) -8 NIL NIL) (-1094 2619593 2619764 2620055 "SORTPAK" 2620646 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1093 2617643 2617946 2618365 "SOLVETRA" 2619257 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1092 2616654 2616876 2617150 "SOLVESER" 2617416 NIL SOLVESER (NIL T) -7 NIL NIL) (-1091 2611874 2612755 2613757 "SOLVERAD" 2615706 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1090 2607689 2608298 2609027 "SOLVEFOR" 2611241 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1089 2601986 2607038 2607135 "SNTSCAT" 2607140 NIL SNTSCAT (NIL T T T T) -9 NIL 2607210) (-1088 2596129 2600309 2600700 "SMTS" 2601676 NIL SMTS (NIL T T T) -8 NIL NIL) (-1087 2590579 2596017 2596094 "SMP" 2596099 NIL SMP (NIL T T) -8 NIL NIL) (-1086 2588738 2589039 2589437 "SMITH" 2590276 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1085 2581721 2585876 2585979 "SMATCAT" 2587330 NIL SMATCAT (NIL NIL T T T) -9 NIL 2587880) (-1084 2578661 2579484 2580662 "SMATCAT-" 2580667 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1083 2576374 2577897 2577940 "SKAGG" 2578201 NIL SKAGG (NIL T) -9 NIL 2578336) (-1082 2572490 2575478 2575756 "SINT" 2576118 T SINT (NIL) -8 NIL NIL) (-1081 2572262 2572300 2572366 "SIMPAN" 2572446 T SIMPAN (NIL) -7 NIL NIL) (-1080 2571569 2571797 2571937 "SIG" 2572144 T SIG (NIL) -8 NIL NIL) (-1079 2570407 2570628 2570903 "SIGNRF" 2571328 NIL SIGNRF (NIL T) -7 NIL NIL) (-1078 2569212 2569363 2569654 "SIGNEF" 2570236 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1077 2566902 2567356 2567862 "SHP" 2568753 NIL SHP (NIL T NIL) -7 NIL NIL) (-1076 2560808 2566803 2566879 "SHDP" 2566884 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1075 2560407 2560573 2560603 "SGROUP" 2560696 T SGROUP (NIL) -9 NIL 2560758) (-1074 2560265 2560291 2560364 "SGROUP-" 2560369 NIL SGROUP- (NIL T) -8 NIL NIL) (-1073 2557101 2557798 2558521 "SGCF" 2559564 T SGCF (NIL) -7 NIL NIL) (-1072 2551496 2556548 2556645 "SFRTCAT" 2556650 NIL SFRTCAT (NIL T T T T) -9 NIL 2556689) (-1071 2544920 2545935 2547071 "SFRGCD" 2550479 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1070 2538048 2539119 2540305 "SFQCMPK" 2543853 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1069 2537670 2537759 2537869 "SFORT" 2537989 NIL SFORT (NIL T T) -8 NIL NIL) (-1068 2536815 2537510 2537631 "SEXOF" 2537636 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1067 2535949 2536696 2536764 "SEX" 2536769 T SEX (NIL) -8 NIL NIL) (-1066 2530725 2531414 2531509 "SEXCAT" 2535280 NIL SEXCAT (NIL T T T T T) -9 NIL 2535899) (-1065 2527905 2530659 2530707 "SET" 2530712 NIL SET (NIL T) -8 NIL NIL) (-1064 2526156 2526618 2526923 "SETMN" 2527646 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1063 2525762 2525888 2525918 "SETCAT" 2526035 T SETCAT (NIL) -9 NIL 2526120) (-1062 2525542 2525594 2525693 "SETCAT-" 2525698 NIL SETCAT- (NIL T) -8 NIL NIL) (-1061 2521929 2524003 2524046 "SETAGG" 2524916 NIL SETAGG (NIL T) -9 NIL 2525256) (-1060 2521387 2521503 2521740 "SETAGG-" 2521745 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1059 2520591 2520884 2520945 "SEGXCAT" 2521231 NIL SEGXCAT (NIL T T) -9 NIL 2521351) (-1058 2519647 2520257 2520439 "SEG" 2520444 NIL SEG (NIL T) -8 NIL NIL) (-1057 2518554 2518767 2518810 "SEGCAT" 2519392 NIL SEGCAT (NIL T) -9 NIL 2519630) (-1056 2517603 2517933 2518133 "SEGBIND" 2518389 NIL SEGBIND (NIL T) -8 NIL NIL) (-1055 2517224 2517283 2517396 "SEGBIND2" 2517538 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1054 2516842 2517025 2517102 "SEGAST" 2517169 T SEGAST (NIL) -8 NIL NIL) (-1053 2516061 2516187 2516391 "SEG2" 2516686 NIL SEG2 (NIL T T) -7 NIL NIL) (-1052 2515498 2515996 2516043 "SDVAR" 2516048 NIL SDVAR (NIL T) -8 NIL NIL) (-1051 2507788 2515268 2515398 "SDPOL" 2515403 NIL SDPOL (NIL T) -8 NIL NIL) (-1050 2506381 2506647 2506966 "SCPKG" 2507503 NIL SCPKG (NIL T) -7 NIL NIL) (-1049 2505517 2505697 2505897 "SCOPE" 2506203 T SCOPE (NIL) -8 NIL NIL) (-1048 2504738 2504871 2505050 "SCACHE" 2505372 NIL SCACHE (NIL T) -7 NIL NIL) (-1047 2504464 2504607 2504637 "SASTCAT" 2504642 T SASTCAT (NIL) -9 NIL 2504655) (-1046 2504253 2504298 2504396 "SASTCAT-" 2504401 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1045 2503692 2504013 2504098 "SAOS" 2504190 T SAOS (NIL) -8 NIL NIL) (-1044 2503257 2503292 2503465 "SAERFFC" 2503651 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1043 2497231 2503154 2503234 "SAE" 2503239 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1042 2496824 2496859 2497018 "SAEFACT" 2497190 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1041 2495145 2495459 2495860 "RURPK" 2496490 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1040 2493781 2494060 2494372 "RULESET" 2494979 NIL RULESET (NIL T T T) -8 NIL NIL) (-1039 2490968 2491471 2491936 "RULE" 2493462 NIL RULE (NIL T T T) -8 NIL NIL) (-1038 2490607 2490762 2490845 "RULECOLD" 2490920 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1037 2485456 2486250 2487170 "RSETGCD" 2489806 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1036 2474713 2479765 2479862 "RSETCAT" 2483981 NIL RSETCAT (NIL T T T T) -9 NIL 2485078) (-1035 2472640 2473179 2474003 "RSETCAT-" 2474008 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1034 2465027 2466402 2467922 "RSDCMPK" 2471239 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2463032 2463473 2463547 "RRCC" 2464633 NIL RRCC (NIL T T) -9 NIL 2464977) (-1032 2462383 2462557 2462836 "RRCC-" 2462841 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1031 2461870 2462079 2462180 "RPTAST" 2462304 T RPTAST (NIL) -8 NIL NIL) (-1030 2436098 2445683 2445750 "RPOLCAT" 2456414 NIL RPOLCAT (NIL T T T) -9 NIL 2459573) (-1029 2427598 2429936 2433058 "RPOLCAT-" 2433063 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1028 2418645 2425809 2426291 "ROUTINE" 2427138 T ROUTINE (NIL) -8 NIL NIL) (-1027 2415391 2418196 2418345 "ROMAN" 2418518 T ROMAN (NIL) -8 NIL NIL) (-1026 2413666 2414251 2414511 "ROIRC" 2415196 NIL ROIRC (NIL T T) -8 NIL NIL) (-1025 2410117 2412356 2412386 "RNS" 2412690 T RNS (NIL) -9 NIL 2412962) (-1024 2408626 2409009 2409543 "RNS-" 2409618 NIL RNS- (NIL T) -8 NIL NIL) (-1023 2408075 2408457 2408487 "RNG" 2408492 T RNG (NIL) -9 NIL 2408513) (-1022 2407467 2407829 2407872 "RMODULE" 2407934 NIL RMODULE (NIL T) -9 NIL 2407976) (-1021 2406303 2406397 2406733 "RMCAT2" 2407368 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1020 2403008 2405477 2405802 "RMATRIX" 2406037 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1019 2395950 2398184 2398299 "RMATCAT" 2401658 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2402640) (-1018 2395325 2395472 2395779 "RMATCAT-" 2395784 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1017 2394892 2394967 2395095 "RINTERP" 2395244 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1016 2393980 2394500 2394530 "RING" 2394642 T RING (NIL) -9 NIL 2394737) (-1015 2393772 2393816 2393913 "RING-" 2393918 NIL RING- (NIL T) -8 NIL NIL) (-1014 2392613 2392850 2393108 "RIDIST" 2393536 T RIDIST (NIL) -7 NIL NIL) (-1013 2383929 2392081 2392287 "RGCHAIN" 2392461 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1012 2380923 2381537 2382207 "RF" 2383293 NIL RF (NIL T) -7 NIL NIL) (-1011 2380569 2380632 2380735 "RFFACTOR" 2380854 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1010 2380294 2380329 2380426 "RFFACT" 2380528 NIL RFFACT (NIL T) -7 NIL NIL) (-1009 2378411 2378775 2379157 "RFDIST" 2379934 T RFDIST (NIL) -7 NIL NIL) (-1008 2377864 2377956 2378119 "RETSOL" 2378313 NIL RETSOL (NIL T T) -7 NIL NIL) (-1007 2377452 2377532 2377575 "RETRACT" 2377768 NIL RETRACT (NIL T) -9 NIL NIL) (-1006 2377301 2377326 2377413 "RETRACT-" 2377418 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1005 2376947 2377123 2377193 "RETAST" 2377253 T RETAST (NIL) -8 NIL NIL) (-1004 2369801 2376600 2376727 "RESULT" 2376842 T RESULT (NIL) -8 NIL NIL) (-1003 2368427 2369070 2369269 "RESRING" 2369704 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1002 2368063 2368112 2368210 "RESLATC" 2368364 NIL RESLATC (NIL T) -7 NIL NIL) (-1001 2367769 2367803 2367910 "REPSQ" 2368022 NIL REPSQ (NIL T) -7 NIL NIL) (-1000 2365191 2365771 2366373 "REP" 2367189 T REP (NIL) -7 NIL NIL) (-999 2364892 2364926 2365035 "REPDB" 2365150 NIL REPDB (NIL T) -7 NIL NIL) (-998 2358820 2360199 2361420 "REP2" 2363704 NIL REP2 (NIL T) -7 NIL NIL) (-997 2355212 2355893 2356699 "REP1" 2358047 NIL REP1 (NIL T) -7 NIL NIL) (-996 2347950 2353365 2353819 "REGSET" 2354842 NIL REGSET (NIL T T T T) -8 NIL NIL) (-995 2346771 2347106 2347354 "REF" 2347735 NIL REF (NIL T) -8 NIL NIL) (-994 2346152 2346255 2346420 "REDORDER" 2346655 NIL REDORDER (NIL T T) -7 NIL NIL) (-993 2342172 2345380 2345603 "RECLOS" 2345981 NIL RECLOS (NIL T) -8 NIL NIL) (-992 2341229 2341410 2341623 "REALSOLV" 2341979 T REALSOLV (NIL) -7 NIL NIL) (-991 2341077 2341118 2341146 "REAL" 2341151 T REAL (NIL) -9 NIL 2341186) (-990 2337568 2338370 2339252 "REAL0Q" 2340242 NIL REAL0Q (NIL T) -7 NIL NIL) (-989 2333179 2334167 2335226 "REAL0" 2336549 NIL REAL0 (NIL T) -7 NIL NIL) (-988 2332699 2332900 2332992 "RDUCEAST" 2333107 T RDUCEAST (NIL) -8 NIL NIL) (-987 2332107 2332179 2332384 "RDIV" 2332621 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-986 2331180 2331354 2331565 "RDIST" 2331929 NIL RDIST (NIL T) -7 NIL NIL) (-985 2329781 2330068 2330438 "RDETRS" 2330888 NIL RDETRS (NIL T T) -7 NIL NIL) (-984 2327598 2328052 2328588 "RDETR" 2329323 NIL RDETR (NIL T T) -7 NIL NIL) (-983 2326212 2326490 2326892 "RDEEFS" 2327314 NIL RDEEFS (NIL T T) -7 NIL NIL) (-982 2324710 2325016 2325446 "RDEEF" 2325900 NIL RDEEF (NIL T T) -7 NIL NIL) (-981 2319047 2321918 2321946 "RCFIELD" 2323223 T RCFIELD (NIL) -9 NIL 2323953) (-980 2317116 2317620 2318313 "RCFIELD-" 2318386 NIL RCFIELD- (NIL T) -8 NIL NIL) (-979 2313447 2315232 2315273 "RCAGG" 2316344 NIL RCAGG (NIL T) -9 NIL 2316809) (-978 2313078 2313172 2313332 "RCAGG-" 2313337 NIL RCAGG- (NIL T T) -8 NIL NIL) (-977 2312418 2312530 2312693 "RATRET" 2312962 NIL RATRET (NIL T) -7 NIL NIL) (-976 2311975 2312042 2312161 "RATFACT" 2312346 NIL RATFACT (NIL T) -7 NIL NIL) (-975 2311290 2311410 2311560 "RANDSRC" 2311845 T RANDSRC (NIL) -7 NIL NIL) (-974 2311027 2311071 2311142 "RADUTIL" 2311239 T RADUTIL (NIL) -7 NIL NIL) (-973 2304092 2309770 2310087 "RADIX" 2310742 NIL RADIX (NIL NIL) -8 NIL NIL) (-972 2295748 2303936 2304064 "RADFF" 2304069 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-971 2295400 2295475 2295503 "RADCAT" 2295660 T RADCAT (NIL) -9 NIL NIL) (-970 2295185 2295233 2295330 "RADCAT-" 2295335 NIL RADCAT- (NIL T) -8 NIL NIL) (-969 2293336 2294960 2295049 "QUEUE" 2295129 NIL QUEUE (NIL T) -8 NIL NIL) (-968 2289912 2293273 2293318 "QUAT" 2293323 NIL QUAT (NIL T) -8 NIL NIL) (-967 2289550 2289593 2289720 "QUATCT2" 2289863 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-966 2283410 2286711 2286751 "QUATCAT" 2287531 NIL QUATCAT (NIL T) -9 NIL 2288297) (-965 2279554 2280591 2281978 "QUATCAT-" 2282072 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-964 2277074 2278638 2278679 "QUAGG" 2279054 NIL QUAGG (NIL T) -9 NIL 2279229) (-963 2276723 2276899 2276967 "QQUTAST" 2277026 T QQUTAST (NIL) -8 NIL NIL) (-962 2275648 2276121 2276293 "QFORM" 2276595 NIL QFORM (NIL NIL T) -8 NIL NIL) (-961 2266981 2272184 2272224 "QFCAT" 2272882 NIL QFCAT (NIL T) -9 NIL 2273881) (-960 2262553 2263754 2265345 "QFCAT-" 2265439 NIL QFCAT- (NIL T T) -8 NIL NIL) (-959 2262191 2262234 2262361 "QFCAT2" 2262504 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-958 2261651 2261761 2261891 "QEQUAT" 2262081 T QEQUAT (NIL) -8 NIL NIL) (-957 2254799 2255870 2257054 "QCMPACK" 2260584 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-956 2252375 2252796 2253224 "QALGSET" 2254454 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-955 2251620 2251794 2252026 "QALGSET2" 2252195 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-954 2250311 2250534 2250851 "PWFFINTB" 2251393 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-953 2248493 2248661 2249015 "PUSHVAR" 2250125 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-952 2244411 2245465 2245506 "PTRANFN" 2247390 NIL PTRANFN (NIL T) -9 NIL NIL) (-951 2242813 2243104 2243426 "PTPACK" 2244122 NIL PTPACK (NIL T) -7 NIL NIL) (-950 2242445 2242502 2242611 "PTFUNC2" 2242750 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-949 2236911 2241256 2241297 "PTCAT" 2241670 NIL PTCAT (NIL T) -9 NIL 2241832) (-948 2236569 2236604 2236728 "PSQFR" 2236870 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-947 2235164 2235462 2235796 "PSEUDLIN" 2236267 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-946 2221933 2224298 2226622 "PSETPK" 2232924 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-945 2214977 2217691 2217787 "PSETCAT" 2220808 NIL PSETCAT (NIL T T T T) -9 NIL 2221622) (-944 2212813 2213447 2214268 "PSETCAT-" 2214273 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-943 2212162 2212327 2212355 "PSCURVE" 2212623 T PSCURVE (NIL) -9 NIL 2212790) (-942 2208643 2210125 2210190 "PSCAT" 2211034 NIL PSCAT (NIL T T T) -9 NIL 2211274) (-941 2207706 2207922 2208322 "PSCAT-" 2208327 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-940 2206358 2206991 2207205 "PRTITION" 2207512 T PRTITION (NIL) -8 NIL NIL) (-939 2205878 2206079 2206171 "PRTDAST" 2206286 T PRTDAST (NIL) -8 NIL NIL) (-938 2194976 2197182 2199370 "PRS" 2203740 NIL PRS (NIL T T) -7 NIL NIL) (-937 2192834 2194326 2194366 "PRQAGG" 2194549 NIL PRQAGG (NIL T) -9 NIL 2194651) (-936 2192220 2192449 2192477 "PROPLOG" 2192662 T PROPLOG (NIL) -9 NIL 2192784) (-935 2189390 2190034 2190498 "PROPFRML" 2191788 NIL PROPFRML (NIL T) -8 NIL NIL) (-934 2188850 2188960 2189090 "PROPERTY" 2189280 T PROPERTY (NIL) -8 NIL NIL) (-933 2182935 2187016 2187836 "PRODUCT" 2188076 NIL PRODUCT (NIL T T) -8 NIL NIL) (-932 2180248 2182393 2182627 "PR" 2182746 NIL PR (NIL T T) -8 NIL NIL) (-931 2180044 2180076 2180135 "PRINT" 2180209 T PRINT (NIL) -7 NIL NIL) (-930 2179384 2179501 2179653 "PRIMES" 2179924 NIL PRIMES (NIL T) -7 NIL NIL) (-929 2177449 2177850 2178316 "PRIMELT" 2178963 NIL PRIMELT (NIL T) -7 NIL NIL) (-928 2177178 2177227 2177255 "PRIMCAT" 2177379 T PRIMCAT (NIL) -9 NIL NIL) (-927 2173339 2177116 2177161 "PRIMARR" 2177166 NIL PRIMARR (NIL T) -8 NIL NIL) (-926 2172346 2172524 2172752 "PRIMARR2" 2173157 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-925 2171989 2172045 2172156 "PREASSOC" 2172284 NIL PREASSOC (NIL T T) -7 NIL NIL) (-924 2171464 2171597 2171625 "PPCURVE" 2171830 T PPCURVE (NIL) -9 NIL 2171966) (-923 2171086 2171259 2171342 "PORTNUM" 2171401 T PORTNUM (NIL) -8 NIL NIL) (-922 2168445 2168844 2169436 "POLYROOT" 2170667 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-921 2162390 2168049 2168209 "POLY" 2168318 NIL POLY (NIL T) -8 NIL NIL) (-920 2161773 2161831 2162065 "POLYLIFT" 2162326 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-919 2158048 2158497 2159126 "POLYCATQ" 2161318 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-918 2145087 2150443 2150508 "POLYCAT" 2154022 NIL POLYCAT (NIL T T T) -9 NIL 2155950) (-917 2138537 2140398 2142782 "POLYCAT-" 2142787 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-916 2138124 2138192 2138312 "POLY2UP" 2138463 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-915 2137756 2137813 2137922 "POLY2" 2138061 NIL POLY2 (NIL T T) -7 NIL NIL) (-914 2136441 2136680 2136956 "POLUTIL" 2137530 NIL POLUTIL (NIL T T) -7 NIL NIL) (-913 2134796 2135073 2135404 "POLTOPOL" 2136163 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-912 2130314 2134732 2134778 "POINT" 2134783 NIL POINT (NIL T) -8 NIL NIL) (-911 2128501 2128858 2129233 "PNTHEORY" 2129959 T PNTHEORY (NIL) -7 NIL NIL) (-910 2126920 2127217 2127629 "PMTOOLS" 2128199 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-909 2126513 2126591 2126708 "PMSYM" 2126836 NIL PMSYM (NIL T) -7 NIL NIL) (-908 2126023 2126092 2126266 "PMQFCAT" 2126438 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-907 2125378 2125488 2125644 "PMPRED" 2125900 NIL PMPRED (NIL T) -7 NIL NIL) (-906 2124774 2124860 2125021 "PMPREDFS" 2125279 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-905 2123417 2123625 2124010 "PMPLCAT" 2124536 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-904 2122949 2123028 2123180 "PMLSAGG" 2123332 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-903 2122424 2122500 2122681 "PMKERNEL" 2122867 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-902 2122041 2122116 2122229 "PMINS" 2122343 NIL PMINS (NIL T) -7 NIL NIL) (-901 2121469 2121538 2121754 "PMFS" 2121966 NIL PMFS (NIL T T T) -7 NIL NIL) (-900 2120697 2120815 2121020 "PMDOWN" 2121346 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-899 2119860 2120019 2120201 "PMASS" 2120535 T PMASS (NIL) -7 NIL NIL) (-898 2119134 2119245 2119408 "PMASSFS" 2119746 NIL PMASSFS (NIL T T) -7 NIL NIL) (-897 2118789 2118857 2118951 "PLOTTOOL" 2119060 T PLOTTOOL (NIL) -7 NIL NIL) (-896 2113411 2114600 2115748 "PLOT" 2117661 T PLOT (NIL) -8 NIL NIL) (-895 2109225 2110259 2111180 "PLOT3D" 2112510 T PLOT3D (NIL) -8 NIL NIL) (-894 2108137 2108314 2108549 "PLOT1" 2109029 NIL PLOT1 (NIL T) -7 NIL NIL) (-893 2083531 2088203 2093054 "PLEQN" 2103403 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-892 2082849 2082971 2083151 "PINTERP" 2083396 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-891 2082542 2082589 2082692 "PINTERPA" 2082796 NIL PINTERPA (NIL T T) -7 NIL NIL) (-890 2081827 2082348 2082435 "PI" 2082475 T PI (NIL) -8 NIL NIL) (-889 2080259 2081200 2081228 "PID" 2081410 T PID (NIL) -9 NIL 2081544) (-888 2079984 2080021 2080109 "PICOERCE" 2080216 NIL PICOERCE (NIL T) -7 NIL NIL) (-887 2079304 2079443 2079619 "PGROEB" 2079840 NIL PGROEB (NIL T) -7 NIL NIL) (-886 2074891 2075705 2076610 "PGE" 2078419 T PGE (NIL) -7 NIL NIL) (-885 2073015 2073261 2073627 "PGCD" 2074608 NIL PGCD (NIL T T T T) -7 NIL NIL) (-884 2072353 2072456 2072617 "PFRPAC" 2072899 NIL PFRPAC (NIL T) -7 NIL NIL) (-883 2069033 2070901 2071254 "PFR" 2072032 NIL PFR (NIL T) -8 NIL NIL) (-882 2067422 2067666 2067991 "PFOTOOLS" 2068780 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-881 2065955 2066194 2066545 "PFOQ" 2067179 NIL PFOQ (NIL T T T) -7 NIL NIL) (-880 2064428 2064640 2065003 "PFO" 2065739 NIL PFO (NIL T T T T T) -7 NIL NIL) (-879 2061016 2064317 2064386 "PF" 2064391 NIL PF (NIL NIL) -8 NIL NIL) (-878 2058485 2059722 2059750 "PFECAT" 2060335 T PFECAT (NIL) -9 NIL 2060719) (-877 2057930 2058084 2058298 "PFECAT-" 2058303 NIL PFECAT- (NIL T) -8 NIL NIL) (-876 2056534 2056785 2057086 "PFBRU" 2057679 NIL PFBRU (NIL T T) -7 NIL NIL) (-875 2054401 2054752 2055184 "PFBR" 2056185 NIL PFBR (NIL T T T T) -7 NIL NIL) (-874 2050317 2051777 2052453 "PERM" 2053758 NIL PERM (NIL T) -8 NIL NIL) (-873 2045583 2046524 2047394 "PERMGRP" 2049480 NIL PERMGRP (NIL T) -8 NIL NIL) (-872 2043715 2044646 2044687 "PERMCAT" 2045133 NIL PERMCAT (NIL T) -9 NIL 2045438) (-871 2043368 2043409 2043533 "PERMAN" 2043668 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-870 2040808 2042937 2043068 "PENDTREE" 2043270 NIL PENDTREE (NIL T) -8 NIL NIL) (-869 2038921 2039655 2039696 "PDRING" 2040353 NIL PDRING (NIL T) -9 NIL 2040639) (-868 2038024 2038242 2038604 "PDRING-" 2038609 NIL PDRING- (NIL T T) -8 NIL NIL) (-867 2035165 2035916 2036607 "PDEPROB" 2037353 T PDEPROB (NIL) -8 NIL NIL) (-866 2032712 2033214 2033769 "PDEPACK" 2034630 T PDEPACK (NIL) -7 NIL NIL) (-865 2031624 2031814 2032065 "PDECOMP" 2032511 NIL PDECOMP (NIL T T) -7 NIL NIL) (-864 2029229 2030046 2030074 "PDECAT" 2030861 T PDECAT (NIL) -9 NIL 2031574) (-863 2028980 2029013 2029103 "PCOMP" 2029190 NIL PCOMP (NIL T T) -7 NIL NIL) (-862 2027185 2027781 2028078 "PBWLB" 2028709 NIL PBWLB (NIL T) -8 NIL NIL) (-861 2019689 2021258 2022596 "PATTERN" 2025868 NIL PATTERN (NIL T) -8 NIL NIL) (-860 2019321 2019378 2019487 "PATTERN2" 2019626 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-859 2017078 2017466 2017923 "PATTERN1" 2018910 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-858 2014473 2015027 2015508 "PATRES" 2016643 NIL PATRES (NIL T T) -8 NIL NIL) (-857 2014037 2014104 2014236 "PATRES2" 2014400 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-856 2011920 2012325 2012732 "PATMATCH" 2013704 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-855 2011456 2011639 2011680 "PATMAB" 2011787 NIL PATMAB (NIL T) -9 NIL 2011870) (-854 2010001 2010310 2010568 "PATLRES" 2011261 NIL PATLRES (NIL T T T) -8 NIL NIL) (-853 2009547 2009670 2009711 "PATAB" 2009716 NIL PATAB (NIL T) -9 NIL 2009888) (-852 2007028 2007560 2008133 "PARTPERM" 2008994 T PARTPERM (NIL) -7 NIL NIL) (-851 2006649 2006712 2006814 "PARSURF" 2006959 NIL PARSURF (NIL T) -8 NIL NIL) (-850 2006281 2006338 2006447 "PARSU2" 2006586 NIL PARSU2 (NIL T T) -7 NIL NIL) (-849 2006045 2006085 2006152 "PARSER" 2006234 T PARSER (NIL) -7 NIL NIL) (-848 2005666 2005729 2005831 "PARSCURV" 2005976 NIL PARSCURV (NIL T) -8 NIL NIL) (-847 2005298 2005355 2005464 "PARSC2" 2005603 NIL PARSC2 (NIL T T) -7 NIL NIL) (-846 2004937 2004995 2005092 "PARPCURV" 2005234 NIL PARPCURV (NIL T) -8 NIL NIL) (-845 2004569 2004626 2004735 "PARPC2" 2004874 NIL PARPC2 (NIL T T) -7 NIL NIL) (-844 2004089 2004175 2004294 "PAN2EXPR" 2004470 T PAN2EXPR (NIL) -7 NIL NIL) (-843 2002895 2003210 2003438 "PALETTE" 2003881 T PALETTE (NIL) -8 NIL NIL) (-842 2001363 2001900 2002260 "PAIR" 2002581 NIL PAIR (NIL T T) -8 NIL NIL) (-841 1995271 2000622 2000816 "PADICRC" 2001218 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-840 1988537 1994617 1994801 "PADICRAT" 1995119 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-839 1986887 1988474 1988519 "PADIC" 1988524 NIL PADIC (NIL NIL) -8 NIL NIL) (-838 1984132 1985662 1985702 "PADICCT" 1986283 NIL PADICCT (NIL NIL) -9 NIL 1986565) (-837 1983089 1983289 1983557 "PADEPAC" 1983919 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-836 1982301 1982434 1982640 "PADE" 1982951 NIL PADE (NIL T T T) -7 NIL NIL) (-835 1980351 1981137 1981454 "OWP" 1982068 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-834 1979460 1979956 1980128 "OVAR" 1980219 NIL OVAR (NIL NIL) -8 NIL NIL) (-833 1978724 1978845 1979006 "OUT" 1979319 T OUT (NIL) -7 NIL NIL) (-832 1967778 1969949 1972119 "OUTFORM" 1976574 T OUTFORM (NIL) -8 NIL NIL) (-831 1967415 1967498 1967526 "OUTBCON" 1967677 T OUTBCON (NIL) -9 NIL 1967762) (-830 1967255 1967290 1967366 "OUTBCON-" 1967371 NIL OUTBCON- (NIL T) -8 NIL NIL) (-829 1966663 1966984 1967073 "OSI" 1967186 T OSI (NIL) -8 NIL NIL) (-828 1966219 1966531 1966559 "OSGROUP" 1966564 T OSGROUP (NIL) -9 NIL 1966586) (-827 1964964 1965191 1965476 "ORTHPOL" 1965966 NIL ORTHPOL (NIL T) -7 NIL NIL) (-826 1962374 1964623 1964762 "OREUP" 1964907 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-825 1959812 1962065 1962192 "ORESUP" 1962316 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-824 1957340 1957840 1958401 "OREPCTO" 1959301 NIL OREPCTO (NIL T T) -7 NIL NIL) (-823 1951251 1953418 1953459 "OREPCAT" 1955807 NIL OREPCAT (NIL T) -9 NIL 1956911) (-822 1948398 1949180 1950238 "OREPCAT-" 1950243 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-821 1947575 1947847 1947875 "ORDSET" 1948184 T ORDSET (NIL) -9 NIL 1948348) (-820 1947094 1947216 1947409 "ORDSET-" 1947414 NIL ORDSET- (NIL T) -8 NIL NIL) (-819 1945748 1946505 1946533 "ORDRING" 1946735 T ORDRING (NIL) -9 NIL 1946860) (-818 1945393 1945487 1945631 "ORDRING-" 1945636 NIL ORDRING- (NIL T) -8 NIL NIL) (-817 1944799 1945236 1945264 "ORDMON" 1945269 T ORDMON (NIL) -9 NIL 1945290) (-816 1943961 1944108 1944303 "ORDFUNS" 1944648 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-815 1943472 1943831 1943859 "ORDFIN" 1943864 T ORDFIN (NIL) -9 NIL 1943885) (-814 1940064 1942058 1942467 "ORDCOMP" 1943096 NIL ORDCOMP (NIL T) -8 NIL NIL) (-813 1939330 1939457 1939643 "ORDCOMP2" 1939924 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-812 1935837 1936720 1937557 "OPTPROB" 1938513 T OPTPROB (NIL) -8 NIL NIL) (-811 1932639 1933278 1933982 "OPTPACK" 1935153 T OPTPACK (NIL) -7 NIL NIL) (-810 1930352 1931092 1931120 "OPTCAT" 1931939 T OPTCAT (NIL) -9 NIL 1932589) (-809 1930120 1930159 1930225 "OPQUERY" 1930306 T OPQUERY (NIL) -7 NIL NIL) (-808 1927286 1928431 1928935 "OP" 1929649 NIL OP (NIL T) -8 NIL NIL) (-807 1924131 1926083 1926452 "ONECOMP" 1926950 NIL ONECOMP (NIL T) -8 NIL NIL) (-806 1923436 1923551 1923725 "ONECOMP2" 1924003 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-805 1922855 1922961 1923091 "OMSERVER" 1923326 T OMSERVER (NIL) -7 NIL NIL) (-804 1919743 1922295 1922335 "OMSAGG" 1922396 NIL OMSAGG (NIL T) -9 NIL 1922460) (-803 1918366 1918629 1918911 "OMPKG" 1919481 T OMPKG (NIL) -7 NIL NIL) (-802 1917796 1917899 1917927 "OM" 1918226 T OM (NIL) -9 NIL NIL) (-801 1916378 1917345 1917514 "OMLO" 1917677 NIL OMLO (NIL T T) -8 NIL NIL) (-800 1915303 1915450 1915677 "OMEXPR" 1916204 NIL OMEXPR (NIL T) -7 NIL NIL) (-799 1914621 1914849 1914985 "OMERR" 1915187 T OMERR (NIL) -8 NIL NIL) (-798 1913799 1914042 1914202 "OMERRK" 1914481 T OMERRK (NIL) -8 NIL NIL) (-797 1913277 1913476 1913584 "OMENC" 1913711 T OMENC (NIL) -8 NIL NIL) (-796 1907172 1908357 1909528 "OMDEV" 1912126 T OMDEV (NIL) -8 NIL NIL) (-795 1906241 1906412 1906606 "OMCONN" 1906998 T OMCONN (NIL) -8 NIL NIL) (-794 1904897 1905839 1905867 "OINTDOM" 1905872 T OINTDOM (NIL) -9 NIL 1905893) (-793 1900703 1901887 1902603 "OFMONOID" 1904213 NIL OFMONOID (NIL T) -8 NIL NIL) (-792 1900141 1900640 1900685 "ODVAR" 1900690 NIL ODVAR (NIL T) -8 NIL NIL) (-791 1897351 1899638 1899823 "ODR" 1900016 NIL ODR (NIL T T NIL) -8 NIL NIL) (-790 1889695 1897127 1897253 "ODPOL" 1897258 NIL ODPOL (NIL T) -8 NIL NIL) (-789 1883571 1889567 1889672 "ODP" 1889677 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-788 1882337 1882552 1882827 "ODETOOLS" 1883345 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-787 1879306 1879962 1880678 "ODESYS" 1881670 NIL ODESYS (NIL T T) -7 NIL NIL) (-786 1874188 1875096 1876121 "ODERTRIC" 1878381 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-785 1873614 1873696 1873890 "ODERED" 1874100 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-784 1870502 1871050 1871727 "ODERAT" 1873037 NIL ODERAT (NIL T T) -7 NIL NIL) (-783 1867462 1867926 1868523 "ODEPRRIC" 1870031 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-782 1865331 1865900 1866409 "ODEPROB" 1866973 T ODEPROB (NIL) -8 NIL NIL) (-781 1861853 1862336 1862983 "ODEPRIM" 1864810 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-780 1861102 1861204 1861464 "ODEPAL" 1861745 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-779 1857264 1858055 1858919 "ODEPACK" 1860258 T ODEPACK (NIL) -7 NIL NIL) (-778 1856297 1856404 1856633 "ODEINT" 1857153 NIL ODEINT (NIL T T) -7 NIL NIL) (-777 1850398 1851823 1853270 "ODEIFTBL" 1854870 T ODEIFTBL (NIL) -8 NIL NIL) (-776 1845733 1846519 1847478 "ODEEF" 1849557 NIL ODEEF (NIL T T) -7 NIL NIL) (-775 1845068 1845157 1845387 "ODECONST" 1845638 NIL ODECONST (NIL T T T) -7 NIL NIL) (-774 1843219 1843854 1843882 "ODECAT" 1844487 T ODECAT (NIL) -9 NIL 1845018) (-773 1840126 1842931 1843050 "OCT" 1843132 NIL OCT (NIL T) -8 NIL NIL) (-772 1839764 1839807 1839934 "OCTCT2" 1840077 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-771 1834625 1837025 1837065 "OC" 1838162 NIL OC (NIL T) -9 NIL 1839020) (-770 1831852 1832600 1833590 "OC-" 1833684 NIL OC- (NIL T T) -8 NIL NIL) (-769 1831230 1831672 1831700 "OCAMON" 1831705 T OCAMON (NIL) -9 NIL 1831726) (-768 1830787 1831102 1831130 "OASGP" 1831135 T OASGP (NIL) -9 NIL 1831155) (-767 1830074 1830537 1830565 "OAMONS" 1830605 T OAMONS (NIL) -9 NIL 1830648) (-766 1829514 1829921 1829949 "OAMON" 1829954 T OAMON (NIL) -9 NIL 1829974) (-765 1828818 1829310 1829338 "OAGROUP" 1829343 T OAGROUP (NIL) -9 NIL 1829363) (-764 1828508 1828558 1828646 "NUMTUBE" 1828762 NIL NUMTUBE (NIL T) -7 NIL NIL) (-763 1822081 1823599 1825135 "NUMQUAD" 1826992 T NUMQUAD (NIL) -7 NIL NIL) (-762 1817837 1818825 1819850 "NUMODE" 1821076 T NUMODE (NIL) -7 NIL NIL) (-761 1815218 1816072 1816100 "NUMINT" 1817023 T NUMINT (NIL) -9 NIL 1817787) (-760 1814166 1814363 1814581 "NUMFMT" 1815020 T NUMFMT (NIL) -7 NIL NIL) (-759 1800525 1803470 1806002 "NUMERIC" 1811673 NIL NUMERIC (NIL T) -7 NIL NIL) (-758 1794922 1799974 1800069 "NTSCAT" 1800074 NIL NTSCAT (NIL T T T T) -9 NIL 1800113) (-757 1794116 1794281 1794474 "NTPOLFN" 1794761 NIL NTPOLFN (NIL T) -7 NIL NIL) (-756 1781956 1790941 1791753 "NSUP" 1793337 NIL NSUP (NIL T) -8 NIL NIL) (-755 1781588 1781645 1781754 "NSUP2" 1781893 NIL NSUP2 (NIL T T) -7 NIL NIL) (-754 1771585 1781362 1781495 "NSMP" 1781500 NIL NSMP (NIL T T) -8 NIL NIL) (-753 1770017 1770318 1770675 "NREP" 1771273 NIL NREP (NIL T) -7 NIL NIL) (-752 1768608 1768860 1769218 "NPCOEF" 1769760 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-751 1767674 1767789 1768005 "NORMRETR" 1768489 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-750 1765715 1766005 1766414 "NORMPK" 1767382 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-749 1765400 1765428 1765552 "NORMMA" 1765681 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-748 1765227 1765357 1765386 "NONE" 1765391 T NONE (NIL) -8 NIL NIL) (-747 1765016 1765045 1765114 "NONE1" 1765191 NIL NONE1 (NIL T) -7 NIL NIL) (-746 1764499 1764561 1764747 "NODE1" 1764948 NIL NODE1 (NIL T T) -7 NIL NIL) (-745 1762839 1763662 1763917 "NNI" 1764264 T NNI (NIL) -8 NIL NIL) (-744 1761259 1761572 1761936 "NLINSOL" 1762507 NIL NLINSOL (NIL T) -7 NIL NIL) (-743 1757426 1758394 1759316 "NIPROB" 1760357 T NIPROB (NIL) -8 NIL NIL) (-742 1756183 1756417 1756719 "NFINTBAS" 1757188 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-741 1754891 1755122 1755403 "NCODIV" 1755951 NIL NCODIV (NIL T T) -7 NIL NIL) (-740 1754653 1754690 1754765 "NCNTFRAC" 1754848 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-739 1752833 1753197 1753617 "NCEP" 1754278 NIL NCEP (NIL T) -7 NIL NIL) (-738 1751744 1752483 1752511 "NASRING" 1752621 T NASRING (NIL) -9 NIL 1752695) (-737 1751539 1751583 1751677 "NASRING-" 1751682 NIL NASRING- (NIL T) -8 NIL NIL) (-736 1750692 1751191 1751219 "NARNG" 1751336 T NARNG (NIL) -9 NIL 1751427) (-735 1750384 1750451 1750585 "NARNG-" 1750590 NIL NARNG- (NIL T) -8 NIL NIL) (-734 1749263 1749470 1749705 "NAGSP" 1750169 T NAGSP (NIL) -7 NIL NIL) (-733 1740535 1742219 1743892 "NAGS" 1747610 T NAGS (NIL) -7 NIL NIL) (-732 1739083 1739391 1739722 "NAGF07" 1740224 T NAGF07 (NIL) -7 NIL NIL) (-731 1733621 1734912 1736219 "NAGF04" 1737796 T NAGF04 (NIL) -7 NIL NIL) (-730 1726589 1728203 1729836 "NAGF02" 1732008 T NAGF02 (NIL) -7 NIL NIL) (-729 1721813 1722913 1724030 "NAGF01" 1725492 T NAGF01 (NIL) -7 NIL NIL) (-728 1715441 1717007 1718592 "NAGE04" 1720248 T NAGE04 (NIL) -7 NIL NIL) (-727 1706610 1708731 1710861 "NAGE02" 1713331 T NAGE02 (NIL) -7 NIL NIL) (-726 1702563 1703510 1704474 "NAGE01" 1705666 T NAGE01 (NIL) -7 NIL NIL) (-725 1700358 1700892 1701450 "NAGD03" 1702025 T NAGD03 (NIL) -7 NIL NIL) (-724 1692108 1694036 1695990 "NAGD02" 1698424 T NAGD02 (NIL) -7 NIL NIL) (-723 1685919 1687344 1688784 "NAGD01" 1690688 T NAGD01 (NIL) -7 NIL NIL) (-722 1682128 1682950 1683787 "NAGC06" 1685102 T NAGC06 (NIL) -7 NIL NIL) (-721 1680593 1680925 1681281 "NAGC05" 1681792 T NAGC05 (NIL) -7 NIL NIL) (-720 1679969 1680088 1680232 "NAGC02" 1680469 T NAGC02 (NIL) -7 NIL NIL) (-719 1679029 1679586 1679626 "NAALG" 1679705 NIL NAALG (NIL T) -9 NIL 1679766) (-718 1678864 1678893 1678983 "NAALG-" 1678988 NIL NAALG- (NIL T T) -8 NIL NIL) (-717 1672814 1673922 1675109 "MULTSQFR" 1677760 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-716 1672133 1672208 1672392 "MULTFACT" 1672726 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-715 1665356 1669221 1669274 "MTSCAT" 1670344 NIL MTSCAT (NIL T T) -9 NIL 1670858) (-714 1665068 1665122 1665214 "MTHING" 1665296 NIL MTHING (NIL T) -7 NIL NIL) (-713 1664860 1664893 1664953 "MSYSCMD" 1665028 T MSYSCMD (NIL) -7 NIL NIL) (-712 1660972 1663615 1663935 "MSET" 1664573 NIL MSET (NIL T) -8 NIL NIL) (-711 1658067 1660533 1660574 "MSETAGG" 1660579 NIL MSETAGG (NIL T) -9 NIL 1660613) (-710 1653950 1655446 1656191 "MRING" 1657367 NIL MRING (NIL T T) -8 NIL NIL) (-709 1653516 1653583 1653714 "MRF2" 1653877 NIL MRF2 (NIL T T T) -7 NIL NIL) (-708 1653134 1653169 1653313 "MRATFAC" 1653475 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-707 1650746 1651041 1651472 "MPRFF" 1652839 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-706 1644806 1650600 1650697 "MPOLY" 1650702 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-705 1644296 1644331 1644539 "MPCPF" 1644765 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-704 1643810 1643853 1644037 "MPC3" 1644247 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-703 1643005 1643086 1643307 "MPC2" 1643725 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-702 1641306 1641643 1642033 "MONOTOOL" 1642665 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-701 1640557 1640848 1640876 "MONOID" 1641095 T MONOID (NIL) -9 NIL 1641242) (-700 1640103 1640222 1640403 "MONOID-" 1640408 NIL MONOID- (NIL T) -8 NIL NIL) (-699 1631153 1637059 1637118 "MONOGEN" 1637792 NIL MONOGEN (NIL T T) -9 NIL 1638248) (-698 1628371 1629106 1630106 "MONOGEN-" 1630225 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-697 1627230 1627650 1627678 "MONADWU" 1628070 T MONADWU (NIL) -9 NIL 1628308) (-696 1626602 1626761 1627009 "MONADWU-" 1627014 NIL MONADWU- (NIL T) -8 NIL NIL) (-695 1625987 1626205 1626233 "MONAD" 1626440 T MONAD (NIL) -9 NIL 1626552) (-694 1625672 1625750 1625882 "MONAD-" 1625887 NIL MONAD- (NIL T) -8 NIL NIL) (-693 1623988 1624585 1624864 "MOEBIUS" 1625425 NIL MOEBIUS (NIL T) -8 NIL NIL) (-692 1623380 1623758 1623798 "MODULE" 1623803 NIL MODULE (NIL T) -9 NIL 1623829) (-691 1622948 1623044 1623234 "MODULE-" 1623239 NIL MODULE- (NIL T T) -8 NIL NIL) (-690 1620663 1621312 1621639 "MODRING" 1622772 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1617649 1618768 1619289 "MODOP" 1620192 NIL MODOP (NIL T T) -8 NIL NIL) (-688 1615836 1616288 1616629 "MODMONOM" 1617448 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-687 1605544 1614028 1614451 "MODMON" 1615464 NIL MODMON (NIL T T) -8 NIL NIL) (-686 1602735 1604388 1604664 "MODFIELD" 1605419 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-685 1601739 1602016 1602206 "MMLFORM" 1602565 T MMLFORM (NIL) -8 NIL NIL) (-684 1601265 1601308 1601487 "MMAP" 1601690 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-683 1599534 1600267 1600308 "MLO" 1600731 NIL MLO (NIL T) -9 NIL 1600973) (-682 1596901 1597416 1598018 "MLIFT" 1599015 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-681 1596292 1596376 1596530 "MKUCFUNC" 1596812 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-680 1595891 1595961 1596084 "MKRECORD" 1596215 NIL MKRECORD (NIL T T) -7 NIL NIL) (-679 1594939 1595100 1595328 "MKFUNC" 1595702 NIL MKFUNC (NIL T) -7 NIL NIL) (-678 1594327 1594431 1594587 "MKFLCFN" 1594822 NIL MKFLCFN (NIL T) -7 NIL NIL) (-677 1593753 1594120 1594209 "MKCHSET" 1594271 NIL MKCHSET (NIL T) -8 NIL NIL) (-676 1593030 1593132 1593317 "MKBCFUNC" 1593646 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-675 1589760 1592584 1592720 "MINT" 1592914 T MINT (NIL) -8 NIL NIL) (-674 1588572 1588815 1589092 "MHROWRED" 1589515 NIL MHROWRED (NIL T) -7 NIL NIL) (-673 1583904 1587013 1587439 "MFLOAT" 1588166 T MFLOAT (NIL) -8 NIL NIL) (-672 1583261 1583337 1583508 "MFINFACT" 1583816 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-671 1579576 1580424 1581308 "MESH" 1582397 T MESH (NIL) -7 NIL NIL) (-670 1577966 1578278 1578631 "MDDFACT" 1579263 NIL MDDFACT (NIL T) -7 NIL NIL) (-669 1574808 1577125 1577166 "MDAGG" 1577421 NIL MDAGG (NIL T) -9 NIL 1577564) (-668 1564588 1574101 1574308 "MCMPLX" 1574621 T MCMPLX (NIL) -8 NIL NIL) (-667 1563729 1563875 1564075 "MCDEN" 1564437 NIL MCDEN (NIL T T) -7 NIL NIL) (-666 1561619 1561889 1562269 "MCALCFN" 1563459 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-665 1560530 1560703 1560944 "MAYBE" 1561417 NIL MAYBE (NIL T) -8 NIL NIL) (-664 1558142 1558665 1559227 "MATSTOR" 1560001 NIL MATSTOR (NIL T) -7 NIL NIL) (-663 1554148 1557514 1557762 "MATRIX" 1557927 NIL MATRIX (NIL T) -8 NIL NIL) (-662 1549917 1550621 1551357 "MATLIN" 1553505 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-661 1540071 1543209 1543286 "MATCAT" 1548166 NIL MATCAT (NIL T T T) -9 NIL 1549583) (-660 1536435 1537448 1538804 "MATCAT-" 1538809 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-659 1535029 1535182 1535515 "MATCAT2" 1536270 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-658 1533141 1533465 1533849 "MAPPKG3" 1534704 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-657 1532122 1532295 1532517 "MAPPKG2" 1532965 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-656 1530621 1530905 1531232 "MAPPKG1" 1531828 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-655 1529744 1530027 1530204 "MAPPAST" 1530464 T MAPPAST (NIL) -8 NIL NIL) (-654 1529355 1529413 1529536 "MAPHACK3" 1529680 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-653 1528947 1529008 1529122 "MAPHACK2" 1529287 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-652 1528385 1528488 1528630 "MAPHACK1" 1528838 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-651 1526491 1527085 1527389 "MAGMA" 1528113 NIL MAGMA (NIL T) -8 NIL NIL) (-650 1525986 1526194 1526292 "MACROAST" 1526413 T MACROAST (NIL) -8 NIL NIL) (-649 1522453 1524225 1524686 "M3D" 1525558 NIL M3D (NIL T) -8 NIL NIL) (-648 1516608 1520823 1520864 "LZSTAGG" 1521646 NIL LZSTAGG (NIL T) -9 NIL 1521941) (-647 1512581 1513739 1515196 "LZSTAGG-" 1515201 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-646 1509695 1510472 1510959 "LWORD" 1512126 NIL LWORD (NIL T) -8 NIL NIL) (-645 1509315 1509499 1509574 "LSTAST" 1509640 T LSTAST (NIL) -8 NIL NIL) (-644 1502516 1509086 1509220 "LSQM" 1509225 NIL LSQM (NIL NIL T) -8 NIL NIL) (-643 1501740 1501879 1502107 "LSPP" 1502371 NIL LSPP (NIL T T T T) -7 NIL NIL) (-642 1499552 1499853 1500309 "LSMP" 1501429 NIL LSMP (NIL T T T T) -7 NIL NIL) (-641 1496331 1497005 1497735 "LSMP1" 1498854 NIL LSMP1 (NIL T) -7 NIL NIL) (-640 1490257 1495499 1495540 "LSAGG" 1495602 NIL LSAGG (NIL T) -9 NIL 1495680) (-639 1486952 1487876 1489089 "LSAGG-" 1489094 NIL LSAGG- (NIL T T) -8 NIL NIL) (-638 1484578 1486096 1486345 "LPOLY" 1486747 NIL LPOLY (NIL T T) -8 NIL NIL) (-637 1484160 1484245 1484368 "LPEFRAC" 1484487 NIL LPEFRAC (NIL T) -7 NIL NIL) (-636 1482507 1483254 1483507 "LO" 1483992 NIL LO (NIL T T T) -8 NIL NIL) (-635 1482159 1482271 1482299 "LOGIC" 1482410 T LOGIC (NIL) -9 NIL 1482491) (-634 1482021 1482044 1482115 "LOGIC-" 1482120 NIL LOGIC- (NIL T) -8 NIL NIL) (-633 1481214 1481354 1481547 "LODOOPS" 1481877 NIL LODOOPS (NIL T T) -7 NIL NIL) (-632 1478672 1481130 1481196 "LODO" 1481201 NIL LODO (NIL T NIL) -8 NIL NIL) (-631 1477210 1477445 1477798 "LODOF" 1478419 NIL LODOF (NIL T T) -7 NIL NIL) (-630 1473653 1476050 1476091 "LODOCAT" 1476529 NIL LODOCAT (NIL T) -9 NIL 1476740) (-629 1473386 1473444 1473571 "LODOCAT-" 1473576 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-628 1470741 1473227 1473345 "LODO2" 1473350 NIL LODO2 (NIL T T) -8 NIL NIL) (-627 1468211 1470678 1470723 "LODO1" 1470728 NIL LODO1 (NIL T) -8 NIL NIL) (-626 1467071 1467236 1467548 "LODEEF" 1468034 NIL LODEEF (NIL T T T) -7 NIL NIL) (-625 1462357 1465201 1465242 "LNAGG" 1466189 NIL LNAGG (NIL T) -9 NIL 1466633) (-624 1461504 1461718 1462060 "LNAGG-" 1462065 NIL LNAGG- (NIL T T) -8 NIL NIL) (-623 1457667 1458429 1459068 "LMOPS" 1460919 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-622 1457062 1457424 1457465 "LMODULE" 1457526 NIL LMODULE (NIL T) -9 NIL 1457568) (-621 1454308 1456707 1456830 "LMDICT" 1456972 NIL LMDICT (NIL T) -8 NIL NIL) (-620 1454052 1454216 1454276 "LITERAL" 1454281 NIL LITERAL (NIL T) -8 NIL NIL) (-619 1447279 1452998 1453296 "LIST" 1453787 NIL LIST (NIL T) -8 NIL NIL) (-618 1446804 1446878 1447017 "LIST3" 1447199 NIL LIST3 (NIL T T T) -7 NIL NIL) (-617 1445811 1445989 1446217 "LIST2" 1446622 NIL LIST2 (NIL T T) -7 NIL NIL) (-616 1443945 1444257 1444656 "LIST2MAP" 1445458 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-615 1442695 1443331 1443372 "LINEXP" 1443627 NIL LINEXP (NIL T) -9 NIL 1443776) (-614 1441342 1441602 1441899 "LINDEP" 1442447 NIL LINDEP (NIL T T) -7 NIL NIL) (-613 1438109 1438828 1439605 "LIMITRF" 1440597 NIL LIMITRF (NIL T) -7 NIL NIL) (-612 1436385 1436680 1437096 "LIMITPS" 1437804 NIL LIMITPS (NIL T T) -7 NIL NIL) (-611 1430840 1435896 1436124 "LIE" 1436206 NIL LIE (NIL T T) -8 NIL NIL) (-610 1429889 1430332 1430372 "LIECAT" 1430512 NIL LIECAT (NIL T) -9 NIL 1430663) (-609 1429730 1429757 1429845 "LIECAT-" 1429850 NIL LIECAT- (NIL T T) -8 NIL NIL) (-608 1422342 1429179 1429344 "LIB" 1429585 T LIB (NIL) -8 NIL NIL) (-607 1417979 1418860 1419795 "LGROBP" 1421459 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-606 1415845 1416119 1416481 "LF" 1417700 NIL LF (NIL T T) -7 NIL NIL) (-605 1414685 1415377 1415405 "LFCAT" 1415612 T LFCAT (NIL) -9 NIL 1415751) (-604 1411589 1412217 1412905 "LEXTRIPK" 1414049 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-603 1408360 1409159 1409662 "LEXP" 1411169 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-602 1407880 1408081 1408173 "LETAST" 1408288 T LETAST (NIL) -8 NIL NIL) (-601 1406278 1406591 1406992 "LEADCDET" 1407562 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-600 1405468 1405542 1405771 "LAZM3PK" 1406199 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-599 1400424 1403545 1404083 "LAUPOL" 1404980 NIL LAUPOL (NIL T T) -8 NIL NIL) (-598 1399989 1400033 1400201 "LAPLACE" 1400374 NIL LAPLACE (NIL T T) -7 NIL NIL) (-597 1397963 1399090 1399341 "LA" 1399822 NIL LA (NIL T T T) -8 NIL NIL) (-596 1397064 1397614 1397655 "LALG" 1397717 NIL LALG (NIL T) -9 NIL 1397776) (-595 1396778 1396837 1396973 "LALG-" 1396978 NIL LALG- (NIL T T) -8 NIL NIL) (-594 1395578 1395995 1396224 "KTVLOGIC" 1396569 T KTVLOGIC (NIL) -8 NIL NIL) (-593 1394482 1394669 1394968 "KOVACIC" 1395378 NIL KOVACIC (NIL T T) -7 NIL NIL) (-592 1394317 1394341 1394382 "KONVERT" 1394444 NIL KONVERT (NIL T) -9 NIL NIL) (-591 1394152 1394176 1394217 "KOERCE" 1394279 NIL KOERCE (NIL T) -9 NIL NIL) (-590 1391886 1392646 1393039 "KERNEL" 1393791 NIL KERNEL (NIL T) -8 NIL NIL) (-589 1391388 1391469 1391599 "KERNEL2" 1391800 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-588 1385239 1389927 1389981 "KDAGG" 1390358 NIL KDAGG (NIL T T) -9 NIL 1390564) (-587 1384768 1384892 1385097 "KDAGG-" 1385102 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-586 1377943 1384429 1384584 "KAFILE" 1384646 NIL KAFILE (NIL T) -8 NIL NIL) (-585 1372398 1377454 1377682 "JORDAN" 1377764 NIL JORDAN (NIL T T) -8 NIL NIL) (-584 1371822 1372047 1372168 "JOINAST" 1372297 T JOINAST (NIL) -8 NIL NIL) (-583 1371551 1371610 1371697 "JAVACODE" 1371755 T JAVACODE (NIL) -8 NIL NIL) (-582 1367850 1369756 1369810 "IXAGG" 1370739 NIL IXAGG (NIL T T) -9 NIL 1371198) (-581 1366769 1367075 1367494 "IXAGG-" 1367499 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-580 1362349 1366691 1366750 "IVECTOR" 1366755 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-579 1361115 1361352 1361618 "ITUPLE" 1362116 NIL ITUPLE (NIL T) -8 NIL NIL) (-578 1359551 1359728 1360034 "ITRIGMNP" 1360937 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-577 1358296 1358500 1358783 "ITFUN3" 1359327 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-576 1357928 1357985 1358094 "ITFUN2" 1358233 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-575 1355765 1356790 1357089 "ITAYLOR" 1357662 NIL ITAYLOR (NIL T) -8 NIL NIL) (-574 1344759 1349911 1351071 "ISUPS" 1354638 NIL ISUPS (NIL T) -8 NIL NIL) (-573 1343863 1344003 1344239 "ISUMP" 1344606 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-572 1339127 1343664 1343743 "ISTRING" 1343816 NIL ISTRING (NIL NIL) -8 NIL NIL) (-571 1338647 1338848 1338940 "ISAST" 1339055 T ISAST (NIL) -8 NIL NIL) (-570 1337857 1337938 1338154 "IRURPK" 1338561 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-569 1336793 1336994 1337234 "IRSN" 1337637 T IRSN (NIL) -7 NIL NIL) (-568 1334822 1335177 1335613 "IRRF2F" 1336431 NIL IRRF2F (NIL T) -7 NIL NIL) (-567 1334569 1334607 1334683 "IRREDFFX" 1334778 NIL IRREDFFX (NIL T) -7 NIL NIL) (-566 1333184 1333443 1333742 "IROOT" 1334302 NIL IROOT (NIL T) -7 NIL NIL) (-565 1329816 1330868 1331560 "IR" 1332524 NIL IR (NIL T) -8 NIL NIL) (-564 1327429 1327924 1328490 "IR2" 1329294 NIL IR2 (NIL T T) -7 NIL NIL) (-563 1326501 1326614 1326835 "IR2F" 1327312 NIL IR2F (NIL T T) -7 NIL NIL) (-562 1326292 1326326 1326386 "IPRNTPK" 1326461 T IPRNTPK (NIL) -7 NIL NIL) (-561 1322911 1326181 1326250 "IPF" 1326255 NIL IPF (NIL NIL) -8 NIL NIL) (-560 1321274 1322836 1322893 "IPADIC" 1322898 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-559 1321038 1321178 1321206 "IOBCON" 1321211 T IOBCON (NIL) -9 NIL 1321232) (-558 1320535 1320593 1320783 "INVLAPLA" 1320974 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-557 1310184 1312537 1314923 "INTTR" 1318199 NIL INTTR (NIL T T) -7 NIL NIL) (-556 1306528 1307270 1308134 "INTTOOLS" 1309369 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-555 1306114 1306205 1306322 "INTSLPE" 1306431 T INTSLPE (NIL) -7 NIL NIL) (-554 1304109 1306037 1306096 "INTRVL" 1306101 NIL INTRVL (NIL T) -8 NIL NIL) (-553 1301711 1302223 1302798 "INTRF" 1303594 NIL INTRF (NIL T) -7 NIL NIL) (-552 1301122 1301219 1301361 "INTRET" 1301609 NIL INTRET (NIL T) -7 NIL NIL) (-551 1299119 1299508 1299978 "INTRAT" 1300730 NIL INTRAT (NIL T T) -7 NIL NIL) (-550 1296347 1296930 1297556 "INTPM" 1298604 NIL INTPM (NIL T T) -7 NIL NIL) (-549 1293050 1293649 1294394 "INTPAF" 1295733 NIL INTPAF (NIL T T T) -7 NIL NIL) (-548 1288229 1289191 1290242 "INTPACK" 1292019 T INTPACK (NIL) -7 NIL NIL) (-547 1285141 1287958 1288085 "INT" 1288122 T INT (NIL) -8 NIL NIL) (-546 1284393 1284545 1284753 "INTHERTR" 1284983 NIL INTHERTR (NIL T T) -7 NIL NIL) (-545 1283832 1283912 1284100 "INTHERAL" 1284307 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-544 1281678 1282121 1282578 "INTHEORY" 1283395 T INTHEORY (NIL) -7 NIL NIL) (-543 1272986 1274607 1276386 "INTG0" 1280030 NIL INTG0 (NIL T T T) -7 NIL NIL) (-542 1253559 1258349 1263159 "INTFTBL" 1268196 T INTFTBL (NIL) -8 NIL NIL) (-541 1252808 1252946 1253119 "INTFACT" 1253418 NIL INTFACT (NIL T) -7 NIL NIL) (-540 1250193 1250639 1251203 "INTEF" 1252362 NIL INTEF (NIL T T) -7 NIL NIL) (-539 1248695 1249400 1249428 "INTDOM" 1249729 T INTDOM (NIL) -9 NIL 1249936) (-538 1248064 1248238 1248480 "INTDOM-" 1248485 NIL INTDOM- (NIL T) -8 NIL NIL) (-537 1244597 1246483 1246537 "INTCAT" 1247336 NIL INTCAT (NIL T) -9 NIL 1247656) (-536 1244070 1244172 1244300 "INTBIT" 1244489 T INTBIT (NIL) -7 NIL NIL) (-535 1242741 1242895 1243209 "INTALG" 1243915 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-534 1242198 1242288 1242458 "INTAF" 1242645 NIL INTAF (NIL T T) -7 NIL NIL) (-533 1235652 1242008 1242148 "INTABL" 1242153 NIL INTABL (NIL T T T) -8 NIL NIL) (-532 1230707 1233378 1233406 "INS" 1234340 T INS (NIL) -9 NIL 1235004) (-531 1227947 1228718 1229692 "INS-" 1229765 NIL INS- (NIL T) -8 NIL NIL) (-530 1226722 1226949 1227247 "INPSIGN" 1227700 NIL INPSIGN (NIL T T) -7 NIL NIL) (-529 1225840 1225957 1226154 "INPRODPF" 1226602 NIL INPRODPF (NIL T T) -7 NIL NIL) (-528 1224734 1224851 1225088 "INPRODFF" 1225720 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-527 1223734 1223886 1224146 "INNMFACT" 1224570 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-526 1222931 1223028 1223216 "INMODGCD" 1223633 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-525 1221440 1221684 1222008 "INFSP" 1222676 NIL INFSP (NIL T T T) -7 NIL NIL) (-524 1220624 1220741 1220924 "INFPROD0" 1221320 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-523 1217506 1218689 1219204 "INFORM" 1220117 T INFORM (NIL) -8 NIL NIL) (-522 1217116 1217176 1217274 "INFORM1" 1217441 NIL INFORM1 (NIL T) -7 NIL NIL) (-521 1216639 1216728 1216842 "INFINITY" 1217022 T INFINITY (NIL) -7 NIL NIL) (-520 1215256 1215505 1215826 "INEP" 1216387 NIL INEP (NIL T T T) -7 NIL NIL) (-519 1214532 1215153 1215218 "INDE" 1215223 NIL INDE (NIL T) -8 NIL NIL) (-518 1214096 1214164 1214281 "INCRMAPS" 1214459 NIL INCRMAPS (NIL T) -7 NIL NIL) (-517 1209407 1210332 1211276 "INBFF" 1213184 NIL INBFF (NIL T) -7 NIL NIL) (-516 1209076 1209152 1209180 "INBCON" 1209313 T INBCON (NIL) -9 NIL 1209391) (-515 1208916 1208951 1209027 "INBCON-" 1209032 NIL INBCON- (NIL T) -8 NIL NIL) (-514 1208435 1208637 1208729 "INAST" 1208844 T INAST (NIL) -8 NIL NIL) (-513 1207906 1208114 1208220 "IMPTAST" 1208349 T IMPTAST (NIL) -8 NIL NIL) (-512 1204400 1207750 1207854 "IMATRIX" 1207859 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-511 1203112 1203235 1203550 "IMATQF" 1204256 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-510 1201332 1201559 1201896 "IMATLIN" 1202868 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-509 1195958 1201256 1201314 "ILIST" 1201319 NIL ILIST (NIL T NIL) -8 NIL NIL) (-508 1193911 1195818 1195931 "IIARRAY2" 1195936 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-507 1189344 1193822 1193886 "IFF" 1193891 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-506 1188735 1188961 1189077 "IFAST" 1189248 T IFAST (NIL) -8 NIL NIL) (-505 1183778 1188027 1188215 "IFARRAY" 1188592 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-504 1182985 1183682 1183755 "IFAMON" 1183760 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-503 1182569 1182634 1182688 "IEVALAB" 1182895 NIL IEVALAB (NIL T T) -9 NIL NIL) (-502 1182244 1182312 1182472 "IEVALAB-" 1182477 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-501 1181902 1182158 1182221 "IDPO" 1182226 NIL IDPO (NIL T T) -8 NIL NIL) (-500 1181179 1181791 1181866 "IDPOAMS" 1181871 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-499 1180513 1181068 1181143 "IDPOAM" 1181148 NIL IDPOAM (NIL T T) -8 NIL NIL) (-498 1179598 1179848 1179901 "IDPC" 1180314 NIL IDPC (NIL T T) -9 NIL 1180463) (-497 1179094 1179490 1179563 "IDPAM" 1179568 NIL IDPAM (NIL T T) -8 NIL NIL) (-496 1178497 1178986 1179059 "IDPAG" 1179064 NIL IDPAG (NIL T T) -8 NIL NIL) (-495 1178245 1178412 1178462 "IDENT" 1178467 T IDENT (NIL) -8 NIL NIL) (-494 1174500 1175348 1176243 "IDECOMP" 1177402 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-493 1167373 1168423 1169470 "IDEAL" 1173536 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-492 1166537 1166649 1166848 "ICDEN" 1167257 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-491 1165636 1166017 1166164 "ICARD" 1166410 T ICARD (NIL) -8 NIL NIL) (-490 1163696 1164009 1164414 "IBPTOOLS" 1165313 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-489 1159330 1163316 1163429 "IBITS" 1163615 NIL IBITS (NIL NIL) -8 NIL NIL) (-488 1156053 1156629 1157324 "IBATOOL" 1158747 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-487 1153833 1154294 1154827 "IBACHIN" 1155588 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-486 1151710 1153679 1153782 "IARRAY2" 1153787 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-485 1147863 1151636 1151693 "IARRAY1" 1151698 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-484 1141858 1146277 1146757 "IAN" 1147403 T IAN (NIL) -8 NIL NIL) (-483 1141369 1141426 1141599 "IALGFACT" 1141795 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-482 1140897 1141010 1141038 "HYPCAT" 1141245 T HYPCAT (NIL) -9 NIL NIL) (-481 1140435 1140552 1140738 "HYPCAT-" 1140743 NIL HYPCAT- (NIL T) -8 NIL NIL) (-480 1140057 1140230 1140313 "HOSTNAME" 1140372 T HOSTNAME (NIL) -8 NIL NIL) (-479 1136736 1138067 1138108 "HOAGG" 1139089 NIL HOAGG (NIL T) -9 NIL 1139768) (-478 1135330 1135729 1136255 "HOAGG-" 1136260 NIL HOAGG- (NIL T T) -8 NIL NIL) (-477 1129218 1134771 1134937 "HEXADEC" 1135184 T HEXADEC (NIL) -8 NIL NIL) (-476 1127966 1128188 1128451 "HEUGCD" 1128995 NIL HEUGCD (NIL T) -7 NIL NIL) (-475 1127069 1127803 1127933 "HELLFDIV" 1127938 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-474 1125297 1126846 1126934 "HEAP" 1127013 NIL HEAP (NIL T) -8 NIL NIL) (-473 1124605 1124849 1124983 "HEADAST" 1125183 T HEADAST (NIL) -8 NIL NIL) (-472 1118525 1124520 1124582 "HDP" 1124587 NIL HDP (NIL NIL T) -8 NIL NIL) (-471 1112276 1118160 1118312 "HDMP" 1118426 NIL HDMP (NIL NIL T) -8 NIL NIL) (-470 1111601 1111740 1111904 "HB" 1112132 T HB (NIL) -7 NIL NIL) (-469 1105098 1111447 1111551 "HASHTBL" 1111556 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-468 1104618 1104819 1104911 "HASAST" 1105026 T HASAST (NIL) -8 NIL NIL) (-467 1102432 1104242 1104423 "HACKPI" 1104457 T HACKPI (NIL) -8 NIL NIL) (-466 1098127 1102285 1102398 "GTSET" 1102403 NIL GTSET (NIL T T T T) -8 NIL NIL) (-465 1091653 1098005 1098103 "GSTBL" 1098108 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-464 1083966 1090684 1090949 "GSERIES" 1091444 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-463 1083133 1083524 1083552 "GROUP" 1083755 T GROUP (NIL) -9 NIL 1083889) (-462 1082499 1082658 1082909 "GROUP-" 1082914 NIL GROUP- (NIL T) -8 NIL NIL) (-461 1080868 1081187 1081574 "GROEBSOL" 1082176 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-460 1079808 1080070 1080121 "GRMOD" 1080650 NIL GRMOD (NIL T T) -9 NIL 1080818) (-459 1079576 1079612 1079740 "GRMOD-" 1079745 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-458 1074901 1075930 1076930 "GRIMAGE" 1078596 T GRIMAGE (NIL) -8 NIL NIL) (-457 1073368 1073628 1073952 "GRDEF" 1074597 T GRDEF (NIL) -7 NIL NIL) (-456 1072812 1072928 1073069 "GRAY" 1073247 T GRAY (NIL) -7 NIL NIL) (-455 1072043 1072423 1072474 "GRALG" 1072627 NIL GRALG (NIL T T) -9 NIL 1072720) (-454 1071704 1071777 1071940 "GRALG-" 1071945 NIL GRALG- (NIL T T T) -8 NIL NIL) (-453 1068508 1071289 1071467 "GPOLSET" 1071611 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-452 1067862 1067919 1068177 "GOSPER" 1068445 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-451 1063621 1064300 1064826 "GMODPOL" 1067561 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-450 1062626 1062810 1063048 "GHENSEL" 1063433 NIL GHENSEL (NIL T T) -7 NIL NIL) (-449 1056677 1057520 1058547 "GENUPS" 1061710 NIL GENUPS (NIL T T) -7 NIL NIL) (-448 1056374 1056425 1056514 "GENUFACT" 1056620 NIL GENUFACT (NIL T) -7 NIL NIL) (-447 1055786 1055863 1056028 "GENPGCD" 1056292 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-446 1055260 1055295 1055508 "GENMFACT" 1055745 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-445 1053828 1054083 1054390 "GENEEZ" 1055003 NIL GENEEZ (NIL T T) -7 NIL NIL) (-444 1047741 1053439 1053601 "GDMP" 1053751 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-443 1037118 1041512 1042618 "GCNAALG" 1046724 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-442 1035580 1036408 1036436 "GCDDOM" 1036691 T GCDDOM (NIL) -9 NIL 1036848) (-441 1035050 1035177 1035392 "GCDDOM-" 1035397 NIL GCDDOM- (NIL T) -8 NIL NIL) (-440 1033722 1033907 1034211 "GB" 1034829 NIL GB (NIL T T T T) -7 NIL NIL) (-439 1022342 1024668 1027060 "GBINTERN" 1031413 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-438 1020179 1020471 1020892 "GBF" 1022017 NIL GBF (NIL T T T T) -7 NIL NIL) (-437 1018960 1019125 1019392 "GBEUCLID" 1019995 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-436 1018309 1018434 1018583 "GAUSSFAC" 1018831 T GAUSSFAC (NIL) -7 NIL NIL) (-435 1016676 1016978 1017292 "GALUTIL" 1018028 NIL GALUTIL (NIL T) -7 NIL NIL) (-434 1014984 1015258 1015582 "GALPOLYU" 1016403 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-433 1012349 1012639 1013046 "GALFACTU" 1014681 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-432 1004155 1005654 1007262 "GALFACT" 1010781 NIL GALFACT (NIL T) -7 NIL NIL) (-431 1001543 1002201 1002229 "FVFUN" 1003385 T FVFUN (NIL) -9 NIL 1004105) (-430 1000809 1000991 1001019 "FVC" 1001310 T FVC (NIL) -9 NIL 1001493) (-429 1000451 1000606 1000687 "FUNCTION" 1000761 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-428 998121 998672 999161 "FT" 999982 T FT (NIL) -8 NIL NIL) (-427 996939 997422 997625 "FTEM" 997938 T FTEM (NIL) -8 NIL NIL) (-426 995195 995484 995888 "FSUPFACT" 996630 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-425 993592 993881 994213 "FST" 994883 T FST (NIL) -8 NIL NIL) (-424 992763 992869 993064 "FSRED" 993474 NIL FSRED (NIL T T) -7 NIL NIL) (-423 991442 991697 992051 "FSPRMELT" 992478 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-422 988527 988965 989464 "FSPECF" 991005 NIL FSPECF (NIL T T) -7 NIL NIL) (-421 970969 979411 979451 "FS" 983299 NIL FS (NIL T) -9 NIL 985588) (-420 959619 962609 966665 "FS-" 966962 NIL FS- (NIL T T) -8 NIL NIL) (-419 959133 959187 959364 "FSINT" 959560 NIL FSINT (NIL T T) -7 NIL NIL) (-418 957460 958126 958429 "FSERIES" 958912 NIL FSERIES (NIL T T) -8 NIL NIL) (-417 956474 956590 956821 "FSCINT" 957340 NIL FSCINT (NIL T T) -7 NIL NIL) (-416 952708 955418 955459 "FSAGG" 955829 NIL FSAGG (NIL T) -9 NIL 956088) (-415 950470 951071 951867 "FSAGG-" 951962 NIL FSAGG- (NIL T T) -8 NIL NIL) (-414 949512 949655 949882 "FSAGG2" 950323 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-413 947167 947446 948000 "FS2UPS" 949230 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-412 946749 946792 946947 "FS2" 947118 NIL FS2 (NIL T T T T) -7 NIL NIL) (-411 945606 945777 946086 "FS2EXPXP" 946574 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-410 945032 945147 945299 "FRUTIL" 945486 NIL FRUTIL (NIL T) -7 NIL NIL) (-409 936493 940531 941887 "FR" 943708 NIL FR (NIL T) -8 NIL NIL) (-408 931568 934211 934251 "FRNAALG" 935647 NIL FRNAALG (NIL T) -9 NIL 936254) (-407 927246 928317 929592 "FRNAALG-" 930342 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-406 926884 926927 927054 "FRNAAF2" 927197 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-405 925291 925738 926033 "FRMOD" 926696 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-404 923070 923674 923991 "FRIDEAL" 925082 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-403 922265 922352 922641 "FRIDEAL2" 922977 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-402 921507 921921 921962 "FRETRCT" 921967 NIL FRETRCT (NIL T) -9 NIL 922143) (-401 920619 920850 921201 "FRETRCT-" 921206 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-400 917869 919045 919104 "FRAMALG" 919986 NIL FRAMALG (NIL T T) -9 NIL 920278) (-399 916003 916458 917088 "FRAMALG-" 917311 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-398 909963 915478 915754 "FRAC" 915759 NIL FRAC (NIL T) -8 NIL NIL) (-397 909599 909656 909763 "FRAC2" 909900 NIL FRAC2 (NIL T T) -7 NIL NIL) (-396 909235 909292 909399 "FR2" 909536 NIL FR2 (NIL T T) -7 NIL NIL) (-395 903965 906813 906841 "FPS" 907960 T FPS (NIL) -9 NIL 908517) (-394 903414 903523 903687 "FPS-" 903833 NIL FPS- (NIL T) -8 NIL NIL) (-393 900920 902555 902583 "FPC" 902808 T FPC (NIL) -9 NIL 902950) (-392 900713 900753 900850 "FPC-" 900855 NIL FPC- (NIL T) -8 NIL NIL) (-391 899591 900201 900242 "FPATMAB" 900247 NIL FPATMAB (NIL T) -9 NIL 900399) (-390 897291 897767 898193 "FPARFRAC" 899228 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-389 892684 893183 893865 "FORTRAN" 896723 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-388 890400 890900 891439 "FORT" 892165 T FORT (NIL) -7 NIL NIL) (-387 888076 888638 888666 "FORTFN" 889726 T FORTFN (NIL) -9 NIL 890350) (-386 887840 887890 887918 "FORTCAT" 887977 T FORTCAT (NIL) -9 NIL 888039) (-385 885900 886383 886782 "FORMULA" 887461 T FORMULA (NIL) -8 NIL NIL) (-384 885688 885718 885787 "FORMULA1" 885864 NIL FORMULA1 (NIL T) -7 NIL NIL) (-383 885211 885263 885436 "FORDER" 885630 NIL FORDER (NIL T T T T) -7 NIL NIL) (-382 884307 884471 884664 "FOP" 885038 T FOP (NIL) -7 NIL NIL) (-381 882915 883587 883761 "FNLA" 884189 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-380 881583 881972 882000 "FNCAT" 882572 T FNCAT (NIL) -9 NIL 882865) (-379 881149 881542 881570 "FNAME" 881575 T FNAME (NIL) -8 NIL NIL) (-378 879847 880776 880804 "FMTC" 880809 T FMTC (NIL) -9 NIL 880845) (-377 876209 877370 877999 "FMONOID" 879251 NIL FMONOID (NIL T) -8 NIL NIL) (-376 875428 875951 876100 "FM" 876105 NIL FM (NIL T T) -8 NIL NIL) (-375 872852 873498 873526 "FMFUN" 874670 T FMFUN (NIL) -9 NIL 875378) (-374 872121 872302 872330 "FMC" 872620 T FMC (NIL) -9 NIL 872802) (-373 869333 870167 870221 "FMCAT" 871416 NIL FMCAT (NIL T T) -9 NIL 871911) (-372 868226 869099 869199 "FM1" 869278 NIL FM1 (NIL T T) -8 NIL NIL) (-371 866000 866416 866910 "FLOATRP" 867777 NIL FLOATRP (NIL T) -7 NIL NIL) (-370 859551 863656 864286 "FLOAT" 865390 T FLOAT (NIL) -8 NIL NIL) (-369 856989 857489 858067 "FLOATCP" 859018 NIL FLOATCP (NIL T) -7 NIL NIL) (-368 855818 856622 856663 "FLINEXP" 856668 NIL FLINEXP (NIL T) -9 NIL 856761) (-367 854972 855207 855535 "FLINEXP-" 855540 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-366 854048 854192 854416 "FLASORT" 854824 NIL FLASORT (NIL T T) -7 NIL NIL) (-365 851265 852107 852159 "FLALG" 853386 NIL FLALG (NIL T T) -9 NIL 853853) (-364 845049 848751 848792 "FLAGG" 850054 NIL FLAGG (NIL T) -9 NIL 850706) (-363 843775 844114 844604 "FLAGG-" 844609 NIL FLAGG- (NIL T T) -8 NIL NIL) (-362 842817 842960 843187 "FLAGG2" 843628 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-361 839830 840804 840863 "FINRALG" 841991 NIL FINRALG (NIL T T) -9 NIL 842499) (-360 838990 839219 839558 "FINRALG-" 839563 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-359 838396 838609 838637 "FINITE" 838833 T FINITE (NIL) -9 NIL 838940) (-358 830854 833015 833055 "FINAALG" 836722 NIL FINAALG (NIL T) -9 NIL 838175) (-357 826195 827236 828380 "FINAALG-" 829759 NIL FINAALG- (NIL T T) -8 NIL NIL) (-356 825590 825950 826053 "FILE" 826125 NIL FILE (NIL T) -8 NIL NIL) (-355 824274 824586 824640 "FILECAT" 825324 NIL FILECAT (NIL T T) -9 NIL 825540) (-354 822194 823688 823716 "FIELD" 823756 T FIELD (NIL) -9 NIL 823836) (-353 820814 821199 821710 "FIELD-" 821715 NIL FIELD- (NIL T) -8 NIL NIL) (-352 818692 819449 819796 "FGROUP" 820500 NIL FGROUP (NIL T) -8 NIL NIL) (-351 817782 817946 818166 "FGLMICPK" 818524 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-350 813649 817707 817764 "FFX" 817769 NIL FFX (NIL T NIL) -8 NIL NIL) (-349 813250 813311 813446 "FFSLPE" 813582 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-348 809243 810022 810818 "FFPOLY" 812486 NIL FFPOLY (NIL T) -7 NIL NIL) (-347 808747 808783 808992 "FFPOLY2" 809201 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-346 804633 808666 808729 "FFP" 808734 NIL FFP (NIL T NIL) -8 NIL NIL) (-345 800066 804544 804608 "FF" 804613 NIL FF (NIL NIL NIL) -8 NIL NIL) (-344 795227 799409 799599 "FFNBX" 799920 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-343 790201 794362 794620 "FFNBP" 795081 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-342 784869 789485 789696 "FFNB" 790034 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-341 783701 783899 784214 "FFINTBAS" 784666 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-340 779985 782160 782188 "FFIELDC" 782808 T FFIELDC (NIL) -9 NIL 783184) (-339 778648 779018 779515 "FFIELDC-" 779520 NIL FFIELDC- (NIL T) -8 NIL NIL) (-338 778218 778263 778387 "FFHOM" 778590 NIL FFHOM (NIL T T T) -7 NIL NIL) (-337 775916 776400 776917 "FFF" 777733 NIL FFF (NIL T) -7 NIL NIL) (-336 771569 775658 775759 "FFCGX" 775859 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-335 767236 771301 771408 "FFCGP" 771512 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-334 762454 766963 767071 "FFCG" 767172 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-333 744512 753548 753634 "FFCAT" 758799 NIL FFCAT (NIL T T T) -9 NIL 760250) (-332 739710 740757 742071 "FFCAT-" 743301 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-331 739121 739164 739399 "FFCAT2" 739661 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-330 728333 732093 733313 "FEXPR" 737973 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-329 727333 727768 727809 "FEVALAB" 727893 NIL FEVALAB (NIL T) -9 NIL 728154) (-328 726492 726702 727040 "FEVALAB-" 727045 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-327 725085 725875 726078 "FDIV" 726391 NIL FDIV (NIL T T T T) -8 NIL NIL) (-326 722151 722866 722981 "FDIVCAT" 724549 NIL FDIVCAT (NIL T T T T) -9 NIL 724986) (-325 721913 721940 722110 "FDIVCAT-" 722115 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-324 721133 721220 721497 "FDIV2" 721820 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-323 719819 720078 720367 "FCPAK1" 720864 T FCPAK1 (NIL) -7 NIL NIL) (-322 718947 719319 719460 "FCOMP" 719710 NIL FCOMP (NIL T) -8 NIL NIL) (-321 702582 705996 709557 "FC" 715406 T FC (NIL) -8 NIL NIL) (-320 695235 699216 699256 "FAXF" 701058 NIL FAXF (NIL T) -9 NIL 701750) (-319 692514 693169 693994 "FAXF-" 694459 NIL FAXF- (NIL T T) -8 NIL NIL) (-318 687614 691890 692066 "FARRAY" 692371 NIL FARRAY (NIL T) -8 NIL NIL) (-317 683021 685053 685106 "FAMR" 686129 NIL FAMR (NIL T T) -9 NIL 686589) (-316 681911 682213 682648 "FAMR-" 682653 NIL FAMR- (NIL T T T) -8 NIL NIL) (-315 681107 681833 681886 "FAMONOID" 681891 NIL FAMONOID (NIL T) -8 NIL NIL) (-314 678937 679621 679674 "FAMONC" 680615 NIL FAMONC (NIL T T) -9 NIL 681001) (-313 677629 678691 678828 "FAGROUP" 678833 NIL FAGROUP (NIL T) -8 NIL NIL) (-312 675424 675743 676146 "FACUTIL" 677310 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-311 674523 674708 674930 "FACTFUNC" 675234 NIL FACTFUNC (NIL T) -7 NIL NIL) (-310 666928 673774 673986 "EXPUPXS" 674379 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-309 664411 664951 665537 "EXPRTUBE" 666362 T EXPRTUBE (NIL) -7 NIL NIL) (-308 660605 661197 661934 "EXPRODE" 663750 NIL EXPRODE (NIL T T) -7 NIL NIL) (-307 645979 659260 659688 "EXPR" 660209 NIL EXPR (NIL T) -8 NIL NIL) (-306 640386 640973 641786 "EXPR2UPS" 645277 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-305 640022 640079 640186 "EXPR2" 640323 NIL EXPR2 (NIL T T) -7 NIL NIL) (-304 631429 639154 639451 "EXPEXPAN" 639859 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-303 631256 631386 631415 "EXIT" 631420 T EXIT (NIL) -8 NIL NIL) (-302 630780 630980 631071 "EXITAST" 631185 T EXITAST (NIL) -8 NIL NIL) (-301 630407 630469 630582 "EVALCYC" 630712 NIL EVALCYC (NIL T) -7 NIL NIL) (-300 629948 630066 630107 "EVALAB" 630277 NIL EVALAB (NIL T) -9 NIL 630381) (-299 629429 629551 629772 "EVALAB-" 629777 NIL EVALAB- (NIL T T) -8 NIL NIL) (-298 626932 628200 628228 "EUCDOM" 628783 T EUCDOM (NIL) -9 NIL 629133) (-297 625337 625779 626369 "EUCDOM-" 626374 NIL EUCDOM- (NIL T) -8 NIL NIL) (-296 612877 615635 618385 "ESTOOLS" 622607 T ESTOOLS (NIL) -7 NIL NIL) (-295 612509 612566 612675 "ESTOOLS2" 612814 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-294 612260 612302 612382 "ESTOOLS1" 612461 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-293 606185 607913 607941 "ES" 610709 T ES (NIL) -9 NIL 612118) (-292 601132 602419 604236 "ES-" 604400 NIL ES- (NIL T) -8 NIL NIL) (-291 597507 598267 599047 "ESCONT" 600372 T ESCONT (NIL) -7 NIL NIL) (-290 597252 597284 597366 "ESCONT1" 597469 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-289 596927 596977 597077 "ES2" 597196 NIL ES2 (NIL T T) -7 NIL NIL) (-288 596557 596615 596724 "ES1" 596863 NIL ES1 (NIL T T) -7 NIL NIL) (-287 595773 595902 596078 "ERROR" 596401 T ERROR (NIL) -7 NIL NIL) (-286 589276 595632 595723 "EQTBL" 595728 NIL EQTBL (NIL T T) -8 NIL NIL) (-285 581833 584590 586039 "EQ" 587860 NIL -3896 (NIL T) -8 NIL NIL) (-284 581465 581522 581631 "EQ2" 581770 NIL EQ2 (NIL T T) -7 NIL NIL) (-283 576757 577803 578896 "EP" 580404 NIL EP (NIL T) -7 NIL NIL) (-282 575339 575640 575957 "ENV" 576460 T ENV (NIL) -8 NIL NIL) (-281 574538 575058 575086 "ENTIRER" 575091 T ENTIRER (NIL) -9 NIL 575137) (-280 571040 572493 572863 "EMR" 574337 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-279 570184 570369 570423 "ELTAGG" 570803 NIL ELTAGG (NIL T T) -9 NIL 571014) (-278 569903 569965 570106 "ELTAGG-" 570111 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-277 569692 569721 569775 "ELTAB" 569859 NIL ELTAB (NIL T T) -9 NIL NIL) (-276 568818 568964 569163 "ELFUTS" 569543 NIL ELFUTS (NIL T T) -7 NIL NIL) (-275 568560 568616 568644 "ELEMFUN" 568749 T ELEMFUN (NIL) -9 NIL NIL) (-274 568430 568451 568519 "ELEMFUN-" 568524 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-273 563321 566530 566571 "ELAGG" 567511 NIL ELAGG (NIL T) -9 NIL 567974) (-272 561606 562040 562703 "ELAGG-" 562708 NIL ELAGG- (NIL T T) -8 NIL NIL) (-271 560263 560543 560838 "ELABEXPR" 561331 T ELABEXPR (NIL) -8 NIL NIL) (-270 553129 554930 555757 "EFUPXS" 559539 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-269 546579 548380 549190 "EFULS" 552405 NIL EFULS (NIL T T T) -8 NIL NIL) (-268 544001 544359 544838 "EFSTRUC" 546211 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-267 533073 534638 536198 "EF" 542516 NIL EF (NIL T T) -7 NIL NIL) (-266 532174 532558 532707 "EAB" 532944 T EAB (NIL) -8 NIL NIL) (-265 531383 532133 532161 "E04UCFA" 532166 T E04UCFA (NIL) -8 NIL NIL) (-264 530592 531342 531370 "E04NAFA" 531375 T E04NAFA (NIL) -8 NIL NIL) (-263 529801 530551 530579 "E04MBFA" 530584 T E04MBFA (NIL) -8 NIL NIL) (-262 529010 529760 529788 "E04JAFA" 529793 T E04JAFA (NIL) -8 NIL NIL) (-261 528221 528969 528997 "E04GCFA" 529002 T E04GCFA (NIL) -8 NIL NIL) (-260 527432 528180 528208 "E04FDFA" 528213 T E04FDFA (NIL) -8 NIL NIL) (-259 526641 527391 527419 "E04DGFA" 527424 T E04DGFA (NIL) -8 NIL NIL) (-258 520819 522166 523530 "E04AGNT" 525297 T E04AGNT (NIL) -7 NIL NIL) (-257 519543 520023 520063 "DVARCAT" 520538 NIL DVARCAT (NIL T) -9 NIL 520737) (-256 518747 518959 519273 "DVARCAT-" 519278 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-255 511647 518546 518675 "DSMP" 518680 NIL DSMP (NIL T T T) -8 NIL NIL) (-254 506457 507592 508660 "DROPT" 510599 T DROPT (NIL) -8 NIL NIL) (-253 506122 506181 506279 "DROPT1" 506392 NIL DROPT1 (NIL T) -7 NIL NIL) (-252 501237 502363 503500 "DROPT0" 505005 T DROPT0 (NIL) -7 NIL NIL) (-251 499582 499907 500293 "DRAWPT" 500871 T DRAWPT (NIL) -7 NIL NIL) (-250 494169 495092 496171 "DRAW" 498556 NIL DRAW (NIL T) -7 NIL NIL) (-249 493802 493855 493973 "DRAWHACK" 494110 NIL DRAWHACK (NIL T) -7 NIL NIL) (-248 492533 492802 493093 "DRAWCX" 493531 T DRAWCX (NIL) -7 NIL NIL) (-247 492049 492117 492268 "DRAWCURV" 492459 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-246 482520 484479 486594 "DRAWCFUN" 489954 T DRAWCFUN (NIL) -7 NIL NIL) (-245 479333 481215 481256 "DQAGG" 481885 NIL DQAGG (NIL T) -9 NIL 482158) (-244 467852 474549 474632 "DPOLCAT" 476484 NIL DPOLCAT (NIL T T T T) -9 NIL 477029) (-243 462691 464037 465995 "DPOLCAT-" 466000 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-242 455846 462552 462650 "DPMO" 462655 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-241 448904 455626 455793 "DPMM" 455798 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-240 448324 448527 448641 "DOMAIN" 448810 T DOMAIN (NIL) -8 NIL NIL) (-239 442075 447959 448111 "DMP" 448225 NIL DMP (NIL NIL T) -8 NIL NIL) (-238 441675 441731 441875 "DLP" 442013 NIL DLP (NIL T) -7 NIL NIL) (-237 435319 440776 441003 "DLIST" 441480 NIL DLIST (NIL T) -8 NIL NIL) (-236 432165 434174 434215 "DLAGG" 434765 NIL DLAGG (NIL T) -9 NIL 434994) (-235 431015 431645 431673 "DIVRING" 431765 T DIVRING (NIL) -9 NIL 431848) (-234 430252 430442 430742 "DIVRING-" 430747 NIL DIVRING- (NIL T) -8 NIL NIL) (-233 428354 428711 429117 "DISPLAY" 429866 T DISPLAY (NIL) -7 NIL NIL) (-232 422296 428268 428331 "DIRPROD" 428336 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-231 421144 421347 421612 "DIRPROD2" 422089 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-230 410682 416634 416687 "DIRPCAT" 417097 NIL DIRPCAT (NIL NIL T) -9 NIL 417937) (-229 408008 408650 409531 "DIRPCAT-" 409868 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-228 407295 407455 407641 "DIOSP" 407842 T DIOSP (NIL) -7 NIL NIL) (-227 403997 406207 406248 "DIOPS" 406682 NIL DIOPS (NIL T) -9 NIL 406911) (-226 403546 403660 403851 "DIOPS-" 403856 NIL DIOPS- (NIL T T) -8 NIL NIL) (-225 402458 403052 403080 "DIFRING" 403267 T DIFRING (NIL) -9 NIL 403377) (-224 402104 402181 402333 "DIFRING-" 402338 NIL DIFRING- (NIL T) -8 NIL NIL) (-223 399929 401167 401208 "DIFEXT" 401571 NIL DIFEXT (NIL T) -9 NIL 401865) (-222 398214 398642 399308 "DIFEXT-" 399313 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-221 395536 397746 397787 "DIAGG" 397792 NIL DIAGG (NIL T) -9 NIL 397812) (-220 394920 395077 395329 "DIAGG-" 395334 NIL DIAGG- (NIL T T) -8 NIL NIL) (-219 390385 393879 394156 "DHMATRIX" 394689 NIL DHMATRIX (NIL T) -8 NIL NIL) (-218 385997 386906 387916 "DFSFUN" 389395 T DFSFUN (NIL) -7 NIL NIL) (-217 380965 384812 385154 "DFLOAT" 385675 T DFLOAT (NIL) -8 NIL NIL) (-216 379193 379474 379870 "DFINTTLS" 380673 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-215 376258 377214 377614 "DERHAM" 378859 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-214 374107 376033 376122 "DEQUEUE" 376202 NIL DEQUEUE (NIL T) -8 NIL NIL) (-213 373322 373455 373651 "DEGRED" 373969 NIL DEGRED (NIL T T) -7 NIL NIL) (-212 369717 370462 371315 "DEFINTRF" 372550 NIL DEFINTRF (NIL T) -7 NIL NIL) (-211 367244 367713 368312 "DEFINTEF" 369236 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-210 366610 366843 366965 "DEFAST" 367142 T DEFAST (NIL) -8 NIL NIL) (-209 360498 366051 366217 "DECIMAL" 366464 T DECIMAL (NIL) -8 NIL NIL) (-208 358010 358468 358974 "DDFACT" 360042 NIL DDFACT (NIL T T) -7 NIL NIL) (-207 357606 357649 357800 "DBLRESP" 357961 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-206 355316 355650 356019 "DBASE" 357364 NIL DBASE (NIL T) -8 NIL NIL) (-205 354585 354796 354942 "DATABUF" 355215 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-204 353718 354544 354572 "D03FAFA" 354577 T D03FAFA (NIL) -8 NIL NIL) (-203 352852 353677 353705 "D03EEFA" 353710 T D03EEFA (NIL) -8 NIL NIL) (-202 350802 351268 351757 "D03AGNT" 352383 T D03AGNT (NIL) -7 NIL NIL) (-201 350118 350761 350789 "D02EJFA" 350794 T D02EJFA (NIL) -8 NIL NIL) (-200 349434 350077 350105 "D02CJFA" 350110 T D02CJFA (NIL) -8 NIL NIL) (-199 348750 349393 349421 "D02BHFA" 349426 T D02BHFA (NIL) -8 NIL NIL) (-198 348066 348709 348737 "D02BBFA" 348742 T D02BBFA (NIL) -8 NIL NIL) (-197 341264 342852 344458 "D02AGNT" 346480 T D02AGNT (NIL) -7 NIL NIL) (-196 339033 339555 340101 "D01WGTS" 340738 T D01WGTS (NIL) -7 NIL NIL) (-195 338128 338992 339020 "D01TRNS" 339025 T D01TRNS (NIL) -8 NIL NIL) (-194 337223 338087 338115 "D01GBFA" 338120 T D01GBFA (NIL) -8 NIL NIL) (-193 336318 337182 337210 "D01FCFA" 337215 T D01FCFA (NIL) -8 NIL NIL) (-192 335413 336277 336305 "D01ASFA" 336310 T D01ASFA (NIL) -8 NIL NIL) (-191 334508 335372 335400 "D01AQFA" 335405 T D01AQFA (NIL) -8 NIL NIL) (-190 333603 334467 334495 "D01APFA" 334500 T D01APFA (NIL) -8 NIL NIL) (-189 332698 333562 333590 "D01ANFA" 333595 T D01ANFA (NIL) -8 NIL NIL) (-188 331793 332657 332685 "D01AMFA" 332690 T D01AMFA (NIL) -8 NIL NIL) (-187 330888 331752 331780 "D01ALFA" 331785 T D01ALFA (NIL) -8 NIL NIL) (-186 329983 330847 330875 "D01AKFA" 330880 T D01AKFA (NIL) -8 NIL NIL) (-185 329078 329942 329970 "D01AJFA" 329975 T D01AJFA (NIL) -8 NIL NIL) (-184 322375 323926 325487 "D01AGNT" 327537 T D01AGNT (NIL) -7 NIL NIL) (-183 321712 321840 321992 "CYCLOTOM" 322243 T CYCLOTOM (NIL) -7 NIL NIL) (-182 318447 319160 319887 "CYCLES" 321005 T CYCLES (NIL) -7 NIL NIL) (-181 317759 317893 318064 "CVMP" 318308 NIL CVMP (NIL T) -7 NIL NIL) (-180 315530 315788 316164 "CTRIGMNP" 317487 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-179 315041 315230 315329 "CTORCALL" 315451 T CTORCALL (NIL) -8 NIL NIL) (-178 314415 314514 314667 "CSTTOOLS" 314938 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-177 310214 310871 311629 "CRFP" 313727 NIL CRFP (NIL T T) -7 NIL NIL) (-176 309261 309446 309674 "CRAPACK" 310018 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 308645 308746 308950 "CPMATCH" 309137 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 308370 308398 308504 "CPIMA" 308611 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 304734 305406 306124 "COORDSYS" 307705 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304118 304247 304397 "CONTOUR" 304604 T CONTOUR (NIL) -8 NIL NIL) (-171 300044 302121 302613 "CONTFRAC" 303658 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 299924 299945 299973 "CONDUIT" 300010 T CONDUIT (NIL) -9 NIL NIL) (-169 299117 299637 299665 "COMRING" 299670 T COMRING (NIL) -9 NIL 299722) (-168 298198 298475 298659 "COMPPROP" 298953 T COMPPROP (NIL) -8 NIL NIL) (-167 297859 297894 298022 "COMPLPAT" 298157 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 287918 297668 297777 "COMPLEX" 297782 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287554 287611 287718 "COMPLEX2" 287855 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287272 287307 287405 "COMPFACT" 287513 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 271670 281886 281926 "COMPCAT" 282930 NIL COMPCAT (NIL T) -9 NIL 284325) (-162 261185 264109 267736 "COMPCAT-" 268092 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 260914 260942 261045 "COMMUPC" 261151 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 260709 260742 260801 "COMMONOP" 260875 T COMMONOP (NIL) -7 NIL NIL) (-159 260292 260460 260547 "COMM" 260642 T COMM (NIL) -8 NIL NIL) (-158 259913 260096 260171 "COMMAAST" 260237 T COMMAAST (NIL) -8 NIL NIL) (-157 259162 259356 259384 "COMBOPC" 259722 T COMBOPC (NIL) -9 NIL 259897) (-156 258058 258268 258510 "COMBINAT" 258952 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254256 254829 255469 "COMBF" 257480 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253042 253372 253607 "COLOR" 254041 T COLOR (NIL) -8 NIL NIL) (-153 252562 252763 252855 "COLONAST" 252970 T COLONAST (NIL) -8 NIL NIL) (-152 252202 252249 252374 "CMPLXRT" 252509 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 247704 248732 249812 "CLIP" 251142 T CLIP (NIL) -7 NIL NIL) (-150 246086 246810 247049 "CLIF" 247531 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242308 244232 244273 "CLAGG" 245202 NIL CLAGG (NIL T) -9 NIL 245738) (-148 240730 241187 241770 "CLAGG-" 241775 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240274 240359 240499 "CINTSLPE" 240639 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237775 238246 238794 "CHVAR" 239802 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237038 237558 237586 "CHARZ" 237591 T CHARZ (NIL) -9 NIL 237606) (-144 236792 236832 236910 "CHARPOL" 236992 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235939 236492 236520 "CHARNZ" 236567 T CHARNZ (NIL) -9 NIL 236623) (-142 233964 234629 234964 "CHAR" 235624 T CHAR (NIL) -8 NIL NIL) (-141 233690 233751 233779 "CFCAT" 233890 T CFCAT (NIL) -9 NIL NIL) (-140 232935 233046 233228 "CDEN" 233574 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228927 232088 232368 "CCLASS" 232675 T CCLASS (NIL) -8 NIL NIL) (-138 228846 228872 228907 "CATEGORY" 228912 T -10 (NIL) -8 NIL NIL) (-137 228337 228546 228645 "CATAST" 228767 T CATAST (NIL) -8 NIL NIL) (-136 227857 228058 228150 "CASEAST" 228265 T CASEAST (NIL) -8 NIL NIL) (-135 222909 223886 224639 "CARTEN" 227160 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222017 222165 222386 "CARTEN2" 222756 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220359 221167 221424 "CARD" 221780 T CARD (NIL) -8 NIL NIL) (-132 219979 220163 220238 "CAPSLAST" 220304 T CAPSLAST (NIL) -8 NIL NIL) (-131 219351 219679 219707 "CACHSET" 219839 T CACHSET (NIL) -9 NIL 219916) (-130 218847 219143 219171 "CABMON" 219221 T CABMON (NIL) -9 NIL 219277) (-129 218016 218394 218537 "BYTE" 218724 T BYTE (NIL) -8 NIL NIL) (-128 213964 217963 217997 "BYTEARY" 218002 T BYTEARY (NIL) -8 NIL NIL) (-127 211521 213656 213763 "BTREE" 213890 NIL BTREE (NIL T) -8 NIL NIL) (-126 209019 211169 211291 "BTOURN" 211431 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206437 208490 208531 "BTCAT" 208599 NIL BTCAT (NIL T) -9 NIL 208676) (-124 206104 206184 206333 "BTCAT-" 206338 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201396 205247 205275 "BTAGG" 205497 T BTAGG (NIL) -9 NIL 205658) (-122 200886 201011 201217 "BTAGG-" 201222 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197930 200164 200379 "BSTREE" 200703 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197068 197194 197378 "BRILL" 197786 NIL BRILL (NIL T) -7 NIL NIL) (-119 193769 195796 195837 "BRAGG" 196486 NIL BRAGG (NIL T) -9 NIL 196743) (-118 192298 192704 193259 "BRAGG-" 193264 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185564 191644 191828 "BPADICRT" 192146 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183914 185501 185546 "BPADIC" 185551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183612 183642 183756 "BOUNDZRO" 183878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179127 180218 181085 "BOP" 182765 T BOP (NIL) -8 NIL NIL) (-113 176748 177192 177712 "BOP1" 178640 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175472 176158 176358 "BOOLEAN" 176568 T BOOLEAN (NIL) -8 NIL NIL) (-111 174834 175212 175266 "BMODULE" 175271 NIL BMODULE (NIL T T) -9 NIL 175336) (-110 170664 174632 174705 "BITS" 174781 T BITS (NIL) -8 NIL NIL) (-109 169761 170196 170348 "BINFILE" 170532 T BINFILE (NIL) -8 NIL NIL) (-108 169173 169295 169437 "BINDING" 169639 T BINDING (NIL) -8 NIL NIL) (-107 163065 168617 168782 "BINARY" 169028 T BINARY (NIL) -8 NIL NIL) (-106 160892 162320 162361 "BGAGG" 162621 NIL BGAGG (NIL T) -9 NIL 162758) (-105 160723 160755 160846 "BGAGG-" 160851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159821 160107 160312 "BFUNCT" 160538 T BFUNCT (NIL) -8 NIL NIL) (-103 158511 158689 158977 "BEZOUT" 159645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155028 157363 157693 "BBTREE" 158214 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154762 154815 154843 "BASTYPE" 154962 T BASTYPE (NIL) -9 NIL NIL) (-100 154614 154643 154716 "BASTYPE-" 154721 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154052 154128 154278 "BALFACT" 154525 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152935 153467 153653 "AUTOMOR" 153897 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152661 152666 152692 "ATTREG" 152697 T ATTREG (NIL) -9 NIL NIL) (-96 150940 151358 151710 "ATTRBUT" 152327 T ATTRBUT (NIL) -8 NIL NIL) (-95 150592 150768 150834 "ATTRAST" 150892 T ATTRAST (NIL) -8 NIL NIL) (-94 150128 150241 150267 "ATRIG" 150468 T ATRIG (NIL) -9 NIL NIL) (-93 149937 149978 150065 "ATRIG-" 150070 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149662 149805 149831 "ASTCAT" 149836 T ASTCAT (NIL) -9 NIL 149866) (-91 149459 149502 149594 "ASTCAT-" 149599 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147656 149235 149323 "ASTACK" 149402 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146161 146458 146823 "ASSOCEQ" 147338 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145193 145820 145944 "ASP9" 146068 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144957 145141 145180 "ASP8" 145185 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143826 144562 144704 "ASP80" 144846 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142725 143461 143593 "ASP7" 143725 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141679 142402 142520 "ASP78" 142638 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140648 141359 141476 "ASP77" 141593 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139560 140286 140417 "ASP74" 140548 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138460 139195 139327 "ASP73" 139459 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137415 138137 138255 "ASP6" 138373 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136363 137092 137210 "ASP55" 137328 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135313 136037 136156 "ASP50" 136275 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134401 135014 135124 "ASP4" 135234 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133489 134102 134212 "ASP49" 134322 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132274 133028 133196 "ASP42" 133378 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131051 131807 131977 "ASP41" 132161 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130001 130728 130846 "ASP35" 130964 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129766 129949 129988 "ASP34" 129993 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129503 129570 129646 "ASP33" 129721 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128398 129138 129270 "ASP31" 129402 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128163 128346 128385 "ASP30" 128390 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127898 127967 128043 "ASP29" 128118 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127663 127846 127885 "ASP28" 127890 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127428 127611 127650 "ASP27" 127655 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126512 127126 127237 "ASP24" 127348 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125428 126153 126283 "ASP20" 126413 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124516 125129 125239 "ASP1" 125349 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123460 124190 124309 "ASP19" 124428 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123197 123264 123340 "ASP12" 123415 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122049 122796 122940 "ASP10" 123084 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119948 121893 121984 "ARRAY2" 121989 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115764 119596 119710 "ARRAY1" 119865 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114796 114969 115190 "ARRAY12" 115587 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109155 111026 111101 "ARR2CAT" 113731 NIL ARR2CAT (NIL T T T) -9 NIL 114489) (-55 106589 107333 108287 "ARR2CAT-" 108292 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105337 105489 105795 "APPRULE" 106425 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104988 105036 105155 "APPLYORE" 105283 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103962 104253 104448 "ANY" 104811 T ANY (NIL) -8 NIL NIL) (-51 103240 103363 103520 "ANY1" 103836 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100805 101677 102004 "ANTISYM" 102964 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100320 100509 100606 "ANON" 100726 T ANON (NIL) -8 NIL NIL) (-48 94454 98861 99314 "AN" 99885 T AN (NIL) -8 NIL NIL) (-47 90835 92189 92240 "AMR" 92988 NIL AMR (NIL T T) -9 NIL 93588) (-46 89947 90168 90531 "AMR-" 90536 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74497 89864 89925 "ALIST" 89930 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71334 74091 74260 "ALGSC" 74415 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67890 68444 69051 "ALGPKG" 70774 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67167 67268 67452 "ALGMFACT" 67776 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62906 63591 64246 "ALGMANIP" 66690 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54312 62532 62682 "ALGFF" 62839 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53508 53639 53818 "ALGFACT" 54170 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52538 53104 53142 "ALGEBRA" 53202 NIL ALGEBRA (NIL T) -9 NIL 53261) (-37 52256 52315 52447 "ALGEBRA-" 52452 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34516 50259 50311 "ALAGG" 50447 NIL ALAGG (NIL T T) -9 NIL 50608) (-35 34052 34165 34191 "AHYP" 34392 T AHYP (NIL) -9 NIL NIL) (-34 32983 33231 33257 "AGG" 33756 T AGG (NIL) -9 NIL 34035) (-33 32417 32579 32793 "AGG-" 32798 NIL AGG- (NIL T) -8 NIL NIL) (-32 30094 30516 30934 "AF" 32059 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29819 29909 "ADDAST" 30022 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 5dbe2ccb..b79e175e 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,1603 +1,1510 @@ -(732728 . 3430739786) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) - ((*1 *2) - (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) - (-5 *2 (-1131 (-921 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2469 (-619 (-1135))) (|:| -2479 (-619 (-1135))))) - (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-29 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1131 *3)) (-4 *3 (-360)) (-4 *1 (-321 *3)) - (-4 *3 (-355))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063))))) +(732944 . 3430960044) +(((*1 *2 *2) + (-12 (-4 *3 (-592 (-861 *3))) (-4 *3 (-855 *3)) + (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-592 (-861 *3))) (-4 *2 (-855 *3)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-760))))) (((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) - (-5 *2 (-619 (-619 (-619 (-745)))))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) + (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) + (-5 *1 (-1143 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) (-5 *1 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1135)) + (-4 *4 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-540 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *5 (-1194 *4)) (-5 *2 (-1131 (-399 *5))) (-5 *1 (-594 *4 *5)) - (-5 *3 (-399 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-145) (-27) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-1131 (-399 *6))) (-5 *1 (-594 *5 *6)) (-5 *3 (-399 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) - (-5 *2 (-1131 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) - (-5 *1 (-102 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2))))) + (|partial| -12 (-5 *3 (-663 (-398 (-921 (-547))))) + (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000))))) (((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) - (-5 *2 (-619 (-619 (-619 (-912 *3)))))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-821)) - (-4 *3 (-1063))))) -(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981))))) + (-5 *2 (-619 (-619 (-619 (-745)))))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-591 *4)) (-4 *4 (-821)) (-4 *2 (-821)) - (-5 *1 (-590 *2 *4))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) - (-5 *2 (-1131 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) - (-5 *2 (-1131 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-443) (-145))) (-5 *2 (-410 *3)) - (-5 *1 (-99 *4 *3)) (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-13 (-443) (-145))) - (-5 *2 (-410 *3)) (-5 *1 (-99 *5 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168))))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1157)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 (-2 (|:| -2704 (-114)) (|:| |w| (-217)))) (-5 *1 (-196))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1173 *2)) - (-4 *2 (-1063)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) - (-5 *1 (-1173 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832))))) -(((*1 *2 *3) - (-12 (-5 *2 (-591 *4)) (-5 *1 (-590 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-821))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-766))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168)))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) + (-12 (-4 *7 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) + (-4 *8 (-918 *7 *5 *6)) + (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *3) (|:| |radicand| *3))) + (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) + (-4 *3 + (-13 (-354) + (-10 -8 (-15 -1382 (*8 $)) (-15 -1392 (*8 $)) (-15 -3834 ($ *8)))))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) + (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) + (-15 -1392 ((-1087 *3 (-590 $)) $)) + (-15 -3834 ($ (-1087 *3 (-590 $)))))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-471 *3 *4))) (-14 *3 (-619 (-1135))) + (-4 *4 (-442)) (-5 *1 (-607 *3 *4))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-731))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-159))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-159))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1172)) (-5 *2 (-548))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-591 *3)) (-4 *3 (-821))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) - (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-426)) (-4 *5 (-821)) - (-5 *1 (-1069 *5 *4)) (-4 *4 (-422 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-218)))) - (-5 *2 (-1004)) (-5 *1 (-730))))) -(((*1 *2) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-722))))) +(((*1 *1 *1) + (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) + (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-506))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-422 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) - ((*1 *1 *1) (-4 *1 (-157)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) - (-5 *1 (-1173 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3))))) + (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2)) + (-4 *2 (-1194 (-166 *3)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-766)) (-4 *3 (-169))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) - (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) - (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328))))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-112)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-730))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-422 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) - (-5 *1 (-155 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -2479 (-619 *3)) (|:| -2469 (-619 *3)))) - (-5 *1 (-1173 *3)) (-4 *3 (-1063))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-548))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-315 *4 *2)) (-4 *4 (-1063)) - (-4 *2 (-130))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) - (-4 *2 (-13 (-583 (-548) *4) (-10 -7 (-6 -4327) (-6 -4328)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) - (-4 *2 (-13 (-583 (-548) *3) (-10 -7 (-6 -4327) (-6 -4328))))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-730)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-380)) - (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730))))) -(((*1 *2) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) - (-5 *1 (-1173 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) - (-5 *1 (-1173 *4))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-743)) (-5 *2 - (-619 - (-2 - (|:| -3156 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (|:| -1657 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1116 (-218))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3094 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-543)))) - ((*1 *2 *1) - (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) - (-5 *2 (-619 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-130))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-96))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 *4)) (-4 *4 (-1016)) (-4 *2 (-1194 *4)) - (-5 *1 (-435 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-399 (-1131 (-308 *5)))) (-5 *3 (-1218 (-308 *5))) - (-5 *4 (-548)) (-4 *5 (-13 (-540) (-821))) (-5 *1 (-1092 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) - (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-619 (-921 *4))))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) - ((*1 *2) - (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) - ((*1 *2) - (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 (-444 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) - (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-540)) (-4 *4 (-169)) - (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-548)) (-4 *5 (-341)) (-5 *2 (-410 (-1131 (-1131 *5)))) - (-5 *1 (-1170 *5)) (-5 *3 (-1131 (-1131 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) - (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) - (-4 *3 (-766))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-399 (-1131 (-308 *3)))) (-4 *3 (-13 (-540) (-821))) - (-5 *1 (-1092 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) - (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-745))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) - (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4328)) (-4 *1 (-979 *3)) - (-4 *3 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) - (-5 *2 (-619 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) - (-5 *1 (-313 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1118)) (-5 *1 (-96))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145))) - (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) - (-5 *1 (-1091 *5)))) + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) + (-5 *1 (-548)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145))) - (-5 *2 (-1125 (-619 (-308 *5)) (-619 (-286 (-308 *5))))) - (-5 *1 (-1091 *5))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -2802 *4))) (-5 *5 (-745)) - (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-12 (-5 *3 (-743)) (-5 *4 (-1028)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-440 *6 *7 *8 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-533)) (-5 *1 (-156 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-410 (-1131 (-1131 *4)))) - (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-583 *4 *3)) (-4 *4 (-1063)) - (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1131 *7)) (-5 *3 (-548)) (-4 *7 (-918 *6 *4 *5)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) - (-5 *1 (-313 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-308 *5))) - (-5 *1 (-1091 *5)))) + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) + (-5 *1 (-548)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) - (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-619 (-308 *5)))) - (-5 *1 (-1091 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) - (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-619 (-619 (-218)))) (-5 *4 (-218)) - (-5 *2 (-619 (-912 *4))) (-5 *1 (-1168)) (-5 *3 (-912 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) - (-5 *2 (-399 (-548))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) - (-4 *3 (-540)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) - (-5 *2 (-399 (-548))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) - (-4 *3 (-1063)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) - (-4 *3 (-1063)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) - (-5 *2 (-399 (-548))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) - (-4 *3 (-1007 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) - (-4 *2 (-821))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-1131 *7)) (-5 *1 (-313 *4 *5 *6 *7)) - (-4 *7 (-918 *6 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *5 (-540)) + (-12 (-4 *1 (-761)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |fn| (-307 (-217))) + (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (-5 *2 - (-2 (|:| |minor| (-619 (-890))) (|:| -2383 *3) - (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) - (-5 *1 (-1091 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-13 (-299) (-821) (-145))) - (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1091 *4)))) + (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) + (|:| |extra| (-1004)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-399 (-921 *5)))) (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *5)))) - (-5 *1 (-1091 *5)))) + (-12 (-4 *1 (-761)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)) + (|:| |extra| (-1004)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-774)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) ((*1 *2 *3) - (-12 (-5 *3 (-286 (-399 (-921 *4)))) - (-4 *4 (-13 (-299) (-821) (-145))) (-5 *2 (-619 (-286 (-308 *4)))) - (-5 *1 (-1091 *4)))) + (-12 (-5 *3 (-782)) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-779)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) - (-4 *5 (-13 (-299) (-821) (-145))) - (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) + (-12 (-5 *3 (-782)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-779)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-810)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) + (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-810)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) + (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-399 (-921 *4)))) - (-4 *4 (-13 (-299) (-821) (-145))) - (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4)))) + (-12 (-5 *3 (-812)) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-811)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-286 (-399 (-921 *5))))) (-5 *4 (-619 (-1135))) - (-4 *5 (-13 (-299) (-821) (-145))) - (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1091 *5)))) + (-12 (-5 *3 (-812)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-864)) (-5 *3 (-1028)) + (-5 *4 + (-2 (|:| |pde| (-619 (-307 (-217)))) + (|:| |constraints| + (-619 + (-2 (|:| |start| (-217)) (|:| |finish| (-217)) + (|:| |grid| (-745)) (|:| |boundaryType| (-547)) + (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) + (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) + (|:| |tol| (-217)))) + (-5 *2 (-2 (|:| -4283 (-370)) (|:| |explanations| (-1118)))))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) - (-4 *4 (-13 (-299) (-821) (-145))) - (-5 *2 (-619 (-619 (-286 (-308 *4))))) (-5 *1 (-1091 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *2 (-1223)) (-5 *1 (-440 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-821) (-540)))))) + (-12 (-5 *3 (-867)) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-866)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-867)) (-5 *4 (-1028)) + (-5 *2 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *1 (-866))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-398 *6)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) + (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *3) (|:| |radicand| *6))) + (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1194 *3))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1131 *3)) + (-4 *3 (-13 (-421 *7) (-27) (-1157))) + (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) + (-5 *6 (-398 (-1131 *3))) (-4 *3 (-13 (-421 *7) (-27) (-1157))) + (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-543 *7 *3 *8)) (-4 *8 (-1063))))) +(((*1 *1) (-5 *1 (-428)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) (((*1 *2 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-1168))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) - (-5 *4 (-308 (-166 (-371)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) - (-5 *4 (-308 (-371))) (-5 *1 (-322)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) - (-5 *4 (-308 (-548))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-166 (-371))))) - (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-371)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-548)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-166 (-371))))) - (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-371)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-548)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-166 (-371)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-371))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-548))) (-5 *1 (-322)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) - (-5 *4 (-308 (-668))) (-5 *1 (-322)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) - (-5 *4 (-308 (-673))) (-5 *1 (-322)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-548)))) - (-5 *4 (-308 (-675))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-668)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-673)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-308 (-675)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-668)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-673)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-308 (-675)))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-668))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-673))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-675))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-668))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-673))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-675))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-668))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-673))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-308 (-675))) (-5 *1 (-322)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-322)))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-410 *3)) (-4 *3 (-533)) (-4 *3 (-540)))) - ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-533)) (-4 *3 (-1063)))) + (-12 (|has| *6 (-6 -4329)) (-4 *4 (-354)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-510 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4329)) (-4 *4 (-539)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-4 *7 (-961 *4)) (-4 *8 (-364 *7)) + (-4 *9 (-364 *7)) (-5 *2 (-619 *6)) + (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) + (-4 *10 (-661 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) (-5 *2 (-112)))) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-619 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-399 (-548))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-583 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) - (-4 *2 (-821))))) + (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) + (-5 *2 (-619 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) - (-5 *1 (-313 *4 *5 *6 *7))))) + (-12 + (-5 *3 + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *2 (-619 (-217))) (-5 *1 (-296))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-663 *4)) (-4 *5 (-630 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1 *1) (-4 *1 (-936)))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) + (-12 (-5 *3 (-398 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-539)) + (-4 *4 (-1016)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *5 *6 *2)) + (-4 *6 (-630 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) + (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-298) (-145))) + (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-112)) + (-5 *1 (-893 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-918 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) + (-4 *1 (-1194 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796))))) +(((*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547))))) +(((*1 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) + (-5 *1 (-447 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) + (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1194 *2))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) + (-4 *5 (-364 *2)) (-4 *3 (-13 (-364 *4) (-10 -7 (-6 -4328))))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) + (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) + (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821)) + (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1965 *9)))) + (-5 *1 (-1037 *6 *7 *4 *8 *9))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-539)) (-4 *2 (-1016)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *1)))) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) - (-5 *1 (-440 *4 *5 *6 *7))))) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-104))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) + (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) + (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-946 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-821) (-540)))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386))))) + (-12 (-4 *1 (-340)) (-5 *3 (-547)) (-5 *2 (-1145 (-890) (-745)))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) + (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1028))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-540)) - (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 (-619 (-890)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) + (-12 (-5 *3 (-398 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1194 *5)) + (-5 *1 (-702 *5 *2)) (-4 *5 (-354))))) (((*1 *2 *1) - (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-533)) - (-5 *2 (-399 (-548))))) + (-12 (-5 *2 (-1203 *3 *4 *5)) (-5 *1 (-310 *3 *4 *5)) + (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1135)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) ((*1 *2 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-410 *3)) (-4 *3 (-533)) - (-4 *3 (-540)))) - ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-399 (-548))))) - ((*1 *2 *1) - (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-533)) - (-5 *2 (-399 (-548))))) - ((*1 *2 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-807 *3)) (-4 *3 (-533)) - (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-814 *3)) (-4 *3 (-533)) - (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-533)) - (-5 *2 (-399 (-548))))) - ((*1 *2 *3) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2))))) + (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) + (-14 *4 + (-1 (-112) (-2 (|:| -3479 *3) (|:| -4248 *2)) + (-2 (|:| -3479 *3) (|:| -4248 *2))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1218 *5)) (-4 *5 (-298)) + (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-590 *5))) (-5 *3 (-1135)) (-4 *5 (-421 *4)) + (-4 *4 (-821)) (-5 *1 (-556 *4 *5))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-409 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-434 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))) (((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) ((*1 *1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-12 (-5 *2 (-745)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) - ((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) + ((*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-327 *3 *4 *5 *2)) (-4 *3 (-355)) - (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) - (-4 *2 (-334 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-326 *3 *4 *5 *2)) (-4 *3 (-354)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) + (-4 *2 (-333 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-699 *2 *3)) (-4 *3 (-1194 *2))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1172)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) - (-4 *2 (-1172))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) - (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) - (-4 *6 (-767)) (-5 *2 (-1131 *8)) (-5 *1 (-313 *6 *7 *8 *9))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-548)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) - (-5 *1 (-440 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-821) (-540)))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-890)) (-5 *4 (-218)) (-5 *5 (-548)) (-5 *6 (-843)) - (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *1)) (-5 *4 (-1218 *1)) (-4 *1 (-615 *5)) + (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -3509 (-663 *5)) (|:| |vec| (-1218 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) + (-5 *2 (-663 *4))))) +(((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) + (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-619 *8)) + (|:| |towers| (-619 (-1106 *5 *6 *7 *8))))) + (-5 *1 (-1106 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-1135)) + (-4 *2 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-1194 (-399 (-548)))) (-5 *1 (-882 *3 *2)) - (-4 *2 (-1194 (-399 *3)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1172)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-58 *3))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-583 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1172)) (-5 *2 (-1223))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1143 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-271))) (-5 *1 (-271)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-282))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *5 (-1194 *4)) (-5 *2 (-1131 (-398 *5))) (-5 *1 (-593 *4 *5)) + (-5 *3 (-398 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-145) (-27) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-1131 (-398 *6))) (-5 *1 (-593 *5 *6)) (-5 *3 (-398 *6))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) + (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-736)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) + (-5 *3 (-398 (-547))) (-5 *1 (-1120 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-311 *3 *4 *5)) - (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3)))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-548)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *7 (-821)) - (-5 *1 (-440 *5 *6 *7 *4))))) + (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) + (-5 *2 (-1131 *3))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-821) (-540)))))) + (-12 (-4 *3 (-1194 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-954 *4 *2 *3 *5)) + (-4 *4 (-340)) (-4 *5 (-699 *2 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-760))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-890)) (-4 *4 (-359)) (-4 *4 (-354)) (-5 *2 (-1131 *1)) + (-4 *1 (-320 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1131 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *3 (-354)) + (-4 *2 (-1194 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-1131 *4)) + (-5 *1 (-517 *4))))) (((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-4 *5 (-821)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 - (-1218 - (-2 (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) - (|:| |deltaX| (-218)) (|:| |deltaY| (-218)) (|:| -4101 (-548)) - (|:| -4082 (-548)) (|:| |spline| (-548)) (|:| -3047 (-548)) - (|:| |axesColor| (-843)) (|:| -1841 (-548)) - (|:| |unitsColor| (-843)) (|:| |showing| (-548))))) - (-5 *1 (-1219))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) - (-4 *3 (-1194 (-399 *4)))))) + (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) + (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) + (|:| |args| (-619 (-832))))) + (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1172)) - (-4 *3 (-365 *4)) (-4 *5 (-365 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-975))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-619 (-1135))) - (-4 *2 (-13 (-422 (-166 *5)) (-971) (-1157))) - (-4 *5 (-13 (-540) (-821))) (-5 *1 (-579 *5 *6 *2)) - (-4 *6 (-13 (-422 *5) (-971) (-1157)))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) - (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *2 (-1167 (-895))) - (-5 *1 (-310)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) - (-5 *5 (-1058 (-218))) (-5 *6 (-548)) (-5 *7 (-1118)) - (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) - (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) - (-5 *2 (-1167 (-895))) (-5 *1 (-310)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) - (-5 *5 (-1058 (-218))) (-5 *6 (-218)) (-5 *7 (-548)) (-5 *8 (-1118)) - (-5 *2 (-1167 (-895))) (-5 *1 (-310))))) + (-12 (-5 *3 (-1 (-619 *2) *2 *2 *2)) (-4 *2 (-1063)) + (-5 *1 (-102 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (-5 *1 (-102 *2))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-722))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *2 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) - (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-821) (-540)))))) + (-12 + (-5 *2 + (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-547))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-539)) (-4 *8 (-918 *7 *5 *6)) + (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *9) (|:| |radicand| *9))) + (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) + (-4 *9 + (-13 (-354) + (-10 -8 (-15 -1382 (*8 $)) (-15 -1392 (*8 $)) (-15 -3834 ($ *8)))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) + (-4 *4 (-257 *3)) (-4 *5 (-767))))) (((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) + (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) + ((*1 *1 *1) (-4 *1 (-532))) + ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1169 *3)) (-4 *3 (-1172)))) ((*1 *2 *1) - (-12 (-5 *2 (-1218 (-3 (-459) "undefined"))) (-5 *1 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548))))) - (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *5)) - (-4 *5 (-1194 (-399 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-548)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1172)) - (-4 *5 (-365 *4)) (-4 *3 (-365 *4))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) - ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821))) (-5 *2 (-166 *5)) - (-5 *1 (-579 *4 *5 *3)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) - (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-310)) (-5 *3 (-218))))) -(((*1 *2 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-548)) - (-5 *1 (-440 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-422 *4)) (-5 *1 (-155 *4 *2)) - (-4 *4 (-13 (-821) (-540)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1194 (-399 (-548)))) - (-5 *2 (-2 (|:| |den| (-548)) (|:| |gcdnum| (-548)))) - (-5 *1 (-882 *3 *4)) (-4 *4 (-1194 (-399 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1194 (-399 *2))) (-5 *2 (-548)) (-5 *1 (-882 *4 *3)) - (-4 *3 (-1194 (-399 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) - (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4))))))) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) + (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-1131 *3)) + (-4 *3 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) + (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1131 *3))) + (-4 *3 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) + (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-548))) (-5 *4 (-548)) (-5 *2 (-52)) - (-5 *1 (-974))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821))) - (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) - (-5 *1 (-579 *4 *3 *2)) (-4 *3 (-13 (-422 *4) (-971) (-1157)))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-286 *6)) (-5 *4 (-114)) (-4 *6 (-422 *5)) - (-4 *5 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) - (-5 *1 (-309 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) - (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) - (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-619 (-286 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-286 *8)) - (-5 *6 (-619 *8)) (-4 *8 (-422 *7)) - (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) - (-5 *1 (-309 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-286 *7)) - (-4 *7 (-422 *6)) (-4 *6 (-13 (-821) (-540) (-593 (-524)))) - (-5 *2 (-52)) (-5 *1 (-309 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-286 *8))) - (-4 *8 (-422 *7)) (-5 *5 (-286 *8)) - (-4 *7 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) - (-5 *1 (-309 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-286 *5)) (-5 *4 (-114)) (-4 *5 (-422 *6)) - (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) - (-5 *1 (-309 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) - (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-4 *3 (-422 *6)) - (-4 *6 (-13 (-821) (-540) (-593 (-524)))) (-5 *2 (-52)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-286 *3)) (-5 *6 (-619 *3)) - (-4 *3 (-422 *7)) (-4 *7 (-13 (-821) (-540) (-593 (-524)))) - (-5 *2 (-52)) (-5 *1 (-309 *7 *3))))) -(((*1 *1) - (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) - (-4 *4 (-640 *3)))) - ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-540 *6 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1223))))) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) + (-5 *2 (-619 (-619 (-619 (-912 *3)))))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-4 *1 (-936)))) (((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-184))))) +(((*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-217)))) (-5 *1 (-296))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-154)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-318 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-505 *3 *4)) + (-14 *4 (-547))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) + (-4 *3 (-13 (-821) (-539)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-422 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-459)) (-5 *1 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-1194 (-399 *3))) (-5 *2 (-890)) - (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-399 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) - (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) - (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) - (-4 *6 (-13 (-1016) (-855 *5) (-821) (-593 (-861 *5)))) - (-4 *2 (-13 (-422 *6) (-855 *5) (-593 (-861 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821))) - (-4 *2 (-13 (-422 *4) (-971) (-1157))) (-5 *1 (-579 *4 *2 *3)) - (-4 *3 (-13 (-422 (-166 *4)) (-971) (-1157)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-833)))) - ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1116 *4)) - (-4 *4 (-1063)) (-4 *4 (-1172))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-619 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) - (-5 *1 (-440 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-154)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) - (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) - (-4 *8 (-334 *5 *6 *7)) - (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) - (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *8))) - (-5 *1 (-880 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) - (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) - (-4 *6 (-334 (-399 (-548)) *4 *5)) - (-5 *2 (-2 (|:| -1672 (-745)) (|:| -3418 *6))) - (-5 *1 (-881 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) + (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) + (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) + (-15 -1392 ((-1087 *3 (-590 $)) $)) + (-15 -3834 ($ (-1087 *3 (-590 $)))))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1194 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-236 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1073))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157))) - (-4 *4 (-13 (-540) (-821))) - (-4 *2 (-13 (-422 (-166 *4)) (-971) (-1157))) - (-5 *1 (-579 *4 *5 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-5 *1 (-308 *3)) (-4 *3 (-540)) (-4 *3 (-821))))) + (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| |radicand| (-398 *5)) (|:| |deg| (-745)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-398 *5)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-354) (-819))) + (-5 *2 (-619 (-2 (|:| -2483 (-619 *3)) (|:| -3026 *5)))) + (-5 *1 (-177 *5 *3)) (-4 *3 (-1194 (-166 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-354) (-819))) + (-5 *2 (-619 (-2 (|:| -2483 (-619 *3)) (|:| -3026 *4)))) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))) (((*1 *2 *1) - (-12 (-5 *2 (-168)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-440 *4 *5 *6 *2)) - (-4 *4 (-443)) (-4 *6 (-821))))) -(((*1 *1) (-5 *1 (-154)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) (-4 *6 (-1194 *5)) - (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) - (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-112)) - (-5 *1 (-880 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) - (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) - (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-881 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -2802 *3)))) - (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) (-4 *6 (-767)) - (-4 *7 (-821)) (-5 *1 (-440 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-154)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-443)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-448 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-878))))) -(((*1 *1 *1) (-5 *1 (-1028)))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) - (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) - (-4 *2 (-661 *3 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-745))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-440 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-154)))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219))))) + (-12 (-4 *4 (-442)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) + (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-5 *1 (-865 *2 *4)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-727))))) (((*1 *2 *3) - (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) - (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821)))) - ((*1 *2 *3) - (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1))))) -(((*1 *1 *1) (-5 *1 (-1028)))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-548)) (-4 *3 (-169)) (-4 *5 (-365 *3)) - (-4 *6 (-365 *3)) (-5 *1 (-662 *3 *5 *6 *2)) - (-4 *2 (-661 *3 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-299)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) - (-4 *1 (-299))))) -(((*1 *1 *1) - (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) - (-4 *2 (-443)))) - ((*1 *1 *1) - (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) - (-4 *4 (-1194 (-399 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *3 (-443)))) - ((*1 *1 *1) - (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-299)) (-4 *3 (-540)) (-5 *1 (-1123 *3 *2)) - (-4 *2 (-1194 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) + (-12 (-4 *4 (-1016)) (-4 *5 (-1194 *4)) (-5 *2 (-1 *6 (-619 *6))) + (-5 *1 (-1212 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1209 *4))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-539))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-440 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) - (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-1219)) - (-5 *1 (-1222)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-354)) + (-5 *2 (-2 (|:| -4033 (-409 *3)) (|:| |special| (-409 *3)))) + (-5 *1 (-702 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-298)) (-4 *5 (-1016)) + (-5 *2 (-1218 (-1218 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1218 *5))))) +(((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1191 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1135)) + (-4 *5 (-354)) (-5 *1 (-892 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *5)) (-4 *5 (-354)) (-5 *2 (-1131 *5)) + (-5 *1 (-892 *4 *5)) (-14 *4 (-1135)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-354)) + (-5 *2 (-398 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1135))))) +(((*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-796))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-890)) (-5 *1 (-432 *2)) + (-4 *2 (-1194 (-547))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-432 *2)) + (-4 *2 (-1194 (-547))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-432 *2)) + (-4 *2 (-1194 (-547))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) + (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) + (-5 *6 (-112)) (-5 *1 (-432 *2)) (-4 *2 (-1194 (-547))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) - (-5 *2 (-1219)) (-5 *1 (-1222))))) + (-12 (-5 *3 (-890)) (-5 *4 (-409 *2)) (-4 *2 (-1194 *5)) + (-5 *1 (-434 *5 *2)) (-4 *5 (-1016))))) (((*1 *2 *3) - (-12 (-5 *2 (-410 (-1131 *1))) (-5 *1 (-308 *4)) (-5 *3 (-1131 *1)) - (-4 *4 (-443)) (-4 *4 (-540)) (-4 *4 (-821)))) + (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1131 *7))) + (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1))))) -(((*1 *1 *1) (-5 *1 (-1028)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-169)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-5 *1 (-662 *4 *5 *6 *2)) - (-4 *2 (-661 *4 *5 *6))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-299))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-829)))) + (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-409 (-1131 *5))) + (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) + (-4 *3 (-364 *2)) (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-619 (-619 (-547)))) + (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *6 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-547)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-409 *2)) (-4 *2 (-539))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-4 *5 (-354)) + (-4 *5 (-539)) (-5 *2 (-1218 *5)) (-5 *1 (-614 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) + (-3998 (-4 *5 (-354))) (-4 *5 (-539)) (-5 *2 (-1218 (-398 *5))) + (-5 *1 (-614 *5 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-821)) + (-4 *3 (-1063))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1135)) + (-4 *5 (-13 (-539) (-1007 (-547)) (-145))) + (-5 *2 + (-2 (|:| -2848 (-398 (-921 *5))) (|:| |coeff| (-398 (-921 *5))))) + (-5 *1 (-553 *5)) (-5 *3 (-398 (-921 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *1) (-5 *1 (-1028)))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-619 (-934))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-829)))) ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-934)))) ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-958)))) ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-1172)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *2 *3)) (-4 *3 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-927 *3)) (-5 *1 (-1123 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) - (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) - (-5 *1 (-762))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-218)) - (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 *4)))) - (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) - (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4))))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-843)) - (-5 *5 (-890)) (-5 *6 (-619 (-255))) (-5 *2 (-459)) (-5 *1 (-1222)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-459)) - (-5 *1 (-1222)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-619 (-255))) - (-5 *2 (-459)) (-5 *1 (-1222))))) -(((*1 *2 *3) - (-12 (-4 *1 (-878)) (-5 *2 (-410 (-1131 *1))) (-5 *3 (-1131 *1))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) - (-4 *4 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745)))) - ((*1 *1 *1) (-4 *1 (-226))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-258 *3)) (-4 *3 (-821)))) - ((*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) - (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) - (-4 *4 (-1194 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) - (-4 *3 (-1194 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-355)) (-4 *2 (-869 *3)) (-5 *1 (-566 *2)) - (-5 *3 (-1135)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-566 *2)) (-4 *2 (-355)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) - (-4 *4 (-1063)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) - (-4 *3 (-1016)) (-14 *5 *3)))) -(((*1 *1 *1) (-5 *1 (-1028)))) -(((*1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-295 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-399 (-548)))) - (-5 *2 (-2 (|:| -2054 (-1116 *4)) (|:| -2065 (-1116 *4)))) - (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-548)) - (-5 *6 - (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) - (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) - (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) - (-5 *1 (-762)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-548)) - (-5 *6 - (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1619 (-371)))) - (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) - (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) - (-5 *1 (-762))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *1 (-566 *2)) (-4 *2 (-1007 *3)) - (-4 *2 (-355)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)) - (-4 *2 (-13 (-422 *4) (-971) (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *1) (-4 *1 (-340)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-971) (-1157))) - (-4 *4 (-13 (-821) (-540))) (-5 *1 (-606 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1135)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-619 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218))))) - (-5 *1 (-543)))) - ((*1 *2 *1) - (-12 (-4 *1 (-589 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-5 *2 (-619 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-619 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218))))) - (-5 *1 (-777))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-515))))) -(((*1 *2 *3) - (-12 (-5 *3 (-896)) - (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) - (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) - (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) - (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) - (-5 *1 (-151))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1172)) - (-4 *5 (-1172)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-745)) - (-4 *7 (-1172)) (-4 *5 (-1172)) (-5 *2 (-233 *6 *5)) - (-5 *1 (-232 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1172)) (-4 *5 (-1172)) - (-4 *2 (-365 *5)) (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) - (-4 *2 (-417 *5)) (-5 *1 (-415 *6 *4 *5 *2)) (-4 *4 (-417 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1172)) - (-4 *5 (-1172)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1172)) - (-4 *5 (-1172)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1116 *6)) (-4 *6 (-1172)) - (-4 *3 (-1172)) (-5 *2 (-1116 *3)) (-5 *1 (-1114 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1218 *6)) (-4 *6 (-1172)) - (-4 *5 (-1172)) (-5 *2 (-1218 *5)) (-5 *1 (-1217 *6 *5))))) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-590 *3)) (-5 *5 (-1131 *3)) + (-4 *3 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-590 *3)) (-5 *5 (-398 (-1131 *3))) + (-4 *3 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-565 *3)) (-5 *1 (-543 *6 *3 *7)) (-4 *7 (-1063))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))) + (-4 *2 (-13 (-1063) (-34)))))) +(((*1 *1) + (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) + (-4 *4 (-640 *3)))) + ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131 *1)) (-4 *1 (-981))))) +(((*1 *1) (-5 *1 (-321)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1233 (-1135) *3)) (-4 *3 (-1016)) (-5 *1 (-1240 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *1 (-1242 *3 *4))))) +(((*1 *1) (-5 *1 (-139)))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) - (-4 *5 (-163 *4)) (-4 *4 (-533)) (-5 *1 (-147 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1194 *5)) - (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *1 (-350 *4 *5 *3)))) + (-12 (-4 *4 (-767)) + (-4 *3 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *5 (-539)) + (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 (-1131 (-548)))) (-5 *3 (-1131 (-548))) - (-5 *1 (-556)))) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) + (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 (-1131 *1))) (-5 *3 (-1131 *1)) - (-4 *1 (-878))))) + (-12 (-5 *3 (-619 *6)) + (-4 *6 + (-13 (-821) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) + (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) + (-4 *2 (-918 (-921 *4) *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1118)) (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) + (-4 *3 (-13 (-821) (-539)))))) (((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1218 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-218))) (-5 *4 (-745)) (-5 *2 (-663 (-218))) - (-5 *1 (-297))))) + (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) + (-14 *3 (-547)) (-14 *4 (-745))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-166 (-217))) (-5 *6 (-1118)) + (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-399 (-548)))) - (-5 *2 (-2 (|:| -1918 (-1116 *4)) (|:| -1929 (-1116 *4)))) - (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) - (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) - (-5 *1 (-762))))) + (|partial| -12 (-5 *3 (-590 *4)) (-4 *4 (-821)) (-4 *2 (-821)) + (-5 *1 (-589 *2 *4))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-619 *11)) + (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1965 *11)))))) + (-5 *6 (-745)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1965 *11)))) + (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) + (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767)) + (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-619 *11)) + (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1965 *11)))))) + (-5 *6 (-745)) + (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1965 *11)))) + (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) + (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-442)) (-4 *8 (-767)) + (-4 *9 (-821)) (-5 *1 (-1105 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-645)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) + (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-890)) (-4 *5 (-540)) (-5 *2 (-663 *5)) - (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) - (-4 *2 (-1172))))) + (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-442)) + (-5 *2 (-619 (-619 (-239 *5 *6)))) (-5 *1 (-461 *5 *6 *7)) + (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) - ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-912 (-218))) (-5 *2 (-218)) (-5 *1 (-1168)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016))))) + (|partial| -12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) + (-5 *2 (-1131 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) + (-5 *2 (-1131 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-463))) ((*1 *1 *1 *1) (-4 *1 (-736)))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-722))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-341)) (-5 *2 (-1218 *1)))) + (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-398 (-547)))) + (-5 *1 (-296))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1185 (-547)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760))))) +(((*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) - (-5 *2 (-1218 *1))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-371)) (-5 *1 (-1028))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-399 (-548))) (-5 *2 (-218)) (-5 *1 (-297))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) - (-5 *1 (-1120 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) - (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) - (-5 *1 (-762)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-548)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-371))) - (-5 *3 (-1218 (-371))) (-5 *5 (-371)) (-5 *2 (-1223)) - (-5 *1 (-762))))) -(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923))))) -(((*1 *2 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-399 *5)) - (|:| |c2| (-399 *5)) (|:| |deg| (-745)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016))))) -(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-341))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-371)) (-5 *1 (-1028))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821))))) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-517 *4)) + (-4 *4 (-340))))) +(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795))))) +(((*1 *2 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) (((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) ((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-548))) (-5 *5 (-1 (-1116 *4))) (-4 *4 (-355)) - (-4 *4 (-1016)) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) - (-4 *3 (-918 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| (-619 *3)))) - (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) - (-4 *8 - (-13 (-355) - (-10 -8 (-15 -2470 (*3 $)) (-15 -2480 (*3 $)) (-15 -3743 ($ *3)))))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-761)) (-5 *2 (-1004)) - (-5 *3 - (-2 (|:| |fn| (-308 (-218))) - (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-761)) (-5 *2 (-1004)) - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1194 *2)) (-4 *2 (-1176)) (-5 *1 (-146 *2 *4 *3)) - (-4 *3 (-1194 (-399 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) - (-4 *2 (-1016))))) + (-12 (-4 *4 (-13 (-442) (-145))) (-5 *2 (-409 *3)) + (-5 *1 (-99 *4 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-13 (-442) (-145))) + (-5 *2 (-409 *3)) (-5 *1 (-99 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))) + (-4 *2 (-13 (-821) (-21)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1218 (-547))) (-5 *3 (-547)) (-5 *1 (-1073)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1218 (-547))) (-5 *3 (-619 (-547))) (-5 *4 (-547)) + (-5 *1 (-1073))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) - (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-410 (-1131 *8))) - (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1131 *8)))) + (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-539)) + (-4 *7 (-918 *3 *5 *6)) + (-5 *2 (-2 (|:| -4248 (-745)) (|:| -1557 *8) (|:| |radicand| *8))) + (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) + (-4 *8 + (-13 (-354) + (-10 -8 (-15 -1382 (*7 $)) (-15 -1392 (*7 $)) (-15 -3834 ($ *7)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-240))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))) ((*1 *2 *3) - (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) - (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1028)) (-5 *3 (-1118))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) + ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) (-4 *1 (-838 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *4 (-821))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-254)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-168))))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-355)) (-4 *3 (-1016)) - (-5 *1 (-1120 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-540)) - (-4 *8 (-918 *7 *5 *6)) - (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *3))) - (-5 *1 (-922 *5 *6 *7 *8 *3)) (-5 *4 (-745)) - (-4 *3 - (-13 (-355) - (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-399 *6)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) - (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *3) (|:| |radicand| *6))) - (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-745)) (-4 *7 (-1194 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-399 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-540)) - (-4 *4 (-1016)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *5 *6 *2)) - (-4 *6 (-630 *5))))) -(((*1 *2) - (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) - (-5 *1 (-448 *3 *4 *2 *5)) (-4 *5 (-918 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *2 (-878)) - (-5 *1 (-875 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-878)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1194 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1028))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1116 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1016)) - (-5 *3 (-399 (-548))) (-5 *1 (-1120 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-371)) (-5 *1 (-760))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-548))) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-540)) (-4 *8 (-918 *7 *5 *6)) - (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *9) (|:| |radicand| *9))) - (-5 *1 (-922 *5 *6 *7 *8 *9)) (-5 *4 (-745)) - (-4 *9 - (-13 (-355) - (-10 -8 (-15 -2470 (*8 $)) (-15 -2480 (*8 $)) (-15 -3743 ($ *8)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-319 *3)))) + (-12 (-5 *2 (-663 *3)) + (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-217)))) (-5 *1 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-318 *3)) (-4 *3 (-1172)))) + ((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1172)) + (-14 *4 (-547))))) +(((*1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-230 *3 *4)) (-4 *4 (-1016)) + (-4 *4 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-506 *3 *4)) - (-14 *4 (-548))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) - (-5 *2 (-2 (|:| |radicand| (-399 *5)) (|:| |deg| (-745)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *5 (-230 (-3763 *3) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *5)) + (-2 (|:| -3479 *2) (|:| -4248 *5)))) + (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) + (-4 *7 (-918 *4 *5 (-834 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1135)) + (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) (-5 *1 (-540 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) + (-5 *1 (-998 *4))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1138)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1138)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1135))) (-5 *4 (-1135)) + (-5 *1 (-1138)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1138)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-428)) (-5 *3 (-1135)) (-5 *1 (-1139)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-428)) (-5 *3 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-796))))) (((*1 *2 *3) - (-12 (-4 *4 (-1016)) (-4 *5 (-1194 *4)) (-5 *2 (-1 *6 (-619 *6))) - (-5 *1 (-1212 *4 *5 *3 *6)) (-4 *3 (-630 *5)) (-4 *6 (-1209 *4))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 (-370)) (-5 *1 (-184))))) +(((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832)))))) (((*1 *2 *3) - (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) - (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) + (-12 (-5 *3 (-619 (-2 (|:| -2106 *4) (|:| -1618 (-547))))) + (-4 *4 (-1194 (-547))) (-5 *2 (-712 (-745))) (-5 *1 (-432 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) - (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) -(((*1 *1) (-5 *1 (-1028)))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1118)) (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) - (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-540)) - (-4 *7 (-918 *3 *5 *6)) - (-5 *2 (-2 (|:| -3352 (-745)) (|:| -1489 *8) (|:| |radicand| *8))) - (-5 *1 (-922 *5 *6 *3 *7 *8)) (-5 *4 (-745)) - (-4 *8 - (-13 (-355) - (-10 -8 (-15 -2470 (*7 $)) (-15 -2480 (*7 $)) (-15 -3743 ($ *7)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) - ((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) - (-14 *4 (-548))))) + (-12 (-5 *3 (-409 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1016)) + (-5 *2 (-712 (-745))) (-5 *1 (-434 *4 *5))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-1212 *5 *2 *6 *3)) (-4 *6 (-630 *2)) (-4 *3 (-1209 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-883 *3)) (-4 *3 (-298))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-1131 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *4 (-590 $)) $)) + (-15 -1392 ((-1087 *4 (-590 $)) $)) + (-15 -3834 ($ (-1087 *4 (-590 $)))))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539)) + (-5 *2 (-1218 *4)) (-5 *1 (-614 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539))))) (((*1 *2 *3) (-12 (-4 *4 (-878)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-410 (-1131 *7))) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-875 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-410 (-1131 *5))) + (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-409 (-1131 *5))) (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) + (-4 *3 (-1194 (-166 (-547)))) (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-282))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1025)) (-4 *3 (-1157)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-354)) (-5 *1 (-865 *2 *3)) + (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 (-398 (-921 *6)))) + (-5 *3 (-398 (-921 *6))) + (-4 *6 (-13 (-539) (-1007 (-547)) (-145))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-553 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) (((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-1028))))) + (|partial| -12 (-5 *2 (-1118)) (-5 *3 (-547)) (-5 *1 (-1028))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1218 *3)) + (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3)) + (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328))))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-619 + (-2 + (|:| -3326 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (|:| -1777 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-217))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2693 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-542))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1173 *2)) + (-4 *2 (-1063)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-821)) + (-5 *1 (-1173 *2))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1014))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-619 (-590 *3))) + (|:| |vals| (-619 *3)))) + (-5 *1 (-268 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-767)) + (-4 *3 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *5 (-539)) + (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-398 (-921 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) + (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *6)) + (-4 *6 + (-13 (-821) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) + (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) + (-4 *2 (-918 (-921 *4) *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-658 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) + (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1135)))) + (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-217))) (-5 *5 (-547)) + (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |k| (-1135)) (|:| |c| (-1240 *3))))) + (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1242 *3 *4))))) + (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) + (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) (((*1 *1 *1) (-4 *1 (-170))) ((*1 *1 *1) - (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) - (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) - (-4 *2 (-1172))))) + (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) + (-4 *3 (-1194 *4)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-458)))) +(((*1 *2 *1) + (-12 (-4 *1 (-244 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-767)) (-4 *2 (-257 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-1016)) + (-5 *2 (-663 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890))))) +(((*1 *2) + (-12 (-4 *1 (-340)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-307 (-217)))) + (-5 *2 + (-2 (|:| |additions| (-547)) (|:| |multiplications| (-547)) + (|:| |exponentiations| (-547)) (|:| |functionCalls| (-547)))) + (-5 *1 (-296))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1172))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1116 *3))) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016))))) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1218 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) + (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1194 *5)) + (-5 *2 (-663 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-590 *4)) (-5 *1 (-589 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-821))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3702 (-404 *4 (-398 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -4033 (-398 *6)) + (|:| |special| (-398 *6)))) + (-5 *1 (-702 *5 *6)) (-5 *3 (-398 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-745)) (-4 *5 (-354)) + (-5 *2 (-2 (|:| -3826 *3) (|:| -3836 *3))) (-5 *1 (-865 *3 *5)) + (-4 *3 (-1194 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-745)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) + (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) + ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-619 (-547))) (-5 *3 (-112)) (-5 *1 (-1073))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-1118)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-722))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-117 *3)) (-14 *3 (-547)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1116 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-298)) (-5 *1 (-171 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-171 (-547))) (-5 *1 (-740 *3)) (-4 *3 (-395)))) + ((*1 *2 *1) + (-12 (-5 *2 (-171 (-398 (-547)))) (-5 *1 (-840 *3)) (-14 *3 (-547)))) + ((*1 *2 *1) + (-12 (-14 *3 (-547)) (-5 *2 (-171 (-398 (-547)))) + (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) (((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) +(((*1 *1 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-388))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) + (-4 *2 (-13 (-1063) (-10 -8 (-15 -2470 ($ $ $)))))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) + (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) + (-4 *8 (-13 (-1016) (-592 (-861 *6)) (-1007 *7))) + (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) + (-5 *1 (-910 *6 *7 *8))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-418 *3 *2)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))) + (-4 *2 (-13 (-821) (-21)))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) (((*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-821)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3352 (-548)))) (-4 *1 (-422 *3)))) + (-5 *2 (-2 (|:| |val| *1) (|:| -4248 (-547)))) (-4 *1 (-421 *3)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-861 *3)))) + (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -4248 (-861 *3)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3352 (-548)))) + (-5 *2 (-2 (|:| |val| *3) (|:| -4248 (-547)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) - (-15 -2480 (*7 $)))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) + (-15 -1392 (*7 $)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-408 *3)) (-4 *3 (-298)) + (-4 *3 (-539)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-890)) (-4 *4 (-354)) (-5 *2 (-1218 *1)) + (-4 *1 (-320 *4)))) + ((*1 *2) (-12 (-4 *3 (-354)) (-5 *2 (-1218 *1)) (-4 *1 (-320 *3)))) + ((*1 *2) + (-12 (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *1)) + (-4 *1 (-400 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) + (-5 *2 (-1218 *6)) (-5 *1 (-404 *3 *4 *5 *6)) + (-4 *6 (-13 (-400 *4 *5) (-1007 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) + (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7)) + (-4 *6 (-400 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-408 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 *4))) (-5 *1 (-517 *4)) + (-4 *4 (-340))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-217)) (-5 *5 (-547)) (-5 *2 (-1167 *3)) + (-5 *1 (-764 *3)) (-4 *3 (-943)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-112)) + (-5 *1 (-1167 *2)) (-4 *2 (-943))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-282))) + ((*1 *1) (-5 *1 (-832))) + ((*1 *1) + (-12 (-4 *2 (-442)) (-4 *3 (-821)) (-4 *4 (-767)) + (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1049))) + ((*1 *1) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-98 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *1 *1 *1) (-4 *1 (-736)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-318 *3)) (-4 *3 (-1172)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) (-14 *4 *2)))) + (-12 (-5 *2 (-547)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1172)) (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-240))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-1218 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) + (-5 *1 (-998 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-713))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-4 *1 (-936))) ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-168)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) + (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) + (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4))))) +(((*1 *1) (-5 *1 (-1219)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1209 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-539)) + (-5 *2 (-112)) (-5 *1 (-614 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) + (-4 *3 (-1063)) (-5 *2 (-745)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4328)) (-4 *1 (-479 *4)) + (-4 *4 (-1172)) (-5 *2 (-745))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135)))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004)) + (-5 *1 (-731))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) + (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-184))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) (((*1 *2 *3) (-12 (-4 *4 (-1016)) (-4 *3 (-1194 *4)) (-4 *2 (-1209 *4)) (-5 *1 (-1212 *4 *3 *5 *2)) (-4 *5 (-630 *3))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *4 (-1135)) - (-5 *1 (-1138)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1138)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-429)) (-5 *3 (-1135)) (-5 *1 (-1139)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-429)) (-5 *3 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1131 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-572 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-542))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -4104 *1) (|:| -4315 *1) (|:| |associate| *1))) + (-4 *1 (-539))))) +(((*1 *1) (-5 *1 (-282)))) +(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-210)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1140))) (-5 *3 (-1140)) (-5 *1 (-1080))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-296)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) + (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1135)) + (-4 *4 (-13 (-539) (-1007 (-547)) (-145))) (-5 *1 (-553 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1131 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) + (-5 *1 (-32 *4 *2))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-442))))) (((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-878)) (-4 *5 (-767)) @@ -1605,1311 +1512,716 @@ ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-878)) (-5 *1 (-876 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1027)))) +(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-266))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-748)) (-5 *1 (-114))))) +(((*1 *1 *1 *1) (-5 *1 (-159))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-159))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) (-5 *1 (-267 *4 *3)) + (-4 *3 (-13 (-421 *4) (-971)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1027)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) + (-5 *1 (-664 *4))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) (-12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-793 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *1 (-864)) + (-5 *3 + (-2 (|:| |pde| (-619 (-307 (-217)))) + (|:| |constraints| + (-619 + (-2 (|:| |start| (-217)) (|:| |finish| (-217)) + (|:| |grid| (-745)) (|:| |boundaryType| (-547)) + (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) + (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) + (|:| |tol| (-217)))) + (-5 *2 (-1004))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) + (-5 *2 (-370)) (-5 *1 (-258)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *4 (-1063))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4328)) (-4 *1 (-480 *3)) - (-4 *3 (-1172))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-619 + (-2 (|:| -3107 (-745)) + (|:| |eqns| + (-619 + (-2 (|:| |det| *7) (|:| |rows| (-619 (-547))) + (|:| |cols| (-619 (-547)))))) + (|:| |fgb| (-619 *7))))) + (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) + (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) + (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-217))) (-5 *5 (-547)) + (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-302)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-963)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1005))))) +(((*1 *2) + (-12 (-5 *2 (-1218 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) + (-14 *3 (-890)) (-14 *4 (-890))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-663 (-547))) (-5 *3 (-619 (-547))) (-5 *1 (-1073))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) + (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) (((*1 *2 *1) - (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-5 *2 (-1118))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1) (-4 *1 (-936))) ((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) ((*1 *1) (-4 *1 (-533))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) + (-4 *3 (-1194 *4)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4319)) (-4 *1 (-395)))) + ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) + (-5 *4 (-619 (-890))) (-5 *5 (-619 (-254))) (-5 *1 (-458)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) + (-5 *4 (-619 (-890))) (-5 *1 (-458)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) + ((*1 *1 *1) (-5 *1 (-458)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-832))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1102 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-354)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) + (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-230 *4 *5)) + (-4 *7 (-230 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) + (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5))))) +(((*1 *1 *1) (-5 *1 (-523)))) (((*1 *2 *3) (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-590 *3)) (-4 *3 (-821))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3)) + (-4 *3 (-13 (-1157) (-29 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) + (-5 *2 + (-3 (-1131 *4) + (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082))))))) + (-5 *1 (-337 *4)) (-4 *4 (-340))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) (((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-890)) (-5 *1 (-760))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) + (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) + (-5 *1 (-388)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) + (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) + (-5 *1 (-388)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-619 (-1135))) (-5 *5 (-1138)) (-5 *3 (-1135)) + (-5 *2 (-1067)) (-5 *1 (-388))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1150))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767)) + (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-442)) (-4 *8 (-767)) + (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1105 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) (((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1135)) (-4 *4 (-1016)) (-4 *4 (-821)) - (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) - (-4 *1 (-422 *4)))) + (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -4248 (-547)))) + (-4 *1 (-421 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1016)) (-4 *4 (-821)) - (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) - (-4 *1 (-422 *4)))) + (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -4248 (-547)))) + (-4 *1 (-421 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) - (-5 *2 (-2 (|:| |var| (-591 *1)) (|:| -3352 (-548)))) - (-4 *1 (-422 *3)))) + (-5 *2 (-2 (|:| |var| (-590 *1)) (|:| -4248 (-547)))) + (-4 *1 (-421 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -3352 (-745)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-861 *3)) (|:| -4248 (-745)))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-745)))))) + (-4 *5 (-821)) (-5 *2 (-2 (|:| |var| *5) (|:| -4248 (-745)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-4 *7 (-918 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3352 (-548)))) + (-5 *2 (-2 (|:| |var| *5) (|:| -4248 (-547)))) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) - (-15 -2480 (*7 $)))))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-1016)) - (-5 *2 (-663 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-1172)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-506 *3 *4)) (-4 *3 (-1172)) - (-14 *4 (-548))))) -(((*1 *1 *2) - (-12 (-5 *2 (-308 *3)) (-4 *3 (-13 (-1016) (-821))) - (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) - (-4 *5 (-38 (-399 (-548)))) (-4 *6 (-1209 *5)) (-5 *2 (-619 *6)) - (-5 *1 (-1211 *5 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) - (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) - (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) - (-4 *3 (-1194 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) - (-4 *3 (-1063)) (-5 *2 (-745)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) - (-4 *4 (-1172)) (-5 *2 (-745))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371))))) + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) + (-15 -1392 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) - (-5 *2 - (-2 (|:| -4101 (-745)) (|:| |curves| (-745)) - (|:| |polygons| (-745)) (|:| |constructs| (-745))))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1194 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-422 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) - (-4 *3 (-1063)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) - (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) - (-5 *1 (-919 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) - (-15 -2480 (*7 $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-499 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821))))) -(((*1 *1 *1) - (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) - (-14 *3 (-619 (-1135)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) - (-4 *5 (-38 (-399 (-548)))) (-4 *2 (-1209 *5)) - (-5 *1 (-1211 *5 *2))))) -(((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218))))) - ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-410 *4) *4)) (-4 *4 (-540)) (-5 *2 (-410 *4)) - (-5 *1 (-411 *4)))) - ((*1 *1 *1) (-5 *1 (-895))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) - ((*1 *1 *1) (-5 *1 (-896))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) - (-5 *4 (-399 (-548))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) - (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) - (-5 *4 (-399 (-548))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) - (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) - (-4 *3 (-1194 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-573 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1082))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) - (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1116 *4)) (-5 *3 (-1 *4 (-548))) (-4 *4 (-1016)) - (-5 *1 (-1120 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) - (-4 *5 (-540)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) - (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) - (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) - (-5 *1 (-759 *5))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-422 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) - (-4 *3 (-1063)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) + (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) - (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) - (-5 *1 (-919 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) - (-15 -2480 (*7 $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-246 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-745)))) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-112)) + (-5 *1 (-348 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1016)) - (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) - (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) - ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-745)) (-4 *5 (-169)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-745)) (-4 *5 (-169)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) - (-240 *4 (-399 (-548))))) - (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) - (-5 *1 (-495 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1135)) (-5 *6 (-112)) - (-4 *7 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-4 *3 (-13 (-1157) (-928) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-212 *7 *3)) (-5 *5 (-814 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) - (-4 *4 (-38 (-399 (-548))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-218))))) - ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-218)))))) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-112)) + (-5 *1 (-517 *4))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-428)) (-5 *1 (-1139))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-819) (-355))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) - (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) - (-4 *2 - (-13 (-394) - (-10 -7 (-15 -3743 (*2 *4)) (-15 -2855 ((-890) *2)) - (-15 -2877 ((-1218 *2) (-890))) (-15 -2354 (*2 *2))))) - (-5 *1 (-348 *2 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) - (-5 *2 (-371)) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) - (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) - (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) - (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-821)) (-4 *5 (-593 *2)) (-5 *2 (-371)) - (-5 *1 (-759 *5))))) + (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) - (-4 *1 (-374 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-701)))) + (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) + (-4 *3 (-1063)) (-4 *5 (-640 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-918 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-619 (-1135))) (-14 *5 (-745)) + (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-734))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-354)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4240 *1))) + (-4 *1 (-823 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-318 *3)) (-4 *3 (-1172)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-505 *3 *4)) (-4 *3 (-1172)) + (-14 *4 (-547))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-745)) + (-4 *3 (-13 (-701) (-359) (-10 -7 (-15 ** (*3 *3 (-547)))))) + (-5 *1 (-238 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-795))))) +(((*1 *1) (-5 *1 (-542)))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-619 - (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) - (-240 *4 (-399 (-548)))))) - (-5 *1 (-495 *4 *5)) - (-5 *3 - (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) - (-240 *4 (-399 (-548)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210))))) + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) - (-4 *4 (-38 (-399 (-548))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-619 (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-591 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1194 (-166 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) - ((*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) - ((*1 *2 *1) - (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-405 *3 *2 *4 *5)) - (-4 *3 (-299)) (-4 *5 (-13 (-401 *2 *4) (-1007 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) - (-5 *1 (-406 *3 *2 *4 *5 *6)) (-4 *3 (-299)) (-4 *5 (-401 *2 *4)) - (-14 *6 (-1218 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *5 (-1016)) - (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) - (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-591 (-485)))) (-5 *1 (-485)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-591 (-485))) (-5 *1 (-485)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-619 (-591 (-485)))) - (-5 *1 (-485)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1131 (-485))) (-5 *3 (-591 (-485))) (-5 *1 (-485)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) - (-5 *1 (-518 *4)))) + (-12 (-5 *3 (-874 (-547))) (-5 *4 (-547)) (-5 *2 (-663 *4)) + (-5 *1 (-997 *5)) (-4 *5 (-1016)))) ((*1 *2 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1194 *4)) - (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1194 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) - ((*1 *1 *1) (-4 *1 (-1025)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-927 (-1131 *4))) (-5 *1 (-349 *4)) - (-5 *3 (-1131 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-713))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) - (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) - ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *3 (-821)) (-5 *2 (-745))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) - (-240 *4 (-399 (-548))))) - (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-112)) (-5 *1 (-209 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-5 *1 (-1211 *3 *2)) - (-4 *2 (-1209 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) - (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-61 *3)) (-14 *3 (-1135)))) - ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-68 *3)) (-14 *3 (-1135)))) - ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-71 *3)) (-14 *3 (-1135)))) - ((*1 *2 *1) (-12 (-4 *1 (-387)) (-5 *2 (-1223)))) - ((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-389)))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-997 *4)) + (-4 *4 (-1016)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) - ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) -(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533)))) - ((*1 *1 *1) (-4 *1 (-1025)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) - (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1) (-5 *1 (-832))) + (-12 (-5 *3 (-619 (-874 (-547)))) (-5 *4 (-547)) + (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) ((*1 *2 *3) - (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-399 (-548)))) - (-4 *2 (-169))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-745))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) - (-240 *4 (-399 (-548))))) - (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) - (-4 *2 (-1194 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1209 *4)) - (-4 *4 (-38 (-399 (-548)))) - (-5 *2 (-1 (-1116 *4) (-619 (-1116 *4)))) (-5 *1 (-1211 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) - (-5 *3 (-619 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) - (-5 *3 (-1065 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-533)))) - ((*1 *1 *1) (-4 *1 (-1025)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) - (-4 *3 (-1063))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-383))))) + (-12 (-5 *3 (-619 (-619 (-547)))) (-5 *2 (-619 (-663 (-547)))) + (-5 *1 (-997 *4)) (-4 *4 (-1016))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) - (-5 *3 (-548))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) - (-4 *2 (-443)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-1194 (-548))) (-5 *2 (-619 (-548))) - (-5 *1 (-477 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-443)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *3 (-443))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) - (-4 *2 (-1194 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1209 *4)) - (-4 *4 (-38 (-399 (-548)))) - (-5 *2 (-1 (-1116 *4) (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-890)) (-5 *1 (-999 *2)) - (-4 *2 (-13 (-1063) (-10 -8 (-15 -2290 ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) - ((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299)))) - ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) - ((*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-548))))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) - (-5 *1 (-652 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1223)) (-5 *1 (-383)))) - ((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-383))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1116 (-548))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) - (-5 *3 (-548))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-548)) (-4 *5 (-819)) (-4 *5 (-355)) - (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1194 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-297)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-861 *3)) (|:| |den| (-861 *3)))) - (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-218)) (-5 *2 (-112)) (-5 *1 (-291 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1058 (-814 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) - (-5 *1 (-297)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) - (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *3)))) - (-5 *1 (-209 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1209 *4)) - (-4 *4 (-38 (-399 (-548)))) (-5 *2 (-1 (-1116 *4) (-1116 *4))) - (-5 *1 (-1211 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) - (-5 *1 (-873 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) - ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) - ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)) (-4 *2 (-299)))) - ((*1 *2 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) - ((*1 *1 *1) (-4 *1 (-1025)))) + (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) + (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) + (-4 *4 (-1063)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) + (-5 *1 (-900 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) + (-4 *3 (-13 (-421 *6) (-592 *4) (-855 *5) (-1007 (-590 $)))) + (-5 *4 (-861 *5)) (-4 *6 (-13 (-539) (-821) (-855 *5))) + (-5 *1 (-901 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 (-547) *3)) (-5 *4 (-861 (-547))) (-4 *3 (-532)) + (-5 *1 (-902 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-590 *6)) (-4 *5 (-1063)) + (-4 *6 (-13 (-821) (-1007 (-590 $)) (-592 *4) (-855 *5))) + (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) + (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) + (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-592 *4))) + (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) + (-5 *1 (-905 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) + (-4 *3 (-13 (-918 *8 *6 *7) (-592 *4))) (-5 *4 (-861 *5)) + (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-13 (-1016) (-821) (-855 *5))) + (-5 *1 (-905 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) + (-4 *6 (-13 (-539) (-855 *5) (-592 *4))) (-5 *4 (-861 *5)) + (-5 *1 (-908 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-858 *5 (-1135))) (-5 *3 (-1135)) (-5 *4 (-861 *5)) + (-4 *5 (-1063)) (-5 *1 (-909 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) + (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) + (-4 *9 (-13 (-1016) (-592 (-861 *7)) (-1007 *8))) + (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) + (-5 *1 (-910 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-458)) (-5 *3 (-619 (-254))) (-5 *1 (-1219)))) + ((*1 *1 *1) (-5 *1 (-1219)))) +(((*1 *1 *2) + (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1016) (-821))) + (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1135)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-548)) - (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-355)) - (-14 *4 (-962 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *1 *1) (|partial| -4 *1 (-697))) - ((*1 *1 *1) (|partial| -4 *1 (-701))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) - (-4 *2 (-1194 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-211)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1140))) (-5 *3 (-1140)) (-5 *1 (-1080))))) + (-12 (-5 *2 (-619 (-619 (-547)))) (-5 *1 (-940)) + (-5 *3 (-619 (-547)))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-355)) (-5 *2 (-745)) - (-5 *1 (-914 *4 *5)) (-4 *5 (-1194 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-540)) - (-4 *3 (-1016))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-294)) (-4 *2 (-1172)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-591 *1))) (-5 *3 (-619 *1)) (-4 *1 (-294)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-286 *1))) (-4 *1 (-294)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-294))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) + (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-619 (-307 (-217)))) + (|:| -3045 (-619 (-217))))))) + (-5 *2 (-619 (-1118))) (-5 *1 (-258))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-341)) + (-12 (-5 *4 (-285 (-814 *3))) (-4 *3 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) - (-5 *1 (-209 *5 *3)) (-4 *3 (-1194 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) - (-5 *2 (-619 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) - (-5 *2 (-619 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1116 *3)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-701)))) - ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-5 *2 (-1116 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) - (-5 *1 (-873 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 (-429))))) - (-5 *1 (-1139))))) -(((*1 *1 *1) (-4 *1 (-1025)))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) -(((*1 *1 *2 *2) - (-12 + (-3 (-814 *3) + (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) + (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) + "failed")) + (-5 *1 (-612 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-285 *3)) (-5 *5 (-1118)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-285 (-814 (-921 *5)))) (-4 *5 (-442)) (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) - (-5 *1 (-1134))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) - (-4 *4 (-13 (-1063) (-34)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) -(((*1 *2 *1 *1) - (-12 + (-3 (-814 (-398 (-921 *5))) + (-2 (|:| |leftHandLimit| (-3 (-814 (-398 (-921 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-814 (-398 (-921 *5))) "failed"))) + "failed")) + (-5 *1 (-613 *5)) (-5 *3 (-398 (-921 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) + (-4 *5 (-442)) (-5 *2 - (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) -(((*1 *2 *3) - (-12 (-4 *2 (-355)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) - (-4 *3 (-1194 *2))))) -(((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) - (-5 *2 (-112)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) + (-3 (-814 *3) + (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) + (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) + "failed")) + (-5 *1 (-613 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-285 (-398 (-921 *6)))) (-5 *5 (-1118)) + (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-814 *3)) + (-5 *1 (-613 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-355)) (-4 *6 (-1194 (-399 *2))) - (-4 *2 (-1194 *5)) (-5 *1 (-208 *5 *2 *6 *3)) - (-4 *3 (-334 *5 *2 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) - (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-532 *3)) (-4 *3 (-533)))) - ((*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) - (-4 *3 (-771 *4)))) - ((*1 *2) - (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) - (-4 *3 (-961 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) - (-4 *3 (-966 *4)))) - ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981)))) - ((*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) - ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1171))) (-5 *3 (-1171)) (-5 *1 (-655))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-341)) (-5 *1 (-349 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)) - (-5 *1 (-1116 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef1| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) -(((*1 *2 *3) (-12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-565 *3)) (-5 *1 (-417 *5 *3)) + (-4 *3 (-13 (-1157) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-1007 (-547)) (-145))) + (-5 *2 (-565 (-398 (-921 *5)))) (-5 *1 (-553 *5)) + (-5 *3 (-398 (-921 *5)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-745)) + (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) (-5 *1 (-488 *3 *4 *5)) (-4 *5 (-400 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 (-1 *6 (-619 *6)))) + (-4 *5 (-38 (-398 (-547)))) (-4 *6 (-1209 *5)) (-5 *2 (-619 *6)) + (-5 *1 (-1211 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298))))) +(((*1 *1 *1) (-4 *1 (-539)))) (((*1 *2 *3) - (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *1 *1) (-5 *1 (-524)))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) - (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))) + (-12 (-5 *3 (-547)) (|has| *1 (-6 -4319)) (-4 *1 (-395)) + (-5 *2 (-890))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-421 *4) (-971))) (-4 *4 (-13 (-821) (-539))) + (-5 *1 (-267 *4 *2))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-619 (-308 (-218)))) - (|:| |constraints| - (-619 - (-2 (|:| |start| (-218)) (|:| |finish| (-218)) - (|:| |grid| (-745)) (|:| |boundaryType| (-548)) - (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) - (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) - (|:| |tol| (-218)))) - (-5 *2 (-112)) (-5 *1 (-203))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-548))) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1178 *3)) (-4 *3 (-1016)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-548))) (-4 *1 (-1209 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-873 *4)) - (-4 *4 (-1063)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *1 *2) - (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) - (-14 *3 (-745)) (-14 *4 (-745))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) - (-5 *1 (-324)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-1056 (-921 (-548)))) (-5 *2 (-322)) - (-5 *1 (-324)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) - (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -1741 (-745)) (|:| |period| (-745)))) - (-5 *1 (-1116 *4)) (-4 *4 (-1172)) (-5 *3 (-745))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-832)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1102 *3 *4)) (-5 *1 (-962 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-355)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 (-619 *5))) (-4 *5 (-1016)) - (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *6 (-231 *4 *5)) - (-4 *7 (-231 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-303)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1005))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1557 *3) (|:| |coef2| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (-5 *2 - (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) - (|:| |genIdeal| (-494 *4 *5 *6 *7)))) - (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-184))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-217)) (-5 *1 (-296))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-399 (-548))) (-4 *4 (-1007 (-548))) - (-4 *4 (-13 (-821) (-540))) (-5 *1 (-32 *4 *2)) (-4 *2 (-422 *4)))) + (-12 (-5 *3 (-398 (-547))) (-4 *4 (-1007 (-547))) + (-4 *4 (-13 (-821) (-539))) (-5 *1 (-32 *4 *2)) (-4 *2 (-421 *4)))) ((*1 *1 *1 *1) (-5 *1 (-133))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-218))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-236)) (-5 *2 (-548)))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-217))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-547)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) - (-4 *5 (-1209 *4)) (-5 *1 (-270 *4 *5 *2)) (-4 *2 (-1180 *4 *5)))) + (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3)) + (-4 *5 (-1209 *4)) (-5 *1 (-269 *4 *5 *2)) (-4 *2 (-1180 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-399 (-548))) (-4 *4 (-355)) (-4 *4 (-38 *3)) - (-4 *5 (-1178 *4)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *2 (-1201 *4 *5)) + (-12 (-5 *3 (-398 (-547))) (-4 *4 (-354)) (-4 *4 (-38 *3)) + (-4 *5 (-1178 *4)) (-5 *1 (-270 *4 *5 *2 *6)) (-4 *2 (-1201 *4 *5)) (-4 *6 (-952 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-276))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *1) (-5 *1 (-371))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-4 *1 (-275))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-5 *1 (-370))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-377 *2)) (-4 *2 (-1063)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-422 *3)) (-4 *3 (-821)) (-4 *3 (-1075)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-464)) (-5 *2 (-548)))) + (-12 (-5 *2 (-745)) (-4 *1 (-421 *3)) (-4 *3 (-821)) (-4 *3 (-1075)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-463)) (-5 *2 (-547)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + (-12 (-5 *2 (-745)) (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) - (-5 *1 (-518 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-524)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-524)))) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-547)) (-4 *4 (-340)) + (-5 *1 (-517 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-523)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-523)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *4 (-1063)) (-5 *1 (-656 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-355)))) + (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) (-4 *3 (-354)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-664 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) + (-12 (-5 *2 (-547)) (-4 *3 (-1016)) (-5 *1 (-689 *3 *4)) (-4 *4 (-622 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-4 *4 (-1016)) + (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *5)) (-4 *5 (-622 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-745)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-793 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-808 *3)) (-4 *3 (-1016)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-548)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) + (-12 (-5 *2 (-114)) (-5 *3 (-547)) (-5 *1 (-808 *4)) (-4 *4 (-1016)))) ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-399 (-548))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-398 (-547))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1075)) (-5 *2 (-890)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4)) (-4 *4 (-355)))) + (-12 (-5 *2 (-547)) (-4 *1 (-1085 *3 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)) (-4 *4 (-354)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-619 (-308 (-218)))) (-5 *3 (-218)) (-5 *2 (-112)) - (-5 *1 (-203))))) + (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-442))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-619 (-1131 *7))) (-5 *3 (-1131 *7)) + (-4 *7 (-918 *5 *6 *4)) (-4 *5 (-878)) (-4 *6 (-767)) + (-4 *4 (-821)) (-5 *1 (-875 *5 *6 *4 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-298)) (-5 *1 (-176 *3))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) + (-5 *2 (-112)) (-5 *1 (-1100 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1157) (-928) (-29 *5))) - (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-212 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1118)) - (-4 *3 (-13 (-1157) (-928) (-29 *6))) - (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-212 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1056 (-814 (-308 *5)))) - (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1056 (-814 (-308 *6)))) - (-5 *5 (-1118)) - (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1056 (-814 (-399 (-921 *5))))) (-5 *3 (-399 (-921 *5))) - (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |f1| (-814 (-308 *5))) (|:| |f2| (-619 (-814 (-308 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1056 (-814 (-399 (-921 *6))))) (-5 *5 (-1118)) - (-5 *3 (-399 (-921 *6))) - (-4 *6 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |f1| (-814 (-308 *6))) (|:| |f2| (-619 (-814 (-308 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-420 *5 *3)) - (-4 *3 (-13 (-1157) (-928) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) - (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) - (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) - (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-1058 (-814 (-371)))) - (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) - (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) - (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) - (-5 *5 (-371)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-1058 (-814 (-371))))) - (-5 *5 (-371)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) - (-5 *5 (-1118)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-308 (-371))) (-5 *4 (-1056 (-814 (-371)))) - (-5 *5 (-1135)) (-5 *2 (-1004)) (-5 *1 (-549)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) - (-5 *2 (-566 (-399 *5))) (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5)))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547)) + (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *2 (-3 (-308 *5) (-619 (-308 *5)))) (-5 *1 (-569 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) - (-4 *3 (-38 (-399 (-548)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1135)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-399 (-548)))) - (-4 *3 (-1016)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-4 *2 (-821)) - (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-520 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) - (-5 *1 (-1120 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-38 (-399 (-548)))) - (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-1524 - (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) - (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) - (-4 *3 (-38 (-399 (-548)))))) - (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) - (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) - (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) - ((*1 *1 *1 *2) - (-1524 - (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) - (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) - (-4 *3 (-38 (-399 (-548)))))) - (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) - (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) - (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1199 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-1524 - (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) - (-12 (-4 *3 (-29 (-548))) (-4 *3 (-928)) (-4 *3 (-1157)) - (-4 *3 (-38 (-399 (-548)))))) - (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) - (-12 (|has| *3 (-15 -2049 ((-619 *2) *3))) - (|has| *3 (-15 -3810 (*3 *3 *2))) (-4 *3 (-38 (-399 (-548)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-399 (-548)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *3 (-1016)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) - (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-399 (-548)))) - (-5 *2 - (-619 - (-2 (|:| |outval| *4) (|:| |outmult| (-548)) - (|:| |outvect| (-619 (-663 *4)))))) - (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *2 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-240 *4 *5)) - (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135)))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) - (|:| |genIdeal| (-494 *3 *4 *5 *6)))) - (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-203))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1133 *4 *5 *6)) - (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1210 *4 *5 *6)) - (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4)))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3))))) + (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) + (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) + (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) + (-4 *4 (-918 *8 *6 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-793 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) - (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) - (|:| |args| (-619 (-832))))) - (-5 *1 (-1135)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1135))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341))))) + (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-921 (-547))) (-5 *3 (-1135)) + (-5 *4 (-1058 (-398 (-547)))) (-5 *1 (-30))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1221))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *1) - (-12 (-5 *2 (-832)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) - (-4 *3 (-1172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) - (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) - (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) - (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 (-371)) (-5 *1 (-198))))) -(((*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1223)) (-5 *1 (-833))))) + (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) + (-14 *4 (-745)) (-4 *5 (-169))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-547)) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) + (-4 *3 (-1063)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) + (-5 *1 (-873 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3772 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102 *4 *2)) (-14 *4 (-890)) - (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4329 "*"))))) - (-5 *1 (-871 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1135)) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-459)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) - (-4 *3 (-1172))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-169)) (-4 *2 (-1194 *4)) (-5 *1 (-174 *4 *2 *3)) - (-4 *3 (-699 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-399 (-921 *5)))) (-5 *4 (-1135)) - (-5 *2 (-921 *5)) (-5 *1 (-284 *5)) (-4 *5 (-443)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-5 *2 (-921 *4)) - (-5 *1 (-284 *4)) (-4 *4 (-443)))) - ((*1 *2 *1) - (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-166 (-399 (-548))))) - (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *4)) - (-4 *4 (-13 (-355) (-819))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *4 (-1135)) - (-5 *2 (-921 (-166 (-399 (-548))))) (-5 *1 (-739 *5)) - (-4 *5 (-13 (-355) (-819))))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *2 (-921 (-399 (-548)))) - (-5 *1 (-753 *4)) (-4 *4 (-13 (-355) (-819))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-399 (-548)))) (-5 *4 (-1135)) - (-5 *2 (-921 (-399 (-548)))) (-5 *1 (-753 *5)) - (-4 *5 (-13 (-355) (-819)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) - (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) - (-5 *2 (-405 *4 (-399 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1218 *6)) (-4 *6 (-13 (-401 *4 *5) (-1007 *4))) - (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-299)) - (-5 *1 (-405 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6))))) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-439 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 (-371)) (-5 *1 (-198))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) - (-5 *1 (-874 *3)) (-4 *3 (-1063))))) + (-619 + (-2 (|:| -3107 (-745)) + (|:| |eqns| + (-619 + (-2 (|:| |det| *7) (|:| |rows| (-619 (-547))) + (|:| |cols| (-619 (-547)))))) + (|:| |fgb| (-619 *7))))) + (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-298) (-145))) + (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) + (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458))))) (((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1218 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) (-5 *1 (-525 *4 *2)) - (-4 *2 (-1209 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) - (-4 *5 (-1194 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-529 *4 *5 *6 *2)) - (-4 *2 (-1209 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-13 (-355) (-360) (-593 *3))) - (-5 *1 (-530 *4 *2)) (-4 *2 (-1209 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-13 (-540) (-145))) - (-5 *1 (-1112 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) - (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) - (-4 *3 (-1194 *6)) (-4 *7 (-918 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-472 *4 *5)) - (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 (-371)) (-5 *1 (-198))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-548)))) + (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) + (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) -(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) - (-4 *2 (-1209 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) - (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) - (-4 *2 (-1209 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) - (-5 *1 (-1112 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1194 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-299)) - (-4 *10 (-918 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-619 (-1131 *10))) - (|:| |dterm| - (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) - (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1131 *10)) (-5 *4 (-619 *6)) - (-5 *5 (-619 *10))))) + (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) (((*1 *2 *3) - (-12 (-5 *3 (-472 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) - (-5 *2 (-240 *4 *5)) (-5 *1 (-913 *4 *5))))) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) + (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 + (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) + (|:| |expense| (-370)) (|:| |accuracy| (-370)) + (|:| |intermediateResults| (-370)))) + (-5 *1 (-777))))) +(((*1 *1) (-5 *1 (-154)))) (((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) + (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) + (-4 *3 (-1194 *4)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-541 *2)) (-4 *2 (-532))))) +(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *2 *4)) (-4 *4 (-1194 *2)) + (-4 *2 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-169)) (-5 *1 (-399 *3 *2 *4)) + (-4 *3 (-400 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-400 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) + ((*1 *2) + (-12 (-4 *3 (-1194 *2)) (-5 *2 (-547)) (-5 *1 (-742 *3 *4)) + (-4 *4 (-400 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 (-371)) (-5 *1 (-198))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-1063)) (-5 *2 (-745))))) (((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1223)) (-5 *1 (-1219))))) (((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-149 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) - (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)))) + (-5 *2 (-619 (-2 (|:| -4248 (-745)) (|:| -2582 *4) (|:| |num| *4)))) + (-4 *4 (-1194 *3)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) - (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-112)) (-5 *1 (-429)))) + (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) + (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-112)) (-5 *1 (-428)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) - (-5 *3 (-619 (-1135))) (-5 *4 (-112)) (-5 *1 (-429)))) + (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) + (-5 *3 (-619 (-1135))) (-5 *4 (-112)) (-5 *1 (-428)))) ((*1 *2 *1) - (-12 (-5 *2 (-1116 *3)) (-5 *1 (-580 *3)) (-4 *3 (-1172)))) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1172)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-5 *1 (-638 *3 *4)) @@ -2926,23 +2238,23 @@ ((*1 *1 *2 *3) (-12 (-5 *1 (-688 *2 *3 *4)) (-4 *2 (-821)) (-4 *3 (-1063)) (-14 *4 - (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) - (-2 (|:| -3337 *2) (|:| -3352 *3)))))) + (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *3)) + (-2 (|:| -3479 *2) (|:| -4248 *3)))))) ((*1 *1 *2 *3) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) + (-12 (-5 *2 (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 *4)))) (-4 *4 (-1063)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-619 *5)) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *3 *5))) (-5 *1 (-1100 *3 *5)) (-4 *3 (-13 (-1063) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1806 *5)))) + (-12 (-5 *3 (-619 (-2 (|:| |val| *4) (|:| -1965 *5)))) (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-619 (-1100 *4 *5))) (-5 *1 (-1100 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1806 *4))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1965 *4))) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *4)))) ((*1 *1 *2 *3) @@ -2965,343 +2277,314 @@ (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-523)) (-5 *1 (-522 *4)) + (-4 *4 (-1172))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-548)))) + (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-258))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) + (-5 *1 (-858 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) -(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) - (-4 *2 (-1209 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) - (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) - (-4 *2 (-1209 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) - (-5 *1 (-1112 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) - (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) - (-14 *7 (-890))))) -(((*1 *2 *3) - (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) - (-5 *2 (-472 *4 *5)) (-5 *1 (-913 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) - (-5 *1 (-494 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-494 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) - (-5 *1 (-198))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) - (-5 *1 (-1120 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) - (-14 *4 (-1135)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) + (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) (((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-14 *6 (-1218 (-663 *3))) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-354)) (-14 *6 (-1218 (-663 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) - ((*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'JINT 'X 'ELAM) (-3754) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'JINT 'X 'ELAM) (-3841) (-673)))) (-5 *1 (-60 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'XC) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 'XC) (-673)))) (-5 *1 (-62 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 (-3754 'X) (-3754) (-673))) (-5 *1 (-63 *3)) + (-12 (-5 *2 (-330 (-3841 'X) (-3841) (-673))) (-5 *1 (-63 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-331 (-3754) (-3754 'X 'HESS) (-673)))) + (-12 (-5 *2 (-663 (-330 (-3841) (-3841 'X 'HESS) (-673)))) (-5 *1 (-64 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 (-3754) (-3754 'XC) (-673))) (-5 *1 (-65 *3)) + (-12 (-5 *2 (-330 (-3841) (-3841 'XC) (-673))) (-5 *1 (-65 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'X) (-3754 '-2428) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'X) (-3841 '-2647) (-673)))) (-5 *1 (-70 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'X) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 'X) (-673)))) (-5 *1 (-73 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'X 'EPS) (-3754 '-2428) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'X 'EPS) (-3841 '-2647) (-673)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'EPS) (-3754 'YA 'YB) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'EPS) (-3841 'YA 'YB) (-673)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1135)) (-14 *4 (-1135)) (-14 *5 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 (-3754) (-3754 'X) (-673))) (-5 *1 (-76 *3)) + (-12 (-5 *2 (-330 (-3841) (-3841 'X) (-673))) (-5 *1 (-76 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 (-3754) (-3754 'X) (-673))) (-5 *1 (-77 *3)) + (-12 (-5 *2 (-330 (-3841) (-3841 'X) (-673))) (-5 *1 (-77 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'XC) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 'XC) (-673)))) (-5 *1 (-78 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'X) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 'X) (-673)))) (-5 *1 (-79 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754) (-3754 'X) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841) (-3841 'X) (-673)))) (-5 *1 (-80 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'X '-2428) (-3754) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'X '-2647) (-3841) (-673)))) (-5 *1 (-81 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-331 (-3754 'X '-2428) (-3754) (-673)))) + (-12 (-5 *2 (-663 (-330 (-3841 'X '-2647) (-3841) (-673)))) (-5 *1 (-82 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-331 (-3754 'X) (-3754) (-673)))) (-5 *1 (-83 *3)) + (-12 (-5 *2 (-663 (-330 (-3841 'X) (-3841) (-673)))) (-5 *1 (-83 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'X) (-3754) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'X) (-3841) (-673)))) (-5 *1 (-84 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-331 (-3754 'X) (-3754 '-2428) (-673)))) + (-12 (-5 *2 (-1218 (-330 (-3841 'X) (-3841 '-2647) (-673)))) (-5 *1 (-85 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-663 (-331 (-3754 'XL 'XR 'ELAM) (-3754) (-673)))) + (-12 (-5 *2 (-663 (-330 (-3841 'XL 'XR 'ELAM) (-3841) (-673)))) (-5 *1 (-86 *3)) (-14 *3 (-1135)))) ((*1 *1 *2) - (-12 (-5 *2 (-331 (-3754 'X) (-3754 '-2428) (-673))) (-5 *1 (-88 *3)) + (-12 (-5 *2 (-330 (-3841 'X) (-3841 '-2647) (-673))) (-5 *1 (-88 *3)) (-14 *3 (-1135)))) ((*1 *2 *1) (-12 (-5 *2 (-973 2)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129)))) ((*1 *1 *2) (-12 (-5 *2 (-619 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-548)) (-14 *4 (-745)) (-4 *5 (-169)))) + (-14 *3 (-547)) (-14 *4 (-745)) (-4 *5 (-169)))) ((*1 *1 *2) (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-548)) (-14 *4 (-745)))) + (-14 *3 (-547)) (-14 *4 (-745)))) ((*1 *1 *2) (-12 (-5 *2 (-1102 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)))) ((*1 *1 *2) - (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)))) + (-12 (-5 *2 (-232 *4 *5)) (-14 *4 (-745)) (-4 *5 (-169)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)))) ((*1 *2 *3) (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) - (-5 *2 (-1218 (-663 (-399 (-921 *4))))) (-5 *1 (-182 *4)))) + (-5 *2 (-1218 (-663 (-398 (-921 *4))))) (-5 *1 (-181 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) - (-15 -3721 ((-1223) $))))) - (-5 *1 (-207 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-210)))) - ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-210)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-238 *3)) (-4 *3 (-821)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1056 (-308 *4))) - (-4 *4 (-13 (-821) (-540) (-593 (-371)))) (-5 *2 (-1056 (-371))) - (-5 *1 (-250 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267)))) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) + (-15 -3617 ((-1223) $))))) + (-5 *1 (-206 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-973 10)) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-237 *3)) (-4 *3 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1056 (-307 *4))) + (-4 *4 (-13 (-821) (-539) (-592 (-370)))) (-5 *2 (-1056 (-370))) + (-5 *1 (-249 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-266)))) ((*1 *2 *1) - (-12 (-4 *2 (-1194 *3)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1203 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) + (-12 (-5 *2 (-1203 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) (-14 *6 *4) - (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) - (-5 *1 (-305 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-322)))) + (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) + (-5 *1 (-304 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-321)))) ((*1 *2 *1) - (-12 (-5 *2 (-308 *5)) (-5 *1 (-331 *3 *4 *5)) - (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-307 *5)) (-5 *1 (-330 *3 *4 *5)) + (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *3 *4 *2)) - (-4 *3 (-321 *4)))) + (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *3 *4 *2)) + (-4 *3 (-320 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *2 (-321 *4)) (-5 *1 (-339 *2 *4 *3)) - (-4 *3 (-321 *4)))) + (-12 (-4 *4 (-340)) (-4 *2 (-320 *4)) (-5 *1 (-338 *2 *4 *3)) + (-4 *3 (-320 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1242 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) (-5 *2 (-1233 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *1 *2) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) - (-4 *1 (-375)))) - ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-375)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-375)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-375)))) + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) + (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-374)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-673))) (-4 *1 (-374)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) - (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) - ((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-385 *3)) (-4 *3 (-1063)))) - ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-386)))) + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) + (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-375)))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-380)))) + ((*1 *2 *3) (-12 (-5 *2 (-385)) (-5 *1 (-384 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-385)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) - (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-388)))) + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) + (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-387)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-308 (-166 (-371))))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-285 (-307 (-166 (-370))))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-308 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-285 (-307 (-370)))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-308 (-548)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-285 (-307 (-547)))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-371))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-307 (-370))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-548))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-307 (-547))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-308 (-668)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-285 (-307 (-668)))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-308 (-673)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-285 (-307 (-673)))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-308 (-675)))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-285 (-307 (-675)))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-668))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-307 (-668))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-673))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-307 (-673))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-675))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-307 (-675))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) - (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) - (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) + (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) + (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-619 (-322))) (-5 *1 (-390 *3 *4 *5 *6)) - (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-619 (-321))) (-5 *1 (-389 *3 *4 *5 *6)) + (-14 *3 (-1135)) (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-322)) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *3 (-1135)) - (-14 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) + (-12 (-5 *2 (-321)) (-5 *1 (-389 *3 *4 *5 *6)) (-14 *3 (-1135)) + (-14 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-14 *5 (-619 (-1135))) (-14 *6 (-1139)))) ((*1 *1 *2) - (-12 (-5 *2 (-323 *4)) (-4 *4 (-13 (-821) (-21))) - (-5 *1 (-419 *3 *4)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))))) + (-12 (-5 *2 (-322 *4)) (-4 *4 (-13 (-821) (-21))) + (-5 *1 (-418 *3 *4)) (-4 *3 (-13 (-169) (-38 (-398 (-547))))))) ((*1 *1 *2) - (-12 (-5 *1 (-419 *2 *3)) (-4 *2 (-13 (-169) (-38 (-399 (-548))))) + (-12 (-5 *1 (-418 *2 *3)) (-4 *2 (-13 (-169) (-38 (-398 (-547))))) (-4 *3 (-13 (-821) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-399 (-921 (-399 *3)))) (-4 *3 (-540)) (-4 *3 (-821)) - (-4 *1 (-422 *3)))) + (-12 (-5 *2 (-398 (-921 (-398 *3)))) (-4 *3 (-539)) (-4 *3 (-821)) + (-4 *1 (-421 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-921 (-399 *3))) (-4 *3 (-540)) (-4 *3 (-821)) - (-4 *1 (-422 *3)))) + (-12 (-5 *2 (-921 (-398 *3))) (-4 *3 (-539)) (-4 *3 (-821)) + (-4 *1 (-421 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-399 *3)) (-4 *3 (-540)) (-4 *3 (-821)) - (-4 *1 (-422 *3)))) + (-12 (-5 *2 (-398 *3)) (-4 *3 (-539)) (-4 *3 (-821)) + (-4 *1 (-421 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) - (-4 *1 (-422 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-426)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) - ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-426)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-426)))) - ((*1 *1 *2) (-12 (-5 *2 (-426)) (-5 *1 (-429)))) - ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-429)))) + (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-1016)) (-4 *3 (-821)) + (-4 *1 (-421 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-425)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-425)))) + ((*1 *1 *2) (-12 (-5 *2 (-425)) (-5 *1 (-428)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-428)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) - (-4 *1 (-431)))) - ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-431)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-431)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-673))) (-4 *1 (-431)))) + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) + (-4 *1 (-430)))) + ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-430)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-430)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-673))) (-4 *1 (-430)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -1887 (-619 (-322))))) - (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-4 *1 (-432)))) + (-5 *2 (-2 (|:| |localSymbols| (-1139)) (|:| -2087 (-619 (-321))))) + (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-321)) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-4 *1 (-431)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-399 (-921 *3)))) (-4 *3 (-169)) - (-14 *6 (-1218 (-663 *3))) (-5 *1 (-444 *3 *4 *5 *6)) + (-12 (-5 *2 (-1218 (-398 (-921 *3)))) (-4 *3 (-169)) + (-14 *6 (-1218 (-663 *3))) (-5 *1 (-443 *3 *4 *5 *6)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) - ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-459)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-458)))) + ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-458)))) ((*1 *1 *2) (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) - (-14 *5 *3) (-5 *1 (-465 *3 *4 *5)))) + (-14 *5 *3) (-5 *1 (-464 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-465 *3 *4 *5)) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-464 *3 *4 *5)) (-4 *3 (-1016)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478)))) - ((*1 *1 *2) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-492)))) + ((*1 *2 *1) (-12 (-5 *2 (-973 16)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))) + ((*1 *1 *2) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-491)))) ((*1 *1 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-355)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-514)))) - ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-584)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585)))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-513)))) + ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-583)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-584)))) ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-586 *3 *2)) (-4 *2 (-719 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1172)))) + (-12 (-4 *3 (-169)) (-5 *1 (-585 *3 *2)) (-4 *2 (-719 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1016)))) ((*1 *2 *1) (-12 (-5 *2 (-1238 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) ((*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) ((*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-611 *3 *2)) (-4 *2 (-719 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-651 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) @@ -3316,19 +2599,19 @@ ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-655)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063)))) ((*1 *1 *2) - (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-365 *3)) - (-4 *2 (-365 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) - ((*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) - ((*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668)))) + (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *2)) (-4 *4 (-364 *3)) + (-4 *2 (-364 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) + ((*1 *1 *2) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) + ((*1 *2 *1) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668)))) ((*1 *1 *2) (-12 (-5 *2 (-166 (-675))) (-5 *1 (-668)))) ((*1 *1 *2) (-12 (-5 *2 (-166 (-673))) (-5 *1 (-668)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-548))) (-5 *1 (-668)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-547))) (-5 *1 (-668)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-370))) (-5 *1 (-668)))) ((*1 *1 *2) (-12 (-5 *2 (-675)) (-5 *1 (-673)))) - ((*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-673)))) + ((*1 *2 *1) (-12 (-5 *2 (-370)) (-5 *1 (-673)))) ((*1 *2 *3) - (-12 (-5 *3 (-308 (-548))) (-5 *2 (-308 (-675))) (-5 *1 (-675)))) + (-12 (-5 *3 (-307 (-547))) (-5 *2 (-307 (-675))) (-5 *1 (-675)))) ((*1 *1 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1063)))) ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685)))) ((*1 *2 *1) @@ -3338,56 +2621,56 @@ ((*1 *1 *2) (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) + (-12 (-5 *2 (-2 (|:| -3479 *3) (|:| -4248 *4))) (-5 *1 (-688 *3 *4 *5)) (-4 *3 (-821)) (-4 *4 (-1063)) (-14 *5 (-1 (-112) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *4))) (-4 *3 (-821)) + (-12 (-5 *2 (-2 (|:| -3479 *3) (|:| -4248 *4))) (-4 *3 (-821)) (-4 *4 (-1063)) (-5 *1 (-688 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) + (-12 (-5 *2 (-619 (-2 (|:| -1557 *3) (|:| -3513 *4)))) (-4 *3 (-1016)) (-4 *4 (-701)) (-5 *1 (-710 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-738)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-738)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (|:| |mdnia| - (-2 (|:| |fn| (-308 (-218))) - (|:| -3094 (-619 (-1058 (-814 (-218))))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) + (-2 (|:| |fn| (-307 (-217))) + (|:| -2693 (-619 (-1058 (-814 (-217))))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-5 *1 (-743)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-308 (-218))) - (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) + (-2 (|:| |fn| (-307 (-217))) + (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (-5 *1 (-743)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (-5 *1 (-743)))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-743)))) ((*1 *2 *3) (-12 (-5 *2 (-748)) (-5 *1 (-747 *3)) (-4 *3 (-1172)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-782)))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-782)))) ((*1 *2 *1) @@ -3402,31 +2685,31 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) - (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) + (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| - (-2 (|:| |lfn| (-619 (-308 (-218)))) - (|:| -3410 (-619 (-218))))))) + (-2 (|:| |lfn| (-619 (-307 (-217)))) + (|:| -3045 (-619 (-217))))))) (-5 *1 (-812)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) + (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) (-5 *1 (-812)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) (-5 *1 (-812)))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-812)))) ((*1 *1 *2) (-12 (-5 *2 (-1214 *3)) (-14 *3 (-1135)) (-5 *1 (-826 *3 *4 *5 *6)) (-4 *4 (-1016)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-829)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-829)))) ((*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-5 *1 (-835 *3 *4 *5 *6)) (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) @@ -3435,23 +2718,23 @@ (-14 *4 (-619 (-1135))) (-14 *5 (-619 (-745))) (-14 *6 (-745)))) ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) ((*1 *2 *3) - (-12 (-5 *3 (-921 (-48))) (-5 *2 (-308 (-548))) (-5 *1 (-844)))) + (-12 (-5 *3 (-921 (-48))) (-5 *2 (-307 (-547))) (-5 *1 (-844)))) ((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 (-48)))) (-5 *2 (-308 (-548))) + (-12 (-5 *3 (-398 (-921 (-48)))) (-5 *2 (-307 (-547))) (-5 *1 (-844)))) ((*1 *1 *2) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) ((*1 *2 *1) (-12 (-5 *2 (-793 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-619 (-308 (-218)))) + (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 - (-2 (|:| |start| (-218)) (|:| |finish| (-218)) - (|:| |grid| (-745)) (|:| |boundaryType| (-548)) - (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) - (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) - (|:| |tol| (-218)))) + (-2 (|:| |start| (-217)) (|:| |finish| (-217)) + (|:| |grid| (-745)) (|:| |boundaryType| (-547)) + (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) + (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) + (|:| |tol| (-217)))) (-5 *1 (-867)))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-867)))) ((*1 *2 *1) @@ -3464,35 +2747,35 @@ ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-399 (-410 *3))) (-4 *3 (-299)) (-5 *1 (-883 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299)))) + (-12 (-5 *2 (-398 (-409 *3))) (-4 *3 (-298)) (-5 *1 (-883 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298)))) ((*1 *2 *3) - (-12 (-5 *3 (-468)) (-5 *2 (-308 *4)) (-5 *1 (-888 *4)) - (-4 *4 (-13 (-821) (-540))))) + (-12 (-5 *3 (-467)) (-5 *2 (-307 *4)) (-5 *1 (-888 *4)) + (-4 *4 (-13 (-821) (-539))))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) ((*1 *1 *2) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-940)))) ((*1 *2 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548)))) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) ((*1 *2 *3) (-12 (-5 *2 (-1223)) (-5 *1 (-1002 *3)) (-4 *3 (-1172)))) - ((*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1002 *2)) (-4 *2 (-1172)))) + ((*1 *2 *3) (-12 (-5 *3 (-303)) (-5 *1 (-1002 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) (-14 *6 (-619 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1172)))) ((*1 *2 *3) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-540)))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1016)))) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-1012 *3)) (-4 *3 (-539)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1016)))) ((*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-1020 *3 *4 *5)) (-14 *3 (-745)) (-14 *4 (-745)) (-4 *5 (-1016)))) ((*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) - (-4 *2 (-918 *3 (-520 *4) *4)))) + (-4 *2 (-918 *3 (-519 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *2 (-821)) (-5 *1 (-1088 *3 *2 *4)) - (-4 *4 (-918 *3 (-520 *2) *2)))) + (-4 *4 (-918 *3 (-519 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-832)))) ((*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1102 *3 *4)) (-14 *3 (-745)) @@ -3516,15 +2799,15 @@ (-14 *5 *3) (-5 *1 (-1133 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1134)))) ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145 (-1135) (-429))) (-5 *1 (-1139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145 (-1135) (-428))) (-5 *1 (-1139)))) ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) - ((*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) - ((*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1140)))) + ((*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1140)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-1140)))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1144 *3)) (-4 *3 (-1063)))) ((*1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1151 *3)) (-4 *3 (-1063)))) ((*1 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1152)))) @@ -3557,7 +2840,7 @@ (-14 *5 *3) (-5 *1 (-1210 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1219)))) - ((*1 *2 *3) (-12 (-5 *3 (-459)) (-5 *2 (-1219)) (-5 *1 (-1222)))) + ((*1 *2 *3) (-12 (-5 *3 (-458)) (-5 *2 (-1219)) (-5 *1 (-1222)))) ((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-1223)))) ((*1 *1 *2) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-767)) (-14 *6 (-619 *4)) @@ -3581,1636 +2864,921 @@ (-5 *1 (-1238 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-817))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-548)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) -(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-524))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-349 *3)) (-4 *3 (-341))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-525 *3 *2)) - (-4 *2 (-1209 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-4 *4 (-1194 *3)) - (-4 *5 (-699 *3 *4)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-360) (-593 (-548)))) (-5 *1 (-530 *3 *2)) - (-4 *2 (-1209 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-540) (-145))) - (-5 *1 (-1112 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) - (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-593 (-1135))) - (-4 *4 (-355)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *2 (-1125 (-619 (-921 *4)) (-619 (-286 (-921 *4))))) - (-5 *1 (-494 *4 *5 *6 *7))))) + (-12 (-5 *2 (-409 (-1131 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1131 *1)) + (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821)))) + ((*1 *2 *3) + (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1131 *1))) (-5 *3 (-1131 *1))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-308 (-218)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) - (-5 *1 (-198))))) + (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) (-5 *3 (-217)) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) + (-5 *1 (-493 *4 *5 *6 *2)) (-4 *2 (-918 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) (((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-5 *2 (-2 (|:| -3156 *3) (|:| -1657 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) + (-5 *2 (-2 (|:| -3326 *3) (|:| -1777 *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *1) (-5 *1 (-1028)))) (((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-548)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-548))))) -(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) - (-5 *1 (-349 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) - (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) + (|partial| -12 (-5 *4 (-285 (-807 *3))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *9)) (-4 *9 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) - (-4 *8 (-1016)) (-4 *2 (-918 *9 *7 *5)) - (-5 *1 (-703 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-767)) - (-4 *4 (-918 *8 *6 *5))))) -(((*1 *1 *1) (|partial| -4 *1 (-1111)))) -(((*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) + (-12 (-5 *4 (-285 (-807 (-921 *5)))) (-4 *5 (-442)) + (-5 *2 (-807 (-398 (-921 *5)))) (-5 *1 (-613 *5)) + (-5 *3 (-398 (-921 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-285 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) + (-4 *5 (-442)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) + (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))) (((*1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1118)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1223)) - (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-207 *4)) - (-4 *4 - (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) - (-15 -3721 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) - (-4 *3 - (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) - (-15 -3721 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-198))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) - (-5 *1 (-1120 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) - (-14 *4 (-1135)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1172)) - (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) - (-4 *7 (-231 *4 *6)) (-4 *2 (-231 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-494 (-399 (-548)) (-233 *4 (-745)) (-834 *3) - (-240 *3 (-399 (-548))))) - (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-495 *3 *4))))) -(((*1 *2) (-12 + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *2 - (-1218 (-619 (-2 (|:| -4056 (-879 *3)) (|:| -3337 (-1082)))))) - (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) - (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) (-14 *4 (-3 (-1131 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082)))))) - (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) (-14 *4 (-890))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) - (-14 *4 (-745)) (-4 *5 (-169))))) -(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))))) - ((*1 *1 *1) (-5 *1 (-371))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-548)) (-5 *1 (-911))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) - (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *7))) - (-5 *1 (-491 *5 *6 *4 *7)) (-4 *4 (-1194 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-198)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-371))) (-5 *2 (-371)) (-5 *1 (-198))))) + (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370)))) + (-5 *1 (-197))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3)) + (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2)) + (-4 *2 (-661 *3 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1116 *4)) (-5 *3 (-548)) (-4 *4 (-1016)) + (-12 (-5 *3 (-547)) (|has| *1 (-6 -4319)) (-4 *1 (-395)) + (-5 *2 (-890))))) +(((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) + (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) (-5 *1 (-1120 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-548)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-547)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-1135)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1007 (-548))) (-4 *1 (-294)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1172)) - (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) - (-4 *7 (-231 *5 *6)) (-4 *2 (-231 *4 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-759 *3)) (-4 *3 (-593 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-371)) (-5 *1 (-759 *3)) - (-4 *3 (-593 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-547)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-354))) + (-4 *3 (-1194 *4)) (-5 *2 (-547)))) ((*1 *2 *3) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 *2)) - (-5 *2 (-371)) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) - (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) + (|partial| -12 + (-4 *4 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) + (-5 *2 (-547)) (-5 *1 (-1078 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) + (-5 *2 (-547)) (-5 *1 (-1078 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-1118)) + (-4 *6 (-13 (-539) (-821) (-1007 *2) (-615 *2) (-442))) + (-5 *2 (-547)) (-5 *1 (-1078 *6 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 *2)) - (-5 *2 (-371)) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5)))) + (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-547)) + (-5 *1 (-1079 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 (-398 (-921 *6)))) + (-5 *3 (-398 (-921 *6))) (-4 *6 (-442)) (-5 *2 (-547)) + (-5 *1 (-1079 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1135)) + (-5 *5 (-1118)) (-4 *6 (-442)) (-5 *2 (-547)) (-5 *1 (-1079 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) - (-4 *4 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) - (-4 *5 (-593 *2)) (-5 *2 (-371)) (-5 *1 (-759 *5))))) -(((*1 *2) - (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) - (-14 *4 - (-3 (-1131 *3) - (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082))))))))) - ((*1 *2) - (-12 (-5 *2 (-663 *3)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) - (-14 *4 (-890))))) -(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) + (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-307 (-217))) (-5 *2 (-398 (-547))) (-5 *1 (-296))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-121 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) + (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1107 *3))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063)) (-5 *1 (-712 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) + (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) - (-4 *3 (-1036 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-663 (-1131 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) - (-4 *6 (-1194 *5)) (-5 *2 (-663 *6)) (-5 *1 (-491 *5 *6 *7 *8)) - (-4 *7 (-1194 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 (-548)) (-5 *1 (-197))))) +(((*1 *2 *1) (-12 (-5 *2 (-940)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *1) (-5 *1 (-797)))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547)))) + (-5 *1 (-1073))))) +(((*1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) + ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) +(((*1 *2 *3) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-544)) (-5 *3 (-547))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-298)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4240 *1))) + (-4 *1 (-298))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) (((*1 *2 *1) - (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-360)) - (-4 *3 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) - (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) - (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-354)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-440 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-354)) + (-5 *2 + (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) + (-5 *1 (-947 *6)) (-5 *3 (-663 *6))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) + ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) + (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *2 (-442)))) ((*1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-299)))) - ((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) - (-4 *2 (-661 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3)))) + (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) + (-4 *4 (-1194 (-398 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-442)))) ((*1 *1 *1) - (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *2 *4)) (-4 *4 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) + (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-442)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-298)) (-4 *3 (-539)) (-5 *1 (-1123 *3 *2)) + (-4 *2 (-1194 *3))))) +(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-358 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *3 (-619 (-254))) + (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-458))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) - (-4 *4 (-341)) (-5 *2 (-745)) (-5 *1 (-338 *4)))) - ((*1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-341)) - (-14 *4 - (-3 (-1131 *3) - (-1218 (-619 (-2 (|:| -4056 *3) (|:| -3337 (-1082))))))))) - ((*1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-345 *3 *4)) (-4 *3 (-341)) - (-14 *4 (-890))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) - (-4 *3 (-1030 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-443)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-1106 *5 *6 *7 *3))) (-5 *1 (-1106 *5 *6 *7 *3)) - (-4 *3 (-1030 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-166 (-399 (-548))))) + (-12 (-5 *3 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) + (-5 *2 (-398 (-547))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-547)))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2848 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-354)) (-4 *7 (-1194 *6)) + (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) + (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) + (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-489 *2)) (-14 *2 (-547)))) + ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *2 *2) + (-12 (-4 *3 (-340)) (-4 *4 (-320 *3)) (-4 *5 (-1194 *4)) + (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1194 *5)) (-14 *6 (-890)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) + ((*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-354)) (-4 *2 (-359))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169))))) +(((*1 *1 *1) (-4 *1 (-532)))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-523))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1185 (-547))) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1172))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 - (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-548)) - (|:| |outvect| (-619 (-663 (-166 *4))))))) - (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-184)) (-5 *3 (-548)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1131 *7)) - (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) - (-5 *1 (-491 *5 *2 *6 *7)) (-4 *6 (-1194 *2))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 (-619 (-218))) (-5 *1 (-197))))) -(((*1 *2 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) - (-4 *3 (-661 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) - (-5 *2 (-745))))) -(((*1 *2 *3) - (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) - (-5 *1 (-646 *4))))) -(((*1 *2) - (-12 (-4 *1 (-341)) - (-5 *2 (-619 (-2 (|:| -1915 (-548)) (|:| -3352 (-548)))))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8))))) + (-2 + (|:| -3326 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) + (|:| |yinit| (-619 (-217))) (|:| |intvals| (-619 (-217))) + (|:| |g| (-307 (-217))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (|:| -1777 + (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) + (|:| |expense| (-370)) (|:| |accuracy| (-370)) + (|:| |intermediateResults| (-370))))))) + (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-166 (-399 (-548))))) (-5 *2 (-619 (-166 *4))) - (-5 *1 (-739 *4)) (-4 *4 (-13 (-355) (-819)))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) - (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-439 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) - (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-491 *5 *2 *6 *7)) - (-4 *6 (-1194 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) - (-4 *4 (-1194 *5)) (-5 *2 (-1131 *7)) (-5 *1 (-491 *5 *4 *6 *7)) - (-4 *6 (-1194 *4))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 (-2 (|:| -2503 (-114)) (|:| |w| (-218)))) (-5 *1 (-197))))) -(((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-743)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) - (-5 *1 (-549)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-743)) (-5 *4 (-1028)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) - (-5 *1 (-549)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-761)) (-5 *3 (-1028)) - (-5 *4 - (-2 (|:| |fn| (-308 (-218))) - (|:| -3094 (-619 (-1058 (-814 (-218))))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) - (|:| |extra| (-1004)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-761)) (-5 *3 (-1028)) - (-5 *4 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)) - (|:| |extra| (-1004)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-774)) (-5 *3 (-1028)) - (-5 *4 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-782)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *1 (-779)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-782)) (-5 *4 (-1028)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *1 (-779)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-810)) (-5 *3 (-1028)) - (-5 *4 - (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) - (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-810)) (-5 *3 (-1028)) - (-5 *4 - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) - (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-812)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *1 (-811)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-812)) (-5 *4 (-1028)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *1 (-811)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-864)) (-5 *3 (-1028)) - (-5 *4 - (-2 (|:| |pde| (-619 (-308 (-218)))) - (|:| |constraints| - (-619 - (-2 (|:| |start| (-218)) (|:| |finish| (-218)) - (|:| |grid| (-745)) (|:| |boundaryType| (-548)) - (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) - (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) - (|:| |tol| (-218)))) - (-5 *2 (-2 (|:| -3671 (-371)) (|:| |explanations| (-1118)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-867)) - (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *1 (-866)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) + (-5 *1 (-570 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-867)) (-5 *4 (-1028)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-5 *2 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *1 (-866))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4328)) (-4 *4 (-355)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-511 *4 *5 *6 *3)) - (-4 *3 (-661 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4328)) (-4 *4 (-540)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-4 *7 (-961 *4)) (-4 *8 (-365 *7)) - (-4 *9 (-365 *7)) (-5 *2 (-619 *6)) - (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-661 *4 *5 *6)) - (-4 *10 (-661 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-619 *5)))) + (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) + (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))))) ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-5 *2 (-619 *6)) (-5 *1 (-662 *4 *5 *6 *3)) - (-4 *3 (-661 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) - (-5 *2 (-619 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-341)) (-5 *3 (-548)) (-5 *2 (-1145 (-890) (-745)))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *8 (-1030 *5 *6 *7)) + (-12 (-4 *4 (-13 (-298) (-145))) (-5 *2 - (-2 (|:| |val| (-619 *8)) (|:| |towers| (-619 (-996 *5 *6 *7 *8))))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) + (-619 (-2 (|:| -1995 (-1131 *4)) (|:| -2301 (-619 (-921 *4)))))) + (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) + (-14 *5 (-619 (-1135))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *8 (-1030 *5 *6 *7)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-5 *2 - (-2 (|:| |val| (-619 *8)) - (|:| |towers| (-619 (-1106 *5 *6 *7 *8))))) - (-5 *1 (-1106 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-736)))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1) (-12 (-5 *1 (-646 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) - (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-663 *3)))) - (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-185))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-5 *1 (-865 *2 *4)) - (-4 *2 (-1194 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1191 *4 *5)) (-5 *3 (-619 *5)) (-14 *4 (-1135)) - (-4 *5 (-355)) (-5 *1 (-892 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *5)) (-4 *5 (-355)) (-5 *2 (-1131 *5)) - (-5 *1 (-892 *4 *5)) (-14 *4 (-1135)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-745)) (-4 *6 (-355)) - (-5 *2 (-399 (-921 *6))) (-5 *1 (-1017 *5 *6)) (-14 *5 (-1135))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-793 *3)) (-4 *3 (-821)) (-5 *1 (-646 *3))))) -(((*1 *1) (-4 *1 (-341)))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-619 *11)) - (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) - (-5 *6 (-745)) - (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) - (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) - (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) - (-4 *9 (-821)) (-5 *1 (-1034 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-619 *11)) - (|:| |todo| (-619 (-2 (|:| |val| *3) (|:| -1806 *11)))))) - (-5 *6 (-745)) - (-5 *2 (-619 (-2 (|:| |val| (-619 *10)) (|:| -1806 *11)))) - (-5 *3 (-619 *10)) (-5 *4 (-619 *11)) (-4 *10 (-1030 *7 *8 *9)) - (-4 *11 (-1072 *7 *8 *9 *10)) (-4 *7 (-443)) (-4 *8 (-767)) - (-4 *9 (-821)) (-5 *1 (-1105 *7 *8 *9 *10 *11))))) -(((*1 *1 *1 *1) (-4 *1 (-464))) ((*1 *1 *1 *1) (-4 *1 (-736)))) -(((*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-911)) (-5 *3 (-548))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) - (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 (-371)) (-5 *1 (-185))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-355)) (-5 *1 (-865 *2 *3)) - (-4 *2 (-1194 *3))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1014))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) - (-5 *2 (-58 (-619 (-646 *5)))) (-5 *1 (-646 *5))))) -(((*1 *2) - (-12 (-4 *1 (-341)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4327)) (-4 *1 (-34)) (-5 *2 (-745)))) + (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) + (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4328)) (-4 *1 (-34)) (-5 *2 (-745)))) ((*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-548)))) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-547)))) ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-817))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3514 (-405 *4 (-399 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3944 (-399 *6)) - (|:| |special| (-399 *6)))) - (-5 *1 (-702 *5 *6)) (-5 *3 (-399 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-355)) (-5 *2 (-619 *3)) (-5 *1 (-865 *3 *4)) - (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-745)) (-4 *5 (-355)) - (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-865 *3 *5)) - (-4 *3 (-1194 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) - (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) - (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) - (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-619 *9)) (-5 *3 (-619 *8)) (-5 *4 (-112)) - (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1107 *3))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-861 *6))) - (-5 *5 (-1 (-858 *6 *8) *8 (-861 *6) (-858 *6 *8))) (-4 *6 (-1063)) - (-4 *8 (-13 (-1016) (-593 (-861 *6)) (-1007 *7))) - (-5 *2 (-858 *6 *8)) (-4 *7 (-13 (-1016) (-821))) - (-5 *1 (-910 *6 *7 *8))))) -(((*1 *1 *1 *1) (-4 *1 (-736)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) - (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-663 *3)) - (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-185))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1131 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3) - (-12 (-4 *1 (-864)) - (-5 *3 - (-2 (|:| |pde| (-619 (-308 (-218)))) - (|:| |constraints| - (-619 - (-2 (|:| |start| (-218)) (|:| |finish| (-218)) - (|:| |grid| (-745)) (|:| |boundaryType| (-548)) - (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) - (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) - (|:| |tol| (-218)))) - (-5 *2 (-1004))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-890)) (-4 *5 (-821)) - (-5 *2 (-619 (-646 *5))) (-5 *1 (-646 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) - (-5 *2 - (-3 (-1131 *4) - (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082))))))) - (-5 *1 (-338 *4)) (-4 *4 (-341))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) - (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1034 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-745)) (-5 *6 (-112)) (-4 *7 (-443)) (-4 *8 (-767)) - (-4 *9 (-821)) (-4 *3 (-1030 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1105 *7 *8 *9 *3 *4)) (-4 *4 (-1072 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-734))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) - (-4 *3 (-163 *6)) (-4 (-921 *6) (-855 *5)) - (-4 *6 (-13 (-855 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-858 *4 *1)) (-5 *3 (-861 *4)) (-4 *1 (-855 *4)) - (-4 *4 (-1063)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) - (-4 *6 (-13 (-1063) (-1007 *3))) (-4 *3 (-855 *5)) - (-5 *1 (-900 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) - (-4 *3 (-13 (-422 *6) (-593 *4) (-855 *5) (-1007 (-591 $)))) - (-5 *4 (-861 *5)) (-4 *6 (-13 (-540) (-821) (-855 *5))) - (-5 *1 (-901 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 (-548) *3)) (-5 *4 (-861 (-548))) (-4 *3 (-533)) - (-5 *1 (-902 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 *6)) (-5 *3 (-591 *6)) (-4 *5 (-1063)) - (-4 *6 (-13 (-821) (-1007 (-591 $)) (-593 *4) (-855 *5))) - (-5 *4 (-861 *5)) (-5 *1 (-903 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-854 *5 *6 *3)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) - (-4 *6 (-855 *5)) (-4 *3 (-640 *6)) (-5 *1 (-904 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-858 *6 *3) *8 (-861 *6) (-858 *6 *3))) - (-4 *8 (-821)) (-5 *2 (-858 *6 *3)) (-5 *4 (-861 *6)) - (-4 *6 (-1063)) (-4 *3 (-13 (-918 *9 *7 *8) (-593 *4))) - (-4 *7 (-767)) (-4 *9 (-13 (-1016) (-821) (-855 *6))) - (-5 *1 (-905 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) - (-4 *3 (-13 (-918 *8 *6 *7) (-593 *4))) (-5 *4 (-861 *5)) - (-4 *7 (-855 *5)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *8 (-13 (-1016) (-821) (-855 *5))) - (-5 *1 (-905 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 *3)) (-4 *5 (-1063)) (-4 *3 (-961 *6)) - (-4 *6 (-13 (-540) (-855 *5) (-593 *4))) (-5 *4 (-861 *5)) - (-5 *1 (-908 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-858 *5 (-1135))) (-5 *3 (-1135)) (-5 *4 (-861 *5)) - (-4 *5 (-1063)) (-5 *1 (-909 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-619 (-861 *7))) (-5 *5 (-1 *9 (-619 *9))) - (-5 *6 (-1 (-858 *7 *9) *9 (-861 *7) (-858 *7 *9))) (-4 *7 (-1063)) - (-4 *9 (-13 (-1016) (-593 (-861 *7)) (-1007 *8))) - (-5 *2 (-858 *7 *9)) (-5 *3 (-619 *9)) (-4 *8 (-13 (-1016) (-821))) - (-5 *1 (-910 *7 *8 *9))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-745)) - (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) (-5 *1 (-489 *3 *4 *5)) (-4 *5 (-401 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-185))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-921 (-548))) (-5 *3 (-1135)) - (-5 *4 (-1058 (-399 (-548)))) (-5 *1 (-30))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-548)) (-5 *1 (-1116 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) - (-5 *2 (-619 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |k| (-862 *3)) (|:| |c| *4)))) - (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-646 *3))) (-5 *1 (-862 *3)) (-4 *3 (-821))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-547))) + (-5 *2 (-1218 (-398 (-547)))) (-5 *1 (-1245 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) (-5 *1 (-351 *3 *4)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-440 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-440 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-440 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442)) + (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) - (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1218 (-399 *8)) "failed")) - (|:| -2877 (-619 (-1218 (-399 *8)))))) - (-5 *1 (-643 *5 *6 *7 *8))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-890)) - (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) - (-5 *1 (-338 *4)) (-4 *4 (-341))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) + (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) + (-4 *10 (-1072 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-745)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) + (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) + (-5 *1 (-604 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) + (-14 *6 (-619 (-1135))) (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-548)))) (-5 *1 (-429)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-218))) (-5 *2 (-1067)) - (-5 *1 (-734)))) + (-619 (-1106 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) + (-5 *1 (-604 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) + (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) + (-5 *1 (-1013 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-548))) (-5 *2 (-1067)) - (-5 *1 (-734))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) - (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-900 *4 *5 *6))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-663 *2)) (-5 *4 (-548)) - (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-410 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) - (-14 *4 (-619 (-1135))))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1172)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) - (-14 *4 (-619 (-1135))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) - ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-548))) (-5 *1 (-1014)) - (-5 *3 (-548))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1165 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1216 *3)) (-4 *3 (-23)) (-4 *3 (-1172))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) + ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-154))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) + (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) + (-5 *1 (-997 *4))))) +(((*1 *1 *1) (-5 *1 (-112)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) - (-5 *2 (-112)) (-5 *1 (-641 *5)))) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) + (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) + (-5 *1 (-1034 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-112)) - (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) - (-4 *4 (-341)) (-5 *2 (-663 *4)) (-5 *1 (-338 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) + (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) + (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1194 *3)) + (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-539) (-145))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843)) + (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-1219)) + (-5 *1 (-1222)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254))) + (-5 *2 (-1219)) (-5 *1 (-1222))))) +(((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-523))) (-5 *1 (-523))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-470))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)) + (-5 *1 (-399 *3 *4 *5)) (-4 *3 (-400 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-663 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-5 *1 (-608)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-619 *4)) - (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))))) - (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) + (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) - (-5 *2 (-619 (-1058 (-218)))) (-5 *1 (-897))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) - (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *5 (-1194 *2)) (-5 *1 (-489 *2 *5 *6)) (-4 *6 (-401 *2 *5))))) + (-12 (-5 *2 (-409 (-1131 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1131 *1)) + (-4 *4 (-442)) (-4 *4 (-539)) (-4 *4 (-821)))) + ((*1 *2 *3) + (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1131 *1))) (-5 *3 (-1131 *1))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1143 *3))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) + (-4 *3 (-1194 (-166 *2)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-745)) (-4 *3 (-1172)) (-4 *1 (-56 *3 *4 *5)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1) (-5 *1 (-168))) + ((*1 *1) (-12 (-5 *1 (-205 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-380)))) + ((*1 *1) (-5 *1 (-385))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1) + (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) + (-4 *4 (-640 *3)))) + ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) + ((*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) + ((*1 *1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1135))) + ((*1 *1) (-5 *1 (-1152)))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *1) (-5 *1 (-1028)))) (((*1 *2 *3) - (-12 (-5 *2 (-619 (-1131 (-548)))) (-5 *1 (-184)) (-5 *3 (-548))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) - (-4 *3 (-1172))))) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) + (-5 *1 (-1226 *4)) (-4 *4 (-354))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) + (-5 *1 (-724))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-594)))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1153))))) (((*1 *2 *3) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) - (-5 *1 (-859 *4 *5)) (-4 *5 (-1172))))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *6 (-592 (-1135))) + (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *2 (-1125 (-619 (-921 *4)) (-619 (-285 (-921 *4))))) + (-5 *1 (-493 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-2 (|:| -3326 *3) (|:| -1777 *4)))) + (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1148 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) - (-5 *1 (-986 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371)))) + (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-184)))) ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-548))) (-5 *2 (-1 (-548))) (-5 *1 (-1014))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 (-1131 *4))) (-5 *3 (-1131 *4)) - (-4 *4 (-878)) (-5 *1 (-637 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) - (-5 *2 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) - (-5 *1 (-338 *4))))) -(((*1 *1) (-5 *1 (-112)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) - (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) - (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-895)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-895)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-912 (-218)) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896))))) -(((*1 *1 *1) (-4 *1 (-533)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-745)) (-4 *5 (-341)) (-4 *6 (-1194 *5)) - (-5 *2 - (-619 - (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-663 *6))))) - (-5 *1 (-488 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2877 (-663 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-663 *6)))) - (-4 *7 (-1194 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) - (-5 *1 (-183))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) - (-5 *2 (-814 *4)) (-5 *1 (-305 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) - (-5 *2 (-814 *4)) (-5 *1 (-1204 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1157) (-422 *3))) (-14 *5 (-1135)) - (-14 *6 *4)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) - (-4 *3 (-1172)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-299)) - (-5 *2 (-399 (-410 (-921 *4)))) (-5 *1 (-1011 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) - (-4 *2 (-630 *4))))) + (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-291)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-169)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-5 *1 (-662 *4 *5 *6 *2)) + (-4 *2 (-661 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-927 (-1082))) - (-5 *1 (-338 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) - ((*1 *1 *1 *1) (-4 *1 (-443))) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548))))) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-298) (-145))) + (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) + (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-427))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442)))) + ((*1 *1 *1 *1) (-4 *1 (-442))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1194 (-547))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) + (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3)))) ((*1 *1 *1 *1) (-5 *1 (-745))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-299)))) + (-4 *6 (-298)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) + (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-619 (-1131 *7))) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-299)) (-5 *2 (-1131 *7)) (-5 *1 (-885 *4 *5 *6 *7)) + (-4 *6 (-298)) (-5 *2 (-1131 *7)) (-5 *1 (-885 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-890))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-443)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) + (-12 (-4 *3 (-442)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1063)) - (-4 *6 (-1063)) (-4 *2 (-1063)) (-5 *1 (-654 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) - (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-443)) (-4 *6 (-767)) - (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) - (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) - (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-895)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-895)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1 (-218) (-218)))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896))))) -(((*1 *2 *1) - (-12 + (-4 *4 (-821)) (-4 *2 (-442))))) +(((*1 *1) (-5 *1 (-797)))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 - (-619 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-548))))) - (-5 *1 (-410 *3)) (-4 *3 (-540)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-745)) (-4 *3 (-341)) (-4 *5 (-1194 *3)) - (-5 *2 (-619 (-1131 *3))) (-5 *1 (-488 *3 *5 *6)) - (-4 *6 (-1194 *5))))) + (-2 (|:| |stiffnessFactor| (-370)) (|:| |stabilityFactor| (-370)))) + (-5 *1 (-197))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-1137 (-399 (-548)))) - (-5 *1 (-183))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-821) (-1007 (-548)) (-615 (-548)) (-443))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1203 *4 *5 *6)) - (|:| |%expon| (-311 *4 *5 *6)) - (|:| |%expTerms| - (-619 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))))) - (|:| |%type| (-1118)))) - (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-422 *3))) - (-14 *5 (-1135)) (-14 *6 *4)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) - (-5 *1 (-858 *4 *5)) (-4 *5 (-1063)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) - (-5 *1 (-859 *5 *3)) (-4 *3 (-1172)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) - (-4 *6 (-1172)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-355)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) - (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5))))) -(((*1 *2) - (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890)))) - ((*1 *2) - (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-341)) - (-14 *4 (-1131 *3)))) - ((*1 *2) - (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-337 *3 *4)) (-4 *3 (-341)) - (-14 *4 (-890))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172))))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1104)))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) - ((*1 *2 *1) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-485))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) - (-5 *2 (-399 (-548)))))) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) + (-5 *2 (-547)) (-5 *1 (-1077 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-298))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -2503 (-114)) (|:| |arg| (-619 (-861 *3))))) - (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) - (-5 *1 (-861 *4)) (-4 *4 (-1063))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-13 (-355) (-821))) - (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-311 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1009)) (-5 *3 (-371))))) -(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-355)) (-5 *1 (-633 *4 *2)) - (-4 *2 (-630 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) - (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745))))) -(((*1 *1 *1) (-4 *1 (-1104)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-218)))) (-5 *1 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-481))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) - (-4 *3 (-1063))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-371)) (-5 *1 (-1009))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) - (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5)))))) -(((*1 *2) - (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) - (-5 *2 (-112)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-443)))) - ((*1 *1 *1 *1) (-4 *1 (-443)))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1104)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-745)) (-4 *3 (-1172)) (-4 *1 (-56 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1) (-5 *1 (-168))) - ((*1 *1) (-12 (-5 *1 (-206 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1063)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381)))) - ((*1 *1) (-5 *1 (-386))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) - ((*1 *1) - (-12 (-4 *3 (-1063)) (-5 *1 (-854 *2 *3 *4)) (-4 *2 (-1063)) - (-4 *4 (-640 *3)))) - ((*1 *1) (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) - ((*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) - ((*1 *1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1135))) - ((*1 *1) (-5 *1 (-1152)))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) - (-4 *4 (-1172)) (-5 *2 (-112))))) + (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-890)))) + ((*1 *2 *3) + (-12 (-5 *3 (-327 *4 *5 *6 *7)) (-4 *4 (-13 (-359) (-354))) + (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-4 *7 (-333 *4 *5 *6)) + (-5 *2 (-745)) (-5 *1 (-383 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-393)) (-5 *2 (-807 (-890))))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) + (-4 *3 (-821)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) + (-4 *8 (-333 *5 *6 *7)) + (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-745)) + (-5 *1 (-880 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) + (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-1194 (-398 *4))) + (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-745)) + (-5 *1 (-881 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-354)) + (-4 *7 (-1194 *6)) (-4 *4 (-1194 (-398 *7))) (-4 *8 (-333 *6 *7 *4)) + (-4 *9 (-13 (-359) (-354))) (-5 *2 (-745)) + (-5 *1 (-987 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-539)) + (-5 *2 (-745)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) - (-5 *1 (-183))))) + (-12 (-4 *4 (-539)) (-5 *2 (-927 *3)) (-5 *1 (-1123 *4 *3)) + (-4 *3 (-1194 *4))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) - (-4 *2 (-1178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) -(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1176)) (-4 *5 (-1194 *3)) (-4 *6 (-1194 (-399 *5))) - (-5 *2 (-112)) (-5 *1 (-333 *4 *3 *5 *6)) (-4 *4 (-334 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-1104)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-2 (|:| -3156 *3) (|:| -1657 *4)))) - (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *1 (-1148 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4327)) (-4 *1 (-480 *4)) - (-4 *4 (-1172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-766)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-399 (-548))) (-4 *1 (-1199 *3)) (-4 *3 (-1016))))) + (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) + (-5 *2 (-619 (-2 (|:| -1777 *3) (|:| -3987 (-745)))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) - (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-821)))) - ((*1 *2 *2) - (-12 (-5 *2 (-566 *4)) (-4 *4 (-13 (-29 *3) (-1157))) - (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *1 (-564 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-566 (-399 (-921 *3)))) - (-4 *3 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *1 (-569 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 (-2 (|:| -3944 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1218 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) - (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) - (-5 *3 (-619 (-663 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1218 (-1218 *5))) (-4 *5 (-355)) (-4 *5 (-1016)) - (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) - (-5 *3 (-619 (-663 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1104))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) - ((*1 *1 *1) (-4 *1 (-294))) ((*1 *1 *1) (-5 *1 (-832)))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-478))))) +(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-565 *3) *3 (-1135))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1135))) + (-4 *3 (-275)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-421 *7)) + (-5 *4 (-1135)) (-4 *7 (-592 (-861 (-547)))) (-4 *7 (-442)) + (-4 *7 (-855 (-547))) (-4 *7 (-821)) (-5 *2 (-565 *3)) + (-5 *1 (-556 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016)))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) + (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) + (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) + (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-548)))) - (-4 *4 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $))))) - (-4 *3 (-540)) (-5 *1 (-1197 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1009))))) + (-12 (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-442)))) + ((*1 *1 *1 *1) (-4 *1 (-442)))) (((*1 *2 *1) - (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 *2))) - (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) - (-4 *5 (-13 (-422 *4) (-855 *3) (-593 *2)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) - (-4 *5 (-821)) (-5 *2 (-921 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) - (-4 *5 (-821)) (-5 *2 (-921 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) - (-5 *2 (-921 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) - (-5 *2 (-921 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547))))) +(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) (((*1 *2 *3) - (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) - (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| -2665 *1) (|:| -1351 (-619 *7))))) + (-5 *3 (-619 *7)) (-4 *1 (-1165 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-227 *3)) + (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1172))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-1188 *3 *2)) + (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-217)) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 *4)))) + (|:| |xValues| (-1058 *4)) (|:| |yValues| (-1058 *4)))) + (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-548)) (-5 *1 (-477 *4)) - (-4 *4 (-1194 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) + (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-539)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1141 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) - (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *6)) (-15 -2470 (*6 $)) - (-15 -2480 (*6 $))))))) + (-12 (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) + (-5 *2 (-619 (-1135))) (-5 *1 (-1039 *3 *4 *5)) + (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-562))))) +(((*1 *2 *3) (-12 (-5 *3 (-166 (-547))) (-5 *2 (-112)) (-5 *1 (-436)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) - (-5 *2 (-1135)) (-5 *1 (-1012 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))) - (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-548)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-745)) (-4 *5 (-169)))) - ((*1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) - (-4 *4 (-169)))) - ((*1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-365 *3)) - (-4 *4 (-365 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1102 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) + (-12 + (-5 *3 + (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) + (-239 *4 (-398 (-547))))) + (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) + (-5 *1 (-494 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-532)))) + ((*1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) (((*1 *2 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-835 *4 *5 *6 *7)) - (-4 *4 (-1016)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 *3)) - (-14 *7 *3))) + (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-539)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) ((*1 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) - (-14 *8 (-619 *5)) (-5 *2 (-1223)) - (-5 *1 (-1230 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) - (-14 *9 (-619 *3)) (-14 *10 *3)))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) - ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) - ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) -(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) - (-4 *6 (-13 (-540) (-1007 *5))) (-4 *5 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *6)))))) (-5 *1 (-1008 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) - (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) (-4 *1 (-276))) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-843)) + (-5 *5 (-890)) (-5 *6 (-619 (-254))) (-5 *2 (-458)) (-5 *1 (-1222)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 *4)) (-4 *4 (-540)) - (-5 *2 (-619 (-2 (|:| -1489 (-745)) (|:| |logand| *4)))) - (-5 *1 (-312 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-458)) + (-5 *1 (-1222)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *4 (-619 (-254))) + (-5 *2 (-458)) (-5 *1 (-1222))))) +(((*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) - (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) - (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169))))) -(((*1 *1 *2) - (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1102 *3 *4)) - (-14 *3 (-745))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-548))) (-5 *1 (-477 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548))))) + (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890)) (-4 *4 (-1016))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) + (-12 (-4 *4 (-442)) (-5 *2 - (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-663 *3)))) - (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-548)) (-4 *4 (-1194 *3)) - (-5 *2 - (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-663 *3)))) - (-5 *1 (-742 *4 *5)) (-4 *5 (-401 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) - (-5 *2 - (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-663 *3)))) - (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) - (-5 *2 - (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-663 *3)))) - (-5 *1 (-1227 *4 *3 *5 *6)) (-4 *6 (-401 *3 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) -(((*1 *1) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) + (-619 + (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1125 (-1135) (-921 *4)))) + (|:| |eigmult| (-745)) + (|:| |eigvec| (-619 (-663 (-398 (-921 *4)))))))) + (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4))))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) (-4 *2 (-1172)) (-4 *2 (-1063))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) - (-4 *3 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-171 *6)) + (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-5 *1 (-477 *2)) (-4 *2 (-1194 (-548)))))) + (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-547))) + (-5 *2 (-1218 (-547))) (-5 *1 (-1245 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-112)) + (-5 *1 (-348 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-539)))) + ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) - (-5 *2 (-1218 (-663 (-921 *4)))) (-5 *1 (-182 *4))))) -(((*1 *2) - (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) - (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-4 *4 (-1194 *3)) - (-5 *2 - (-2 (|:| -2877 (-663 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-663 *3)))) - (-5 *1 (-342 *3 *4 *5)) (-4 *5 (-401 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1194 (-548))) - (-5 *2 - (-2 (|:| -2877 (-663 (-548))) (|:| |basisDen| (-548)) - (|:| |basisInv| (-663 (-548))))) - (-5 *1 (-742 *3 *4)) (-4 *4 (-401 (-548) *3)))) - ((*1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) - (-5 *2 - (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-663 *4)))) - (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) - (-5 *2 - (-2 (|:| -2877 (-663 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-663 *4)))) - (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *6 (-401 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) - ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) - ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *1 (-878)) (-5 *2 (-409 (-1131 *1))) (-5 *3 (-1131 *1))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-777))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) + ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) + ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) (((*1 *1 *2 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3) - (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) - (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) + (-5 *1 (-428))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-663 *3))))) +(((*1 *1 *1) (|partial| -4 *1 (-1111)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) + (-5 *1 (-1039 *4 *5 *2)) + (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) + (-5 *1 (-1039 *3 *4 *2)) + (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *1 *1) (-4 *1 (-605))) ((*1 *2 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-475 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) (-4 *2 (-648 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-745)) (-4 *6 (-355)) (-5 *4 (-1166 *6)) - (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1226 *6)) - (-5 *5 (-1116 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) - (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971) (-1157)))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *1 *1 *1) (-4 *1 (-936)))) (((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) ((*1 *1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) + (|partial| -12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) ((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) - (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) - (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) - (-5 *1 (-1143 *6)) (-5 *5 (-619 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-895))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-619 (-496))) (-5 *2 (-496)) (-5 *1 (-474))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1172)) (-5 *2 (-745)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-648 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-619 (-1166 *5))) - (-5 *1 (-1226 *5)) (-5 *4 (-1166 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) + (-12 (-4 *4 (-821)) (-5 *2 (-1144 (-619 *4))) (-5 *1 (-1143 *4)) + (-5 *3 (-619 *4))))) +(((*1 *1 *1) (-4 *1 (-1025))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1063)) (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 *2))) + (-5 *2 (-861 *3)) (-5 *1 (-1039 *3 *4 *5)) + (-4 *5 (-13 (-421 *4) (-855 *3) (-592 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-1218 *5))) (-5 *4 (-548)) (-5 *2 (-1218 *5)) - (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016))))) + (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-442)) + (-5 *2 + (-2 (|:| |dpolys| (-619 (-239 *5 *6))) + (|:| |coords| (-619 (-547))))) + (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-619 (-239 *5 *6))) (-4 *7 (-442))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1118)) (-5 *1 (-296))))) (((*1 *2 *1) - (-12 (-4 *1 (-583 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) + (-12 (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) + (-5 *2 (-1218 *6)) (-5 *1 (-327 *3 *4 *5 *6)) + (-4 *6 (-333 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-523))))) +(((*1 *2 *1) + (-12 (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) (-4 *3 (-821)) (-4 *2 (-1172)))) ((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) ((*1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) @@ -5218,132 +3786,163 @@ (-12 (-4 *2 (-1172)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1172)))) ((*1 *2 *1) (-12 (-5 *2 (-646 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) + (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) (((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-240 *3 *4)) - (-14 *3 (-619 (-1135))) (-4 *4 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-14 *3 (-619 (-1135))) - (-5 *1 (-445 *3 *4 *5)) (-4 *4 (-1016)) - (-4 *5 (-231 (-3643 *3) (-745))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-472 *3 *4)) - (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1172)) (-5 *1 (-179 *3 *2)) - (-4 *2 (-648 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-1 (-1131 (-921 *4)) (-921 *4))) - (-5 *1 (-1226 *4)) (-4 *4 (-355))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-548)) (-4 *6 (-355)) (-4 *6 (-360)) - (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) - (-5 *3 (-619 (-663 *6))))) + (-12 (-5 *2 (-166 *4)) (-5 *1 (-177 *4 *3)) + (-4 *4 (-13 (-354) (-819))) (-4 *3 (-1194 *2))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1118)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *4 (-1030 *6 *7 *8)) (-5 *2 (-1223)) + (-5 *1 (-750 *6 *7 *8 *4 *5)) (-4 *5 (-1036 *6 *7 *8 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) + (-5 *2 (-547)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) ((*1 *2 *3) - (-12 (-4 *4 (-355)) (-4 *4 (-360)) (-4 *4 (-1016)) - (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) - (-5 *3 (-619 (-663 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) - (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) - (-5 *3 (-619 (-663 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *5 (-355)) (-4 *5 (-360)) (-4 *5 (-1016)) - (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) - (-5 *3 (-619 (-663 *5)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-548) (-548))) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) - (-4 *5 (-1194 (-399 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-218))) (-5 *2 (-896)) - (-5 *1 (-894 *3)) (-4 *3 (-593 (-524))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-5 *2 (-896)) (-5 *1 (-894 *3)) - (-4 *3 (-593 (-524))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-896)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-218) (-218))) (-5 *3 (-1058 (-218))) - (-5 *1 (-896))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-471))))) + (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) + (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) + (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-819)) (-5 *1 (-294 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-819))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3213 (-410 *3)))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-4 *5 (-355)) (-5 *2 (-1116 (-1116 (-921 *5)))) - (-5 *1 (-1226 *5)) (-5 *4 (-1116 (-921 *5)))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) + (-5 *1 (-1226 *4)) (-4 *4 (-354))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) (((*1 *2 *2) - (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) - (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-471))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-275))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 *4)) (-4 *4 (-539)) + (-5 *2 (-619 (-2 (|:| -1557 (-745)) (|:| |logand| *4)))) + (-5 *1 (-311 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *2 *1) + (-12 (-5 *2 (-638 *3 *4)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) + (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) + (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-206 *4)) + (-4 *4 + (-13 (-821) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 (*2 $)) + (-15 -3617 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1223)) (-5 *1 (-206 *3)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 (*2 $)) + (-15 -3617 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-491))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-398 (-547)))) + (-5 *2 (-2 (|:| -1624 (-1116 *4)) (|:| -1635 (-1116 *4)))) + (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) - (-4 *3 (-1194 (-166 *2)))))) + (-12 (-4 *3 (-13 (-298) (-145))) (-4 *4 (-13 (-821) (-592 (-1135)))) + (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1135)) + (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-558 *4 *2)) + (-4 *2 (-13 (-1157) (-928) (-1099) (-29 *4)))))) +(((*1 *1) (-5 *1 (-797)))) (((*1 *2 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) - (-5 *1 (-1226 *4)) (-4 *4 (-355))))) + (-12 (-5 *3 (-663 (-307 (-217)))) (-5 *2 (-370)) (-5 *1 (-197))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) - (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *2 (-112)) (-5 *1 (-893 *4 *5 *6 *7)))) + (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-619 (-1135))) (-4 *2 (-169)) + (-4 *4 (-230 (-3763 *5) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3479 *3) (|:| -4248 *4)) + (-2 (|:| -3479 *3) (|:| -4248 *4)))) + (-5 *1 (-451 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) + (-4 *7 (-918 *2 *4 (-834 *5)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-298)) + (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-298)) (-5 *1 (-885 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-13 (-299) (-145))) - (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-112)) - (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) + (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-298))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-547)) + (-5 *6 + (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370)))) + (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) + (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) + (-5 *1 (-762)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-547)) + (-5 *6 + (-2 (|:| |try| (-370)) (|:| |did| (-370)) (|:| -3027 (-370)))) + (-5 *7 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) + (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) + (-5 *1 (-762))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) + (-4 *1 (-1036 *4 *5 *6 *3))))) (((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) - (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) + (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) + (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) (-5 *2 (-745)))) ((*1 *2) - (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) - (-4 *3 (-321 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) - ((*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-378 *3)) (-4 *3 (-1063)))) + (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4)) + (-4 *3 (-320 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) + ((*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) ((*1 *2) - (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) + (-12 (-4 *4 (-1063)) (-5 *2 (-745)) (-5 *1 (-415 *3 *4)) + (-4 *3 (-416 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4))) @@ -5351,792 +3950,952 @@ (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-745)) (-5 *1 (-698 *3 *4 *5)) (-4 *3 (-699 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) - ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-975)))) + ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) + (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) (-4 *3 (-1194 *2))))) -(((*1 *1) (-5 *1 (-322)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) - (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) - (-4 *5 (-540)) (-5 *2 (-619 (-619 (-921 *5)))) (-5 *1 (-1141 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1135)) (-5 *1 (-524)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-593 (-524))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-679 *3)) - (-4 *3 (-593 (-524)))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) - ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-458)))) - ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) - (-5 *2 - (-2 (|:| |dpolys| (-619 (-240 *5 *6))) - (|:| |coords| (-619 (-548))))) - (-5 *1 (-462 *5 *6 *7)) (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) - (-4 *4 (-13 (-355) (-819))) (-4 *3 (-1194 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1 (-1116 (-921 *4)) (-1116 (-921 *4)))) - (-5 *1 (-1226 *4)) (-4 *4 (-355))))) + (-12 (-4 *4 (-442)) + (-5 *2 + (-619 + (-2 (|:| |eigval| (-3 (-398 (-921 *4)) (-1125 (-1135) (-921 *4)))) + (|:| |geneigvec| (-619 (-663 (-398 (-921 *4)))))))) + (-5 *1 (-283 *4)) (-5 *3 (-663 (-398 (-921 *4))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) - (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *2 (-918 *3 *5 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 (-112) (-619 *1))) - (-4 *1 (-1036 *4 *5 *6 *3))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) + (-5 *1 (-1120 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-547)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) + (-14 *4 (-1135)) (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3715 (-756 *3)) (|:| |coef1| (-756 *3)) + (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3715 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *1 (-565 *2)) (-4 *2 (-1007 *3)) + (-4 *2 (-354)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2)) + (-4 *2 (-13 (-421 *4) (-971) (-1157))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-971) (-1157))) + (-4 *4 (-13 (-821) (-539))) (-5 *1 (-606 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-1135)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-928))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1231 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) + (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) ((*1 *1 *1) (|partial| -4 *1 (-697)))) (((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)))) - ((*1 *1) (-4 *1 (-1111)))) + (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-442)) (-4 *4 (-821)) + (-5 *1 (-556 *4 *2)) (-4 *2 (-275)) (-4 *2 (-421 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145))) + (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) + (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-364 *7)) + (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4328))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-514))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-663 *3)) (-4 *1 (-408 *3)) (-4 *3 (-169)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) + (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *2) - (-12 (-5 *2 (-1218 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) - (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4)))))) + (-12 (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 *4)) (-5 *1 (-1101 *3 *4)) + (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1172)) + (-4 *5 (-364 *4)) (-4 *2 (-364 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *2 *7)) (-4 *6 (-1016)) + (-4 *7 (-230 *4 *6)) (-4 *2 (-230 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-956 (-398 (-547)) (-834 *3) (-232 *4 (-745)) + (-239 *3 (-398 (-547))))) + (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-271))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-896)) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) + (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547))) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) + (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) + (-5 *1 (-151))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-399 (-921 (-548))))) - (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-819) (-355))))) + (-12 (-5 *3 (-619 (-398 (-921 (-547))))) + (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-819) (-354))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-286 (-399 (-921 (-548)))))) - (-5 *2 (-619 (-619 (-286 (-921 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-819) (-355))))) + (-12 (-5 *3 (-619 (-285 (-398 (-921 (-547)))))) + (-5 *2 (-619 (-619 (-285 (-921 *4))))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-819) (-354))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 (-286 (-921 *4)))) - (-5 *1 (-372 *4)) (-4 *4 (-13 (-819) (-355))))) + (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 (-285 (-921 *4)))) + (-5 *1 (-371 *4)) (-4 *4 (-13 (-819) (-354))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-399 (-921 (-548))))) - (-5 *2 (-619 (-286 (-921 *4)))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-819) (-355))))) + (-12 (-5 *3 (-285 (-398 (-921 (-547))))) + (-5 *2 (-619 (-285 (-921 *4)))) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-819) (-354))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1135)) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-4 *4 (-13 (-29 *6) (-1157) (-928))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-619 *4)))) (-5 *1 (-626 *6 *4 *3)) (-4 *3 (-630 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-626 *6 *2 *3)) (-4 *3 (-630 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) - (|:| -2877 (-619 (-1218 *5))))) + (|:| -4013 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) + (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354)) (-5 *2 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) - (|:| -2877 (-619 (-1218 *5))))) + (|:| -4013 (-619 (-1218 *5))))) (-5 *1 (-641 *5)) (-5 *4 (-1218 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-355)) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) - (|:| -2877 (-619 (-1218 *5)))))) + (|:| -4013 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-355)) + (-12 (-5 *3 (-619 (-619 *5))) (-4 *5 (-354)) (-5 *2 (-619 (-2 (|:| |particular| (-3 (-1218 *5) "failed")) - (|:| -2877 (-619 (-1218 *5)))))) + (|:| -4013 (-619 (-1218 *5)))))) (-5 *1 (-641 *5)) (-5 *4 (-619 (-1218 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) + (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) - (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4328)))) + (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) + (-4 *7 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-619 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2877 (-619 *7))))) + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4013 (-619 *7))))) (-5 *1 (-642 *5 *6 *7 *3)) (-5 *4 (-619 *7)) (-4 *3 (-661 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5)))) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1135)) - (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-746 *5 *2)) (-4 *2 (-13 (-29 *5) (-1157) (-928))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 - (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) + (-2 (|:| |particular| (-1218 *7)) (|:| -4013 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)) (-5 *4 (-1218 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 *6)) (-5 *4 (-1135)) (-4 *6 (-13 (-29 *5) (-1157) (-928))) - (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 (-619 (-1218 *6))) (-5 *1 (-776 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-619 (-286 *7))) (-5 *4 (-619 (-114))) + (|partial| -12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 - (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) + (-2 (|:| |particular| (-1218 *7)) (|:| -4013 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 - (-2 (|:| |particular| (-1218 *7)) (|:| -2877 (-619 (-1218 *7))))) + (-2 (|:| |particular| (-1218 *7)) (|:| -4013 (-619 (-1218 *7))))) (-5 *1 (-776 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-114)) (-5 *5 (-1135)) + (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-1135)) (-4 *7 (-13 (-29 *6) (-1157) (-928))) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2877 (-619 *7))) *7 "failed")) + (-3 (-2 (|:| |particular| *7) (|:| -4013 (-619 *7))) *7 "failed")) (-5 *1 (-776 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1135)) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2877 (-619 *3))) *3 "failed")) + (-3 (-2 (|:| |particular| *3) (|:| -4013 (-619 *3))) *3 "failed")) (-5 *1 (-776 *6 *3)) (-4 *3 (-13 (-29 *6) (-1157) (-928))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) + (|partial| -12 (-5 *3 (-285 *2)) (-5 *4 (-114)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) (-5 *1 (-776 *6 *2)) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-286 *2)) (-5 *5 (-619 *2)) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-285 *2)) (-5 *5 (-619 *2)) (-4 *2 (-13 (-29 *6) (-1157) (-928))) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) (-5 *1 (-776 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) + (-12 (-5 *3 (-1218 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) + (-12 (-5 *3 (-1218 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) - (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) + (-12 (-5 *3 (-1218 (-307 *4))) (-5 *5 (-619 (-370))) + (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1218 (-308 (-371)))) (-5 *4 (-371)) (-5 *5 (-619 *4)) + (-12 (-5 *3 (-1218 (-307 (-370)))) (-5 *4 (-370)) (-5 *5 (-619 *4)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) - (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) + (-12 (-5 *3 (-1218 (-307 *4))) (-5 *5 (-619 (-370))) + (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1218 (-308 *4))) (-5 *5 (-619 (-371))) - (-5 *6 (-308 (-371))) (-5 *4 (-371)) (-5 *2 (-1004)) (-5 *1 (-779)))) + (-12 (-5 *3 (-1218 (-307 *4))) (-5 *5 (-619 (-370))) + (-5 *6 (-307 (-370))) (-5 *4 (-370)) (-5 *2 (-1004)) (-5 *1 (-779)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2877 (-619 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -4013 (-619 *6))) "failed") *7 *6)) - (-4 *6 (-355)) (-4 *7 (-630 *6)) - (-5 *2 (-2 (|:| |particular| (-1218 *6)) (|:| -2877 (-663 *6)))) + (-4 *6 (-354)) (-4 *7 (-630 *6)) + (-5 *2 (-2 (|:| |particular| (-1218 *6)) (|:| -4013 (-663 *6)))) (-5 *1 (-787 *6 *7)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1004)) (-5 *1 (-866)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-867)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-866)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) - (-5 *8 (-218)) (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) + (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1118)) + (-5 *8 (-217)) (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004)) (-5 *1 (-866)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-308 *3)))) (-5 *7 (-1118)) - (-5 *5 (-619 (-308 (-371)))) (-5 *3 (-371)) (-5 *2 (-1004)) + (-12 (-5 *4 (-745)) (-5 *6 (-619 (-619 (-307 *3)))) (-5 *7 (-1118)) + (-5 *5 (-619 (-307 (-370)))) (-5 *3 (-370)) (-5 *2 (-1004)) (-5 *1 (-866)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 (-371))) - (-5 *1 (-992)) (-5 *4 (-371)))) + (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 (-370))) + (-5 *1 (-992)) (-5 *4 (-370)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 (-371))) (-5 *1 (-992)) - (-5 *4 (-371)))) + (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 (-370))) (-5 *1 (-992)) + (-5 *4 (-370)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) + (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) - (-5 *3 (-308 *4)))) + (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4)) + (-5 *3 (-307 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *2 (-619 (-286 (-308 *4)))) (-5 *1 (-1093 *4)) - (-5 *3 (-286 (-308 *4))))) + (-12 (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1093 *4)) + (-5 *3 (-285 (-307 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) - (-5 *3 (-286 (-308 *5))))) + (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5)) + (-5 *3 (-285 (-307 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *2 (-619 (-286 (-308 *5)))) (-5 *1 (-1093 *5)) - (-5 *3 (-308 *5)))) + (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *2 (-619 (-285 (-307 *5)))) (-5 *1 (-1093 *5)) + (-5 *3 (-307 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-619 (-1135))) - (-4 *5 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *2 (-619 (-619 (-286 (-308 *5))))) (-5 *1 (-1093 *5)) - (-5 *3 (-619 (-286 (-308 *5)))))) + (-4 *5 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1093 *5)) + (-5 *3 (-619 (-285 (-307 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-399 (-921 *5)))) (-5 *4 (-619 (-1135))) - (-4 *5 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) + (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1141 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-1141 *5)) - (-5 *3 (-619 (-286 (-399 (-921 *5))))))) + (-12 (-5 *4 (-619 (-1135))) (-4 *5 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-1141 *5)) + (-5 *3 (-619 (-285 (-398 (-921 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-399 (-921 *4)))) (-4 *4 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-1141 *4)))) + (-12 (-5 *3 (-619 (-398 (-921 *4)))) (-4 *4 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-1141 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) - (-5 *1 (-1141 *4)) (-5 *3 (-619 (-286 (-399 (-921 *4))))))) + (-12 (-4 *4 (-539)) (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) + (-5 *1 (-1141 *4)) (-5 *3 (-619 (-285 (-398 (-921 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-4 *5 (-540)) - (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) - (-5 *3 (-399 (-921 *5))))) + (-12 (-5 *4 (-1135)) (-4 *5 (-539)) + (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1141 *5)) + (-5 *3 (-398 (-921 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-4 *5 (-540)) - (-5 *2 (-619 (-286 (-399 (-921 *5))))) (-5 *1 (-1141 *5)) - (-5 *3 (-286 (-399 (-921 *5)))))) + (-12 (-5 *4 (-1135)) (-4 *5 (-539)) + (-5 *2 (-619 (-285 (-398 (-921 *5))))) (-5 *1 (-1141 *5)) + (-5 *3 (-285 (-398 (-921 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) - (-5 *1 (-1141 *4)) (-5 *3 (-399 (-921 *4))))) + (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4))))) + (-5 *1 (-1141 *4)) (-5 *3 (-398 (-921 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 (-286 (-399 (-921 *4))))) - (-5 *1 (-1141 *4)) (-5 *3 (-286 (-399 (-921 *4))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) - (-4 *6 (-1172)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6)))) + (-12 (-4 *4 (-539)) (-5 *2 (-619 (-285 (-398 (-921 *4))))) + (-5 *1 (-1141 *4)) (-5 *3 (-285 (-398 (-921 *4))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-354)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-354)) (-5 *2 (-2 (|:| -2636 *3) (|:| -2704 (-619 *5)))) + (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5))))) +(((*1 *1) + (-12 (-4 *1 (-395)) (-3998 (|has| *1 (-6 -4319))) + (-3998 (|has| *1 (-6 -4311))))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-4 *1 (-821))) + ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) + ((*1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) - (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-232 *6 *7)) (-14 *6 (-745)) + (-4 *7 (-1172)) (-4 *5 (-1172)) (-5 *2 (-232 *6 *5)) + (-5 *1 (-231 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) - (-4 *5 (-1172)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) - (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) - (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-616 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-745))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1172)) (-4 *5 (-1172)) + (-4 *2 (-364 *5)) (-5 *1 (-362 *6 *4 *5 *2)) (-4 *4 (-364 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1063)) (-4 *5 (-1063)) + (-4 *2 (-416 *5)) (-5 *1 (-414 *6 *4 *5 *2)) (-4 *4 (-416 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-619 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-619 *5)) (-5 *1 (-617 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-927 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-927 *5)) (-5 *1 (-926 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1116 *6)) (-4 *6 (-1172)) + (-4 *3 (-1172)) (-5 *2 (-1116 *3)) (-5 *1 (-1114 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1218 *6)) (-4 *6 (-1172)) + (-4 *5 (-1172)) (-5 *2 (-1218 *5)) (-5 *1 (-1217 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-171 *3)) (-4 *3 (-298)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-821)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1135)) (-5 *1 (-523)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-679 *3)) (-4 *3 (-592 (-523))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-679 *3)) + (-4 *3 (-592 (-523)))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-547))) (-5 *2 (-112)) + (-5 *1 (-1245 *4))))) +(((*1 *2) + (-12 + (-5 *2 + (-1218 (-619 (-2 (|:| -4152 (-879 *3)) (|:| -3479 (-1082)))))) + (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) (-14 *4 (-890)))) + ((*1 *2) + (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082)))))) + (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) (-14 *4 (-3 (-1131 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082)))))) + (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) (-14 *4 (-890))))) +(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1118)) (-5 *1 (-184)))) + ((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1118)) (-5 *1 (-291)))) + ((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1118)) (-5 *1 (-296))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971) (-1157)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *5))) (-5 *3 (-1131 *5)) + (-4 *5 (-163 *4)) (-4 *4 (-532)) (-5 *1 (-147 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 *3)) (-4 *3 (-1194 *5)) + (-4 *5 (-1194 *4)) (-4 *4 (-340)) (-5 *1 (-349 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 (-547)))) (-5 *3 (-1131 (-547))) + (-5 *1 (-555)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *1))) (-5 *3 (-1131 *1)) + (-4 *1 (-878))))) +(((*1 *2 *3) + (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) + (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-321))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) + (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) + (-5 *1 (-323))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-370)) (-5 *1 (-1028))))) +(((*1 *1) (-5 *1 (-777)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))) (((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-896))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-619 (-834 *4))) - (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-462 *4 *5 *6)) - (-4 *6 (-443))))) + (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-523))) (-5 *2 (-1135)) (-5 *1 (-523))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-619 (-834 *4))) + (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *1 (-461 *4 *5 *6)) + (-4 *6 (-442))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))))) + ((*1 *1 *1) (-5 *1 (-370))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1124 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) + (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-354)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-557 *5 *3))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) + (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1194 (-166 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-355) (-819))) (-5 *1 (-178 *2 *3)) + (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) (-4 *3 (-1194 (-166 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 (-547))) (-5 *2 (-547)) (-5 *1 (-911))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293)))) + ((*1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3) + (-12 (-5 *2 (-547)) (-5 *1 (-435 *3)) (-4 *3 (-395)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-409 (-1131 *6)) (-1131 *6))) + (-4 *6 (-354)) + (-5 *2 + (-619 + (-2 (|:| |outval| *7) (|:| |outmult| (-547)) + (|:| |outvect| (-619 (-663 *7)))))) + (-5 *1 (-520 *6 *7 *4)) (-4 *7 (-354)) (-4 *4 (-13 (-354) (-819)))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-547)) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) + (-4 *3 (-1016)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1235 *4 *3)) + (-4 *3 (-1016))))) (((*1 *2) (-12 (-14 *4 (-745)) (-4 *5 (-1172)) (-5 *2 (-133)) - (-5 *1 (-230 *3 *4 *5)) (-4 *3 (-231 *4 *5)))) + (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-355)) (-5 *2 (-133)) (-5 *1 (-320 *3 *4)) - (-4 *3 (-321 *4)))) + (-12 (-4 *4 (-354)) (-5 *2 (-133)) (-5 *1 (-319 *3 *4)) + (-4 *3 (-320 *4)))) ((*1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) ((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-355)) (-4 *5 (-767)) - (-5 *2 (-548)) (-5 *1 (-494 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) + (-5 *2 (-547)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1016)) (-5 *2 (-890)))) - ((*1 *2) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-355)) (-5 *2 (-133))))) + ((*1 *2) (-12 (-4 *1 (-1225 *3)) (-4 *3 (-354)) (-5 *2 (-133))))) +(((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1135))))) +(((*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-544)) (-5 *3 (-547))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-217))) (-5 *4 (-745)) (-5 *2 (-663 (-217))) + (-5 *1 (-296))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-398 (-921 *6)) (-1125 (-1135) (-921 *6)))) + (-5 *5 (-745)) (-4 *6 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *6))))) + (-5 *1 (-283 *6)) (-5 *4 (-663 (-398 (-921 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-398 (-921 *5)) (-1125 (-1135) (-921 *5)))) + (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) + (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5))))) + (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) + (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *7))) + (-5 *1 (-490 *5 *6 *4 *7)) (-4 *4 (-1194 *6))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-619 (-1135))) (-4 *2 (-169)) + (-4 *3 (-230 (-3763 *4) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *3)) + (-2 (|:| -3479 *5) (|:| -4248 *3)))) + (-5 *1 (-451 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) + (-4 *7 (-918 *2 *3 (-834 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-398 (-547)))) + (-5 *2 (-2 (|:| -1473 (-1116 *4)) (|:| -1488 (-1116 *4)))) + (-5 *1 (-1122 *4)) (-5 *3 (-1116 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-619 (-548))) - (|:| |cols| (-619 (-548))))) - (-5 *4 (-663 *12)) (-5 *5 (-619 (-399 (-921 *9)))) - (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-548)) - (-4 *9 (-13 (-299) (-145))) (-4 *12 (-918 *9 *11 *10)) - (-4 *10 (-13 (-821) (-593 (-1135)))) (-4 *11 (-767)) + (-2 (|:| |det| *12) (|:| |rows| (-619 (-547))) + (|:| |cols| (-619 (-547))))) + (-5 *4 (-663 *12)) (-5 *5 (-619 (-398 (-921 *9)))) + (-5 *6 (-619 (-619 *12))) (-5 *7 (-745)) (-5 *8 (-547)) + (-4 *9 (-13 (-298) (-145))) (-4 *12 (-918 *9 *11 *10)) + (-4 *10 (-13 (-821) (-592 (-1135)))) (-4 *11 (-767)) (-5 *2 (-2 (|:| |eqzro| (-619 *12)) (|:| |neqzro| (-619 *12)) (|:| |wcond| (-619 (-921 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *9)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *9))))))))) + (-2 (|:| |partsol| (-1218 (-398 (-921 *9)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *9))))))))) (-5 *1 (-893 *9 *10 *11 *12))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-321))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34))) + (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1135)) + (-5 *1 (-253 *2)) (-4 *2 (-1172)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-619 (-254))) (-5 *4 (-1135)) (-5 *2 (-52)) + (-5 *1 (-254))))) +(((*1 *1) (-5 *1 (-797)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-197)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-370))) (-5 *2 (-370)) (-5 *1 (-197))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) + (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1231 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) + (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) + (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) - (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *1)))) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *1)))) (-4 *1 (-1036 *4 *5 *6 *3))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) - ((*1 *1 *1) (|partial| -4 *1 (-697)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-622 *5)) (-4 *5 (-1016)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-823 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-663 *3)) (-4 *1 (-409 *3)) (-4 *3 (-169)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1016)) - (-5 *1 (-824 *2 *3)) (-4 *3 (-823 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-1140))) (-5 *1 (-1140))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 *4)) (-5 *1 (-1101 *3 *4)) - (-4 *3 (-13 (-1063) (-34))) (-4 *4 (-13 (-1063) (-34)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) -(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) - (-4 *2 (-1194 (-166 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-1221)))) - ((*1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-1221))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) - (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) - (-4 *1 (-1036 *4 *5 *6 *3))))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) + (-4 *3 (-298)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1172)) (-4 *3 (-1172))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) -(((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) - (-4 *4 (-169))))) -(((*1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) - ((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) -(((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-442)) + (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-539) (-145))) + (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-566 *3)) (-5 *1 (-541 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) - (-14 *4 (-745)) (-4 *5 (-169))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + (|partial| -12 (-5 *4 (-890)) (-4 *5 (-539)) (-5 *2 (-663 *5)) + (-5 *1 (-925 *5 *3)) (-4 *3 (-630 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-409 *2)) (-4 *2 (-298)) (-5 *1 (-883 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) - (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) - (-15 -2480 ((-1087 *3 (-591 $)) $)) - (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) - (-4 *7 (-767)) - (-5 *2 - (-619 - (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) - (|:| |cols| (-619 (-548)))))) - (-5 *1 (-893 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) - (-4 *1 (-1036 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-409 (-921 *6))) (-5 *5 (-1135)) (-5 *3 (-921 *6)) + (-4 *6 (-13 (-298) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) - (-5 *1 (-254 *2)) (-4 *2 (-1172)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-52)) - (-5 *1 (-255))))) -(((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) - (-4 *4 (-169))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) - ((*1 *1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272)))) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) + ((*1 *1 *1) (|partial| -4 *1 (-697)))) +(((*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-359)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-517 *4)) + (-4 *4 (-340)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-548) (-218) (-1135) (-1118) (-1140))) - (-5 *1 (-1140))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795))))) -(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-218))))))) - ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-218)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-653 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) + (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) + (-14 *4 + (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *3)) + (-2 (|:| -3479 *2) (|:| -4248 *3))))))) +(((*1 *1) (-5 *1 (-428)))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-1016)) + (-5 *1 (-1120 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-547)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1016)) + (-14 *4 (-1135)) (-14 *5 *3)))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) - (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) - (-15 -2480 ((-1087 *3 (-591 $)) $)) - (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-355) (-819))) (-5 *1 (-178 *3 *2)) - (-4 *2 (-1194 (-166 *3)))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) + (-12 (-5 *3 (-1135)) (-4 *4 (-539)) (-4 *4 (-821)) + (-5 *1 (-556 *4 *2)) (-4 *2 (-421 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3715 (-756 *3)) (|:| |coef1| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3715 *1) (|:| |coef1| *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-513))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) + (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) - (-4 *8 (-918 *5 *7 *6)) (-4 *5 (-13 (-299) (-145))) - (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-112)) - (-5 *1 (-893 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-540)) (-4 *2 (-1016)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) - (-4 *1 (-1036 *4 *5 *6 *3))))) + (-12 (-4 *6 (-539)) (-4 *2 (-918 *3 *5 *4)) + (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-398 (-921 *6))) (-4 *5 (-767)) + (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-1194 *4)) (-4 *4 (-1016)) + (-5 *2 (-1218 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) (((*1 *2 *1) - (-12 (-5 *2 (-1203 *3 *4 *5)) (-5 *1 (-311 *3 *4 *5)) - (-4 *3 (-13 (-355) (-821))) (-14 *4 (-1135)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1063)) (-5 *1 (-688 *3 *2 *4)) (-4 *3 (-821)) - (-14 *4 - (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *2)) - (-2 (|:| -3337 *3) (|:| -3352 *2))))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-619 *2)) (-4 *2 (-1063)) (-4 *2 (-1172))))) + (-12 (-4 *1 (-1007 (-547))) (-4 *1 (-293)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-271))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *2 (-1218 (-307 (-370)))) + (-5 *1 (-296))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1135)) (-5 *1 (-322))))) + (-12 (-5 *2 (-1026 (-993 *4) (-1131 (-993 *4)))) (-5 *3 (-832)) + (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-354) (-991)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *4 (-619 (-1135))) + (-5 *2 (-663 (-307 (-217)))) (-5 *1 (-197)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) + (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-364 *6)) + (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328))))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) + (-4 *2 (-1172))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539))))) (((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-663 (-399 *4)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-490 *2)) (-14 *2 (-548)))) - ((*1 *1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-619 (-272))) (-5 *1 (-272)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-1082)) (-5 *2 (-112)) (-5 *1 (-795))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-766)) - (-4 *5 (-821)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-653 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-541 *6 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-443)) (-4 *3 (-821)) (-4 *3 (-1007 (-548))) - (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) (-4 *2 (-422 *3)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) - (-15 -2480 ((-1087 *3 (-591 $)) $)) - (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-355) (-819))) - (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *5)))) - (-5 *1 (-178 *5 *3)) (-4 *3 (-1194 (-166 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-355) (-819))) - (-5 *2 (-619 (-2 (|:| -3213 (-619 *3)) (|:| -2831 *4)))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *2 (-619 (-619 (-548)))) - (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *6 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) - (-4 *1 (-1036 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-360)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) - (-4 *4 (-341)))) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) + (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1131 *7))) + (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *1) - (-12 (-4 *2 (-821)) (-5 *1 (-688 *2 *3 *4)) (-4 *3 (-1063)) - (-14 *4 - (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *3)) - (-2 (|:| -3337 *2) (|:| -3352 *3))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) - (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-524))) (-5 *2 (-1135)) (-5 *1 (-524))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *5)) (-4 *5 (-169)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-548)) (-14 *4 (-745))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140))))) -(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299)))) + (-12 (-4 *3 (-442)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-409 *1)) (-4 *1 (-918 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1137 (-399 (-548)))) (-5 *1 (-183)) (-5 *3 (-548)))) - ((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1) (-4 *1 (-838 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) - (-4 *4 (-821))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1135)) - (-4 *5 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) (-5 *1 (-541 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-1131 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) - (-15 -2480 ((-1087 *4 (-591 $)) $)) - (-15 -3743 ($ (-1087 *4 (-591 $)))))))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-619 (-166 *4))) (-5 *1 (-152 *3 *4)) - (-4 *3 (-1194 (-166 (-548)))) (-4 *4 (-13 (-355) (-819))))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-442)) (-5 *2 (-409 *3)) + (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-619 (-166 *4))) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) -(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221))))) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1131 (-398 *7)))) + (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-398 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1176)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-409 *3)) (-5 *1 (-1197 *4 *3)) + (-4 *3 (-13 (-1194 *4) (-539) (-10 -8 (-15 -3715 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-14 *5 (-619 (-1135))) + (-5 *2 + (-619 (-1106 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1172)) + (-4 *5 (-364 *4)) (-4 *2 (-364 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *6 *7 *2)) (-4 *6 (-1016)) + (-4 *7 (-230 *5 *6)) (-4 *2 (-230 *4 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) + (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-619 (-619 *6))) (-4 *6 (-918 *3 *5 *4)) - (-4 *3 (-13 (-299) (-145))) (-4 *4 (-13 (-821) (-593 (-1135)))) - (-4 *5 (-767)) (-5 *1 (-893 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) - (-4 *3 (-1194 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) - (-4 *4 (-1194 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *2 (-1063)) (-4 *3 (-1063)) - (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063))))) -(((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-389))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1216 *3)) (-4 *3 (-23)) (-4 *3 (-1172))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-283))) - ((*1 *1) (-5 *1 (-832))) - ((*1 *1) - (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) - (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1049))) - ((*1 *1) - (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) - (-4 *3 (-13 (-1063) (-34))))) - ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139)))) -(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-795))))) -(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-533)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-940))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2265 *1) (|:| -4314 *1) (|:| |associate| *1))) - (-4 *1 (-540))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3))))) -(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1221))))) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-421 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *4)) + (-4 *4 (-421 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-114)) (-5 *1 (-160)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *4)) + (-4 *4 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-292 *3)) (-4 *3 (-293)))) + ((*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *4)) + (-4 *4 (-421 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *4)) + (-4 *4 (-13 (-421 *3) (-971) (-1157))))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-912 (-217))) (-5 *2 (-217)) (-5 *1 (-1168)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-619 - (-2 (|:| -2103 (-745)) - (|:| |eqns| - (-619 - (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) - (|:| |cols| (-619 (-548)))))) - (|:| |fgb| (-619 *7))))) - (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) - (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) - (-5 *1 (-893 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) - (-4 *3 (-1194 *4)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-687 *3 *4)) - (-4 *4 (-1194 *3))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-548)) (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) - (-4 *3 (-1016)))) + (-12 (-5 *3 (-1144 (-619 *4))) (-4 *4 (-821)) + (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1140)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-793 *4)) (-4 *4 (-821)) (-4 *1 (-1235 *4 *3)) - (-4 *3 (-1016))))) -(((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1135))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) - (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) - (-5 *1 (-389)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-619 (-619 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-619 (-3 (|:| |array| (-619 *3)) (|:| |scalar| (-1135))))) - (-5 *6 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1067)) - (-5 *1 (-389)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-619 (-1135))) (-5 *5 (-1138)) (-5 *3 (-1135)) - (-5 *2 (-1067)) (-5 *1 (-389))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-734))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-429)) (-5 *1 (-1139))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-795))))) -(((*1 *2 *3) - (-12 (-5 *2 (-619 (-619 (-548)))) (-5 *1 (-940)) - (-5 *3 (-619 (-548)))))) -(((*1 *1 *1) (-4 *1 (-540)))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-474))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-299)) (-5 *1 (-176 *3))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1221))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-619 - (-2 (|:| -2103 (-745)) - (|:| |eqns| - (-619 - (-2 (|:| |det| *7) (|:| |rows| (-619 (-548))) - (|:| |cols| (-619 (-548)))))) - (|:| |fgb| (-619 *7))))) - (-4 *7 (-918 *4 *6 *5)) (-4 *4 (-13 (-299) (-145))) - (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) (-5 *2 (-745)) - (-5 *1 (-893 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) - (-4 *3 (-1194 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-5 *2 (-1218 *3)) (-5 *1 (-687 *3 *4)) - (-4 *4 (-1194 *3))))) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-1140))) (-5 *1 (-1140))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-843)))) + ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *1) (-5 *1 (-282)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) + (-5 *1 (-323))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-224 *4)) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4)) (-4 *4 (-1016)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-224 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-745)))) - ((*1 *1 *1) (-4 *1 (-226))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745)))) + ((*1 *1 *1) (-4 *1 (-225))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-4 *1 (-257 *3)) (-4 *3 (-821)))) + ((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) + (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *4)) + (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)) (-4 *4 (-1194 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-355) (-145))) (-5 *1 (-391 *2 *3)) + (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3)) (-4 *3 (-1194 *2)))) - ((*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-464 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-354)) (-4 *2 (-869 *3)) (-5 *1 (-565 *2)) + (-5 *3 (-1135)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-565 *2)) (-4 *2 (-354)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) (-4 *4 (-1063)))) @@ -6144,307 +4903,92 @@ (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386))))) -(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139))))) -(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-795))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-940))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) - (-4 *3 (-918 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1007 (-548))) (-4 *3 (-13 (-821) (-540))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-422 *3)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1131 *4)) (-5 *1 (-162 *3 *4)) - (-4 *3 (-163 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-294)))) - ((*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) - ((*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-355))) - (-4 *2 (-1194 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) - (-4 *4 (-1194 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-383))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-426)) - (-5 *2 - (-619 - (-3 (|:| -2275 (-1135)) - (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548))))))))) - (-5 *1 (-1139))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-226)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-258 *4)) - (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-258 *3)) (-4 *6 (-767)) - (-5 *2 (-1 *1 (-745))) (-4 *1 (-245 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-258 *2)) (-4 *2 (-821))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-180))))) -(((*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4035 (-663 (-399 (-921 *4)))) - (|:| |vec| (-619 (-399 (-921 *4)))) (|:| -2103 (-745)) - (|:| |rows| (-619 (-548))) (|:| |cols| (-619 (-548))))) - (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) - (-5 *2 - (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) - (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) - ((*1 *2 *3) - (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) - ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1131 (-548))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1131 (-399 (-548)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) - ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-819) (-355))) (-4 *3 (-1194 *4)) (-5 *2 (-619 *1)) - (-4 *1 (-1033 *4 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) - (-4 *4 (-1194 *3))))) -(((*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383))))) -(((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-399 (-548))) (-4 *1 (-538 *3)) - (-4 *3 (-13 (-396) (-1157))))) - ((*1 *1 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) - (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *4))))))) - (-5 *3 (-619 *7)) (-4 *4 (-13 (-299) (-145))) - (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *2)) (-5 *4 (-1135)) (-4 *2 (-422 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-540))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-5 *4 (-832)) - (-4 *1 (-981)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-355))) - (-4 *1 (-1033 *4 *2)) (-4 *2 (-1194 *4))))) -(((*1 *1 *1) - (-12 (-4 *2 (-341)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) - (-4 *3 (-1194 *2))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1016)) - (-5 *1 (-824 *5 *2)) (-4 *2 (-823 *5))))) -(((*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-383))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) - (-5 *1 (-113 *4)))) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-1016)) (-14 *5 *3)))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-340)) (-5 *2 (-1218 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1063))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-619 - (-619 - (-3 (|:| -2275 (-1135)) - (|:| -2457 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-548)))))))))) - (-5 *1 (-1139))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-371)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255))))) -(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) + (|partial| -12 (-5 *3 (-663 *1)) (-4 *1 (-143)) (-4 *1 (-878)) + (-5 *2 (-1218 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) - (-4 *7 (-767)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) (-5 *2 - (-619 - (-2 (|:| -2103 (-745)) - (|:| |eqns| - (-619 - (-2 (|:| |det| *8) (|:| |rows| (-619 (-548))) - (|:| |cols| (-619 (-548)))))) - (|:| |fgb| (-619 *8))))) - (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-993 *3)) - (-4 *3 (-13 (-819) (-355) (-991))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-819) (-355))) (-5 *1 (-1026 *2 *3)) - (-4 *3 (-1194 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) - (-4 *3 (-1194 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) + (-2 (|:| |ir| (-565 (-398 *6))) (|:| |specpart| (-398 *6)) + (|:| |polypart| *6))) + (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *1) - (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) - (-14 *4 (-745)) (-4 *5 (-169))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1139))))) -(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |lm| (-378 *3)) (|:| |mm| (-378 *3)) (|:| |rm| (-378 *3)))) - (-5 *1 (-378 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1 *1) + (-619 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217))))) + (-5 *1 (-542)))) + ((*1 *2 *1) + (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) - (-5 *1 (-793 *3)) (-4 *3 (-821))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255))))) -(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) - (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) -(((*1 *2 *1) + (-619 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217))))) + (-5 *1 (-777))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-435 *3)) (-4 *3 (-1016))))) +(((*1 *2) + (-12 (-5 *2 (-663 (-879 *3))) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890)))) + ((*1 *2) + (-12 (-5 *2 (-663 *3)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) + (-14 *4 + (-3 (-1131 *3) + (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082))))))))) + ((*1 *2) + (-12 (-5 *2 (-663 *3)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) + (-14 *4 (-890))))) +(((*1 *2) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) + (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1218 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-370)) (-5 *1 (-1028))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) -(((*1 *2 *1) - (-12 (-5 *2 (-832)) (-5 *1 (-382 *3 *4 *5)) (-14 *3 (-745)) - (-14 *4 (-745)) (-4 *5 (-169))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1139))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-353 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-378 *4)) (-4 *4 (-1063)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) - (-4 *4 (-1063)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-745)) (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) - (-4 *2 (-1194 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-538 *3)) (-4 *3 (-13 (-396) (-1157))) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-142))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-255))))) -(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-299) (-145))) - (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) - (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-745))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118))))) -(((*1 *1) (-5 *1 (-1138)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-315 *2 *4)) (-4 *4 (-130)) - (-4 *2 (-1063)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-353 *2)) (-4 *2 (-1063)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-378 *2)) (-4 *2 (-1063)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *1 (-793 *2)) (-4 *2 (-821))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *2 (-540)) (-5 *1 (-938 *2 *4)) - (-4 *4 (-1194 *2))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-548)) (-5 *2 (-112)) (-5 *1 (-537))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255))))) -(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) - ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-13 (-299) (-145))) - (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) - (-5 *2 (-619 (-399 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) - (-4 *7 (-918 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-211)))) - ((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-496))) (-5 *1 (-650)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-619 (-1131 *13))) (-5 *3 (-1131 *13)) - (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) - (-5 *7 (-619 (-619 (-2 (|:| -3466 (-745)) (|:| |pcoef| *13))))) - (-5 *8 (-619 (-745))) (-5 *9 (-1218 (-619 (-1131 *10)))) - (-4 *12 (-821)) (-4 *10 (-299)) (-4 *13 (-918 *10 *11 *12)) - (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13))))) + (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) (-14 *4 *3))) @@ -6453,293 +4997,511 @@ (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1016)) (-4 *2 (-1063))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) - ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-398 (-921 *5)) (-1125 (-1135) (-921 *5)))) + (-4 *5 (-442)) (-5 *2 (-619 (-663 (-398 (-921 *5))))) + (-5 *1 (-283 *5)) (-5 *4 (-663 (-398 (-921 *5))))))) +(((*1 *1) (-5 *1 (-139)))) +(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-548))))) - (-5 *1 (-353 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) - (-5 *1 (-378 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -3352 (-548))))) - (-5 *1 (-410 *3)) (-4 *3 (-540)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 (-745))))) - (-5 *1 (-793 *3)) (-4 *3 (-821))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) - ((*1 *2 *1) - (-12 + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-359)) + (-5 *2 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1135)) + (-4 *6 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-4 *4 (-13 (-29 *6) (-1157) (-928))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4013 (-619 *4)))) + (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-298)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-298)) + (-5 *1 (-176 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *8)) + (-5 *4 + (-619 + (-2 (|:| -4013 (-663 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-663 *7))))) + (-5 *5 (-745)) (-4 *8 (-1194 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-340)) (-5 *2 - (-2 (|:| -2253 (-619 (-832))) (|:| -2857 (-619 (-832))) - (|:| |presup| (-619 (-832))) (|:| -2235 (-619 (-832))) - (|:| |args| (-619 (-832))))) - (-5 *1 (-1135))))) + (-2 (|:| -4013 (-663 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-663 *7)))) + (-5 *1 (-487 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-354) (-819))) (-5 *1 (-177 *3 *2)) + (-4 *2 (-1194 (-166 *3)))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1100 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) + (-5 *2 (-112)) (-5 *1 (-1101 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-911)) (-5 *3 (-547))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1194 *4)) + (-4 *4 (-298)) (-5 *1 (-450 *4 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))) +(((*1 *2 *3) (-12 (-5 *3 (-398 (-547))) (-5 *2 (-217)) (-5 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-1221)))) + ((*1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-1221))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-217))) (-5 *5 (-547)) (-5 *6 (-1118)) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *2 (-1030 *4 *5 *6)) (-5 *1 (-750 *4 *5 *6 *2 *3)) + (-4 *3 (-1036 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-442)) (-4 *4 (-821)) + (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-354)) (-4 *3 (-1016)) + (-5 *1 (-1120 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *5)) (-4 *5 (-354)) (-5 *2 (-619 *6)) + (-5 *1 (-520 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *7)) (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))) +(((*1 *1) (-5 *1 (-428)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) + (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-663 (-1131 *8))) (-4 *5 (-1016)) (-4 *8 (-1016)) + (-4 *6 (-1194 *5)) (-5 *2 (-663 *6)) (-5 *1 (-490 *5 *6 *7 *8)) + (-4 *7 (-1194 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) + (-4 *3 (-364 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-492 *4 *5 *6 *3)) (-4 *6 (-364 *4)) (-4 *3 (-364 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539)) + (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) + (-5 *1 (-667 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *6 (-1194 *5)) + (-5 *2 (-2 (|:| -2636 *7) (|:| |rh| (-619 (-398 *6))))) + (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-398 *6))) + (-4 *7 (-630 *6)) (-4 *3 (-630 (-398 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1187 *4 *5 *3)) + (-4 *3 (-1194 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) + (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) + (-5 *1 (-762)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-547)) (-5 *6 (-1 (-1223) (-1218 *5) (-1218 *5) (-370))) + (-5 *3 (-1218 (-370))) (-5 *5 (-370)) (-5 *2 (-1223)) + (-5 *1 (-762))))) +(((*1 *2 *1) + (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1231 *4 *5 *6 *7))) + (-5 *1 (-1231 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) + (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1231 *6 *7 *8 *9))) + (-5 *1 (-1231 *6 *7 *8 *9))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-619 (-52))) (-5 *2 (-1223)) (-5 *1 (-833))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-1135)) (-4 *6 (-421 *5)) + (-4 *5 (-821)) (-5 *2 (-619 (-590 *6))) (-5 *1 (-556 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-859 *4 *5)) (-4 *5 (-1172))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-299)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-378 *3)) (|:| |rm| (-378 *3)))) - (-5 *1 (-378 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3826 (-745)) (|:| -2233 (-745)))) - (-5 *1 (-745)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-890)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-255))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *2 (-399 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) - (-4 *3 (-918 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) - (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *2 (-663 (-399 (-921 *4)))) - (-5 *1 (-893 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) - (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) (-5 *2 (-619 (-399 (-921 *4)))) - (-5 *1 (-893 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 (-547)) (-5 *1 (-196))))) (((*1 *2 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-1097))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1131 *9))) - (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) - (-4 *11 (-821)) (-4 *9 (-299)) (-4 *12 (-918 *9 *10 *11)) - (-4 *10 (-767)) (-5 *2 (-619 (-1131 *12))) - (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1131 *12))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-1218 *4)) - (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4))))) + (-12 (-5 *3 (-307 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296))))) (((*1 *2 *3) - (-12 (-4 *4 (-1016)) - (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) - (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) - ((*1 *1 *1) (-4 *1 (-533))) - ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-4 *1 (-964 *3)) (-4 *3 (-1172)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-1169 *3)) (-4 *3 (-1172)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) - (-4 *2 (-1016))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-849))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-923))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-5 *2 (-1131 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3173 *4))) (-5 *1 (-938 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-537))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-399 (-921 *8)))) - (-5 *5 (-745)) (-5 *6 (-1118)) (-4 *8 (-13 (-299) (-145))) - (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-593 (-1135)))) - (-4 *10 (-767)) - (-5 *2 - (-2 - (|:| |rgl| - (-619 - (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) - (|:| |wcond| (-619 (-921 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *8)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *8)))))))))) - (|:| |rgsz| (-548)))) - (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) + (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) + (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-619 (-1131 *11))) (-5 *3 (-1131 *11)) - (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) - (-5 *7 (-1218 (-619 (-1131 *8)))) (-4 *10 (-821)) - (-4 *8 (-299)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) - (-5 *1 (-682 *9 *10 *8 *11))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138))))) + (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1131 (-993 *3)))) + (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-354) (-991)))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-5 *2 (-663 *4)) - (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-355)) - (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3173 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-1097))))) +(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 (-921 *6))) (-4 *6 (-539)) + (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) + (-4 *5 (-767)) + (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-112)) (-5 *1 (-861 *4)) + (-4 *4 (-1063))))) +(((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-321))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-27) (-422 *4))) - (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) - (-4 *7 (-1194 (-399 *6))) (-5 *1 (-536 *4 *5 *6 *7 *2)) - (-4 *2 (-334 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-843)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-299) (-145))) - (-4 *5 (-13 (-821) (-593 (-1135)))) (-4 *6 (-767)) - (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) - (|:| |wcond| (-619 (-921 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) - (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) - (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) - (-4 *7 (-1172)))) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) - (-4 *3 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-381))))) -(((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *5)))))) (-5 *1 (-744 *5)))) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-540)) - (-5 *2 (-619 (-619 (-286 (-399 (-921 *4)))))) (-5 *1 (-744 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2877 (-619 *6))) - *7 *6)) - (-4 *6 (-355)) (-4 *7 (-630 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1218 *6) "failed")) - (|:| -2877 (-619 (-1218 *6))))) - (-5 *1 (-787 *6 *7)) (-5 *4 (-1218 *6))))) + (-12 (-5 *3 (-619 (-921 *4))) + (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-421 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) + (-5 *1 (-155 *4 *5)) (-4 *5 (-421 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) + (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-421 *4) (-971))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293)))) + ((*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-420 *4 *5)) (-4 *4 (-421 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) + (-5 *1 (-422 *4 *5)) (-4 *5 (-421 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-112)) + (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1157)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3715 (-756 *3)) (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -3715 *1) (|:| |coef2| *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-409 *3)) (-4 *3 (-539))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-540)) (-4 *2 (-443)) (-5 *1 (-938 *2 *3)) - (-4 *3 (-1194 *2))))) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-398 *5)) + (|:| |c2| (-398 *5)) (|:| |deg| (-745)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-398 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-4 *4 (-442)) + (-5 *2 (-619 (-3 (-398 (-921 *4)) (-1125 (-1135) (-921 *4))))) + (-5 *1 (-283 *4))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) + (-4 *4 (-169))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) (-5 *1 (-1134))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-552 *3)) (-4 *3 (-1007 (-547))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-359)) + (-4 *3 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) + (-5 *1 (-323))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1016)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) + (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-364 *3)) + (-4 *4 (-13 (-364 *6) (-10 -7 (-6 -4328))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) + (-5 *1 (-1143 *4)) (-4 *4 (-821))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1118)) (-4 *1 (-380))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-227 *3)) + (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-227 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-273 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-547)) (-4 *4 (-1063)) + (-5 *1 (-712 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) + (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) + (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) + (-4 *8 (-364 *7)) (-4 *9 (-364 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)) (-4 *2 (-298)))) + ((*1 *2 *2) + (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1019 *2 *3 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *2 *4)) (-4 *4 (-298))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 (-890))) (-4 *2 (-354)) (-5 *1 (-150 *4 *2 *5)) + (-14 *4 (-890)) (-14 *5 (-962 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4)) + (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4)) + (-4 *4 (-1194 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) + (-4 *4 (-1016)) (-4 *5 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) + (-4 *2 (-821)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) + (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *2 (-821)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-519 *5) *5)) + (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1166 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))) +(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-340))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-878))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-1223)) + (-5 *1 (-424 *3 *4)) (-4 *4 (-421 *3))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) - (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) + (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)) (-4 *2 (-1172)))) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2)) + (-4 *5 (-364 *2)) (-4 *2 (-1172)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1172)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-619 (-548))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 (-548)) (-14 *5 (-745)))) + (-12 (-5 *3 (-619 (-547))) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-547)) (-14 *5 (-745)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) + (-12 (-5 *3 (-547)) (-4 *2 (-169)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-745)))) ((*1 *2 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-548)) + (-12 (-4 *2 (-169)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-547)) (-14 *4 (-745)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-206 *4 *2)) + (-12 (-5 *3 (-745)) (-4 *2 (-1063)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-238 (-1118))) (-5 *1 (-207 *4)) + (-12 (-5 *3 (-1135)) (-5 *2 (-237 (-1118))) (-5 *1 (-206 *4)) (-4 *4 (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ *3)) (-15 -2487 ((-1223) $)) - (-15 -3721 ((-1223) $))))))) + (-10 -8 (-15 -3329 ((-1118) $ *3)) (-15 -2683 ((-1223) $)) + (-15 -3617 ((-1223) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-958)) (-5 *1 (-207 *3)) + (-12 (-5 *2 (-958)) (-5 *1 (-206 *3)) (-4 *3 (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) - (-15 -3721 ((-1223) $))))))) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) + (-15 -3617 ((-1223) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-238 *4)) (-4 *4 (-821)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-238 *3)) (-4 *3 (-821)))) + (-12 (-5 *3 "count") (-5 *2 (-745)) (-5 *1 (-237 *4)) (-4 *4 (-821)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-237 *3)) (-4 *3 (-821)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-238 *3)) (-4 *3 (-821)))) + (-12 (-5 *2 "unique") (-5 *1 (-237 *3)) (-4 *3 (-821)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) + (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) + (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-169)) (-5 *1 (-281 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *3 (-169)) (-5 *1 (-280 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1194 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) - (-4 *4 (-1194 (-399 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-4 *1 (-409 *2)) (-4 *2 (-169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1118)) (-5 *1 (-492)))) + (-12 (-4 *1 (-333 *2 *3 *4)) (-4 *2 (-1176)) (-4 *3 (-1194 *2)) + (-4 *4 (-1194 (-398 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-4 *1 (-408 *2)) (-4 *2 (-169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1118)) (-5 *1 (-491)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-52)) (-5 *1 (-608)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + (-12 (-5 *2 (-1185 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 (-861 *4))) (-5 *1 (-861 *4)) @@ -6749,42 +5511,42 @@ (-12 (-5 *3 (-745)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) (-4 *4 (-1063)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-890)) (-4 *2 (-355)) + (-12 (-5 *3 (-232 *4 *2)) (-14 *4 (-890)) (-4 *2 (-354)) (-5 *1 (-962 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-979 *2)) (-4 *2 (-1172)))) ((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) - (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)))) + (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) (-4 *2 (-1016)) + (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) - (-4 *6 (-231 *5 *2)) (-4 *7 (-231 *4 *2)) (-4 *2 (-1016)))) + (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) + (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) - (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1039 *4 *5 *2)) - (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) + (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-890)) (-4 *4 (-1063)) - (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) (-5 *1 (-1040 *4 *5 *2)) - (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) + (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-619 (-547))) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) + (-12 (-5 *2 (-547)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) ((*1 *1 *1 *1) (-4 *1 (-1104))) ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-399 *1)) (-4 *1 (-1194 *2)) (-4 *2 (-1016)) - (-4 *2 (-355)))) + (-12 (-5 *3 (-398 *1)) (-4 *1 (-1194 *2)) (-4 *2 (-1016)) + (-4 *2 (-354)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) - (-4 *3 (-540)))) + (-12 (-5 *2 (-398 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) + (-4 *3 (-539)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) ((*1 *2 *1 *3) @@ -6793,1817 +5555,1639 @@ (-12 (-5 *2 "rest") (-4 *1 (-1206 *3)) (-4 *3 (-1172)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-354)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) - (-4 *6 (-13 (-27) (-422 *5))) - (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) - (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) - (-4 *3 (-334 *6 *7 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-619 - (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) - (|:| |wcond| (-619 (-921 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) - (-5 *4 (-1118)) (-4 *5 (-13 (-299) (-145))) (-4 *8 (-918 *5 *7 *6)) - (-4 *6 (-13 (-821) (-593 (-1135)))) (-4 *7 (-767)) (-5 *2 (-548)) - (-5 *1 (-893 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-435 *4 *3)) - (-4 *3 (-1194 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-458)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1220))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-370)) (-5 *1 (-1028))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-797)) (-5 *1 (-796))))) +(((*1 *1) (-5 *1 (-428)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) - (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 (-399 (-921 (-548))))) (-5 *4 (-619 (-1135))) - (-5 *2 (-619 (-619 *5))) (-5 *1 (-372 *5)) - (-4 *5 (-13 (-819) (-355))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 (-548)))) (-5 *2 (-619 *4)) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-819) (-355)))))) + (-12 (-5 *3 (-1135)) + (-5 *2 + (-2 (|:| |zeros| (-1116 (-217))) (|:| |ones| (-1116 (-217))) + (|:| |singularities| (-1116 (-217))))) + (-5 *1 (-104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-584))))) +(((*1 *2 *1) + (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) + (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1138)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) - (-5 *1 (-1138)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) - (-5 *1 (-1138))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) + (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) + (-4 *4 (-340)) (-5 *2 (-745)) (-5 *1 (-337 *4)))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-342 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890)))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-343 *3 *4)) (-4 *3 (-340)) + (-14 *4 + (-3 (-1131 *3) + (-1218 (-619 (-2 (|:| -4152 *3) (|:| -3479 (-1082))))))))) + ((*1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-344 *3 *4)) (-4 *3 (-340)) + (-14 *4 (-890))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-890)) (-4 *5 (-298)) (-4 *3 (-1194 *5)) + (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) + (-5 *1 (-450 *5 *3)) (-5 *4 (-619 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-590 *4)) (-5 *6 (-1131 *4)) + (-4 *4 (-13 (-421 *7) (-27) (-1157))) + (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 - (-2 (|:| A (-663 *5)) - (|:| |eqs| - (-619 - (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5)) (|:| -2383 *6) - (|:| |rh| *5)))))) - (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) - (-4 *6 (-630 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *6 (-630 *5)) - (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) - (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) - (-4 *6 (-13 (-27) (-422 *5))) - (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) (-4 *8 (-1194 (-399 *7))) - (-5 *2 (-566 *3)) (-5 *1 (-536 *5 *6 *7 *8 *3)) - (-4 *3 (-334 *6 *7 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1220))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) - (-4 *7 (-767)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-590 *4)) (-5 *6 (-398 (-1131 *4))) + (-4 *4 (-13 (-421 *7) (-27) (-1157))) + (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) - (|:| |wcond| (-619 (-921 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) - (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-543 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *3))) (-5 *1 (-996 *5 *6 *7 *3)) + (-4 *3 (-1030 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-619 *6)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *3 (-442)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *3))) (-5 *1 (-1106 *5 *6 *7 *3)) + (-4 *3 (-1030 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) + (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-61 *3)) (-14 *3 (-1135)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-68 *3)) (-14 *3 (-1135)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-71 *3)) (-14 *3 (-1135)))) + ((*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-1223)))) + ((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1223)) (-5 *1 (-388)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1135))) (-4 *8 (-918 *5 *7 *6)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) - (-4 *7 (-767)) - (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) - (|:| |wcond| (-619 (-921 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) - (-5 *1 (-893 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) - (-4 *4 (-13 (-299) (-145))) (-4 *5 (-13 (-821) (-593 (-1135)))) - (-4 *6 (-767)) - (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) - (|:| |wcond| (-619 (-921 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *4)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *4)))))))))) - (-5 *1 (-893 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) - (-4 *6 (-13 (-299) (-145))) (-4 *7 (-13 (-821) (-593 (-1135)))) - (-4 *8 (-767)) - (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) - (|:| |wcond| (-619 (-921 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) - (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) - (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) - (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) - (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) - (|:| |wcond| (-619 (-921 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *6)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *6)))))))))) - (-5 *1 (-893 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) - (-4 *7 (-767)) - (-5 *2 - (-619 - (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) - (|:| |wcond| (-619 (-921 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1218 (-399 (-921 *5)))) - (|:| -2877 (-619 (-1218 (-399 (-921 *5)))))))))) - (-5 *1 (-893 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1118)) - (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) - (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) - (-5 *1 (-893 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-1118)) - (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) - (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) - (-5 *1 (-893 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *8)) (-5 *4 (-1118)) (-4 *8 (-918 *5 *7 *6)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-13 (-821) (-593 (-1135)))) - (-4 *7 (-767)) (-5 *2 (-548)) (-5 *1 (-893 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) - (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) - (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) - (-5 *1 (-893 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) - (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-299) (-145))) - (-4 *8 (-13 (-821) (-593 (-1135)))) (-4 *9 (-767)) (-5 *2 (-548)) - (-5 *1 (-893 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1118)) - (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-299) (-145))) - (-4 *7 (-13 (-821) (-593 (-1135)))) (-4 *8 (-767)) (-5 *2 (-548)) - (-5 *1 (-893 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-459)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1220))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112))))) + (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(((*1 *2 *3) + (-12 (-4 *1 (-774)) + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 (-1004))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218))) (-5 *1 (-678 *3)) - (-4 *3 (-593 (-524))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-218) (-218) (-218))) - (-5 *1 (-678 *3)) (-4 *3 (-593 (-524)))))) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-565 *3)) (-5 *1 (-540 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1131 *3)) (-4 *3 (-1016)) (-4 *1 (-1194 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1118)) (|:| -2464 (-1118)))) + (-5 *1 (-796))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 (-166 (-548))))) (-5 *2 (-619 (-166 *4))) - (-5 *1 (-370 *4)) (-4 *4 (-13 (-355) (-819))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) - (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-166 *5)))) - (-5 *1 (-370 *5)) (-4 *5 (-13 (-355) (-819)))))) + (-12 (-5 *3 (-663 (-166 (-398 (-547))))) + (-5 *2 + (-619 + (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-547)) + (|:| |outvect| (-619 (-663 (-166 *4))))))) + (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819)))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) - (-5 *2 (-1223)) (-5 *1 (-1138)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) - (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) - (-5 *1 (-1138)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1135)) - (-5 *4 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *2 (-1223)) - (-5 *1 (-1138))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-627 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) - (-5 *5 (-1 (-410 *7) *7)) - (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-619 *5) *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *6 (-1194 *5)) (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-628 *7 (-399 *7))) (-5 *4 (-1 (-619 *6) *7)) - (-5 *5 (-1 (-410 *7) *7)) - (-4 *6 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *7 (-1194 *6)) (-5 *2 (-619 (-399 *7))) (-5 *1 (-786 *6 *7)))) + (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1218 (-673))) (-5 *1 (-296))))) +(((*1 *2 *2) + (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) + (-4 *2 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-627 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) - (-4 *6 (-1194 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6)))) + (-12 (-4 *4 (-539)) (-4 *5 (-961 *4)) (-4 *2 (-364 *4)) + (-5 *1 (-492 *4 *5 *2 *3)) (-4 *3 (-364 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-628 *5 (-399 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-619 (-399 *5))) (-5 *1 (-786 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-1 (-410 *6) *6)) - (-4 *6 (-1194 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-619 (-399 *6))) (-5 *1 (-786 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-591 *3)) (-5 *5 (-1 (-1131 *3) (-1131 *3))) - (-4 *3 (-13 (-27) (-422 *6))) (-4 *6 (-13 (-821) (-540))) - (-5 *2 (-566 *3)) (-5 *1 (-535 *6 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253))))) -(((*1 *1) (-5 *1 (-1220)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-355)) (-4 *2 (-1194 *4)) - (-5 *1 (-891 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) - (-4 *4 (-593 (-524))) (-4 *5 (-1172)) (-4 *6 (-1172)) - (-4 *7 (-1172))))) + (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-539)) + (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-539)) (-4 *4 (-961 *3)) (-5 *1 (-1187 *3 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-547))) (-5 *5 (-1 (-1116 *4))) (-4 *4 (-354)) + (-4 *4 (-1016)) (-5 *2 (-1116 *4)) (-5 *1 (-1120 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-399 (-921 (-166 (-548)))))) - (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) - (-4 *4 (-13 (-355) (-819))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-286 (-399 (-921 (-166 (-548))))))) - (-5 *2 (-619 (-619 (-286 (-921 (-166 *4)))))) (-5 *1 (-370 *4)) - (-4 *4 (-13 (-355) (-819))))) + (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-202)) + (-5 *3 (-1135)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 (-166 (-548))))) - (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) - (-4 *4 (-13 (-355) (-819))))) + (-12 (-5 *3 (-307 (-217))) (-5 *4 (-745)) (-5 *2 (-619 (-1135))) + (-5 *1 (-258)))) + ((*1 *2 *1) + (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-619 *3))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-382))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-52)) (-5 *1 (-861 *4)) + (-4 *4 (-1063))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) + (-14 *4 (-745)) (-4 *5 (-169))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-108))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-183)) (-5 *3 (-547)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-619 (-590 *6))) (-5 *4 (-1135)) (-5 *2 (-590 *6)) + (-4 *6 (-421 *5)) (-4 *5 (-821)) (-5 *1 (-556 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1223)) (-5 *1 (-382)))) + ((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-382))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-399 (-921 (-166 (-548)))))) - (-5 *2 (-619 (-286 (-921 (-166 *4))))) (-5 *1 (-370 *4)) - (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) - ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138))))) + (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-619 *5) *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) - (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 *3)))) - (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) - (-4 *7 (-630 (-399 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-619 *5) *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *6 (-1194 *5)) - (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2383 (-628 *6 (-399 *6)))))) - (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1566 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-533)) (-5 *2 (-112))))) + (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-4 *5 (-354)) + (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) (-4 *4 (-1016)) + (-5 *2 (-112)) (-5 *1 (-998 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1131 *7)) + (-4 *5 (-1016)) (-4 *7 (-1016)) (-4 *2 (-1194 *5)) + (-5 *1 (-490 *5 *2 *6 *7)) (-4 *6 (-1194 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-398 (-547))) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4)))))) +(((*1 *1) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-523))) ((*1 *1) (-4 *1 (-697))) + ((*1 *1) (-4 *1 (-701))) + ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-217))) (-5 *6 (-217)) + (-5 *7 (-663 (-547))) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-727))))) (((*1 *2 *3) - (-12 (-5 *3 (-896)) + (-12 (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) - (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-896)) (-5 *4 (-399 (-548))) + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) - (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) - (-5 *1 (-151)))) - ((*1 *2 *3) + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))) + (-5 *4 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) - (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) - (-5 *1 (-151)) (-5 *3 (-619 (-912 (-218)))))) + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))) (-5 *4 (-398 (-547))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-398 (-547))) + (-5 *2 (-619 (-2 (|:| -3826 *5) (|:| -3836 *5)))) (-5 *1 (-989 *3)) + (-4 *3 (-1194 (-547))) (-5 *4 (-2 (|:| -3826 *5) (|:| -3836 *5))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-619 (-619 (-912 (-218))))) - (|:| |xValues| (-1058 (-218))) (|:| |yValues| (-1058 (-218))))) - (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-218))))))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-619 (-255))) (-5 *1 (-1220)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1118)) (-5 *1 (-1220)))) - ((*1 *1 *1) (-5 *1 (-1220)))) -(((*1 *2 *3) - (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1489 (-619 *1)) (|:| -4160 *1))) - (-5 *3 (-619 *1))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-548)) (-5 *1 (-371))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1135)) - (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) (-5 *1 (-1138))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-619 *7) *7 (-1131 *7))) (-5 *5 (-1 (-410 *7) *7)) - (-4 *7 (-1194 *6)) (-4 *6 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-5 *2 (-619 (-2 (|:| |frac| (-399 *7)) (|:| -2383 *3)))) - (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) - (-4 *8 (-630 (-399 *7))))) + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *1 (-990 *3)) (-4 *3 (-1194 (-398 (-547)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-12 (-5 *2 - (-619 (-2 (|:| |frac| (-399 *6)) (|:| -2383 (-628 *6 (-399 *6)))))) - (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-399 *6)))))) + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *1 (-990 *3)) (-4 *3 (-1194 (-398 (-547)))) + (-5 *4 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-398 (-547))) + (-5 *2 (-619 (-2 (|:| -3826 *4) (|:| -3836 *4)))) (-5 *1 (-990 *3)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-398 (-547))) + (-5 *2 (-619 (-2 (|:| -3826 *5) (|:| -3836 *5)))) (-5 *1 (-990 *3)) + (-4 *3 (-1194 *5)) (-5 *4 (-2 (|:| -3826 *5) (|:| -3836 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1566 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-533)))) -(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1124 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1220))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-299)) (-4 *3 (-169)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) - (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-674 *3)) - (-4 *3 (-299))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-218)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-399 (-548))) (-5 *1 (-371))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1138)) (-5 *3 (-1135))))) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1218 (-3 (-458) "undefined"))) (-5 *1 (-1219))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *7 (-1194 *5)) (-4 *4 (-699 *5 *7)) - (-5 *2 (-2 (|:| -4035 (-663 *6)) (|:| |vec| (-1218 *5)))) - (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3587 *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-533)))) -(((*1 *1) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-524))) ((*1 *1) (-4 *1 (-697))) - ((*1 *1) (-4 *1 (-701))) - ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) - ((*1 *1) (-12 (-5 *1 (-862 *2)) (-4 *2 (-821))))) -(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-255))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) - (-4 *4 (-1016)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-912 (-218))) (-5 *2 (-1223)) - (-5 *1 (-1220))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) - (-5 *1 (-887 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) -(((*1 *1 *1) (-5 *1 (-218))) ((*1 *1 *1) (-5 *1 (-371))) - ((*1 *1) (-5 *1 (-371)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1139)) (-5 *1 (-1138))))) -(((*1 *2 *3) - (-12 (-5 *3 (-627 (-399 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) - (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))))) + (-12 (-5 *3 (-1131 *2)) (-4 *2 (-918 (-398 (-921 *6)) *5 *4)) + (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) + (-4 *4 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) + (-4 *6 (-539))))) +(((*1 *2 *2) + (-12 (-4 *3 (-442)) (-4 *3 (-821)) (-4 *3 (-1007 (-547))) + (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) (-4 *2 (-421 *3)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) + (-15 -1392 ((-1087 *3 (-590 $)) $)) + (-15 -3834 ($ (-1087 *3 (-590 $)))))))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-352 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-377 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-921 (-547)))) (-5 *4 (-619 (-1135))) + (-5 *2 (-619 (-619 (-370)))) (-5 *1 (-992)) (-5 *5 (-370)))) ((*1 *2 *3) - (-12 (-5 *3 (-628 *2 (-399 *2))) (-4 *2 (-1194 *4)) - (-5 *1 (-784 *4 *2)) - (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548)))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3587 *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-585))))) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-398 *4))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *5))))) (-5 *1 (-1244 *5 *6 *7)) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) + (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-619 (-619 (-993 (-398 *4))))) (-5 *1 (-1244 *4 *5 *6)) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 (-619 (-217))) (-5 *1 (-196))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-524))) + ((*1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-523))) ((*1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218) (-218))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-218) (-218))) (-5 *1 (-255))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-443)) - (-5 *1 (-887 *4))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) -(((*1 *1) (-5 *1 (-218))) ((*1 *1) (-5 *1 (-371)))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)) - (-5 *1 (-1136 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-1218 *3)) (-5 *1 (-1136 *3)) - (-4 *3 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-435 *3)) (-4 *3 (-1016))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-784 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-627 (-399 *6))) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) - (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *6 (-399 *6))) (-5 *4 (-399 *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) + (-14 *6 (-619 (-1135))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-784 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-628 *6 (-399 *6))) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-5 *2 (-2 (|:| -2877 (-619 (-399 *6))) (|:| -4035 (-663 *5)))) - (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-399 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3587 *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) + (-619 (-1106 *5 (-519 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) + (-5 *1 (-604 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547))))) + (-4 *4 (-1194 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *5)) + (-4 *5 (-1194 (-398 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 (-428))))) + (-5 *1 (-1139))))) +(((*1 *2 *3) + (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-233)) (-5 *3 (-1118)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-233)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-409 *4)) (-4 *4 (-539))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-4 *1 (-1206 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-398 (-547)))) + (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) + (-4 *5 (-918 *4 (-519 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1166 *4))) (-5 *3 (-1135)) (-5 *1 (-1166 *4)) + (-4 *4 (-38 (-398 (-547)))) (-4 *4 (-1016))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2085)) (-5 *2 (-112)) (-5 *1 (-665 *4)) - (-4 *4 (-592 (-832))))) + (-12 (-5 *3 (|[\|\|]| -1789)) (-5 *2 (-112)) (-5 *1 (-594)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-592 (-832))) (-5 *2 (-112)) + (-12 (-5 *3 (|[\|\|]| -1734)) (-5 *2 (-112)) (-5 *1 (-594)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3725)) (-5 *2 (-112)) (-5 *1 (-594)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -4088)) (-5 *2 (-112)) (-5 *1 (-665 *4)) + (-4 *4 (-591 (-832))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-591 (-832))) (-5 *2 (-112)) (-5 *1 (-665 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)) (-5 *1 (-1140)))) ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1135))) (-5 *2 (-112)) (-5 *1 (-1140)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)) (-5 *1 (-1140)))) + (-12 (-5 *3 (|[\|\|]| (-217))) (-5 *2 (-112)) (-5 *1 (-1140)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-548))) (-5 *2 (-112)) (-5 *1 (-1140))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-399 (-548))))) (-5 *1 (-255)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255))))) -(((*1 *2 *3) - (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)) (-5 *3 (-1118)))) - ((*1 *2 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *1) - (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) - (-3958 (|has| *1 (-6 -4310))))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) (-4 *1 (-821))) - ((*1 *2 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) - ((*1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-299)) (-5 *1 (-674 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) - (-4 *4 (-821)) (-4 *7 (-540)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) - (-5 *1 (-574 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-540)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-548)))) - (-5 *1 (-574 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1127 *4 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-422 *4) (-157) (-27) (-1157))) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1127 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) - (-5 *2 (-399 (-921 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-921 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) - (-5 *2 (-3 (-399 (-921 *5)) (-308 *5))) (-5 *1 (-1128 *5)) - (-5 *3 (-399 (-921 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) - (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-399 *3)) - (-5 *1 (-1128 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1056 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) - (-4 *5 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-3 *3 (-308 *5))) - (-5 *1 (-1128 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1135))))) + (-12 (-5 *3 (|[\|\|]| (-547))) (-5 *2 (-112)) (-5 *1 (-1140))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-821))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -3856 *1))) + (-4 *1 (-1030 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -3856 *1))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1172)) + (-4 *5 (-364 *4)) (-4 *3 (-364 *4))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *3 (-1194 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) - (-4 *5 (-630 (-399 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-399 *5)) - (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-1194 *4)) - (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-255))) (-5 *4 (-1135)) (-5 *2 (-112)) - (-5 *1 (-255))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) - ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135))))) + (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) + (-4 *4 (-821)) (-5 *1 (-1143 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-619 *5) *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *6 (-1194 *5)) - (-5 *2 (-619 (-2 (|:| -2325 *5) (|:| -2383 *3)))) - (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) - (-4 *7 (-630 (-399 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-533)))) -(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-249))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) - (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) - (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) - (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) - (-12 + (-12 (-5 *3 (-663 *8)) (-5 *4 (-745)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) + (-4 *7 (-767)) (-5 *2 - (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) - (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) - (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) - (-5 *1 (-255)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-548)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) - (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) - (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) - (-5 *2 (-1223)) (-5 *1 (-1220)))) + (-619 + (-2 (|:| |det| *8) (|:| |rows| (-619 (-547))) + (|:| |cols| (-619 (-547)))))) + (-5 *1 (-893 *5 *6 *7 *8))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1100 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) + (-5 *1 (-1101 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-619 (-1100 *3 *4))) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-354)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4240 *1))) + (-4 *1 (-823 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-619 *3)) (-4 *3 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975)))) + ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) + (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined")) + (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) + (-5 *1 (-671))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1172)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-218)) (|:| |phi| (-218)) (|:| -4071 (-218)) - (|:| |scaleX| (-218)) (|:| |scaleY| (-218)) (|:| |scaleZ| (-218)) - (|:| |deltaX| (-218)) (|:| |deltaY| (-218)))) - (-5 *1 (-1220)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673)))) - ((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-673))))) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-3 *3 (-619 *1))) + (-4 *1 (-1036 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-745)) (-5 *2 (-619 (-1135))) (-5 *1 (-203)) - (-5 *3 (-1135)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 (-218))) (-5 *4 (-745)) (-5 *2 (-619 (-1135))) - (-5 *1 (-259)))) - ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) - (-5 *2 (-619 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 *3)) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-793 *3)) (-4 *3 (-821)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-862 *3)) (-4 *3 (-821)))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-619 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-371))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *5 (-1194 *4)) - (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2383 *5)))) - (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) - (-4 *6 (-630 (-399 *5)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-745)) (-4 *5 (-540)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-533)))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) - (-5 *4 (-1 (-218) (-218) (-218) (-218))) - (-5 *2 (-1 (-912 (-218)) (-218) (-218))) (-5 *1 (-671))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-371))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *2 (-1194 *4)) (-5 *1 (-783 *4 *2 *3 *5)) - (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) - (-4 *5 (-630 (-399 *2)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-745)) (-4 *5 (-540)) + (-12 (-4 *4 (-821)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-548) "failed") *5)) (-4 *5 (-1016)) - (-5 *2 (-548)) (-5 *1 (-531 *5 *3)) (-4 *3 (-1194 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) - (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-548) "failed") *4)) (-4 *4 (-1016)) - (-5 *2 (-548)) (-5 *1 (-531 *4 *3)) (-4 *3 (-1194 *4))))) + (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) + (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) + (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 (-619 *4))))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1135)) + (-5 *5 (-814 *7)) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-4 *7 (-13 (-1157) (-29 *6))) (-5 *1 (-216 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1131 *6)) (-5 *4 (-814 *6)) + (-4 *6 (-13 (-1157) (-29 *5))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-216 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-249))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-308 (-548))) (-5 *4 (-1 (-218) (-218))) - (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) - (-5 *1 (-671))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-655)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1080))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) - (-4 *2 (-1194 *4))))) + (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) + (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539)))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *3 *5)) - (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) - (-4 *5 (-630 (-399 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *5 *3)) - (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *5 (-630 *2)) - (-4 *3 (-630 (-399 *2)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-299)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-299)) (-5 *1 (-451 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-299)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) - (-5 *1 (-527 *3 *2 *4 *5)) (-4 *2 (-1194 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) - (-5 *2 (-1220)) (-5 *1 (-249))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) + (-12 (-5 *3 (-166 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) + (-5 *1 (-733))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) - (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) - (-4 *1 (-1030 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -2233 *1))) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) - (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) - (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) - (-5 *1 (-671))))) + (-12 (-4 *4 (-13 (-539) (-821))) (-5 *2 (-166 *5)) + (-5 *1 (-578 *4 *5 *3)) (-4 *5 (-13 (-421 *4) (-971) (-1157))) + (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1157)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-366 *4 *2)) + (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340)))) + ((*1 *1) (-4 *1 (-359))) + ((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-517 *4)) + (-4 *4 (-340)))) + ((*1 *1 *1) (-4 *1 (-532))) ((*1 *1) (-4 *1 (-532))) + ((*1 *1 *1) (-5 *1 (-547))) ((*1 *1 *1) (-5 *1 (-745))) + ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) + (-4 *4 (-1063)))) + ((*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-532)) (-4 *2 (-539))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-732))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4319)) (-4 *1 (-395)))) + ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673))))) +(((*1 *1) (-5 *1 (-428)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) + (-4 *3 (-1063))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *5)) (-4 *5 (-1194 *3)) (-4 *3 (-298)) + (-5 *2 (-112)) (-5 *1 (-445 *3 *5))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) ((*1 *1) (-4 *1 (-701))) ((*1 *1) (-5 *1 (-1135)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-309)) (-5 *3 (-217))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-590 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-1131 *2)) + (-4 *2 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-590 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) + (-5 *5 (-398 (-1131 *2))) (-4 *2 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *1 (-543 *6 *2 *7)) (-4 *7 (-1063))))) +(((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-663 (-398 *4)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1171))) (-5 *1 (-655)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1080))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340))))) +(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-673)) (-5 *1 (-296))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2582 *5) (|:| -2374 *5)))) (-5 *1 (-781 *4 *5 *3 *6)) (-4 *3 (-630 *5)) - (-4 *6 (-630 (-399 *5))))) + (-4 *6 (-630 (-398 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) + (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2582 *4) (|:| -2374 *4)))) (-5 *1 (-781 *5 *4 *3 *6)) (-4 *3 (-630 *4)) - (-4 *6 (-630 (-399 *4))))) + (-4 *6 (-630 (-398 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2278 *5) (|:| -2155 *5)))) + (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-2 (|:| -2582 *5) (|:| -2374 *5)))) (-5 *1 (-781 *4 *5 *6 *3)) (-4 *6 (-630 *5)) - (-4 *3 (-630 (-399 *5))))) + (-4 *3 (-630 (-398 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2278 *4) (|:| -2155 *4)))) + (-12 (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *4 (-1194 *5)) (-5 *2 (-619 (-2 (|:| -2582 *4) (|:| -2374 *4)))) (-5 *1 (-781 *5 *4 *6 *3)) (-4 *6 (-630 *4)) - (-4 *3 (-630 (-399 *4)))))) + (-4 *3 (-630 (-398 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-547)) + (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52)))) + (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1172))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1174))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-1073)) (-5 *3 (-547))))) +(((*1 *2 *3) + (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-140 *2 *4 *3)) + (-4 *3 (-364 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-492 *2 *4 *5 *3)) + (-4 *5 (-364 *2)) (-4 *3 (-364 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-539)) + (-5 *1 (-667 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-961 *2)) (-4 *2 (-539)) (-5 *1 (-1187 *2 *4 *3)) + (-4 *3 (-1194 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-745)) (-4 *5 (-540)) + (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) - (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-539)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) + (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-547)) + (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-354)) (-4 *6 (-1016)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) + (-4 *4 (-354)) (-4 *4 (-1016)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-547)) (-5 *2 (-663 *5)) + (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-1016))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-398 (-547)))) + (-5 *2 + (-619 + (-2 (|:| |outval| *4) (|:| |outmult| (-547)) + (|:| |outvect| (-619 (-663 *4)))))) + (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-832))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217)) + (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-526 *4 *2 *5 *6)) + (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) + (-4 *7 (-1194 (-398 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2791 *3))) + (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-333 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) + (-5 *2 + (-2 (|:| |answer| (-398 *6)) (|:| -2791 (-398 *6)) + (|:| |specpart| (-398 *6)) (|:| |polypart| *6))) + (-5 *1 (-546 *5 *6)) (-5 *3 (-398 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-239 *4 *5)) + (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135)))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1135)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-619 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2848 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1157) (-27) (-421 *8))) + (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3))) + (-5 *3 (-547)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3836 *4) (|:| |sol?| (-112)))) + (-5 *1 (-982 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-547)) (-5 *1 (-435 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1194 (-398 (-547)))) + (-5 *2 (-2 (|:| |den| (-547)) (|:| |gcdnum| (-547)))) + (-5 *1 (-882 *3 *4)) (-4 *4 (-1194 (-398 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1194 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1194 (-398 *4)))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-166 (-218)) (-166 (-218)))) (-5 *4 (-1058 (-218))) - (-5 *5 (-112)) (-5 *2 (-1220)) (-5 *1 (-249))))) + (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217))) + (-5 *5 (-112)) (-5 *2 (-1220)) (-5 *1 (-248))))) +(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1172)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) + (-4 *6 (-1030 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -1435 *1) (|:| |upper| *1))) + (-4 *1 (-945 *4 *5 *3 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-547))) (-5 *1 (-476 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-282))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) + (-5 *2 (-2 (|:| -2848 (-398 *6)) (|:| |coeff| (-398 *6)))) + (-5 *1 (-557 *5 *6)) (-5 *3 (-398 *6))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-663 *3)) (|:| |invmval| (-663 *3)) + (|:| |genIdeal| (-493 *3 *4 *5 *6)))) + (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)) (-4 *4 (-169)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) + (-4 *3 (-169))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) + (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) + (-4 *3 (-1063)) (-4 *5 (-640 *4))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-590 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1157) (-29 *6))) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-216 *6 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-202))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-112)) (-5 *6 (-217)) + (-5 *7 (-663 (-547))) + (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) + (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-359)) (-4 *2 (-354))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-547))) (-5 *4 (-547)) (-5 *2 (-52)) + (-5 *1 (-974))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) + (-5 *2 + (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-1194 *3)) + (-5 *2 + (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-742 *4 *5)) (-4 *5 (-400 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-340)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) + (-5 *2 + (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-954 *4 *3 *5 *6)) (-4 *6 (-699 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-340)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 *3)) + (-5 *2 + (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-1227 *4 *3 *5 *6)) (-4 *6 (-400 *3 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-172)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-732))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1133 *4 *5 *6)) + (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1191 *5 *4)) (-5 *1 (-1210 *4 *5 *6)) + (-4 *4 (-1016)) (-14 *5 (-1135)) (-14 *6 *4)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -1489 *3) (|:| |gap| (-745)) (|:| -3826 (-756 *3)) - (|:| -2233 (-756 *3)))) + (-2 (|:| -1557 *3) (|:| |gap| (-745)) (|:| -2225 (-756 *3)) + (|:| -3856 (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) (-5 *2 - (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) - (|:| -2233 *1))) + (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -2225 *1) + (|:| -3856 *1))) (-4 *1 (-1030 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 - (-2 (|:| -1489 *1) (|:| |gap| (-745)) (|:| -3826 *1) - (|:| -2233 *1))) + (-2 (|:| -1557 *1) (|:| |gap| (-745)) (|:| -2225 *1) + (|:| -3856 *1))) (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-539) (-821))) + (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1157))) + (-5 *1 (-578 *4 *3 *2)) (-4 *3 (-13 (-421 *4) (-971) (-1157)))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) + (-4 *8 (-298)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-619 (-2 (|:| -2106 (-1131 *9)) (|:| -4248 (-547))))))) + (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-280 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1194 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1218 (-619 *3))) (-4 *4 (-298)) + (-5 *2 (-619 *3)) (-5 *1 (-445 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-4 *1 (-872 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) - (-5 *4 (-3 (-1 (-218) (-218) (-218) (-218)) "undefined")) - (-5 *5 (-1058 (-218))) (-5 *6 (-619 (-255))) (-5 *2 (-1095 (-218))) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) + (-5 *4 (-3 (-1 (-217) (-217) (-217) (-217)) "undefined")) + (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-218))) - (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-671)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-217))) + (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-671)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1095 (-218))) (-5 *3 (-1 (-912 (-218)) (-218) (-218))) - (-5 *4 (-1058 (-218))) (-5 *5 (-619 (-255))) (-5 *1 (-671))))) + (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1 (-912 (-217)) (-217) (-217))) + (-5 *4 (-1058 (-217))) (-5 *5 (-619 (-254))) (-5 *1 (-671))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-285 *6)) (-5 *4 (-114)) (-4 *6 (-421 *5)) + (-4 *5 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) + (-5 *1 (-308 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-285 *7)) (-5 *4 (-114)) (-5 *5 (-619 *7)) + (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) + (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-619 (-285 *7))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7)) + (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) + (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-619 (-285 *8))) (-5 *4 (-619 (-114))) (-5 *5 (-285 *8)) + (-5 *6 (-619 *8)) (-4 *8 (-421 *7)) + (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) + (-5 *1 (-308 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-619 *7)) (-5 *4 (-619 (-114))) (-5 *5 (-285 *7)) + (-4 *7 (-421 *6)) (-4 *6 (-13 (-821) (-539) (-592 (-523)))) + (-5 *2 (-52)) (-5 *1 (-308 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 (-114))) (-5 *6 (-619 (-285 *8))) + (-4 *8 (-421 *7)) (-5 *5 (-285 *8)) + (-4 *7 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) + (-5 *1 (-308 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-285 *5)) (-5 *4 (-114)) (-4 *5 (-421 *6)) + (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) + (-5 *1 (-308 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6)) + (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) + (-5 *1 (-308 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-4 *3 (-421 *6)) + (-4 *6 (-13 (-821) (-539) (-592 (-523)))) (-5 *2 (-52)) + (-5 *1 (-308 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-285 *3)) (-5 *6 (-619 *3)) + (-4 *3 (-421 *7)) (-4 *7 (-13 (-821) (-539) (-592 (-523)))) + (-5 *2 (-52)) (-5 *1 (-308 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-398 *5))) (-5 *1 (-985 *4 *5)) + (-5 *3 (-398 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-428)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-367 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-366 *4 *2)) + (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329))))))) +(((*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1146 *2)) (-4 *2 (-354))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-619 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547)))))) + (-5 *2 (-619 (-398 (-547)))) (-5 *1 (-989 *4)) + (-4 *4 (-1194 (-547)))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1135)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-619 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2848 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1157) (-27) (-421 *8))) + (-4 *8 (-13 (-442) (-821) (-145) (-1007 *3) (-615 *3))) + (-5 *3 (-547)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1135)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-649 *2)) (-4 *2 (-1063))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-548)) (-5 *2 (-832)) + (-12 (-5 *3 (-1 (-832) (-832) (-832))) (-5 *4 (-547)) (-5 *2 (-832)) (-5 *1 (-623 *5 *6 *7)) (-4 *5 (-1063)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-825 *3 *4 *5)) (-4 *3 (-1016)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-832)))) ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-832)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-832)))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-832)) (-5 *1 (-1131 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-399 *2)) (-4 *2 (-1194 *5)) + (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-442)) + (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) + (-5 *1 (-604 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1056 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-398 *2)) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) + (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) (-4 *6 (-630 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-399 *2))) (-4 *2 (-1194 *5)) + (-12 (-5 *4 (-619 (-398 *2))) (-4 *2 (-1194 *5)) (-5 *1 (-781 *5 *2 *3 *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) (-4 *3 (-630 *2)) - (-4 *6 (-630 (-399 *2)))))) + (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) + (-4 *6 (-630 (-398 *2)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-745)) (-5 *2 (-1223))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) + (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) + (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) +(((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *3 (-921 (-547))) + (-5 *1 (-321)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-547)))) (-5 *1 (-321))))) +(((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-547)) + (-14 *4 *2) (-4 *5 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) + ((*1 *2) + (-12 (-4 *1 (-361 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-890)))) + ((*1 *2 *3) + (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) + (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-354)) + (-5 *2 (-745)) (-5 *1 (-641 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) + (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-745)) + (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) + (-5 *2 (-745))))) +(((*1 *2 *1) + (-12 (-5 *2 (-832)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) + (-4 *3 (-1172))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-217))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2693 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1004)) (-5 *1 (-296))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-745)) (-4 *5 (-540)) + (-12 (-5 *4 (-745)) (-4 *5 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-439 *3 *4 *5 *6))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-745)) (-5 *1 (-544))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-409 *3)) (-4 *3 (-539)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-2 (|:| -2106 *4) (|:| -1618 (-547))))) + (-4 *4 (-1194 (-547))) (-5 *2 (-745)) (-5 *1 (-432 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-753 *4)) + (-4 *4 (-13 (-354) (-819)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3836 *7) (|:| |sol?| (-112))) + (-547) *7)) + (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1194 *7)) + (-5 *3 (-398 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-557 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-527 *4 *2 *5 *6)) - (-4 *4 (-299)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-912 (-218)) (-218) (-218))) - (-5 *3 (-1 (-218) (-218) (-218) (-218))) (-5 *1 (-247))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2) (-12 (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-745)) (-4 *4 (-341)) (-5 *1 (-209 *4 *2)) - (-4 *2 (-1194 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-366 *3 *4)) - (-4 *4 (-169))))) -(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) + (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-354)) + (-5 *1 (-510 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-627 *4)) (-4 *4 (-334 *5 *6 *7)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-780 *5 *6 *7 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-540)) (-5 *1 (-938 *4 *2)) - (-4 *2 (-1194 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1135))) (-4 *6 (-355)) - (-5 *2 (-619 (-286 (-921 *6)))) (-5 *1 (-526 *5 *6 *7)) - (-4 *5 (-443)) (-4 *7 (-13 (-355) (-819)))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-215 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-246 *3)))) - ((*1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1220)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) + (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -4023 (-745)))) - (-5 *1 (-756 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4023 (-745)))) - (-4 *1 (-1030 *3 *4 *5))))) + (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169)) + (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) + (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -2168 *5)))) - (-4 *5 (-1194 *4)) (-4 *4 (-341)) (-5 *2 (-619 *5)) - (-5 *1 (-209 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-2 (|:| -1915 *5) (|:| -2512 (-548))))) - (-5 *4 (-548)) (-4 *5 (-1194 *4)) (-5 *2 (-619 *5)) - (-5 *1 (-670 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-821)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-526 *4 *2 *5 *6)) + (-4 *4 (-298)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-745)))))) +(((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-271))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-421 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-821)) - (-5 *2 - (-2 (|:| |f1| (-619 *4)) (|:| |f2| (-619 (-619 (-619 *4)))) - (|:| |f3| (-619 (-619 *4))) (|:| |f4| (-619 (-619 (-619 *4)))))) - (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 (-619 *4))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1557 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) + (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1157) (-928)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-443)) - (-5 *2 (-619 (-619 *7))) (-5 *1 (-526 *6 *7 *5)) (-4 *7 (-355)) - (-4 *5 (-13 (-355) (-819)))))) -(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-895)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-218))) (-5 *1 (-896)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) + (-12 (-5 *3 (-1118)) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-112)) (-5 *1 (-216 *4 *5)) (-4 *5 (-13 (-1157) (-29 *4)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-663 (-217))) (-5 *6 (-112)) (-5 *7 (-663 (-547))) + (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-64 QPHESS)))) + (-5 *3 (-547)) (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-890)) (-5 *2 (-458)) (-5 *1 (-1219))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-912 (-217)) (-217) (-217))) + (-5 *3 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-246))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *3 *6)) (-4 *4 (-539)) (-4 *5 (-767)) + (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-352 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) + (-4 *4 (-622 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-352 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-957 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-1070 *3 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-548)) (-5 *2 (-619 (-2 (|:| -1915 *3) (|:| -2512 *4)))) - (-5 *1 (-670 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-548)) (|has| *1 (-6 -4328)) (-4 *1 (-365 *3)) - (-4 *3 (-1172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) + (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1557 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) - (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-921 *5)) (-4 *5 (-443)) (-5 *2 (-619 *6)) - (-5 *1 (-526 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-439 *4 *5 *6 *2))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-548)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-365 *2)) (-4 *2 (-1172)) - (-4 *2 (-821)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4328)) - (-4 *1 (-365 *3)) (-4 *3 (-1172))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1557 *4))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) + (-12 (-5 *3 (-547)) (-4 *4 (-1194 (-398 *3))) (-5 *2 (-890)) + (-5 *1 (-882 *4 *5)) (-4 *5 (-1194 (-398 *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))) - (-5 *1 (-777))))) + (-12 (-5 *3 (-619 *2)) (-5 *1 (-476 *2)) (-4 *2 (-1194 (-547)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-524)) (-5 *1 (-523 *4)) - (-4 *4 (-1172))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) - ((*1 *1 *1 *1) (-4 *1 (-533))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-745))))) -(((*1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) - ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1063))))) -(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-359 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *1 *2) (-12 - (-5 *2 - (-619 - (-2 - (|:| -3156 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) - (|:| |yinit| (-619 (-218))) (|:| |intvals| (-619 (-218))) - (|:| |g| (-308 (-218))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (|:| -1657 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371))))))) - (-5 *1 (-777))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821))))) -(((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-524))) (-5 *1 (-524))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-548))) (-5 *1 (-886)))) + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 (-370)) (-5 *1 (-197))))) +(((*1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-354)) (-4 *5 (-1194 *4)) (-5 *2 (-1223)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1194 (-398 *5))) (-14 *7 *6)))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-619 (-1039 *4 *5 *2))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) + (-4 *2 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-619 (-1039 *5 *6 *2))) (-5 *4 (-890)) (-4 *5 (-1063)) + (-4 *6 (-13 (-1016) (-855 *5) (-821) (-592 (-861 *5)))) + (-4 *2 (-13 (-421 *6) (-855 *5) (-592 (-861 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-547)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-298)) + (-4 *9 (-918 *8 *6 *7)) + (-5 *2 (-2 (|:| -1416 (-1131 *9)) (|:| |polval| (-1131 *8)))) + (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)) (-5 *4 (-1131 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-663 *4))) (-4 *4 (-169)) + (-5 *2 (-1218 (-663 (-921 *4)))) (-5 *1 (-181 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-873 (-548))) (-5 *1 (-886))))) + (-12 (-5 *2 (-2 (|:| -1849 *3) (|:| -4248 (-745)))) (-5 *1 (-566 *3)) + (-4 *3 (-532))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-237 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *1) (-5 *1 (-428)))) (((*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540)))) - ((*1 *1 *1 *2) + (-4 *4 (-821)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540))))) + (-4 *4 (-821))))) (((*1 *2 *1) - (-12 (-4 *1 (-669 *3)) (-4 *3 (-1063)) - (-5 *2 (-619 (-2 (|:| -1657 *3) (|:| -3945 (-745)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) - (-14 *3 (-890)) (-4 *4 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-777))))) -(((*1 *1 *1 *1) (-4 *1 (-936)))) -(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-524))))) -(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-767)) (-4 *4 (-821)) (-4 *5 (-299)) - (-5 *1 (-885 *3 *4 *5 *2)) (-4 *2 (-918 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *5 (-299)) (-5 *1 (-885 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *6 *4 *5)) - (-5 *1 (-885 *4 *5 *6 *2)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-299))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) +(((*1 *2) + (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) + (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *4 (-1194 *3)) (-5 *2 - (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)) - (|:| |coef2| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *7 (-869 *6)) - (-5 *2 (-663 *7)) (-5 *1 (-666 *6 *7 *3 *4)) (-4 *3 (-365 *7)) - (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327))))))) -(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *1) (-5 *1 (-777)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 *6)) (-5 *5 (-1 (-410 (-1131 *6)) (-1131 *6))) - (-4 *6 (-355)) + (-2 (|:| -4013 (-663 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-663 *3)))) + (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-400 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1194 (-547))) (-5 *2 - (-619 - (-2 (|:| |outval| *7) (|:| |outmult| (-548)) - (|:| |outvect| (-619 (-663 *7)))))) - (-5 *1 (-521 *6 *7 *4)) (-4 *7 (-355)) (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-410 *2)) (-4 *2 (-299)) (-5 *1 (-883 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-410 (-921 *6))) (-5 *5 (-1135)) (-5 *3 (-921 *6)) - (-4 *6 (-13 (-299) (-145))) (-5 *2 (-52)) (-5 *1 (-884 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef1| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-2 (|:| -3587 *1) (|:| |coef1| *1))) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) - (-5 *2 (-663 (-308 (-218)))) (-5 *1 (-198)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-4 *6 (-869 *5)) (-5 *2 (-663 *6)) - (-5 *1 (-666 *5 *6 *3 *4)) (-4 *3 (-365 *6)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) -(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1135)) - (-4 *6 (-13 (-821) (-299) (-1007 (-548)) (-615 (-548)) (-145))) - (-4 *4 (-13 (-29 *6) (-1157) (-928))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2877 (-619 *4)))) - (-5 *1 (-775 *6 *4 *3)) (-4 *3 (-630 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *5)) (-4 *5 (-355)) (-5 *2 (-619 *6)) - (-5 *1 (-521 *5 *6 *4)) (-4 *6 (-355)) (-4 *4 (-13 (-355) (-819)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) + (-2 (|:| -4013 (-663 (-547))) (|:| |basisDen| (-547)) + (|:| |basisInv| (-663 (-547))))) + (-5 *1 (-742 *3 *4)) (-4 *4 (-400 (-547) *3)))) + ((*1 *2) + (-12 (-4 *3 (-340)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) + (-5 *2 + (-2 (|:| -4013 (-663 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-663 *4)))) + (-5 *1 (-954 *3 *4 *5 *6)) (-4 *6 (-699 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-340)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 *4)) + (-5 *2 + (-2 (|:| -4013 (-663 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-663 *4)))) + (-5 *1 (-1227 *3 *4 *5 *6)) (-4 *6 (-400 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-590 *5)) (-4 *5 (-421 *4)) (-4 *4 (-1007 (-547))) + (-4 *4 (-13 (-821) (-539))) (-5 *2 (-1131 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-590 *1)) (-4 *1 (-1016)) (-4 *1 (-293)) + (-5 *2 (-1131 *1))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3587 (-756 *3)) (|:| |coef2| (-756 *3)))) - (-5 *1 (-756 *3)) (-4 *3 (-540)) (-4 *3 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-2 (|:| -3587 *1) (|:| |coef2| *1))) - (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-745)) (-4 *6 (-1063)) (-4 *3 (-869 *6)) - (-5 *2 (-663 *3)) (-5 *1 (-666 *6 *3 *7 *4)) (-4 *7 (-365 *3)) - (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4327))))))) -(((*1 *2 *1) (-12 (-4 *1 (-359 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-4 *1 (-774)) - (-5 *3 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (-5 *2 (-1004))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) + (-12 (-5 *3 (-1102 *4 *2)) (-14 *4 (-890)) + (-4 *2 (-13 (-1016) (-10 -7 (-6 (-4330 "*"))))) + (-5 *1 (-871 *4 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-398 (-547)))) + (-4 *2 (-169))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) + (-4 *2 (-1194 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-355)) (-5 *2 (-1131 *4)) - (-5 *1 (-521 *4 *5 *6)) (-4 *5 (-355)) (-4 *6 (-13 (-355) (-819)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) - (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) - ((*1 *2 *1) - (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) - (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) -(((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) - (-14 *3 (-890)) (-4 *4 (-1016)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25)))))) + (-12 (-4 *4 (-13 (-539) (-821))) + (-4 *2 (-13 (-421 *4) (-971) (-1157))) (-5 *1 (-578 *4 *2 *3)) + (-4 *3 (-13 (-421 (-166 *4)) (-971) (-1157)))))) (((*1 *2 *1) - (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1063)) (-4 *2 (-869 *4)) (-5 *1 (-666 *4 *2 *5 *3)) - (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4327))))))) -(((*1 *2 *1) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-272))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-912 *5)) (-4 *5 (-1016)) (-5 *2 (-745)) - (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1016)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) - (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-890)) (-4 *4 (-360)) (-4 *4 (-355)) (-5 *2 (-1131 *1)) - (-4 *1 (-321 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1131 *3)))) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-619 (-619 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-362 *3 *2)) (-4 *3 (-169)) (-4 *3 (-355)) - (-4 *2 (-1194 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) - (-5 *1 (-518 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-507)))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-619 (-619 *5))))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *2)) - (-4 *3 (-13 (-1063) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1229))))) -(((*1 *1 *1) - (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) - (-4 *4 (-258 *3)) (-4 *5 (-767))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-154)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *3 (-540))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-4 *2 (-869 *5)) (-5 *1 (-666 *5 *2 *3 *4)) - (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-912 *4)) (-4 *4 (-1016)) (-5 *1 (-1124 *3 *4)) - (-14 *3 (-890))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) + (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) + ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) + ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1172)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) - (-4 *3 (-936))))) -(((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355)))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) - (-4 *4 (-341))))) -(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-241))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-912 (-218)))) (-5 *1 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-1218 *3)) - (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-365 *3)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4327))))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-912 *5)) (-5 *3 (-745)) (-4 *5 (-1016)) - (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1218 *4)) (-4 *4 (-409 *3)) (-4 *3 (-299)) - (-4 *3 (-540)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-4 *4 (-355)) (-5 *2 (-1218 *1)) - (-4 *1 (-321 *4)))) - ((*1 *2) (-12 (-4 *3 (-355)) (-5 *2 (-1218 *1)) (-4 *1 (-321 *3)))) - ((*1 *2) - (-12 (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *1)) - (-4 *1 (-401 *3 *4)))) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) - (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) - (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) - (-5 *2 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7)) - (-4 *6 (-401 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1218 *1)) (-4 *1 (-409 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 *4))) (-5 *1 (-518 *4)) - (-4 *4 (-341))))) -(((*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-241))))) -(((*1 *1) (-5 *1 (-1219)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1131 *3)) (-5 *1 (-883 *3)) (-4 *3 (-299))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-745)) (-4 *4 (-1016)) - (-5 *1 (-664 *4))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-745)) (-5 *3 (-912 *5)) (-4 *5 (-1016)) - (-5 *1 (-1124 *4 *5)) (-14 *4 (-890)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-745))) (-5 *3 (-745)) (-5 *1 (-1124 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1016)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-745))) (-5 *3 (-912 *5)) (-4 *5 (-1016)) - (-5 *1 (-1124 *4 *5)) (-14 *4 (-890))))) -(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-619 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) - (-4 *3 (-936))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1131 *4)) (-4 *4 (-341)) (-5 *2 (-112)) - (-5 *1 (-349 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-112)) - (-5 *1 (-518 *4))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-745)) - (-4 *3 (-13 (-701) (-360) (-10 -7 (-15 ** (*3 *3 (-548)))))) - (-5 *1 (-239 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-459)) (-5 *3 (-619 (-255))) (-5 *1 (-1219)))) - ((*1 *1 *1) (-5 *1 (-1219)))) -(((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-299))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-524))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1124 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1016))))) -(((*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) - ((*1 *1 *1 *1) (-4 *1 (-767)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-890)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-890)) - (-5 *1 (-518 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) (((*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1124 *4 *5)) - (-14 *4 (-890)) (-4 *5 (-1016))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *2 *1) - (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) - (-4 *3 (-936))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-548)) (-4 *4 (-341)) - (-5 *1 (-518 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-237 *2)) (-4 *2 (-1172))))) -(((*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) + (-4 *4 (-821)))) + ((*1 *1) (-4 *1 (-1111)))) +(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) +(((*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521)))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-646 *3)) (-4 *3 (-821)) (-4 *1 (-365 *3 *4)) + (-4 *4 (-169))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1004))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) (-5 *6 (-649 (-217))) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-725))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1118)) (-4 *4 (-821)) (-5 *1 (-898 *4 *2)) - (-4 *2 (-422 *4)))) + (-4 *2 (-421 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-1118)) (-5 *2 (-308 (-548))) + (-12 (-5 *3 (-1135)) (-5 *4 (-1118)) (-5 *2 (-307 (-547))) (-5 *1 (-899))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1135)) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) (-4 *4 (-1016))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) - (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) - (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1082)) (-4 *4 (-341)) - (-5 *1 (-518 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-234)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-548)) (-5 *1 (-234))))) -(((*1 *2) (-12 (-5 *2 (-814 (-548))) (-5 *1 (-522)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-814 (-547))) (-5 *1 (-521)))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1063))))) -(((*1 *1) (-5 *1 (-1028)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) + (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-287)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-304)) (-5 *1 (-288)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-288)))) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-303)) (-5 *1 (-287)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-287)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-1118))) (-5 *3 (-1118)) (-5 *2 (-304)) - (-5 *1 (-288))))) -(((*1 *2 *1) - (-12 (-5 *2 (-912 *4)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) + (-12 (-5 *4 (-619 (-1118))) (-5 *3 (-1118)) (-5 *2 (-303)) + (-5 *1 (-287))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -2848 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-619 (-398 *8))) (-4 *7 (-354)) (-4 *8 (-1194 *7)) + (-5 *3 (-398 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-557 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))))) + (-5 *2 (-1004)) (-5 *1 (-296)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -4283 (-370)) (|:| -2464 (-1118)) + (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) + (-5 *2 (-1004)) (-5 *1 (-296))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-333 *5 *6 *7)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-780 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 - (-2 (|:| -4056 *4) (|:| -2831 *4) (|:| |totalpts| (-548)) + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) (|:| |success| (-112)))) - (-5 *1 (-763)) (-5 *5 (-548))))) -(((*1 *2 *1) - (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) - (-4 *3 (-936))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-745)) (-4 *4 (-341)) - (-5 *1 (-518 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234))))) -(((*1 *1 *1) (-5 *1 (-1028)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1218 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-341)) - (-5 *1 (-518 *5))))) -(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-234))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1142))))) -(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1028)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) -(((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-304)) (-5 *1 (-803))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1131 *4)) (-5 *1 (-518 *4)) - (-4 *4 (-341))))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) (((*1 *2 *3) - (-12 (-5 *3 (-286 (-921 (-548)))) - (-5 *2 - (-2 (|:| |varOrder| (-619 (-1135))) - (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) - (|:| |hom| (-619 (-1218 (-745)))))) - (-5 *1 (-229))))) -(((*1 *1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-1028)))) + (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) - (-4 *2 (-661 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1116 *3)) (-4 *3 (-1063)) + (-4 *3 (-1172))))) (((*1 *1 *1) - (-12 (-4 *2 (-145)) (-4 *2 (-299)) (-4 *2 (-443)) (-4 *3 (-821)) - (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-308 (-548))) (-5 *1 (-1081)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 *4)) (-4 *4 (-341)) (-5 *2 (-1131 *4)) - (-5 *1 (-518 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-228 *3)))) - ((*1 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-1063))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) + ((*1 *1 *1) + (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) + (-14 *3 (-619 (-1135)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1063)) - (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) - (-5 *2 (-619 (-1039 *3 *4 *5))) (-5 *1 (-1040 *3 *4 *5)) - (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) -(((*1 *1 *1) (-5 *1 (-1028)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) + (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-4 *4 (-364 *2)) (-4 *5 (-364 *2)) (-4 *2 (-169)) + (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) + (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4330 "*"))) (-4 *2 (-1016))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) (((*1 *2 *2) - (-12 (-4 *3 (-540)) (-4 *3 (-169)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) - (-4 *2 (-661 *3 *4 *5))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)))) + (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547))))) ((*1 *2 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-533))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4056 *4) (|:| -3337 (-1082)))))) - (-4 *4 (-341)) (-5 *2 (-1223)) (-5 *1 (-518 *4))))) -(((*1 *1) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-540)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)) (-5 *3 (-1118))))) -(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533))))) -(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-1082))))) -(((*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-5 *1 (-957 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-5 *1 (-1070 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) - (-5 *2 (-166 (-308 *4))) (-5 *1 (-181 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-166 *3)) (-5 *1 (-1161 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803))))) -(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-533))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-517)) (-5 *3 (-128)) (-5 *2 (-1082))))) -(((*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) + (-12 (-5 *2 (-745)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1223)) (-5 *1 (-805))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-663 *2)) (-4 *2 (-169)) (-5 *1 (-144 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-169)) (-4 *2 (-1194 *4)) (-5 *1 (-174 *4 *2 *3)) + (-4 *3 (-699 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-443)) - (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-548)) (-5 *5 (-1118)) (-5 *6 (-663 (-218))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-112)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) + (-12 (-5 *3 (-663 (-398 (-921 *5)))) (-5 *4 (-1135)) + (-5 *2 (-921 *5)) (-5 *1 (-283 *5)) (-4 *5 (-442)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-112)) (-5 *1 (-1161 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803))))) -(((*1 *1) (-4 *1 (-341))) + (-12 (-5 *3 (-663 (-398 (-921 *4)))) (-5 *2 (-921 *4)) + (-5 *1 (-283 *4)) (-4 *4 (-442)))) + ((*1 *2 *1) + (-12 (-4 *1 (-361 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) - (-4 *4 (-13 (-540) (-821) (-145))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1131 *5))) - (|:| |prim| (-1131 *5)))) - (-5 *1 (-424 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-145))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1131 *3)) - (|:| |pol2| (-1131 *3)) (|:| |prim| (-1131 *3)))) - (-5 *1 (-424 *4 *3)) (-4 *3 (-27)) (-4 *3 (-422 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-921 *5)) (-5 *4 (-1135)) (-4 *5 (-13 (-355) (-145))) - (-5 *2 - (-2 (|:| |coef1| (-548)) (|:| |coef2| (-548)) - (|:| |prim| (-1131 *5)))) - (-5 *1 (-929 *5)))) + (-12 (-5 *3 (-663 (-166 (-398 (-547))))) + (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *4)) + (-4 *4 (-13 (-354) (-819))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) - (-4 *5 (-13 (-355) (-145))) - (-5 *2 - (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *5))) - (|:| |prim| (-1131 *5)))) - (-5 *1 (-929 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-5 *5 (-1135)) - (-4 *6 (-13 (-355) (-145))) - (-5 *2 - (-2 (|:| -1489 (-619 (-548))) (|:| |poly| (-619 (-1131 *6))) - (|:| |prim| (-1131 *6)))) - (-5 *1 (-929 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-515))))) -(((*1 *1 *2) (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *3 (-218)) - (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803))))) + (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *4 (-1135)) + (-5 *2 (-921 (-166 (-398 (-547))))) (-5 *1 (-739 *5)) + (-4 *5 (-13 (-354) (-819))))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *2 (-921 (-398 (-547)))) + (-5 *1 (-753 *4)) (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-398 (-547)))) (-5 *4 (-1135)) + (-5 *2 (-921 (-398 (-547)))) (-5 *1 (-753 *5)) + (-4 *5 (-13 (-354) (-819)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-728))))) (((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1031))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1142))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1135))) (-4 *6 (-354)) + (-5 *2 (-619 (-285 (-921 *6)))) (-5 *1 (-525 *5 *6 *7)) + (-4 *5 (-442)) (-4 *7 (-13 (-354) (-819)))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821)) + (-5 *1 (-439 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-139))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-293)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-590 *1))) (-5 *3 (-619 *1)) (-4 *1 (-293)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-285 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-285 *1)) (-4 *1 (-293))))) +(((*1 *2 *3) + (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-921 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1218 *4))) (-5 *1 (-358 *3 *4)) - (-4 *3 (-359 *4)))) - ((*1 *2) - (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) - (-5 *2 (-619 (-1218 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) - (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) - ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-599 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112))) - (-548) *4)) - (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *1 (-558 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-821)))) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) + (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) + (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) + (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) + (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-821)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-834 *3)) (-14 *3 (-619 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-935 *3)) (-4 *3 (-936)))) @@ -8613,756 +7197,673 @@ (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) (-5 *2 (-1135)))) ((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1214 *3)) (-14 *3 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-214 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-245 *3)))) + ((*1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-474 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532))))) (((*1 *2 *1) - (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) - (-5 *2 (-1131 *3))))) + (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) + (-5 *2 (-404 *4 (-398 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *6)) (-4 *6 (-13 (-400 *4 *5) (-1007 *4))) + (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *3 (-298)) + (-5 *1 (-404 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1007 (-48))) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) + (-5 *2 (-409 (-1131 (-48)))) (-5 *1 (-426 *4 *5 *3)) + (-4 *3 (-1194 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *1) (-5 *1 (-1049)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1172)) (-5 *1 (-178 *3 *2)) (-4 *2 (-648 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-13 (-27) (-1157) (-422 (-166 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) - (-5 *1 (-181 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 (-166 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-154)))) - ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-355)) (-5 *1 (-558 *4 *2)) (-4 *2 (-1194 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-218))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) - (-5 *1 (-723))))) -(((*1 *1 *1) (-4 *1 (-533)))) + (-12 (-4 *3 (-1016)) (-4 *4 (-1194 *3)) (-5 *1 (-161 *3 *4 *2)) + (-4 *2 (-1194 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172))))) (((*1 *2 *1) - (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-4 *3 (-540)) - (-5 *2 (-1131 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) + (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-308 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) - (-5 *2 (-1118)) (-5 *1 (-800 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 *5)) (-5 *4 (-112)) - (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) - (-5 *1 (-800 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-796)) (-5 *4 (-308 *5)) - (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) - (-5 *1 (-800 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-796)) (-5 *4 (-308 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) - (-5 *1 (-800 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1118)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1118)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1223)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1223))))) -(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 (-370)) (-5 *1 (-197))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) + (-4 *8 (-333 *5 *6 *7)) + (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) + (-5 *2 (-2 (|:| -3707 (-745)) (|:| -3556 *8))) + (-5 *1 (-880 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) + (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-1194 (-398 *4))) + (-4 *6 (-333 (-398 (-547)) *4 *5)) + (-5 *2 (-2 (|:| -3707 (-745)) (|:| -3556 *6))) + (-5 *1 (-881 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-399 *7))) - (-4 *7 (-1194 *6)) (-5 *3 (-399 *7)) (-4 *6 (-355)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *6 *7))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-921 *6)) (-5 *4 (-1135)) - (-5 *5 (-814 *7)) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-4 *7 (-13 (-1157) (-29 *6))) (-5 *1 (-217 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1131 *6)) (-5 *4 (-814 *6)) - (-4 *6 (-13 (-1157) (-29 *5))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-217 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1004)) (-5 *1 (-723))))) -(((*1 *1 *1) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) -(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 (-2 (|:| -1699 (-399 *6)) (|:| |coeff| (-399 *6)))) - (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-814 *4)) (-5 *3 (-591 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1157) (-29 *6))) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-217 *6 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-723))))) -(((*1 *1) (-5 *1 (-429)))) + (-12 (-5 *3 (-745)) (-4 *6 (-354)) (-5 *4 (-1166 *6)) + (-5 *2 (-1 (-1116 *4) (-1116 *4))) (-5 *1 (-1226 *6)) + (-5 *5 (-1116 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) + (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) +(((*1 *2) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) + (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-479 *3)) (-4 *3 (-1172)) + (-5 *2 (-619 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-756 *3)) (|:| |polden| *3) (|:| -3402 (-745)))) + (-5 *1 (-756 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3402 (-745)))) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *5 (-1118)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-81 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) + (-5 *1 (-725))))) (((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3676 *7) (|:| |sol?| (-112))) - (-548) *7)) - (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) - (-5 *3 (-399 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-558 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-619 *3)) (|:| |image| (-619 *3)))) + (-5 *1 (-874 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) (((*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *2)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) (((*1 *2 *3) - (-12 (-5 *3 (-1118)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-112)) (-5 *1 (-217 *4 *5)) (-4 *5 (-13 (-1157) (-29 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-5 *1 (-957 *3 *4 *5 *6 *7)))) + (-12 (-5 *3 (-619 (-2 (|:| |deg| (-745)) (|:| -1396 *5)))) + (-4 *5 (-1194 *4)) (-4 *4 (-340)) (-5 *2 (-619 *5)) + (-5 *1 (-208 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-2 (|:| -2106 *5) (|:| -1618 (-547))))) + (-5 *4 (-547)) (-4 *5 (-1194 *4)) (-5 *2 (-619 *5)) + (-5 *1 (-670 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1144 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-890)) (-5 *1 (-1001 *2)) + (-4 *2 (-13 (-1063) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2) + (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) ((*1 *2 *2) - (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-5 *1 (-1070 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) - (-5 *1 (-723))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) -(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -1699 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-619 (-399 *8))) (-4 *7 (-355)) (-4 *8 (-1194 *7)) - (-5 *3 (-399 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-558 *7 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) - ((*1 *1 *1) - (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) - (-14 *3 (-619 (-1135)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) - (-5 *1 (-723))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1007 (-48))) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) - (-5 *2 (-410 (-1131 (-48)))) (-5 *1 (-427 *4 *5 *3)) - (-4 *3 (-1194 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-321 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) - ((*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-355)))) - ((*1 *2 *1) - (-12 (-4 *1 (-362 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-341)) - (-5 *1 (-518 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) - (-4 *5 (-231 *3 *2)) (-4 *2 (-1016))))) + (-12 (-5 *2 (-890)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-1158 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-798))))) -(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) + (-1 (-2 (|:| |ans| *6) (|:| -3836 *6) (|:| |sol?| (-112))) (-547) *6)) - (-4 *6 (-355)) (-4 *7 (-1194 *6)) + (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) - (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) - (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) + (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6)) + (-2 (|:| -2848 (-398 *7)) (|:| |coeff| (-398 *7))) "failed")) + (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-421 *4) (-971) (-1157))) + (-4 *4 (-13 (-539) (-821))) + (-4 *2 (-13 (-421 (-166 *4)) (-971) (-1157))) + (-5 *1 (-578 *4 *5 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-364 *3)) (-4 *3 (-1172)) (-4 *3 (-821)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-364 *4)) (-4 *4 (-1172)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-217)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) (((*1 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-957 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) + (-12 (-4 *3 (-442)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) (-5 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1218 (-745))) (-5 *1 (-649 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1118)) (-5 *1 (-296))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-547)) (-5 *1 (-307 *3)) (-4 *3 (-539)) (-4 *3 (-821))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) + (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-4 *3 (-1176)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) + (-5 *2 (-1218 *1)) (-4 *1 (-333 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1223)) (-5 *1 (-805))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) (-5 *1 (-723))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-168)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3772 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-539)) + (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1131 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1137 *3)) (-4 *3 (-539)) + (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1191 *4 *3)) (-14 *4 (-1135)) + (-4 *3 (-1016))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) (-5 *1 (-524 *4 *2)) + (-4 *2 (-1209 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3))) + (-4 *5 (-1194 *4)) (-4 *6 (-699 *4 *5)) (-5 *1 (-528 *4 *5 *6 *2)) + (-4 *2 (-1209 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-13 (-354) (-359) (-592 *3))) + (-5 *1 (-529 *4 *2)) (-4 *2 (-1209 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-547)) (-4 *4 (-13 (-539) (-145))) + (-5 *1 (-1112 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) (-5 *2 - (-3 (|:| |overq| (-1131 (-399 (-548)))) - (|:| |overan| (-1131 (-48))) (|:| -4119 (-112)))) - (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) -(((*1 *2) (-12 (-5 *2 (-1095 (-218))) (-5 *1 (-1155))))) -(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799))))) -(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-355)) (-4 *7 (-1194 *6)) + (-3 (|:| |overq| (-1131 (-398 (-547)))) + (|:| |overan| (-1131 (-48))) (|:| -4142 (-112)))) + (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-65 FUNCT1)))) + (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-778 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1157) (-928)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) (-5 *2 - (-3 (-2 (|:| |answer| (-399 *7)) (|:| |a0| *6)) - (-2 (|:| -1699 (-399 *7)) (|:| |coeff| (-399 *7))) "failed")) - (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-355)) (-5 *2 (-619 (-1116 *4))) (-5 *1 (-277 *4 *5)) - (-5 *3 (-1116 *4)) (-4 *5 (-1209 *4))))) + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-821)) (-5 *4 (-619 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-619 *4)))) + (-5 *1 (-1143 *6)) (-5 *5 (-619 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-619 + (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 *2)) + (|:| |logand| (-1131 *2))))) + (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-354)) (-5 *1 (-565 *2))))) +(((*1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1155))))) +(((*1 *2 *3) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) + (-5 *2 (-619 (-745))) (-5 *1 (-752 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *6)) (-4 *7 (-918 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) + (-5 *1 (-438 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) + (-5 *1 (-438 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-4 *6 (-442)) + (-5 *2 (-619 (-619 *7))) (-5 *1 (-525 *6 *7 *5)) (-4 *7 (-354)) + (-4 *5 (-13 (-354) (-819)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-767)) (-4 *2 (-918 *4 *5 *6)) (-5 *1 (-439 *4 *5 *6 *2)) + (-4 *4 (-442)) (-4 *6 (-821))))) +(((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 *5)) (-4 *5 (-1016)) (-5 *2 (-471 *4 *5)) + (-5 *1 (-913 *4 *5)) (-14 *4 (-619 (-1135)))))) +(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-799))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *1) (-5 *1 (-1049)))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) - (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) - (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) - (-5 *1 (-723))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) - (-4 *5 (-422 *4)) (-5 *2 (-410 (-1131 (-399 (-548))))) - (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-354)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) (((*1 *2 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-548)) (-5 *1 (-1154 *4)) - (-4 *4 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-799))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) - (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5))))) - (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-619 *6) "failed") (-548) *6 *6)) (-4 *6 (-355)) - (-4 *7 (-1194 *6)) - (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) - (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) -(((*1 *1 *2) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1158 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-619 (-1158 *2))) (-5 *1 (-1158 *2)) (-4 *2 (-1063))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) - (-5 *2 (-1004)) (-5 *1 (-723))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-4 *5 (-422 *4)) - (-5 *2 (-410 *3)) (-5 *1 (-427 *4 *5 *3)) (-4 *3 (-1194 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) + (-12 (-5 *3 (-619 (-2 (|:| -2106 (-1131 *6)) (|:| -4248 (-547))))) + (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-547)) + (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1135))) (-5 *1 (-799))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-5 *1 (-673)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-355)) (-5 *1 (-947 *5))))) -(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-495))) (-5 *2 (-495)) (-5 *1 (-473))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-725))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3676 *6) (|:| |sol?| (-112))) (-548) - *6)) - (-4 *6 (-355)) (-4 *7 (-1194 *6)) - (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) - (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-355)) (-5 *1 (-277 *3 *2)) (-4 *2 (-1209 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) (-5 *3 (-218)) - (-5 *2 (-1004)) (-5 *1 (-723))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) -(((*1 *2 *1) (-12 (-4 *1 (-819)) (-5 *2 (-548)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1033 *4 *3)) (-4 *4 (-13 (-819) (-355))) - (-4 *3 (-1194 *4)) (-5 *2 (-548)))) - ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) - (-5 *2 (-548)) (-5 *1 (-1078 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) - (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-1118)) - (-4 *6 (-13 (-540) (-821) (-1007 *2) (-615 *2) (-443))) - (-5 *2 (-548)) (-5 *1 (-1078 *6 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-548)) - (-5 *1 (-1079 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-814 (-399 (-921 *6)))) - (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-548)) - (-5 *1 (-1079 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-399 (-921 *6))) (-5 *4 (-1135)) - (-5 *5 (-1118)) (-4 *6 (-443)) (-5 *2 (-548)) (-5 *1 (-1079 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-548)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) -(((*1 *1) (-5 *1 (-797)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-355)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-441 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-355)) + (-5 *5 (-1 (-3 (-2 (|:| -2848 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-354)) (-4 *7 (-1194 *6)) (-5 *2 - (-2 (|:| R (-663 *6)) (|:| A (-663 *6)) (|:| |Ainv| (-663 *6)))) - (-5 *1 (-947 *6)) (-5 *3 (-663 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -1699 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-355)) (-4 *7 (-1194 *6)) - (-5 *2 (-2 (|:| |answer| (-566 (-399 *7))) (|:| |a0| *6))) - (-5 *1 (-558 *6 *7)) (-5 *3 (-399 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) - (-5 *2 (-1218 (-399 (-548)))) (-5 *1 (-1245 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) - (-5 *2 (-1004)) (-5 *1 (-723))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) -(((*1 *1) (-5 *1 (-283)))) -(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1153))))) -(((*1 *1) (-5 *1 (-797)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-566 *3) *3 (-1135))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1135))) - (-4 *3 (-276)) (-4 *3 (-605)) (-4 *3 (-1007 *4)) (-4 *3 (-422 *7)) - (-5 *4 (-1135)) (-4 *7 (-593 (-861 (-548)))) (-4 *7 (-443)) - (-4 *7 (-855 (-548))) (-4 *7 (-821)) (-5 *2 (-566 *3)) - (-5 *1 (-557 *7 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) - (-4 *3 (-1063)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172))))) + (-3 (-2 (|:| |answer| (-398 *7)) (|:| |a0| *6)) + (-2 (|:| -2848 (-398 *7)) (|:| |coeff| (-398 *7))) "failed")) + (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) - (-5 *2 (-1218 (-548))) (-5 *1 (-1245 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) - (-5 *2 (-1004)) (-5 *1 (-723))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) -(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1153))))) -(((*1 *1) (-5 *1 (-797)))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-1223)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-443)) (-4 *4 (-821)) - (-5 *1 (-557 *4 *2)) (-4 *2 (-276)) (-4 *2 (-422 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-272))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 *4)) (-4 *4 (-615 (-548))) (-5 *2 (-112)) - (-5 *1 (-1245 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-548)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153))))) -(((*1 *1) (-5 *1 (-797)))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-299)) (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-540)) (-4 *4 (-821)) - (-5 *1 (-557 *4 *2)) (-4 *2 (-422 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-272))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 (-370)) (-5 *1 (-197))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) ((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) - (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5)))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *3 (-327 *5 *6 *7 *8)) (-4 *5 (-421 *4)) (-4 *6 (-1194 *5)) + (-4 *7 (-1194 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) + (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-112)) + (-5 *1 (-880 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) - (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 *7))) - (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) + (-12 (-5 *3 (-327 (-398 (-547)) *4 *5 *6)) + (-4 *4 (-1194 (-398 (-547)))) (-4 *5 (-1194 (-398 *4))) + (-4 *6 (-333 (-398 (-547)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-881 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-404 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-298)) + (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *6 (-400 *4 *5)) + (-14 *7 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *6)) (-4 *6 (-400 *4 *5)) (-4 *4 (-961 *3)) + (-4 *5 (-1194 *4)) (-4 *3 (-298)) (-5 *1 (-405 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1172)) (-5 *2 (-745)) (-5 *1 (-178 *4 *3)) + (-4 *3 (-648 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354)))) ((*1 *2 *1) - (-12 (-4 *3 (-443)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-410 *1)) (-4 *1 (-918 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-443)) (-5 *2 (-410 *3)) - (-5 *1 (-948 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) - (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) - (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176)))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-410 *3)) (-5 *1 (-1197 *4 *3)) - (-4 *3 (-13 (-1194 *4) (-540) (-10 -8 (-15 -3587 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-14 *5 (-619 (-1135))) - (-5 *2 - (-619 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6))))) - (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-340)) + (-5 *1 (-517 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-109)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1063)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1118)) (-5 *1 (-1153))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) - (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) + (-4 *5 (-230 *3 *2)) (-4 *2 (-1016))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-619 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-547))))) + (-4 *2 (-539)) (-5 *1 (-409 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-547)) + (|:| -2483 (-619 (-2 (|:| |irr| *4) (|:| -1889 (-547))))))) + (-4 *4 (-1194 (-547))) (-5 *2 (-409 *4)) (-5 *1 (-432 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-473))))) +(((*1 *1) (-5 *1 (-1223)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-1135)) (-4 *6 (-422 *5)) - (-4 *5 (-821)) (-5 *2 (-619 (-591 *6))) (-5 *1 (-557 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) - (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + (-12 (-4 *4 (-354)) (-5 *2 (-619 (-1116 *4))) (-5 *1 (-276 *4 *5)) + (-5 *3 (-1116 *4)) (-4 *5 (-1209 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539))))) +(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-52))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-4 *5 (-354)) (-5 *2 (-619 (-1166 *5))) + (-5 *1 (-1226 *5)) (-5 *4 (-1166 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-547)) + (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) + (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) - (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) - (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-553 *3)) (-4 *3 (-1007 (-548))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-1223)) - (-5 *1 (-425 *3 *4)) (-4 *4 (-422 *3))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-547)) + (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) + (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) + (|:| |f4| (-619 *5)))) + (-5 *1 (-1143 *6)) (-5 *4 (-619 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1118)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-547)) (-5 *2 (-619 (-2 (|:| -2106 *3) (|:| -1618 *4)))) + (-5 *1 (-670 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-298)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-394 *3)) (-4 *3 (-395)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4319)) (-4 *1 (-395)))) + ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1116 (-547)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805))))) (((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-745)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-365 *3)) (-4 *3 (-1172)) + (-12 (-5 *2 (-547)) (-4 *1 (-364 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-365 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) - (-5 *2 (-548)))) + (-12 (-4 *1 (-364 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) + (-5 *2 (-547)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1172)) - (-5 *2 (-548)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548)) (-5 *3 (-139)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) - (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-364 *4)) (-4 *4 (-1172)) + (-5 *2 (-547)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-547)) (-5 *3 (-139)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-547))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) + (-5 *2 (-1004)) (-5 *1 (-731))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1118)) (|:| -2275 (-1118)))) - (-5 *1 (-796))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-619 (-591 *6))) (-5 *4 (-1135)) (-5 *2 (-591 *6)) - (-4 *6 (-422 *5)) (-4 *5 (-821)) (-5 *1 (-557 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-399 (-548))) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 (-921 (-548)))) (-5 *4 (-619 (-1135))) - (-5 *2 (-619 (-619 (-371)))) (-5 *1 (-992)) (-5 *5 (-371)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 G)))) (-5 *2 (-1004)) + (-5 *1 (-723))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184)))) ((*1 *2 *3) - (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-14 *5 (-619 (-1135))) (-5 *2 (-619 (-619 (-993 (-399 *4))))) - (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *5))))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) - (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-619 (-993 (-399 *4))))) (-5 *1 (-1244 *4 *5 *6)) - (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) + (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-547)) (|has| *1 (-6 -4329)) (-4 *1 (-364 *3)) + (-4 *3 (-1172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1218 *5))) (-5 *4 (-547)) (-5 *2 (-1218 *5)) + (-5 *1 (-998 *5)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) + (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-179))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-399 (-548))) - (-5 *1 (-425 *4 *3)) (-4 *3 (-422 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-422 *5)) - (-4 *5 (-13 (-821) (-540) (-1007 (-548)))) - (-5 *2 (-1131 (-399 (-548)))) (-5 *1 (-425 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-796))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) - (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6))))) + (|partial| -12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) + (-4 *5 (-421 *4)) (-5 *2 (-409 (-1131 (-398 (-547))))) + (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) +(((*1 *2 *1) (-12 (-5 *1 (-565 *2)) (-4 *2 (-354))))) +(((*1 *1) + (-12 (-4 *1 (-395)) (-3998 (|has| *1 (-6 -4319))) + (-3998 (|has| *1 (-6 -4311))))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) + ((*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-4 *1 (-821))) ((*1 *1) (-5 *1 (-1082)))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-591 *5))) (-4 *4 (-821)) (-5 *2 (-591 *5)) - (-5 *1 (-557 *4 *5)) (-4 *5 (-422 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-524)) (-5 *1 (-523 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-524))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-547)) (-5 *1 (-1154 *4)) + (-4 *4 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-523)) (-5 *1 (-522 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-523))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-62 LSFUN2)))) + (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4))) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-14 *5 (-619 (-1135))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) - (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) - (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) - (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) - (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) - (-5 *1 (-1244 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) - (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-722))))) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-619 (-2 (|:| |totdeg| (-745)) (|:| -1416 *3)))) + (-5 *4 (-745)) (-4 *3 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *1 (-439 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-796))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *1 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172))))) (((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-443)) - (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-946 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) - (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-946 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-619 (-591 *5))) (-5 *3 (-1135)) (-4 *5 (-422 *4)) - (-4 *4 (-821)) (-5 *1 (-557 *4 *5))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-619 (-591 *2))) (-5 *4 (-1135)) - (-4 *2 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *5 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-1013 *5 *6))) (-5 *1 (-1244 *5 *6 *7)) - (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) - (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-619 (-1013 *4 *5))) (-5 *1 (-1244 *4 *5 *6)) - (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-890)) (-5 *1 (-1064 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-722))))) + (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1194 *3)) + (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-539) (-145))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-799))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) - ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-298)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-437 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-437 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-298)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-437 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3772 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *2) + (-12 (-4 *4 (-354)) (-5 *2 (-890)) (-5 *1 (-319 *3 *4)) + (-4 *3 (-320 *4)))) + ((*1 *2) + (-12 (-4 *4 (-354)) (-5 *2 (-807 (-890))) (-5 *1 (-319 *3 *4)) + (-4 *3 (-320 *4)))) + ((*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890)))) + ((*1 *2) + (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890)))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) + (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2636 (-619 *9)) (|:| -1965 *4) (|:| |ineq| (-619 *9)))) + (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) + (-4 *4 (-1036 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) + (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2636 (-619 *9)) (|:| -1965 *4) (|:| |ineq| (-619 *9)))) + (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) + (-4 *4 (-1036 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-593 *2) (-169))) (-5 *2 (-861 *4)) + (-12 (-4 *5 (-13 (-592 *2) (-169))) (-5 *2 (-861 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1063)) (-4 *3 (-163 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-1058 (-814 (-371))))) - (-5 *2 (-619 (-1058 (-814 (-218))))) (-5 *1 (-297)))) - ((*1 *1 *2) (-12 (-5 *2 (-218)) (-5 *1 (-371)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-386)))) + (-12 (-5 *3 (-619 (-1058 (-814 (-370))))) + (-5 *2 (-619 (-1058 (-814 (-217))))) (-5 *1 (-296)))) + ((*1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-370)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-385)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4)) (-4 *4 (-1194 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) (-5 *2 (-1218 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-410 *1)) (-4 *1 (-422 *3)) (-4 *3 (-540)) + (-12 (-5 *2 (-409 *1)) (-4 *1 (-421 *3)) (-4 *3 (-539)) (-4 *3 (-821)))) ((*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-454 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-524)))) - ((*1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1172)))) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-453 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-523)))) + ((*1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) ((*1 *1 *2) @@ -9371,23 +7872,23 @@ ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1027)))) ((*1 *1 *2) (-12 (-5 *2 (-921 *3)) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) - (-4 *5 (-593 (-1135))) (-4 *4 (-767)) (-4 *5 (-821)))) + (-4 *5 (-592 (-1135))) (-4 *4 (-767)) (-4 *5 (-821)))) ((*1 *1 *2) (-1524 - (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) - (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) - (-4 *5 (-593 (-1135)))) + (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) + (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) - (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) + (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) ((*1 *1 *2) - (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) + (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) - (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1045)))) @@ -9411,254 +7912,323 @@ (-12 (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) - (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-443)) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1072 *4 *5 *6 *7)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1118)) (-5 *1 (-1105 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1140)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-548)) (-5 *1 (-1152)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1152)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-547)) (-5 *1 (-1152)))) ((*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *5))) - (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *5 (-619 (-1135))) + (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *5 (-619 (-1135))) (-5 *2 (-754 *4 (-834 *6))) (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) ((*1 *2 *3) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) ((*1 *2 *3) (-12 (-5 *3 (-754 *4 (-834 *6))) - (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) - (-5 *2 (-921 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) + (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1135))) + (-5 *2 (-921 (-993 (-398 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))))) ((*1 *2 *3) - (-12 (-5 *3 (-1131 *4)) (-4 *4 (-13 (-819) (-299) (-145) (-991))) - (-5 *2 (-1131 (-993 (-399 *4)))) (-5 *1 (-1244 *4 *5 *6)) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 (-1131 (-993 (-398 *4)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135))))) ((*1 *2 *3) (-12 - (-5 *3 (-1106 *4 (-520 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) - (-4 *4 (-13 (-819) (-299) (-145) (-991))) (-14 *6 (-619 (-1135))) + (-5 *3 (-1106 *4 (-519 (-834 *6)) (-834 *6) (-754 *4 (-834 *6)))) + (-4 *4 (-13 (-819) (-298) (-145) (-991))) (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-754 *4 (-834 *6)))) (-5 *1 (-1244 *4 *5 *6)) (-14 *5 (-619 (-1135)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(((*1 *2 *3) - (-12 (-4 *4 (-443)) (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *2 (-619 *3)) (-5 *1 (-946 *4 *5 *6 *3)) - (-4 *3 (-1030 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-796))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1135)) - (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) - (-5 *2 - (-2 (|:| -1699 (-399 (-921 *5))) (|:| |coeff| (-399 (-921 *5))))) - (-5 *1 (-554 *5)) (-5 *3 (-399 (-921 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-269 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1233 (-1135) *3)) (-4 *3 (-1016)) (-5 *1 (-1240 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *1 (-1242 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-645)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-722))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) - (-4 *2 (-13 (-821) (-21)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-796))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-946 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1135)) (-5 *5 (-619 (-399 (-921 *6)))) - (-5 *3 (-399 (-921 *6))) - (-4 *6 (-13 (-540) (-1007 (-548)) (-145))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-554 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) + (-12 (-4 *5 (-354)) + (-5 *2 (-619 (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5))))) + (-5 *1 (-947 *5)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1194 *9)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *9 (-298)) + (-4 *10 (-918 *9 *7 *8)) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-619 (-591 *3))) - (|:| |vals| (-619 *3)))) - (-5 *1 (-269 *5 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |k| (-1135)) (|:| |c| (-1240 *3))))) - (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |k| *3) (|:| |c| (-1242 *3 *4))))) - (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1064 *3 *4)) (-14 *3 (-890)) - (-14 *4 (-890))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-1118)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-722))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-419 *3 *2)) (-4 *3 (-13 (-169) (-38 (-399 (-548))))) - (-4 *2 (-13 (-821) (-21)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-386)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-619 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) - (-4 *8 (-821)) (-5 *1 (-946 *6 *7 *8 *9))))) + (-2 (|:| |deter| (-619 (-1131 *10))) + (|:| |dterm| + (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-619 *6)) (|:| |nlead| (-619 *10)))) + (-5 *1 (-752 *6 *7 *8 *9 *10)) (-5 *3 (-1131 *10)) (-5 *4 (-619 *6)) + (-5 *5 (-619 *10))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6)) + (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-921 *5)) (-4 *5 (-442)) (-5 *2 (-619 *6)) + (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-354)) (-4 *4 (-13 (-354) (-819)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) - (-4 *4 (-13 (-540) (-1007 (-548)) (-145))) (-5 *1 (-554 *4))))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-547) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-75 G JACOBG JACGEP)))) + (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-724))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) (-5 *1 (-268 *4 *3)) - (-4 *3 (-13 (-422 *4) (-971)))))) + (-12 (-5 *3 (-471 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-239 *4 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-619 *6) "failed") (-547) *6 *6)) (-4 *6 (-354)) + (-4 *7 (-1194 *6)) + (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) + (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-539)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-442)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1131 *6)) (-4 *6 (-918 *5 *3 *4)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *5 (-878)) (-5 *1 (-447 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-878))))) +(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172))))) (((*1 *2 *1) - (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-793 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016))))) -(((*1 *2) - (-12 (-5 *2 (-1218 (-1064 *3 *4))) (-5 *1 (-1064 *3 *4)) - (-14 *3 (-890)) (-14 *4 (-890))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) - (-4 *3 (-13 (-1157) (-29 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1150))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-566 *3)) (-5 *1 (-418 *5 *3)) - (-4 *3 (-13 (-1157) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-540) (-1007 (-548)) (-145))) - (-5 *2 (-566 (-399 (-921 *5)))) (-5 *1 (-554 *5)) - (-5 *3 (-399 (-921 *5)))))) + (-12 (-4 *2 (-1172)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-895))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1116 (-218))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3094 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-543))))) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-298)) (-5 *2 (-409 *3)) + (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-427))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-421 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-398 (-547))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547))) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6)) + (-4 *6 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1185 (-547))) + (-4 *7 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-547))) + (-4 *3 (-13 (-27) (-1157) (-421 *7))) + (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8)) + (-5 *5 (-1185 (-398 (-547)))) (-5 *6 (-398 (-547))) + (-4 *8 (-13 (-27) (-1157) (-421 *7))) + (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-398 (-547)))) + (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *8))) + (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *3)))) + (-4 *3 (-1016)) (-5 *1 (-574 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-575 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *3)))) + (-4 *3 (-1016)) (-4 *1 (-1178 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-745)) + (-5 *3 (-1116 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4)))) + (-4 *4 (-1016)) (-4 *1 (-1199 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-745)) (|:| |c| *3)))) + (-4 *3 (-1016)) (-4 *1 (-1209 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-458)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-859 *4 *5)) (-4 *5 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) (((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-619 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-422 *4) (-971))) (-4 *4 (-13 (-821) (-540))) - (-5 *1 (-268 *4 *2))))) + (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1209 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1058 *3)) (-4 *3 (-918 *7 *6 *4)) (-4 *6 (-767)) + (-4 *4 (-821)) (-4 *7 (-539)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547)))) + (-5 *1 (-573 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-539)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-547)))) + (-5 *1 (-573 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1127 *4 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1157))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-13 (-421 *4) (-157) (-27) (-1157))) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1127 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) + (-5 *2 (-398 (-921 *5))) (-5 *1 (-1128 *5)) (-5 *3 (-921 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) + (-5 *2 (-3 (-398 (-921 *5)) (-307 *5))) (-5 *1 (-1128 *5)) + (-5 *3 (-398 (-921 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-921 *5))) (-5 *3 (-921 *5)) + (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-398 *3)) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-398 (-921 *5)))) (-5 *3 (-398 (-921 *5))) + (-4 *5 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-3 *3 (-307 *5))) + (-5 *1 (-1128 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-354)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-239 *3 *4)) + (-14 *3 (-619 (-1135))) (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-547))) (-14 *3 (-619 (-1135))) + (-5 *1 (-444 *3 *4 *5)) (-4 *4 (-1016)) + (-4 *5 (-230 (-3763 *3) (-745))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-471 *3 *4)) + (-14 *3 (-619 (-1135))) (-4 *4 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *2 (-298)) (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) + (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-793 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-817)) (-5 *1 (-1241 *3 *2)) (-4 *3 (-1016))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) - (-4 *3 (-1063)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) - (-5 *1 (-873 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-890)) (-5 *2 (-112)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) -(((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-1063)) (-5 *2 (-745))))) -(((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-608))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-1150))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-467 *4 *5 *6 *7)) (|:| -2088 (-619 *7)))) - (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (-5 *2 (-370)) (-5 *1 (-197))))) +(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-548)) (-5 *1 (-553 *3)) (-4 *3 (-1007 *2))))) + (-12 (-5 *3 (-619 (-890))) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-547)) (-4 *3 (-169)) (-4 *5 (-364 *3)) + (-4 *6 (-364 *3)) (-5 *1 (-662 *3 *5 *6 *2)) + (-4 *2 (-661 *3 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-817))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1118))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-349 *4)) - (-4 *4 (-341)))) - ((*1 *1) (-4 *1 (-360))) - ((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1218 *4)) (-5 *1 (-518 *4)) - (-4 *4 (-341)))) - ((*1 *1 *1) (-4 *1 (-533))) ((*1 *1) (-4 *1 (-533))) - ((*1 *1 *1) (-5 *1 (-548))) ((*1 *1 *1) (-5 *1 (-745))) - ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-874 *4)) (-5 *1 (-873 *4)) - (-4 *4 (-1063)))) - ((*1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-533)) (-4 *2 (-540))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) -(((*1 *1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-360))))) + (|partial| -12 (-4 *3 (-354)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-539)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) + (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) + (-5 *1 (-511 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) + (-4 *8 (-364 *7)) (-4 *9 (-364 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-354)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-354)) (-4 *3 (-169)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-354)) (-4 *2 (-1016)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-230 *2 *3)) (-4 *5 (-230 *2 *3)) (-4 *3 (-354)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1143 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1172)) (-5 *1 (-178 *3 *2)) + (-4 *2 (-648 *3))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-524) (-619 (-524)))) (-5 *1 (-114))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1185 (-548)))))) + (-12 + (-5 *2 + (-619 + (-2 (|:| |scalar| (-398 (-547))) (|:| |coeff| (-1131 *3)) + (|:| |logand| (-1131 *3))))) + (-5 *1 (-565 *3)) (-4 *3 (-354))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1210 *2 *3 *4)) (-4 *2 (-1016)) (-14 *3 (-1135)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-1 (-1131 (-921 *4)) (-921 *4))) + (-5 *1 (-1226 *4)) (-4 *4 (-354))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1172))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *2 (-1223)) + (-5 *1 (-458)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)) (-5 *3 (-217))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)))) @@ -9667,112 +8237,112 @@ (-14 *4 (-619 (-1135))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-548)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-547)) (-14 *6 (-745)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-308 *3) (-308 *3))) (-4 *3 (-13 (-1016) (-821))) - (-5 *1 (-216 *3 *4)) (-14 *4 (-619 (-1135))))) + (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1016) (-821))) + (-5 *1 (-215 *3 *4)) (-14 *4 (-619 (-1135))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) - (-4 *6 (-1172)) (-4 *7 (-1172)) (-5 *2 (-233 *5 *7)) - (-5 *1 (-232 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-5 *2 (-232 *5 *7)) + (-5 *1 (-231 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1172)) - (-4 *6 (-1172)) (-5 *2 (-286 *6)) (-5 *1 (-285 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-285 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-285 *6)) (-5 *1 (-284 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-286 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-285 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1118)) (-5 *5 (-591 *6)) - (-4 *6 (-294)) (-4 *2 (-1172)) (-5 *1 (-289 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1118)) (-5 *5 (-590 *6)) + (-4 *6 (-293)) (-4 *2 (-1172)) (-5 *1 (-288 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-591 *5)) (-4 *5 (-294)) - (-4 *2 (-294)) (-5 *1 (-290 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-590 *5)) (-4 *5 (-293)) + (-4 *2 (-293)) (-5 *1 (-289 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-591 *1)) (-4 *1 (-294)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-590 *1)) (-4 *1 (-293)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1016)) - (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-296 *5 *6)))) + (-4 *6 (-1016)) (-5 *2 (-663 *6)) (-5 *1 (-295 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-308 *5)) (-4 *5 (-821)) - (-4 *6 (-821)) (-5 *2 (-308 *6)) (-5 *1 (-306 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-821)) + (-4 *6 (-821)) (-5 *2 (-307 *6)) (-5 *1 (-305 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-355)) - (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *8 (-334 *5 *6 *7)) - (-4 *9 (-355)) (-4 *10 (-1194 *9)) (-4 *11 (-1194 (-399 *10))) - (-5 *2 (-328 *9 *10 *11 *12)) - (-5 *1 (-325 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-334 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-327 *5 *6 *7 *8)) (-4 *5 (-354)) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *8 (-333 *5 *6 *7)) + (-4 *9 (-354)) (-4 *10 (-1194 *9)) (-4 *11 (-1194 (-398 *10))) + (-5 *2 (-327 *9 *10 *11 *12)) + (-5 *1 (-324 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-333 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1063)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1063)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1176)) (-4 *8 (-1176)) - (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) (-4 *9 (-1194 *8)) - (-4 *2 (-334 *8 *9 *10)) (-5 *1 (-332 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-334 *5 *6 *7)) (-4 *10 (-1194 (-399 *9))))) + (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-398 *6))) (-4 *9 (-1194 *8)) + (-4 *2 (-333 *8 *9 *10)) (-5 *1 (-331 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-333 *5 *6 *7)) (-4 *10 (-1194 (-398 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) - (-4 *2 (-365 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-365 *5)))) + (-4 *2 (-364 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-364 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-540)) - (-4 *6 (-540)) (-5 *2 (-410 *6)) (-5 *1 (-397 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-539)) + (-4 *6 (-539)) (-5 *2 (-409 *6)) (-5 *1 (-396 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-540)) - (-4 *6 (-540)) (-5 *2 (-399 *6)) (-5 *1 (-398 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-539)) + (-4 *6 (-539)) (-5 *2 (-398 *6)) (-5 *1 (-397 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-405 *5 *6 *7 *8)) (-4 *5 (-299)) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-404 *5 *6 *7 *8)) (-4 *5 (-298)) (-4 *6 (-961 *5)) (-4 *7 (-1194 *6)) - (-4 *8 (-13 (-401 *6 *7) (-1007 *6))) (-4 *9 (-299)) + (-4 *8 (-13 (-400 *6 *7) (-1007 *6))) (-4 *9 (-298)) (-4 *10 (-961 *9)) (-4 *11 (-1194 *10)) - (-5 *2 (-405 *9 *10 *11 *12)) - (-5 *1 (-404 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-401 *10 *11) (-1007 *10))))) + (-5 *2 (-404 *9 *10 *11 *12)) + (-5 *1 (-403 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-400 *10 *11) (-1007 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) - (-4 *2 (-409 *6)) (-5 *1 (-407 *4 *5 *2 *6)) (-4 *4 (-409 *5)))) + (-4 *2 (-408 *6)) (-5 *1 (-406 *4 *5 *2 *6)) (-4 *4 (-408 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-540)) (-5 *1 (-410 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-539)) (-5 *1 (-409 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1016) (-821))) - (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-422 *6)) - (-5 *1 (-413 *5 *4 *6 *2)) (-4 *4 (-422 *5)))) + (-4 *6 (-13 (-1016) (-821))) (-4 *2 (-421 *6)) + (-5 *1 (-412 *5 *4 *6 *2)) (-4 *4 (-421 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1063)) (-4 *6 (-1063)) - (-4 *2 (-417 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-417 *5)))) + (-4 *2 (-416 *6)) (-5 *1 (-414 *5 *4 *6 *2)) (-4 *4 (-416 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-480 *3)) (-4 *3 (-1172)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-479 *3)) (-4 *3 (-1172)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3 *4)) (-4 *3 (-1063)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-821)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-566 *5)) (-4 *5 (-355)) - (-4 *6 (-355)) (-5 *2 (-566 *6)) (-5 *1 (-565 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-565 *5)) (-4 *5 (-354)) + (-4 *6 (-354)) (-5 *2 (-565 *6)) (-5 *1 (-564 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -1699 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-355)) (-4 *6 (-355)) - (-5 *2 (-2 (|:| -1699 *6) (|:| |coeff| *6))) - (-5 *1 (-565 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2848 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-354)) (-4 *6 (-354)) + (-5 *2 (-2 (|:| -2848 *6) (|:| |coeff| *6))) + (-5 *1 (-564 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-355)) (-4 *2 (-355)) (-5 *1 (-565 *5 *2)))) + (-4 *5 (-354)) (-4 *2 (-354)) (-5 *1 (-564 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 @@ -9781,29 +8351,29 @@ (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-355)) (-4 *6 (-355)) + (-4 *5 (-354)) (-4 *6 (-354)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-619 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-565 *5 *6)))) + (-5 *1 (-564 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-580 *5)) (-4 *5 (-1172)) - (-4 *6 (-1172)) (-5 *2 (-580 *6)) (-5 *1 (-577 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-1172)) + (-4 *6 (-1172)) (-5 *2 (-579 *6)) (-5 *1 (-576 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-580 *7)) - (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-580 *8)) - (-5 *1 (-578 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-579 *7)) + (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-579 *8)) + (-5 *1 (-577 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-580 *7)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1116 *6)) (-5 *5 (-579 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) - (-5 *1 (-578 *6 *7 *8)))) + (-5 *1 (-577 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-580 *6)) (-5 *5 (-1116 *7)) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-1116 *7)) (-4 *6 (-1172)) (-4 *7 (-1172)) (-4 *8 (-1172)) (-5 *2 (-1116 *8)) - (-5 *1 (-578 *6 *7 *8)))) + (-5 *1 (-577 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-619 *6)) (-5 *1 (-617 *5 *6)))) @@ -9815,18 +8385,18 @@ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1016)) (-4 *8 (-1016)) - (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-661 *8 *9 *10)) + (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-661 *5 *6 *7)) - (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + (-4 *9 (-364 *8)) (-4 *10 (-364 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1016)) - (-4 *8 (-1016)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) + (-4 *8 (-1016)) (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *2 (-661 *8 *9 *10)) (-5 *1 (-659 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + (-4 *4 (-661 *5 *6 *7)) (-4 *9 (-364 *8)) (-4 *10 (-364 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-540)) (-4 *7 (-540)) - (-4 *6 (-1194 *5)) (-4 *2 (-1194 (-399 *8))) - (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1194 (-399 *6))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-539)) (-4 *7 (-539)) + (-4 *6 (-1194 *5)) (-4 *2 (-1194 (-398 *8))) + (-5 *1 (-684 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1194 (-398 *6))) (-4 *8 (-1194 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1016)) (-4 *9 (-1016)) @@ -9887,7 +8457,7 @@ (-4 *8 (-1016)) (-4 *6 (-767)) (-4 *2 (-13 (-1063) - (-10 -8 (-15 -2290 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) + (-10 -8 (-15 -2470 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-745)))))) (-5 *1 (-920 *6 *7 *8 *5 *2)) (-4 *5 (-918 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) @@ -9900,28 +8470,28 @@ (-4 *2 (-918 (-921 *4) *5 *6)) (-4 *5 (-767)) (-4 *6 (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) (-5 *1 (-953 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-540)) (-4 *6 (-540)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-539)) (-4 *6 (-539)) (-4 *2 (-961 *6)) (-5 *1 (-959 *5 *6 *4 *2)) (-4 *4 (-961 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-966 *6)) (-5 *1 (-967 *4 *5 *2 *6)) (-4 *4 (-966 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) - (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) + (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1019 *3 *4 *5 *6 *7)) - (-4 *5 (-1016)) (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)))) + (-4 *5 (-1016)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1016)) (-4 *10 (-1016)) - (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) - (-4 *9 (-231 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) + (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7)) + (-4 *9 (-230 *5 *7)) (-4 *2 (-1019 *5 *6 *10 *11 *12)) (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-231 *6 *10)) - (-4 *12 (-231 *5 *10)))) + (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *11 (-230 *6 *10)) + (-4 *12 (-230 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1172)) (-4 *6 (-1172)) (-5 *2 (-1058 *6)) (-5 *1 (-1053 *5 *6)))) @@ -9988,785 +8558,468 @@ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-1241 *3 *4)) (-4 *4 (-817))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-274 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2) - (-12 +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-4 *5 (-421 *4)) + (-5 *2 (-409 *3)) (-5 *1 (-426 *4 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-184)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-291)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 (-814 (-217)))) (-5 *2 (-217)) (-5 *1 (-296))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-547)) (-5 *1 (-670 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-745))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) + (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-539)) (-4 *5 (-767)) + (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) + (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *9 (-1030 *6 *7 *8)) (-5 *2 - (-2 - (|:| -3156 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (|:| -1657 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1116 (-218))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3094 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-543)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2) - (-12 + (-619 + (-2 (|:| -2636 (-619 *9)) (|:| -1965 *10) (|:| |ineq| (-619 *9))))) + (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) + (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *9 (-1030 *6 *7 *8)) (-5 *2 - (-2 - (|:| -3156 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) - (|:| -1657 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))))) - (-5 *1 (-777)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-619 (-399 *6))) (-5 *3 (-399 *6)) - (-4 *6 (-1194 *5)) (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-552 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) + (-619 + (-2 (|:| -2636 (-619 *9)) (|:| -1965 *10) (|:| |ineq| (-619 *9))))) + (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-1061 *3)))) + ((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-547)) (-5 *1 (-1154 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-547))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794)) + (-14 *5 (-1135)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-220 *2)) (-4 *2 (-13 (-355) (-1157))))) + (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-371)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + (-12 (-5 *3 (-890)) (-5 *4 (-370)) (-5 *2 (-1223)) (-5 *1 (-1219)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-241))))) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-817))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-722))))) + (-12 (-5 *2 (-619 (-912 *4))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-364 *2)) (-4 *2 (-1172)) + (-4 *2 (-821)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4329)) + (-4 *1 (-364 *3)) (-4 *3 (-1172))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-547)) (-4 *6 (-354)) (-4 *6 (-359)) + (-4 *6 (-1016)) (-5 *2 (-619 (-619 (-663 *6)))) (-5 *1 (-998 *6)) + (-5 *3 (-619 (-663 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-354)) (-4 *4 (-359)) (-4 *4 (-1016)) + (-5 *2 (-619 (-619 (-663 *4)))) (-5 *1 (-998 *4)) + (-5 *3 (-619 (-663 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-4 *5 (-354)) (-4 *5 (-359)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5)))))) (((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063)))) ((*1 *1 *2) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1063))))) -(((*1 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-360)) (-4 *2 (-1063))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) - (-4 *5 (-1194 *4)) - (-5 *2 (-2 (|:| -1699 (-399 *5)) (|:| |coeff| (-399 *5)))) - (-5 *1 (-552 *4 *5)) (-5 *3 (-399 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) + (-5 *2 (-1004)) (-5 *1 (-724)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-86 BDYVAL)))) + (-5 *8 (-379)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-544))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-798)) (-5 *3 (-619 (-1135))) (-5 *1 (-799))))) +(((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-78 LSFUN1)))) + (-5 *2 (-1004)) (-5 *1 (-728))))) (((*1 *2 *1) (-12 (-5 *2 (-619 (-934))) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) (((*1 *1 *1) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-494 *3 *4 *5 *6))) (-4 *3 (-355)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) - (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) - (-4 *1 (-1036 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) - (-5 *1 (-721))))) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-547) (-547))) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-745) (-745))) (-5 *1 (-377 *3)) (-4 *3 (-1063)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-412 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1157) (-422 *3))) - (-14 *4 (-1135)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-4 *2 (-13 (-27) (-1157) (-422 *3) (-10 -8 (-15 -3743 ($ *4))))) - (-4 *4 (-819)) - (-4 *5 - (-13 (-1196 *2 *4) (-355) (-1157) - (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) - (-5 *1 (-414 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1135))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-427))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-5 *1 (-673)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-663 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-354)) (-5 *1 (-947 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-348 *3)) (-4 *3 (-340))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-217))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2693 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-542))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-298)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-437 *4 *5 *6 *2))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) - (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-946 *4 *5 *6 *7))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) - (-4 *3 (-13 (-355) (-145) (-1007 (-548)))) (-5 *1 (-552 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) - ((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) - (-14 *4 (-619 (-1135))))) - ((*1 *2 *1) - (-12 (-5 *2 (-548)) (-5 *1 (-216 *3 *4)) (-4 *3 (-13 (-1016) (-821))) - (-14 *4 (-619 (-1135))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) - (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-267)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) - (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) - (-5 *2 (-619 (-745))) (-5 *1 (-313 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) - ((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) - (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-461 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) - (-4 *4 (-1194 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) + (-12 (-4 *4 (-354)) (-5 *2 (-745)) (-5 *1 (-319 *3 *4)) + (-4 *3 (-320 *4)))) + ((*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-745))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *3 (-821)) (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *2 (-766)))) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)) - (-5 *2 (-548)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) - (-5 *2 (-399 (-548))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-745))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) - (-5 *1 (-721))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) - (-4 *7 (-819)) - (-4 *8 - (-13 (-1196 *3 *7) (-355) (-1157) - (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) - (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) - (-14 *10 (-1135))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) - (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) - (-4 *5 (-855 (-548))) - (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) - (-4 *3 (-13 (-27) (-1157) (-422 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1135)) (-5 *4 (-814 *2)) (-4 *2 (-1099)) - (-4 *2 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-593 (-861 (-548)))) (-4 *5 (-855 (-548))) - (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) - (-5 *1 (-551 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-169)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-1016))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-63 -1426)))) - (-5 *2 (-1004)) (-5 *1 (-721))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-4 *3 (-13 (-27) (-1157) (-422 *6) (-10 -8 (-15 -3743 ($ *7))))) - (-4 *7 (-819)) - (-4 *8 - (-13 (-1196 *3 *7) (-355) (-1157) - (-10 -8 (-15 -4050 ($ $)) (-15 -3810 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) - (-5 *1 (-414 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) - (-14 *10 (-1135))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-593 (-861 (-548)))) - (-4 *5 (-855 (-548))) - (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-551 *5 *3)) (-4 *3 (-605)) - (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-442)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *3 (-1030 *4 *5 *6)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *1)))) + (-4 *1 (-1036 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1176))) + ((*1 *2 *2) + (-12 (-4 *3 (-539)) (-5 *1 (-1197 *3 *2)) + (-4 *2 (-13 (-1194 *3) (-539) (-10 -8 (-15 -3715 ($ $ $)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) - (-5 *1 (-638 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1238 *3 *4)) - (-4 *3 (-821)) (-4 *4 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1172)))) + (-12 (-4 *3 (-13 (-539) (-145))) (-5 *1 (-524 *3 *2)) + (-4 *2 (-1209 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) - (-4 *6 (-1030 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3887 *1) (|:| |upper| *1))) - (-4 *1 (-945 *4 *5 *3 *6))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) - (-5 *2 (-1004)) (-5 *1 (-720))))) + (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-4 *4 (-1194 *3)) + (-4 *5 (-699 *3 *4)) (-5 *1 (-528 *3 *4 *5 *2)) (-4 *2 (-1209 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-354) (-359) (-592 (-547)))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1209 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-13 (-539) (-145))) + (-5 *1 (-1112 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3836 *6) (|:| |sol?| (-112))) (-547) + *6)) + (-4 *6 (-354)) (-4 *7 (-1194 *6)) + (-5 *2 (-2 (|:| |answer| (-565 (-398 *7))) (|:| |a0| *6))) + (-5 *1 (-557 *6 *7)) (-5 *3 (-398 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (|:| |%expansion| (-305 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) - (-5 *1 (-412 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) - (-14 *6 (-1135)) (-14 *7 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1223)) (-5 *1 (-207 *3)) - (-4 *3 - (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 (*2 $)) - (-15 -3721 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-386)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-492)))) - ((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-685)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1152)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-1152))))) -(((*1 *2) - (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) + (-12 (-5 *4 (-547)) (-4 *2 (-421 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-539)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-979 *2)) (-4 *2 (-1172))))) +(((*1 *1) (-5 *1 (-217))) ((*1 *1) (-5 *1 (-370)))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1142))))) +(((*1 *1) (-5 *1 (-1045)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-608))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) - (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) - (-4 *5 (-13 (-821) (-1007 (-548)) (-443) (-615 (-548)))) - (-5 *2 (-2 (|:| -3886 *3) (|:| |nconst| *3))) (-5 *1 (-551 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) - (-4 *4 (-169)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *1 (-155 *4 *2)) - (-4 *2 (-422 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1056 *2)) (-4 *2 (-422 *4)) (-4 *4 (-13 (-821) (-540))) - (-5 *1 (-155 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-4 *2 (-299)) - (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) - (-4 *1 (-422 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) - ((*1 *2 *1) - (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) - (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) - (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-112)) - (-5 *2 (-1004)) (-5 *1 (-720))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) - (-5 *2 (-2 (|:| -1489 (-548)) (|:| |var| (-591 *1)))) - (-4 *1 (-422 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) + (-12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1194 *5)) + (-5 *2 (-619 *3)) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) + (-14 *7 (-890))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-354)) (-5 *1 (-276 *3 *2)) (-4 *2 (-1209 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-240))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-106 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1016)) (-5 *2 (-1218 *4)) + (-5 *1 (-1136 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-5 *2 (-1218 *3)) (-5 *1 (-1136 *3)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4328)) (-4 *1 (-582 *4 *3)) (-4 *4 (-1063)) + (-4 *3 (-1172)) (-4 *3 (-1063)) (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-523) (-619 (-523)))) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259)))) - ((*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259)))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-591 *4)) (-5 *6 (-1135)) - (-4 *4 (-13 (-422 *7) (-27) (-1157))) - (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) + (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-1016)) + (-5 *2 (-471 *4 *5)) (-5 *1 (-913 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) + (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-354)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-823 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) + (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-824 *5 *3)) + (-4 *3 (-823 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-550 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-784 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-398 *6))) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-2 (|:| -4013 (-619 (-398 *6))) (|:| -3509 (-663 *5)))) + (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-398 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-784 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-628 *6 (-398 *6))) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-2 (|:| -4013 (-619 (-398 *6))) (|:| -3509 (-663 *5)))) + (-5 *1 (-784 *5 *6)) (-5 *4 (-619 (-398 *6)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 *7)) (-5 *3 (-547)) (-4 *7 (-918 *6 *4 *5)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-5 *1 (-312 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) + (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-896)) (-5 *1 (-894 *3)) + (-4 *3 (-592 (-523))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-1218 *2)) (-4 *5 (-298)) + (-4 *6 (-961 *5)) (-4 *2 (-13 (-400 *6 *7) (-1007 *6))) + (-5 *1 (-404 *5 *6 *7 *2)) (-4 *7 (-1194 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-299)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) - (-5 *2 (-1218 *6)) (-5 *1 (-405 *3 *4 *5 *6)) - (-4 *6 (-13 (-401 *4 *5) (-1007 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-591 *1))) - (-4 *1 (-422 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087 (-548) (-591 (-485)))) (-5 *1 (-485)))) - ((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-701) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-701) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) -(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-410 *3)) (-4 *3 (-540)) (-5 *1 (-411 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) - (-4 *4 (-1063)) (-4 *5 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) + (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-565 *3)) (-4 *3 (-354))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1102 *3 *4)) (-14 *3 (-890)) (-4 *4 (-354)) + (-5 *1 (-962 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3715 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-90 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) - (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-591 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) - (-4 *2 (-13 (-422 *5) (-27) (-1157))) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *1 (-550 *5 *2 *6)) (-4 *6 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-399 *5)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) - (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1194 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1137 (-399 (-548)))) (-5 *2 (-399 (-548))) - (-5 *1 (-183)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-663 (-308 (-218)))) (-5 *3 (-619 (-1135))) - (-5 *4 (-1218 (-308 (-218)))) (-5 *1 (-198)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-286 *3))) (-4 *3 (-301 *3)) (-4 *3 (-1063)) - (-4 *3 (-1172)) (-5 *1 (-286 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-301 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)) - (-5 *1 (-286 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) - (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 *1)) (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 (-619 *1)))) - (-4 *1 (-294)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-294)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-286 *3))) (-4 *1 (-301 *3)) (-4 *3 (-1063)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-286 *3)) (-4 *1 (-301 *3)) (-4 *3 (-1063)))) + (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) + (-5 *3 (-619 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-470))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-285 *2)) (-4 *2 (-701)) (-4 *2 (-1172))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-523))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-307 *5))) + (-5 *1 (-1091 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-548))) (-5 *4 (-1137 (-399 (-548)))) - (-5 *1 (-302 *2)) (-4 *2 (-38 (-399 (-548)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-366 *4 *5)) - (-4 *4 (-821)) (-4 *5 (-169)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) - (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) - (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-422 *5)) (-4 *5 (-821)) - (-4 *5 (-1016)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) - (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-422 *5)) (-4 *5 (-821)) - (-4 *5 (-1016)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1135)) - (-4 *1 (-422 *5)) (-4 *5 (-821)) (-4 *5 (-593 (-524))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1135)) (-4 *1 (-422 *4)) (-4 *4 (-821)) - (-4 *4 (-593 (-524))))) - ((*1 *1 *1) - (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-593 (-524))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-1135))) (-4 *1 (-422 *3)) (-4 *3 (-821)) - (-4 *3 (-593 (-524))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)) - (-4 *3 (-593 (-524))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-504 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1172)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-504 *4 *5)) - (-4 *4 (-1063)) (-4 *5 (-1172)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-807 *3)) (-4 *3 (-355)) (-5 *1 (-693 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-355)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-399 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-540)) - (-5 *1 (-1012 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-619 (-1135))) (-5 *4 (-619 (-399 (-921 *5)))) - (-5 *2 (-399 (-921 *5))) (-4 *5 (-540)) (-5 *1 (-1012 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-286 (-399 (-921 *4)))) (-5 *2 (-399 (-921 *4))) - (-4 *4 (-540)) (-5 *1 (-1012 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-286 (-399 (-921 *4))))) (-5 *2 (-399 (-921 *4))) - (-4 *4 (-540)) (-5 *1 (-1012 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1116 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-169)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) + (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-619 (-307 *5)))) + (-5 *1 (-1091 *5))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-801 *2 *3)) (-4 *2 (-683 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) (-14 *4 (-619 (-1135))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) (-4 *1 (-276))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-275))) ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) ((*1 *1 *2) (-12 (-5 *2 (-638 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-5 *1 (-603 *3 *4 *5)) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-5 *1 (-603 *3 *4 *5)) (-14 *5 (-890)))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1121 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1122 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) + (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-398 (-547))))) (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) - (-4 *4 (-692 (-399 (-548)))) (-4 *3 (-821)) (-4 *4 (-169))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1054))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1131 *6)) (-5 *3 (-548)) (-4 *6 (-299)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-355)) (-4 *1 (-321 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) - (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) - (-4 *1 (-359 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) - (-4 *1 (-362 *4 *5)) (-4 *5 (-1194 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-401 *3 *4)) - (-4 *4 (-1194 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-409 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) - (-4 *4 (-1063)) (-4 *5 (-1063))))) + (-4 *4 (-692 (-398 (-547)))) (-4 *3 (-821)) (-4 *4 (-169))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-532)))) (((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) - (-4 *3 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-550 *6 *3 *7)) (-4 *7 (-1063))))) + (-12 (-4 *4 (-13 (-354) (-819))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2483 (-409 *3)))) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-366 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-169)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-321 *4)) (-4 *4 (-355)) - (-5 *2 (-663 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-1218 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-663 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-1218 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1194 *4)) (-5 *2 (-1218 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-401 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) - (-5 *2 (-1218 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-409 *4)) (-4 *4 (-169)) - (-5 *2 (-663 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-355)) - (-5 *2 (-1218 *5)) (-5 *1 (-1050 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) - (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-299)) - (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745))))) -(((*1 *1 *1) (-4 *1 (-533)))) -(((*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) - ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) - ((*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))) -(((*1 *2) - (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) + (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1965 *7)))) + (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1965 *7)))) + (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) - (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-379)))) + (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-330 *3 *4 *5)) + (-14 *3 (-619 *2)) (-14 *4 (-619 *2)) (-4 *5 (-378)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-308 *5)) (-4 *5 (-379)) - (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) + (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-378)) + (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376)))) + (|partial| -12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) + (|partial| -12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) + (|partial| -12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) + (|partial| -12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) + (|partial| -12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) + (|partial| -12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-547))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-921 (-370))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-547))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-370))) (-4 *1 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432)))) + (|partial| -12 (-5 *2 (-1218 (-398 (-921 (-547))))) (-4 *1 (-431)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) + (|partial| -12 (-5 *2 (-1218 (-398 (-921 (-370))))) (-4 *1 (-431)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) + (|partial| -12 (-5 *2 (-1218 (-921 (-547)))) (-4 *1 (-431)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) + (|partial| -12 (-5 *2 (-1218 (-921 (-370)))) (-4 *1 (-431)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) + (|partial| -12 (-5 *2 (-1218 (-307 (-547)))) (-4 *1 (-431)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) + (|partial| -12 (-5 *2 (-1218 (-307 (-370)))) (-4 *1 (-431)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-341)) (-4 *5 (-321 *4)) (-4 *6 (-1194 *5)) + (|partial| -12 (-4 *4 (-340)) (-4 *5 (-320 *4)) (-4 *6 (-1194 *5)) (-5 *2 (-1131 (-1131 *4))) (-5 *1 (-751 *4 *5 *6 *3 *7)) (-4 *3 (-1194 *6)) (-14 *7 (-890)))) ((*1 *1 *2) @@ -10777,398 +9030,446 @@ ((*1 *1 *2) (|partial| -1524 (-12 (-5 *2 (-921 *3)) - (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) - (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) + (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) + (-3998 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) - (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) - (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) + (-12 (-3998 (-4 *3 (-532))) (-3998 (-4 *3 (-38 (-398 (-547))))) + (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) - (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) - (-4 *5 (-593 (-1135)))) + (-12 (-3998 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547)))) + (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) ((*1 *1 *2) (|partial| -1524 - (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) - (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) - (-4 *5 (-593 (-1135)))) + (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) + (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) - (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) + (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) + (|partial| -12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-548)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-840 *4)) (-14 *4 *3) - (-5 *3 (-548)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-399 (-548))) (-5 *1 (-841 *4 *5)) - (-5 *3 (-548)) (-4 *5 (-838 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-399 (-548))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-355))) - (-4 *3 (-1194 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3743 (*2 (-1135)))) - (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1116 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-184)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-291)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-217))) (-5 *2 (-619 (-1118))) (-5 *1 (-296))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-398 (-547))))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-4 *5 (-354)) (-5 *2 (-1116 (-1116 (-921 *5)))) + (-5 *1 (-1226 *5)) (-5 *4 (-1116 (-921 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-83 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-217)) + (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1209 *4)) + (-4 *4 (-38 (-398 (-547)))) + (-5 *2 (-1 (-1116 *4) (-1116 *4) (-1116 *4))) (-5 *1 (-1211 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-619 *3)) (-5 *1 (-930 *3)) (-4 *3 (-532))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-442)) (-4 *4 (-794)) + (-14 *5 (-1135)) (-5 *2 (-547)) (-5 *1 (-1077 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) + (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-832))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-832) (-619 (-832)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1223)) (-5 *1 (-206 *3)) + (-4 *3 + (-13 (-821) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 (*2 $)) + (-15 -3617 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-385)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-385)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-491)))) + ((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-685)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1152)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-1152))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-427))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1065 (-1065 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) + (-4 *4 (-340)) (-5 *2 (-1223)) (-5 *1 (-517 *4))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-76 OBJFUN)))) + (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-591 *3)) - (-4 *3 (-13 (-422 *5) (-27) (-1157))) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) - (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *3 (-540)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) - (-4 *4 (-1194 *3)))) + (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) + (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-701)))) + (-12 (-5 *2 (-619 (-2 (|:| -1557 *3) (|:| -3513 *4)))) + (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-1218 (-663 *4))))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) - ((*1 *2) - (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-1218 (-663 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) - (-5 *2 (-1218 (-663 (-399 (-921 *5))))) (-5 *1 (-1050 *5)) - (-5 *4 (-663 (-399 (-921 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-355)) - (-5 *2 (-1218 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) - (-5 *4 (-663 (-921 *5))))) + (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-1116 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298)))) + ((*1 *2 *1) (-12 (-5 *1 (-883 *2)) (-4 *2 (-298)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298)))) + ((*1 *2 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-547))))) +(((*1 *1) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157)))))) +(((*1 *2 *3) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-436)) (-5 *3 (-547))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-398 *5)) (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1194 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) - (-5 *2 (-1218 (-663 *4))) (-5 *1 (-1050 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-548)) (-5 *4 (-410 *2)) (-4 *2 (-918 *7 *5 *6)) - (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-299))))) -(((*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *2)) (-4 *2 (-169)))) - ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-408 *3 *2)) (-4 *3 (-409 *2)))) - ((*1 *2) (-12 (-4 *1 (-409 *2)) (-4 *2 (-169))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-1146 *2)) (-4 *2 (-355))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) - (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1116 *4) (-1116 *4))) (-5 *2 (-1116 *4)) - (-5 *1 (-1243 *4)) (-4 *4 (-1172)))) + (-12 (-5 *3 (-1137 (-398 (-547)))) (-5 *2 (-398 (-547))) + (-5 *1 (-182)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-663 (-307 (-217)))) (-5 *3 (-619 (-1135))) + (-5 *4 (-1218 (-307 (-217)))) (-5 *1 (-197)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-285 *3))) (-4 *3 (-300 *3)) (-4 *3 (-1063)) + (-4 *3 (-1172)) (-5 *1 (-285 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-300 *2)) (-4 *2 (-1063)) (-4 *2 (-1172)) + (-5 *1 (-285 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 (-619 *1)))) + (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1 *1 (-619 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 (-619 *1)))) + (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-1 *1 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-285 *3))) (-4 *1 (-300 *3)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-285 *3)) (-4 *1 (-300 *3)) (-4 *3 (-1063)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-619 (-1116 *5)) (-619 (-1116 *5)))) (-5 *4 (-548)) - (-5 *2 (-619 (-1116 *5))) (-5 *1 (-1243 *5)) (-4 *5 (-1172))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *5) (-27) (-1157))) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-566 *3)) (-5 *1 (-550 *5 *3 *6)) (-4 *6 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) - ((*1 *1 *1) - (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) - (-4 *3 (-13 (-169) (-692 (-399 (-548))))) (-14 *4 (-890)))) - ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + (-12 (-5 *3 (-1 *2 (-547))) (-5 *4 (-1137 (-398 (-547)))) + (-5 *1 (-301 *2)) (-4 *2 (-38 (-398 (-547)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *1)) (-4 *1 (-365 *4 *5)) + (-4 *4 (-821)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *4 (-1 *1 (-619 *1))) + (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) + (-5 *4 (-619 (-1 *1 (-619 *1)))) (-4 *1 (-421 *5)) (-4 *5 (-821)) + (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-619 (-745))) + (-5 *4 (-619 (-1 *1 *1))) (-4 *1 (-421 *5)) (-4 *5 (-821)) + (-4 *5 (-1016)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-619 (-114))) (-5 *3 (-619 *1)) (-5 *4 (-1135)) + (-4 *1 (-421 *5)) (-4 *5 (-821)) (-4 *5 (-592 (-523))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1135)) (-4 *1 (-421 *4)) (-4 *4 (-821)) + (-4 *4 (-592 (-523))))) ((*1 *1 *1) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) - (-4 *7 (-821)) (-4 *8 (-299)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) - (-5 *2 - (-2 (|:| |upol| (-1131 *8)) (|:| |Lval| (-619 *8)) - (|:| |Lfact| - (-619 (-2 (|:| -1915 (-1131 *8)) (|:| -3352 (-548))))) - (|:| |ctpol| *8))) - (-5 *1 (-717 *6 *7 *8 *9))))) + (-12 (-4 *1 (-421 *2)) (-4 *2 (-821)) (-4 *2 (-592 (-523))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-1135))) (-4 *1 (-421 *3)) (-4 *3 (-821)) + (-4 *3 (-592 (-523))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)) + (-4 *3 (-592 (-523))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-503 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 *5)) (-4 *1 (-503 *4 *5)) + (-4 *4 (-1063)) (-4 *5 (-1172)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-807 *3)) (-4 *3 (-354)) (-5 *1 (-693 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *2)) (-4 *2 (-1063)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-398 (-921 *4))) (-5 *3 (-1135)) (-4 *4 (-539)) + (-5 *1 (-1012 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-619 (-1135))) (-5 *4 (-619 (-398 (-921 *5)))) + (-5 *2 (-398 (-921 *5))) (-4 *5 (-539)) (-5 *1 (-1012 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-285 (-398 (-921 *4)))) (-5 *2 (-398 (-921 *4))) + (-4 *4 (-539)) (-5 *1 (-1012 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) (-5 *2 (-398 (-921 *4))) + (-4 *4 (-539)) (-5 *1 (-1012 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1116 *3))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-619 (-619 (-217)))) (-5 *4 (-217)) + (-5 *2 (-619 (-912 *4))) (-5 *1 (-1168)) (-5 *3 (-912 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-663 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) - ((*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-1131 *3)) (-5 *1 (-1146 *3)) - (-4 *3 (-355))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) - (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2 *3) (-12 (-5 *3 (-940)) (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) - (-4 *7 (-1194 (-399 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1693 *3))) - (-5 *1 (-546 *5 *6 *7 *3)) (-4 *3 (-334 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 - (-2 (|:| |answer| (-399 *6)) (|:| -1693 (-399 *6)) - (|:| |specpart| (-399 *6)) (|:| |polypart| *6))) - (-5 *1 (-547 *5 *6)) (-5 *3 (-399 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) - (-4 *4 (-1016)) (-4 *4 (-169)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)) - (-4 *3 (-169))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-172)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-108)) (-5 *1 (-1049))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) (-4 *7 (-821)) - (-4 *8 (-299)) (-4 *6 (-767)) (-4 *9 (-918 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-619 (-2 (|:| -1915 (-1131 *9)) (|:| -3352 (-548))))))) - (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9))))) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) + (-5 *2 (-2 (|:| -1422 *3) (|:| |nconst| *3))) (-5 *1 (-550 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-745) *2)) (-5 *4 (-745)) (-4 *2 (-1063)) + (-5 *1 (-652 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-745) *3)) (-4 *3 (-1063)) (-5 *1 (-656 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-663 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) - ((*1 *2) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-619 *2)) (-5 *1 (-1146 *2)) (-4 *2 (-355))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) - (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) - (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) -(((*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-745)) (-5 *1 (-545))))) + (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) (-4 *4 (-13 (-821) (-539))) + (-5 *2 (-832)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1165 *4 *5 *3 *6)) (-4 *4 (-540)) (-4 *5 (-767)) - (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-548)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-299)) - (-4 *9 (-918 *8 *6 *7)) - (-5 *2 (-2 (|:| -2802 (-1131 *9)) (|:| |polval| (-1131 *8)))) - (-5 *1 (-717 *6 *7 *8 *9)) (-5 *3 (-1131 *9)) (-5 *4 (-1131 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-663 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-539)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-1162 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-619 (-619 *3))))) + (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) + (-5 *2 (-398 (-547))))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-5 *2 (-619 (-619 *5))))) + (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532)) + (-4 *3 (-539)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-532)) (-5 *2 (-398 (-547))))) ((*1 *2 *1) - (-12 (-5 *2 (-619 (-619 *3))) (-5 *1 (-1144 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-946 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-142))) (-5 *1 (-139)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-139))))) -(((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-1049)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) - (-5 *1 (-717 *5 *4 *6 *3)) (-4 *3 (-918 *6 *5 *4))))) + (|partial| -12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) + (-5 *2 (-398 (-547))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) + (-5 *2 (-398 (-547))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) + (-4 *3 (-1007 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-370))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) + (-4 *4 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-421 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-1238 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-370)) (-5 *1 (-1009))))) (((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-745)) (-4 *2 (-1063)) (-5 *1 (-652 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-359 *4)) (-4 *4 (-169)) - (-5 *2 (-663 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-1063)) (-5 *1 (-1144 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-619 *8))) (-5 *3 (-619 *8)) - (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) (-4 *6 (-767)) - (-4 *7 (-821)) (-5 *2 (-112)) (-5 *1 (-946 *5 *6 *7 *8))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-625 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-1049)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-565 *3)) (-4 *3 (-354))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| -1915 (-1131 *6)) (|:| -3352 (-548))))) - (-4 *6 (-299)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-548)) - (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-405 *3 *4 *5 *6)) (-4 *6 (-1007 *4)) (-4 *3 (-299)) - (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) (-4 *6 (-401 *4 *5)) - (-14 *7 (-1218 *6)) (-5 *1 (-406 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1218 *6)) (-4 *6 (-401 *4 *5)) (-4 *4 (-961 *3)) - (-4 *5 (-1194 *4)) (-4 *3 (-299)) (-5 *1 (-406 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-821)) (-5 *3 (-619 *6)) (-5 *5 (-619 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-619 *5)) (|:| |f3| *5) - (|:| |f4| (-619 *5)))) - (-5 *1 (-1143 *6)) (-5 *4 (-619 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-548)) (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-946 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) + (-12 (-5 *3 (-1 (-1116 *4) (-1116 *4))) (-5 *2 (-1116 *4)) + (-5 *1 (-1243 *4)) (-4 *4 (-1172)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-619 (-1116 *5)) (-619 (-1116 *5)))) (-5 *4 (-547)) + (-5 *2 (-619 (-1116 *5))) (-5 *1 (-1243 *5)) (-4 *5 (-1172))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1116 (-547))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) + (-5 *3 (-547))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-547)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-840 *4)) (-14 *4 *3) + (-5 *3 (-547)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-398 (-547))) (-5 *1 (-841 *4 *5)) + (-5 *3 (-547)) (-4 *5 (-838 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-981)) (-5 *2 (-398 (-547))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354))) + (-4 *3 (-1194 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3834 (*2 (-1135)))) + (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-745))))) (((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1172)))) ((*1 *1 *2) - (-12 (-5 *2 (-921 (-371))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-921 (-370))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-399 (-921 (-371)))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-398 (-921 (-370)))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-371))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-371))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-307 (-370))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-370))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-921 (-548))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-921 (-547))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-399 (-921 (-548)))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-398 (-921 (-547)))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 (-548))) (-5 *1 (-331 *3 *4 *5)) - (-4 *5 (-1007 (-548))) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-12 (-5 *2 (-307 (-547))) (-5 *1 (-330 *3 *4 *5)) + (-4 *5 (-1007 (-547))) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-1135)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 *2)) - (-14 *4 (-619 *2)) (-4 *5 (-379)))) + (-12 (-5 *2 (-1135)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 *2)) + (-14 *4 (-619 *2)) (-4 *5 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-308 *5)) (-4 *5 (-379)) (-5 *1 (-331 *3 *4 *5)) + (-12 (-5 *2 (-307 *5)) (-4 *5 (-378)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-1135))))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-548))))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-399 (-921 (-371))))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-548)))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-371)))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-663 (-308 (-371)))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-548)))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-399 (-921 (-371)))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-921 (-548))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-921 (-371))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-548))))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-399 (-921 (-371))))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-548)))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-371)))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-548)))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1218 (-308 (-371)))) (-4 *1 (-432)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-547))))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-398 (-921 (-370))))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-547)))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-921 (-370)))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-663 (-307 (-370)))) (-4 *1 (-375)))) + ((*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-547)))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-398 (-921 (-370)))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 (-547))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 (-370))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-398 (-921 (-547))))) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-398 (-921 (-370))))) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-547)))) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-921 (-370)))) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-307 (-547)))) (-4 *1 (-431)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 (-307 (-370)))) (-4 *1 (-431)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (|:| |mdnia| - (-2 (|:| |fn| (-308 (-218))) - (|:| -3094 (-619 (-1058 (-814 (-218))))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))))) + (-2 (|:| |fn| (-307 (-217))) + (|:| -2693 (-619 (-1058 (-814 (-217))))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))))) (-5 *1 (-743)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-218)) (|:| |xend| (-218)) - (|:| |fn| (-1218 (-308 (-218)))) (|:| |yinit| (-619 (-218))) - (|:| |intvals| (-619 (-218))) (|:| |g| (-308 (-218))) - (|:| |abserr| (-218)) (|:| |relerr| (-218)))) + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) (-5 *1 (-782)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) - (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) + (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) (|:| |lsa| - (-2 (|:| |lfn| (-619 (-308 (-218)))) - (|:| -3410 (-619 (-218))))))) + (-2 (|:| |lfn| (-619 (-307 (-217)))) + (|:| -3045 (-619 (-217))))))) (-5 *1 (-812)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-619 (-308 (-218)))) + (-2 (|:| |pde| (-619 (-307 (-217)))) (|:| |constraints| (-619 - (-2 (|:| |start| (-218)) (|:| |finish| (-218)) - (|:| |grid| (-745)) (|:| |boundaryType| (-548)) - (|:| |dStart| (-663 (-218))) (|:| |dFinish| (-663 (-218)))))) - (|:| |f| (-619 (-619 (-308 (-218))))) (|:| |st| (-1118)) - (|:| |tol| (-218)))) + (-2 (|:| |start| (-217)) (|:| |finish| (-217)) + (|:| |grid| (-745)) (|:| |boundaryType| (-547)) + (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) + (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) + (|:| |tol| (-217)))) (-5 *1 (-867)))) ((*1 *1 *2) (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-1016)) @@ -11177,341 +9478,851 @@ ((*1 *1 *2) (-1524 (-12 (-5 *2 (-921 *3)) - (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) - (-3958 (-4 *3 (-38 (-548)))) (-4 *5 (-593 (-1135)))) + (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) + (-3998 (-4 *3 (-38 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) - (-12 (-3958 (-4 *3 (-533))) (-3958 (-4 *3 (-38 (-399 (-548))))) - (-4 *3 (-38 (-548))) (-4 *5 (-593 (-1135)))) + (-12 (-3998 (-4 *3 (-532))) (-3998 (-4 *3 (-38 (-398 (-547))))) + (-4 *3 (-38 (-547))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))) (-12 (-5 *2 (-921 *3)) - (-12 (-3958 (-4 *3 (-961 (-548)))) (-4 *3 (-38 (-399 (-548)))) - (-4 *5 (-593 (-1135)))) + (-12 (-3998 (-4 *3 (-961 (-547)))) (-4 *3 (-38 (-398 (-547)))) + (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *1 (-1030 *3 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821))))) ((*1 *1 *2) (-1524 - (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) - (-12 (-3958 (-4 *3 (-38 (-399 (-548))))) (-4 *3 (-38 (-548))) - (-4 *5 (-593 (-1135)))) + (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-3998 (-4 *3 (-38 (-398 (-547))))) (-4 *3 (-38 (-547))) + (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))) - (-12 (-5 *2 (-921 (-548))) (-4 *1 (-1030 *3 *4 *5)) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135)))) + (-12 (-5 *2 (-921 (-547))) (-4 *1 (-1030 *3 *4 *5)) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135)))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) ((*1 *1 *2) - (-12 (-5 *2 (-921 (-399 (-548)))) (-4 *1 (-1030 *3 *4 *5)) - (-4 *3 (-38 (-399 (-548)))) (-4 *5 (-593 (-1135))) (-4 *3 (-1016)) + (-12 (-5 *2 (-921 (-398 (-547)))) (-4 *1 (-1030 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *5 (-592 (-1135))) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803)) (-5 *3 (-1118))))) +(((*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1135))))) +(((*1 *2 *1) + (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) + (-4 *2 (-821))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-398 *5)))) + (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-285 *3))) (-5 *1 (-285 *3)) (-4 *3 (-539)) + (-4 *3 (-1172))))) +(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2) - (-12 (-4 *4 (-355)) (-5 *2 (-890)) (-5 *1 (-320 *3 *4)) - (-4 *3 (-321 *4)))) - ((*1 *2) - (-12 (-4 *4 (-355)) (-5 *2 (-807 (-890))) (-5 *1 (-320 *3 *4)) - (-4 *3 (-321 *4)))) - ((*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-355)) (-5 *2 (-890)))) - ((*1 *2) - (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-807 (-890)))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) + (-5 *1 (-258))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2)))) + (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *3 (-1194 *4)) (-5 *1 (-783 *4 *3 *2 *5)) (-4 *2 (-630 *3)) + (-4 *5 (-630 (-398 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-548) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1048 *2))))) + (-12 (-5 *3 (-398 *5)) + (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-1194 *4)) + (-5 *1 (-783 *4 *5 *2 *6)) (-4 *2 (-630 *5)) (-4 *6 (-630 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-299)) (-5 *2 (-410 *3)) - (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-918 *6 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-299)) (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) - (-5 *1 (-405 *2 *3 *4 *5)) (-4 *5 (-13 (-401 *3 *4) (-1007 *3)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-355)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-540)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-4 *7 (-961 *4)) (-4 *2 (-661 *7 *8 *9)) - (-5 *1 (-512 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-661 *4 *5 *6)) - (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) - (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-355)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-355)) (-4 *3 (-169)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-662 *3 *4 *5 *2)) - (-4 *2 (-661 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-663 *2)) (-4 *2 (-355)) (-4 *2 (-1016)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1085 *2 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-231 *2 *3)) (-4 *5 (-231 *2 *3)) (-4 *3 (-355)))) - ((*1 *2 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-1143 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) - (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-619 *7) (-619 *7))) (-5 *2 (-619 *7)) - (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) (-4 *5 (-767)) - (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) + (-12 (-5 *3 (-1131 *6)) (-4 *6 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-1131 *7)) (-5 *1 (-312 *4 *5 *6 *7)) + (-4 *7 (-918 *6 *4 *5))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-720))))) (((*1 *2) - (-12 (-4 *4 (-355)) (-5 *2 (-745)) (-5 *1 (-320 *3 *4)) - (-4 *3 (-321 *4)))) - ((*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-5 *2 (-745))))) -(((*1 *1) (-5 *1 (-1045)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-714 *3))))) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) + (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1965 *8))) + (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-547)) (-4 *5 (-819)) (-4 *5 (-354)) + (-5 *2 (-745)) (-5 *1 (-914 *5 *6)) (-4 *6 (-1194 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-1082))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-1218 *2)) (-4 *5 (-299)) - (-4 *6 (-961 *5)) (-4 *2 (-13 (-401 *6 *7) (-1007 *6))) - (-5 *1 (-405 *5 *6 *7 *2)) (-4 *7 (-1194 *6))))) + (-12 (-4 *5 (-354)) (-4 *5 (-539)) + (-5 *2 + (-2 (|:| |minor| (-619 (-890))) (|:| -2636 *3) + (|:| |minors| (-619 (-619 (-890)))) (|:| |ops| (-619 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) + (-5 *2 (-2 (|:| -1557 (-547)) (|:| |var| (-590 *1)))) + (-4 *1 (-421 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4)) - (-5 *3 (-619 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *3)) - (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-399 (-548))) (-5 *1 (-545)) (-5 *3 (-548))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-748)) (-5 *1 (-52))))) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) + (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-398 (-547))))) + (-14 *6 (-890))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-539)) + (-5 *2 (-398 (-921 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-539)) + (-5 *2 (-398 (-921 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-217)) (-5 *2 (-112)) (-5 *1 (-290 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1058 (-814 (-217)))) (-5 *3 (-217)) (-5 *2 (-112)) + (-5 *1 (-296)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-1138)))) (((*1 *2 *2) - (-12 (-4 *3 (-341)) (-4 *4 (-321 *3)) (-4 *5 (-1194 *4)) - (-5 *1 (-751 *3 *4 *5 *2 *6)) (-4 *2 (-1194 *5)) (-14 *6 (-890)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1237 *3)) (-4 *3 (-355)) (-4 *3 (-360)))) - ((*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-355)) (-4 *2 (-360))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) + (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) - (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-619 *3)) - (-5 *1 (-571 *5 *6 *7 *8 *3)) (-4 *3 (-1072 *5 *6 *7 *8)))) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) + (-5 *1 (-1091 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-13 (-298) (-821) (-145))) + (-5 *2 (-619 (-285 (-307 *4)))) (-5 *1 (-1091 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) - (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) - (-14 *6 (-619 (-1135))))) + (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *5)))) + (-5 *1 (-1091 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-299) (-145))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *4)) (|:| -2447 (-619 (-921 *4)))))) - (-5 *1 (-1041 *4 *5)) (-5 *3 (-619 (-921 *4))) - (-14 *5 (-619 (-1135))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) - (-5 *2 - (-619 (-2 (|:| -3153 (-1131 *5)) (|:| -2447 (-619 (-921 *5)))))) - (-5 *1 (-1041 *5 *6)) (-5 *3 (-619 (-921 *5))) - (-14 *6 (-619 (-1135)))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-712 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063)))) - ((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-1063))))) + (-12 (-5 *3 (-285 (-398 (-921 *4)))) + (-4 *4 (-13 (-298) (-821) (-145))) (-5 *2 (-619 (-285 (-307 *4)))) + (-5 *1 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-398 (-921 *5)))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-298) (-821) (-145))) + (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-398 (-921 *4)))) + (-4 *4 (-13 (-298) (-821) (-145))) + (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-285 (-398 (-921 *5))))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-298) (-821) (-145))) + (-5 *2 (-619 (-619 (-285 (-307 *5))))) (-5 *1 (-1091 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-285 (-398 (-921 *4))))) + (-4 *4 (-13 (-298) (-821) (-145))) + (-5 *2 (-619 (-619 (-285 (-307 *4))))) (-5 *1 (-1091 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-532)))) +(((*1 *2) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)) - (-5 *1 (-400 *3 *4 *5)) (-4 *3 (-401 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) - (-5 *2 (-663 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *3 (-821)) (-5 *1 (-1143 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 (-1116 (-217))) (-5 *1 (-184)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1135))) + (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-291)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1218 (-307 (-217)))) (-5 *4 (-619 (-1135))) + (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-291))))) +(((*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-370)))) (-5 *1 (-321)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-547))) (-5 *1 (-321)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-370))) (-5 *1 (-321)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-668))) (-5 *1 (-321)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-675))) (-5 *1 (-321)))) + ((*1 *1 *2) (-12 (-5 *2 (-307 (-673))) (-5 *1 (-321)))) + ((*1 *1) (-5 *1 (-321)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-13 (-1016) (-692 (-399 (-548))))) - (-4 *5 (-821)) (-5 *1 (-1234 *4 *5 *2)) (-4 *2 (-1239 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1063)) - (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) - (-5 *2 (-619 (-1135))) (-5 *1 (-1039 *3 *4 *5)) - (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) - (-5 *2 (-619 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1063))))) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-957 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-619 *7)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-442)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *1 (-1070 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-625 *2)) (-4 *2 (-1172))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *4 *5)) (-4 *4 (-169)) - (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-401 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) - (-5 *2 (-663 *3))))) + (-12 (-5 *3 (-547)) (-4 *1 (-314 *2 *4)) (-4 *4 (-130)) + (-4 *2 (-1063)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-352 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-377 *2)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *2 (-1063)) (-5 *1 (-623 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-547)) (-5 *1 (-793 *2)) (-4 *2 (-821))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-729))))) (((*1 *2 *3) - (-12 (-4 *4 (-821)) (-5 *2 (-1144 (-619 *4))) (-5 *1 (-1143 *4)) - (-5 *3 (-619 *4))))) + (-12 (-4 *4 (-340)) + (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -1396 *3)))) + (-5 *1 (-208 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-254))) (-5 *4 (-1135)) (-5 *2 (-112)) + (-5 *1 (-254))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) (((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) - (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-1231 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) - (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) - (-5 *2 (-745)))) - ((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-701))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-821)) (-5 *2 (-619 (-619 (-619 *4)))) - (-5 *1 (-1143 *4)) (-5 *3 (-619 (-619 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-945 *4 *5 *3 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *3 (-821)) (-4 *6 (-1030 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-545)) (-5 *3 (-548))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1209 *4)) + (-4 *4 (-38 (-398 (-547)))) (-5 *2 (-1 (-1116 *4) (-1116 *4))) + (-5 *1 (-1211 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-547)) (-5 *5 (-1118)) (-5 *6 (-663 (-217))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *2 (-539)) (-5 *1 (-938 *2 *4)) + (-4 *4 (-1194 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) - (-4 *3 (-540)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-1231 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-619 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1030 *5 *6 *7)) (-4 *5 (-540)) - (-4 *6 (-767)) (-4 *7 (-821)) (-5 *1 (-1231 *5 *6 *7 *8))))) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-442)) (-4 *5 (-821)) + (-5 *1 (-439 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-890)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *2 (-1223)) (-5 *1 (-439 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258)))) + ((*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4328)) (-4 *1 (-479 *4)) + (-4 *4 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-547)) (-5 *1 (-233)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-619 (-1118))) (-5 *3 (-547)) (-5 *4 (-1118)) + (-5 *1 (-233)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *6 (-217)) + (-5 *3 (-547)) (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-619 *1)))) + (-4 *1 (-358 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-443 *3 *4 *5 *6)) + (|:| -4013 (-619 (-443 *3 *4 *5 *6))))) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) + (-5 *1 (-873 *4))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1165 *5 *6 *7 *3)) + (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-547)) (-5 *2 (-112)) (-5 *1 (-536))))) +(((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-539)))))) (((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1063)) (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5)) (-4 *4 (-1063)))) ((*1 *2 *2) - (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) + (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899)))) + (-12 (-5 *3 (-1135)) (-5 *2 (-307 (-547))) (-5 *1 (-899)))) ((*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) ((*1 *2 *1) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-590 *4)) (-5 *6 (-1135)) + (-4 *4 (-13 (-421 *7) (-27) (-1157))) + (-4 *7 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1137 (-398 (-547)))) (-5 *2 (-398 (-547))) + (-5 *1 (-182))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| -1557 (-398 *5)) (|:| |poly| *3))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-398 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) + (-5 *2 (-166 (-307 *4))) (-5 *1 (-180 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-166 *3)) (-5 *1 (-1161 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477)))) + ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-298)))) + ((*1 *2 *1) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-293)))) + ((*1 *1 *1) (-4 *1 (-293))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) + (-4 *7 (-1194 (-398 *6))) (-5 *2 (-619 (-921 *5))) + (-5 *1 (-332 *4 *5 *6 *7)) (-4 *4 (-333 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1176)) + (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) (-4 *4 (-354)) + (-5 *2 (-619 (-921 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-1168))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1178 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-803))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-656 *2)) (-4 *2 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-619 *5) (-619 *5))) (-5 *4 (-547)) + (-5 *2 (-619 *5)) (-5 *1 (-656 *5)) (-4 *5 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3))))) +(((*1 *1 *1) (-5 *1 (-217))) + ((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1) (-4 *1 (-1099))) ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) + (-5 *4 (-307 (-166 (-370)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) + (-5 *4 (-307 (-370))) (-5 *1 (-321)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) + (-5 *4 (-307 (-547))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-166 (-370))))) + (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-370)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-547)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-166 (-370))))) + (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-370)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-547)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-166 (-370)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-370))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-547))) (-5 *1 (-321)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) + (-5 *4 (-307 (-668))) (-5 *1 (-321)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) + (-5 *4 (-307 (-673))) (-5 *1 (-321)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-921 (-547)))) + (-5 *4 (-307 (-675))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-668)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-673)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-307 (-675)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-668)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-673)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-307 (-675)))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-668))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-673))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-675))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-668))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-673))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-663 (-675))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-668))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-673))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-307 (-675))) (-5 *1 (-321)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-321)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) + ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-2 (|:| |k| (-793 *3)) (|:| |c| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-4 *1 (-810)) + (-5 *3 + (-2 (|:| |fn| (-307 (-217))) (|:| -3045 (-619 (-217))) + (|:| |lb| (-619 (-814 (-217)))) (|:| |cf| (-619 (-307 (-217)))) + (|:| |ub| (-619 (-814 (-217)))))) + (-5 *2 (-1004)))) + ((*1 *2 *3) + (-12 (-4 *1 (-810)) + (-5 *3 + (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) + (-5 *2 (-1004))))) +(((*1 *2 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-532))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-13 (-298) (-145))) + (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) + (-5 *2 (-619 (-398 (-921 *4)))) (-5 *1 (-893 *4 *5 *6 *7)) + (-4 *7 (-918 *4 *6 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1016))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-409 *3)) (-4 *3 (-532)) (-4 *3 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-532)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-1007 (-398 (-547))))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-57 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4328)) + (-4 *1 (-149 *2)) (-4 *2 (-1172)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) + (-4 *2 (-1172)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *2)) + (-4 *2 (-1172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-5 *2 (-2 (|:| -1416 (-1131 *4)) (|:| |deg| (-890)))) + (-5 *1 (-213 *4 *5)) (-5 *3 (-1131 *4)) (-4 *5 (-13 (-539) (-821))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-232 *5 *6)) (-14 *5 (-745)) + (-4 *6 (-1172)) (-4 *2 (-1172)) (-5 *1 (-231 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-169)) (-5 *1 (-280 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1194 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-539)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-4 *1 (-326 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *3 (-1194 *2)) + (-4 *4 (-1194 (-398 *3))) (-4 *5 (-333 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1172)) (-4 *2 (-1172)) + (-5 *1 (-362 *5 *4 *2 *6)) (-4 *4 (-364 *5)) (-4 *6 (-364 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) + (-5 *1 (-414 *5 *4 *2 *6)) (-4 *4 (-416 *5)) (-4 *6 (-416 *2)))) + ((*1 *1 *1) (-5 *1 (-484))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-617 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) + (-4 *6 (-364 *5)) (-4 *7 (-364 *5)) (-4 *8 (-364 *2)) + (-4 *9 (-364 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-354)) + (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-926 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) + (-14 *6 (-619 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) + (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-230 *6 *7)) + (-4 *9 (-230 *5 *7)) (-4 *10 (-230 *6 *2)) (-4 *11 (-230 *5 *2)) + (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-1114 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1165 *5 *6 *7 *2)) (-4 *5 (-539)) (-4 *6 (-767)) + (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) + (-4 *2 (-1172)) (-5 *1 (-1217 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-370))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-890)) (-4 *3 (-354)) + (-14 *4 (-962 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *1 *1) (|partial| -4 *1 (-697))) + ((*1 *1 *1) (|partial| -4 *1 (-701))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-750 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354))) + (-4 *2 (-1194 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-516)) (-5 *3 (-128)) (-5 *2 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-210)))) + ((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-495))) (-5 *1 (-650)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-814 (-217)))) (-5 *4 (-217)) (-5 *2 (-619 *4)) + (-5 *1 (-258))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-540)) (-4 *2 (-918 *3 *5 *4)) - (-5 *1 (-707 *5 *4 *6 *2)) (-5 *3 (-399 (-921 *6))) (-4 *5 (-767)) - (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)))))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) + (-12 (-5 *4 (-590 *6)) (-4 *6 (-13 (-421 *5) (-27) (-1157))) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-1131 (-398 (-1131 *6)))) (-5 *1 (-543 *5 *6 *7)) + (-5 *3 (-1131 *6)) (-4 *7 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1131 *11)) (-5 *6 (-619 *10)) + (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) + (-4 *11 (-298)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) + (-5 *2 (-619 (-1131 *5))) (-5 *1 (-717 *9 *10 *11 *5)) + (-5 *3 (-1131 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) + (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-890)) (-4 *1 (-719 *3)) (-4 *3 (-169))))) +(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354))))) +(((*1 *2 *1) + (-12 (-4 *1 (-582 *2 *3)) (-4 *3 (-1172)) (-4 *2 (-1063)) + (-4 *2 (-821))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-417 *4 *2)) (-4 *2 (-13 (-1157) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *2 (-307 *5)) (-5 *1 (-568 *5))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-745)) (-4 *5 (-354)) (-5 *2 (-398 *6)) + (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-354)) + (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-398 (-1191 *6 *5))) + (-5 *1 (-837 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-354)) + (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-398 (-1191 *6 *5))) + (-5 *1 (-837 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1144 (-619 *4))) (-4 *4 (-821)) - (-5 *2 (-619 (-619 *4))) (-5 *1 (-1143 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) + (-12 (-5 *3 (-619 (-2 (|:| -4152 *4) (|:| -1691 (-547))))) + (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-819)) (-4 *4 (-354)) (-5 *2 (-745)) + (-5 *1 (-914 *4 *5)) (-4 *5 (-1194 *4))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-619 (-1131 *13))) (-5 *3 (-1131 *13)) + (-5 *4 (-619 *12)) (-5 *5 (-619 *10)) (-5 *6 (-619 *13)) + (-5 *7 (-619 (-619 (-2 (|:| -2957 (-745)) (|:| |pcoef| *13))))) + (-5 *8 (-619 (-745))) (-5 *9 (-1218 (-619 (-1131 *10)))) + (-4 *12 (-821)) (-4 *10 (-298)) (-4 *13 (-918 *10 *11 *12)) + (-4 *11 (-767)) (-5 *1 (-682 *11 *12 *10 *13))))) +(((*1 *1) (-5 *1 (-321)))) +(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) + (-5 *2 (-619 (-2 (|:| -2573 *5) (|:| -2636 *3)))) + (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) + (-4 *7 (-630 (-398 *6)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-1131 *6)) + (-5 *1 (-312 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-409 *3)) (-4 *3 (-539)) (-5 *1 (-410 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *2)) (-5 *1 (-176 *2)) (-4 *2 (-299)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-619 (-619 *4))) (-5 *2 (-619 *4)) (-4 *4 (-299)) - (-5 *1 (-176 *4)))) + (-12 (-4 *3 (-1176)) (-4 *5 (-1194 *3)) (-4 *6 (-1194 (-398 *5))) + (-5 *2 (-112)) (-5 *1 (-332 *4 *3 *5 *6)) (-4 *4 (-333 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) + (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 *8)) - (-5 *4 - (-619 - (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-663 *7))))) - (-5 *5 (-745)) (-4 *8 (-1194 *7)) (-4 *7 (-1194 *6)) (-4 *6 (-341)) + (-12 (-5 *3 (-307 (-217))) (-5 *4 (-619 (-1135))) + (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-1116 (-217))) (-5 *1 (-291))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |c| (-398 *6)) + (|:| -2615 *6))) + (-5 *1 (-984 *5 *6)) (-5 *3 (-398 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-957 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) + (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1070 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-619 (-756 *3))) (-5 *1 (-756 *3)) (-4 *3 (-539)) + (-4 *3 (-1016))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1220)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-442)) (-5 *2 (-112)) + (-5 *1 (-351 *4 *5)) (-14 *5 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-442)) + (-14 *5 (-619 (-1135))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) + (-5 *1 (-113 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 - (-2 (|:| -2877 (-663 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-663 *7)))) - (-5 *1 (-488 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-545))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-109))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-1231 *4 *5 *6 *7))) - (-5 *1 (-1231 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) - (-4 *7 (-767)) (-4 *8 (-821)) (-5 *2 (-619 (-1231 *6 *7 *8 *9))) - (-5 *1 (-1231 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 (-921 *6))) (-4 *6 (-540)) - (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) (-5 *1 (-707 *5 *4 *6 *2)) - (-4 *5 (-767)) - (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $)))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-410 *3)) (-4 *3 (-540))))) + (-12 (-4 *4 (-539)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-663 *4)) (-4 *5 (-630 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) - (-5 *1 (-1143 *4)) (-4 *4 (-821))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) + (-4 *4 (-1063)) (-4 *5 (-1063))))) +(((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-179))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-547)) (-5 *5 (-1118)) (-5 *6 (-663 (-217))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) - (-4 *2 (-355)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-218)))) + (-4 *2 (-354)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-217)))) ((*1 *1 *1 *1) - (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172))))) - ((*1 *1 *1 *1) (-4 *1 (-355))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-371)))) + (-1524 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1172))) + (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1172))))) + ((*1 *1 *1 *1) (-4 *1 (-354))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1087 *3 (-591 *1))) (-4 *3 (-540)) (-4 *3 (-821)) - (-4 *1 (-422 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) + (-12 (-5 *2 (-1087 *3 (-590 *1))) (-4 *3 (-539)) (-4 *3 (-821)) + (-4 *1 (-421 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-463))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-524))) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-523))) ((*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-597 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-355)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-610 *2)) (-4 *2 (-169)) (-4 *2 (-354)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-692 *4)) (-4 *3 (|SubsetCategory| (-701) *4)))) @@ -11519,772 +10330,679 @@ (-12 (-4 *4 (-169)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)) (-4 *2 (|SubsetCategory| (-701) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-355)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)) (-4 *2 (-354)))) ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-355)) + (|partial| -12 (-5 *1 (-835 *2 *3 *4 *5)) (-4 *2 (-354)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))) (-14 *4 (-619 (-745))) (-14 *5 (-745)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) - (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-355)))) + (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-354)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-355)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-354)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-355)) (-4 *2 (-1016)) (-4 *3 (-821)) + (|partial| -12 (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-821)) (-4 *4 (-767)) (-14 *6 (-619 *3)) (-5 *1 (-1230 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-918 *2 *4 *3)) (-14 *7 (-619 (-745))) (-14 *8 (-745)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-355)) (-4 *2 (-1016)) + (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-354)) (-4 *2 (-1016)) (-4 *3 (-817))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-591 *4)) (-5 *6 (-1131 *4)) - (-4 *4 (-13 (-422 *7) (-27) (-1157))) - (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-591 *4)) (-5 *6 (-399 (-1131 *4))) - (-4 *4 (-13 (-422 *7) (-27) (-1157))) - (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-544 *7 *4 *3)) (-4 *3 (-630 *4)) (-4 *3 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-108))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *2)) (-4 *2 (-918 (-399 (-921 *6)) *5 *4)) - (-5 *1 (-707 *5 *4 *6 *2)) (-4 *5 (-767)) - (-4 *4 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) - (-4 *6 (-540))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-410 *4)) (-4 *4 (-540))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-619 (-619 *4)))) (-5 *2 (-619 (-619 *4))) - (-4 *4 (-821)) (-5 *1 (-1143 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-298)) (-4 *6 (-821)) + (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) + (-4 *8 (-918 *3 *7 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-354)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-532)))) (((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-321))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-207 *2)) + (-12 (-5 *1 (-206 *2)) (-4 *2 (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) - (-15 -3721 ((-1223) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) + (-15 -3617 ((-1223) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-21)) (-4 *2 (-1172)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) ((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-21))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *5 (-1030 *3 *4 *2))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-591 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) (-5 *5 (-1131 *2)) - (-4 *2 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-591 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) - (-5 *5 (-399 (-1131 *2))) (-4 *2 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *1 (-544 *6 *2 *7)) (-4 *7 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-767)) - (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) - (-5 *2 (-2 (|:| -2857 (-921 *6)) (|:| -3243 (-921 *6)))) - (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-399 (-921 *6)) *4 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 (-547))))) + (-5 *1 (-352 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 (-745))))) + (-5 *1 (-377 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| -2106 *3) (|:| -4248 (-547))))) + (-5 *1 (-409 *3)) (-4 *3 (-539)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 (-745))))) + (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-619 (-619 (-619 *4)))) (-5 *3 (-619 *4)) (-4 *4 (-821)) - (-5 *1 (-1143 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) + (-5 *1 (-439 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-340)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) + (-5 *1 (-208 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-210)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-650)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1031))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-248))))) +(((*1 *2 *1) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 *3)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-619 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1209 *3)) (-4 *3 (-1016)) (-5 *2 (-1116 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-112)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-112)) (-5 *1 (-1161 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4)))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-207 *2)) + (-12 (-5 *1 (-206 *2)) (-4 *2 (-13 (-821) - (-10 -8 (-15 -3171 ((-1118) $ (-1135))) (-15 -2487 ((-1223) $)) - (-15 -3721 ((-1223) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) + (-10 -8 (-15 -3329 ((-1118) $ (-1135))) (-15 -2683 ((-1223) $)) + (-15 -3617 ((-1223) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-25)) (-4 *2 (-1172)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-315 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) + (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-355) (-145))) (-5 *1 (-391 *3 *2)) + (-12 (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *2)) (-4 *2 (-1194 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) - (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-524))) + (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-523))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-912 (-217))) (-5 *1 (-1168)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-25))))) (((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) (-5 *6 (-1131 *3)) - (-4 *3 (-13 (-422 *7) (-27) (-1157))) - (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-619 *3)) - (-5 *6 (-399 (-1131 *3))) (-4 *3 (-13 (-422 *7) (-27) (-1157))) - (-4 *7 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-544 *7 *3 *8)) (-4 *8 (-1063))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-650)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1031))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1037 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) - (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) - (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) - (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) - (-5 *1 (-1037 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-399 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1194 *5)) - (-5 *1 (-702 *5 *2)) (-4 *5 (-355))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-410 *2)) (-4 *2 (-540))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-619 (-619 (-619 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-619 *5)) (-4 *5 (-821)) (-5 *1 (-1143 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) -(((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) - (-4 *3 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) - (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) - (-4 *3 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) - (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-548)) (-5 *1 (-234)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-619 (-1118))) (-5 *3 (-548)) (-5 *4 (-1118)) - (-5 *1 (-234)))) - ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-298)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-377 *3)) (|:| |rm| (-377 *3)))) + (-5 *1 (-377 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2225 (-745)) (|:| -3856 (-745)))) + (-5 *1 (-745)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) (-5 *3 (-547))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) + (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) + (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) + (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) + (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) + (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) + (-5 *1 (-254)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-547)) (-5 *4 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) + (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) + (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) + (-5 *2 (-1223)) (-5 *1 (-1220)))) ((*1 *2 *1) - (-12 (-4 *1 (-1196 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016))))) -(((*1 *1) (-5 *1 (-322)))) -(((*1 *2) - (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) - (-4 *3 (-13 (-821) (-540)))))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-217)) (|:| |phi| (-217)) (|:| -3842 (-217)) + (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) (|:| |scaleZ| (-217)) + (|:| |deltaX| (-217)) (|:| |deltaY| (-217)))) + (-5 *1 (-1220)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) (((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-95)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) - ((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-1118)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-430 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-474)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1063)))) + ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-429 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-473)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-934)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1038 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1135)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) - (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 (-2 (|:| -3944 (-410 *3)) (|:| |special| (-410 *3)))) - (-5 *1 (-702 *5 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-548)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-410 *2)) (-4 *2 (-540))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-591 *3)) (-5 *5 (-1131 *3)) - (-4 *3 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-591 *3)) (-5 *5 (-399 (-1131 *3))) - (-4 *3 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-566 *3)) (-5 *1 (-544 *6 *3 *7)) (-4 *7 (-1063))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1219)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1219)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-1220)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-1220))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) - (-4 *3 (-13 (-821) (-540)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-494 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-697)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-255)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-359 *2)) (-4 *2 (-540)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540))))) -(((*1 *1 *2) - (-12 (-5 *2 (-890)) (-4 *1 (-231 *3 *4)) (-4 *4 (-1016)) - (-4 *4 (-1172)))) - ((*1 *1 *2) - (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) - (-4 *5 (-231 (-3643 *3) (-745))) - (-14 *6 - (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) - (-2 (|:| -3337 *2) (|:| -3352 *5)))) - (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) (-4 *2 (-821)) - (-4 *7 (-918 *4 *5 (-834 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-619 - (-2 - (|:| -3156 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (|:| -1657 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1116 (-218))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3094 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-543))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-267))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-590 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1135))) + (-4 *2 (-13 (-421 *5) (-27) (-1157))) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1063))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4328)) (-4 *1 (-479 *4)) + (-4 *4 (-1172)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) + (-5 *1 (-439 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1218 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-355)) - (-4 *1 (-699 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1194 *5)) - (-5 *2 (-663 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) - (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) - (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1135))) - (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1172)) - (-5 *1 (-859 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1172)) (-4 *4 (-821)) - (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-4 *4 (-821)) - (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-422 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1172)) - (-5 *2 (-308 (-548))) (-5 *1 (-907 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) - (-5 *2 (-308 (-548))) (-5 *1 (-907 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1 (-112) (-619 *6))) - (-4 *6 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))) (-4 *4 (-1063)) - (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) - (-5 *1 (-1039 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-218)) (-5 *5 (-548)) (-5 *2 (-1167 *3)) - (-5 *1 (-764 *3)) (-4 *3 (-943)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *4 (-112)) - (-5 *1 (-1167 *2)) (-4 *2 (-943))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-540)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-543))))) -(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-267))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-695)) (-5 *2 (-890)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-697)) (-5 *2 (-745))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) - ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-180))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) (-4 *5 (-1063)) + (-4 *6 (-1172)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) + (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 *5)) (-4 *6 (-1063)) + (-4 *5 (-1172)) (-5 *2 (-1 *5 *6)) (-5 *1 (-616 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-4 *5 (-1063)) + (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-619 *5)) (-5 *4 (-619 *6)) + (-4 *5 (-1063)) (-4 *6 (-1172)) (-5 *1 (-616 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-619 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1063)) (-4 *2 (-1172)) (-5 *1 (-616 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-745))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1) (-5 *1 (-543)))) + (-12 (-5 *3 (-874 *4)) (-4 *4 (-1063)) (-5 *2 (-619 (-745))) + (-5 *1 (-873 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) - (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-619 (-308 (-218)))) - (|:| -3410 (-619 (-218))))))) - (-5 *2 (-619 (-1118))) (-5 *1 (-259))))) + (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 (-619 (-307 (-547)))) + (-5 *1 (-1000))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536))))) (((*1 *2 *3) - (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) - (-5 *2 (-890))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-945 *4 *5 *6 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) - ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-542 *2)) (-4 *2 (-533))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1004)) (-5 *3 (-1135)) (-5 *1 (-259))))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) - (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) - (-4 *5 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) - (-5 *1 (-1040 *3 *4 *5))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-539)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) (((*1 *2 *3) - (-12 (-5 *3 (-548)) (|has| *1 (-6 -4318)) (-4 *1 (-396)) - (-5 *2 (-890))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-4 *3 (-540))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533))))) -(((*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-112)) (-5 *1 (-259))))) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) - (-5 *1 (-730))))) + (-12 (-5 *3 (-1118)) (-5 *2 (-206 (-491))) (-5 *1 (-809))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-745)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-394)) (-5 *2 (-745))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-1167 *3)) - (-4 *3 (-943))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426)))) - ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1172))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-4 *3 (-540))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1135)) (-5 *6 (-619 (-591 *3))) - (-5 *5 (-591 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *7))) - (-4 *7 (-13 (-443) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-2 (|:| -1699 *3) (|:| |coeff| *3))) - (-5 *1 (-541 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-730))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-394)) (-5 *2 (-745)))) - ((*1 *1 *1) (-4 *1 (-394)))) -(((*1 *2 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-943))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *2) (-12 (-5 *2 (-619 (-308 (-218)))) (-5 *1 (-259))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) +(((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *1) (-4 *1 (-340))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *5)) (-4 *5 (-421 *4)) + (-4 *4 (-13 (-539) (-821) (-145))) (-5 *2 - (-2 (|:| |solns| (-619 *5)) - (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1090 *3 *5)) (-4 *3 (-1194 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) - (-5 *2 (-1004)) (-5 *1 (-729))))) -(((*1 *1 *1 *1) (-4 *1 (-936)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 *1)) (-4 *1 (-422 *4)) - (-4 *4 (-821)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-422 *3)) (-4 *3 (-821))))) -(((*1 *1 *2) - (-12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-355) (-145))) - (-5 *1 (-391 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-619 (-1131 *5))) + (|:| |prim| (-1131 *5)))) + (-5 *1 (-423 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) - ((*1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) - ((*1 *2 *1) - (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) - (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) + (-12 (-4 *4 (-13 (-539) (-821) (-145))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1131 *3)) + (|:| |pol2| (-1131 *3)) (|:| |prim| (-1131 *3)))) + (-5 *1 (-423 *4 *3)) (-4 *3 (-27)) (-4 *3 (-421 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-921 *5)) (-5 *4 (-1135)) (-4 *5 (-13 (-354) (-145))) + (-5 *2 + (-2 (|:| |coef1| (-547)) (|:| |coef2| (-547)) + (|:| |prim| (-1131 *5)))) + (-5 *1 (-929 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) + (-4 *5 (-13 (-354) (-145))) + (-5 *2 + (-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 *5))) + (|:| |prim| (-1131 *5)))) + (-5 *1 (-929 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) (-5 *5 (-1135)) + (-4 *6 (-13 (-354) (-145))) + (-5 *2 + (-2 (|:| -1557 (-619 (-547))) (|:| |poly| (-619 (-1131 *6))) + (|:| |prim| (-1131 *6)))) + (-5 *1 (-929 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *1 *1 *1) (-4 *1 (-463))) + ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-547))) (-5 *1 (-852)))) + ((*1 *1 *1) (-5 *1 (-940))) + ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5)) + (-14 *5 (-619 (-1135))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6)) + (-4 *6 (-442)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-471 *5 *6))) (-5 *4 (-834 *5)) + (-14 *5 (-619 (-1135))) (-5 *2 (-471 *5 *6)) (-5 *1 (-607 *5 *6)) + (-4 *6 (-442))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-539)) + (-5 *2 (-2 (|:| -3509 (-663 *5)) (|:| |vec| (-1218 (-619 (-890)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-890)) (-4 *3 (-630 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-398 (-547))) (-4 *1 (-1199 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *6)))) + (-5 *4 (-995 (-814 (-547)))) (-5 *5 (-1135)) (-5 *7 (-398 (-547))) + (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-574 *6))))) +(((*1 *2) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) + (-5 *2 (-619 (-619 *4))) (-5 *1 (-332 *3 *4 *5 *6)) + (-4 *3 (-333 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-4 *3 (-359)) (-5 *2 (-619 (-619 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-532)) + (-5 *2 (-398 (-547))))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-409 *3)) (-4 *3 (-532)) + (-4 *3 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-398 (-547))))) ((*1 *2 *1) - (-12 (-14 *3 (-619 (-1135))) (-4 *5 (-231 (-3643 *3) (-745))) - (-14 *6 - (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) - (-2 (|:| -3337 *4) (|:| -3352 *5)))) - (-4 *2 (-169)) (-5 *1 (-452 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) - (-4 *7 (-918 *2 *5 (-834 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) + (-12 (-4 *1 (-771 *3)) (-4 *3 (-169)) (-4 *3 (-532)) + (-5 *2 (-398 (-547))))) ((*1 *2 *1) - (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-807 *3)) (-4 *3 (-532)) + (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) - (-4 *3 (-701)))) - ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-814 *3)) (-4 *3 (-532)) + (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) - (-4 *2 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-995 (-814 (-548)))) - (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *4)))) (-4 *4 (-1016)) - (-5 *1 (-575 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-234)))) + (-12 (-4 *1 (-966 *3)) (-4 *3 (-169)) (-4 *3 (-532)) + (-5 *2 (-398 (-547))))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1223)) (-5 *1 (-234))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *4 (-745)) - (-5 *2 (-663 (-218))) (-5 *1 (-259))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1218 *4)) (-5 *3 (-663 *4)) (-4 *4 (-355)) - (-5 *1 (-641 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-355)) - (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4328)))) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4328)))) - (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-355)) - (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-977 *3)) (-4 *3 (-1007 *2))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673)))) + ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-673))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1140))) (-5 *1 (-1054))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1 *1) (-4 *1 (-936)))) +(((*1 *2 *3) + (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-29 *4) (-1157))) + (-5 *1 (-563 *4 *2)) + (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-355) (-10 -8 (-15 ** ($ $ (-399 (-548))))))) - (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-166 (-218)))) - (-5 *2 (-1004)) (-5 *1 (-729))))) + (-12 (-5 *3 (-565 (-398 (-921 *4)))) + (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *2 (-307 *4)) (-5 *1 (-568 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-354) (-1157)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-398 (-921 *4))) (-5 *1 (-893 *4 *5 *6 *3)) + (-4 *3 (-918 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1194 *3)) (-5 *1 (-391 *3 *2)) - (-4 *3 (-13 (-355) (-145)))))) + (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-663 (-398 (-921 *4)))) + (-5 *1 (-893 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-619 (-398 (-921 *4)))) + (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-217)) (-5 *3 (-745)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-166 (-217))) (-5 *3 (-745)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1172)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-582 *3 *2)) (-4 *3 (-1063)) + (-4 *2 (-1172))))) +(((*1 *1 *1) (-4 *1 (-532)))) +(((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 *6)) (-5 *3 (-547)) (-4 *6 (-298)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370)))) + ((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-370))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-540)) (-4 *7 (-767)) - (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *9)))) - (-5 *3 (-619 *9)) (-4 *1 (-1165 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2088 (-619 *8)))) - (-5 *3 (-619 *8)) (-4 *1 (-1165 *5 *6 *7 *8))))) -(((*1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) - ((*1 *2 *1) - (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) - (-4 *6 (-231 (-3643 *3) (-745))) - (-14 *7 - (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) - (-2 (|:| -3337 *5) (|:| -3352 *6)))) - (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-452 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) - (-4 *3 (-1016)))) - ((*1 *1 *1) - (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) - (-4 *4 (-821))))) -(((*1 *2 *1) - (-12 (-5 *2 (-995 (-814 (-548)))) (-5 *1 (-575 *3)) (-4 *3 (-1016))))) + (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1135)) + (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-184)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-217))) (-5 *4 (-1135)) + (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *3)) (-4 *3 (-1036 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-308 (-218)))) (-5 *2 (-112)) (-5 *1 (-259))))) + (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547)))) + ((*1 *2 *2) + (-12 (-4 *3 (-298)) (-4 *4 (-364 *3)) (-4 *5 (-364 *3)) + (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1116 *7))) (-4 *6 (-821)) - (-4 *7 (-918 *5 (-520 *6) *6)) (-4 *5 (-1016)) - (-5 *2 (-1 (-1116 *7) *7)) (-5 *1 (-1088 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-166 (-218)))) (-5 *2 (-1004)) - (-5 *1 (-729))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-355) (-145))) - (-5 *2 (-619 (-2 (|:| -3352 (-745)) (|:| -2278 *4) (|:| |num| *4)))) - (-5 *1 (-391 *3 *4)) (-4 *4 (-1194 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) - (-5 *1 (-575 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) - ((*1 *2 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821))))) -(((*1 *2 *2) (-12 (-5 *2 (-308 (-218))) (-5 *1 (-259))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-233)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1223)) (-5 *1 (-233))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832))))) (((*1 *2 *1) - (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *5)) (-5 *1 (-854 *3 *4 *5)) - (-4 *3 (-1063)) (-4 *5 (-640 *4))))) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 *4)))) + (-5 *1 (-623 *3 *4 *5)) (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-354)) (-4 *1 (-320 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) + (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1194 (-398 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) + (-4 *1 (-358 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1218 *1)) (-4 *4 (-169)) + (-4 *1 (-361 *4 *5)) (-4 *5 (-1194 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-400 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-169)) (-4 *1 (-408 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-299)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2877 (-619 *4)))) - (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-729))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) - (-5 *2 (-2 (|:| -2466 (-619 *6)) (|:| -1280 (-619 *6))))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1) (-5 *1 (-832)))) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 *8)) + (-4 *7 (-821)) (-4 *8 (-1016)) (-4 *9 (-918 *8 *6 *7)) + (-4 *6 (-767)) (-5 *2 (-1131 *8)) (-5 *1 (-312 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-422 *3)))) + (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-308 (-548))) (-5 *1 (-899))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-973 *3)) (-14 *3 (-548))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-308 (-218))) (-5 *1 (-259))))) -(((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-729))))) -(((*1 *2 *3 *2) + (-12 (-5 *3 (-1135)) (-5 *2 (-307 (-547))) (-5 *1 (-899))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-619 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-443)) (-4 *5 (-821)) - (-5 *1 (-440 *4 *3 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-129)))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + (-2 (|:| -3772 *3) (|:| |coef1| (-756 *3)) (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) (-5 *3 (-217)) + (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-821)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-217))) + (-5 *6 (-663 (-547))) (-5 *7 (-217)) (-5 *3 (-547)) (-5 *2 (-1004)) + (-5 *1 (-729))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-619 *11)) (-5 *5 (-619 (-1131 *9))) + (-5 *6 (-619 *9)) (-5 *7 (-619 *12)) (-5 *8 (-619 (-745))) + (-4 *11 (-821)) (-4 *9 (-298)) (-4 *12 (-918 *9 *10 *11)) + (-4 *10 (-767)) (-5 *2 (-619 (-1131 *12))) + (-5 *1 (-682 *10 *11 *9 *12)) (-5 *3 (-1131 *12))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 (-547)))) (-5 *1 (-456))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-4 *5 (-1194 *4)) + (-5 *2 (-619 (-2 (|:| |deg| (-745)) (|:| -2636 *5)))) + (-5 *1 (-783 *4 *5 *3 *6)) (-4 *3 (-630 *5)) + (-4 *6 (-630 (-398 *5)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-69 APROD)))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-129))))) +(((*1 *2 *3) + (-12 (-4 *2 (-354)) (-4 *2 (-819)) (-5 *1 (-914 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-539)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1149 *4 *5)) + (-4 *4 (-1063)) (-4 *5 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-821)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + (-12 (-5 *2 (-565 *4)) (-4 *4 (-13 (-29 *3) (-1157))) + (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *1 (-563 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) + (-12 (-5 *2 (-565 (-398 (-921 *3)))) + (-4 *3 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *1 (-568 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-354)) + (-5 *2 (-2 (|:| -4033 *3) (|:| |special| *3))) (-5 *1 (-702 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1218 *5)) (-4 *5 (-354)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1218 (-1218 *5))) (-4 *5 (-354)) (-4 *5 (-1016)) + (-5 *2 (-619 (-619 (-663 *5)))) (-5 *1 (-998 *5)) + (-5 *3 (-619 (-663 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-619 *1)) (-4 *1 (-1104)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-619 *1)) (-4 *1 (-1104))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4013 (-619 *1)))) + (-4 *1 (-358 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-443 *3 *4 *5 *6)) + (|:| -4013 (-619 (-443 *3 *4 *5 *6))))) + (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) + (-4 *2 (-13 (-27) (-1157) (-421 (-166 *3)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-958)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1058 *4)) (-4 *4 (-1172)) + (-5 *1 (-1056 *4))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) @@ -12292,900 +11010,577 @@ (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) - ((*1 *1 *1) (-5 *1 (-832)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1118)) (-5 *1 (-958)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1058 *4)) (-4 *4 (-1172)) - (-5 *1 (-1056 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-425)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-995 *3)) (-4 *3 (-1172))))) +(((*1 *2 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) + (-5 *2 (-112)) (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) +(((*1 *1 *1 *1) (-4 *1 (-532)))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-547)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821)) + (-5 *1 (-439 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *5)) (-4 *5 (-540)) - (-5 *2 - (-2 (|:| -3352 (-745)) (|:| -1489 *5) (|:| |radicand| (-619 *5)))) - (-5 *1 (-312 *5)) (-5 *4 (-745)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-548))))) -(((*1 *1 *1) (-4 *1 (-236))) - ((*1 *1 *1) - (-12 (-4 *2 (-169)) (-5 *1 (-281 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-1524 (-12 (-5 *1 (-286 *2)) (-4 *2 (-355)) (-4 *2 (-1172))) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-464)) (-4 *2 (-1172))))) - ((*1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-355))))) -(((*1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) - (-5 *1 (-259))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832))))) - ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) - ((*1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-1140)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-1140))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-729))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-619 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-745)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-767)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) (-4 *5 (-821)) - (-5 *1 (-440 *3 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-129)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1165 *5 *6 *7 *3)) - (-4 *5 (-540)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-294)))) - ((*1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) - ((*1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-969 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-803))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-814 (-218)))) (-5 *4 (-218)) (-5 *2 (-619 *4)) - (-5 *1 (-259))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-114))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-354)) (-4 *6 (-1194 (-398 *2))) + (-4 *2 (-1194 *5)) (-5 *1 (-207 *5 *2 *6 *3)) + (-4 *3 (-333 *5 *2 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) - (-5 *2 (-1004)) (-5 *1 (-729))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-619 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-767)) (-4 *3 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) - (-5 *1 (-440 *4 *5 *6 *3))))) -(((*1 *1 *1) (-5 *1 (-218))) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-184)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-1218 *4)) + (-5 *1 (-788 *4 *3)) (-4 *3 (-630 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) +(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) + (-4 *3 (-622 *2)))) ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1 *1) (-5 *1 (-371))) ((*1 *1) (-5 *1 (-371)))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) + (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) + (-4 *3 (-622 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) + ((*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-539)))))) (((*1 *2 *3) (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) - (-4 *5 (-13 (-27) (-1157) (-422 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-399 (-548))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-421 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-398 (-547))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) + (-12 (-5 *4 (-285 *3)) (-5 *5 (-398 (-547))) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) - (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) - (-4 *8 (-13 (-27) (-1157) (-422 *7))) - (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-398 (-547)))) (-5 *4 (-285 *8)) + (-5 *5 (-1185 (-398 (-547)))) (-5 *6 (-398 (-547))) + (-4 *8 (-13 (-27) (-1157) (-421 *7))) + (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) - (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) - (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-398 (-547)))) + (-5 *7 (-398 (-547))) (-4 *3 (-13 (-27) (-1157) (-421 *8))) + (-4 *8 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-399 (-548))) (-4 *4 (-1016)) (-4 *1 (-1201 *4 *3)) + (-12 (-5 *2 (-398 (-547))) (-4 *4 (-1016)) (-4 *1 (-1201 *4 *3)) (-4 *3 (-1178 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) - ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) - ((*1 *2 *2) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-852)))) - ((*1 *1 *1) (-5 *1 (-940))) - ((*1 *1 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *6)))) - (-5 *4 (-995 (-814 (-548)))) (-5 *5 (-1135)) (-5 *7 (-399 (-548))) - (-4 *6 (-1016)) (-5 *2 (-832)) (-5 *1 (-575 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-745)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *1 (-911)) (-5 *3 (-548)))) - ((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1086 *3 *4 *5 *2)) (-4 *2 (-661 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-619 (-112))) (-5 *5 (-663 (-218))) - (-5 *6 (-663 (-548))) (-5 *7 (-218)) (-5 *3 (-548)) (-5 *2 (-1004)) - (-5 *1 (-729))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2092 *4))) (-5 *1 (-938 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) + (-5 *3 (-619 (-547))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) + (-5 *3 (-619 (-547)))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-1118)) (-5 *1 (-185)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) + (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-408 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-890)) (-5 *4 (-217)) (-5 *5 (-547)) (-5 *6 (-843)) + (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-590 *3)) (-5 *5 (-619 *3)) + (-4 *3 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-477))))) +(((*1 *1 *1) (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) - (-4 *5 (-13 (-27) (-1157) (-422 *4))))) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-421 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-548)) (-4 *5 (-13 (-443) (-821) (-1007 *4) (-615 *4))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + (-12 (-5 *4 (-547)) (-4 *5 (-13 (-442) (-821) (-1007 *4) (-615 *4))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-443) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-548)) - (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) + (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-442) (-821) (-1007 *5) (-615 *5))) (-5 *5 (-547)) + (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) - (-4 *7 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1185 (-547))) + (-4 *7 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) - (-4 *3 (-13 (-27) (-1157) (-422 *7))) - (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-547))) + (-4 *3 (-13 (-27) (-1157) (-421 *7))) + (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-548)) (-4 *4 (-1016)) (-4 *1 (-1180 *4 *3)) + (-12 (-5 *2 (-547)) (-4 *4 (-1016)) (-4 *1 (-1180 *4 *3)) (-4 *3 (-1209 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1178 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-308 (-371))) (-5 *1 (-297))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-443)) (-4 *5 (-821)) - (-4 *5 (-1007 (-548))) (-4 *5 (-540)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-422 *5)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *5 (-591 $)) $)) - (-15 -2480 ((-1087 *5 (-591 $)) $)) - (-15 -3743 ($ (-1087 *5 (-591 $)))))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) - (-4 *5 (-231 *3 *2))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-533))) - ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) - (-4 *3 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-663 (-548))) (-5 *5 (-112)) (-5 *7 (-663 (-218))) - (-5 *3 (-548)) (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-729))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-443)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-440 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5))))) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-663 (-398 (-921 (-547))))) + (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000)) + (-5 *3 (-307 (-547)))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-536))))) +(((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *5 (-821)) (-5 *2 (-112)))) + (-12 (-4 *3 (-1194 (-398 (-547)))) (-5 *1 (-882 *3 *2)) + (-4 *2 (-1194 (-398 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-567 *4)) + (-4 *4 (-340))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))) +(((*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) + ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-832)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-540)) (-4 *5 (-767)) - (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-874 *3)) (-4 *3 (-1063))))) (((*1 *2 *3) (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) - (-4 *5 (-13 (-27) (-1157) (-422 *4))))) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *5)) + (-4 *5 (-13 (-27) (-1157) (-421 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4))))) + (-12 (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *4 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-745)) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) + (-12 (-5 *4 (-285 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-745)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) - (-4 *6 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *5 *6)))) + (-12 (-5 *4 (-285 *3)) (-5 *5 (-745)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-306 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-547))) (-5 *4 (-285 *6)) + (-4 *6 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) + (-4 *3 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-745))) - (-4 *7 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-547))) (-5 *4 (-285 *7)) (-5 *5 (-1185 (-745))) + (-4 *7 (-13 (-27) (-1157) (-421 *6))) + (-4 *6 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-745))) - (-4 *3 (-13 (-27) (-1157) (-422 *7))) - (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) + (-12 (-5 *4 (-1135)) (-5 *5 (-285 *3)) (-5 *6 (-1185 (-745))) + (-4 *3 (-13 (-27) (-1157) (-421 *7))) + (-4 *7 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-52)) (-5 *1 (-449 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-399 (-548))) (-5 *1 (-575 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-921 (-218))) (-5 *2 (-218)) (-5 *1 (-297))))) -(((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-548)) - (-14 *4 *2) (-4 *5 (-169)))) - ((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-890)) (-5 *1 (-162 *3 *4)) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-85 FCN)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-217)) (-5 *2 (-1004)) (-5 *1 (-724))))) +(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-307 (-370))) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1135))) + (-4 *5 (-442)) (-5 *2 (-619 (-239 *4 *5))) (-5 *1 (-607 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-398 *6)) (|:| |h| *6) + (|:| |c1| (-398 *6)) (|:| |c2| (-398 *6)) (|:| -2615 *6))) + (-5 *1 (-985 *5 *6)) (-5 *3 (-398 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1242 *3 *4)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793 *3)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-547)))) + (-4 *4 (-13 (-1194 *3) (-539) (-10 -8 (-15 -3715 ($ $ $))))) + (-4 *3 (-539)) (-5 *1 (-1197 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (-5 *2 (-112)) (-5 *1 (-291))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-58 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-5 *1 (-58 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) - ((*1 *2) (-12 (-4 *1 (-359 *3)) (-4 *3 (-169)) (-5 *2 (-890)))) ((*1 *2) - (-12 (-4 *1 (-362 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) - (-5 *2 (-890)))) + (-12 (-14 *4 *2) (-4 *5 (-1172)) (-5 *2 (-745)) + (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-821)) (-5 *2 (-745)) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-531 *3)) (-4 *3 (-532)))) + ((*1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-745)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-770 *3 *4)) + (-4 *3 (-771 *4)))) + ((*1 *2) + (-12 (-4 *4 (-539)) (-5 *2 (-745)) (-5 *1 (-960 *3 *4)) + (-4 *3 (-961 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-745)) (-5 *1 (-965 *3 *4)) + (-4 *3 (-966 *4)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-980 *3)) (-4 *3 (-981)))) + ((*1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-745)))) + ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-619 (-1218 *4))) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) + (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) + (-5 *2 (-619 (-1218 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-745)) (-4 *5 (-442)) (-4 *5 (-821)) + (-4 *5 (-1007 (-547))) (-4 *5 (-539)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-421 *5)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *5 (-590 $)) $)) + (-15 -1392 ((-1087 *5 (-590 $)) $)) + (-15 -3834 ($ (-1087 *5 (-590 $)))))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-330 *3 *4 *5)) (-14 *3 (-619 (-1135))) + (-14 *4 (-619 (-1135))) (-4 *5 (-378))))) +(((*1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-591 (-832))))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-1140)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-1140))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-975))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254)))) ((*1 *2 *3) - (-12 (-4 *4 (-355)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-745)) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-355)) - (-5 *2 (-745)) (-5 *1 (-641 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4328)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4328)))) (-5 *2 (-745)) - (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-540)) (-5 *2 (-745)))) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-320 *4)) (-4 *4 (-354)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1218 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-1218 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-361 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-1218 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) - (-4 *3 (-661 *4 *5 *6)))) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-400 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1194 *4)) (-5 *2 (-663 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) - (-4 *6 (-231 *4 *5)) (-4 *7 (-231 *3 *5)) (-4 *5 (-540)) - (-5 *2 (-745))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) - (-4 *5 (-231 *3 *4)) (-4 *6 (-231 *3 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-218))) - (-5 *8 (-663 (-548))) (-5 *3 (-548)) (-5 *4 (-218)) (-5 *5 (-112)) - (-5 *2 (-1004)) (-5 *1 (-729))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-443)) (-4 *6 (-821)) - (-5 *2 (-112)) (-5 *1 (-440 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) - (-15 -2480 ((-1087 *3 (-591 $)) $)) - (-15 -3743 ($ (-1087 *3 (-591 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) - (-15 -2480 ((-1087 *3 (-591 $)) $)) - (-15 -3743 ($ (-1087 *3 (-591 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) - (-15 -2480 ((-1087 *4 (-591 $)) $)) - (-15 -3743 ($ (-1087 *4 (-591 $))))))) - (-4 *4 (-540)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-591 *2))) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *4 (-591 $)) $)) - (-15 -2480 ((-1087 *4 (-591 $)) $)) - (-15 -3743 ($ (-1087 *4 (-591 $))))))) - (-4 *4 (-540)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1165 *4 *5 *6 *7)) - (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-538 *2)) (-4 *2 (-13 (-396) (-1157))))) - ((*1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-832)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297))))) + (-12 (-4 *1 (-400 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1194 *3)) + (-5 *2 (-1218 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-408 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1218 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-663 *5))) (-5 *3 (-663 *5)) (-4 *5 (-354)) + (-5 *2 (-1218 *5)) (-5 *1 (-1050 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) + (-5 *4 (-1 (-217) (-217) (-217) (-217))) + (-5 *2 (-1 (-912 (-217)) (-217) (-217))) (-5 *1 (-671))))) (((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) - (-4 *2 (-231 *3 *4))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-548)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) - (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) - (-4 *3 (-1172)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4328)) (-4 *1 (-119 *3)) - (-4 *3 (-1172)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-745)) (-5 *1 (-206 *4 *2)) (-14 *4 (-890)) - (-4 *2 (-1063)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-280 *3 *2)) (-4 *3 (-1063)) - (-4 *2 (-1172)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1135)) (-5 *1 (-608)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1185 (-548))) (|has| *1 (-6 -4328)) (-4 *1 (-625 *2)) - (-4 *2 (-1172)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-619 (-548))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4328)) (-4 *1 (-979 *2)) - (-4 *2 (-1172)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) - (-4 *2 (-1172)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *3)) - (-4 *3 (-1172)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4328)) (-4 *1 (-1206 *2)) - (-4 *2 (-1172))))) -(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-728))))) + (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) + (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))) +(((*1 *1 *1 *1) (-5 *1 (-129)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) (-4 *1 (-483))) + (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) + (-4 *2 (-13 (-27) (-1157) (-421 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) + (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4)))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-142)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-745)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1016)) (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) + (-4 *5 (-230 *3 *2))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-663 *11)) (-5 *4 (-619 (-398 (-921 *8)))) + (-5 *5 (-745)) (-5 *6 (-1118)) (-4 *8 (-13 (-298) (-145))) + (-4 *11 (-918 *8 *10 *9)) (-4 *9 (-13 (-821) (-592 (-1135)))) + (-4 *10 (-767)) + (-5 *2 + (-2 + (|:| |rgl| + (-619 + (-2 (|:| |eqzro| (-619 *11)) (|:| |neqzro| (-619 *11)) + (|:| |wcond| (-619 (-921 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *8)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *8)))))))))) + (|:| |rgsz| (-547)))) + (-5 *1 (-893 *8 *9 *10 *11)) (-5 *7 (-547))))) +(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-592 (-832)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-548)) (-4 *7 (-918 *4 *5 *6)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-440 *4 *5 *6 *7))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1171))) (-5 *3 (-1171)) (-5 *1 (-655))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1172)) (-5 *2 (-1223))))) +(((*1 *1 *1) (-5 *1 (-217))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1 *1) (-5 *1 (-370))) ((*1 *1) (-5 *1 (-370)))) +(((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1009))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-4 *7 (-821)) + (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) (-4 *8 (-298)) + (-5 *2 (-619 (-745))) (-5 *1 (-717 *6 *7 *8 *9)) (-5 *5 (-745))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-370))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-321))) (-5 *1 (-321))))) +(((*1 *2 *3) (-12 (-5 *3 (-796)) (-5 *2 (-52)) (-5 *1 (-803))))) (((*1 *2 *2) - (-12 (-4 *3 (-540)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-355) (-294) - (-10 -8 (-15 -2470 ((-1087 *3 (-591 $)) $)) - (-15 -2480 ((-1087 *3 (-591 $)) $)) - (-15 -3743 ($ (-1087 *3 (-591 $)))))))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1165 *5 *6 *7 *8)) (-4 *5 (-540)) - (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))) - (-5 *2 (-1004)) (-5 *1 (-297))))) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-663 (-547))) (-5 *5 (-112)) (-5 *7 (-663 (-217))) + (-5 *3 (-547)) (-5 *6 (-217)) (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1104)) (-5 *3 (-547)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2)))) + ((*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-310 *3 *4 *5)) + (-4 *3 (-13 (-354) (-821))) (-14 *4 (-1135)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-663 *2)) (-4 *4 (-1194 *2)) - (-4 *2 (-13 (-299) (-10 -8 (-15 -2634 ((-410 $) $))))) - (-5 *1 (-489 *2 *4 *5)) (-4 *5 (-401 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) - (-4 *5 (-231 *3 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-112)) (-5 *6 (-218)) - (-5 *7 (-663 (-548))) - (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) - (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-728))))) + (-12 (|has| *2 (-6 (-4330 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2)) + (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) + (-4 *4 (-661 *2 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-4 *4 (-1172)) (-5 *2 (-112)) + (-5 *1 (-1116 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-843)))) + ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-619 (-1131 *11))) (-5 *3 (-1131 *11)) + (-5 *4 (-619 *10)) (-5 *5 (-619 *8)) (-5 *6 (-619 (-745))) + (-5 *7 (-1218 (-619 (-1131 *8)))) (-4 *10 (-821)) + (-4 *8 (-298)) (-4 *11 (-918 *8 *9 *10)) (-4 *9 (-767)) + (-5 *1 (-682 *9 *10 *8 *11))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-442)) (-4 *3 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-439 *4 *3 *5 *6)) (-4 *6 (-918 *4 *3 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + (-12 (-5 *2 (-1218 (-1218 (-547)))) (-5 *3 (-890)) (-5 *1 (-456))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-532))) + ((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-128)) (-5 *2 (-1082))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1116 (-218))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3094 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1004)) (-5 *1 (-297))))) + (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) + (-4 *3 (-13 (-1063) (-34)))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-355)) - (-5 *1 (-511 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) - (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) - (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) - (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-663 (-218))) (-5 *6 (-112)) (-5 *7 (-663 (-548))) - (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-64 QPHESS)))) - (-5 *3 (-548)) (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-440 *4 *5 *6 *2))))) + (-12 (-4 *2 (-1194 *4)) (-5 *1 (-783 *4 *2 *3 *5)) + (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) + (-4 *5 (-630 (-398 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) (((*1 *2 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-355)) (-4 *5 (-1194 *4)) (-5 *2 (-1223)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1194 (-399 *5))) (-14 *7 *6)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-38 (-399 (-548)))) - (-4 *2 (-169))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1172)) - (-4 *2 (-1172)) (-5 *1 (-57 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1063)) (|has| *1 (-6 -4327)) - (-4 *1 (-149 *2)) (-4 *2 (-1172)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) - (-4 *2 (-1172)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *2)) - (-4 *2 (-1172)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1016)) - (-5 *2 (-2 (|:| -2802 (-1131 *4)) (|:| |deg| (-890)))) - (-5 *1 (-214 *4 *5)) (-5 *3 (-1131 *4)) (-4 *5 (-13 (-540) (-821))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-745)) - (-4 *6 (-1172)) (-4 *2 (-1172)) (-5 *1 (-232 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-169)) (-5 *1 (-281 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1194 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-308 *2)) (-4 *2 (-540)) (-4 *2 (-821)))) - ((*1 *1 *1) - (-12 (-4 *1 (-327 *2 *3 *4 *5)) (-4 *2 (-355)) (-4 *3 (-1194 *2)) - (-4 *4 (-1194 (-399 *3))) (-4 *5 (-334 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1172)) (-4 *2 (-1172)) - (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1063)) (-4 *2 (-1063)) - (-5 *1 (-415 *5 *4 *2 *6)) (-4 *4 (-417 *5)) (-4 *6 (-417 *2)))) - ((*1 *1 *1) (-5 *1 (-485))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-619 *5)) (-4 *5 (-1172)) - (-4 *2 (-1172)) (-5 *1 (-617 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1016)) (-4 *2 (-1016)) - (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) - (-4 *9 (-365 *2)) (-5 *1 (-659 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-661 *5 *6 *7)) (-4 *10 (-661 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-686 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-687 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-399 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-355)) - (-4 *3 (-169)) (-4 *1 (-699 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-169)) (-4 *1 (-699 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-927 *5)) (-4 *5 (-1172)) - (-4 *2 (-1172)) (-5 *1 (-926 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *1 (-1003 *3 *4 *5 *2 *6)) (-4 *2 (-918 *3 *4 *5)) - (-14 *6 (-619 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1016)) (-4 *2 (-1016)) - (-14 *5 (-745)) (-14 *6 (-745)) (-4 *8 (-231 *6 *7)) - (-4 *9 (-231 *5 *7)) (-4 *10 (-231 *6 *2)) (-4 *11 (-231 *5 *2)) - (-5 *1 (-1021 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1019 *5 *6 *7 *8 *9)) (-4 *12 (-1019 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1116 *5)) (-4 *5 (-1172)) - (-4 *2 (-1172)) (-5 *1 (-1114 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1165 *5 *6 *7 *2)) (-4 *5 (-540)) (-4 *6 (-767)) - (-4 *7 (-821)) (-4 *2 (-1030 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1218 *5)) (-4 *5 (-1172)) - (-4 *2 (-1172)) (-5 *1 (-1217 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))))) - (-5 *2 (-1004)) (-5 *1 (-297)))) + (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3671 (-371)) (|:| -2275 (-1118)) - (|:| |explanations| (-619 (-1118))) (|:| |extra| (-1004)))) - (-5 *2 (-1004)) (-5 *1 (-297))))) -(((*1 *2 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) - (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-169)) - (-5 *1 (-662 *2 *4 *5 *3)) (-4 *3 (-661 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-231 *3 *2)) - (-4 *5 (-231 *3 *2)) (|has| *2 (-6 (-4329 "*"))) (-4 *2 (-1016))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) - (-5 *2 (-1004)) (-5 *1 (-728))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) - (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) - (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) - (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) - (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) - (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) - (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-591 *6)) (-4 *6 (-13 (-422 *5) (-27) (-1157))) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-1131 (-399 (-1131 *6)))) (-5 *1 (-544 *5 *6 *7)) - (-5 *3 (-1131 *6)) (-4 *7 (-1063)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1131 *11)) (-5 *6 (-619 *10)) - (-5 *7 (-619 (-745))) (-5 *8 (-619 *11)) (-4 *10 (-821)) - (-4 *11 (-299)) (-4 *9 (-767)) (-4 *5 (-918 *11 *9 *10)) - (-5 *2 (-619 (-1131 *5))) (-5 *1 (-717 *9 *10 *11 *5)) - (-5 *3 (-1131 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-918 *3 *4 *5)) (-5 *1 (-1003 *3 *4 *5 *2 *6)) - (-4 *3 (-355)) (-4 *4 (-767)) (-4 *5 (-821)) (-14 *6 (-619 *2))))) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1063))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) - (-5 *2 (-619 (-1135))) (-5 *1 (-259)))) + (-2 (|:| |lfn| (-619 (-307 (-217)))) (|:| -3045 (-619 (-217))))) + (-5 *2 (-619 (-1135))) (-5 *1 (-258)))) ((*1 *2 *3) (-12 (-5 *3 (-1131 *7)) (-4 *7 (-918 *6 *4 *5)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) (-5 *2 (-619 *5)) - (-5 *1 (-313 *4 *5 *6 *7)))) + (-5 *1 (-312 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-331 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-379)))) + (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-330 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-378)))) ((*1 *2 *1) - (-12 (-4 *1 (-422 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1135))))) + (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-619 (-1135))))) ((*1 *2 *1) (-12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *1) @@ -13196,8 +11591,8 @@ (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *5)) (-5 *1 (-919 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1065 (-1135))) (-5 *1 (-935 *3)) (-4 *3 (-936)))) ((*1 *2 *1) @@ -13207,55 +11602,62 @@ (-12 (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-5 *2 (-619 (-1135))) + (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-5 *2 (-619 (-1135))) (-5 *1 (-1012 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297))))) -(((*1 *1 *1) - (-12 (-4 *1 (-245 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) - (-4 *4 (-258 *3)) (-4 *5 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-238 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-65 FUNCT1)))) - (-5 *2 (-1004)) (-5 *1 (-728))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| |coef1| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-599 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3836 *4) (|:| |sol?| (-112))) + (-547) *4)) + (-4 *4 (-354)) (-4 *5 (-1194 *4)) (-5 *1 (-557 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-299) (-145))) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-918 *4 *5 *6)) (-5 *2 (-619 (-619 *7))) - (-5 *1 (-439 *4 *5 *6 *7)) (-5 *3 (-619 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) - (-4 *7 (-821)) (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-619 (-619 *8))) - (-5 *1 (-439 *5 *6 *7 *8)) (-5 *3 (-619 *8))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169))))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-539)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-938 *5 *3)) (-4 *3 (-1194 *5))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-663 (-217))) (-5 *5 (-663 (-547))) (-5 *3 (-547)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1104)) (-5 *2 (-142))))) +(((*1 *2 *2) + (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) + (-4 *3 (-622 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1194 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1131 (-399 (-1131 *2)))) (-5 *4 (-591 *2)) - (-4 *2 (-13 (-422 *5) (-27) (-1157))) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *1 (-544 *5 *2 *6)) (-4 *6 (-1063)))) + (-12 (-5 *3 (-1131 (-398 (-1131 *2)))) (-5 *4 (-590 *2)) + (-4 *2 (-13 (-421 *5) (-27) (-1157))) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *1 (-543 *5 *2 *6)) (-4 *6 (-1063)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)))) @@ -13263,85 +11665,154 @@ (-12 (-5 *2 (-1131 *4)) (-4 *4 (-1016)) (-4 *1 (-918 *4 *5 *3)) (-4 *5 (-767)) (-4 *3 (-821)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-1131 *2))) (-4 *5 (-767)) (-4 *4 (-821)) + (-12 (-5 *3 (-398 (-1131 *2))) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-4 *2 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))) (-5 *1 (-919 *5 *4 *6 *7 *2)) (-4 *7 (-918 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-1131 (-399 (-921 *5))))) (-5 *4 (-1135)) - (-5 *2 (-399 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-540))))) -(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) + (-12 (-5 *3 (-398 (-1131 (-398 (-921 *5))))) (-5 *4 (-1135)) + (-5 *2 (-398 (-921 *5))) (-5 *1 (-1012 *5)) (-4 *5 (-539))))) +(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) (((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-4 *1 (-244 *2 *3 *4 *5)) (-4 *2 (-1016)) (-4 *3 (-821)) + (-4 *4 (-257 *3)) (-4 *5 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1218 *6)) (-5 *4 (-1218 (-547))) (-5 *5 (-547)) + (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) + (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4329)) (-4 *1 (-119 *3)) + (-4 *3 (-1172)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4329)) (-4 *1 (-119 *3)) + (-4 *3 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-205 *4 *2)) (-14 *4 (-890)) + (-4 *2 (-1063)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) + (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1135)) (-5 *1 (-608)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1185 (-547))) (|has| *1 (-6 -4329)) (-4 *1 (-625 *2)) + (-4 *2 (-1172)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-619 (-547))) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4329)) (-4 *1 (-979 *2)) + (-4 *2 (-1172)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) + (-4 *2 (-1172)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4329)) (-4 *1 (-1206 *3)) + (-4 *3 (-1172)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) + (-4 *2 (-1172))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-547) "failed") *5)) (-4 *5 (-1016)) + (-5 *2 (-547)) (-5 *1 (-530 *5 *3)) (-4 *3 (-1194 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016)) + (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-547) "failed") *4)) (-4 *4 (-1016)) + (-5 *2 (-547)) (-5 *1 (-530 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) + (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3)) + (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292)))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) + (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) + (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3)) + (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) + (-4 *3 (-1194 (-547))))) ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297))))) -(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-62 LSFUN2)))) - (-5 *2 (-1004)) (-5 *1 (-728))))) -(((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-299)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-438 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) - (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-438 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) - (-4 *4 (-299)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-438 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1165 *2 *3 *4 *5)) (-4 *2 (-540)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *5 (-1030 *2 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-355)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) - (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) - (-4 *3 (-823 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1172))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3)) + (-4 *3 (-1194 (-398 (-547)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 (-1135))) (-5 *3 (-1218 (-443 *4 *5 *6 *7))) + (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) + (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-443 *4 *5 *6 *7))) + (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) + (-14 *6 (-619 *2)) (-14 *7 (-1218 (-663 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 (-443 *3 *4 *5 *6))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) + (-14 *6 (-1218 (-663 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 (-1135))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) + (-14 *6 (-1218 (-663 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1218 (-663 *3))))) + ((*1 *1) + (-12 (-5 *1 (-443 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) + (-14 *4 (-619 (-1135))) (-14 *5 (-1218 (-663 *2)))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-547)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-745)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-767)) (-4 *4 (-918 *5 *6 *7)) (-4 *5 (-442)) (-4 *7 (-821)) + (-5 *1 (-439 *5 *6 *7 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) (((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-619 (-890))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-890)) - (-4 *2 (-355)) (-14 *5 (-962 *4 *2)))) + (-4 *2 (-354)) (-14 *5 (-962 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-688 *5 *6 *7)) (-4 *5 (-821)) - (-4 *6 (-231 (-3643 *4) (-745))) + (-4 *6 (-230 (-3763 *4) (-745))) (-14 *7 - (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) - (-2 (|:| -3337 *5) (|:| -3352 *6)))) + (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *6)) + (-2 (|:| -3479 *5) (|:| -4248 *6)))) (-14 *4 (-619 (-1135))) (-4 *2 (-169)) - (-5 *1 (-452 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) + (-5 *1 (-451 *4 *2 *5 *6 *7 *8)) (-4 *8 (-918 *2 *6 (-834 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) + (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) + (-12 (-5 *3 (-547)) (-4 *2 (-539)) (-5 *1 (-599 *2 *4)) (-4 *4 (-1194 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) ((*1 *1 *2 *3) @@ -13365,928 +11836,1123 @@ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-942 *4 *3 *2)) (-4 *4 (-1016)) (-4 *3 (-766)) (-4 *2 (-821))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-185)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-292)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-218)))) (-5 *2 (-218)) (-5 *1 (-297))))) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-5 *2 (-663 *4)) + (-5 *1 (-788 *4 *5)) (-4 *5 (-630 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-354)) + (-5 *2 (-663 *5)) (-5 *1 (-788 *5 *6)) (-4 *6 (-630 *5))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-1189 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-493 *3 *4 *5 *2)) (-4 *2 (-918 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-442)) + (-5 *1 (-351 *3 *4)) (-14 *4 (-619 (-1135))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-442)) + (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4))))) (((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1063))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-248))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-298))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) - (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) - (-5 *5 (-3 (|:| |fn| (-380)) (|:| |fp| (-78 LSFUN1)))) - (-5 *2 (-1004)) (-5 *1 (-728))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *2)) (-4 *2 (-918 *4 *5 *6)) (-4 *4 (-299)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-438 *4 *5 *6 *2))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-548)) (-4 *2 (-422 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1007 *4)) (-4 *3 (-13 (-821) (-540)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-355)) (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) - (-5 *1 (-741 *3 *4)) (-4 *3 (-683 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-355)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-355)) (-4 *5 (-1016)) - (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) - (-4 *3 (-823 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1102 *3 *4)) (-14 *3 (-890)) (-4 *4 (-355)) - (-5 *1 (-962 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) +(((*1 *2 *2) (-12 (-5 *1 (-566 *2)) (-4 *2 (-532))))) (((*1 *2 *3) - (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297))))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-539)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1004)) (-5 *1 (-723))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-619 (-307 (-217)))) + (|:| |constraints| + (-619 + (-2 (|:| |start| (-217)) (|:| |finish| (-217)) + (|:| |grid| (-745)) (|:| |boundaryType| (-547)) + (|:| |dStart| (-663 (-217))) (|:| |dFinish| (-663 (-217)))))) + (|:| |f| (-619 (-619 (-307 (-217))))) (|:| |st| (-1118)) + (|:| |tol| (-217)))) + (-5 *2 (-112)) (-5 *1 (-202))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-443)) (-4 *4 (-794)) - (-14 *5 (-1135)) (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-548)) (-5 *5 (-112)) (-5 *6 (-663 (-218))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-76 OBJFUN)))) - (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-728))))) + (-12 (-4 *4 (-442)) (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2092 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1185 (-548))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-625 *3)) (-4 *3 (-1172))))) -(((*1 *2 *3) (-12 (-5 *2 (-619 (-548))) (-5 *1 (-437)) (-5 *3 (-548))))) -(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-218))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1 *1 *1) (-5 *1 (-371))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-574 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1016))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *3 (-619 (-547))) + (-5 *1 (-852))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1218 + (-2 (|:| |scaleX| (-217)) (|:| |scaleY| (-217)) + (|:| |deltaX| (-217)) (|:| |deltaY| (-217)) (|:| -2985 (-547)) + (|:| -2825 (-547)) (|:| |spline| (-547)) (|:| -2211 (-547)) + (|:| |axesColor| (-843)) (|:| -2020 (-547)) + (|:| |unitsColor| (-843)) (|:| |showing| (-547))))) + (-5 *1 (-1219))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-590 *3)) + (-4 *3 (-13 (-421 *5) (-27) (-1157))) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) + (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *5)) (-4 *5 (-422 *4)) (-4 *4 (-13 (-821) (-540))) - (-5 *2 (-832)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *10)) - (-5 *1 (-600 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1036 *5 *6 *7 *8)) - (-4 *10 (-1072 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) - (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) - (-5 *1 (-604 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) - (-14 *6 (-619 (-1135))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-547)) (-5 *1 (-476 *4)) + (-4 *4 (-1194 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-4 *1 (-293)))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) + (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) + (-5 *2 (-1131 *3))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-27) (-421 *4))) + (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) + (-4 *7 (-1194 (-398 *6))) (-5 *1 (-535 *4 *5 *6 *7 *2)) + (-4 *2 (-333 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-921 (-217))) (-5 *2 (-217)) (-5 *1 (-296))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 (-398 (-921 (-547))))) (-5 *2 - (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) - (-5 *1 (-604 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) - (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) - (-5 *1 (-1013 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1036 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-540)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) - (-4 *1 (-1165 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) - (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) - (-4 *3 (-823 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-1016)))) - ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-619 + (-2 (|:| |radval| (-307 (-547))) (|:| |radmult| (-547)) + (|:| |radvect| (-619 (-663 (-307 (-547)))))))) + (-5 *1 (-1000))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-547)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-840 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-547)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-547)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) + (-4 *4 (-838 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-547)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-547)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-1209 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1209 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-185)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-292)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-218))) (-5 *2 (-619 (-1118))) (-5 *1 (-297))))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-873 (-547))) (-5 *1 (-886)))) + ((*1 *2) (-12 (-5 *2 (-873 (-547))) (-5 *1 (-886))))) (((*1 *2 *3) - (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) - (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-727))))) + (-12 (-4 *4 (-1194 (-398 *2))) (-5 *2 (-547)) (-5 *1 (-882 *4 *3)) + (-4 *3 (-1194 (-398 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016)))) - ((*1 *2) - (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-547))) (-4 *3 (-1016)) (-5 *1 (-574 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1178 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-547))) (-4 *1 (-1209 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-539) (-821) (-1007 (-547)))) (-5 *1 (-180 *3 *2)) + (-4 *2 (-13 (-27) (-1157) (-421 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) + (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 (-166 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-661 *3 *4 *5)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1016)) (-5 *1 (-663 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *4)) (-4 *4 (-1016)) (-4 *1 (-1085 *3 *4 *5 *6)) + (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-843)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) - (-5 *2 (-619 (-2 (|:| -2466 *1) (|:| -1280 (-619 *7))))) - (-5 *3 (-619 *7)) (-4 *1 (-1165 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-823 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-540)) (-4 *5 (-1016)) - (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-824 *5 *3)) - (-4 *3 (-823 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-422 *2)) (-4 *2 (-821)) (-4 *2 (-540)))) - ((*1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-540))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1118)) (-5 *1 (-297))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) - (-5 *2 (-548)) (-5 *1 (-1077 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) + (-12 (-14 *4 (-619 (-1135))) (-4 *5 (-442)) + (-5 *2 + (-2 (|:| |glbase| (-619 (-239 *4 *5))) (|:| |glval| (-619 (-547))))) + (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-239 *4 *5)))))) +(((*1 *1 *1) (-4 *1 (-838 *2)))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *3 (-539)) (-5 *2 (-112)) (-5 *1 (-599 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572)))) + ((*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-571)))) ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) ((*1 *2 *1) (-12 (-4 *3 (-1063)) - (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) + (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) - (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *3 *2)) (-4 *3 (-1063))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-548)) (-4 *1 (-1057 *3)) (-4 *3 (-1172))))) (((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) + (|partial| -12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-1016)) (-4 *6 (-918 *5 *4 *2)) + (-4 *2 (-821)) (-5 *1 (-919 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-354) + (-10 -8 (-15 -3834 ($ *6)) (-15 -1382 (*6 $)) + (-15 -1392 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) + (-5 *2 (-1135)) (-5 *1 (-1012 *4))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-547)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1172)) + (-4 *3 (-364 *4)) (-4 *5 (-364 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-873 *4)) + (-4 *4 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *2 (-683 *3)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| -3156 (-1135)) (|:| -1657 *4)))) + (-12 (-5 *2 (-619 (-2 (|:| -3326 (-1135)) (|:| -1777 *4)))) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)))) ((*1 *2 *1) (-12 (-4 *3 (-1063)) (-4 *4 (-1063)) (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-619 *1)) (-4 *1 (-1066 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-619 (-112))) (-5 *7 (-663 (-217))) + (-5 *8 (-663 (-547))) (-5 *3 (-547)) (-5 *4 (-217)) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-354)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-398 *3))) + (-4 *1 (-326 *4 *3 *5 *2)) (-4 *2 (-333 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-547)) (-4 *2 (-354)) (-4 *4 (-1194 *2)) + (-4 *5 (-1194 (-398 *4))) (-4 *1 (-326 *2 *4 *5 *6)) + (-4 *6 (-333 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-354)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-398 *3))) + (-4 *1 (-326 *2 *3 *4 *5)) (-4 *5 (-333 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) + (-4 *1 (-326 *3 *4 *5 *2)) (-4 *2 (-333 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-404 *4 (-398 *4) *5 *6)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-4 *3 (-354)) + (-4 *1 (-326 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1194 *6)) + (-4 *6 (-13 (-354) (-145) (-1007 *4))) (-5 *4 (-547)) (-5 *2 - (-956 (-399 (-548)) (-834 *3) (-233 *4 (-745)) - (-240 *3 (-399 (-548))))) - (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-955 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-185)))) - ((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-292)))) - ((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-1118)) (-5 *1 (-297))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1191 *5 *4)) (-4 *4 (-794)) (-14 *5 (-1135)) - (-5 *2 (-619 *4)) (-5 *1 (-1077 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-727))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1172)) (-5 *1 (-842 *3 *2)) (-4 *3 (-1172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -2636 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-984 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-975))))) (((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-136)))) ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-153)))) - ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-469)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-572)))) + ((*1 *2 *1) (-12 (-5 *1 (-285 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-571)))) ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-602)))) ((*1 *2 *1) (-12 (-4 *3 (-1063)) - (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3)))) + (-4 *2 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) (-5 *1 (-1039 *3 *4 *2)) - (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))))) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1063)) (-5 *1 (-1125 *2 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-1218 (-663 *4))))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1218 (-663 *4))) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2) + (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-1218 (-663 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-354)) + (-5 *2 (-1218 (-663 (-398 (-921 *5))))) (-5 *1 (-1050 *5)) + (-5 *4 (-663 (-398 (-921 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1135))) (-4 *5 (-354)) + (-5 *2 (-1218 (-663 (-921 *5)))) (-5 *1 (-1050 *5)) + (-5 *4 (-663 (-921 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-354)) + (-5 *2 (-1218 (-663 *4))) (-5 *1 (-1050 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) + (-5 *5 (-1058 (-217))) (-5 *6 (-619 (-254))) (-5 *2 (-1095 (-217))) + (-5 *1 (-671))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2703 *4)))) + (-4 *3 (-1063)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-623 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-663 *5)) (-4 *5 (-1016)) (-5 *1 (-1020 *3 *4 *5)) + (-14 *3 (-745)) (-14 *4 (-745))))) +(((*1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-154)))) + ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *2 (-548)) (-5 *1 (-436 *3)) (-4 *3 (-396)) (-4 *3 (-1016))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) - (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-918 *4 *6 *5)) (-4 *4 (-443)) - (-4 *5 (-821)) (-4 *6 (-767)) (-5 *1 (-956 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-5 *3 (-1118)) (-4 *4 (-13 (-298) (-145))) + (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) + (|:| |wcond| (-619 (-921 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *4)))))))))) + (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-1218 (-308 (-371)))) - (-5 *1 (-297))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) - (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-727))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-436 *3)) (-4 *3 (-1016))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-745)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-767)) (-4 *7 (-918 *4 *5 *6)) (-4 *4 (-442)) (-4 *6 (-821)) + (-5 *2 (-112)) (-5 *1 (-439 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-217))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-619 (-285 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) + (-4 *4 (-13 (-169) (-692 (-398 (-547))))) (-14 *5 (-890))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-619 (-590 *2))) (-5 *4 (-619 (-1135))) + (-4 *2 (-13 (-421 (-166 *5)) (-971) (-1157))) + (-4 *5 (-13 (-539) (-821))) (-5 *1 (-578 *5 *6 *2)) + (-4 *6 (-13 (-421 *5) (-971) (-1157)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-547)) (-5 *4 (-409 *2)) (-4 *2 (-918 *7 *5 *6)) + (-5 *1 (-717 *5 *6 *7 *2)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-298))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-366 *4 *2)) + (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-4 *5 (-360)) - (-5 *2 (-745))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-443)) (-4 *4 (-821)) - (-4 *5 (-767)) (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-547))) (-5 *2 (-321)) + (-5 *1 (-323)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-1056 (-921 (-547)))) (-5 *2 (-321)) + (-5 *1 (-323)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-745)) (-5 *1 (-649 *3)) (-4 *3 (-1016)) + (-4 *3 (-1063))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -2848 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-354)) (-5 *1 (-557 *4 *2)) (-4 *2 (-1194 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-371))) (-5 *1 (-297))))) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) (((*1 *1 *2) - (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1172)) (-4 *1 (-231 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-245 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *5 (-767)) (-4 *2 (-258 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-794)) (-14 *5 (-1135)) (-5 *2 (-619 (-1191 *5 *4))) - (-5 *1 (-1077 *4 *5)) (-5 *3 (-1191 *5 *4))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-218)) (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016))))) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1172)) (-4 *1 (-230 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-619 (-890))) (-4 *2 (-355)) (-5 *1 (-150 *4 *2 *5)) - (-14 *4 (-890)) (-14 *5 (-962 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-308 *3)) (-5 *1 (-216 *3 *4)) - (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-540)) (-5 *1 (-599 *2 *4)) - (-4 *4 (-1194 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-683 *2)) (-4 *2 (-1016)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-701)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 *5)) (-5 *3 (-619 (-745))) (-4 *1 (-715 *4 *5)) - (-4 *4 (-1016)) (-4 *5 (-821)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *2)) (-4 *4 (-1016)) - (-4 *2 (-821)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-4 *1 (-823 *2)) (-4 *2 (-1016)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 *6)) (-5 *3 (-619 (-745))) (-4 *1 (-918 *4 *5 *6)) - (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *6 (-821)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-918 *4 *5 *2)) (-4 *4 (-1016)) - (-4 *5 (-767)) (-4 *2 (-821)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *2 (-918 *4 (-520 *5) *5)) - (-5 *1 (-1088 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-821)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-921 *4)) (-5 *1 (-1166 *4)) - (-4 *4 (-1016))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-655)))) - ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1080))))) + (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) + (-15 -1392 ((-1087 *3 (-590 $)) $)) + (-15 -3834 ($ (-1087 *3 (-590 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) + (-15 -1392 ((-1087 *3 (-590 $)) $)) + (-15 -3834 ($ (-1087 *3 (-590 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *4 (-590 $)) $)) + (-15 -1392 ((-1087 *4 (-590 $)) $)) + (-15 -3834 ($ (-1087 *4 (-590 $))))))) + (-4 *4 (-539)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-590 *2))) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *4 (-590 $)) $)) + (-15 -1392 ((-1087 *4 (-590 $)) $)) + (-15 -3834 ($ (-1087 *4 (-590 $))))))) + (-4 *4 (-539)) (-5 *1 (-41 *4 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-1135))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1185 (-547))) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-625 *3)) (-4 *3 (-1172))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-745)) (-4 *5 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) + (-4 *4 (-169)))) + ((*1 *1 *1) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1016)) (-4 *1 (-661 *3 *2 *4)) (-4 *2 (-364 *3)) + (-4 *4 (-364 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1102 *2 *3)) (-14 *2 (-745)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-407 *3 *2)) (-4 *3 (-408 *2)))) + ((*1 *2) (-12 (-4 *1 (-408 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1063)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) + (-5 *1 (-689 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-321))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) + (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *2 (-1167 (-895))) + (-5 *1 (-309)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) + (-5 *5 (-1058 (-217))) (-5 *6 (-547)) (-5 *7 (-1118)) + (-5 *2 (-1167 (-895))) (-5 *1 (-309)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) + (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) + (-5 *2 (-1167 (-895))) (-5 *1 (-309)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-307 (-547))) (-5 *4 (-1 (-217) (-217))) + (-5 *5 (-1058 (-217))) (-5 *6 (-217)) (-5 *7 (-547)) (-5 *8 (-1118)) + (-5 *2 (-1167 (-895))) (-5 *1 (-309))))) (((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) + (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-619 *6)) - (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1 *1) (-5 *1 (-745))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1218 (-673))) (-5 *1 (-297))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) - (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016)))) - ((*1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-436 *3)) (-4 *3 (-1016))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1088 *4 *3 *5))) (-4 *4 (-38 (-399 (-548)))) - (-4 *4 (-1016)) (-4 *3 (-821)) (-5 *1 (-1088 *4 *3 *5)) - (-4 *5 (-918 *4 (-520 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1166 *4))) (-5 *3 (-1135)) (-5 *1 (-1166 *4)) - (-4 *4 (-38 (-399 (-548)))) (-4 *4 (-1016))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-355)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) - (-4 *1 (-823 *3))))) + (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-348 *4)) + (-4 *4 (-340))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-619 *7))) (-4 *1 (-1165 *4 *5 *6 *7)) + (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *3 *5 *6 *7)) + (-4 *3 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172)) + (-4 *7 (-1172)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *3 *5 *6)) + (-4 *3 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) + (-4 *6 (-539)) (-4 *7 (-918 *6 *5 *3)) + (-5 *1 (-452 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1007 (-398 (-547))) (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) + (-15 -1392 (*7 $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-217))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-539)) (-5 *1 (-938 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-1146 *2)) (-4 *2 (-354))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4330 "*"))) (-4 *5 (-364 *2)) (-4 *6 (-364 *2)) + (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) + (-4 *4 (-661 *2 *5 *6))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -1873 (-745)) (|:| |period| (-745)))) + (-5 *1 (-1116 *4)) (-4 *4 (-1172)) (-5 *3 (-745))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) (((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-821) (-1007 (-548)))) (-5 *2 (-308 *4)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-422 (-166 *4)))))) + (-12 (-4 *4 (-13 (-539) (-821) (-1007 (-547)))) (-5 *2 (-307 *4)) + (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1157) (-421 (-166 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-422 *3)))))) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-1161 *3 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *3)))))) (((*1 *2 *1) - (-12 (-4 *2 (-918 *3 *5 *4)) (-5 *1 (-956 *3 *4 *5 *2)) - (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1063)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-619 *3)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-745)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-480 *3)) (-4 *3 (-1172)) - (-5 *2 (-619 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-673)) (-5 *1 (-297))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) - (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-727))))) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-745))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-745)) (-5 *4 (-548)) (-5 *1 (-436 *2)) (-4 *2 (-1016))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *2) - (-12 (-4 *3 (-593 (-861 *3))) (-4 *3 (-855 *3)) - (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-593 (-861 *3))) (-4 *2 (-855 *3)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) + (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *3 *5)) + (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *3 (-630 *2)) + (-4 *5 (-630 (-398 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1194 *4)) (-5 *1 (-781 *4 *2 *5 *3)) + (-4 *4 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *5 (-630 *2)) + (-4 *3 (-630 (-398 *2)))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-895))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-532))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-619 *3)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1194 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-547)))) ((*1 *1 *1) (-4 *1 (-971))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-981)))) - ((*1 *1 *2) (-12 (-5 *2 (-399 (-548))) (-4 *1 (-981)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-981)))) + ((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-4 *1 (-981)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-890)))) ((*1 *1 *1) (-4 *1 (-981)))) -(((*1 *1 *1) - (-12 (-4 *2 (-443)) (-4 *3 (-821)) (-4 *4 (-767)) - (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *2 (-619 (-218))) (-5 *1 (-297))))) -(((*1 *1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1 *1) (-5 *1 (-745))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-619 (-548))) (-5 *1 (-1073)) (-5 *3 (-548))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-218)) - (-5 *7 (-663 (-548))) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-410 *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-1016)) (-5 *2 (-619 *6)) (-5 *1 (-435 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1138))))) +(((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) + (-5 *1 (-723))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1209 *3)) - (-5 *1 (-270 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-399 (-548)))) (-4 *4 (-1178 *3)) - (-5 *1 (-271 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-821)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1121 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-399 (-548)))) - (-5 *1 (-1122 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-112)) + (-5 *6 (-217)) (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-379)) (|:| |fp| (-72 MSOLVE)))) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-298)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-298)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-298)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-745))) + (-5 *1 (-526 *3 *2 *4 *5)) (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-1 (-112) *8))) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |goodPols| (-619 *8)) (|:| |badPols| (-619 *8)))) + (-5 *1 (-946 *5 *6 *7 *8)) (-5 *4 (-619 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1194 (-547))) (-5 *1 (-476 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-1223)) + (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-590 *1)) (-4 *1 (-293))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-547)) (-4 *1 (-1057 *3)) (-4 *3 (-1172))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-48))) (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) + (-12 (-5 *4 (-619 (-48))) (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1194 (-48))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) - (-5 *2 (-410 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5)))) + (-5 *2 (-409 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-918 (-48) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-619 (-48))) (-4 *5 (-821)) (-4 *6 (-767)) - (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-410 (-1131 *7))) + (-4 *7 (-918 (-48) *6 *5)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-164 *4 *3)) + (-12 (-4 *4 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-819))) (-5 *2 (-410 *3)) - (-5 *1 (-178 *4 *3)) (-4 *3 (-1194 (-166 *4))))) + (-12 (-4 *4 (-13 (-354) (-819))) (-5 *2 (-409 *3)) + (-5 *1 (-177 *4 *3)) (-4 *3 (-1194 (-166 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) + (-12 (-4 *4 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-208 *4 *3)) (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) - (-4 *3 (-1194 (-548))))) + (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) + (-4 *3 (-1194 (-547))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) - (-4 *3 (-1194 (-548))))) + (-12 (-5 *4 (-619 (-745))) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) + (-4 *3 (-1194 (-547))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) - (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) + (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-409 *3)) + (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) - (-4 *3 (-1194 (-548))))) + (-12 (-5 *4 (-745)) (-5 *2 (-409 *3)) (-5 *1 (-432 *3)) + (-4 *3 (-1194 (-547))))) ((*1 *2 *3) - (-12 (-5 *2 (-410 (-166 (-548)))) (-5 *1 (-437)) - (-5 *3 (-166 (-548))))) + (-12 (-5 *2 (-409 (-166 (-547)))) (-5 *1 (-436)) + (-5 *3 (-166 (-547))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) - (-4 *5 (-767)) (-4 *7 (-540)) (-5 *2 (-410 *3)) - (-5 *1 (-447 *4 *5 *6 *7 *3)) (-4 *6 (-540)) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) + (-4 *5 (-767)) (-4 *7 (-539)) (-5 *2 (-409 *3)) + (-5 *1 (-446 *4 *5 *6 *7 *3)) (-4 *6 (-539)) (-4 *3 (-918 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-410 (-1131 *4))) (-5 *1 (-449 *4)) + (-12 (-4 *4 (-298)) (-5 *2 (-409 (-1131 *4))) (-5 *1 (-448 *4)) (-5 *3 (-1131 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-410 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) - (-4 *7 (-13 (-355) (-145) (-699 *5 *6))) (-5 *2 (-410 *3)) - (-5 *1 (-484 *5 *6 *7 *3)) (-4 *3 (-1194 *7)))) + (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) (-4 *5 (-354)) + (-4 *7 (-13 (-354) (-145) (-699 *5 *6))) (-5 *2 (-409 *3)) + (-5 *1 (-483 *5 *6 *7 *3)) (-4 *3 (-1194 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) - (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) - (-5 *2 (-410 *3)) (-5 *1 (-528 *5 *6 *7 *3)) + (-12 (-5 *4 (-1 (-409 (-1131 *7)) (-1131 *7))) + (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) + (-5 *2 (-409 *3)) (-5 *1 (-527 *5 *6 *7 *3)) (-4 *3 (-918 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-410 (-1131 *7)) (-1131 *7))) - (-4 *7 (-13 (-299) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) - (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-410 (-1131 *8))) - (-5 *1 (-528 *5 *6 *7 *8)) (-5 *3 (-1131 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-410 *3)) (-5 *1 (-542 *3)) (-4 *3 (-533)))) + (-12 (-5 *4 (-1 (-409 (-1131 *7)) (-1131 *7))) + (-4 *7 (-13 (-298) (-145))) (-4 *5 (-821)) (-4 *6 (-767)) + (-4 *8 (-918 *7 *6 *5)) (-5 *2 (-409 (-1131 *8))) + (-5 *1 (-527 *5 *6 *7 *8)) (-5 *3 (-1131 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-619 *5) *6)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *6 (-1194 *5)) (-5 *2 (-619 (-627 (-399 *6)))) - (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-399 *6))))) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *6 (-1194 *5)) (-5 *2 (-619 (-627 (-398 *6)))) + (-5 *1 (-631 *5 *6)) (-5 *3 (-627 (-398 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-355) (-145) (-1007 (-548)) (-1007 (-399 (-548))))) - (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-399 *5)))) - (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-399 *5))))) + (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *5 (-1194 *4)) (-5 *2 (-619 (-627 (-398 *5)))) + (-5 *1 (-631 *4 *5)) (-5 *3 (-627 (-398 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-646 *4))) (-5 *1 (-646 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-548)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) + (-12 (-5 *4 (-547)) (-5 *2 (-619 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1194 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) (-5 *2 (-410 *3)) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) (-5 *2 (-409 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-341)) - (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-340)) + (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-767)) (-4 *5 (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) - (-4 *6 (-299)) (-5 *2 (-410 *3)) (-5 *1 (-705 *4 *5 *6 *3)) + (-10 -8 (-15 -2829 ((-1135) $)) + (-15 -2995 ((-3 $ "failed") (-1135)))))) + (-4 *6 (-298)) (-5 *2 (-409 *3)) (-5 *1 (-705 *4 *5 *6 *3)) (-4 *3 (-918 (-921 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-767)) - (-4 *5 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *6 (-540)) - (-5 *2 (-410 *3)) (-5 *1 (-707 *4 *5 *6 *3)) - (-4 *3 (-918 (-399 (-921 *6)) *4 *5)))) + (-4 *5 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *6 (-539)) + (-5 *2 (-409 *3)) (-5 *1 (-707 *4 *5 *6 *3)) + (-4 *3 (-918 (-398 (-921 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-299) (-145))) - (-5 *2 (-410 *3)) (-5 *1 (-708 *4 *5 *6 *3)) - (-4 *3 (-918 (-399 *6) *4 *5)))) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-13 (-298) (-145))) + (-5 *2 (-409 *3)) (-5 *1 (-708 *4 *5 *6 *3)) + (-4 *3 (-918 (-398 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) - (-5 *2 (-410 *3)) (-5 *1 (-716 *4 *5 *6 *3)) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145))) + (-5 *2 (-409 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-918 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-299) (-145))) - (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-410 (-1131 *7))) + (-12 (-4 *4 (-821)) (-4 *5 (-767)) (-4 *6 (-13 (-298) (-145))) + (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-409 (-1131 *7))) (-5 *1 (-716 *4 *5 *6 *7)) (-5 *3 (-1131 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) - (-4 *3 (-1194 (-399 (-548)))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-976 *3)) + (-4 *3 (-1194 (-398 (-547)))))) ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-1010 *3)) - (-4 *3 (-1194 (-399 (-921 (-548))))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-1010 *3)) + (-4 *3 (-1194 (-398 (-921 (-547))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1194 (-399 (-548)))) - (-4 *5 (-13 (-355) (-145) (-699 (-399 (-548)) *4))) - (-5 *2 (-410 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1194 *5)))) + (-12 (-4 *4 (-1194 (-398 (-547)))) + (-4 *5 (-13 (-354) (-145) (-699 (-398 (-547)) *4))) + (-5 *2 (-409 *3)) (-5 *1 (-1042 *4 *5 *3)) (-4 *3 (-1194 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1194 (-399 (-921 (-548))))) - (-4 *5 (-13 (-355) (-145) (-699 (-399 (-921 (-548))) *4))) - (-5 *2 (-410 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1194 *5)))) + (-12 (-4 *4 (-1194 (-398 (-921 (-547))))) + (-4 *5 (-13 (-354) (-145) (-699 (-398 (-921 (-547))) *4))) + (-5 *2 (-409 *3)) (-5 *1 (-1044 *4 *5 *3)) (-4 *3 (-1194 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-443)) - (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-410 (-1131 (-399 *7)))) - (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-399 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1176)))) + (-12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-442)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-409 (-1131 (-398 *7)))) + (-5 *1 (-1130 *4 *5 *6 *7)) (-5 *3 (-1131 (-398 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1176)))) ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1194 *2)) (-4 *2 (-1194 *4)) (-5 *1 (-954 *4 *2 *3 *5)) - (-4 *4 (-341)) (-4 *5 (-699 *2 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *2) (-12 (-5 *2 (-1058 (-814 (-218)))) (-5 *1 (-297))))) + (-12 (-5 *2 (-409 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-547)))))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) - (-5 *1 (-793 *3)) (-4 *3 (-821)))) - ((*1 *1 *1 *1) (-5 *1 (-832)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-548)) (-5 *1 (-1073))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-727))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-890)) (-5 *1 (-433 *2)) - (-4 *2 (-1194 (-548))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-745)) (-5 *1 (-433 *2)) - (-4 *2 (-1194 (-548))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *1 (-433 *2)) - (-4 *2 (-1194 (-548))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) - (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-890)) (-5 *4 (-619 (-745))) (-5 *5 (-745)) - (-5 *6 (-112)) (-5 *1 (-433 *2)) (-4 *2 (-1194 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-890)) (-5 *4 (-410 *2)) (-4 *2 (-1194 *5)) - (-5 *1 (-435 *5 *2)) (-4 *5 (-1016))))) -(((*1 *1 *1) (-4 *1 (-605))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-767)) - (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) - (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *3 - (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) - (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *6)) - (-4 *6 - (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) - (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) - (-4 *2 (-918 (-921 *4) *5 *6))))) + (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| |coef2| (-756 *3)))) + (-5 *1 (-756 *3)) (-4 *3 (-539)) (-4 *3 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *5))) (-5 *4 (-619 (-1135))) (-4 *5 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *5)))))) (-5 *1 (-744 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *4)))))) (-5 *1 (-744 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4013 (-619 *6))) + *7 *6)) + (-4 *6 (-354)) (-4 *7 (-630 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1218 *6) "failed")) + (|:| -4013 (-619 (-1218 *6))))) + (-5 *1 (-787 *6 *7)) (-5 *4 (-1218 *6))))) (((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) - (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) - (-4 *6 (-918 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) - (-4 *4 (-13 (-1063) (-34)))))) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-308 (-218))) (-5 *2 (-308 (-399 (-548)))) - (-5 *1 (-297))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-540)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) - (-4 *2 (-540)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-540))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) - (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-540)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-745))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-540)))) - ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) - (-5 *1 (-938 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) - (-4 *5 (-231 *4 *2)) (-4 *6 (-231 *3 *2)) (-4 *2 (-540)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-524))) (-5 *1 (-524))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-548)) (-5 *1 (-1073)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1218 (-548))) (-5 *3 (-619 (-548))) (-5 *4 (-548)) - (-5 *1 (-1073))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) + (-12 (-4 *4 (-13 (-539) (-145))) (-5 *2 (-619 *3)) + (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-4 *3 (-539)) + (-5 *2 (-1131 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2) + (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354)) + (-5 *2 (-1131 (-921 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-166 (-217)) (-166 (-217)))) (-5 *4 (-1058 (-217))) + (-5 *2 (-1220)) (-5 *1 (-248))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *5) (-27) (-1157))) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-565 *3)) (-5 *1 (-549 *5 *3 *6)) (-4 *6 (-1063))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) - (-4 *4 (-1194 (-548))) (-5 *2 (-712 (-745))) (-5 *1 (-433 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1016)) - (-5 *2 (-712 (-745))) (-5 *1 (-435 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-767)) - (-4 *3 (-13 (-821) (-10 -8 (-15 -2591 ((-1135) $))))) (-4 *5 (-540)) - (-5 *1 (-707 *4 *3 *5 *2)) (-4 *2 (-918 (-399 (-921 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1016)) (-4 *5 (-767)) - (-4 *3 - (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) - (-5 *1 (-953 *4 *5 *3 *2)) (-4 *2 (-918 (-921 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-619 *6)) - (-4 *6 - (-13 (-821) - (-10 -8 (-15 -2591 ((-1135) $)) - (-15 -2754 ((-3 $ "failed") (-1135)))))) - (-4 *4 (-1016)) (-4 *5 (-767)) (-5 *1 (-953 *4 *5 *6 *2)) - (-4 *2 (-918 (-921 *4) *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182)) (-5 *3 (-547))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1965 *9)))) + (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) + (-4 *6 (-442)) (-4 *7 (-767)) (-4 *4 (-821)) + (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1965 *9)))) + (-5 *1 (-1071 *6 *7 *4 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 (-308 (-218)))) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-421 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-821) (-539)))))) +(((*1 *2 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-821)) (-4 *4 (-354)) (-4 *5 (-767)) (-5 *2 - (-2 (|:| |additions| (-548)) (|:| |multiplications| (-548)) - (|:| |exponentiations| (-548)) (|:| |functionCalls| (-548)))) - (-5 *1 (-297))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-619 (-548))) (-5 *3 (-112)) (-5 *1 (-1073))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3))))) + (-2 (|:| |mval| (-663 *4)) (|:| |invmval| (-663 *4)) + (|:| |genIdeal| (-493 *4 *5 *6 *7)))) + (-5 *1 (-493 *4 *5 *6 *7)) (-4 *7 (-918 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-539)) (-4 *2 (-442)) (-5 *1 (-938 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 (-217))) (-5 *2 (-307 (-370))) (-5 *1 (-296))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852)) + (-5 *3 (-619 (-547)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(((*1 *2 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-835 *4 *5 *6 *7)) + (-4 *4 (-1016)) (-14 *5 (-619 (-1135))) (-14 *6 (-619 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-4 *5 (-821)) (-4 *6 (-767)) + (-14 *8 (-619 *5)) (-5 *2 (-1223)) + (-5 *1 (-1230 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-918 *4 *6 *5)) + (-14 *9 (-619 *3)) (-14 *10 *3)))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1135)) - (|:| |arrayIndex| (-619 (-921 (-548)))) + (|:| |arrayIndex| (-619 (-921 (-547)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1135)) (|:| |rand| (-832)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1134)) (|:| |thenClause| (-322)) - (|:| |elseClause| (-322)))) + (-2 (|:| |switch| (-1134)) (|:| |thenClause| (-321)) + (|:| |elseClause| (-321)))) (|:| |returnBranch| - (-2 (|:| -1616 (-112)) - (|:| -4056 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2720 (-832)))))) - (|:| |blockBranch| (-619 (-322))) + (-2 (|:| -3169 (-112)) + (|:| -4152 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2961 (-832)))))) + (|:| |blockBranch| (-619 (-321))) (|:| |commentBranch| (-619 (-1118))) (|:| |callBranch| (-1118)) (|:| |forBranch| - (-2 (|:| -3094 (-1056 (-921 (-548)))) - (|:| |span| (-921 (-548))) (|:| -2286 (-322)))) + (-2 (|:| -2693 (-1056 (-921 (-547)))) + (|:| |span| (-921 (-547))) (|:| -2478 (-321)))) (|:| |labelBranch| (-1082)) - (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2286 (-322)))) + (|:| |loopBranch| (-2 (|:| |switch| (-1134)) (|:| -2478 (-321)))) (|:| |commonBranch| - (-2 (|:| -2275 (-1135)) (|:| |contents| (-619 (-1135))))) + (-2 (|:| -2464 (-1135)) (|:| |contents| (-619 (-1135))))) (|:| |printBranch| (-619 (-832))))) - (-5 *1 (-322))))) + (-5 *1 (-321))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-726))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-655)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-939)))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1080))))) +(((*1 *2 *3) + (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-802) (-821) (-1016))) + (-5 *2 (-1118)) (-5 *1 (-800 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1118)) + (-5 *1 (-800 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-796)) (-5 *4 (-307 *5)) + (-4 *5 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) + (-5 *1 (-800 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-796)) (-5 *4 (-307 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-802) (-821) (-1016))) (-5 *2 (-1223)) + (-5 *1 (-800 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-802)) (-5 *2 (-1118)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-802)) (-5 *3 (-112)) (-5 *2 (-1118)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *2 (-1223)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-802)) (-5 *3 (-796)) (-5 *4 (-112)) (-5 *2 (-1223))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) + (-4 *2 (-230 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) + (-4 *6 (-13 (-27) (-421 *5))) + (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1194 (-398 *7))) + (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3)) + (-4 *3 (-333 *6 *7 *8))))) +(((*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1 *1) (-4 *1 (-298))) ((*1 *1 *1 *1) (-5 *1 (-745))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-2 (|:| -2106 (-1131 *6)) (|:| -4248 (-547))))) + (-4 *6 (-298)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112)) + (-5 *1 (-717 *4 *5 *6 *7)) (-4 *7 (-918 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1194 *6)) + (-4 *6 (-13 (-27) (-421 *5))) + (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) (-4 *8 (-1194 (-398 *7))) + (-5 *2 (-565 *3)) (-5 *1 (-535 *5 *6 *7 *8 *3)) + (-4 *3 (-333 *6 *7 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-523))) (-5 *1 (-523))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385))))) +(((*1 *1 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *2 (-821)) (-4 *3 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-603 *2 *3 *4)) (-4 *2 (-821)) + (-4 *3 (-13 (-169) (-692 (-398 (-547))))) (-14 *4 (-890)))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016))))) +(((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) + ((*1 *2 *2) (-12 (-5 *2 (-547)) (-5 *1 (-457)))) + ((*1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-896))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-619 (-307 (-217)))) (-5 *3 (-217)) (-5 *2 (-112)) + (-5 *1 (-202))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-398 *3))) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-814 *3))) (-4 *3 (-13 (-1157) (-928) (-29 *5))) + (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-211 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1056 (-814 *3))) (-5 *5 (-1118)) + (-4 *3 (-13 (-1157) (-928) (-29 *6))) + (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-211 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1056 (-814 (-307 *5)))) + (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-398 (-921 *6))) (-5 *4 (-1056 (-814 (-307 *6)))) + (-5 *5 (-1118)) + (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1056 (-814 (-398 (-921 *5))))) (-5 *3 (-398 (-921 *5))) + (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-307 *5))) (|:| |f2| (-619 (-814 (-307 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1056 (-814 (-398 (-921 *6))))) (-5 *5 (-1118)) + (-5 *3 (-398 (-921 *6))) + (-4 *6 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |f1| (-814 (-307 *6))) (|:| |f2| (-619 (-814 (-307 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-212 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-3 *3 (-619 *3))) (-5 *1 (-419 *5 *3)) + (-4 *3 (-13 (-1157) (-928) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-464 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) + (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) + (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) + (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-1058 (-814 (-370)))) + (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) + (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) + (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) + (-5 *5 (-370)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-1058 (-814 (-370))))) + (-5 *5 (-370)) (-5 *6 (-1028)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370)))) + (-5 *5 (-1118)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-307 (-370))) (-5 *4 (-1056 (-814 (-370)))) + (-5 *5 (-1135)) (-5 *2 (-1004)) (-5 *1 (-548)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1194 *4)) + (-5 *2 (-565 (-398 *5))) (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) + (-4 *5 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *2 (-3 (-307 *5) (-619 (-307 *5)))) (-5 *1 (-568 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-715 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)) + (-4 *3 (-38 (-398 (-547)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-5 *1 (-921 *3)) (-4 *3 (-38 (-398 (-547)))) + (-4 *3 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-4 *2 (-821)) + (-5 *1 (-1088 *3 *2 *4)) (-4 *4 (-918 *3 (-519 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) + (-5 *1 (-1120 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1126 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1132 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1133 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *1 (-1166 *3)) (-4 *3 (-38 (-398 (-547)))) + (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-1524 + (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) + (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1157)) + (-4 *3 (-38 (-398 (-547)))))) + (-12 (-5 *2 (-1135)) (-4 *1 (-1178 *3)) (-4 *3 (-1016)) + (-12 (|has| *3 (-15 -2259 ((-619 *2) *3))) + (|has| *3 (-15 -2069 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1182 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) + ((*1 *1 *1 *2) + (-1524 + (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) + (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1157)) + (-4 *3 (-38 (-398 (-547)))))) + (-12 (-5 *2 (-1135)) (-4 *1 (-1199 *3)) (-4 *3 (-1016)) + (-12 (|has| *3 (-15 -2259 ((-619 *2) *3))) + (|has| *3 (-15 -2069 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1199 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1203 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-1524 + (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) + (-12 (-4 *3 (-29 (-547))) (-4 *3 (-928)) (-4 *3 (-1157)) + (-4 *3 (-38 (-398 (-547)))))) + (-12 (-5 *2 (-1135)) (-4 *1 (-1209 *3)) (-4 *3 (-1016)) + (-12 (|has| *3 (-15 -2259 ((-619 *2) *3))) + (|has| *3 (-15 -2069 (*3 *3 *2))) (-4 *3 (-38 (-398 (-547)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1209 *2)) (-4 *2 (-1016)) (-4 *2 (-38 (-398 (-547)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1214 *4)) (-14 *4 (-1135)) (-5 *1 (-1210 *3 *4 *5)) + (-4 *3 (-38 (-398 (-547)))) (-4 *3 (-1016)) (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-422 *4)) (-4 *4 (-821)) - (-4 *4 (-540)) (-5 *2 (-399 (-1131 *1))))) + (-12 (-5 *3 (-590 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821)) + (-4 *4 (-539)) (-5 *2 (-398 (-1131 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-591 *3)) (-4 *3 (-13 (-422 *6) (-27) (-1157))) - (-4 *6 (-13 (-443) (-1007 (-548)) (-821) (-145) (-615 (-548)))) - (-5 *2 (-1131 (-399 (-1131 *3)))) (-5 *1 (-544 *6 *3 *7)) + (-12 (-5 *4 (-590 *3)) (-4 *3 (-13 (-421 *6) (-27) (-1157))) + (-4 *6 (-13 (-442) (-1007 (-547)) (-821) (-145) (-615 (-547)))) + (-5 *2 (-1131 (-398 (-1131 *3)))) (-5 *1 (-543 *6 *3 *7)) (-5 *5 (-1131 *3)) (-4 *7 (-1063)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1214 *5)) (-14 *5 (-1135)) (-4 *6 (-1016)) @@ -14299,72 +12965,84 @@ (-4 *1 (-918 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) - (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-399 (-1131 *3))) + (-4 *7 (-918 *6 *5 *4)) (-5 *2 (-398 (-1131 *3))) (-5 *1 (-919 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))))) + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 - (-13 (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) (-15 -2480 (*7 $))))) + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) (-15 -1392 (*7 $))))) (-4 *7 (-918 *6 *5 *4)) (-4 *5 (-767)) (-4 *4 (-821)) (-4 *6 (-1016)) (-5 *1 (-919 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1135)) (-4 *5 (-540)) - (-5 *2 (-399 (-1131 (-399 (-921 *5))))) (-5 *1 (-1012 *5)) - (-5 *3 (-399 (-921 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-5 *4 (-1135)) (-4 *5 (-539)) + (-5 *2 (-398 (-1131 (-398 (-921 *5))))) (-5 *1 (-1012 *5)) + (-5 *3 (-398 (-921 *5)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-728))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) - (-5 *2 (-371)) (-5 *1 (-259)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *2 (-371)) (-5 *1 (-297))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-663 (-548))) (-5 *3 (-619 (-548))) (-5 *1 (-1073))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-727))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1016)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1194 *3))))) -(((*1 *1 *1) (-4 *1 (-605))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) + (-12 (-5 *3 (-619 (-471 *4 *5))) (-14 *4 (-619 (-1135))) + (-4 *5 (-442)) + (-5 *2 + (-2 (|:| |gblist| (-619 (-239 *4 *5))) + (|:| |gvlist| (-619 (-547))))) + (-5 *1 (-607 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-166 (-217)))) + (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-254))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) + (-4 *2 (-1209 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-833)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-832)) (-5 *2 (-1223)) (-5 *1 (-833)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-547)) (-5 *2 (-1223)) (-5 *1 (-1116 *4)) + (-4 *4 (-1063)) (-4 *4 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-172))) (-5 *1 (-1049))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-355)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4160 *1))) - (-4 *1 (-823 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-133))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-872 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-619 (-398 *7))) + (-4 *7 (-1194 *6)) (-5 *3 (-398 *7)) (-4 *6 (-354)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-557 *6 *7))))) (((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1016)) (-14 *3 (-619 (-1135))))) ((*1 *1 *1) - (-12 (-5 *1 (-216 *2 *3)) (-4 *2 (-13 (-1016) (-821))) + (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) (-14 *3 (-619 (-1135))))) ((*1 *1 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) ((*1 *1 *1) (-12 (-14 *2 (-619 (-1135))) (-4 *3 (-169)) - (-4 *5 (-231 (-3643 *2) (-745))) + (-4 *5 (-230 (-3763 *2) (-745))) (-14 *6 - (-1 (-112) (-2 (|:| -3337 *4) (|:| -3352 *5)) - (-2 (|:| -3337 *4) (|:| -3352 *5)))) - (-5 *1 (-452 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) + (-1 (-112) (-2 (|:| -3479 *4) (|:| -4248 *5)) + (-2 (|:| -3479 *4) (|:| -4248 *5)))) + (-5 *1 (-451 *2 *3 *4 *5 *6 *7)) (-4 *4 (-821)) (-4 *7 (-918 *3 *5 (-834 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-499 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) + ((*1 *1 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-821)))) ((*1 *1 *1) - (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) + (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) ((*1 *1 *1) (-12 (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1016)) @@ -14375,968 +13053,1534 @@ (-4 *2 (-821)))) ((*1 *1 *1) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) -(((*1 *2 *3) (-12 (-5 *3 (-308 (-218))) (-5 *2 (-218)) (-5 *1 (-297))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1016)) - (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) - (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-355)) (-5 *1 (-741 *2 *3)) (-4 *2 (-683 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-355))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220))))) +(((*1 *1 *1 *1) (-4 *1 (-298))) ((*1 *1 *1 *1) (-5 *1 (-745))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-547)) (-4 *7 (-918 *4 *5 *6)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-439 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220)))) + ((*1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-1220))))) +(((*1 *2) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1131 (-547))) (-5 *3 (-547)) (-4 *1 (-838 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4 *5 *6)) (-4 *3 (-354)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-4 *6 (-333 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-921 *6))) (-5 *4 (-619 (-1135))) + (-4 *6 (-13 (-539) (-1007 *5))) (-4 *5 (-539)) + (-5 *2 (-619 (-619 (-285 (-398 (-921 *6)))))) (-5 *1 (-1008 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1131 *9)) (-5 *4 (-619 *7)) (-5 *5 (-619 (-619 *8))) + (-4 *7 (-821)) (-4 *8 (-298)) (-4 *9 (-918 *8 *6 *7)) (-4 *6 (-767)) + (-5 *2 + (-2 (|:| |upol| (-1131 *8)) (|:| |Lval| (-619 *8)) + (|:| |Lfact| + (-619 (-2 (|:| -2106 (-1131 *8)) (|:| -4248 (-547))))) + (|:| |ctpol| *8))) + (-5 *1 (-717 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) + (-5 *1 (-689 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293))))) (((*1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-308 (-218))) (-5 *2 (-399 (-548))) (-5 *1 (-297))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) - (-5 *1 (-1073))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1016)) - (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) - (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) + (-5 *4 (-1118)) (-4 *5 (-13 (-298) (-145))) (-4 *8 (-918 *5 *7 *6)) + (-4 *6 (-13 (-821) (-592 (-1135)))) (-4 *7 (-767)) (-5 *2 (-547)) + (-5 *1 (-893 *5 *6 *7 *8))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) + ((*1 *1 *1) (-4 *1 (-819))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) + ((*1 *1 *1) (-4 *1 (-1025))) ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-793 *3)) (|:| |rm| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-821)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) + (-4 *7 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) + (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-619 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-619 (-1135))) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) + (-4 *7 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) + (-5 *1 (-893 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *7)) (-4 *7 (-918 *4 *6 *5)) + (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *7)) (|:| |neqzro| (-619 *7)) + (|:| |wcond| (-619 (-921 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *4)))))))))) + (-5 *1 (-893 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *5 (-890)) (-4 *9 (-918 *6 *8 *7)) + (-4 *6 (-13 (-298) (-145))) (-4 *7 (-13 (-821) (-592 (-1135)))) + (-4 *8 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) + (|:| |wcond| (-619 (-921 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *6)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *6)))))))))) + (-5 *1 (-893 *6 *7 *8 *9)) (-5 *4 (-619 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) + (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *9)) (|:| |neqzro| (-619 *9)) + (|:| |wcond| (-619 (-921 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *6)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *6)))))))))) + (-5 *1 (-893 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-890)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) + (-4 *7 (-767)) + (-5 *2 + (-619 + (-2 (|:| |eqzro| (-619 *8)) (|:| |neqzro| (-619 *8)) + (|:| |wcond| (-619 (-921 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1218 (-398 (-921 *5)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *5)))))))))) + (-5 *1 (-893 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 *9)) (-5 *5 (-1118)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) + (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-547)) + (-5 *1 (-893 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-619 (-1135))) (-5 *5 (-1118)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) + (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-547)) + (-5 *1 (-893 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-5 *4 (-1118)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) + (-4 *7 (-767)) (-5 *2 (-547)) (-5 *1 (-893 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 *10)) (-5 *5 (-890)) + (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145))) + (-4 *8 (-13 (-821) (-592 (-1135)))) (-4 *9 (-767)) (-5 *2 (-547)) + (-5 *1 (-893 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-663 *10)) (-5 *4 (-619 (-1135))) (-5 *5 (-890)) + (-5 *6 (-1118)) (-4 *10 (-918 *7 *9 *8)) (-4 *7 (-13 (-298) (-145))) + (-4 *8 (-13 (-821) (-592 (-1135)))) (-4 *9 (-767)) (-5 *2 (-547)) + (-5 *1 (-893 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *9)) (-5 *4 (-890)) (-5 *5 (-1118)) + (-4 *9 (-918 *6 *8 *7)) (-4 *6 (-13 (-298) (-145))) + (-4 *7 (-13 (-821) (-592 (-1135)))) (-4 *8 (-767)) (-5 *2 (-547)) + (-5 *1 (-893 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-421 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135)))) + ((*1 *1 *1) (-4 *1 (-157)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) - (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) + (-12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| |ans| (-398 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-984 *4 *5)) (-5 *3 (-398 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-539)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-354) (-293) + (-10 -8 (-15 -1382 ((-1087 *3 (-590 $)) $)) + (-15 -1392 ((-1087 *3 (-590 $)) $)) + (-15 -3834 ($ (-1087 *3 (-590 $)))))))))) +(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-364 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-623 *2 *3 *4)) (-4 *2 (-1063)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-663 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-663 *4)) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2) (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-663 *3))))) (((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) (-4 *3 (-593 (-371))))) + (-12 (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) (-4 *3 (-592 (-370))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-5 *2 (-166 (-371))) (-5 *1 (-759 *3)) - (-4 *3 (-593 (-371))))) + (-12 (-5 *4 (-890)) (-5 *2 (-166 (-370))) (-5 *1 (-759 *3)) + (-4 *3 (-592 (-370))))) ((*1 *2 *3) - (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-593 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-592 (-370))) + (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-890)) (-4 *5 (-169)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-593 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-592 (-370))) + (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-593 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 (-370))) + (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 *4))) (-4 *4 (-540)) (-4 *4 (-593 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 (-370))) + (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-399 (-921 (-166 *4)))) (-4 *4 (-540)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + (-12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-308 *4)) (-4 *4 (-540)) (-4 *4 (-821)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 *5)) (-5 *4 (-890)) (-4 *5 (-540)) (-4 *5 (-821)) - (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *5)))) + (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-308 (-166 *4))) (-4 *4 (-540)) (-4 *4 (-821)) - (-4 *4 (-593 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-759 *4)))) + (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-540)) - (-4 *5 (-821)) (-4 *5 (-593 (-371))) (-5 *2 (-166 (-371))) + (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) (-12 (-5 *3 (-218)) (-5 *2 (-399 (-548))) (-5 *1 (-297))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-619 (-548))) (-5 *3 (-663 (-548))) (-5 *1 (-1073))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-548)) - (-5 *1 (-434 *5 *3 *6)) (-4 *3 (-1194 *5)) - (-4 *6 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) - (-4 *3 (-1194 *4)) - (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) - (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-619 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1165 *5 *6 *7 *8)) (-4 *5 (-539)) + (-4 *6 (-767)) (-4 *7 (-821)) (-4 *8 (-1030 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-50 *2 *3)) (-14 *3 (-619 (-1135))))) + ((*1 *2 *1) + (-12 (-5 *2 (-307 *3)) (-5 *1 (-215 *3 *4)) + (-4 *3 (-13 (-1016) (-821))) (-14 *4 (-619 (-1135))))) + ((*1 *2 *1) + (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1063)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-14 *3 (-619 (-1135))) (-4 *5 (-230 (-3763 *3) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3479 *4) (|:| -4248 *5)) + (-2 (|:| -3479 *4) (|:| -4248 *5)))) + (-4 *2 (-169)) (-5 *1 (-451 *3 *2 *4 *5 *6 *7)) (-4 *4 (-821)) + (-4 *7 (-918 *2 *5 (-834 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-498 *2 *3)) (-4 *3 (-821)) (-4 *2 (-1063)))) + ((*1 *2 *1) + (-12 (-4 *2 (-539)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1016)) (-5 *1 (-710 *2 *3)) (-4 *3 (-821)) + (-4 *3 (-701)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)))) + ((*1 *2 *1) + (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *3 (-766)) (-4 *4 (-821)) + (-4 *2 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821))))) (((*1 *2 *3) - (-12 (-5 *3 (-1058 (-814 (-371)))) (-5 *2 (-1058 (-814 (-218)))) - (-5 *1 (-297))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-1073))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) (-5 *3 (-548)) - (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-727))))) + (-12 (-4 *4 (-1016)) (-5 *2 (-112)) (-5 *1 (-434 *4 *3)) + (-4 *3 (-1194 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-539)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *2 (-539)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-539))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) + (-4 *3 (-364 *2)) (-4 *4 (-364 *2)) (-4 *2 (-539)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-745))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-539)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-539)) + (-5 *1 (-938 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1019 *3 *4 *2 *5 *6)) (-4 *2 (-1016)) + (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-539)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-745)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1063)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1063)) (-5 *2 (-112)) + (-5 *1 (-1173 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2483 (-619 (-2 (|:| |irr| *10) (|:| -1889 (-547))))))) + (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-298)) + (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) + (-5 *2 + (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) + (|:| |corrfact| (-619 (-1131 *3))))) + (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1131 *3)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-619 (-371))) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-371))) (-5 *1 (-459)))) + (-12 (-5 *2 (-619 (-370))) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-370))) (-5 *1 (-458)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-843)) (-5 *2 (-1223)) (-5 *1 (-1219)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-890)) (-5 *4 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-5 *2 (-1131 *3)) (-5 *1 (-1146 *3)) + (-4 *3 (-354))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-532))))) (((*1 *2 *3) - (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) - (-4 *3 (-1194 *4)) - (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) - (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) + (-12 (-4 *1 (-333 *4 *3 *5)) (-4 *4 (-1176)) (-4 *3 (-1194 *4)) + (-4 *5 (-1194 (-398 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-814 (-371))) (-5 *2 (-814 (-218))) (-5 *1 (-297))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1063)) (-4 *6 (-1063)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-658 *4 *5 *6)) (-4 *5 (-1063))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-745)) (-4 *4 (-298)) (-4 *6 (-1194 *4)) + (-5 *2 (-1218 (-619 *6))) (-5 *1 (-445 *4 *6)) (-5 *5 (-619 *6))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1063)))) + ((*1 *2 *1) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *6 (-230 (-3763 *3) (-745))) + (-14 *7 + (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *6)) + (-2 (|:| -3479 *5) (|:| -4248 *6)))) + (-5 *2 (-688 *5 *6 *7)) (-5 *1 (-451 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-821)) (-4 *8 (-918 *4 *6 (-834 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-701)) (-4 *2 (-821)) (-5 *1 (-710 *3 *2)) + (-4 *3 (-1016)))) + ((*1 *1 *1) + (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-766)) + (-4 *4 (-821))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-831)) (-5 *3 (-129)) (-5 *2 (-1082))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-681 *4 *5 *6)) + (-4 *4 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172))))) +(((*1 *2 *1) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-14 *6 + (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *2)) + (-2 (|:| -3479 *5) (|:| -4248 *2)))) + (-4 *2 (-230 (-3763 *3) (-745))) (-5 *1 (-451 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-217) (-217))) (-5 *1 (-678 *3)) + (-4 *3 (-592 (-523))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1135)) (-5 *2 (-1 (-217) (-217) (-217))) + (-5 *1 (-678 *3)) (-4 *3 (-592 (-523)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-321))))) +(((*1 *1 *2) + (-12 (-5 *2 (-663 *4)) (-4 *4 (-1016)) (-5 *1 (-1102 *3 *4)) + (-14 *3 (-745))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-619 (-114)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-112)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1116 *2)) (-4 *2 (-298)) (-5 *1 (-171 *2))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-821))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-398 (-921 (-547))))) (-5 *4 (-619 (-1135))) + (-5 *2 (-619 (-619 *5))) (-5 *1 (-371 *5)) + (-4 *5 (-13 (-819) (-354))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 (-547)))) (-5 *2 (-619 *4)) (-5 *1 (-371 *4)) + (-4 *4 (-13 (-819) (-354)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1172)) (-5 *2 (-619 *1)) (-4 *1 (-979 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 (-166 (-547))))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-369 *4)) (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547)))))) + (-5 *4 (-619 (-1135))) (-5 *2 (-619 (-619 (-166 *5)))) + (-5 *1 (-369 *5)) (-4 *5 (-13 (-354) (-819)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) + (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1016)) (-5 *1 (-863 *2 *3)) (-4 *2 (-1194 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) + ((*1 *1 *1 *1) (-4 *1 (-767)))) (((*1 *2 *3) - (-12 (-4 *4 (-1016)) - (-4 *2 (-13 (-396) (-1007 *4) (-355) (-1157) (-276))) - (-5 *1 (-434 *4 *3 *2)) (-4 *3 (-1194 *4)))) + (-12 (-5 *3 (-619 (-1135))) (-5 *2 (-1223)) (-5 *1 (-1138)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *5 (-1016)) - (-4 *2 (-13 (-396) (-1007 *5) (-355) (-1157) (-276))) - (-5 *1 (-434 *5 *3 *2)) (-4 *3 (-1194 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-297)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-297)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *1) (-5 *1 (-1028))) - ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1113 *4)) - (-4 *4 (-1172)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) + (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) + (-5 *1 (-1138)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-619 (-1135))) (-5 *3 (-1135)) (-5 *2 (-1223)) + (-5 *1 (-1138))))) (((*1 *1 *1) - (-12 (-5 *1 (-575 *2)) (-4 *2 (-38 (-399 (-548)))) (-4 *2 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-308 (-371))) (-5 *2 (-308 (-218))) (-5 *1 (-297))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-727))))) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *1) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-821)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1016)) (-5 *2 (-548)) (-5 *1 (-434 *4 *3 *5)) - (-4 *3 (-1194 *4)) - (-4 *5 (-13 (-396) (-1007 *4) (-355) (-1157) (-276)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) - (-4 *5 (-13 (-299) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-571 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-218)) (-5 *1 (-297))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4328)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1118)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + (-12 (-5 *3 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) + (-5 *2 (-1223)) (-5 *1 (-1138)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *2 (-1004)) (-5 *1 (-726))))) + (-12 (-5 *3 (-1135)) + (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *2 (-1223)) + (-5 *1 (-1138)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1135)) + (-5 *4 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *2 (-1223)) + (-5 *1 (-1138))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-590 *3)) (-4 *3 (-821))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-52)) (-5 *1 (-1150))))) (((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1118)) (-5 *2 (-748)) (-5 *1 (-114)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-934))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) - (-5 *2 - (-2 (|:| |contp| (-548)) - (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) - (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-548))) (-5 *4 (-874 (-548))) - (-5 *2 (-663 (-548))) (-5 *1 (-570)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-619 (-663 (-548)))) - (-5 *1 (-570)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-548))) (-5 *4 (-619 (-874 (-548)))) - (-5 *2 (-619 (-663 (-548)))) (-5 *1 (-570))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-591 *1))) (-4 *1 (-294))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-921 (-399 (-548)))) (-5 *4 (-1135)) - (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *7)) (-4 *7 (-821)) + (-4 *8 (-918 *5 *6 *7)) (-4 *5 (-539)) (-4 *6 (-767)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1218 (-398 *8)) "failed")) + (|:| -4013 (-619 (-1218 (-398 *8)))))) + (-5 *1 (-643 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-726))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *3) (-12 (-5 *3 (-890)) (-5 *2 (-1118)) (-5 *1 (-760))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *2 (-1004)) (-5 *1 (-726))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) + (-12 (-4 *5 (-354)) + (-5 *2 + (-2 (|:| A (-663 *5)) + (|:| |eqs| + (-619 + (-2 (|:| C (-663 *5)) (|:| |g| (-1218 *5)) (|:| -2636 *6) + (|:| |rh| *5)))))) + (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) + (-4 *6 (-630 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) - (-5 *2 (-1004)) (-5 *1 (-811))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-619 (-548))) (-5 *2 (-745)) (-5 *1 (-570))))) + (-12 (-4 *5 (-354)) (-4 *6 (-630 *5)) + (-5 *2 (-2 (|:| -3509 (-663 *6)) (|:| |vec| (-1218 *5)))) + (-5 *1 (-787 *5 *6)) (-5 *3 (-663 *6)) (-5 *4 (-1218 *5))))) +(((*1 *1 *1) (-4 *1 (-235))) + ((*1 *1 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-280 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1194 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-1524 (-12 (-5 *1 (-285 *2)) (-4 *2 (-354)) (-4 *2 (-1172))) + (-12 (-5 *1 (-285 *2)) (-4 *2 (-463)) (-4 *2 (-1172))))) + ((*1 *1 *1) (-4 *1 (-463))) + ((*1 *2 *2) (-12 (-5 *2 (-1218 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-354))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-539) (-145))) + (-5 *2 (-2 (|:| -3826 *3) (|:| -3836 *3))) (-5 *1 (-1188 *4 *3)) + (-4 *3 (-1194 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 (-1116 (-218))) (-5 *1 (-185)))) + (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) + (|:| |expense| (-370)) (|:| |accuracy| (-370)) + (|:| |intermediateResults| (-370)))) + (-5 *2 (-1004)) (-5 *1 (-296))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *6 (-1194 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) - (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292)))) + (-12 (-5 *3 (-627 (-398 *7))) (-5 *4 (-1 (-619 *6) *7)) + (-5 *5 (-1 (-409 *7) *7)) + (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *7 (-1194 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *6 (-1194 *5)) (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1218 (-308 (-218)))) (-5 *4 (-619 (-1135))) - (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292))))) -(((*1 *1) - (-12 (-4 *1 (-396)) (-3958 (|has| *1 (-6 -4318))) - (-3958 (|has| *1 (-6 -4310))))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *2)) (-4 *2 (-1063)) (-4 *2 (-821)))) - ((*1 *2 *1) (-12 (-4 *1 (-804 *2)) (-4 *2 (-821)))) - ((*1 *1 *1 *1) (-4 *1 (-821))) ((*1 *1) (-5 *1 (-1082)))) -(((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *6 (-218)) - (-5 *3 (-548)) (-5 *2 (-1004)) (-5 *1 (-726))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-810)) - (-5 *3 - (-2 (|:| |fn| (-308 (-218))) (|:| -3410 (-619 (-218))) - (|:| |lb| (-619 (-814 (-218)))) (|:| |cf| (-619 (-308 (-218)))) - (|:| |ub| (-619 (-814 (-218)))))) - (-5 *2 (-1004)))) + (-12 (-5 *3 (-628 *7 (-398 *7))) (-5 *4 (-1 (-619 *6) *7)) + (-5 *5 (-1 (-409 *7) *7)) + (-4 *6 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *7 (-1194 *6)) (-5 *2 (-619 (-398 *7))) (-5 *1 (-786 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *1 (-810)) - (-5 *3 - (-2 (|:| |lfn| (-619 (-308 (-218)))) (|:| -3410 (-619 (-218))))) - (-5 *2 (-1004))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-418 *4 *2)) (-4 *2 (-13 (-1157) (-29 *4))))) + (-12 (-5 *3 (-627 (-398 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-399 (-921 *5))) (-5 *4 (-1135)) (-4 *5 (-145)) - (-4 *5 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *2 (-308 *5)) (-5 *1 (-569 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) - (-5 *2 (-619 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-308 (-218))) (-5 *4 (-619 (-1135))) - (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-1116 (-218))) (-5 *1 (-292))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-726))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) + (-12 (-5 *3 (-627 (-398 *6))) (-5 *4 (-1 (-409 *6) *6)) + (-4 *6 (-1194 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-628 *5 (-398 *5))) (-4 *5 (-1194 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-619 (-398 *5))) (-5 *1 (-786 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-628 *6 (-398 *6))) (-5 *4 (-1 (-409 *6) *6)) + (-4 *6 (-1194 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 (-619 (-398 *6))) (-5 *1 (-786 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) (((*1 *2 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-207 (-492))) (-5 *1 (-809))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) + (|partial| -12 (-5 *3 (-890)) + (-5 *2 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) + (-5 *1 (-337 *4)) (-4 *4 (-340))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-766)) (-4 *3 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-566 *2)) (-4 *2 (-13 (-29 *4) (-1157))) - (-5 *1 (-564 *4 *2)) - (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))))) + (-12 (-5 *2 (-2 (|:| -1679 (-547)) (|:| -2483 (-619 *3)))) + (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1075)) (-4 *3 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-421 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-566 (-399 (-921 *4)))) - (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *2 (-308 *4)) (-5 *1 (-569 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) - (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-185)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-308 (-218))) (-5 *4 (-1135)) - (-5 *5 (-1058 (-814 (-218)))) (-5 *2 (-619 (-218))) (-5 *1 (-292))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1806 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-726))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) + (-15 -1392 (*7 $)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-890)))) ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *4 (-169)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) - (-4 *3 (-622 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) - (-4 *3 (-622 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016)))) - ((*1 *1 *1) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1131 *4)) (-5 *1 (-568 *4)) - (-4 *4 (-341))))) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-890)) + (-5 *1 (-517 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-590 *1))) (-4 *1 (-293))))) +(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) - (-5 *2 (-112)) (-5 *1 (-292))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-12 (-5 *3 (-663 *2)) (-4 *4 (-1194 *2)) + (-4 *2 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-5 *1 (-488 *2 *4 *5)) (-4 *5 (-400 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1085 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) + (-4 *5 (-230 *3 *2)) (-4 *2 (-1016))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-619 (-745))) (-5 *1 (-938 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1116 (-619 (-547)))) (-5 *1 (-852))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-619 *3)) (-5 *1 (-938 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-218)) - (-5 *2 (-1004)) (-5 *1 (-726))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-169)) (-4 *2 (-1016)) (-5 *1 (-689 *2 *3)) - (-4 *3 (-622 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-169)) (-4 *2 (-1016))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-533))))) -(((*1 *1 *1 *1) (-4 *1 (-294))) ((*1 *1 *1) (-4 *1 (-294)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1135)) - (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *5)) - (-4 *5 (-13 (-27) (-1157) (-422 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *4 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-399 (-548))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-399 (-548))) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-307 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-548))) (-5 *4 (-286 *6)) - (-4 *6 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *6 *3)))) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1034 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-548))) (-5 *4 (-286 *7)) (-5 *5 (-1185 (-548))) - (-4 *7 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-548))) - (-4 *3 (-13 (-27) (-1157) (-422 *7))) - (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-399 (-548)))) (-5 *4 (-286 *8)) - (-5 *5 (-1185 (-399 (-548)))) (-5 *6 (-399 (-548))) - (-4 *8 (-13 (-27) (-1157) (-422 *7))) - (-4 *7 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1135)) (-5 *5 (-286 *3)) (-5 *6 (-1185 (-399 (-548)))) - (-5 *7 (-399 (-548))) (-4 *3 (-13 (-27) (-1157) (-422 *8))) - (-4 *8 (-13 (-540) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-52)) (-5 *1 (-450 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) - (-4 *3 (-1016)) (-5 *1 (-575 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-576 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1116 (-2 (|:| |k| (-548)) (|:| |c| *3)))) - (-4 *3 (-1016)) (-4 *1 (-1178 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-745)) - (-5 *3 (-1116 (-2 (|:| |k| (-399 (-548))) (|:| |c| *4)))) - (-4 *4 (-1016)) (-4 *1 (-1199 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-4 *1 (-1209 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1116 (-2 (|:| |k| (-745)) (|:| |c| *3)))) - (-4 *3 (-1016)) (-4 *1 (-1209 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) - (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-726))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-619 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1063)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-619 *4))) (-4 *4 (-1063)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-619 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1063)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) - (-5 *1 (-689 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-533))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-591 *1)) (-4 *1 (-294))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) + (-12 (-5 *5 (-745)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) (-4 *3 (-1030 *6 *7 *8)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *4)))) - (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) - (-5 *5 (-112)) (-4 *8 (-1030 *6 *7 *4)) (-4 *9 (-1036 *6 *7 *4 *8)) - (-4 *6 (-443)) (-4 *7 (-767)) (-4 *4 (-821)) - (-5 *2 (-619 (-2 (|:| |val| *8) (|:| -1806 *9)))) - (-5 *1 (-1071 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-726))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-622 *3)) (-4 *3 (-1016)) - (-5 *1 (-689 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1016)) (-5 *1 (-808 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533))))) -(((*1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-619 (-114)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1105 *6 *7 *8 *3 *4)) (-4 *4 (-1072 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) (-4 *3 (-1030 *5 *6 *7)) - (-5 *2 (-619 (-2 (|:| |val| (-619 *3)) (|:| -1806 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-726))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2198 (-548)) (|:| -3213 (-619 *3)))) - (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *1) - (-12 (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-322))))) + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-466 *4 *5 *6 *7)) (|:| -2303 (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-4 *1 (-498 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-821))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-236 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) + (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4328) (-6 -4329)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) + (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4328) (-6 -4329))))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-590 *3)) (-5 *5 (-1 (-1131 *3) (-1131 *3))) + (-4 *3 (-13 (-27) (-421 *6))) (-4 *6 (-13 (-821) (-539))) + (-5 *2 (-565 *3)) (-5 *1 (-534 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-921 (-547)))) (-5 *1 (-428)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-217))) (-5 *2 (-1067)) + (-5 *1 (-734)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-663 (-547))) (-5 *2 (-1067)) + (-5 *1 (-734))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-547)) (-5 *1 (-552 *3)) (-4 *3 (-1007 *2))))) (((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1016)) (-5 *1 (-689 *4 *2)) (-4 *2 (-622 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-442))))) +(((*1 *1 *1) + (-12 (-5 *1 (-215 *2 *3)) (-4 *2 (-13 (-1016) (-821))) + (-14 *3 (-619 (-1135)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3)) (-4 *3 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-940))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971) (-1157)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-112)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1063) (-1007 *5))) + (-4 *5 (-855 *4)) (-4 *4 (-1063)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-900 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) (((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-294)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *2 (-1223)) - (-5 *1 (-459)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1016)) (-4 *1 (-949 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-619 *2))) (-5 *4 (-619 *5)) + (-4 *5 (-38 (-398 (-547)))) (-4 *2 (-1209 *5)) + (-5 *1 (-1211 *5 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1004)) (-5 *1 (-296)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1004))) (-5 *2 (-1004)) (-5 *1 (-296)))) + ((*1 *1 *2) (-12 (-5 *2 (-619 *1)) (-4 *1 (-625 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) (-5 *1 (-1028))) + ((*1 *2 *3) + (-12 (-5 *3 (-1116 (-1116 *4))) (-5 *2 (-1116 *4)) (-5 *1 (-1113 *4)) + (-4 *4 (-1172)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-398 *4))) + (-5 *2 (-1218 *6)) (-5 *1 (-327 *3 *4 *5 *6)) + (-4 *6 (-333 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-1220)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-912 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-912 *3)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-912 (-218))) (-5 *1 (-1168)) (-5 *3 (-218))))) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-817))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-663 *2)) (-5 *4 (-547)) + (-4 *2 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *5 (-1194 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-745)) (-5 *1 (-566 *2)) (-4 *2 (-532))))) +(((*1 *2 *1) + (-12 (-4 *3 (-354)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *6)) + (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) (((*1 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) - (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) - (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-726))))) -(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-410 *3)) (-4 *3 (-540)))) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-890))) (-5 *1 (-1221))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-539))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| -1915 *4) (|:| -2512 (-548))))) - (-4 *4 (-1194 (-548))) (-5 *2 (-745)) (-5 *1 (-433 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-322)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-322))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-353 (-114))) (-4 *2 (-1016)) (-5 *1 (-689 *2 *4)) - (-4 *4 (-622 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-353 (-114))) (-5 *1 (-808 *2)) (-4 *2 (-1016))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) + (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-354)) (-4 *2 (-1194 *4)) + (-5 *1 (-891 *4 *2))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-745)) (-5 *1 (-567 *2)) (-4 *2 (-533)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3957 *3) (|:| -3352 (-745)))) (-5 *1 (-567 *3)) - (-4 *3 (-533))))) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-421 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1056 *2)) (-4 *2 (-421 *4)) (-4 *4 (-13 (-821) (-539))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1056 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1135))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-1118))))) (((*1 *2 *3) - (-12 (-5 *3 (-591 *5)) (-4 *5 (-422 *4)) (-4 *4 (-1007 (-548))) - (-4 *4 (-13 (-821) (-540))) (-5 *2 (-1131 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *1)) (-4 *1 (-1016)) (-4 *1 (-294)) - (-5 *2 (-1131 *1))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *1 *1) (-4 *1 (-936)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) - (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) (-5 *6 (-649 (-218))) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-725))))) + (-12 (-5 *2 (-409 (-1131 (-547)))) (-5 *1 (-183)) (-5 *3 (-547))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-745))) (-5 *3 (-168)) (-5 *1 (-1124 *4 *5)) + (-14 *4 (-890)) (-4 *5 (-1016))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-217)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-409 *4) *4)) (-4 *4 (-539)) (-5 *2 (-409 *4)) + (-5 *1 (-410 *4)))) + ((*1 *1 *1) (-5 *1 (-895))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) + ((*1 *1 *1) (-5 *1 (-896))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) + (-5 *4 (-398 (-547))) (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) + (-5 *1 (-989 *3)) (-4 *3 (-1194 (-547))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) + (-5 *4 (-398 (-547))) (-5 *1 (-990 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3826 (-398 (-547))) (|:| -3836 (-398 (-547))))) + (-5 *1 (-990 *3)) (-4 *3 (-1194 (-398 (-547)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 (-619 *3)) (-5 *1 (-893 *4 *5 *6 *3)) + (-4 *3 (-918 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 *3)) (-5 *1 (-541 *3)) (-4 *3 (-532))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-506)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1063) (-34))) (-5 *1 (-1100 *3 *2)) + (-4 *3 (-13 (-1063) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1229))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2) - (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *2) - (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) + (-12 (-5 *2 (-2 (|:| -2637 (-619 *3)) (|:| -2541 (-619 *3)))) + (-5 *1 (-1173 *3)) (-4 *3 (-1063))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1223)) (-5 *1 (-805))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-745)) (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-533))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-1016)) (-4 *4 (-1194 *3)) (-5 *1 (-161 *3 *4 *2)) - (-4 *2 (-1194 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1172))))) -(((*1 *1) (-5 *1 (-112)))) -(((*1 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) - (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6)))) + (-12 (-4 *3 (-1007 (-547))) (-4 *3 (-13 (-821) (-539))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-421 *3)))) ((*1 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-1223)) - (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1036 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *5 (-1118)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-81 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1004)) - (-5 *1 (-725))))) + (-12 (-4 *4 (-169)) (-5 *2 (-1131 *4)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1016)) (-4 *1 (-293)))) + ((*1 *2) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-1131 *3)))) + ((*1 *2) (-12 (-4 *1 (-699 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1194 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1033 *3 *2)) (-4 *3 (-13 (-819) (-354))) + (-4 *2 (-1194 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-307 (-217))) (-5 *2 (-112)) (-5 *1 (-258))))) +(((*1 *2 *1) + (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) + (-4 *5 (-230 (-3763 *3) (-745))) + (-14 *6 + (-1 (-112) (-2 (|:| -3479 *2) (|:| -4248 *5)) + (-2 (|:| -3479 *2) (|:| -4248 *5)))) + (-4 *2 (-821)) (-5 *1 (-451 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-918 *4 *5 (-834 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) + (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-732))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1172)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3)) (-4 *3 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-676 *4 *5 *6 *7)) + (-4 *4 (-592 (-523))) (-4 *5 (-1172)) (-4 *6 (-1172)) + (-4 *7 (-1172))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-1063)) (-4 *2 (-359))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) (((*1 *2) - (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *2) - (-12 (-5 *2 (-890)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548)))))) + (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157) (-971))) + (-5 *1 (-173 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-5 *2 (-547))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-795)) (-5 *4 (-52)) (-5 *2 (-1223)) (-5 *1 (-805))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-619 - (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *2)) - (|:| |logand| (-1131 *2))))) - (-5 *4 (-619 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-355)) (-5 *1 (-566 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1118)) (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *7 (-1030 *4 *5 *6)) (-5 *2 (-1223)) - (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-725))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-619 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-548))))) - (-4 *2 (-540)) (-5 *1 (-410 *2)))) - ((*1 *2 *3) + (-12 (-5 *3 (-619 (-398 (-921 (-166 (-547)))))) + (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4)) + (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-285 (-398 (-921 (-166 (-547))))))) + (-5 *2 (-619 (-619 (-285 (-921 (-166 *4)))))) (-5 *1 (-369 *4)) + (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 (-166 (-547))))) + (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4)) + (-4 *4 (-13 (-354) (-819))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-285 (-398 (-921 (-166 (-547)))))) + (-5 *2 (-619 (-285 (-921 (-166 *4))))) (-5 *1 (-369 *4)) + (-4 *4 (-13 (-354) (-819)))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-821)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-547)) (-4 *1 (-273 *3)) (-4 *3 (-1172)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-273 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |contp| (-548)) - (|:| -3213 (-619 (-2 (|:| |irr| *4) (|:| -3286 (-548))))))) - (-4 *4 (-1194 (-548))) (-5 *2 (-410 *4)) (-5 *1 (-433 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157)))))) -(((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-52)) (-5 *1 (-805))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-355))))) -(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1172))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) - (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) - (-5 *1 (-957 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) - (-4 *4 (-1036 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-443)) (-4 *7 (-767)) - (-4 *8 (-821)) (-4 *9 (-1030 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2383 (-619 *9)) (|:| -1806 *4) (|:| |ineq| (-619 *9)))) - (-5 *1 (-1070 *6 *7 *8 *9 *4)) (-5 *3 (-619 *9)) - (-4 *4 (-1036 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-75 G JACOBG JACGEP)))) - (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-428))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) + (-5 *2 + (-2 + (|:| -3326 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (|:| -1777 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-217))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2693 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-542)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-669 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 - (-619 - (-2 (|:| |scalar| (-399 (-548))) (|:| |coeff| (-1131 *3)) - (|:| |logand| (-1131 *3))))) - (-5 *1 (-566 *3)) (-4 *3 (-355))))) + (-2 + (|:| -3326 + (-2 (|:| |xinit| (-217)) (|:| |xend| (-217)) + (|:| |fn| (-1218 (-307 (-217)))) (|:| |yinit| (-619 (-217))) + (|:| |intvals| (-619 (-217))) (|:| |g| (-307 (-217))) + (|:| |abserr| (-217)) (|:| |relerr| (-217)))) + (|:| -1777 + (-2 (|:| |stiffness| (-370)) (|:| |stability| (-370)) + (|:| |expense| (-370)) (|:| |accuracy| (-370)) + (|:| |intermediateResults| (-370)))))) + (-5 *1 (-777)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532)))) + ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-547))) (-5 *1 (-1014)) + (-5 *3 (-547))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-4 *1 (-532)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1116 *4)) (-5 *3 (-1 *4 (-547))) (-4 *4 (-1016)) + (-5 *1 (-1120 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-547)) (-4 *4 (-340)) + (-5 *1 (-517 *4))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-382))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *5)) (-5 *4 (-1218 *5)) (-4 *5 (-354)) + (-5 *2 (-112)) (-5 *1 (-641 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-354)) (-4 *6 (-13 (-364 *5) (-10 -7 (-6 -4329)))) + (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4329)))) (-5 *2 (-112)) + (-5 *1 (-642 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) - (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *9 (-1030 *6 *7 *8)) - (-5 *2 - (-619 - (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) - (-5 *1 (-957 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-619 *10)) (-5 *5 (-112)) (-4 *10 (-1036 *6 *7 *8 *9)) - (-4 *6 (-443)) (-4 *7 (-767)) (-4 *8 (-821)) - (-4 *9 (-1030 *6 *7 *8)) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-921 (-166 *4))) (-4 *4 (-169)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-921 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-169)) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-398 (-921 (-166 *4)))) (-4 *4 (-539)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-398 (-921 (-166 *5)))) (-5 *4 (-890)) + (-4 *5 (-539)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) + (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) + (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-539)) (-4 *4 (-821)) + (-4 *4 (-592 (-370))) (-5 *2 (-166 (-370))) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-821)) (-4 *5 (-592 (-370))) (-5 *2 (-166 (-370))) + (-5 *1 (-759 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-236 *2)) (-4 *2 (-1172))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-425)) (-5 *2 (-619 - (-2 (|:| -2383 (-619 *9)) (|:| -1806 *10) (|:| |ineq| (-619 *9))))) - (-5 *1 (-1070 *6 *7 *8 *9 *10)) (-5 *3 (-619 *9))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) - (-5 *2 (-1004)) (-5 *1 (-724)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-86 BDYVAL)))) - (-5 *8 (-380)) (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428))))) -(((*1 *1 *1) - (-12 (-4 *1 (-918 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-443)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-4 *3 (-1030 *4 *5 *6)) - (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1806 *1)))) - (-4 *1 (-1036 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1176))) - ((*1 *2 *2) - (-12 (-4 *3 (-540)) (-5 *1 (-1197 *3 *2)) - (-4 *2 (-13 (-1194 *3) (-540) (-10 -8 (-15 -3587 ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) + (-3 (|:| -2464 (-1135)) + (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547))))))))) + (-5 *1 (-1139))))) +(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-745)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-393)) (-5 *2 (-745))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-566 *3)) (-4 *3 (-355))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-701)) (-4 *2 (-1172))))) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) + (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-354) (-145) (-1007 (-398 (-547))))) (-4 *6 (-1194 *5)) + (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2636 *3)))) + (-5 *1 (-783 *5 *6 *3 *7)) (-4 *3 (-630 *6)) + (-4 *7 (-630 (-398 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-619 *5) *6)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-4 *6 (-1194 *5)) + (-5 *2 (-619 (-2 (|:| |poly| *6) (|:| -2636 (-628 *6 (-398 *6)))))) + (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-314 *4 *2)) (-4 *4 (-1063)) + (-4 *2 (-130))))) (((*1 *2 *2) - (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) - (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-957 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-619 (-2 (|:| |val| (-619 *6)) (|:| -1806 *7)))) - (-4 *6 (-1030 *3 *4 *5)) (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-1070 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-83 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-218)) - (-5 *2 (-1004)) (-5 *1 (-724))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-428))))) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) + (-4 *4 (-340)) (-5 *2 (-663 *4)) (-5 *1 (-337 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-217)) (-5 *2 (-398 (-547))) (-5 *1 (-296))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1172)) + (-4 *4 (-364 *2)) (-4 *5 (-364 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) + (-4 *2 (-1172))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-442))))) (((*1 *2 *1) - (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-130)) - (-5 *2 (-619 (-2 (|:| |gen| *3) (|:| -2458 *4)))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-421 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| -1489 *3) (|:| -3310 *4)))) - (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-701)))) + (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) + (-4 *3 (-1063)))) ((*1 *2 *1) - (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-766)) - (-5 *2 (-1116 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-566 *3)) (-4 *3 (-355))))) + (|partial| -12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-619 *1)) (-4 *1 (-918 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1016)) + (-4 *7 (-918 *6 *4 *5)) (-5 *2 (-619 *3)) + (-5 *1 (-919 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-354) + (-10 -8 (-15 -3834 ($ *7)) (-15 -1382 (*7 $)) + (-15 -1392 (*7 $)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-540)) + (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *1 (-1167 *3)) + (-4 *3 (-943))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-646 *3)) (-4 *3 (-821)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3)) (-4 *3 (-821)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3846 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-370)) (-5 *1 (-96))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-4 *3 (-1030 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1034 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-619 *4)) + (|:| |todo| (-619 (-2 (|:| |val| (-619 *3)) (|:| -1965 *4)))))) + (-5 *1 (-1105 *5 *6 *7 *3 *4)) (-4 *4 (-1072 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-619 (-398 *6))) (-5 *3 (-398 *6)) + (-4 *6 (-1194 *5)) (-4 *5 (-13 (-354) (-145) (-1007 (-547)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-619 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-551 *5 *6))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-619 (-547))) (-5 *3 (-663 (-547))) (-5 *1 (-1073))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1172)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4329)) (-4 *1 (-479 *3)) (-4 *3 (-1172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-890)))) ((*1 *1) (-4 *1 (-532))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) + ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-673)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-861 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1063)) + (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-861 *4)) (-5 *3 (-619 (-1 (-112) *5))) (-4 *4 (-1063)) + (-4 *5 (-1172)) (-5 *1 (-859 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-861 *5)) (-5 *3 (-619 (-1135))) + (-5 *4 (-1 (-112) (-619 *6))) (-4 *5 (-1063)) (-4 *6 (-1172)) + (-5 *1 (-859 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1172)) (-4 *4 (-821)) + (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) (-4 *4 (-821)) + (-5 *1 (-906 *4 *2 *5)) (-4 *2 (-421 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1172)) + (-5 *2 (-307 (-547))) (-5 *1 (-907 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1135)) (-5 *4 (-619 (-1 (-112) *5))) (-4 *5 (-1172)) + (-5 *2 (-307 (-547))) (-5 *1 (-907 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-1 (-112) (-619 *6))) + (-4 *6 (-13 (-421 *5) (-855 *4) (-592 (-861 *4)))) (-4 *4 (-1063)) + (-4 *5 (-13 (-1016) (-855 *4) (-821) (-592 (-861 *4)))) + (-5 *1 (-1039 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) - (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-957 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-619 *7)) (|:| -1806 *8))) - (-4 *7 (-1030 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) - (-5 *1 (-1070 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-663 (-218))) (-5 *4 (-548)) (-5 *5 (-218)) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1004)) - (-5 *1 (-724))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-428))))) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3772 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-745)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-547)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-745)) (-4 *5 (-169)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) + (-239 *4 (-398 (-547))))) + (-5 *3 (-619 (-834 *4))) (-14 *4 (-619 (-1135))) (-14 *5 (-745)) + (-5 *1 (-494 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172)))) + ((*1 *1 *2) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1172)) (-5 *1 (-1094 *4 *2)) + (-4 *2 (-13 (-582 (-547) *4) (-10 -7 (-6 -4328) (-6 -4329)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-821)) (-4 *3 (-1172)) (-5 *1 (-1094 *3 *2)) + (-4 *2 (-13 (-582 (-547) *3) (-10 -7 (-6 -4328) (-6 -4329))))))) +(((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-532)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) (((*1 *2 *1) - (-12 (-4 *1 (-245 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) - (-4 *5 (-258 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-245 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) - (-4 *5 (-258 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-258 *3)) (-4 *3 (-821)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-890)))) - ((*1 *2 *3) - (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-360) (-355))) - (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *7 (-334 *4 *5 *6)) - (-5 *2 (-745)) (-5 *1 (-384 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-807 (-890))))) - ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) - ((*1 *2 *1) - (-12 (-4 *3 (-540)) (-5 *2 (-548)) (-5 *1 (-599 *3 *4)) - (-4 *4 (-1194 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) - (-4 *3 (-821)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-715 *4 *3)) (-4 *4 (-1016)) (-4 *3 (-821)) - (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) - ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) + (-5 *2 + (-2 (|:| -2985 (-745)) (|:| |curves| (-745)) + (|:| |polygons| (-745)) (|:| |constructs| (-745))))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-619 *6)) (-4 *1 (-945 *3 *4 *5 *6)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-4 *3 (-539))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1135)) (-5 *6 (-112)) + (-4 *7 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-4 *3 (-13 (-1157) (-928) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-814 *3)) (|:| |f2| (-619 (-814 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-211 *7 *3)) (-5 *5 (-814 *3))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-730)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-379)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-379)) + (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *2 *3) + (-12 (-5 *3 (-896)) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) + (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) + (-5 *1 (-151)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-896)) (-5 *4 (-398 (-547))) + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) + (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) + (-5 *1 (-151)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-422 *4)) - (-4 *6 (-1194 *5)) (-4 *7 (-1194 (-399 *6))) - (-4 *8 (-334 *5 *6 *7)) - (-4 *4 (-13 (-821) (-540) (-1007 (-548)))) (-5 *2 (-745)) - (-5 *1 (-880 *4 *5 *6 *7 *8)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) + (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) + (-5 *1 (-151)) (-5 *3 (-619 (-912 (-217)))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-328 (-399 (-548)) *4 *5 *6)) - (-4 *4 (-1194 (-399 (-548)))) (-4 *5 (-1194 (-399 *4))) - (-4 *6 (-334 (-399 (-548)) *4 *5)) (-5 *2 (-745)) - (-5 *1 (-881 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-355)) - (-4 *7 (-1194 *6)) (-4 *4 (-1194 (-399 *7))) (-4 *8 (-334 *6 *7 *4)) - (-4 *9 (-13 (-360) (-355))) (-5 *2 (-745)) - (-5 *1 (-987 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-4 *3 (-540)) - (-5 *2 (-745)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-619 (-619 (-912 (-217))))) + (|:| |xValues| (-1058 (-217))) (|:| |yValues| (-1058 (-217))))) + (-5 *1 (-151)) (-5 *3 (-619 (-619 (-912 (-217))))))) + ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-370)))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))) +(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217))))) + ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-563))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1241 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-817))))) (((*1 *2 *3) - (-12 (-4 *4 (-443)) - (-5 *2 - (-619 - (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) - (|:| |eigmult| (-745)) - (|:| |eigvec| (-619 (-663 (-399 (-921 *4)))))))) - (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-832)))) - ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-931))))) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) + (-5 *2 (-619 (-1058 (-217)))) (-5 *1 (-897))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-1016)) (-5 *2 (-547)) + (-5 *1 (-433 *5 *3 *6)) (-4 *3 (-1194 *5)) + (-4 *6 (-13 (-395) (-1007 *5) (-354) (-1157) (-275))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) + (-4 *3 (-1194 *4)) + (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1157) (-275)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) + (-4 *4 (-38 (-398 (-547))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1135)) (-5 *6 (-619 (-590 *3))) + (-5 *5 (-590 *3)) (-4 *3 (-13 (-27) (-1157) (-421 *7))) + (-4 *7 (-13 (-442) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *2 (-2 (|:| -2848 *3) (|:| |coeff| *3))) + (-5 *1 (-540 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-426)) (|:| -2648 "void"))) - (-5 *1 (-429))))) -(((*1 *1 *1) (-4 *1 (-1025))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) + (-12 (-4 *3 (-225)) (-4 *3 (-1016)) (-4 *4 (-821)) (-4 *5 (-257 *4)) + (-4 *6 (-767)) (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-4 *3 (-821)) (-4 *5 (-257 *3)) (-4 *6 (-767)) + (-5 *2 (-1 *1 (-745))) (-4 *1 (-244 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-745)) (-4 *1 (-257 *2)) (-4 *2 (-821))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-912 (-217))) (-5 *4 (-843)) (-5 *5 (-890)) + (-5 *2 (-1223)) (-5 *1 (-458)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1223)) (-5 *1 (-458)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-843)) (-5 *5 (-890)) + (-5 *2 (-1223)) (-5 *1 (-458))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-619 (-254))) (-5 *1 (-1220)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1095 (-217))) (-5 *3 (-1118)) (-5 *1 (-1220)))) + ((*1 *1 *1) (-5 *1 (-1220)))) +(((*1 *2) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-1058 (-217))))) + ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-1058 (-217)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-663 *2)) (-5 *4 (-745)) + (-4 *2 (-13 (-298) (-10 -8 (-15 -3457 ((-409 $) $))))) + (-4 *5 (-1194 *2)) (-5 *1 (-488 *2 *5 *6)) (-4 *6 (-400 *2 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1135)) - (-4 *4 (-13 (-299) (-821) (-145) (-1007 (-548)) (-615 (-548)))) - (-5 *1 (-559 *4 *2)) - (-4 *2 (-13 (-1157) (-928) (-1099) (-29 *4)))))) + (-12 (-5 *2 (-619 (-874 *3))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-619 (-745))) (-5 *1 (-1221))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-1039 *3 *4 *5))) (-4 *3 (-1063)) + (-4 *4 (-13 (-1016) (-855 *3) (-821) (-592 (-861 *3)))) + (-4 *5 (-13 (-421 *4) (-855 *3) (-592 (-861 *3)))) + (-5 *1 (-1040 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821)) (-4 *2 (-539)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-539))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *1) (-4 *1 (-936)))) +(((*1 *2 *3) + (-12 (-4 *1 (-889)) (-5 *2 (-2 (|:| -1557 (-619 *1)) (|:| -4240 *1))) + (-5 *3 (-619 *1))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) (((*1 *2 *3) - (-12 (-4 *4 (-443)) + (-12 (-5 *2 (-619 (-1131 (-547)))) (-5 *1 (-183)) (-5 *3 (-547))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-819) (-354))) (-5 *2 (-112)) (-5 *1 (-1026 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-935 *3)) (-4 *3 (-936))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3509 (-663 (-398 (-921 *4)))) + (|:| |vec| (-619 (-398 (-921 *4)))) (|:| -3107 (-745)) + (|:| |rows| (-619 (-547))) (|:| |cols| (-619 (-547))))) + (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *2 - (-619 - (-2 (|:| |eigval| (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4)))) - (|:| |geneigvec| (-619 (-663 (-399 (-921 *4)))))))) - (-5 *1 (-284 *4)) (-5 *3 (-663 (-399 (-921 *4))))))) + (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *4))))))) + (-5 *1 (-893 *4 *5 *6 *7)) (-4 *7 (-918 *4 *6 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) + (-5 *1 (-1173 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1063)) (-5 *2 (-1223)) + (-5 *1 (-1173 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-1101 *2 *3)) (-4 *2 (-13 (-1063) (-34))) - (-4 *3 (-13 (-1063) (-34)))))) + (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) + (-4 *4 (-821))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-364 *2)) + (-4 *5 (-364 *2)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1172)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-547)) (-4 *1 (-1019 *4 *5 *2 *6 *7)) + (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1016))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-547)) (|has| *1 (-6 -4329)) (-4 *1 (-1206 *3)) + (-4 *3 (-1172))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-832)))) + ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-931))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-594)))) +(((*1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-359)) (-4 *2 (-1063))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1063)) (-4 *4 (-1063)) + (-4 *6 (-1063)) (-5 *2 (-1 *6 *5)) (-5 *1 (-658 *5 *4 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-1082)) (-4 *4 (-340)) + (-5 *1 (-517 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 (-547))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1131 (-398 (-547)))) (-5 *2 (-619 *1)) (-4 *1 (-981)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-981)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-819) (-354))) (-4 *3 (-1194 *4)) (-5 *2 (-619 *1)) + (-4 *1 (-1033 *4 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *2 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) + (-4 *4 (-1016))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-675))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1063)) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-619 *5)) + (-5 *1 (-859 *4 *5)) (-4 *5 (-1172))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1135)) (|:| |fn| (-308 (-218))) - (|:| -3094 (-1058 (-814 (-218)))) (|:| |abserr| (-218)) - (|:| |relerr| (-218)))) + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -15350,237 +14594,826 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1116 (-218))) + (-3 (|:| |str| (-1116 (-217))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3094 + (|:| -2693 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-543))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-171 *3)) (-4 *3 (-299)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-715 *3 *4)) (-4 *3 (-1016)) + (-5 *1 (-542))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) + (-4 *2 + (-13 (-393) + (-10 -7 (-15 -3834 (*2 *4)) (-15 -1966 ((-890) *2)) + (-15 -4013 ((-1218 *2) (-890))) (-15 -3774 (*2 *2))))) + (-5 *1 (-347 *2 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-547)) (-5 *1 (-233)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-1118))) (-5 *2 (-547)) (-5 *1 (-233))))) +(((*1 *2) + (-12 (-4 *3 (-1016)) (-5 *2 (-927 (-687 *3 *4))) (-5 *1 (-687 *3 *4)) + (-4 *4 (-1194 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1135)) (-5 *3 (-619 *1)) (-4 *1 (-421 *4)) (-4 *4 (-821)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *1 (-949 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1135)) (-4 *1 (-421 *3)) (-4 *3 (-821))))) +(((*1 *2 *3) + (-12 (-5 *3 (-239 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-442)) + (-5 *2 (-471 *4 *5)) (-5 *1 (-607 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-393)) (-5 *2 (-745)))) + ((*1 *1 *1) (-4 *1 (-393)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) + (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-547)) (-5 *1 (-370))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1065 *4)) (-4 *4 (-1063)) (-5 *2 (-1 *4)) + (-5 *1 (-986 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 (-547))) (-5 *2 (-1 (-547))) (-5 *1 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1058 (-814 (-370)))) (-5 *2 (-1058 (-814 (-217)))) + (-5 *1 (-296))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *1) (-5 *1 (-1028)))) +(((*1 *2 *1) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-943))))) +(((*1 *2 *2) + (-12 (-4 *3 (-821)) (-5 *1 (-898 *3 *2)) (-4 *2 (-421 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-307 (-547))) (-5 *1 (-899))))) +(((*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-382))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) + (-4 *1 (-333 *4 *3 *5)) (-4 *5 (-1194 (-398 *3)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1135)) + (-5 *2 (-3 (|:| |fst| (-425)) (|:| -2887 "void"))) (-5 *1 (-1138))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-619 + (-2 + (|:| -3326 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))) + (|:| -1777 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1116 (-217))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2693 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-542)))) + ((*1 *2 *1) + (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) + (-5 *2 (-619 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-1030 *4 *5 *6)) (-4 *4 (-539)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *1 (-946 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-619 (-1131 *4))) (-5 *3 (-1131 *4)) + (-4 *4 (-878)) (-5 *1 (-637 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-663 (-547))) (-5 *1 (-1073))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2)) + (-5 *2 (-370)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) + (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) + (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-821)) (-4 *5 (-592 *2)) (-5 *2 (-370)) + (-5 *1 (-759 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-821)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-619 *7) *7 (-1131 *7))) (-5 *5 (-1 (-409 *7) *7)) + (-4 *7 (-1194 *6)) (-4 *6 (-13 (-354) (-145) (-1007 (-398 (-547))))) + (-5 *2 (-619 (-2 (|:| |frac| (-398 *7)) (|:| -2636 *3)))) + (-5 *1 (-783 *6 *7 *3 *8)) (-4 *3 (-630 *7)) + (-4 *8 (-630 (-398 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-409 *6) *6)) (-4 *6 (-1194 *5)) + (-4 *5 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))) + (-5 *2 + (-619 (-2 (|:| |frac| (-398 *6)) (|:| -2636 (-628 *6 (-398 *6)))))) + (-5 *1 (-786 *5 *6)) (-5 *3 (-628 *6 (-398 *6)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-130))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-354) (-145) (-1007 (-547)))) + (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| -2848 (-398 *5)) (|:| |coeff| (-398 *5)))) + (-5 *1 (-551 *4 *5)) (-5 *3 (-398 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) + (-5 *2 (-1218 (-619 (-2 (|:| -4152 *4) (|:| -3479 (-1082)))))) + (-5 *1 (-337 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-663 (-217))) (-5 *6 (-663 (-547))) (-5 *3 (-547)) + (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-1063)) (-5 *2 (-619 *1)) + (-4 *1 (-373 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-710 *3 *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1016)) + (-4 *4 (-701)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-918 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1139))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-307 (-217)))) (-5 *1 (-258))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3846 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-96))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-594)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) + (-4 *3 (-1194 *4)) + (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1157) (-275)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-912 *4)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3) + (-12 (-14 *4 (-619 (-1135))) (-14 *5 (-745)) + (-5 *2 + (-619 + (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) + (-239 *4 (-398 (-547)))))) + (-5 *1 (-494 *4 *5)) + (-5 *3 + (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) + (-239 *4 (-398 (-547)))))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 + (-2 (|:| |solns| (-619 *5)) + (|:| |maps| (-619 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1090 *3 *5)) (-4 *3 (-1194 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *1) + (-12 (-5 *2 (-398 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-1016)) (-4 *2 (-1194 *4)) + (-5 *1 (-434 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-398 (-1131 (-307 *5)))) (-5 *3 (-1218 (-307 *5))) + (-5 *4 (-547)) (-4 *5 (-13 (-539) (-821))) (-5 *1 (-1092 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-532)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-370) (-370))) (-5 *4 (-370)) + (-5 *2 + (-2 (|:| -4152 *4) (|:| -3026 *4) (|:| |totalpts| (-547)) + (|:| |success| (-112)))) + (-5 *1 (-763)) (-5 *5 (-547))))) +(((*1 *1 *2) (-12 (-5 *2 (-398 (-547))) (-5 *1 (-209))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3772 *4))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217)))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-912 (-217))) (-5 *2 (-1223)) (-5 *1 (-458))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-112)) (-5 *6 (-663 (-217))) + (-5 *4 (-217)) (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-493 *3 *4 *5 *6))) (-4 *3 (-354)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *1 (-493 *3 *4 *5 *6)) (-4 *6 (-918 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-619 *1)) (-5 *3 (-619 *7)) (-4 *1 (-1036 *4 *5 *6 *7)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-1030 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-443)) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)) (-4 *4 (-443)) - (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-619 *1)) (-4 *1 (-1036 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-895)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-895)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-912 (-217)) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1218 *5)) (-4 *5 (-766)) (-5 *2 (-112)) + (-5 *1 (-816 *4 *5)) (-14 *4 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1209 *4)) (-5 *1 (-1211 *4 *2)) + (-4 *4 (-38 (-398 (-547))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842 (-935 *3) (-935 *3))) (-5 *1 (-935 *3)) + (-4 *3 (-936))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-398 (-547))) (-4 *1 (-537 *3)) + (-4 *3 (-13 (-395) (-1157))))) + ((*1 *1 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-398 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) + (-4 *3 (-539)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-539))))) +(((*1 *1 *2) + (-12 (-5 *2 (-398 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-13 (-354) (-145))) + (-5 *1 (-390 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-1124 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-1220))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 *1)) (-4 *1 (-358 *4)) (-4 *4 (-169)) + (-5 *2 (-619 (-921 *4))))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-619 (-921 *4))) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) + ((*1 *2) + (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-5 *2 (-619 (-921 *3))))) + ((*1 *2) + (-12 (-5 *2 (-619 (-921 *3))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) + (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1218 (-443 *4 *5 *6 *7))) (-5 *2 (-619 (-921 *4))) + (-5 *1 (-443 *4 *5 *6 *7)) (-4 *4 (-539)) (-4 *4 (-169)) + (-14 *5 (-890)) (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1004)) + (-5 *1 (-721))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-745)) (-4 *5 (-340)) (-4 *6 (-1194 *5)) + (-5 *2 + (-619 + (-2 (|:| -4013 (-663 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-663 *6))))) + (-5 *1 (-487 *5 *6 *7)) + (-5 *3 + (-2 (|:| -4013 (-663 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-663 *6)))) + (-4 *7 (-1194 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971) (-1157)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-619 (-745)))) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-745)) (-4 *4 (-340)) + (-5 *1 (-517 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-957 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-1030 *4 *5 *6)) (-4 *4 (-442)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-1070 *4 *5 *6 *7 *8)) (-4 *8 (-1036 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) + (-4 *3 (-1063))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-821)) (-5 *2 (-745))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-619 *1)) (-4 *1 (-889))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-411 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1157) (-421 *3))) + (-14 *4 (-1135)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-4 *2 (-13 (-27) (-1157) (-421 *3) (-10 -8 (-15 -3834 ($ *4))))) + (-4 *4 (-819)) + (-4 *5 + (-13 (-1196 *2 *4) (-354) (-1157) + (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $))))) + (-5 *1 (-413 *3 *2 *4 *5 *6 *7)) (-4 *6 (-952 *5)) (-14 *7 (-1135))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1137 (-398 (-547)))) + (-5 *1 (-182))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-745)) (-4 *1 (-223 *4)) + (-4 *4 (-1016)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1165 *3 *4 *5 *2)) (-4 *3 (-540)) (-4 *4 (-767)) - (-4 *5 (-821)) (-4 *2 (-1030 *3 *4 *5)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-745)))) + ((*1 *1 *1) (-4 *1 (-225))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-745)) (-4 *1 (-952 *2)) (-4 *2 (-1157))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-558 *5 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-399 (-921 *6)) (-1125 (-1135) (-921 *6)))) - (-5 *5 (-745)) (-4 *6 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *6))))) - (-5 *1 (-284 *6)) (-5 *4 (-663 (-399 (-921 *6)))))) + (-12 (-5 *2 (-745)) (-4 *3 (-13 (-354) (-145))) (-5 *1 (-390 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-354) (-145))) (-5 *1 (-390 *2 *3)) + (-4 *3 (-1194 *2)))) + ((*1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-619 *4)) (-5 *3 (-619 (-745))) (-4 *1 (-869 *4)) + (-4 *4 (-1063)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-869 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *1 (-869 *3)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *2)) (-4 *2 (-1063))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-590 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-619 (-590 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-48))) (-5 *3 (-590 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-354) (-819))) (-5 *1 (-177 *2 *3)) + (-4 *3 (-1194 (-166 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-890)) (-4 *1 (-320 *3)) (-4 *3 (-354)) (-4 *3 (-359)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *2)) (-4 *2 (-354)))) + ((*1 *2 *1) + (-12 (-4 *1 (-361 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) (-5 *1 (-404 *3 *2 *4 *5)) + (-4 *3 (-298)) (-4 *5 (-13 (-400 *2 *4) (-1007 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-961 *3)) + (-5 *1 (-405 *3 *2 *4 *5 *6)) (-4 *3 (-298)) (-4 *5 (-400 *2 *4)) + (-14 *6 (-1218 *5)))) ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) - (|:| |eigmult| (-745)) (|:| |eigvec| (-619 *4)))) - (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) - (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34))) - (-4 *5 (-13 (-1063) (-34))) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *1 (-1194 *4)) (-4 *4 (-1016)) - (-5 *2 (-1218 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-843)))) - ((*1 *2 *3) (-12 (-5 *3 (-912 *2)) (-5 *1 (-951 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) (-4 *5 (-355)) - (-5 *2 - (-2 (|:| |ir| (-566 (-399 *6))) (|:| |specpart| (-399 *6)) - (|:| |polypart| *6))) - (-5 *1 (-558 *5 *6)) (-5 *3 (-399 *6))))) + (-12 (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1157) (-275))) + (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1194 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-590 (-484)))) (-5 *1 (-484)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-590 (-484))) (-5 *1 (-484)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-484))) (-5 *3 (-619 (-590 (-484)))) + (-5 *1 (-484)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1131 (-484))) (-5 *3 (-590 (-484))) (-5 *1 (-484)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1218 *4)) (-5 *3 (-890)) (-4 *4 (-340)) + (-5 *1 (-517 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-442)) (-4 *5 (-699 *4 *2)) (-4 *2 (-1194 *4)) + (-5 *1 (-749 *4 *2 *5 *3)) (-4 *3 (-1194 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1118)) (-5 *3 (-547)) (-5 *1 (-233))))) +(((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-1221))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4330 "*"))) + (-4 *4 (-1016)) (-5 *1 (-997 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) + (|has| *4 (-6 (-4330 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-399 (-921 *5)) (-1125 (-1135) (-921 *5)))) - (-4 *5 (-443)) (-5 *2 (-619 (-663 (-399 (-921 *5))))) - (-5 *1 (-284 *5)) (-5 *4 (-663 (-399 (-921 *5))))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1100 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) - (-5 *2 (-112)) (-5 *1 (-1101 *5 *6))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-745)) (-5 *1 (-114))))) + (-12 (-5 *4 (-547)) (-4 *5 (-340)) (-5 *2 (-409 (-1131 (-1131 *5)))) + (-5 *1 (-1170 *5)) (-5 *3 (-1131 (-1131 *5)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1194 *3)) (-4 *3 (-1016)) (-5 *2 (-1131 *3))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-112)) (-5 *1 (-861 *4)) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) + (-5 *2 (-814 *4)) (-5 *1 (-304 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) + (-5 *2 (-814 *4)) (-5 *1 (-1204 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1157) (-421 *3))) (-14 *5 (-1135)) + (-14 *6 *4)))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1063))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-896))))) (((*1 *2 *3) - (-12 (-5 *3 (-663 (-399 (-921 *4)))) (-4 *4 (-443)) - (-5 *2 (-619 (-3 (-399 (-921 *4)) (-1125 (-1135) (-921 *4))))) - (-5 *1 (-284 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-228 *3)) - (-4 *3 (-1063)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4327)) (-4 *1 (-228 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-274 *2)) (-4 *2 (-1172)) (-4 *2 (-1063)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-274 *3)) (-4 *3 (-1172)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-589 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-1063)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-548)) (-4 *4 (-1063)) - (-5 *1 (-712 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-5 *1 (-712 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) - (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1131 *3)) (-4 *3 (-1016)) (-4 *1 (-1194 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1135))) (-5 *3 (-52)) (-5 *1 (-861 *4)) - (-4 *4 (-1063))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-619 (-1135))) (-4 *4 (-1063)) - (-4 *5 (-13 (-1016) (-855 *4) (-821) (-593 (-861 *4)))) - (-5 *1 (-1039 *4 *5 *2)) - (-4 *2 (-13 (-422 *5) (-855 *4) (-593 (-861 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1063)) - (-4 *4 (-13 (-1016) (-855 *3) (-821) (-593 (-861 *3)))) - (-5 *1 (-1039 *3 *4 *2)) - (-4 *2 (-13 (-422 *4) (-855 *3) (-593 (-861 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-4 *5 (-355)) - (-4 *5 (-1016)) (-5 *2 (-112)) (-5 *1 (-998 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-663 *4))) (-4 *4 (-355)) (-4 *4 (-1016)) - (-5 *2 (-112)) (-5 *1 (-998 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-315 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-353 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-378 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-623 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-1049))) (-5 *1 (-283))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-619 (-1100 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1063) (-34))) (-4 *5 (-13 (-1063) (-34))) - (-5 *1 (-1101 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-619 (-1100 *3 *4))) (-4 *3 (-13 (-1063) (-34))) - (-4 *4 (-13 (-1063) (-34))) (-5 *1 (-1101 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) + (-12 (-5 *3 (-814 (-370))) (-5 *2 (-814 (-217))) (-5 *1 (-296))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-657 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-619 (-1135))) (|:| |pred| (-52)))) - (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-619 (-663 *6))) (-5 *4 (-112)) (-5 *5 (-548)) - (-5 *2 (-663 *6)) (-5 *1 (-998 *6)) (-4 *6 (-355)) (-4 *6 (-1016)))) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1218 (-398 (-921 *4)))) + (|:| -4013 (-619 (-1218 (-398 (-921 *4))))))) + (-5 *3 (-619 *7)) (-4 *4 (-13 (-298) (-145))) + (-4 *7 (-918 *4 *6 *5)) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-5 *1 (-893 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 (-239 *4 *5))) (-5 *2 (-239 *4 *5)) + (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-298)) (-4 *3 (-169)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) + (-5 *1 (-662 *3 *4 *5 *6)) (-4 *6 (-661 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-5 *1 (-998 *4)) - (-4 *4 (-355)) (-4 *4 (-1016)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-548)) (-5 *2 (-663 *5)) - (-5 *1 (-998 *5)) (-4 *5 (-355)) (-4 *5 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-621 *3)) (-4 *3 (-1063))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-548)))) + (-12 (-5 *2 (-2 (|:| -2225 *3) (|:| -3856 *3))) (-5 *1 (-674 *3)) + (-4 *3 (-298))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-859 *4 *3)) + (-4 *3 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-340)) (-5 *2 (-927 (-1131 *4))) (-5 *1 (-348 *4)) + (-5 *3 (-1131 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-539))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-539))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *2)) (-5 *4 (-1135)) (-4 *2 (-421 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-821) (-539))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-4 *1 (-981)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1131 *1)) (-5 *3 (-890)) (-5 *4 (-832)) + (-4 *1 (-981)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-890)) (-4 *4 (-13 (-819) (-354))) + (-4 *1 (-1033 *4 *2)) (-4 *2 (-1194 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-995 (-814 (-547)))) + (-5 *3 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *4)))) (-4 *4 (-1016)) + (-5 *1 (-574 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-333 *4 *5 *6)) (-4 *4 (-1176)) + (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) + (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-979 *3)) (-4 *3 (-1172)) (-4 *3 (-1063)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-217)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-398 (-547))) (-5 *1 (-370))))) +(((*1 *2 *3) + (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-298)) + (-5 *2 (-398 (-409 (-921 *4)))) (-5 *1 (-1011 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-539)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-946 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-619 *7)) (-5 *3 (-112)) (-4 *7 (-1030 *4 *5 *6)) + (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-5 *1 (-946 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *2 (-1004)) (-5 *1 (-727))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-340)) (-4 *2 (-1016)) (-5 *1 (-687 *2 *3)) + (-4 *3 (-1194 *2))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-547)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-745)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-890)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-548)) (-14 *3 (-745)) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) (-4 *4 (-169)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-218)) (-5 *1 (-154)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-217)) (-5 *1 (-154)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-890)) (-5 *1 (-154)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157))) - (-5 *1 (-220 *3)))) + (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-354) (-1157))) + (-5 *1 (-219 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) + (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-231 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) + (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) + (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) + (-12 (-5 *1 (-285 *2)) (-4 *2 (-1075)) (-4 *2 (-1172)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-353 *2)) (-4 *2 (-1063)))) + (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1063)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-352 *2)) (-4 *2 (-1063)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-373 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)))) + (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-821)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-378 *2)) (-4 *2 (-1063)))) + (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1063)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) - (-4 *6 (-231 (-3643 *3) (-745))) + (-4 *6 (-230 (-3763 *3) (-745))) (-14 *7 - (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *6)) - (-2 (|:| -3337 *5) (|:| -3352 *6)))) - (-5 *1 (-452 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) + (-1 (-112) (-2 (|:| -3479 *5) (|:| -4248 *6)) + (-2 (|:| -3479 *5) (|:| -4248 *6)))) + (-5 *1 (-451 *3 *4 *5 *6 *7 *2)) (-4 *5 (-821)) (-4 *2 (-918 *4 *6 (-834 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-461 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + (-12 (-4 *1 (-460 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) - (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) + (-12 (-4 *2 (-354)) (-4 *3 (-767)) (-4 *4 (-821)) + (-5 *1 (-493 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-341)) (-5 *1 (-518 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-524))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-548)) (-5 *1 (-576 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-576 *2)) (-4 *2 (-1016)))) + (-12 (-5 *2 (-1218 *3)) (-4 *3 (-340)) (-5 *1 (-517 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-523))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-575 *3)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-575 *2)) (-4 *2 (-1016)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1023)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-821)))) ((*1 *2 *3 *4) @@ -15588,42 +15421,42 @@ (-4 *6 (-1063)) (-4 *7 (-1063)) (-5 *2 (-1 *7 *5)) (-5 *1 (-658 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-365 *3)) - (-4 *4 (-365 *3)))) + (-12 (-4 *1 (-661 *3 *2 *4)) (-4 *3 (-1016)) (-4 *2 (-364 *3)) + (-4 *4 (-364 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-365 *3)) - (-4 *2 (-365 *3)))) + (-12 (-4 *1 (-661 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *2 (-364 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-548)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-661 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-364 *2)) + (-4 *4 (-364 *2)))) ((*1 *1 *1 *1) (-4 *1 (-695))) ((*1 *1 *1 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821)))) ((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-540)) + (-12 (-5 *2 (-1218 *4)) (-4 *4 (-1194 *3)) (-4 *3 (-539)) (-5 *1 (-938 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1023)))) ((*1 *1 *1 *1) (-4 *1 (-1075))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-231 *3 *4)) - (-4 *5 (-231 *3 *4)))) + (-12 (-4 *1 (-1085 *3 *4 *2 *5)) (-4 *4 (-1016)) (-4 *2 (-230 *3 *4)) + (-4 *5 (-230 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-231 *3 *4)) - (-4 *2 (-231 *3 *4)))) + (-12 (-4 *1 (-1085 *3 *4 *5 *2)) (-4 *4 (-1016)) (-4 *5 (-230 *3 *4)) + (-4 *2 (-230 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-1016)) (-4 *4 (-821)) (-5 *1 (-1088 *3 *4 *2)) - (-4 *2 (-918 *3 (-520 *4) *4)))) + (-4 *2 (-918 *3 (-519 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) ((*1 *2 *3 *2) @@ -15631,585 +15464,550 @@ ((*1 *2 *2 *3) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1016)) (-5 *1 (-1120 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-912 (-218))) (-5 *3 (-218)) (-5 *1 (-1168)))) + (-12 (-5 *2 (-912 (-217))) (-5 *3 (-217)) (-5 *1 (-1168)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-701)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-548)) (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-21)))) + (-12 (-5 *2 (-547)) (-4 *1 (-1216 *3)) (-4 *3 (-1172)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-821)) (-4 *3 (-1016)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1241 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-817))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-1067)) (-5 *1 (-283))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-443)) (-4 *4 (-821)) (-4 *5 (-767)) (-5 *2 (-112)) - (-5 *1 (-956 *3 *4 *5 *6)) (-4 *6 (-918 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) - (-4 *4 (-13 (-1063) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *2) (-12 (-5 *1 (-1158 *2)) (-4 *2 (-1063)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-1158 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-619 (-1158 *2))) (-5 *1 (-1158 *2)) (-4 *2 (-1063))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *1) (-4 *1 (-605))) + (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *4 (-745)) + (-5 *2 (-663 (-217))) (-5 *1 (-258))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-1138)) (-5 *3 (-1135))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2)) + (-4 *2 (-630 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-398 *4)) (-4 *4 (-1194 *3)) + (-4 *3 (-13 (-354) (-145) (-1007 (-547)))) (-5 *1 (-551 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) + (-4 *2 (-13 (-395) (-1007 *4) (-354) (-1157) (-275))) + (-5 *1 (-433 *4 *3 *2)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *2 (-13 (-395) (-1007 *5) (-354) (-1157) (-275))) + (-5 *1 (-433 *5 *3 *2)) (-4 *3 (-1194 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-933 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547)))) + (-4 *2 (-169))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1016)) (-4 *5 (-767)) (-4 *3 (-821)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-918 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1016)) (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) - (-4 *1 (-1194 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-663 *5))) (-5 *4 (-1218 *5)) (-4 *5 (-299)) - (-4 *5 (-1016)) (-5 *2 (-663 *5)) (-5 *1 (-998 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *1)) (-5 *4 (-1218 *1)) (-4 *1 (-615 *5)) - (-4 *5 (-1016)) - (-5 *2 (-2 (|:| -4035 (-663 *5)) (|:| |vec| (-1218 *5)))))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1218 *4)) (-5 *3 (-663 *4)) (-4 *4 (-354)) + (-5 *1 (-641 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-354)) + (-4 *5 (-13 (-364 *4) (-10 -7 (-6 -4329)))) + (-4 *2 (-13 (-364 *4) (-10 -7 (-6 -4329)))) + (-5 *1 (-642 *4 *5 *2 *3)) (-4 *3 (-661 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-619 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-354)) + (-5 *1 (-788 *2 *3)) (-4 *3 (-630 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-663 *1)) (-4 *1 (-615 *4)) (-4 *4 (-1016)) - (-5 *2 (-663 *4))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1135)) (-5 *3 (-1067)) (-5 *1 (-283))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) - (-4 *3 (-13 (-1063) (-34)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-745)) (-5 *1 (-1064 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1228))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-1016)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1194 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1063))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-663 *5))) (-4 *5 (-299)) (-4 *5 (-1016)) - (-5 *2 (-1218 (-1218 *5))) (-5 *1 (-998 *5)) (-5 *4 (-1218 *5))))) + (-12 (-4 *2 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *1 (-1090 *3 *2)) (-4 *3 (-1194 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) (-4 *5 (-355)) - (-4 *5 (-540)) (-5 *2 (-1218 *5)) (-5 *1 (-614 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1218 *4)) (-4 *4 (-615 *5)) - (-3958 (-4 *5 (-355))) (-4 *5 (-540)) (-5 *2 (-1218 (-399 *5))) - (-5 *1 (-614 *5 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-619 (-934))) (-5 *1 (-283))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1100 *3 *2)) (-4 *3 (-13 (-1063) (-34))) - (-4 *2 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-166 (-218))) (-5 *6 (-1118)) - (-5 *4 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2) (-12 (-5 *2 (-1107 (-1118))) (-5 *1 (-382))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-834 *5))) (-14 *5 (-619 (-1135))) (-4 *6 (-443)) - (-5 *2 (-619 (-619 (-240 *5 *6)))) (-5 *1 (-462 *5 *6 *7)) - (-5 *3 (-619 (-240 *5 *6))) (-4 *7 (-443))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) -(((*1 *2 *1) - (-12 (-5 *2 (-619 (-52))) (-5 *1 (-861 *3)) (-4 *3 (-1063))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-619 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-1016)) - (-5 *1 (-998 *4))))) + (-12 (-4 *5 (-354)) (-4 *7 (-1194 *5)) (-4 *4 (-699 *5 *7)) + (-5 *2 (-2 (|:| -3509 (-663 *6)) (|:| |vec| (-1218 *5)))) + (-5 *1 (-785 *5 *6 *7 *4 *3)) (-4 *6 (-630 *5)) (-4 *3 (-630 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-130)) + (-4 *3 (-766))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) - (-5 *2 (-1218 *4)) (-5 *1 (-614 *4 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1135)) (-5 *3 (-619 (-934))) (-5 *1 (-283))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) - (-4 *4 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) - (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-459)))) + (-12 (-5 *3 (-1131 *4)) (-4 *4 (-340)) (-5 *2 (-927 (-1082))) + (-5 *1 (-337 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 (-821)) (-5 *2 (-745))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1218 *5)) (-5 *3 (-745)) (-5 *4 (-1082)) (-4 *5 (-340)) + (-5 *1 (-517 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-166 (-217)))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-619 (-912 (-217))))) (-5 *3 (-619 (-843))) + (-5 *1 (-458))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-619 (-1 *4 (-619 *4)))) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1063)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-1 *4 (-619 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1063))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3715 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) (((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-355)) (-14 *5 (-962 *3 *4))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-745)) (-4 *1 (-1194 *3)) (-4 *3 (-1016))))) + (-4 *4 (-354)) (-14 *5 (-962 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-766)))) + ((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1016)) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *1) + (-12 (-5 *2 (-547)) (-5 *1 (-215 *3 *4)) (-4 *3 (-13 (-1016) (-821))) + (-14 *4 (-619 (-1135))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-266)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1131 *8)) (-5 *4 (-619 *6)) (-4 *6 (-821)) + (-4 *8 (-918 *7 *5 *6)) (-4 *5 (-767)) (-4 *7 (-1016)) + (-5 *2 (-619 (-745))) (-5 *1 (-312 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-320 *3)) (-4 *3 (-354)) (-5 *2 (-890)))) + ((*1 *2 *1) + (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-460 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-539)) (-5 *2 (-547)) (-5 *1 (-599 *3 *4)) + (-4 *4 (-1194 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *3)) (-4 *3 (-1016)) (-5 *2 (-745)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-873 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-874 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-619 (-745))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-918 *4 *5 *3)) (-4 *4 (-1016)) (-4 *5 (-767)) + (-4 *3 (-821)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-942 *3 *2 *4)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *2 (-766)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-745)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1209 *3)) + (-5 *2 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) + (-5 *2 (-398 (-547))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1237 *3)) (-4 *3 (-354)) (-5 *2 (-807 (-890))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016)) + (-5 *2 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-619 *9)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *9 (-1072 *5 *6 *7 *8)) (-4 *5 (-442)) (-4 *6 (-767)) + (-4 *7 (-821)) (-5 *2 (-745)) (-5 *1 (-1105 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-619 (-861 *3))) (-5 *1 (-861 *3)) - (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1218 (-1218 *4))) (-4 *4 (-1016)) (-5 *2 (-663 *4)) - (-5 *1 (-998 *4))))) + (-12 + (-5 *2 + (-493 (-398 (-547)) (-232 *4 (-745)) (-834 *3) + (-239 *3 (-398 (-547))))) + (-14 *3 (-619 (-1135))) (-14 *4 (-745)) (-5 *1 (-494 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-370)) (-5 *1 (-96))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 *5)) (-4 *5 (-615 *4)) (-4 *4 (-540)) - (-5 *2 (-112)) (-5 *1 (-614 *4 *5))))) -(((*1 *1) (-5 *1 (-283)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1118)) (-5 *3 (-748)) (-5 *1 (-114))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1100 *2 *3)) (-4 *2 (-13 (-1063) (-34))) - (-4 *3 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1118)) (-5 *4 (-166 (-218))) (-5 *5 (-548)) - (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) - (-5 *4 (-619 (-890))) (-5 *5 (-619 (-255))) (-5 *1 (-459)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) - (-5 *4 (-619 (-890))) (-5 *1 (-459)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459)))) - ((*1 *1 *1) (-5 *1 (-459)))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016))))) + (-12 + (-5 *3 + (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) + (-239 *4 (-398 (-547))))) + (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) + (-5 *1 (-494 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-233))))) (((*1 *2 *1) - (-12 (-4 *4 (-1063)) (-5 *2 (-112)) (-5 *1 (-854 *3 *4 *5)) - (-4 *3 (-1063)) (-4 *5 (-640 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-858 *3 *4)) (-4 *3 (-1063)) - (-4 *4 (-1063))))) + (-12 + (-5 *2 + (-619 + (-619 + (-3 (|:| -2464 (-1135)) + (|:| -2428 (-619 (-3 (|:| S (-1135)) (|:| P (-921 (-547)))))))))) + (-5 *1 (-1139))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1194 *3)) (-5 *1 (-390 *3 *2)) + (-4 *3 (-13 (-354) (-145)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-874 (-548))) (-5 *4 (-548)) (-5 *2 (-663 *4)) - (-5 *1 (-997 *5)) (-4 *5 (-1016)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-548))) (-5 *2 (-663 (-548))) (-5 *1 (-997 *4)) - (-4 *4 (-1016)))) + (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) + (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-539))) (-5 *2 (-619 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-398 (-1131 (-307 *3)))) (-4 *3 (-13 (-539) (-821))) + (-5 *1 (-1092 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-532)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-734))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3) (-12 (-5 *2 (-370)) (-5 *1 (-759 *3)) (-4 *3 (-592 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-874 (-548)))) (-5 *4 (-548)) - (-5 *2 (-619 (-663 *4))) (-5 *1 (-997 *5)) (-4 *5 (-1016)))) + (-12 (-5 *4 (-890)) (-5 *2 (-370)) (-5 *1 (-759 *3)) + (-4 *3 (-592 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-619 (-548)))) (-5 *2 (-619 (-663 (-548)))) - (-5 *1 (-997 *4)) (-4 *4 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-814 *3))) (-4 *3 (-13 (-27) (-1157) (-422 *5))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 - (-3 (-814 *3) - (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) - (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) - "failed")) - (-5 *1 (-612 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1118)) - (-4 *3 (-13 (-27) (-1157) (-422 *6))) - (-4 *6 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-814 *3)) (-5 *1 (-612 *6 *3)))) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-1016)) (-4 *4 (-592 *2)) + (-5 *2 (-370)) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-814 (-921 *5)))) (-4 *5 (-443)) - (-5 *2 - (-3 (-814 (-399 (-921 *5))) - (-2 (|:| |leftHandLimit| (-3 (-814 (-399 (-921 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-814 (-399 (-921 *5))) "failed"))) - "failed")) - (-5 *1 (-613 *5)) (-5 *3 (-399 (-921 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) - (-4 *5 (-443)) - (-5 *2 - (-3 (-814 *3) - (-2 (|:| |leftHandLimit| (-3 (-814 *3) "failed")) - (|:| |rightHandLimit| (-3 (-814 *3) "failed"))) - "failed")) - (-5 *1 (-613 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-286 (-399 (-921 *6)))) (-5 *5 (-1118)) - (-5 *3 (-399 (-921 *6))) (-4 *6 (-443)) (-5 *2 (-814 *3)) - (-5 *1 (-613 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1118) (-748))) (-5 *1 (-114))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1063) (-34))) (-4 *6 (-13 (-1063) (-34))) - (-5 *2 (-112)) (-5 *1 (-1100 *5 *6))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *1 (-459))))) -(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) + (-12 (-5 *3 (-921 *5)) (-5 *4 (-890)) (-4 *5 (-1016)) + (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1218 *1)) (-4 *1 (-362 *2 *4)) (-4 *4 (-1194 *2)) - (-4 *2 (-169)))) - ((*1 *2) - (-12 (-4 *4 (-1194 *2)) (-4 *2 (-169)) (-5 *1 (-400 *3 *2 *4)) - (-4 *3 (-401 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-401 *2 *3)) (-4 *3 (-1194 *2)) (-4 *2 (-169)))) - ((*1 *2) - (-12 (-4 *3 (-1194 *2)) (-5 *2 (-548)) (-5 *1 (-742 *3 *4)) - (-4 *4 (-401 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *3 (-169)))) + (-12 (-5 *3 (-398 (-921 *4))) (-4 *4 (-539)) (-4 *4 (-592 *2)) + (-5 *2 (-370)) (-5 *1 (-759 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-890)) (-4 *5 (-539)) + (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5)))) ((*1 *2 *3) - (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-4 *2 (-1063)) - (-5 *1 (-858 *4 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-997 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-619 (-663 *3))) (-4 *3 (-1016)) (-5 *1 (-997 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-286 (-807 *3))) - (-4 *5 (-13 (-443) (-821) (-1007 (-548)) (-615 (-548)))) - (-5 *2 (-807 *3)) (-5 *1 (-612 *5 *3)) - (-4 *3 (-13 (-27) (-1157) (-422 *5))))) + (-12 (-5 *3 (-307 *4)) (-4 *4 (-539)) (-4 *4 (-821)) + (-4 *4 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-807 (-921 *5)))) (-4 *5 (-443)) - (-5 *2 (-807 (-399 (-921 *5)))) (-5 *1 (-613 *5)) - (-5 *3 (-399 (-921 *5))))) + (-12 (-5 *3 (-307 *5)) (-5 *4 (-890)) (-4 *5 (-539)) (-4 *5 (-821)) + (-4 *5 (-592 *2)) (-5 *2 (-370)) (-5 *1 (-759 *5))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *3) + (-12 (-4 *4 (-340)) (-5 *2 (-112)) (-5 *1 (-208 *4 *3)) + (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1030 *6 *7 *8)) (-4 *6 (-539)) (-4 *7 (-767)) + (-4 *8 (-821)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2303 (-619 *9)))) + (-5 *3 (-619 *9)) (-4 *1 (-1165 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-399 (-921 *5)))) (-5 *3 (-399 (-921 *5))) - (-4 *5 (-443)) (-5 *2 (-807 *3)) (-5 *1 (-613 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) - (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4)))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1063) (-34))) - (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-4 *4 (-13 (-1063) (-34)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-255)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-218))) (-5 *5 (-548)) (-5 *6 (-1118)) - (-5 *3 (-218)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *3 (-619 (-255))) - (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-1058 (-371)))) (-5 *1 (-459))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) - (-4 *2 (-821)) (-4 *3 (-169)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-540)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-169))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) - (-4 *3 (-1063))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (-4 *4 (-1016)) - (-5 *1 (-997 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) (-4 *4 (-1016)) - (-5 *1 (-997 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1) (-5 *1 (-608)))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) - (-5 *2 (-2 (|:| |num| (-1218 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-539)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2303 (-619 *8)))) + (-5 *3 (-619 *8)) (-4 *1 (-1165 *5 *6 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-912 (-218))) (-5 *4 (-843)) (-5 *5 (-890)) - (-5 *2 (-1223)) (-5 *1 (-459)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-843)) (-5 *5 (-890)) - (-5 *2 (-1223)) (-5 *1 (-459))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-377 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-821))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-539))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-547)) (-5 *5 (-663 (-217))) (-5 *4 (-217)) + (-5 *2 (-1004)) (-5 *1 (-730))))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) + (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1135)) (-5 *5 (-1058 (-217))) (-5 *2 (-896)) + (-5 *1 (-894 *3)) (-4 *3 (-592 (-523))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-895)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-895)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-619 (-1 (-217) (-217)))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-217) (-217))) (-5 *3 (-1058 (-217))) + (-5 *1 (-896))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *6 (-3 (|:| |fn| (-379)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1004)) + (-5 *1 (-721))))) +(((*1 *1 *1) + (-12 (-5 *1 (-574 *2)) (-4 *2 (-38 (-398 (-547)))) (-4 *2 (-1016))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-540)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) - (-4 *4 (-821)) (-4 *2 (-540)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) - (-4 *3 (-1063))))) -(((*1 *2 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-663 (-921 *4))) (-5 *1 (-997 *4)) - (-4 *4 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-240 *4 *5)) (-14 *4 (-619 (-1135))) (-4 *5 (-443)) - (-5 *2 (-472 *4 *5)) (-5 *1 (-607 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1218 *3)) (-4 *3 (-1194 *4)) (-4 *4 (-1176)) - (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1194 (-399 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) - ((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-5 *1 (-1211 *3 *2)) + (-4 *2 (-1209 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-1016)) (-5 *1 (-664 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-912 (-218))) (-5 *2 (-1223)) (-5 *1 (-459))))) -(((*1 *1 *2) - (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-399 *1)) (-4 *1 (-1194 *3)) (-4 *3 (-1016)) - (-4 *3 (-540)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-861 *4)) (-4 *4 (-1063)) (-5 *1 (-858 *4 *3)) - (-4 *3 (-1063))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-663 *4)) (-5 *3 (-890)) (|has| *4 (-6 (-4329 "*"))) - (-4 *4 (-1016)) (-5 *1 (-997 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-619 (-663 *4))) (-5 *3 (-890)) - (|has| *4 (-6 (-4329 "*"))) (-4 *4 (-1016)) (-5 *1 (-997 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-619 (-240 *4 *5))) (-5 *2 (-240 *4 *5)) - (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) - (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) - (-5 *2 (-2 (|:| |num| (-663 *5)) (|:| |den| *5)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) - (-5 *1 (-1134))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-619 (-619 (-912 (-218))))) (-5 *3 (-619 (-843))) - (-5 *1 (-459))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1194 *2)) (-4 *2 (-1016)) (-4 *2 (-540))))) + (-12 (-4 *2 (-539)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1194 *2))))) +(((*1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-4 *6 (-855 *5)) (-5 *2 (-854 *5 *6 (-619 *6))) - (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-593 (-861 *5))))) + (-5 *1 (-856 *5 *6 *4)) (-5 *3 (-619 *6)) (-4 *4 (-592 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 *3))) (-5 *1 (-856 *5 *3 *4)) - (-4 *3 (-1007 (-1135))) (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) + (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 *3))) (-5 *1 (-856 *5 *3 *4)) + (-4 *3 (-1007 (-1135))) (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-286 (-921 *3)))) + (-12 (-4 *5 (-1063)) (-5 *2 (-619 (-285 (-921 *3)))) (-5 *1 (-856 *5 *3 *4)) (-4 *3 (-1016)) - (-3958 (-4 *3 (-1007 (-1135)))) (-4 *3 (-855 *5)) - (-4 *4 (-593 (-861 *5))))) + (-3998 (-4 *3 (-1007 (-1135)))) (-4 *3 (-855 *5)) + (-4 *4 (-592 (-861 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1063)) (-5 *2 (-858 *5 *3)) (-5 *1 (-856 *5 *3 *4)) - (-3958 (-4 *3 (-1007 (-1135)))) (-3958 (-4 *3 (-1016))) - (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-399 (-921 (-548))))) - (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-619 (-472 *4 *5))) (-5 *3 (-834 *4)) - (-14 *4 (-619 (-1135))) (-4 *5 (-443)) (-5 *1 (-607 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) - (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) - (-4 *3 (-334 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) - (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3))))) -(((*1 *1 *2 *2) + (-3998 (-4 *3 (-1007 (-1135)))) (-3998 (-4 *3 (-1016))) + (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-745)) (-5 *3 (-912 *4)) (-4 *1 (-1096 *4)) + (-4 *4 (-1016)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-912 (-217))) (-5 *2 (-1223)) + (-5 *1 (-1220))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1118)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-254)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) - (-5 *1 (-1134))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-619 (-912 (-218))))) (-5 *2 (-619 (-218))) - (-5 *1 (-459))))) + (-619 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-547))))) + (-5 *1 (-409 *3)) (-4 *3 (-539)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-745)) (-4 *3 (-340)) (-4 *5 (-1194 *3)) + (-5 *2 (-619 (-1131 *3))) (-5 *1 (-487 *3 *5 *6)) + (-4 *6 (-1194 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| -1489 *4) (|:| -3826 *3) (|:| -2233 *3))) - (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) - (-5 *2 (-2 (|:| -3826 *1) (|:| -2233 *1))) (-4 *1 (-1030 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-540)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| -1489 *3) (|:| -3826 *1) (|:| -2233 *1))) - (-4 *1 (-1194 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-1135)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-591 *4)) (-4 *4 (-821)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) - (-4 *3 (-855 *5)) (-4 *4 (-593 (-861 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) - (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-593 (-861 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-240 *5 *6))) (-4 *6 (-443)) - (-5 *2 (-240 *5 *6)) (-14 *5 (-619 (-1135))) (-5 *1 (-607 *5 *6))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-399 *2))) - (-4 *2 (-1194 *4)) (-5 *1 (-333 *3 *4 *2 *5)) - (-4 *3 (-334 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1176)) - (-4 *4 (-1194 (-399 *2))) (-4 *2 (-1194 *3))))) -(((*1 *1 *1) (-5 *1 (-1134))) - ((*1 *1 *2) - (-12 + (-12 (-4 *4 (-442)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)) + (-5 *1 (-439 *4 *5 *6 *3)) (-4 *3 (-918 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-4 *3 (-13 (-27) (-1157) (-421 *6) (-10 -8 (-15 -3834 ($ *7))))) + (-4 *7 (-819)) + (-4 *8 + (-13 (-1196 *3 *7) (-354) (-1157) + (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $))))) (-5 *2 - (-3 (|:| I (-308 (-548))) (|:| -1426 (-308 (-371))) - (|:| CF (-308 (-166 (-371)))) (|:| |switch| (-1134)))) - (-5 *1 (-1134))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-619 (-255))) (-5 *1 (-253)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-255)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) + (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) + (-14 *10 (-1135))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) + (-12 (-5 *3 (-307 (-370))) (-5 *2 (-307 (-217))) (-5 *1 (-296))))) +(((*1 *1 *2) + (-12 (-5 *2 (-619 (-874 *3))) (-4 *3 (-1063)) (-5 *1 (-873 *3))))) +(((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-217))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1 *1 *1) (-5 *1 (-370))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) (((*1 *2 *3) - (-12 (-4 *4 (-355)) (-4 *4 (-540)) (-4 *5 (-1194 *4)) - (-5 *2 (-2 (|:| -2189 (-599 *4 *5)) (|:| -2180 (-399 *5)))) - (-5 *1 (-599 *4 *5)) (-5 *3 (-399 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) - (-14 *3 (-890)) (-4 *4 (-1016)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-443)) (-4 *3 (-1016)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1194 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *3 (-619 (-255))) - (-5 *1 (-253)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-912 (-218)) (-912 (-218)))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-472 *5 *6))) (-5 *3 (-472 *5 *6)) - (-14 *5 (-619 (-1135))) (-4 *6 (-443)) (-5 *2 (-1218 *6)) - (-5 *1 (-607 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-832))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) - ((*1 *1 *2) (-12 (-5 *2 (-548)) (-4 *1 (-1117)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1135))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1176)) - (-4 *6 (-1194 (-399 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-334 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + (-12 (-5 *3 (-663 (-398 (-921 (-547))))) + (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-442)) + (-5 *1 (-887 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-141))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-355) (-1007 (-399 *2)))) (-5 *2 (-548)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-532))))) (((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1190 *4 *2)) - (-4 *2 (-1194 *4))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) - (-4 *3 (-1063)) (-4 *5 (-640 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-663 (-399 (-921 (-548))))) - (-5 *2 (-663 (-308 (-548)))) (-5 *1 (-1000))))) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-1137 (-398 (-547)))) + (-5 *1 (-182))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) (((*1 *2 *2) - (-12 (-5 *2 (-619 (-472 *3 *4))) (-14 *3 (-619 (-1135))) - (-4 *4 (-443)) (-5 *1 (-607 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *5 (-1176)) (-4 *6 (-1194 *5)) - (-4 *7 (-1194 (-399 *6))) (-5 *2 (-619 (-921 *5))) - (-5 *1 (-333 *4 *5 *6 *7)) (-4 *4 (-334 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1135)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1176)) - (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) (-4 *4 (-355)) - (-5 *2 (-619 (-921 *4)))))) -(((*1 *1 *1) (-5 *1 (-218))) - ((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1) (-4 *1 (-1099))) ((*1 *1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-995 (-814 (-547)))) (-5 *1 (-574 *3)) (-4 *3 (-1016))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-619 (-471 *4 *5))) (-5 *3 (-834 *4)) + (-14 *4 (-619 (-1135))) (-4 *5 (-442)) (-5 *1 (-607 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-370)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-254))))) +(((*1 *2 *3) + (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1131 (-1131 *4)))) + (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-619 *1)) + (-4 *1 (-1030 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1242 *4 *2)) (-4 *1 (-366 *4 *2)) (-4 *4 (-821)) + (-12 (-5 *3 (-1242 *4 *2)) (-4 *1 (-365 *4 *2)) (-4 *4 (-821)) (-4 *2 (-169)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-821)) (-4 *2 (-1016)))) @@ -16218,1250 +16016,1452 @@ (-4 *2 (-1016)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1016)) (-5 *1 (-1241 *2 *3)) (-4 *3 (-817))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-458))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1063)) (-4 *2 (-821)) - (-5 *1 (-113 *2))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-399 (-921 (-548))))) (-5 *2 (-619 (-308 (-548)))) - (-5 *1 (-1000))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-821) (-1007 (-547)) (-615 (-547)) (-442))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1203 *4 *5 *6)) + (|:| |%expon| (-310 *4 *5 *6)) + (|:| |%expTerms| + (-619 (-2 (|:| |k| (-398 (-547))) (|:| |c| *4)))))) + (|:| |%type| (-1118)))) + (-5 *1 (-1204 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1157) (-421 *3))) + (-14 *5 (-1135)) (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-303)) (-5 *1 (-803))))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-680 *3 *4)) (-4 *3 (-1172)) (-4 *4 (-1172))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) - (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) - (-4 *6 (-443)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-472 *5 *6))) (-5 *4 (-834 *5)) - (-14 *5 (-619 (-1135))) (-5 *2 (-472 *5 *6)) (-5 *1 (-607 *5 *6)) - (-4 *6 (-443))))) -(((*1 *2) - (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) - (-5 *2 (-619 (-619 *4))) (-5 *1 (-333 *3 *4 *5 *6)) - (-4 *3 (-334 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-4 *3 (-360)) (-5 *2 (-619 (-619 *3)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-218)) (-5 *3 (-745)) (-5 *1 (-219)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-166 (-218))) (-5 *3 (-745)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-5 *3 (-890)) (-5 *2 (-1218 (-1218 (-548)))) (-5 *1 (-457))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1063)) (-4 *5 (-1063)) + (-5 *2 (-1 *5)) (-5 *1 (-657 *4 *5))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1016)) (-5 *1 (-1190 *3 *2)) (-4 *2 (-1194 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) - (-5 *3 (-619 (-548))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) - (-5 *3 (-619 (-548)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-663 (-399 (-921 (-548))))) - (-5 *2 (-619 (-663 (-308 (-548))))) (-5 *1 (-1000)) - (-5 *3 (-308 (-548)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) - (-4 *5 (-443)) (-5 *2 (-619 (-240 *4 *5))) (-5 *1 (-607 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220)))) - ((*1 *2 *1) (-12 (-5 *2 (-619 (-255))) (-5 *1 (-1220))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379)))) + (-4 *3 (-13 (-354) (-1157) (-971))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-398 *2))) + (-4 *2 (-1194 *4)) (-5 *1 (-332 *3 *4 *2 *5)) + (-4 *3 (-333 *4 *2 *5)))) ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-619 (-1135))) - (-14 *4 (-619 (-1135))) (-4 *5 (-379))))) -(((*1 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) + (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1176)) + (-4 *4 (-1194 (-398 *2))) (-4 *2 (-1194 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-307 (-217)))) (-5 *2 (-112)) (-5 *1 (-258))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) + (-4 *7 (-1030 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-619 *7)) (|:| |badPols| (-619 *7)))) + (-5 *1 (-946 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-861 *4)) (-4 *4 (-1063)) (-5 *2 (-112)) + (-5 *1 (-858 *4 *5)) (-4 *5 (-1063)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-861 *5)) (-4 *5 (-1063)) (-5 *2 (-112)) + (-5 *1 (-859 *5 *3)) (-4 *3 (-1172)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-861 *5)) (-4 *5 (-1063)) + (-4 *6 (-1172)) (-5 *2 (-112)) (-5 *1 (-859 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-727))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1063)) (-5 *1 (-933 *2 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2) (-12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *1 *1) (-4 *1 (-1099)))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1218 (-1218 (-548)))) (-5 *3 (-890)) (-5 *1 (-457))))) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-1116 *7))) (-4 *6 (-821)) + (-4 *7 (-918 *5 (-519 *6) *6)) (-4 *5 (-1016)) + (-5 *2 (-1 (-1116 *7) *7)) (-5 *1 (-1088 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *8)) (-4 *8 (-918 *5 *7 *6)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-13 (-821) (-592 (-1135)))) + (-4 *7 (-767)) + (-5 *2 + (-619 + (-2 (|:| -3107 (-745)) + (|:| |eqns| + (-619 + (-2 (|:| |det| *8) (|:| |rows| (-619 (-547))) + (|:| |cols| (-619 (-547)))))) + (|:| |fgb| (-619 *8))))) + (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-745))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-619 *1)) (|has| *1 (-6 -4329)) (-4 *1 (-979 *3)) + (-4 *3 (-1172))))) +(((*1 *1 *1) (-5 *1 (-217))) ((*1 *1 *1) (-5 *1 (-370))) + ((*1 *1) (-5 *1 (-370)))) +(((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-592 (-861 (-547)))) + (-4 *5 (-855 (-547))) + (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-550 *5 *3)) (-4 *3 (-605)) + (-4 *3 (-13 (-27) (-1157) (-421 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1135)) (-5 *4 (-814 *2)) (-4 *2 (-1099)) + (-4 *2 (-13 (-27) (-1157) (-421 *5))) + (-4 *5 (-592 (-861 (-547)))) (-4 *5 (-855 (-547))) + (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) + (-5 *1 (-550 *5 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1016)) (-5 *2 (-547)) (-5 *1 (-433 *4 *3 *5)) + (-4 *3 (-1194 *4)) + (-4 *5 (-13 (-395) (-1007 *4) (-354) (-1157) (-275)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1095 (-218))) (-5 *1 (-247)))) + (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1095 (-217))) (-5 *1 (-246)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) - (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) - (-5 *1 (-251 *6)))) + (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) + (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) - (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) - (-5 *1 (-251 *5)))) + (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370))) + (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) + (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) - (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) - (-4 *3 (-13 (-593 (-524)) (-1063))))) + (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) + (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-592 (-523)) (-1063))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1095 (-218))) (-5 *1 (-251 *3)) - (-4 *3 (-13 (-593 (-524)) (-1063))))) + (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1095 (-217))) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-592 (-523)) (-1063))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) - (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) - (-5 *1 (-251 *6)))) + (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) + (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) - (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1095 (-218))) - (-5 *1 (-251 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) - (-4 *3 (-13 (-355) (-1157) (-971)))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-540)) - (-5 *2 (-2 (|:| -3826 *3) (|:| -2233 *3))) (-5 *1 (-1189 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *3 (-619 (-548))) - (-5 *1 (-852))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-399 (-921 (-548))))) - (-5 *2 - (-619 - (-2 (|:| |radval| (-308 (-548))) (|:| |radmult| (-548)) - (|:| |radvect| (-619 (-663 (-308 (-548)))))))) - (-5 *1 (-1000))))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370))) + (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1095 (-217))) + (-5 *1 (-250 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-821) (-298) (-1007 (-547)) (-615 (-547)) (-145))) + (-5 *1 (-778 *4 *2)) (-4 *2 (-13 (-29 *4) (-1157) (-928))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *3) + (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1120 *3)) (-4 *3 (-1016))))) (((*1 *2 *3) - (-12 (-14 *4 (-619 (-1135))) (-4 *5 (-443)) + (-12 (-5 *3 (-745)) (-5 *2 (-1131 *4)) (-5 *1 (-517 *4)) + (-4 *4 (-340))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-398 (-547))) (-5 *1 (-993 *3)) + (-4 *3 (-13 (-819) (-354) (-991))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-819) (-354))) (-5 *1 (-1026 *2 *3)) + (-4 *3 (-1194 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1033 *2 *3)) (-4 *2 (-13 (-819) (-354))) + (-4 *3 (-1194 *2))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |glbase| (-619 (-240 *4 *5))) (|:| |glval| (-619 (-548))))) - (-5 *1 (-607 *4 *5)) (-5 *3 (-619 (-240 *4 *5)))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-355)) (-4 *3 (-1194 *4)) (-4 *5 (-1194 (-399 *3))) - (-4 *1 (-327 *4 *3 *5 *2)) (-4 *2 (-334 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-548)) (-4 *2 (-355)) (-4 *4 (-1194 *2)) - (-4 *5 (-1194 (-399 *4))) (-4 *1 (-327 *2 *4 *5 *6)) - (-4 *6 (-334 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-355)) (-4 *3 (-1194 *2)) (-4 *4 (-1194 (-399 *3))) - (-4 *1 (-327 *2 *3 *4 *5)) (-4 *5 (-334 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) - (-4 *1 (-327 *3 *4 *5 *2)) (-4 *2 (-334 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-405 *4 (-399 *4) *5 *6)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-4 *3 (-355)) - (-4 *1 (-327 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-218))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-218)) (-5 *1 (-219)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-218))) (-5 *1 (-219)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009)))) - ((*1 *1 *1 *1) (-4 *1 (-1099)))) + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-821)) (-4 *5 (-767)) - (-4 *6 (-540)) (-4 *7 (-918 *6 *5 *3)) - (-5 *1 (-453 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1007 (-399 (-548))) (-355) - (-10 -8 (-15 -3743 ($ *7)) (-15 -2470 (*7 $)) - (-15 -2480 (*7 $)))))))) -(((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-166 (-217)))) (-5 *2 (-1004)) + (-5 *1 (-729))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1135)) (-5 *2 (-1139)) (-5 *1 (-1138))))) +(((*1 *2 *1) + (-12 (-4 *1 (-582 *3 *4)) (-4 *3 (-1063)) (-4 *4 (-1172)) + (-5 *2 (-619 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-630 *3)) (-4 *3 (-1016)) (-4 *3 (-354)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-745)) (-5 *4 (-1 *5 *5)) (-4 *5 (-354)) + (-5 *1 (-633 *5 *2)) (-4 *2 (-630 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-540) (-145))) (-5 *2 (-619 *3)) - (-5 *1 (-1188 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) - (-5 *3 (-619 (-548)))))) -(((*1 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-52))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-745)) (-5 *1 (-757 *2)) (-4 *2 (-38 (-398 (-547)))) + (-4 *2 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-472 *4 *5))) (-14 *4 (-619 (-1135))) - (-4 *5 (-443)) + (-12 (-5 *3 (-285 (-921 (-547)))) (-5 *2 - (-2 (|:| |gblist| (-619 (-240 *4 *5))) - (|:| |gvlist| (-619 (-548))))) - (-5 *1 (-607 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-355)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) - ((*1 *1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) + (-2 (|:| |varOrder| (-619 (-1135))) + (|:| |inhom| (-3 (-619 (-1218 (-745))) "failed")) + (|:| |hom| (-619 (-1218 (-745)))))) + (-5 *1 (-228))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *2)) - (-4 *2 (-422 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) - ((*1 *1 *1) (-4 *1 (-819))) - ((*1 *2 *1) (-12 (-4 *1 (-966 *2)) (-4 *2 (-169)) (-4 *2 (-1025)))) - ((*1 *1 *1) (-4 *1 (-1025))) ((*1 *1 *1) (-4 *1 (-1099)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *1 *1) (-5 *1 (-832))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-547)) (-4 *1 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1135))))) +(((*1 *1 *1) (-5 *1 (-1134))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-307 (-547))) (|:| -1409 (-307 (-370))) + (|:| CF (-307 (-166 (-370)))) (|:| |switch| (-1134)))) + (-5 *1 (-1134))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-619 (-912 (-217))))) (-5 *2 (-619 (-217))) + (-5 *1 (-458))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-354) (-145))) + (-5 *2 (-619 (-2 (|:| -4248 (-745)) (|:| -2582 *4) (|:| |num| *4)))) + (-5 *1 (-390 *3 *4)) (-4 *4 (-1194 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-398 *2))) (-4 *2 (-1194 *4)) (-5 *1 (-784 *4 *2)) + (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-628 *2 (-398 *2))) (-4 *2 (-1194 *4)) + (-5 *1 (-784 *4 *2)) + (-4 *4 (-13 (-354) (-145) (-1007 (-547)) (-1007 (-398 (-547)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-547)) (-4 *4 (-767)) (-4 *5 (-821)) (-4 *2 (-1016)) + (-5 *1 (-312 *4 *5 *2 *6)) (-4 *6 (-918 *2 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-365 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-169)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-745)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-821)) + (-4 *4 (-1016))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-812)) (-5 *4 (-1028)) (-5 *2 (-1004)) (-5 *1 (-811)))) ((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-619 (-371))) (-5 *5 (-619 (-814 (-371)))) - (-5 *6 (-619 (-308 (-371)))) (-5 *3 (-308 (-371))) (-5 *2 (-1004)) + (-12 (-5 *4 (-619 (-370))) (-5 *5 (-619 (-814 (-370)))) + (-5 *6 (-619 (-307 (-370)))) (-5 *3 (-307 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) - (-5 *5 (-619 (-814 (-371)))) (-5 *2 (-1004)) (-5 *1 (-811)))) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) + (-5 *5 (-619 (-814 (-370)))) (-5 *2 (-1004)) (-5 *1 (-811)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-308 (-371))) (-5 *4 (-619 (-371))) (-5 *2 (-1004)) + (-12 (-5 *3 (-307 (-370))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-308 (-371)))) (-5 *4 (-619 (-371))) + (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370))) (-5 *2 (-1004)) (-5 *1 (-811))))) -(((*1 *2 *1) - (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) - (-14 *6 - (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *2)) - (-2 (|:| -3337 *5) (|:| -3352 *2)))) - (-4 *2 (-231 (-3643 *3) (-745))) (-5 *1 (-452 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-821)) (-4 *7 (-918 *4 *2 (-834 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-807 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) (((*1 *2) - (-12 (-4 *3 (-540)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-409 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-540) (-145))) - (-5 *2 (-2 (|:| -3663 *3) (|:| -3676 *3))) (-5 *1 (-1188 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1) (-4 *1 (-605))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) - (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) - (-4 *6 (-334 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-619 (-591 *4))) (-4 *4 (-422 *3)) (-4 *3 (-821)) - (-5 *1 (-557 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-303)))) + (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-334 *3 *4)) (-14 *3 (-890)) + (-14 *4 (-890)))) + ((*1 *2) + (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-335 *3 *4)) (-4 *3 (-340)) + (-14 *4 (-1131 *3)))) + ((*1 *2) + (-12 (-5 *2 (-927 (-1082))) (-5 *1 (-336 *3 *4)) (-4 *3 (-340)) + (-14 *4 (-890))))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *6)) (-4 *1 (-918 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-745)))) ((*1 *2 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) - (-4 *4 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) + (-12 (-4 *1 (-918 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-745))))) (((*1 *2 *1) - (-12 (-14 *3 (-619 (-1135))) (-4 *4 (-169)) - (-4 *5 (-231 (-3643 *3) (-745))) - (-14 *6 - (-1 (-112) (-2 (|:| -3337 *2) (|:| -3352 *5)) - (-2 (|:| -3337 *2) (|:| -3352 *5)))) - (-4 *2 (-821)) (-5 *1 (-452 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-918 *4 *5 (-834 *3)))))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-619 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) + (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745)) + (-14 *4 (-745)) (-4 *5 (-169))))) (((*1 *2 *3) - (-12 (-4 *4 (-540)) (-5 *2 (-619 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-409 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-540) (-145))) (-5 *1 (-1188 *3 *2)) - (-4 *2 (-1194 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1116 (-619 (-548)))) (-5 *1 (-852)) (-5 *3 (-548))))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1 (-371))) (-5 *1 (-1009))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1172))))) -(((*1 *1 *1) (-4 *1 (-605))) + (-12 (-4 *4 (-539)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3715 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1118)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-370)) (-5 *3 (-1118)) (-5 *1 (-96))))) +(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) + ((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-493 (-398 (-547)) (-232 *5 (-745)) (-834 *4) + (-239 *4 (-398 (-547))))) + (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) + (-5 *1 (-494 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1139))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) (((*1 *2 *1) - (-12 (-4 *3 (-355)) (-4 *4 (-1194 *3)) (-4 *5 (-1194 (-399 *4))) - (-5 *2 (-1218 *6)) (-5 *1 (-328 *3 *4 *5 *6)) - (-4 *6 (-334 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1223)) (-5 *1 (-1098)))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-832))) (-5 *2 (-1223)) (-5 *1 (-1098))))) + (-12 (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1101 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-539)) + (-5 *2 (-2 (|:| -1557 *4) (|:| -2225 *3) (|:| -3856 *3))) + (-5 *1 (-938 *4 *3)) (-4 *3 (-1194 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-2 (|:| -2225 *1) (|:| -3856 *1))) (-4 *1 (-1030 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| -1557 *3) (|:| -2225 *1) (|:| -3856 *1))) + (-4 *1 (-1194 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-619 (-1135))) (-4 *2 (-169)) - (-4 *4 (-231 (-3643 *5) (-745))) - (-14 *6 - (-1 (-112) (-2 (|:| -3337 *3) (|:| -3352 *4)) - (-2 (|:| -3337 *3) (|:| -3352 *4)))) - (-5 *1 (-452 *5 *2 *3 *4 *6 *7)) (-4 *3 (-821)) - (-4 *7 (-918 *2 *4 (-834 *5)))))) + (-12 (-5 *3 (-285 (-398 (-921 *5)))) (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145))) + (-5 *2 (-1125 (-619 (-307 *5)) (-619 (-285 (-307 *5))))) + (-5 *1 (-1091 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-398 (-921 *5))) (-5 *4 (-1135)) + (-4 *5 (-13 (-298) (-821) (-145))) + (-5 *2 (-1125 (-619 (-307 *5)) (-619 (-285 (-307 *5))))) + (-5 *1 (-1091 *5))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-532)))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-302)))) + ((*1 *2 *1) + (-12 (-5 *2 (-745)) (-5 *1 (-1124 *3 *4)) (-14 *3 (-890)) + (-4 *4 (-1016))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) + (-5 *5 (-3 (|:| |fn| (-379)) (|:| |fp| (-63 -1409)))) + (-5 *2 (-1004)) (-5 *1 (-721))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1072 *5 *6 *7 *8)) + (-4 *5 (-13 (-298) (-145))) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *8 (-1030 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-570 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-246)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1219)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1219)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1219)) (-5 *1 (-247)))) + (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1219)) (-5 *1 (-246)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-846 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1219)) (-5 *1 (-247)))) + (-12 (-5 *3 (-846 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1219)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-848 (-1 (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-848 (-1 (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-912 (-218)) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-218) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-217) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-912 (-218)) (-218) (-218))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-1 (-912 (-217)) (-217) (-217))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *5 (-619 (-255))) (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *5 (-619 (-254))) (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-851 (-1 (-218) (-218) (-218)))) (-5 *4 (-1058 (-371))) - (-5 *2 (-1220)) (-5 *1 (-247)))) + (-12 (-5 *3 (-851 (-1 (-217) (-217) (-217)))) (-5 *4 (-1058 (-370))) + (-5 *2 (-1220)) (-5 *1 (-246)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-1135)) (-5 *5 (-619 (-255))) - (-4 *7 (-422 *6)) (-4 *6 (-13 (-540) (-821) (-1007 (-548)))) - (-5 *2 (-1219)) (-5 *1 (-248 *6 *7)))) + (-12 (-5 *3 (-285 *7)) (-5 *4 (-1135)) (-5 *5 (-619 (-254))) + (-4 *7 (-421 *6)) (-4 *6 (-13 (-539) (-821) (-1007 (-547)))) + (-5 *2 (-1219)) (-5 *1 (-247 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1219)) - (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) + (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1219)) + (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1219)) (-5 *1 (-251 *3)) - (-4 *3 (-13 (-593 (-524)) (-1063))))) + (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1219)) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-592 (-523)) (-1063))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) - (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) - (-5 *1 (-251 *6)))) + (-12 (-5 *3 (-846 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) + (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1219)) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-371))) - (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1219)) - (-5 *1 (-251 *5)))) + (-12 (-5 *3 (-846 *5)) (-5 *4 (-1056 (-370))) + (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1219)) + (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) - (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) - (-5 *1 (-251 *6)))) + (-12 (-5 *3 (-848 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) + (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-371))) - (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) - (-5 *1 (-251 *5)))) + (-12 (-5 *3 (-848 *5)) (-5 *4 (-1056 (-370))) + (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) (-5 *2 (-1220)) - (-5 *1 (-251 *3)) (-4 *3 (-13 (-593 (-524)) (-1063))))) + (-12 (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) (-5 *2 (-1220)) + (-5 *1 (-250 *3)) (-4 *3 (-13 (-592 (-523)) (-1063))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1056 (-371))) (-5 *2 (-1220)) (-5 *1 (-251 *3)) - (-4 *3 (-13 (-593 (-524)) (-1063))))) + (-12 (-5 *4 (-1056 (-370))) (-5 *2 (-1220)) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-592 (-523)) (-1063))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-371))) (-5 *5 (-619 (-255))) - (-4 *6 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) - (-5 *1 (-251 *6)))) + (-12 (-5 *3 (-851 *6)) (-5 *4 (-1056 (-370))) (-5 *5 (-619 (-254))) + (-4 *6 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-371))) - (-4 *5 (-13 (-593 (-524)) (-1063))) (-5 *2 (-1220)) - (-5 *1 (-251 *5)))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-1056 (-370))) + (-4 *5 (-13 (-592 (-523)) (-1063))) (-5 *2 (-1220)) + (-5 *1 (-250 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1219)) (-5 *1 (-252)))) + (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1219)) (-5 *1 (-251)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1219)) - (-5 *1 (-252)))) + (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1219)) + (-5 *1 (-251)))) ((*1 *2 *3) - (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *2 (-1219)) (-5 *1 (-252)))) + (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *2 (-1219)) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-912 (-218)))) (-5 *4 (-619 (-255))) - (-5 *2 (-1219)) (-5 *1 (-252)))) + (-12 (-5 *3 (-619 (-912 (-217)))) (-5 *4 (-619 (-254))) + (-5 *2 (-1219)) (-5 *1 (-251)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-619 (-218))) (-5 *2 (-1220)) (-5 *1 (-252)))) + (-12 (-5 *3 (-619 (-217))) (-5 *2 (-1220)) (-5 *1 (-251)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-619 (-218))) (-5 *4 (-619 (-255))) (-5 *2 (-1220)) - (-5 *1 (-252))))) -(((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) - (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-846 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-848 *2)) (-4 *2 (-1172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-851 *2)) (-4 *2 (-1172))))) + (-12 (-5 *3 (-619 (-217))) (-5 *4 (-619 (-254))) (-5 *2 (-1220)) + (-5 *1 (-251))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4327)) (-4 *1 (-149 *3)) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4328)) (-4 *1 (-149 *3)) (-4 *3 (-1172)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-648 *3)) (-4 *3 (-1172)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1165 *4 *5 *3 *2)) (-4 *4 (-540)) + (|partial| -12 (-4 *1 (-1165 *4 *5 *3 *2)) (-4 *4 (-539)) (-4 *5 (-767)) (-4 *3 (-821)) (-4 *2 (-1030 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-745)) (-5 *1 (-1169 *2)) (-4 *2 (-1172))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-355)) (-5 *1 (-994 *3 *2)) (-4 *2 (-630 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-355)) (-5 *2 (-2 (|:| -2383 *3) (|:| -2503 (-619 *5)))) - (-5 *1 (-994 *5 *3)) (-5 *4 (-619 *5)) (-4 *3 (-630 *5))))) -(((*1 *1 *1) (-4 *1 (-605))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-254))) (-5 *1 (-1220))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *2)) - (-4 *2 (-13 (-422 *3) (-971) (-1157)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) - (-5 *1 (-324))))) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1209 *3)) + (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1180 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-398 (-547)))) (-4 *4 (-1178 *3)) + (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1201 *3 *4)) (-4 *5 (-952 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-322 *2)) (-4 *2 (-821)))) + ((*1 *1 *1) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1121 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-38 (-398 (-547)))) + (-5 *1 (-1122 *3)))) + ((*1 *1 *1) (-4 *1 (-1160)))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) (((*1 *1 *2) - (-12 (-5 *2 (-1124 3 *3)) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) - ((*1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-294)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-377 *3)) (|:| |mm| (-377 *3)) (|:| |rm| (-377 *3)))) + (-5 *1 (-377 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-793 *3)) (|:| |mm| (-793 *3)) (|:| |rm| (-793 *3)))) + (-5 *1 (-793 *3)) (-4 *3 (-821))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1135)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1135)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-590 *4)) (-4 *4 (-821)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-5 *2 (-112)) (-5 *1 (-856 *5 *3 *4)) + (-4 *3 (-855 *5)) (-4 *4 (-592 (-861 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *6)) (-4 *6 (-855 *5)) (-4 *5 (-1063)) + (-5 *2 (-112)) (-5 *1 (-856 *5 *6 *4)) (-4 *4 (-592 (-861 *5)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *2 (-1004)) + (-5 *1 (-730))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-217) (-217) (-217) (-217))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217) (-217))) (-5 *1 (-254)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-217) (-217))) (-5 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-1058 (-217))) (-5 *1 (-896))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-619 *1)) (-4 *1 (-293)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-590 *3)) (-4 *3 (-821)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-619 *5)) (-5 *4 (-745)) (-4 *5 (-821)) - (-5 *1 (-591 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-619 (-1135))) (-4 *2 (-169)) - (-4 *3 (-231 (-3643 *4) (-745))) - (-14 *6 - (-1 (-112) (-2 (|:| -3337 *5) (|:| -3352 *3)) - (-2 (|:| -3337 *5) (|:| -3352 *3)))) - (-5 *1 (-452 *4 *2 *5 *3 *6 *7)) (-4 *5 (-821)) - (-4 *7 (-918 *2 *3 (-834 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-745)) (-4 *4 (-13 (-540) (-145))) - (-5 *1 (-1188 *4 *2)) (-4 *2 (-1194 *4))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1172))))) + (-5 *1 (-590 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-4 *3 (-13 (-27) (-1157) (-421 *6) (-10 -8 (-15 -3834 ($ *7))))) + (-4 *7 (-819)) + (-4 *8 + (-13 (-1196 *3 *7) (-354) (-1157) + (-10 -8 (-15 -3443 ($ $)) (-15 -2069 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) + (-5 *1 (-413 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1118)) (-4 *9 (-952 *8)) + (-14 *10 (-1135))))) +(((*1 *2 *3) (-12 (-5 *3 (-370)) (-5 *2 (-217)) (-5 *1 (-296))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-745)) (-4 *4 (-340)) (-5 *1 (-208 *4 *2)) + (-4 *2 (-1194 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1026 (-993 *4) (-1131 (-993 *4)))) (-5 *3 (-832)) - (-5 *1 (-993 *4)) (-4 *4 (-13 (-819) (-355) (-991)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-422 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-745)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-155 *3 *4)) - (-4 *4 (-422 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-114)) (-5 *1 (-160)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-268 *3 *4)) - (-4 *4 (-13 (-422 *3) (-971))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-293 *3)) (-4 *3 (-294)))) - ((*1 *2 *2) (-12 (-4 *1 (-294)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-821)) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-619 *5))) (-4 *5 (-1209 *4)) + (-4 *4 (-38 (-398 (-547)))) + (-5 *2 (-1 (-1116 *4) (-619 (-1116 *4)))) (-5 *1 (-1211 *4 *5))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) (-4 *2 (-1194 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-145)) (-4 *2 (-298)) (-4 *2 (-442)) (-4 *3 (-821)) + (-4 *4 (-767)) (-5 *1 (-956 *2 *3 *4 *5)) (-4 *5 (-918 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-547))) (-5 *1 (-1081)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-423 *3 *4)) - (-4 *4 (-422 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591 *3)) (-4 *3 (-821)))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *2) (-12 (-5 *2 (-619 (-663 (-307 (-547))))) (-5 *1 (-1000))))) +(((*1 *1 *1) (-4 *1 (-605))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-821) (-540))) (-5 *1 (-606 *3 *4)) - (-4 *4 (-13 (-422 *3) (-971) (-1157))))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-988))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) - (-5 *1 (-324))))) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971) (-1157)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1116 (-2 (|:| |k| (-547)) (|:| |c| *3)))) + (-5 *1 (-574 *3)) (-4 *3 (-1016))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-745)) (|:| -1416 *4))) (-5 *5 (-745)) + (-4 *4 (-918 *6 *7 *8)) (-4 *6 (-442)) (-4 *7 (-767)) (-4 *8 (-821)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-439 *6 *7 *8 *4))))) (((*1 *2) - (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-399 *5))) - (-5 *2 (-745)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) - (-4 *5 (-1194 (-399 *4))) (-5 *2 (-745)))) - ((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-619 *3)) (-5 *5 (-890)) (-4 *3 (-1194 *4)) - (-4 *4 (-299)) (-5 *1 (-451 *4 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) - (-4 *3 (-365 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-493 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) - (-5 *2 (-2 (|:| |num| (-663 *4)) (|:| |den| *4))) - (-5 *1 (-667 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-355) (-145) (-1007 (-399 (-548))))) - (-4 *6 (-1194 *5)) - (-5 *2 (-2 (|:| -2383 *7) (|:| |rh| (-619 (-399 *6))))) - (-5 *1 (-781 *5 *6 *7 *3)) (-5 *4 (-619 (-399 *6))) - (-4 *7 (-630 *6)) (-4 *3 (-630 (-399 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1187 *4 *5 *3)) - (-4 *3 (-1194 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1118)) (-5 *2 (-619 (-1140))) (-5 *1 (-849))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-442)) (-4 *4 (-821)) (-4 *5 (-767)) + (-5 *2 (-112)) (-5 *1 (-956 *3 *4 *5 *6)) + (-4 *6 (-918 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1100 *3 *4)) (-4 *3 (-13 (-1063) (-34))) + (-4 *4 (-13 (-1063) (-34)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-484))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4329)) (-4 *1 (-119 *2)) (-4 *2 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-547)))) + ((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-673))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1026 (-993 *3) (-1131 (-993 *3)))) - (-5 *1 (-993 *3)) (-4 *3 (-13 (-819) (-355) (-991)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-422 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) - (-5 *1 (-155 *4 *5)) (-4 *5 (-422 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) - (-5 *1 (-268 *4 *5)) (-4 *5 (-13 (-422 *4) (-971))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-293 *4)) (-4 *4 (-294)))) - ((*1 *2 *3) (-12 (-4 *1 (-294)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-821)) (-5 *2 (-112)) - (-5 *1 (-421 *4 *5)) (-4 *4 (-422 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) - (-5 *1 (-423 *4 *5)) (-4 *5 (-422 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-112)) - (-5 *1 (-606 *4 *5)) (-4 *5 (-13 (-422 *4) (-971) (-1157)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1135)) (-5 *4 (-921 (-548))) (-5 *2 (-322)) - (-5 *1 (-324))))) -(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-745))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-218)) (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-733))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-890)) (-4 *5 (-299)) (-4 *3 (-1194 *5)) - (-5 *2 (-2 (|:| |plist| (-619 *3)) (|:| |modulo| *5))) - (-5 *1 (-451 *5 *3)) (-5 *4 (-619 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-912 *3)) (-4 *3 (-13 (-355) (-1157) (-971))) - (-5 *1 (-173 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-140 *3 *4 *2)) - (-4 *2 (-365 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-540)) (-4 *5 (-961 *4)) (-4 *2 (-365 *4)) - (-5 *1 (-493 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 *5)) (-4 *5 (-961 *4)) (-4 *4 (-540)) - (-5 *2 (-663 *4)) (-5 *1 (-667 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-540)) (-4 *4 (-961 *3)) (-5 *1 (-1187 *3 *4 *2)) - (-4 *2 (-1194 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-872 *3)) (-4 *3 (-1063)) (-5 *2 (-1065 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-619 *4))) (-5 *1 (-873 *4)) + (-5 *3 (-619 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1063)) (-5 *2 (-1065 (-1065 *4))) (-5 *1 (-873 *4)) + (-5 *3 (-1065 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1065 *3)) (-5 *1 (-873 *3)) (-4 *3 (-1063))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-4 *1 (-537 *2)) (-4 *2 (-13 (-395) (-1157)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-619 *6)) (-5 *4 (-619 (-239 *5 *6))) (-4 *6 (-442)) + (-5 *2 (-239 *5 *6)) (-14 *5 (-619 (-1135))) (-5 *1 (-607 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-307 (-217))) (-5 *1 (-258))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-619 (-921 *4))) (-5 *3 (-619 (-1135))) (-4 *4 (-442)) + (-5 *1 (-887 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-619 *2)) (-4 *2 (-532)) (-5 *1 (-156 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1137 (-398 (-547)))) (-5 *1 (-182))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1118)) (-5 *1 (-52))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-890)) (-4 *6 (-13 (-540) (-821))) - (-5 *2 (-619 (-308 *6))) (-5 *1 (-214 *5 *6)) (-5 *3 (-308 *6)) + (-12 (-5 *4 (-890)) (-4 *6 (-13 (-539) (-821))) + (-5 *2 (-619 (-307 *6))) (-5 *1 (-213 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1016)))) - ((*1 *2 *1) (-12 (-5 *1 (-410 *2)) (-4 *2 (-540)))) + ((*1 *2 *1) (-12 (-5 *1 (-409 *2)) (-4 *2 (-539)))) ((*1 *2 *3) - (-12 (-5 *3 (-566 *5)) (-4 *5 (-13 (-29 *4) (-1157))) - (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *2 (-619 *5)) (-5 *1 (-564 *4 *5)))) + (-12 (-5 *3 (-565 *5)) (-4 *5 (-13 (-29 *4) (-1157))) + (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *2 (-619 *5)) (-5 *1 (-563 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-566 (-399 (-921 *4)))) - (-4 *4 (-13 (-443) (-1007 (-548)) (-821) (-615 (-548)))) - (-5 *2 (-619 (-308 *4))) (-5 *1 (-569 *4)))) + (-12 (-5 *3 (-565 (-398 (-921 *4)))) + (-4 *4 (-13 (-442) (-1007 (-547)) (-821) (-615 (-547)))) + (-5 *2 (-619 (-307 *4))) (-5 *1 (-568 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1059 *3 *2)) (-4 *3 (-819)) (-4 *2 (-1109 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-619 *1)) (-4 *1 (-1059 *4 *2)) (-4 *4 (-819)) (-4 *2 (-1109 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-821) (-443))) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-422 *3) (-1157))))) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157))))) ((*1 *2 *1) (-12 (-5 *2 (-1233 (-1135) *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1016)))) ((*1 *2 *1) (-12 (-5 *2 (-1233 *3 *4)) (-5 *1 (-1242 *3 *4)) (-4 *3 (-821)) (-4 *4 (-1016))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) - (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *1 (-989 *3)) (-4 *3 (-1194 (-548))) (-5 *4 (-399 (-548))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-399 (-548))) - (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-989 *3)) - (-4 *3 (-1194 (-548))) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))))) - ((*1 *2 *3 *4) +(((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539)) (-4 *2 (-532)))) + ((*1 *1 *1) (-4 *1 (-1025)))) +(((*1 *1 *1 *2) (-12 (-5 *2 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *1 (-990 *3)) (-4 *3 (-1194 (-399 (-548)))) - (-5 *4 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-399 (-548))) - (-5 *2 (-619 (-2 (|:| -3663 *4) (|:| -3676 *4)))) (-5 *1 (-990 *3)) - (-4 *3 (-1194 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-399 (-548))) - (-5 *2 (-619 (-2 (|:| -3663 *5) (|:| -3676 *5)))) (-5 *1 (-990 *3)) - (-4 *3 (-1194 *5)) (-5 *4 (-2 (|:| -3663 *5) (|:| -3676 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-548)))) - ((*1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-673))))) + (-2 (|:| -4002 (-619 (-832))) (|:| -1991 (-619 (-832))) + (|:| |presup| (-619 (-832))) (|:| -3864 (-619 (-832))) + (|:| |args| (-619 (-832))))) + (-5 *1 (-1135)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-619 (-619 (-832)))) (-5 *1 (-1135))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) - (-14 *6 (-619 (-1135))) + (-12 (-4 *5 (-298)) (-4 *6 (-364 *5)) (-4 *4 (-364 *5)) (-5 *2 - (-619 (-1106 *5 (-520 (-834 *6)) (-834 *6) (-754 *5 (-834 *6))))) - (-5 *1 (-604 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-821))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4013 (-619 *4)))) + (-5 *1 (-1086 *5 *6 *4 *3)) (-4 *3 (-661 *5 *6 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-166 (-218))) (-5 *4 (-548)) (-5 *2 (-1004)) - (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-807 (-548))) (-5 *1 (-522)))) + (-12 (-4 *2 (-1063)) (-5 *1 (-933 *3 *2)) (-4 *3 (-1063))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1176)) (-4 *5 (-1194 (-398 *2))) + (-4 *2 (-1194 *4)) (-5 *1 (-332 *3 *4 *2 *5)) + (-4 *3 (-333 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-333 *3 *2 *4)) (-4 *3 (-1176)) + (-4 *4 (-1194 (-398 *2))) (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-890)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-254))))) +(((*1 *2 *3) + (-12 (-4 *4 (-340)) (-5 *2 (-409 (-1131 (-1131 *4)))) + (-5 *1 (-1170 *4)) (-5 *3 (-1131 (-1131 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 (-590 *4))) (-4 *4 (-421 *3)) (-4 *3 (-821)) + (-5 *1 (-556 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-858 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-1016)) (-4 *4 (-1178 *3)) + (-5 *2 (-398 (-547)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)) + (-5 *1 (-946 *4 *5 *6 *3)) (-4 *3 (-1030 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-807 (-547))) (-5 *1 (-521)))) ((*1 *1) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1063))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-767)) (-4 *5 (-821)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *5)) (-4 *5 (-1194 *3)) (-4 *3 (-299)) - (-5 *2 (-112)) (-5 *1 (-446 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-619 (-108))) (-5 *1 (-172))))) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| (-112)) (|:| -1965 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-140 *2 *4 *3)) - (-4 *3 (-365 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-493 *2 *4 *5 *3)) - (-4 *5 (-365 *2)) (-4 *3 (-365 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-961 *2)) (-4 *2 (-540)) - (-5 *1 (-667 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-961 *2)) (-4 *2 (-540)) (-5 *1 (-1187 *2 *4 *3)) - (-4 *3 (-1194 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-657 *4 *3)) (-4 *4 (-1063)) + (-4 *3 (-1063))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-619 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548)))))) - (-5 *2 (-619 (-399 (-548)))) (-5 *1 (-989 *4)) - (-4 *4 (-1194 (-548)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-754 *5 (-834 *6)))) (-5 *4 (-112)) (-4 *5 (-443)) - (-14 *6 (-619 (-1135))) (-5 *2 (-619 (-1013 *5 *6))) - (-5 *1 (-604 *5 *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25)))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *1) (-4 *1 (-605))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-606 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971) (-1157)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-519 *3)) (-4 *3 (-13 (-701) (-25)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *3 (-921 (-548))) - (-5 *1 (-322)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1056 (-921 (-548)))) (-5 *1 (-322))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1172)) (-4 *1 (-106 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1016)) (-5 *2 (-619 *1)) (-4 *1 (-1096 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-732))))) + (-12 (-5 *3 (-1218 *4)) (-4 *4 (-340)) (-5 *2 (-1131 *4)) + (-5 *1 (-517 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-663 *3)) (-4 *3 (-298)) (-5 *1 (-674 *3))))) (((*1 *2) - (-12 (-4 *2 (-13 (-422 *3) (-971))) (-5 *1 (-268 *3 *2)) - (-4 *3 (-13 (-821) (-540))))) + (-12 (-4 *2 (-13 (-421 *3) (-971))) (-5 *1 (-267 *3 *2)) + (-4 *3 (-13 (-821) (-539))))) ((*1 *1) - (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-619 (-1135))) - (-14 *3 (-619 (-1135))) (-4 *4 (-379)))) - ((*1 *1) (-5 *1 (-468))) ((*1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1218 (-619 *3))) (-4 *4 (-299)) - (-5 *2 (-619 *3)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1194 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-756 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-540)) - (-4 *3 (-1016)) (-4 *2 (-766)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-1131 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-940)) (-4 *2 (-130)) (-5 *1 (-1137 *3)) (-4 *3 (-540)) - (-4 *3 (-1016)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-745)) (-5 *1 (-1191 *4 *3)) (-14 *4 (-1135)) - (-4 *3 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3663 (-399 (-548))) (|:| -3676 (-399 (-548))))) - (-5 *2 (-399 (-548))) (-5 *1 (-989 *4)) (-4 *4 (-1194 (-548)))))) + (-12 (-5 *1 (-330 *2 *3 *4)) (-14 *2 (-619 (-1135))) + (-14 *3 (-619 (-1135))) (-4 *4 (-378)))) + ((*1 *1) (-5 *1 (-467))) ((*1 *1) (-4 *1 (-1157)))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -2704 (-114)) (|:| |arg| (-619 (-861 *3))))) + (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-619 (-861 *4))) + (-5 *1 (-861 *4)) (-4 *4 (-1063))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1135)) (-4 *5 (-592 (-861 (-547)))) + (-4 *5 (-855 (-547))) + (-4 *5 (-13 (-821) (-1007 (-547)) (-442) (-615 (-547)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-550 *5 *3)) (-4 *3 (-605)) + (-4 *3 (-13 (-27) (-1157) (-421 *5)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-745)) (-5 *2 (-1 (-370))) (-5 *1 (-1009))))) (((*1 *2 *2) - (-12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) (-5 *1 (-352 *3 *4)) - (-14 *4 (-619 (-1135))))) - ((*1 *2 *2) - (-12 (-5 *2 (-619 *6)) (-4 *6 (-918 *3 *4 *5)) (-4 *3 (-443)) - (-4 *4 (-767)) (-4 *5 (-821)) (-5 *1 (-441 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-441 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-619 *7)) (-5 *3 (-1118)) (-4 *7 (-918 *4 *5 *6)) - (-4 *4 (-443)) (-4 *5 (-767)) (-4 *6 (-821)) - (-5 *1 (-441 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-355)) (-4 *3 (-767)) (-4 *4 (-821)) - (-5 *1 (-494 *2 *3 *4 *5)) (-4 *5 (-918 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) - (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) - (-5 *2 (-745))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1118)) (-5 *4 (-548)) (-5 *5 (-663 (-218))) - (-5 *2 (-1004)) (-5 *1 (-732))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-745)) (-4 *4 (-299)) (-4 *6 (-1194 *4)) - (-5 *2 (-1218 (-619 *6))) (-5 *1 (-446 *4 *6)) (-5 *5 (-619 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1172))))) + (|partial| -12 (-5 *2 (-1131 *3)) (-4 *3 (-340)) (-5 *1 (-348 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-117 *3)) (-14 *3 (-548)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1116 *2)) (-4 *2 (-299)) (-5 *1 (-171 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-299)) (-5 *1 (-171 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-171 (-548))) (-5 *1 (-740 *3)) (-4 *3 (-396)))) - ((*1 *2 *1) - (-12 (-5 *2 (-171 (-399 (-548)))) (-5 *1 (-840 *3)) (-14 *3 (-548)))) - ((*1 *2 *1) - (-12 (-14 *3 (-548)) (-5 *2 (-171 (-399 (-548)))) - (-5 *1 (-841 *3 *4)) (-4 *4 (-838 *3))))) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) + (-5 *2 (-2 (|:| -2665 (-619 *6)) (|:| -1351 (-619 *6))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-298) (-145))) (-4 *5 (-13 (-821) (-592 (-1135)))) + (-4 *6 (-767)) (-4 *7 (-918 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-619 *7)) (|:| |n0| (-619 *7)))) + (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-619 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-4 *1 (-227 *3)))) + ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1063))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1203 *3 *4 *5)) (-4 *3 (-13 (-354) (-821))) + (-14 *4 (-1135)) (-14 *5 *3) (-5 *1 (-310 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-370))) (-5 *1 (-1009)) (-5 *3 (-370))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) + (-4 *5 (-821)) (-5 *2 (-921 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-715 *4 *5)) (-4 *4 (-1016)) + (-4 *5 (-821)) (-5 *2 (-921 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) + (-5 *2 (-921 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-745)) (-4 *1 (-1209 *4)) (-4 *4 (-1016)) + (-5 *2 (-921 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1065 (-745))) (-5 *6 (-745)) + (-5 *2 + (-2 (|:| |contp| (-547)) + (|:| -2483 (-619 (-2 (|:| |irr| *3) (|:| -1889 (-547))))))) + (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-745)) (-5 *2 (-1218 (-619 (-548)))) (-5 *1 (-471)))) + (-12 (-5 *3 (-745)) (-5 *2 (-1218 (-619 (-547)))) (-5 *1 (-470)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-580 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-579 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1172)) (-5 *1 (-1116 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1218 *6)) (-5 *4 (-1218 (-548))) (-5 *5 (-548)) - (-4 *6 (-1063)) (-5 *2 (-1 *6)) (-5 *1 (-986 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-619 (-921 *3))) (-4 *3 (-443)) - (-5 *1 (-352 *3 *4)) (-14 *4 (-619 (-1135))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-619 (-754 *3 (-834 *4)))) (-4 *3 (-443)) - (-14 *4 (-619 (-1135))) (-5 *1 (-604 *3 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-322))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) -(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1118)) (-5 *5 (-663 (-218))) (-5 *6 (-663 (-548))) - (-5 *4 (-548)) (-5 *2 (-1004)) (-5 *1 (-732))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-299)) - (-5 *2 (-745)) (-5 *1 (-446 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-548)) - (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) - (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-548)) - (|:| -3213 (-619 (-2 (|:| |irr| *3) (|:| -3286 (-548))))))) - (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396)))) - ((*1 *2) (-12 (-5 *2 (-890)) (-5 *1 (-395 *3)) (-4 *3 (-396)))) - ((*1 *2 *2) (-12 (-5 *2 (-890)) (|has| *1 (-6 -4318)) (-4 *1 (-396)))) - ((*1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-890)))) - ((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-1116 (-548)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-619 (-2 (|:| -4056 *4) (|:| -3266 (-548))))) - (-4 *4 (-1063)) (-5 *2 (-1 *4)) (-5 *1 (-986 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 (-921 *4))) (-4 *4 (-443)) (-5 *2 (-112)) - (-5 *1 (-352 *4 *5)) (-14 *5 (-619 (-1135))))) - ((*1 *2 *3) - (-12 (-5 *3 (-619 (-754 *4 (-834 *5)))) (-4 *4 (-443)) - (-14 *5 (-619 (-1135))) (-5 *2 (-112)) (-5 *1 (-604 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) -(((*1 *2) (-12 (-5 *2 (-619 (-1135))) (-5 *1 (-104))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-548)) (-5 *3 (-890)) (-4 *1 (-396)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-548)) (-4 *1 (-396)))) + (-12 (-5 *2 (-1116 (-547))) (-5 *1 (-1120 *4)) (-4 *4 (-1016)) + (-5 *3 (-547))))) +(((*1 *2 *1) + (-12 (-4 *1 (-945 *3 *4 *2 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-1030 *3 *4 *2)) (-4 *2 (-821)))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) - (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1172)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1172)))) + (-12 (-4 *1 (-1030 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *1 *1) (-5 *1 (-1028)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-619 (-254))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1233 *3 *4)) (-4 *3 (-821)) (-4 *4 (-169)) + (-5 *1 (-638 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-732))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) - (-4 *1 (-359 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-444 *3 *4 *5 *6)) - (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) - (-5 *2 (-2 (|:| -1489 (-399 *5)) (|:| |poly| *3))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1194 (-399 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) -(((*1 *2 *3) - (-12 (-4 *4 (-341)) (-5 *2 (-410 *3)) (-5 *1 (-209 *4 *3)) - (-4 *3 (-1194 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) - (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-619 (-745))) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) - (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-619 (-745))) (-5 *5 (-745)) (-5 *2 (-410 *3)) - (-5 *1 (-433 *3)) (-4 *3 (-1194 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-745)) (-5 *2 (-410 *3)) (-5 *1 (-433 *3)) - (-4 *3 (-1194 (-548))))) - ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-976 *3)) - (-4 *3 (-1194 (-399 (-548)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-410 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-1194 (-548)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-281 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1194 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + (|partial| -12 (-5 *2 (-638 *3 *4)) (-5 *1 (-1238 *3 *4)) + (-4 *3 (-821)) (-4 *4 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-686 *3 *2 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1194 *3)) (-5 *1 (-687 *3 *2)) (-4 *3 (-1016)))) + (-12 (-4 *3 (-961 *2)) (-4 *4 (-1194 *3)) (-4 *2 (-298)) + (-5 *1 (-404 *2 *3 *4 *5)) (-4 *5 (-13 (-400 *3 *4) (-1007 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) - (-4 *5 (-1194 *4)) (-5 *2 (-619 (-399 *5))) (-5 *1 (-985 *4 *5)) - (-5 *3 (-399 *5))))) + (-12 (-4 *3 (-539)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1))) + (-4 *1 (-421 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) + (-5 *1 (-597 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-701) *4)) + (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-692 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1016)) (-4 *2 (-354)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-354)) (-5 *1 (-633 *4 *2)) + (-4 *2 (-630 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1016))))) +(((*1 *2 *2) + (-12 (-4 *3 (-539)) (-4 *3 (-169)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-5 *1 (-662 *3 *4 *5 *2)) + (-4 *2 (-661 *3 *4 *5))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-619 (-547))) (-5 *1 (-973 *3)) (-14 *3 (-547))))) +(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1118)) (-5 *1 (-685))))) (((*1 *2 *3) - (-12 (-5 *3 (-619 *4)) (-4 *4 (-821)) (-5 *2 (-619 (-638 *4 *5))) - (-5 *1 (-603 *4 *5 *6)) (-4 *5 (-13 (-169) (-692 (-399 (-548))))) - (-14 *6 (-890))))) -(((*1 *1 *2) (-12 (-5 *2 (-308 (-166 (-371)))) (-5 *1 (-322)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-548))) (-5 *1 (-322)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-371))) (-5 *1 (-322)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-668))) (-5 *1 (-322)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-675))) (-5 *1 (-322)))) - ((*1 *1 *2) (-12 (-5 *2 (-308 (-673))) (-5 *1 (-322)))) - ((*1 *1) (-5 *1 (-322)))) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-321))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1061 *3)) (-4 *3 (-1063)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-298)) (-4 *4 (-961 *3)) (-4 *5 (-1194 *4)) + (-5 *2 (-1218 *6)) (-5 *1 (-404 *3 *4 *5 *6)) + (-4 *6 (-13 (-400 *4 *5) (-1007 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1016)) (-4 *3 (-821)) (-5 *2 (-1087 *3 (-590 *1))) + (-4 *1 (-421 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1087 (-547) (-590 (-484)))) (-5 *1 (-484)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-597 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-701) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-692 *3)) (-5 *1 (-636 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-701) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-539))))) (((*1 *2 *3) - (-12 (-5 *3 (-1135)) - (-5 *2 - (-2 (|:| |zeros| (-1116 (-218))) (|:| |ones| (-1116 (-218))) - (|:| |singularities| (-1116 (-218))))) - (-5 *1 (-104))))) -(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) - (-5 *6 (-3 (|:| |fn| (-380)) (|:| |fp| (-69 APROD)))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-731))))) + (-12 (-4 *4 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *4)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1194 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-354) (-10 -8 (-15 ** ($ $ (-398 (-547))))))) + (-5 *2 (-619 *3)) (-5 *1 (-1090 *4 *3)) (-4 *4 (-1194 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-814 *3)) (-4 *3 (-1063))))) (((*1 *2) - (|partial| -12 (-4 *3 (-540)) (-4 *3 (-169)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2877 (-619 *1)))) - (-4 *1 (-359 *3)))) + (-12 (-4 *4 (-1176)) (-4 *5 (-1194 *4)) (-4 *6 (-1194 (-398 *5))) + (-5 *2 (-745)) (-5 *1 (-332 *3 *4 *5 *6)) (-4 *3 (-333 *4 *5 *6)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-444 *3 *4 *5 *6)) - (|:| -2877 (-619 (-444 *3 *4 *5 *6))))) - (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) + (-12 (-4 *1 (-333 *3 *4 *5)) (-4 *3 (-1176)) (-4 *4 (-1194 *3)) + (-4 *5 (-1194 (-398 *4))) (-5 *2 (-745))))) (((*1 *2 *1) - (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) (-4 *2 (-1209 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-5 *2 (-548))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |h| *6) - (|:| |c1| (-399 *6)) (|:| |c2| (-399 *6)) (|:| -2405 *6))) - (-5 *1 (-985 *5 *6)) (-5 *3 (-399 *6))))) + (-12 (-4 *1 (-317 *2 *3)) (-4 *3 (-766)) (-4 *2 (-1016)) + (-4 *2 (-442)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 *4)) (-4 *4 (-1194 (-547))) (-5 *2 (-619 (-547))) + (-5 *1 (-476 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-823 *2)) (-4 *2 (-1016)) (-4 *2 (-442)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-918 *3 *4 *2)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *2 (-821)) (-4 *3 (-442))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-112)) (-5 *1 (-357 *3 *4)) + (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1016))))) (((*1 *2 *1) - (-12 (-5 *2 (-619 (-2 (|:| |k| (-646 *3)) (|:| |c| *4)))) - (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-322))) (-5 *1 (-322))))) + (-12 (-5 *2 (-832)) (-5 *1 (-381 *3 *4 *5)) (-14 *3 (-745)) + (-14 *4 (-745)) (-4 *5 (-169))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) - (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) - (-4 *4 (-661 *2 *5 *6))))) + (-12 (-4 *4 (-354)) (-4 *4 (-539)) (-4 *5 (-1194 *4)) + (-5 *2 (-2 (|:| -1609 (-599 *4 *5)) (|:| -1508 (-398 *5)))) + (-5 *1 (-599 *4 *5)) (-5 *3 (-398 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890)) (-4 *4 (-1016)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-442)) (-4 *3 (-1016)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1194 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1172))))) +(((*1 *1 *1) (-4 *1 (-1104)))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-663 (-217))) (-5 *4 (-547)) (-5 *5 (-112)) + (-5 *2 (-1004)) (-5 *1 (-720))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1223)) (-5 *1 (-1138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-1139))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-217))) (-5 *1 (-258))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-858 *4 *5)) (-5 *3 (-858 *4 *6)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-640 *5)) (-5 *1 (-854 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) - (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) - (-5 *1 (-1034 *5 *6 *7 *8 *9)))) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-442) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *2 + (-3 (|:| |%expansion| (-304 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1118)) (|:| |prob| (-1118)))))) + (-5 *1 (-411 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1157) (-421 *5))) + (-14 *6 (-1135)) (-14 *7 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-547))) (-5 *4 (-874 (-547))) + (-5 *2 (-663 (-547))) (-5 *1 (-569)))) + ((*1 *2 *3) + (-12 (-5 *3 (-619 (-547))) (-5 *2 (-619 (-663 (-547)))) + (-5 *1 (-569)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-619 (-2 (|:| |val| (-619 *8)) (|:| -1806 *9)))) - (-5 *4 (-745)) (-4 *8 (-1030 *5 *6 *7)) (-4 *9 (-1072 *5 *6 *7 *8)) - (-4 *5 (-443)) (-4 *6 (-767)) (-4 *7 (-821)) (-5 *2 (-1223)) - (-5 *1 (-1105 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) - (-5 *2 (-1004)) (-5 *1 (-731))))) + (-12 (-5 *3 (-619 (-547))) (-5 *4 (-619 (-874 (-547)))) + (-5 *2 (-619 (-663 (-547)))) (-5 *1 (-569))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-619 *3)) (-4 *3 (-1194 *5)) (-4 *5 (-298)) + (-5 *2 (-745)) (-5 *1 (-445 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-767)) (-4 *6 (-821)) (-4 *7 (-539)) + (-4 *3 (-918 *7 *5 *6)) + (-5 *2 + (-2 (|:| -4248 (-745)) (|:| -1557 *3) (|:| |radicand| (-619 *3)))) + (-5 *1 (-922 *5 *6 *7 *3 *8)) (-5 *4 (-745)) + (-4 *8 + (-13 (-354) + (-10 -8 (-15 -1382 (*3 $)) (-15 -1392 (*3 $)) (-15 -3834 ($ *3)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-663 *4)) (-4 *4 (-354)) (-5 *2 (-1131 *4)) + (-5 *1 (-520 *4 *5 *6)) (-4 *5 (-354)) (-4 *6 (-13 (-354) (-819)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-298)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1086 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-352 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-377 *4)) (-4 *4 (-1063)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-4 *2 (-23)) (-5 *1 (-623 *4 *2 *5)) + (-4 *4 (-1063)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-547)) (-5 *2 (-745)) (-5 *1 (-793 *4)) (-4 *4 (-821))))) +(((*1 *2 *2) (-12 (-5 *2 (-663 (-307 (-547)))) (-5 *1 (-1000))))) +(((*1 *2) + (-12 (-5 *2 (-1223)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1063)) + (-4 *4 (-1063))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-619 (-217)))) (-5 *1 (-895))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-921 (-398 (-547)))) (-5 *4 (-1135)) + (-5 *5 (-1058 (-814 (-217)))) (-5 *2 (-619 (-217))) (-5 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-298))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-761)) (-5 *2 (-1004)) + (-5 *3 + (-2 (|:| |fn| (-307 (-217))) + (|:| -2693 (-619 (-1058 (-814 (-217))))) (|:| |abserr| (-217)) + (|:| |relerr| (-217)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-761)) (-5 *2 (-1004)) + (-5 *3 + (-2 (|:| |var| (-1135)) (|:| |fn| (-307 (-217))) + (|:| -2693 (-1058 (-814 (-217)))) (|:| |abserr| (-217)) + (|:| |relerr| (-217))))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-244 *4 *3 *5 *6)) (-4 *4 (-1016)) (-4 *3 (-821)) + (-4 *5 (-257 *3)) (-4 *6 (-767)) (-5 *2 (-619 (-745))))) + ((*1 *2 *1) + (-12 (-4 *1 (-244 *3 *4 *5 *6)) (-4 *3 (-1016)) (-4 *4 (-821)) + (-4 *5 (-257 *4)) (-4 *6 (-767)) (-5 *2 (-619 (-745)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1218 (-1135))) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) - (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) - (-14 *6 (-619 (-1135))) (-14 *7 (-1218 (-663 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135)) (-5 *3 (-1218 (-444 *4 *5 *6 *7))) - (-5 *1 (-444 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-890)) - (-14 *6 (-619 *2)) (-14 *7 (-1218 (-663 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-444 *3 *4 *5 *6))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) - (-14 *6 (-1218 (-663 *3))))) + (-12 (-5 *3 (-1118)) (-4 *1 (-355 *2 *4)) (-4 *2 (-1063)) + (-4 *4 (-1063)))) ((*1 *1 *2) - (-12 (-5 *2 (-1218 (-1135))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) - (-14 *6 (-1218 (-663 *3))))) + (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-745)) (-4 *3 (-539)) (-5 *1 (-938 *3 *2)) + (-4 *2 (-1194 *3))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-729))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *3 (-619 (-254))) + (-5 *1 (-252)))) ((*1 *1 *2) - (-12 (-5 *2 (-1135)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *3 (-169)) - (-14 *4 (-890)) (-14 *5 (-619 *2)) (-14 *6 (-1218 (-663 *3))))) - ((*1 *1) - (-12 (-5 *1 (-444 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-890)) - (-14 *4 (-619 (-1135))) (-14 *5 (-1218 (-663 *2)))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-299))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-548)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-548)) (-5 *1 (-840 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-14 *2 (-548)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-548)) (-14 *3 *2) (-5 *1 (-841 *3 *4)) - (-4 *4 (-838 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-548)) (-5 *1 (-841 *2 *3)) (-4 *3 (-838 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-548)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-1016)) - (-4 *4 (-1209 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-1016)) (-4 *3 (-1209 *2))))) -(((*1 *1 *1) (-4 *1 (-838 *2)))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1194 *6)) - (-4 *6 (-13 (-355) (-145) (-1007 *4))) (-5 *4 (-548)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -2383 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-984 *6 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-619 (-286 *4))) (-5 *1 (-603 *3 *4 *5)) (-4 *3 (-821)) - (-4 *4 (-13 (-169) (-692 (-399 (-548))))) (-14 *5 (-890))))) -(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-322))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4329 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) - (-4 *2 (-1016)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1194 *2)) - (-4 *4 (-661 *2 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *5 (-112)) - (-5 *6 (-218)) (-5 *7 (-3 (|:| |fn| (-380)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-380)) (|:| |fp| (-72 MSOLVE)))) - (-5 *2 (-1004)) (-5 *1 (-731))))) + (-12 (-5 *2 (-1 (-912 (-217)) (-912 (-217)))) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-619 (-471 *5 *6))) (-5 *3 (-471 *5 *6)) + (-14 *5 (-619 (-1135))) (-4 *6 (-442)) (-5 *2 (-1218 *6)) + (-5 *1 (-607 *5 *6))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-547)) (-5 *3 (-890)) (-4 *1 (-395)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-547)) (-4 *1 (-395)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *2 *6)) (-4 *3 (-1063)) (-4 *4 (-1063)) + (-4 *5 (-1063)) (-4 *6 (-1063)) (-4 *2 (-1063))))) (((*1 *2) - (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-408 *3 *4)) - (-4 *3 (-409 *4)))) + (-12 (-4 *4 (-169)) (-5 *2 (-1131 (-921 *4))) (-5 *1 (-407 *3 *4)) + (-4 *3 (-408 *4)))) ((*1 *2) - (-12 (-4 *1 (-409 *3)) (-4 *3 (-169)) (-4 *3 (-355)) + (-12 (-4 *1 (-408 *3)) (-4 *3 (-169)) (-4 *3 (-354)) (-5 *2 (-1131 (-921 *3))))) ((*1 *2) - (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-1016)) - (-4 *2 (-1209 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-832))) ((*1 *1 *1) (-5 *1 (-832))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1131 (-548))) (-5 *3 (-548)) (-4 *1 (-838 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-355) (-145) (-1007 (-548)))) (-4 *5 (-1194 *4)) - (-5 *2 (-2 (|:| |ans| (-399 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-984 *4 *5)) (-5 *3 (-399 *5))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3213 (-619 (-2 (|:| |irr| *10) (|:| -3286 (-548))))))) - (-5 *6 (-619 *3)) (-5 *7 (-619 *8)) (-4 *8 (-821)) (-4 *3 (-299)) - (-4 *10 (-918 *3 *9 *8)) (-4 *9 (-767)) - (-5 *2 - (-2 (|:| |polfac| (-619 *10)) (|:| |correct| *3) - (|:| |corrfact| (-619 (-1131 *3))))) - (-5 *1 (-601 *8 *9 *3 *10)) (-5 *4 (-619 (-1131 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-322))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-912 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-619 (-912 *3))) (-4 *3 (-1016)) (-4 *1 (-1096 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-619 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-619 (-912 *3))) (-4 *1 (-1096 *3)) (-4 *3 (-1016))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) - (-5 *2 (-1004)) (-5 *1 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1131 (-399 (-921 *3)))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1116 (-399 *3))) (-5 *1 (-171 *3)) (-4 *3 (-299))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) - (-5 *2 (-399 (-921 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-548)) (-4 *1 (-1178 *4)) (-4 *4 (-1016)) (-4 *4 (-540)) - (-5 *2 (-399 (-921 *4)))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-399 *6)) - (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) - (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) - (-5 *1 (-837 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-745)) (-5 *4 (-1210 *5 *6 *7)) (-4 *5 (-355)) - (-14 *6 (-1135)) (-14 *7 *5) (-5 *2 (-399 (-1191 *6 *5))) - (-5 *1 (-837 *5 *6 *7))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1194 *5)) - (-4 *5 (-13 (-355) (-145) (-1007 (-548)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-399 *6)) (|:| |c| (-399 *6)) - (|:| -2405 *6))) - (-5 *1 (-984 *5 *6)) (-5 *3 (-399 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-745)) (-5 *5 (-619 *3)) (-4 *3 (-299)) (-4 *6 (-821)) - (-4 *7 (-767)) (-5 *2 (-112)) (-5 *1 (-601 *6 *7 *3 *8)) - (-4 *8 (-918 *3 *7 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1118)) (-4 *1 (-356 *2 *4)) (-4 *2 (-1063)) - (-4 *4 (-1063)))) - ((*1 *1 *2) - (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-1063)) (-4 *3 (-1063))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-322))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1016)) (-4 *2 (-661 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1194 *4)) (-4 *5 (-365 *4)) - (-4 *6 (-365 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-548)) (-5 *5 (-663 (-218))) (-5 *4 (-218)) - (-5 *2 (-1004)) (-5 *1 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) + (-12 (-5 *2 (-1131 (-398 (-921 *3)))) (-5 *1 (-443 *3 *4 *5 *6)) + (-4 *3 (-539)) (-4 *3 (-169)) (-14 *4 (-890)) (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1223)) (-5 *1 (-796))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-480))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-370)) (-5 *2 (-1223)) (-5 *1 (-1220))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-506))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-537 *3)) (-4 *3 (-13 (-395) (-1157))) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-619 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-745)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-767)) (-4 *6 (-918 *4 *3 *5)) (-4 *4 (-442)) (-4 *5 (-821)) + (-5 *1 (-439 *4 *3 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1194 *4)) (-4 *4 (-1176)) + (-4 *6 (-1194 (-398 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-333 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-168))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1131 *1)) (-5 *4 (-1135)) (-4 *1 (-27)) - (-5 *2 (-619 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1131 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-921 *1)) (-4 *1 (-27)) (-5 *2 (-619 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-821) (-540))) (-5 *2 (-619 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-821) (-540))) (-5 *2 (-619 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1172)))) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) (-5 *2 (-619 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1172)))) ((*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4)) (-4 *2 (-1016)) (-4 *3 (-767)) (-4 *4 (-821)))) ((*1 *1 *1) (-12 (-4 *1 (-1206 *2)) (-4 *2 (-1172))))) -(((*1 *2 *3) (-12 (-5 *3 (-166 (-548))) (-5 *2 (-112)) (-5 *1 (-437)))) +(((*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-883 *3)) (-4 *3 (-298))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1194 *2)) (-4 *2 (-1176)) (-5 *1 (-146 *2 *4 *3)) + (-4 *3 (-1194 (-398 *4)))))) +(((*1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 *1)) (-4 *1 (-1030 *4 *5 *6)) (-4 *4 (-1016)) + (-4 *5 (-767)) (-4 *6 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1030 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-767)) + (-4 *5 (-821)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1165 *3 *4 *5 *6)) (-4 *3 (-539)) (-4 *4 (-767)) + (-4 *5 (-821)) (-4 *6 (-1030 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1165 *4 *5 *6 *3)) (-4 *4 (-539)) (-4 *5 (-767)) + (-4 *6 (-821)) (-4 *3 (-1030 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *2 *3) + (-12 (-5 *3 (-619 (-254))) (-5 *2 (-1095 (-217))) (-5 *1 (-252)))) + ((*1 *1 *2) (-12 (-5 *2 (-1095 (-217))) (-5 *1 (-254))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-217)) (-5 *1 (-218)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-217))) (-5 *1 (-218)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-422 *3 *2)) + (-4 *2 (-421 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1099)))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-821)) (-5 *1 (-126 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-874 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *2 (-1004)) + (-5 *1 (-722))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-547)) (-5 *4 (-663 (-217))) (-5 *5 (-217)) + (-5 *2 (-1004)) (-5 *1 (-726))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1172)) (-4 *2 (-971)) + (-4 *2 (-1016))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-539)) (-4 *3 (-1016)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *2 (-619 *1)) (-4 *1 (-1030 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221)))) + ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1221))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-832))) (-5 *1 (-832)))) + ((*1 *1 *1) (-5 *1 (-832)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-217)) (-5 *4 (-547)) (-5 *2 (-1004)) (-5 *1 (-733))))) +(((*1 *2) (-12 - (-5 *3 - (-494 (-399 (-548)) (-233 *5 (-745)) (-834 *4) - (-240 *4 (-399 (-548))))) - (-14 *4 (-619 (-1135))) (-14 *5 (-745)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-930 *3)) (-4 *3 (-533)))) - ((*1 *2 *1) (-12 (-4 *1 (-1176)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-745)) (-4 *5 (-355)) (-5 *2 (-171 *6)) - (-5 *1 (-836 *5 *4 *6)) (-4 *4 (-1209 *5)) (-4 *6 (-1194 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1135)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-619 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1157) (-27) (-422 *8))) - (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) - (-5 *3 (-548)) (-5 *2 (-619 *4)) (-5 *1 (-983 *8 *4))))) + (-5 *2 (-2 (|:| -2541 (-619 (-1135))) (|:| -2637 (-619 (-1135))))) + (-5 *1 (-1174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-354)) (-4 *5 (-364 *4)) (-4 *6 (-364 *4)) + (-5 *2 (-745)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) (-4 *4 (-364 *3)) + (-4 *5 (-364 *3)) (-4 *3 (-539)) (-5 *2 (-745)))) + ((*1 *2 *3) + (-12 (-4 *4 (-539)) (-4 *4 (-169)) (-4 *5 (-364 *4)) + (-4 *6 (-364 *4)) (-5 *2 (-745)) (-5 *1 (-662 *4 *5 *6 *3)) + (-4 *3 (-661 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *5 (-1016)) + (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-539)) + (-5 *2 (-745))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-821) (-539) (-1007 (-547)))) (-5 *2 (-398 (-547))) + (-5 *1 (-424 *4 *3)) (-4 *3 (-421 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-590 *3)) (-4 *3 (-421 *5)) + (-4 *5 (-13 (-821) (-539) (-1007 (-547)))) + (-5 *2 (-1131 (-398 (-547)))) (-5 *1 (-424 *5 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-443)) (-4 *4 (-767)) (-4 *5 (-821)) - (-4 *6 (-1030 *3 *4 *5)) (-5 *1 (-600 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1036 *3 *4 *5 *6)) (-4 *2 (-1072 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-322))))) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-619 *7)) (-4 *7 (-821)) (-4 *5 (-878)) (-4 *6 (-767)) + (-4 *8 (-918 *5 *6 *7)) (-5 *2 (-409 (-1131 *8))) + (-5 *1 (-875 *5 *6 *7 *8)) (-5 *4 (-1131 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-878)) (-4 *5 (-1194 *4)) (-5 *2 (-409 (-1131 *5))) + (-5 *1 (-876 *4 *5)) (-5 *3 (-1131 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1063)) (-4 *3 (-869 *5)) (-5 *2 (-663 *3)) + (-5 *1 (-666 *5 *3 *6 *4)) (-4 *6 (-364 *3)) + (-4 *4 (-13 (-364 *5) (-10 -7 (-6 -4328))))))) +(((*1 *2 *1) (-12 (-5 *2 (-745)) (-5 *1 (-861 *3)) (-4 *3 (-1063)))) + ((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1172)) (-5 *2 (-745))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1135)) (-5 *3 (-425)) (-4 *5 (-821)) + (-5 *1 (-1069 *5 *4)) (-4 *4 (-421 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 *5)) (-4 *5 (-539)) + (-5 *2 + (-2 (|:| -4248 (-745)) (|:| -1557 *5) (|:| |radicand| (-619 *5)))) + (-5 *1 (-311 *5)) (-5 *4 (-745)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-547))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921 *4)) (-4 *4 (-13 (-298) (-145))) + (-4 *2 (-918 *4 *6 *5)) (-5 *1 (-893 *4 *5 *6 *2)) + (-4 *5 (-13 (-821) (-592 (-1135)))) (-4 *6 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-547)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-457))))) +(((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-385)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1152))))) +(((*1 *2 *3) + (-12 (-5 *3 (-793 *4)) (-4 *4 (-821)) (-5 *2 (-112)) + (-5 *1 (-646 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-442))) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-421 *3) (-1157)))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-1028)) (-5 *3 (-1118))))) +(((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-169)) (-5 *2 (-1131 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-370)))) + ((*1 *1 *1 *1) (-4 *1 (-532))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-354)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-547)) (-5 *1 (-745))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-354) (-1007 (-398 *2)))) (-5 *2 (-547)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1194 *4))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-981)) (-5 *2 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-745)) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-796))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-619 (-912 *4))) (-4 *1 (-1096 *4)) (-4 *4 (-1016)) + (-5 *2 (-745))))) +(((*1 *2) + (-12 (-4 *1 (-340)) + (-5 *2 (-619 (-2 (|:| -2106 (-547)) (|:| -4248 (-547)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-812)) (-5 *2 (-1004)) (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-619 (-307 (-370)))) (-5 *4 (-619 (-370))) + (-5 *2 (-1004)) (-5 *1 (-811))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1172)) (-4 *2 (-821)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-364 *3)) (-4 *3 (-1172)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-937 *2)) (-4 *2 (-821)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2)) (-4 *2 (-1016)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 *1)) (-4 *1 (-1096 *3)) (-4 *3 (-1016)))) + ((*1 *1 *2) + (-12 (-5 *2 (-619 (-1124 *3 *4))) (-5 *1 (-1124 *3 *4)) + (-14 *3 (-890)) (-4 *4 (-1016)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1124 *2 *3)) (-14 *2 (-890)) (-4 *3 (-1016))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-547)) (-4 *1 (-661 *3 *4 *5)) (-4 *3 (-1016)) + (-4 *4 (-364 *3)) (-4 *5 (-364 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-821) (-539))) (-5 *1 (-267 *3 *2)) + (-4 *2 (-13 (-421 *3) (-971)))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-547)) (-14 *3 (-745)) + (-4 *4 (-169))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-912 *3) (-912 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-354) (-1157) (-971)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1135)) + (-4 *4 (-13 (-298) (-821) (-145) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-598 *4 *2)) (-4 *2 (-13 (-1157) (-928) (-29 *4)))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-996 *5 *6 *7 *8))) (-5 *1 (-996 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-619 *8)) (-5 *4 (-112)) (-4 *8 (-1030 *5 *6 *7)) + (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-5 *2 (-619 (-1106 *5 *6 *7 *8))) (-5 *1 (-1106 *5 *6 *7 *8))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-619 *6)) (-4 *6 (-1030 *3 *4 *5)) (-4 *3 (-442)) + (-4 *3 (-539)) (-4 *4 (-767)) (-4 *5 (-821)) + (-5 *1 (-946 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1118)) (-5 *4 (-547)) (-5 *5 (-663 (-217))) + (-5 *2 (-1004)) (-5 *1 (-732))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1157))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-771 *2)) (-4 *2 (-169)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-968 *3)) (-4 *3 (-169)) (-5 *1 (-773 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-358 *2)) (-4 *2 (-539)) (-4 *2 (-169))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-271)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-547) (-217) (-1135) (-1118) (-1140))) + (-5 *1 (-1140))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-442)) (-4 *6 (-767)) (-4 *7 (-821)) + (-4 *3 (-1030 *5 *6 *7)) + (-5 *2 (-619 (-2 (|:| |val| *3) (|:| -1965 *4)))) + (-5 *1 (-1037 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-321))))) +(((*1 *2) + (-12 (-4 *3 (-539)) (-5 *2 (-619 (-663 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-408 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1131 *3)) (-4 *3 (-359)) (-4 *1 (-320 *3)) + (-4 *3 (-354))))) +(((*1 *2) (-12 (-5 *2 (-619 *3)) (-5 *1 (-1048 *3)) (-4 *3 (-131))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-663 (-166 (-398 (-547))))) (-5 *2 (-619 (-166 *4))) + (-5 *1 (-739 *4)) (-4 *4 (-13 (-354) (-819)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-619 (-590 *5))) (-4 *4 (-821)) (-5 *2 (-590 *5)) + (-5 *1 (-556 *4 *5)) (-4 *5 (-421 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-619 (-547))) (-5 *2 (-745)) (-5 *1 (-569))))) +(((*1 *1 *1) (-12 (-5 *1 (-935 *2)) (-4 *2 (-936))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1194 (-547)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-112)) (-5 *1 (-795))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1172)) (-5 *2 (-547))))) +(((*1 *2 *3) + (-12 (-4 *4 (-767)) + (-4 *5 (-13 (-821) (-10 -8 (-15 -2829 ((-1135) $))))) (-4 *6 (-539)) + (-5 *2 (-2 (|:| -1991 (-921 *6)) (|:| -1444 (-921 *6)))) + (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-918 (-398 (-921 *6)) *4 *5))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-745)) (-5 *1 (-102 *3)) (-4 *3 (-1063))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-745)) (-4 *4 (-1016)) (-5 *1 (-1190 *4 *2)) + (-4 *2 (-1194 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-745)) (-5 *1 (-827 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1131 (-547))) (-5 *1 (-911)) (-5 *3 (-547))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-590 *2)) (-4 *2 (-13 (-27) (-1157) (-421 *4))) + (-4 *4 (-13 (-539) (-821) (-1007 (-547)) (-615 (-547)))) + (-5 *1 (-268 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-748)) (-5 *1 (-52))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1116 *3)) (-4 *3 (-354)) (-4 *3 (-1016)) + (-5 *1 (-1120 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-518 *3)) (-4 *3 (-13 (-701) (-25)))))) +(((*1 *2 *1) (-12 (-4 *1 (-924)) (-5 *2 (-619 (-619 (-912 (-217))))))) + ((*1 *2 *1) (-12 (-4 *1 (-943)) (-5 *2 (-619 (-619 (-912 (-217)))))))) (((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-619 (-619 (-912 *3)))))) @@ -17483,811 +17483,817 @@ ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-619 (-619 (-912 *5)))) (-5 *3 (-619 (-168))) (-5 *4 (-168)) (-4 *1 (-1096 *5)) (-4 *5 (-1016))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-548)) (-5 *4 (-663 (-218))) (-5 *2 (-1004)) - (-5 *1 (-731))))) -(((*1 *2 *1) - (-12 (-5 *2 (-399 (-921 *3))) (-5 *1 (-444 *3 *4 *5 *6)) - (-4 *3 (-540)) (-4 *3 (-169)) (-14 *4 (-890)) - (-14 *5 (-619 (-1135))) (-14 *6 (-1218 (-663 *3)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1131 *1)) (-5 *3 (-1135)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-921 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1135)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-821) (-540))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-821) (-540)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-171 *3)) (-4 *3 (-299))))) -(((*1 *2) (-12 (-5 *2 (-1223)) (-5 *1 (-1174))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118)) (-5 *2 (-1223)) (-5 *1 (-832))))) -(((*1 *1 *1) (-4 *1 (-635))) ((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1135)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-619 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-619 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -1699 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1157) (-27) (-422 *8))) - (-4 *8 (-13 (-443) (-821) (-145) (-1007 *3) (-615 *3))) - (-5 *3 (-548)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3676 *4) (|:| |sol?| (-112)))) - (-5 *1 (-982 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1172))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-409 *2)) (-4 *2 (-539))))) (((*1 *2 *1) - (-12 (-4 *2 (-540)) (-5 *1 (-599 *2 *3)) (-4 *3 (-1194 *2))))) -(((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-360)) (-4 *2 (-355))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-619 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1096 *3)) (-4 *3 (-1016)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-663 (-218))) (-5 *5 (-663 (-548))) (-5 *3 (-548)) - (-5 *2 (-1004)) (-5 *1 (-731))))) -((-1251 . 732590) (-1252 . 732518) (-1253 . 732439) (-1254 . 732365) - (-1255 . 732298) (-1256 . 732219) (-1257 . 731699) (-1258 . 731639) - (-1259 . 731570) (-1260 . 731519) (-1261 . 731445) (-1262 . 731115) - (-1263 . 730936) (-1264 . 730826) (-1265 . 730019) (-1266 . 729945) - (-1267 . 729892) (-1268 . 729703) (-1269 . 729182) (-1270 . 729023) - (-1271 . 728634) (-1272 . 728427) (-1273 . 728353) (-1274 . 727923) - (-1275 . 727744) (-1276 . 727613) (-1277 . 727541) (-1278 . 727383) - (-1279 . 727330) (-1280 . 727156) (-1281 . 726976) (-1282 . 726702) - (-1283 . 726166) (-1284 . 725925) (-1285 . 725842) (-1286 . 725655) - (-1287 . 725499) (-1288 . 725163) (-1289 . 725060) (-1290 . 724902) - (-1291 . 724849) (-1292 . 724398) (-1293 . 724208) (-1294 . 724065) - (-1295 . 723968) (-1296 . 723885) (-1297 . 723833) (-1298 . 723451) - (-1299 . 723178) (-1300 . 723106) (-1301 . 722920) (-1302 . 722861) - (-1303 . 722709) (-1304 . 722366) (-1305 . 722332) (-1306 . 721736) - (-1307 . 721708) (-1308 . 721653) (-1309 . 720657) (-1310 . 720510) - (-1311 . 720174) (-1312 . 719670) (-1313 . 719487) (-1314 . 719428) - (-1315 . 719248) (-1316 . 718936) (-1317 . 718881) (-1318 . 718800) - (-1319 . 718726) (-1320 . 718674) (-1321 . 718266) (-1322 . 718063) - (-1323 . 717991) (-1324 . 717814) (-1325 . 717437) (-1326 . 717264) - (-1327 . 717086) (-1328 . 716373) (-1329 . 715576) (-1330 . 715502) - (-1331 . 715336) (-1332 . 714928) (-1333 . 714824) (-1334 . 714371) - (-1335 . 714109) (-1336 . 714052) (-1337 . 713999) (-1338 . 713737) - (-1339 . 713606) (-1340 . 713291) (-1341 . 712912) (-1342 . 712838) - (-1343 . 712720) (-1344 . 712566) (-1345 . 712494) (-1346 . 712438) - (-1347 . 712382) (-1348 . 712124) (-1349 . 711984) (-1350 . 711669) - (-1351 . 711160) (-1352 . 711088) (-1353 . 711009) (-1354 . 710849) - (-1355 . 710729) (-1356 . 710624) (-1357 . 710568) (-1358 . 710512) - (-1359 . 709695) (-1360 . 709540) (-1361 . 709488) (-1362 . 708991) - (-1363 . 708936) (-1364 . 708791) (-1365 . 708526) (-1366 . 708397) - (-1367 . 708320) (-1368 . 708246) (-1369 . 708078) (-1370 . 707990) - (-1371 . 707818) (-1372 . 707639) (-1373 . 707587) (-1374 . 707165) - (-1375 . 707106) (-1376 . 706988) (-1377 . 706881) (-1378 . 706783) - (-1379 . 706706) (-1380 . 706636) (-1381 . 706413) (-1382 . 706311) - (-1383 . 704887) (-1384 . 703877) (-1385 . 703825) (-1386 . 703385) - (-1387 . 703286) (-1388 . 703104) (-1389 . 703016) (-1390 . 702944) - (-1391 . 702846) (-1392 . 701942) (-1393 . 701805) (-1394 . 701638) - (-1395 . 701560) (-1396 . 700690) (-1397 . 700591) (-1398 . 700467) - (-1399 . 700379) (-1400 . 700036) (-1401 . 699938) (-1402 . 698851) - (-1403 . 698709) (-1404 . 698542) (-1405 . 698480) (-1406 . 698353) - (-1407 . 698254) (-1408 . 697961) (-1409 . 697654) (-1410 . 697566) - (-1411 . 697434) (-1412 . 697336) (-1413 . 697192) (-1414 . 696961) - (-1415 . 696474) (-1416 . 696256) (-1417 . 696126) (-1418 . 696027) - (-1419 . 691964) (-1420 . 691671) (-1421 . 691583) (-1422 . 691438) - (-1423 . 691278) (-1424 . 691134) (-1425 . 691075) (-1426 . 690997) - (-1427 . 690740) (-1428 . 690628) (-1429 . 690530) (-1430 . 690431) - (-1431 . 690144) (-1432 . 690056) (-1433 . 689910) (-1434 . 689549) - (-1435 . 689404) (-1436 . 689244) (-1437 . 689100) (-1438 . 689044) - (-1439 . 688977) (-1440 . 688819) (-1441 . 688724) (-1442 . 688625) - (-1443 . 688341) (-1444 . 687662) (-1445 . 687568) (-1446 . 687067) - (-1447 . 686914) (-1448 . 686707) (-1449 . 686651) (-1450 . 686554) - (-1451 . 686440) (-1452 . 686341) (-1453 . 686246) (-1454 . 685940) - (-1455 . 685852) (-1456 . 685501) (-1457 . 684743) (-1458 . 684545) - (-1459 . 684332) (-1460 . 684235) (-1461 . 684087) (-1462 . 683992) - (-1463 . 683878) (-1464 . 681533) (-1465 . 681445) (-1466 . 681357) - (-1467 . 681126) (-1468 . 680873) (-1469 . 680633) (-1470 . 680490) - (-1471 . 680347) (-1472 . 680158) (-1473 . 680074) (-1474 . 679960) - (-1475 . 679865) (-1476 . 679780) (-1477 . 679692) (-1478 . 679417) - (-1479 . 679106) (-1480 . 678785) (-1481 . 678655) (-1482 . 678547) - (-1483 . 678463) (-1484 . 678379) (-1485 . 678284) (-1486 . 678180) - (-1487 . 678066) (-1488 . 677967) (-1489 . 677609) (-1490 . 677521) - (-1491 . 677134) (-1492 . 676782) (-1493 . 676667) (-1494 . 676546) - (-1495 . 676424) (-1496 . 676316) (-1497 . 676214) (-1498 . 676100) - (-1499 . 675979) (-1500 . 675880) (-1501 . 675792) (-1502 . 675549) - (-1503 . 675323) (-1504 . 675053) (-1505 . 674708) (-1506 . 674641) - (-1507 . 674495) (-1508 . 674072) (-1509 . 673958) (-1510 . 673906) - (-1511 . 673680) (-1512 . 673592) (-1513 . 673349) (-1514 . 673150) - (-1515 . 672875) (-1516 . 672715) (-1517 . 672641) (-1518 . 671986) - (-1519 . 671559) (-1520 . 671445) (-1521 . 671345) (-1522 . 671257) - (-1523 . 671014) (-1524 . 670842) (-1525 . 670455) (-1526 . 670316) - (-1527 . 670201) (-1528 . 669491) (-1529 . 669414) (-1530 . 669297) - (-1531 . 669194) (-1532 . 669106) (-1533 . 668863) (-12 . 668691) - (-1535 . 668507) (-1536 . 668368) (-1537 . 668113) (-1538 . 668006) - (-1539 . 667735) (-1540 . 667655) (-1541 . 667567) (-1542 . 667336) - (-1543 . 667284) (-1544 . 667150) (-1545 . 667021) (-1546 . 666920) - (-1547 . 666816) (-1548 . 666545) (-1549 . 666218) (-1550 . 666130) - (-1551 . 665899) (-1552 . 665847) (-1553 . 665681) (-1554 . 665596) - (-1555 . 665397) (-1556 . 665293) (-1557 . 664906) (-1558 . 664611) - (-1559 . 664473) (-1560 . 664200) (-1561 . 664048) (-1562 . 663882) - (-1563 . 663379) (-1564 . 663063) (-1565 . 662949) (-1566 . 662246) - (-1567 . 662173) (-1568 . 662035) (-1569 . 661851) (-1570 . 661782) - (-1571 . 660470) (-1572 . 660000) (-1573 . 659791) (-1574 . 659731) - (-1575 . 659629) (-1576 . 659244) (-1577 . 659124) (-1578 . 659019) - (-1579 . 658945) (-1580 . 658917) (-1581 . 658802) (-1582 . 658696) - (-1583 . 658597) (-1584 . 658520) (-1585 . 658418) (-1586 . 658303) - (-1587 . 658275) (-1588 . 658155) (-1589 . 658032) (-1590 . 657949) - (-1591 . 657817) (-1592 . 657710) (-1593 . 657631) (-1594 . 657554) - (-1595 . 657355) (-1596 . 657214) (-1597 . 657106) (-1598 . 657016) - (-1599 . 656697) (-1600 . 656547) (-1601 . 656491) (-1602 . 656368) - (-1603 . 656280) (-1604 . 656226) (-1605 . 656117) (-1606 . 656009) - (-1607 . 655929) (-1608 . 655672) (-1609 . 655531) (-1610 . 655460) - (-1611 . 655208) (-1612 . 655180) (-1613 . 655036) (-1614 . 654948) - (-1615 . 654894) (-1616 . 654589) (-1617 . 654502) (* . 649956) - (-1619 . 649900) (-1620 . 649829) (-1621 . 649413) (-1622 . 649293) - (-1623 . 649206) (-1624 . 649178) (-1625 . 649090) (-1626 . 648780) - (-1627 . 648720) (-1628 . 648350) (-1629 . 648102) (-1630 . 647710) - (-1631 . 647606) (-1632 . 647528) (-1633 . 647476) (-1634 . 647448) - (-1635 . 647360) (-1636 . 646617) (-1637 . 646459) (-1638 . 646358) - (-1639 . 646280) (-1640 . 646218) (-1641 . 646190) (-1642 . 646052) - (-1643 . 645875) (-1644 . 645682) (-1645 . 645460) (-1646 . 645336) - (-1647 . 645254) (-1648 . 645155) (-1649 . 645127) (-1650 . 644989) - (-1651 . 644844) (-1652 . 644359) (-1653 . 644201) (-1654 . 644115) - (-1655 . 644033) (-1656 . 642835) (-1657 . 641633) (-1658 . 641581) - (-1659 . 641493) (-1660 . 641388) (-1661 . 641146) (-1662 . 640941) - (-1663 . 640875) (-1664 . 640796) (-1665 . 640605) (-1666 . 640512) - (-1667 . 640393) (-1668 . 640125) (-1669 . 640056) (-1670 . 639990) - (-1671 . 639919) (-1672 . 637651) (-1673 . 637601) (-1674 . 637400) - (-1675 . 636943) (-1676 . 636842) (-1677 . 636772) (-1678 . 636706) - (-1679 . 636635) (-1680 . 636254) (-1681 . 636185) (-1682 . 635921) - (-1683 . 635492) (-1684 . 635409) (-1685 . 635290) (-1686 . 635224) - (-1687 . 635153) (-1688 . 634706) (-1689 . 634637) (-1690 . 634094) - (-1691 . 633461) (-1692 . 633378) (-1693 . 633200) (-1694 . 633134) - (-1695 . 633029) (-1696 . 632735) (-1697 . 632096) (-1698 . 632026) - (-1699 . 631971) (-1700 . 631905) (-1701 . 631839) (-1702 . 631730) - (-1703 . 631359) (-1704 . 631222) (-1705 . 630830) (-1706 . 630760) - (-1707 . 630514) (-1708 . 630448) (-1709 . 630361) (-1710 . 630252) - (-1711 . 630097) (-1712 . 629851) (-1713 . 629509) (-1714 . 629481) - (-1715 . 629322) (-1716 . 629232) (-1717 . 629166) (-1718 . 629094) - (-1719 . 628985) (-1720 . 628830) (-1721 . 628623) (-1722 . 628231) - (-1723 . 628134) (-1724 . 627888) (-1725 . 627698) (-1726 . 627632) - (-1727 . 627444) (-1728 . 627335) (-1729 . 627224) (-1730 . 627019) - (-1731 . 626909) (-1732 . 626567) (-1733 . 625929) (-1734 . 625805) - (-1735 . 625732) (-1736 . 625666) (-1737 . 625494) (-1738 . 625385) - (-1739 . 624870) (-1740 . 624748) (-1741 . 624686) (-1742 . 624582) - (-1743 . 624357) (-1744 . 624298) (-1745 . 624228) (-1746 . 624162) - (-1747 . 623980) (-1748 . 623871) (-1749 . 623794) (-1750 . 623681) - (-1751 . 623151) (-1752 . 623120) (-1753 . 623055) (-1754 . 622990) - (-1755 . 622924) (-1756 . 622322) (-1757 . 622213) (-1758 . 622133) - (-1759 . 622020) (-1760 . 621802) (-1761 . 618875) (-1762 . 618813) - (-1763 . 618758) (-1764 . 618692) (-1765 . 618526) (-1766 . 618417) - (-1767 . 618340) (-1768 . 618212) (-1769 . 617994) (-1770 . 617784) - (-1771 . 617690) (-1772 . 617624) (-1773 . 617040) (-1774 . 616931) - (-1775 . 616851) (-1776 . 616741) (-1777 . 616522) (-1778 . 616248) - (-1779 . 615938) (-1780 . 615872) (-1781 . 615795) (-1782 . 615686) - (-1783 . 615606) (-1784 . 615499) (-1785 . 615319) (-1786 . 614745) - (-1787 . 614400) (-1788 . 614334) (-1789 . 613964) (-1790 . 613855) - (-1791 . 613778) (-1792 . 613622) (-1793 . 613403) (-1794 . 613228) - (-1795 . 612949) (-1796 . 612435) (-1797 . 612361) (-1798 . 612295) - (-1799 . 612117) (-1800 . 612008) (-1801 . 611928) (-1802 . 611794) - (-1803 . 611614) (-1804 . 611519) (-1805 . 611374) (-1806 . 611312) - (-1807 . 610987) (-1808 . 610921) (-1809 . 610849) (-1810 . 610740) - (-1811 . 610506) (-1812 . 610353) (-1813 . 610219) (-1814 . 609825) - (-1815 . 609758) (-1816 . 609675) (-1817 . 609608) (-1818 . 609398) - (-1819 . 609332) (-1820 . 609192) (-1821 . 609083) (-1822 . 608925) - (-1823 . 608812) (-1824 . 608632) (-1825 . 608549) (-1826 . 608466) - (-1827 . 608380) (-1828 . 608190) (-1829 . 608124) (-1830 . 608015) - (-1831 . 607385) (-1832 . 607083) (-1833 . 606964) (-1834 . 606749) - (-1835 . 606666) (-1836 . 606580) (-1837 . 606514) (-1838 . 606398) - (-1839 . 606289) (-1840 . 606131) (-1841 . 605747) (-1842 . 605570) - (-1843 . 605480) (-1844 . 605378) (-1845 . 605292) (-1846 . 605226) - (-1847 . 605110) (-1848 . 605001) (-1849 . 604669) (-1850 . 604535) - (-1851 . 604445) (-1852 . 604371) (-1853 . 604285) (-1854 . 602153) - (-1855 . 602087) (-1856 . 601971) (-1857 . 601862) (-1858 . 601719) - (-1859 . 601582) (-1860 . 601488) (-1861 . 601405) (-1862 . 601290) - (-1863 . 601204) (-1864 . 601138) (-1865 . 600985) (-1866 . 600876) - (-1867 . 600733) (-1868 . 600602) (-1869 . 600515) (-1870 . 600453) - (-1871 . 600379) (-1872 . 599242) (-1873 . 599156) (-1874 . 599090) - (-1875 . 598946) (-1876 . 598837) (-1877 . 598693) (-1878 . 598610) - (-1879 . 598497) (-1880 . 598407) (-1881 . 598189) (-1882 . 598103) - (-1883 . 598037) (-1884 . 596629) (-1885 . 596555) (-1886 . 596446) - (-1887 . 595265) (-1888 . 595182) (-1889 . 595060) (-1890 . 594977) - (-1891 . 594764) (-1892 . 594678) (-1893 . 594021) (-1894 . 593935) - (-1895 . 593826) (-1896 . 593561) (-1897 . 593436) (-1898 . 593245) - (-1899 . 593165) (-1900 . 592304) (-1901 . 592211) (-1902 . 591936) - (-1903 . 591850) (-1904 . 591193) (-1905 . 591119) (-1906 . 591010) - (-1907 . 590866) (-1908 . 590115) (-1909 . 590011) (-1910 . 589955) - (-1911 . 589792) (-1912 . 589725) (-1913 . 589639) (-1914 . 589511) - (-1915 . 583998) (-1916 . 583924) (-1917 . 583815) (-1918 . 583074) - (-1919 . 582937) (-1920 . 582753) (-1921 . 582670) (-1922 . 582573) - (-1923 . 582430) (-1924 . 582344) (-1925 . 582221) (-1926 . 581833) - (-1927 . 581759) (-1928 . 581558) (-1929 . 580817) (-1930 . 580726) - (-1931 . 580552) (-1932 . 580469) (-1933 . 580402) (-1934 . 580183) - (-1935 . 580097) (-1936 . 579974) (-1937 . 579519) (-1938 . 579375) - (-1939 . 579060) (-1940 . 578372) (-1941 . 578235) (-1942 . 578036) - (-1943 . 577953) (-1944 . 577869) (-1945 . 577772) (-1946 . 577686) - (-1947 . 577545) (-1948 . 577196) (-1949 . 576989) (-1950 . 576836) - (-1951 . 575248) (-1952 . 574672) (-1953 . 574604) (-1954 . 574430) - (-1955 . 574295) (-1956 . 574177) (-1957 . 574097) (-1958 . 574014) - (-1959 . 573928) (-1960 . 573773) (-1961 . 573598) (-1962 . 573440) - (-1963 . 572864) (-1964 . 572795) (-1965 . 572676) (-1966 . 572541) - (-1967 . 572439) (-1968 . 572353) (-1969 . 572209) (-1970 . 572056) - (-1971 . 571915) (-1972 . 571827) (-1973 . 571251) (-1974 . 570685) - (-1975 . 570553) (-1976 . 570425) (-1977 . 570301) (-1978 . 570101) - (-1979 . 570015) (-1980 . 569835) (-1981 . 569546) (-1982 . 569393) - (-1983 . 569250) (-1984 . 569173) (-1985 . 569085) (-1986 . 568399) - (-1987 . 567833) (-1988 . 567776) (-1989 . 567648) (-1990 . 567527) - (-1991 . 567459) (-1992 . 567373) (-1993 . 567250) (-1994 . 566964) - (-1995 . 566758) (-1996 . 566072) (-1997 . 565901) (-1998 . 565779) - (-1999 . 565661) (-2000 . 565413) (-2001 . 565327) (-2002 . 565203) - (-2003 . 564917) (-2004 . 562953) (-2005 . 562827) (-2006 . 562078) - (-2007 . 562004) (-2008 . 561848) (-2009 . 561623) (-2010 . 561487) - (-2011 . 561236) (-2012 . 561150) (-2013 . 561049) (-2014 . 560638) - (-2015 . 560510) (-2016 . 560380) (-2017 . 559806) (-2018 . 559662) - (-2019 . 559491) (-2020 . 559358) (-2021 . 559296) (-2022 . 559048) - (-2023 . 558962) (-2024 . 557333) (-2025 . 557277) (-2026 . 556991) - (-2027 . 556866) (-2028 . 556797) (-2029 . 556223) (-2030 . 555757) - (-2031 . 555586) (-2032 . 555529) (-2033 . 555281) (-2034 . 555195) - (-2035 . 555139) (-2036 . 554273) (-2037 . 554200) (-2038 . 554072) - (-2039 . 554018) (-2040 . 553444) (-2041 . 553064) (-2042 . 552887) - (-2043 . 552827) (-2044 . 552754) (-2045 . 552636) (-2046 . 552568) - (-2047 . 552482) (-2048 . 552426) (-2049 . 551052) (-2050 . 550203) - (-2051 . 550054) (-2052 . 549827) (-2053 . 549749) (-2054 . 549062) - (-2055 . 548298) (-2056 . 548146) (-2057 . 547749) (-2058 . 547413) - (-2059 . 547327) (-2060 . 547271) (-2061 . 543650) (-2062 . 543544) - (-2063 . 543317) (-2064 . 543161) (-2065 . 542474) (-2066 . 542330) - (-2067 . 542050) (-2068 . 541526) (-2069 . 540461) (-2070 . 540375) - (-2071 . 540316) (-2072 . 540245) (-2073 . 540117) (-2074 . 539430) - (-2075 . 539286) (-2076 . 538882) (-2077 . 538604) (-2078 . 538384) - (-2079 . 538298) (-2080 . 538234) (-2081 . 538163) (-2082 . 537960) - (-2083 . 537732) (-2084 . 537567) (-2085 . 537508) (-2086 . 536933) - (-2087 . 536802) (-2088 . 536745) (-2089 . 535344) (-2090 . 535231) - (-2091 . 535148) (-2092 . 535062) (-2093 . 534954) (-2094 . 534788) - (-2095 . 534729) (-2096 . 534550) (-2097 . 533586) (-2098 . 533011) - (-2099 . 532958) (-2100 . 532720) (-2101 . 532515) (-2102 . 532071) - (-2103 . 530821) (-2104 . 530747) (-2105 . 530644) (-2106 . 530536) - (-2107 . 528698) (-2108 . 528639) (-2109 . 528112) (-2110 . 527537) - (-2111 . 527396) (-2112 . 527213) (-2113 . 526886) (-2114 . 526654) - (-2115 . 526313) (-2116 . 526239) (-2117 . 526150) (-2118 . 526042) - (-2119 . 524532) (-2120 . 524397) (-2121 . 523870) (-2122 . 523296) - (-2123 . 523149) (-2124 . 522962) (-2125 . 522757) (-2126 . 522662) - (-2127 . 522453) (-2128 . 522174) (-2129 . 520626) (-2130 . 520567) - (-2131 . 520286) (-2132 . 519712) (-2133 . 519515) (-2134 . 519276) - (-2135 . 519147) (-2136 . 518965) (-2137 . 518909) (-2138 . 518802) - (-2139 . 518743) (-2140 . 518669) (-2141 . 518595) (-2142 . 518425) - (-2143 . 518004) (-2144 . 517970) (-2145 . 517396) (-2146 . 517160) - (-2147 . 517053) (-2148 . 516785) (-2149 . 516655) (-2150 . 516584) - (-2151 . 516365) (-2152 . 516309) (-2153 . 515573) (-2154 . 515343) - (-2155 . 515116) (-2156 . 515028) (-2157 . 514501) (-2158 . 513927) - (-2159 . 513893) (-2160 . 513654) (-2161 . 513513) (-2162 . 513303) - (-2163 . 513234) (-2164 . 513072) (-2165 . 512983) (-2166 . 512900) - (-2167 . 512747) (-2168 . 512650) (-2169 . 512465) (-2170 . 511891) - (-2171 . 511759) (-2172 . 511548) (-2173 . 511426) (-2174 . 511367) - (-2175 . 511240) (-2176 . 511128) (-2177 . 511048) (-2178 . 511014) - (-2179 . 510871) (-2180 . 510704) (-2181 . 510590) (-2182 . 510399) - (-2183 . 510316) (-2184 . 510229) (-2185 . 509585) (-2186 . 509505) - (-2187 . 509474) (-2188 . 508956) (-2189 . 508861) (-2190 . 508708) - (-2191 . 508560) (-2192 . 507977) (-2193 . 507866) (-2194 . 507721) - (-2195 . 507574) (-2196 . 507494) (-2197 . 506322) (-2198 . 506238) - (-2199 . 505596) (-2200 . 505483) (-2201 . 505074) (-2202 . 505040) - (-2203 . 504901) (-2204 . 504645) (-2205 . 504579) (-2206 . 504523) - (-2207 . 504467) (-2208 . 504383) (-2209 . 504279) (-2210 . 503985) - (-2211 . 503919) (-2212 . 503625) (-2213 . 503461) (-2214 . 503192) - (-2215 . 503130) (-2216 . 503033) (-2217 . 502918) (-2218 . 502820) - (-2219 . 502713) (-2220 . 502416) (-2221 . 502342) (-2222 . 502269) - (-2223 . 502105) (-2224 . 502071) (-2225 . 501950) (-2226 . 501856) - (-2227 . 501643) (-2228 . 501533) (-2229 . 501233) (-2230 . 501161) - (-2231 . 501096) (-2232 . 500878) (-2233 . 500670) (-2234 . 500439) - (-2235 . 500405) (-2236 . 500334) (-2237 . 500240) (-2238 . 499841) - (-2239 . 499813) (-2240 . 499624) (-2241 . 499537) (-2242 . 499503) - (-2243 . 499429) (-2244 . 499376) (-2245 . 499187) (-2246 . 499079) - (-2247 . 498936) (-2248 . 498884) (-2249 . 498834) (-2250 . 498728) - (-2251 . 498570) (-2252 . 498411) (-2253 . 498377) (-2254 . 498146) - (-2255 . 498091) (-2256 . 496934) (-2257 . 496775) (-2258 . 496632) - (-2259 . 496573) (-2260 . 495127) (-2261 . 494966) (-2262 . 494879) - (-2263 . 494845) (-2264 . 494407) (-2265 . 494218) (-2266 . 493980) - (-2267 . 493699) (-2268 . 493595) (-2269 . 493201) (-2270 . 492709) - (-2271 . 492548) (-2272 . 492425) (-2273 . 492257) (-2274 . 492032) - (-2275 . 491419) (-2276 . 491315) (-2277 . 491287) (-2278 . 490956) - (-2279 . 490354) (-2280 . 490196) (-2281 . 490143) (-2282 . 490000) - (-2283 . 489927) (-2284 . 489805) (-2285 . 489275) (-2286 . 488794) - (-2287 . 488687) (-2288 . 487883) (-2289 . 487743) (-2290 . 486557) - (-2291 . 486504) (-2292 . 486390) (-2293 . 486317) (-2294 . 486078) - (-2295 . 485860) (-2296 . 485753) (-2297 . 485147) (-2298 . 485019) - (-2299 . 483837) (-2300 . 483784) (-2301 . 483663) (-2302 . 483543) - (-2303 . 483339) (-2304 . 483121) (-2305 . 483041) (-2306 . 482934) - (-2307 . 482280) (-2308 . 482152) (-2309 . 479946) (-2310 . 479893) - (-2311 . 479775) (-2312 . 479702) (-2313 . 479491) (-2314 . 479097) - (-2315 . 478680) (-2316 . 478624) (-2317 . 478517) (-2318 . 477931) - (-2319 . 477803) (-2320 . 477750) (-2321 . 477638) (-2322 . 477565) - (-2323 . 477372) (-2324 . 477192) (-2325 . 476776) (-2326 . 476400) - (-2327 . 476293) (-2328 . 476219) (-2329 . 476076) (-2330 . 476023) - (-2331 . 475905) (-2332 . 475832) (-2333 . 475553) (-2334 . 475338) - (-2335 . 474962) (-2336 . 474855) (-2337 . 474803) (-2338 . 474660) - (-2339 . 474607) (-2340 . 474502) (-2341 . 474282) (-2342 . 474109) - (-2343 . 473905) (-2344 . 473752) (-2345 . 473645) (-2346 . 473593) - (-2347 . 473451) (-2348 . 473398) (-2349 . 473315) (-2350 . 472982) - (-2351 . 472803) (-2352 . 471939) (-2353 . 471870) (-2354 . 471568) - (-2355 . 471498) (-2356 . 471391) (-2357 . 471317) (-2358 . 471172) - (-2359 . 471119) (-2360 . 471015) (-2361 . 470831) (-2362 . 470753) - (-2363 . 470724) (-2364 . 470565) (-2365 . 470458) (-2366 . 470403) - (-2367 . 469650) (-2368 . 469597) (-2369 . 468631) (-2370 . 468487) - (-2371 . 468346) (-2372 . 468177) (-2373 . 467846) (-2374 . 467739) - (-2375 . 462401) (-2376 . 462349) (-2377 . 462186) (-2378 . 462115) - (-2379 . 461890) (-2380 . 461529) (-2381 . 461326) (-2382 . 461297) - (-2383 . 461141) (-2384 . 461070) (-2385 . 460963) (-2386 . 460911) - (-2387 . 460755) (-2388 . 460567) (-2389 . 460496) (-2390 . 460412) - (-2391 . 460241) (-2392 . 460140) (-2393 . 459996) (-2394 . 459967) - (-2395 . 459896) (-2396 . 459786) (-2397 . 459679) (-2398 . 459627) - (-2399 . 459467) (-2400 . 459395) (-2401 . 459046) (-2402 . 458875) - (-2403 . 458625) (-2404 . 458569) (-2405 . 458496) (-2406 . 458284) - (-2407 . 458177) (-2408 . 458107) (-2409 . 458054) (-2410 . 457814) - (-2411 . 457742) (-2412 . 457668) (-2413 . 457409) (-2414 . 457091) - (-2415 . 456926) (-2416 . 456717) (-2417 . 456610) (-2418 . 456159) - (-2419 . 455912) (-2420 . 455835) (-2421 . 455737) (-2422 . 455478) - (-2423 . 455112) (-2424 . 455052) (-2425 . 454676) (-2426 . 454569) - (-2427 . 454355) (-2428 . 454086) (-2429 . 453839) (-2430 . 453786) - (-2431 . 453712) (-2432 . 453517) (-2433 . 453355) (-2434 . 452654) - (-2435 . 452119) (-2436 . 452012) (-2437 . 451740) (-2438 . 451526) - (-2439 . 450851) (-2440 . 450798) (-2441 . 446256) (-2442 . 446162) - (-2443 . 446046) (-2444 . 445851) (-2445 . 445820) (-2446 . 445614) - (-2447 . 444422) (-2448 . 443865) (-2449 . 443758) (-2450 . 443385) - (-2451 . 443246) (-2452 . 443193) (-2453 . 443077) (-2454 . 443025) - (-2455 . 442428) (-2456 . 442268) (-2457 . 442207) (-2458 . 440995) - (-2459 . 440438) (-2460 . 436440) (-2461 . 436333) (-2462 . 436056) - (-2463 . 435842) (-2464 . 435789) (-2465 . 435676) (-2466 . 435517) - (-2467 . 435439) (-2468 . 435366) (-2469 . 435309) (-2470 . 434608) - (-2471 . 434482) (-2472 . 434375) (-2473 . 434058) (-2474 . 433766) - (-2475 . 433713) (-2476 . 433619) (-2477 . 433472) (-2478 . 433353) - (-2479 . 433296) (-2480 . 432618) (-2481 . 432008) (-2482 . 431901) - (-2483 . 431687) (-2484 . 431473) (-2485 . 431420) (-2486 . 431326) - (-2487 . 430572) (-2488 . 430243) (-2489 . 430124) (-2490 . 429693) - (-2491 . 429616) (-2492 . 429563) (-2493 . 429339) (-2494 . 429232) - (-2495 . 428914) (-2496 . 428775) (-2497 . 428722) (-2498 . 428629) - (-2499 . 428137) (-2500 . 427977) (-2501 . 427917) (-2502 . 427725) - (-2503 . 427646) (-2504 . 427539) (-2505 . 426939) (-2506 . 426725) - (-2507 . 426672) (-2508 . 426579) (-2509 . 426087) (-2510 . 425907) - (-2511 . 425789) (-2512 . 423675) (-2513 . 423568) (-2514 . 423427) - (-2515 . 423118) (-2516 . 423065) (-2517 . 422972) (-2518 . 422454) - (-2519 . 422271) (-2520 . 421311) (-2521 . 421159) (-2522 . 421036) - (-2523 . 420929) (-2524 . 420714) (-2525 . 420569) (-2526 . 420516) - (-2527 . 420428) (-2528 . 420360) (-2529 . 420247) (-2530 . 420146) - (-2531 . 420069) (-2532 . 419881) (-2533 . 419828) (-2534 . 419583) - (-2535 . 419476) (-2536 . 419167) (-2537 . 419025) (-2538 . 418972) - (-2539 . 416557) (-2540 . 402443) (-2541 . 402376) (-2542 . 402221) - (-2543 . 402150) (-2544 . 402049) (-2545 . 401399) (-2546 . 401345) - (-2547 . 401038) (-2548 . 400931) (-2549 . 400845) (-2550 . 400612) - (-2551 . 400559) (-2552 . 400491) (-2553 . 400439) (-2554 . 400368) - (-2555 . 400264) (-2556 . 399948) (-2557 . 399775) (-2558 . 399584) - (-2559 . 398288) (-2560 . 397937) (-2561 . 397795) (-2562 . 397742) - (-2563 . 397688) (-2564 . 397502) (-2565 . 397395) (-2566 . 397287) - (-2567 . 397114) (-2568 . 396992) (-2569 . 396847) (-2570 . 396619) - (-2571 . 396566) (-2572 . 396441) (-2573 . 396322) (-2574 . 396196) - (-2575 . 396093) (-2576 . 395837) (-2577 . 395578) (-2578 . 395252) - (-2579 . 395053) (-2580 . 395001) (-2581 . 394937) (-2582 . 394818) - (-2583 . 394692) (-2584 . 394531) (-2585 . 394345) (-2586 . 394039) - (-2587 . 393799) (-2588 . 393747) (-2589 . 393587) (-2590 . 393462) - (-2591 . 388743) (-2592 . 388614) (-2593 . 388520) (-2594 . 388391) - (-2595 . 388284) (-2596 . 387643) (-2597 . 387428) (-2598 . 387303) - (-2599 . 386967) (-2600 . 386914) (-2601 . 386795) (-2602 . 386701) - (-2603 . 386569) (-2604 . 386465) (-2605 . 385168) (-2606 . 385001) - (-2607 . 384881) (-2608 . 384757) (-2609 . 384594) (-2610 . 384541) - (-2611 . 384422) (-2612 . 384130) (-2613 . 384029) (-2614 . 383876) - (-2615 . 382625) (-2616 . 382454) (-2617 . 382308) (-2618 . 382214) - (-2619 . 382051) (-2620 . 381998) (-2621 . 381477) (-2622 . 381355) - (-2623 . 381254) (-2624 . 380973) (-2625 . 380098) (-2626 . 380046) - (-2627 . 379903) (-2628 . 379740) (-2629 . 379687) (-2630 . 379498) - (-2631 . 379446) (-2632 . 379342) (-2633 . 379120) (-2634 . 377848) - (-2635 . 377785) (-2636 . 377670) (-2637 . 377495) (-2638 . 377467) - (-2639 . 377403) (-2640 . 377351) (-2641 . 377247) (-2642 . 377173) - (-2643 . 377020) (-2644 . 376918) (-2645 . 376823) (-2646 . 376760) - (-2647 . 376630) (-2648 . 376601) (-2649 . 376426) (-2650 . 376398) - (-2651 . 376344) (-2652 . 376292) (-2653 . 376126) (-2654 . 375973) - (-2655 . 375850) (-2656 . 375755) (-2657 . 375564) (-2658 . 375187) - (-2659 . 375009) (-2660 . 374981) (-2661 . 374872) (-2662 . 374844) - (-2663 . 374792) (-2664 . 374626) (-2665 . 374570) (-2666 . 374417) - (-2667 . 374284) (-2668 . 374128) (-2669 . 373868) (-2670 . 373509) - (-2671 . 373481) (-2672 . 372105) (-2673 . 372053) (-2674 . 371859) - (-2675 . 371706) (-2676 . 371624) (-2677 . 371344) (-2678 . 371150) - (-2679 . 371070) (-2680 . 370986) (-2681 . 370837) (-2682 . 370671) - (-2683 . 370615) (-2684 . 370462) (-2685 . 370380) (-2686 . 370162) - (-2687 . 369919) (-2688 . 369757) (-2689 . 369697) (-2690 . 369604) - (-2691 . 369511) (-2692 . 369324) (-2693 . 369156) (-2694 . 368765) - (-2695 . 368635) (-2696 . 368305) (-2697 . 368231) (-2698 . 368179) - (-2699 . 368121) (-2700 . 367881) (-2701 . 367710) (-2702 . 367369) - (-2703 . 367019) (-2704 . 366945) (-2705 . 366893) (-2706 . 366808) - (-2707 . 366382) (-2708 . 366175) (-2709 . 366010) (-2710 . 365659) - (-2711 . 365476) (-2712 . 365009) (-2713 . 364935) (-2714 . 364883) - (-2715 . 364806) (-2716 . 364778) (-2717 . 364613) (-2718 . 364262) - (-2719 . 364092) (-2720 . 363954) (-2721 . 363468) (-2722 . 363394) - (-2723 . 363342) (-2724 . 363257) (-2725 . 363229) (-2726 . 363129) - (-2727 . 362778) (-2728 . 362554) (-2729 . 362351) (-2730 . 362277) - (-2731 . 362225) (-2732 . 362168) (-2733 . 361976) (-2734 . 361924) - (-2735 . 361573) (-2736 . 361113) (-2737 . 360810) (-2738 . 360736) - (-2739 . 359923) (-2740 . 359782) (-2741 . 359688) (-2742 . 359657) - (-2743 . 359553) (-2744 . 359166) (-2745 . 359113) (-2746 . 358932) - (-2747 . 358808) (-2748 . 358729) (-2749 . 358134) (-2750 . 358040) - (-2751 . 357845) (-2752 . 357458) (-2753 . 357349) (-2754 . 356860) - (-2755 . 356642) (-2756 . 356468) (-2757 . 356402) (-2758 . 355807) - (-2759 . 355607) (-2760 . 355357) (-2761 . 354970) (-2762 . 354855) - (-2763 . 354794) (-2764 . 354727) (-2765 . 354449) (-2766 . 354291) - (-2767 . 354046) (-2768 . 353663) (-2769 . 353594) (-2770 . 353541) - (-2771 . 352376) (-2772 . 352309) (-2773 . 351948) (-2774 . 351790) - (-2775 . 351468) (-2776 . 350732) (-2777 . 350663) (-2778 . 350592) - (-2779 . 350537) (-2780 . 350480) (-2781 . 350153) (-2782 . 349995) - (-2783 . 349607) (-2784 . 349256) (-2785 . 349187) (-2786 . 349134) - (-2787 . 349079) (-2788 . 349001) (-2789 . 348868) (-2790 . 348710) - (-2791 . 348644) (-2792 . 348502) (-2793 . 348424) (-2794 . 348356) - (-2795 . 348223) (-2796 . 347998) (-2797 . 347840) (-2798 . 347693) - (-2799 . 347661) (-2800 . 347448) (-2801 . 347323) (-2802 . 347225) - (-2803 . 347148) (-2804 . 347077) (-2805 . 346745) (-2806 . 346587) - (-2807 . 346424) (-2808 . 346392) (-2809 . 346326) (-2810 . 346109) - (-2811 . 346015) (-2812 . 345938) (-2813 . 345867) (-2814 . 345758) - (-2815 . 345691) (-2816 . 345612) (-2817 . 345580) (-2818 . 345514) - (-2819 . 345444) (-2820 . 345394) (-2821 . 345278) (-2822 . 345198) - (-2823 . 345040) (-2824 . 344958) (-2825 . 344926) (-2826 . 344855) - (-2827 . 344758) (-2828 . 344663) (-2829 . 344444) (-2830 . 344345) - (-2831 . 344036) (-2832 . 343878) (-2833 . 343719) (-2834 . 343690) - (-2835 . 343583) (-2836 . 343440) (-2837 . 343339) (-2838 . 343269) - (-2839 . 343050) (-2840 . 342944) (-2841 . 342693) (-2842 . 342535) - (-2843 . 342453) (-2844 . 342340) (-2845 . 342233) (-2846 . 342150) - (-2847 . 342053) (-2848 . 341958) (-2849 . 341739) (-2850 . 341615) - (-2851 . 341457) (-2852 . 341375) (-2853 . 341262) (-2854 . 341179) - (-2855 . 341035) (-2856 . 340965) (-2857 . 340864) (-2858 . 340740) - (-2859 . 340582) (-2860 . 340519) (-2861 . 340437) (-2862 . 340324) - (-2863 . 340269) (-2864 . 340159) (-2865 . 340013) (-2866 . 339742) - (-2867 . 339687) (-2868 . 339592) (-2869 . 339518) (-2870 . 339151) - (-2871 . 338993) (-2872 . 338887) (-2873 . 338774) (-2874 . 338695) - (-2875 . 338666) (-2876 . 338614) (-2877 . 337748) (-2878 . 337678) - (-2879 . 337623) (-2880 . 337500) (-2881 . 337342) (-2882 . 337167) - (-2883 . 337045) (-2884 . 336975) (-2885 . 336908) (-2886 . 336856) - (-2887 . 336697) (-2888 . 336602) (-2889 . 336547) (-2890 . 336445) - (-2891 . 336287) (-2892 . 336134) (-2893 . 335997) (-2894 . 335924) - (-2895 . 335847) (-2896 . 335729) (-2897 . 335521) (-2898 . 335146) - (-2899 . 335076) (-2900 . 335021) (-2901 . 334657) (-2902 . 334605) - (-2903 . 334531) (-2904 . 334378) (-2905 . 334244) (-2906 . 334189) - (-2907 . 334117) (-2908 . 334089) (-2909 . 333956) (-2910 . 333871) - (-2911 . 333816) (-2912 . 333662) (-2913 . 333124) (-2914 . 333050) - (-2915 . 332876) (-2916 . 332742) (-2917 . 332669) (-2918 . 332589) - (-2919 . 332308) (-2920 . 332162) (-2921 . 332042) (-2922 . 331749) - (-2923 . 331671) (-2924 . 331619) (-2925 . 331564) (-2926 . 331372) - (-2927 . 331072) (-2928 . 331017) (-2929 . 330944) (-2930 . 330808) - (-2931 . 330659) (-2932 . 330604) (-2933 . 330345) (-2934 . 330267) - (-2935 . 330215) (-2936 . 330160) (-2937 . 329861) (-2938 . 329561) - (-2939 . 329204) (-2940 . 329131) (-2941 . 329075) (-2942 . 328785) - (-2943 . 328715) (-2944 . 328687) (-2945 . 328591) (-2946 . 328539) - (-2947 . 328484) (-2948 . 328289) (-2949 . 327936) (-2950 . 327525) - (-2951 . 327452) (-2952 . 327396) (-2953 . 327343) (-2954 . 327309) - (-2955 . 327259) (-2956 . 327077) (-2957 . 327025) (-2958 . 326970) - (-2959 . 326855) (-2960 . 326625) (-2961 . 326470) (-2962 . 326398) - (-2963 . 326339) (-2964 . 326220) (-2965 . 326002) (-2966 . 325456) - (-2967 . 325357) (-2968 . 325286) (-2969 . 325160) (-2970 . 324911) - (-2971 . 324681) (-2972 . 324526) (-2973 . 324454) (-2974 . 324395) - (-2975 . 324303) (-2976 . 323824) (-2977 . 323674) (-2978 . 323596) - (-2979 . 323479) (-2980 . 323271) (-2981 . 323192) (-2982 . 323079) - (-2983 . 322996) (-2984 . 322923) (-2985 . 322867) (-2986 . 322572) - (-2987 . 322442) (-2988 . 322270) (-2989 . 322174) (-2990 . 322070) - (-2991 . 321938) (-2992 . 321825) (-2993 . 321670) (-2994 . 321328) - (-2995 . 321272) (-2996 . 321078) (-2997 . 320887) (-2998 . 320757) - (-2999 . 320661) (-3000 . 320424) (-3001 . 320233) (-3002 . 319921) - (-3003 . 319605) (-3004 . 319450) (-3005 . 319298) (-3006 . 319101) - (-3007 . 318913) (-3008 . 318810) (-3009 . 318517) (-3010 . 318352) - (-3011 . 318256) (-3012 . 318070) (-3013 . 317912) (-3014 . 317775) - (-3015 . 317702) (-3016 . 317575) (-3017 . 317430) (-3018 . 317249) - (-3019 . 316846) (-3020 . 316282) (-3021 . 316145) (-3022 . 315600) - (-3023 . 315054) (-3024 . 314917) (-3025 . 314844) (-3026 . 314698) - (-3027 . 314553) (-3028 . 314393) (-3029 . 313505) (-3030 . 313309) - (-3031 . 313172) (-3032 . 312952) (-3033 . 312619) (-3034 . 312482) - (-3035 . 312409) (-3036 . 312281) (-3037 . 311991) (-3038 . 311649) - (-3039 . 311546) (-3040 . 311483) (-3041 . 311364) (-3042 . 311227) - (-3043 . 311050) (-3044 . 310847) (-3045 . 310706) (-3046 . 310569) - (-3047 . 310315) (-3048 . 310263) (-3049 . 310179) (-3050 . 309718) - (-3051 . 309537) (-3052 . 309368) (-3053 . 309305) (-3054 . 309237) - (-3055 . 309067) (-3056 . 308864) (-3057 . 308727) (-3058 . 308583) - (-3059 . 308531) (-3060 . 308497) (-3061 . 308337) (-3062 . 308108) - (-3063 . 308045) (-3064 . 307929) (-3065 . 307113) (-3066 . 307014) - (-3067 . 306811) (-3068 . 306674) (-3069 . 305334) (-3070 . 305282) - (-3071 . 305245) (-3072 . 305082) (-3073 . 304828) (-3074 . 304775) - (-3075 . 304659) (-3076 . 304560) (-3077 . 304357) (-3078 . 304301) - (-3079 . 304107) (-3080 . 304009) (-3081 . 303938) (-3082 . 303901) - (-3083 . 303759) (-3084 . 303406) (-3085 . 303355) (-3086 . 303239) - (-3087 . 301769) (-3088 . 301696) (-3089 . 301541) (-3090 . 301425) - (-3091 . 301145) (-3092 . 300993) (-3093 . 300807) (-3094 . 300668) - (-3095 . 300123) (-3096 . 300086) (-3097 . 299936) (-3098 . 298908) - (-3099 . 298712) (-3100 . 298659) (-3101 . 298581) (-3102 . 298452) - (-3103 . 298341) (-3104 . 298189) (-3105 . 297978) (-3106 . 297941) - (-3107 . 297770) (-3108 . 297710) (-3109 . 297580) (-3110 . 297262) - (-3111 . 297189) (-3112 . 297104) (-3113 . 297023) (-3114 . 296907) - (-3115 . 296796) (-3116 . 296595) (-3117 . 296493) (-3118 . 296246) - (-3119 . 296212) (-3120 . 296082) (-3121 . 295870) (-3122 . 295788) - (-3123 . 295472) (-3124 . 295175) (-3125 . 295059) (-3126 . 294991) - (-3127 . 294719) (-3128 . 294617) (-3129 . 294583) (-3130 . 294436) - (-3131 . 293862) (-3132 . 293749) (-3133 . 293694) (-3134 . 293595) - (-3135 . 293497) (-3136 . 293387) (-3137 . 293189) (-3138 . 292273) - (-3139 . 292218) (-3140 . 292091) (-3141 . 291572) (-3142 . 291382) - (-3143 . 290730) (-3144 . 290565) (-3145 . 290467) (-3146 . 290364) - (-3147 . 290335) (-3148 . 290256) (-3149 . 290067) (-3150 . 289964) - (-3151 . 288186) (-3152 . 287813) (-3153 . 287498) (-3154 . 287264) - (-3155 . 287151) (-3156 . 286997) (-3157 . 282837) (-3158 . 282736) - (-3159 . 282605) (-3160 . 282357) (-3161 . 282250) (-3162 . 281778) - (-3163 . 281498) (-3164 . 281211) (-3165 . 281071) (-3166 . 280862) - (-3167 . 280414) (-3168 . 280313) (-3169 . 280184) (-3170 . 279936) - (-3171 . 274729) (-3172 . 274557) (-3173 . 274457) (-3174 . 273853) - (-3175 . 273802) (-3176 . 273683) (-3177 . 273624) (-3178 . 273312) - (-3179 . 273214) (-3180 . 272787) (-3181 . 272686) (-3182 . 272607) - (-3183 . 272355) (-3184 . 272183) (-3185 . 272018) (-3186 . 271768) - (-3187 . 271717) (-3188 . 271665) (-3189 . 271320) (-3190 . 271204) - (-3191 . 271134) (-3192 . 270514) (-3193 . 270413) (-3194 . 270334) - (-3195 . 270282) (-3196 . 270134) (-3197 . 269962) (-3198 . 269288) - (-3199 . 269151) (-3200 . 269081) (-3201 . 269029) (-3202 . 268698) - (-3203 . 268619) (-3204 . 268521) (-3205 . 267914) (-3206 . 267813) - (-3207 . 267684) (-3208 . 267629) (-3209 . 267194) (-3210 . 267073) - (-3211 . 266901) (-3212 . 266634) (-3213 . 266182) (-3214 . 266063) - (-3215 . 266011) (-3216 . 265743) (-3217 . 265322) (-3218 . 265056) - (-3219 . 264838) (-3220 . 264737) (-3221 . 264608) (-3222 . 264538) - (-3223 . 264435) (-3224 . 263943) (-3225 . 263914) (-3226 . 263861) - (-3227 . 263827) (-3228 . 263759) (-3229 . 263646) (-3230 . 263468) - (-3231 . 263367) (-3232 . 263199) (-3233 . 263110) (-3234 . 263004) - (-3235 . 262644) (-3236 . 262522) (-3237 . 262409) (-3238 . 262341) - (-3239 . 262120) (-3240 . 261856) (-3241 . 261755) (-3242 . 261626) - (-3243 . 261557) (-3244 . 261469) (-3245 . 261178) (-3246 . 261124) - (-3247 . 261066) (-3248 . 260953) (-3249 . 260885) (-3250 . 260580) - (-3251 . 260166) (-3252 . 260065) (-3253 . 259936) (-3254 . 259864) - (-3255 . 259774) (-3256 . 259692) (-3257 . 259577) (-3258 . 259400) - (-3259 . 259072) (-3260 . 259014) (-3261 . 258887) (-3262 . 258789) - (-3263 . 258013) (-3264 . 257719) (-3265 . 257618) (-3266 . 257180) - (-3267 . 256947) (-3268 . 256797) (-3269 . 256682) (-3270 . 256621) - (-3271 . 256533) (-3272 . 256475) (-3273 . 256367) (-3274 . 255786) - (-3275 . 255338) (-3276 . 255223) (-3277 . 255163) (-3278 . 254797) - (-3279 . 254745) (-3280 . 254615) (-3281 . 254400) (-3282 . 254219) - (-3283 . 254166) (-3284 . 254116) (-3285 . 254064) (-3286 . 253956) - (-3287 . 253459) (-3288 . 253281) (-3289 . 253166) (-3290 . 253111) - (-3291 . 253059) (-3292 . 253006) (-3293 . 252945) (-3294 . 252892) - (-3295 . 252829) (-3296 . 251997) (-3297 . 251895) (-3298 . 251647) - (-3299 . 251254) (-3300 . 251203) (-3301 . 251125) (-3302 . 251009) - (-3303 . 250978) (-3304 . 250885) (-3305 . 250832) (-3306 . 250760) - (-3307 . 250711) (-3308 . 250108) (-3309 . 249993) (-3310 . 249717) - (-3311 . 249615) (-3312 . 249367) (-3313 . 248974) (-3314 . 248857) - (-3315 . 248779) (-3316 . 248673) (-3317 . 248561) (-3318 . 248509) - (-3319 . 248133) (-3320 . 247926) (-3321 . 247866) (-3322 . 247728) - (-3323 . 247626) (-3324 . 247327) (-3325 . 247142) (-3326 . 247084) - (-3327 . 246697) (-3328 . 246450) (-3329 . 246208) (-3330 . 245890) - (-3331 . 245838) (-3332 . 245785) (-3333 . 245669) (-3334 . 245592) - (-3335 . 245512) (-3336 . 245374) (-3337 . 245047) (-3338 . 244424) - (-3339 . 244217) (-3340 . 244116) (-3341 . 243770) (-3342 . 243468) - (-3343 . 243119) (-3344 . 243039) (-3345 . 242858) (-3346 . 242766) - (-3347 . 242638) (-3348 . 242546) (-3349 . 242412) (-3350 . 242331) - (-3351 . 242254) (-3352 . 241773) (-3353 . 241320) (-3354 . 241096) - (-3355 . 240995) (-3356 . 240893) (-3357 . 240591) (-3358 . 240403) - (-3359 . 240323) (-3360 . 240179) (-3361 . 240108) (-3362 . 239953) - (-3363 . 239861) (-3364 . 239766) (-3365 . 239632) (-3366 . 239409) - (-3367 . 239332) (-3368 . 238672) (-3369 . 238512) (-3370 . 238206) - (-3371 . 238105) (-3372 . 237803) (-3373 . 237541) (-3374 . 237418) - (-3375 . 237225) (-3376 . 237067) (-3377 . 236957) (-3378 . 236883) - (-3379 . 236830) (-3380 . 236778) (-3381 . 236692) (-3382 . 236597) - (-3383 . 236463) (-3384 . 236386) (-3385 . 236322) (-3386 . 236242) - (-3387 . 236093) (-3388 . 235894) (-3389 . 235778) (-3390 . 235676) - (-3391 . 235648) (-3392 . 235538) (-3393 . 235467) (-3394 . 235344) - (-3395 . 235200) (-3396 . 235066) (-3397 . 235017) (-3398 . 234626) - (-3399 . 234505) (-3400 . 234176) (-3401 . 233542) (-3402 . 232807) - (-3403 . 232602) (-3404 . 232422) (-3405 . 232370) (-3406 . 232317) - (-3407 . 231444) (-3408 . 221884) (-3409 . 221753) (-3410 . 221628) - (-3411 . 221507) (-3412 . 221346) (-3413 . 221189) (-3414 . 221064) - (-3415 . 220951) (-3416 . 220701) (-3417 . 220555) (-3418 . 220109) - (-3419 . 220038) (-3420 . 219887) (-3421 . 219756) (-3422 . 219728) - (-3423 . 218725) (-3424 . 218617) (-3425 . 218474) (-3426 . 218083) - (-3427 . 217958) (-3428 . 217856) (-3429 . 217801) (-3430 . 217749) - (-3431 . 217696) (-3432 . 217645) (-3433 . 217514) (-3434 . 217465) - (-3435 . 217325) (-3436 . 217168) (-3437 . 217090) (-3438 . 216709) - (-3439 . 216656) (-3440 . 216605) (-3441 . 216222) (-3442 . 215935) - (-3443 . 215262) (-3444 . 215210) (-3445 . 215092) (-3446 . 214997) - (-3447 . 214623) (-3448 . 214571) (-3449 . 214518) (-3450 . 214467) - (-3451 . 214340) (-3452 . 214229) (-3453 . 213616) (-3454 . 213462) - (-3455 . 213413) (-3456 . 213288) (-3457 . 213191) (-3458 . 213112) - (-3459 . 213063) (-3460 . 213010) (-3461 . 212812) (-3462 . 212651) - (-3463 . 212523) (-3464 . 212427) (-3465 . 212000) (-3466 . 211889) - (-3467 . 211837) (-3468 . 211679) (-3469 . 211597) (-3470 . 211524) - (-3471 . 211472) (-3472 . 211317) (-3473 . 211065) (-3474 . 211003) - (-3475 . 210907) (-3476 . 210854) (-3477 . 210708) (-3478 . 209710) - (-3479 . 209591) (-3480 . 209508) (-3481 . 209459) (-3482 . 209371) - (-3483 . 209253) (-3484 . 209154) (-3485 . 209030) (-3486 . 208940) - (-3487 . 208887) (-3488 . 208835) (-3489 . 208783) (-3490 . 207904) - (-3491 . 207820) (-3492 . 207737) (-3493 . 207649) (-3494 . 207597) - (-3495 . 207498) (-3496 . 206260) (-3497 . 206008) (-3498 . 205717) - (-3499 . 205492) (-3500 . 205296) (-3501 . 205244) (-3502 . 205098) - (-3503 . 204718) (-3504 . 204634) (-3505 . 204551) (-3506 . 204502) - (-3507 . 204414) (-3508 . 203925) (-3509 . 203801) (-3510 . 203658) - (-3511 . 203180) (-3512 . 203096) (-3513 . 202995) (-3514 . 202939) - (-3515 . 202887) (-3516 . 202799) (-3517 . 202689) (-3518 . 202437) - (-3519 . 202341) (-3520 . 201915) (-3521 . 201733) (-3522 . 201683) - (-3523 . 201612) (-3524 . 201377) (-3525 . 201293) (-3526 . 201234) - (-3527 . 201185) (-3528 . 201073) (-3529 . 200985) (-3530 . 199878) - (-3531 . 199754) (-3532 . 199611) (-3533 . 199561) (-3534 . 199490) - (-3535 . 199235) (-3536 . 199151) (-3537 . 199027) (-3538 . 198975) - (-3539 . 198773) (-3540 . 198682) (-3541 . 198650) (-3542 . 198365) - (-3543 . 198294) (-3544 . 198244) (-3545 . 198173) (-3546 . 198076) - (-3547 . 197979) (-3548 . 197855) (-3549 . 197806) (-3550 . 197112) - (-3551 . 197018) (-3552 . 196932) (-3553 . 196845) (-3554 . 196572) - (-3555 . 196363) (-3556 . 196295) (-3557 . 196196) (-3558 . 196115) - (-3559 . 196045) (-3560 . 195992) (-3561 . 195926) (-3562 . 195832) - (-3563 . 195800) (-3564 . 195527) (-3565 . 195349) (-3566 . 195296) - (-3567 . 195092) (-3568 . 194836) (-3569 . 194730) (-3570 . 194660) - (-3571 . 194605) (-3572 . 194487) (-3573 . 194390) (-3574 . 194304) - (-3575 . 194245) (-3576 . 193947) (-3577 . 193737) (-3578 . 193664) - (-3579 . 193289) (-3580 . 192813) (-3581 . 192719) (-3582 . 192384) - (-3583 . 191204) (-3584 . 191154) (-3585 . 190730) (-3586 . 190587) - (-3587 . 189485) (-3588 . 189383) (-3589 . 189205) (-3590 . 189087) - (-3591 . 188915) (-3592 . 188462) (-3593 . 188365) (-3594 . 188036) - (-3595 . 188005) (-3596 . 187588) (-3597 . 187538) (-3598 . 187114) - (-3599 . 187086) (-3600 . 186941) (-3601 . 186820) (-3602 . 186567) - (-3603 . 186451) (-3604 . 186349) (-3605 . 186265) (-3606 . 186077) - (-3607 . 185969) (-3608 . 185916) (-3609 . 185356) (-3610 . 185215) - (-3611 . 184900) (-3612 . 184579) (-3613 . 184075) (-3614 . 183991) - (-3615 . 183907) (-3616 . 183716) (-3617 . 183549) (-3618 . 183289) - (-3619 . 182171) (-3620 . 182014) (-3621 . 181736) (-3622 . 181651) - (-3623 . 181267) (-3624 . 181105) (-3625 . 180984) (-3626 . 180493) - (-3627 . 180326) (-3628 . 178063) (-3629 . 178013) (-3630 . 176283) - (-3631 . 176117) (-3632 . 175996) (-3633 . 175911) (-3634 . 175482) - (-3635 . 175398) (-3636 . 175283) (-3637 . 174710) (-3638 . 174369) - (-3639 . 174335) (-3640 . 174055) (-3641 . 173978) (-3642 . 172401) - (-3643 . 172084) (-3644 . 171993) (-3645 . 171866) (-3646 . 171804) - (-3647 . 171706) (-3648 . 171625) (-3649 . 171415) (-3650 . 171245) - (-3651 . 171089) (-3652 . 171024) (-3653 . 170222) (-3654 . 170194) - (-3655 . 170166) (-3656 . 170081) (-3657 . 169691) (-3658 . 169591) - (-3659 . 169230) (-3660 . 169153) (-3661 . 168907) (-3662 . 168759) - (-3663 . 168421) (-3664 . 168384) (-3665 . 167881) (-3666 . 167853) - (-3667 . 167769) (-3668 . 167696) (-3669 . 166809) (-3670 . 166757) - (-3671 . 163458) (-3672 . 163401) (-3673 . 163132) (-3674 . 162798) - (-3675 . 162650) (-3676 . 162312) (-3677 . 162175) (-3678 . 161769) - (-3679 . 161672) (-3680 . 161579) (-3681 . 160997) (-3682 . 160923) - (-3683 . 160851) (-3684 . 160609) (-3685 . 160411) (-3686 . 160188) - (-3687 . 159950) (-3688 . 159292) (-3689 . 158813) (-3690 . 158742) - (-3691 . 157924) (-3692 . 157829) (-3693 . 157772) (-3694 . 157677) - (-3695 . 157467) (-3696 . 157238) (-3697 . 157077) (-3698 . 156943) - (-3699 . 156344) (-3700 . 156272) (-3701 . 155913) (-3702 . 154992) - (-3703 . 154936) (-3704 . 154684) (-3705 . 154488) (-3706 . 154270) - (-3707 . 154175) (-3708 . 154043) (-3709 . 153867) (-3710 . 153790) - (-3711 . 153243) (-3712 . 153171) (-3713 . 153055) (-3714 . 152615) - (-3715 . 152435) (-3716 . 152379) (-3717 . 152127) (-3718 . 151931) - (-3719 . 151713) (-3720 . 151630) (-3721 . 151208) (-3722 . 151009) - (-3723 . 150932) (-3724 . 150610) (-3725 . 150568) (-3726 . 150167) - (-3727 . 150023) (-3728 . 149967) (-3729 . 149721) (-3730 . 149634) - (-3731 . 149563) (-3732 . 149390) (-3733 . 149252) (-3734 . 149099) - (-3735 . 148872) (-3736 . 148735) (-3737 . 148517) (-3738 . 148071) - (-3739 . 148001) (-3740 . 147948) (-3741 . 147877) (-3742 . 147631) - (-3743 . 124209) (-3744 . 124138) (-3745 . 123920) (-3746 . 123561) - (-3747 . 123290) (-3748 . 123160) (-3749 . 122995) (-3750 . 122549) - (-3751 . 122479) (-3752 . 122408) (-3753 . 122162) (-3754 . 119410) - (-3755 . 119327) (-3756 . 119154) (-3757 . 118862) (-3758 . 118724) - (-3759 . 118594) (-3760 . 118185) (-3761 . 117739) (-3762 . 117669) - (-3763 . 117598) (-3764 . 117352) (-3765 . 117269) (-3766 . 117096) - (-3767 . 116804) (-3768 . 116663) (-3769 . 116536) (-3770 . 116366) - (-3771 . 115841) (-3772 . 115747) (-3773 . 115666) (-3774 . 115419) - (-3775 . 115294) (-3776 . 115121) (-3777 . 114829) (-3778 . 114351) - (-3779 . 114224) (-3780 . 113139) (-3781 . 113049) (-3782 . 112957) - (-3783 . 112863) (-3784 . 112783) (-3785 . 112536) (-3786 . 112399) - (-3787 . 112226) (-3788 . 112152) (-3789 . 111860) (-3790 . 111737) - (-3791 . 111610) (-3792 . 111487) (-3793 . 111394) (-3794 . 111300) - (-3795 . 111022) (-3796 . 110937) (-3797 . 110690) (-3798 . 110607) - (-3799 . 110335) (-3800 . 110276) (-3801 . 110040) (-3802 . 109913) - (-3803 . 109775) (-3804 . 109558) (-3805 . 109475) (-3806 . 109381) - (-3807 . 109289) (-3808 . 109042) (-3809 . 108968) (-3810 . 101969) - (-3811 . 101862) (** . 98773) (-3813 . 98519) (-3814 . 98388) - (-3815 . 98285) (-3816 . 98027) (-3817 . 97594) (-3818 . 97431) - (-3819 . 97337) (-3820 . 97033) (-3821 . 96915) (-3822 . 96747) - (-3823 . 96497) (-3824 . 96402) (-3825 . 95974) (-3826 . 95724) - (-3827 . 95693) (-3828 . 95593) (-3829 . 95383) (-3830 . 95252) - (-3831 . 95138) (-3832 . 95052) (-3833 . 94991) (-3834 . 94910) - (-3835 . 94051) (-3836 . 93899) (-3837 . 93842) (-3838 . 93744) - (-3839 . 93692) (-3840 . 93529) (-3841 . 93234) (-3842 . 93137) - (-3843 . 92975) (-3844 . 92898) (-3845 . 92740) (-3846 . 92568) - (-3847 . 92482) (-3848 . 92410) (-3849 . 92378) (-3850 . 92276) - (-3851 . 92172) (-3852 . 91661) (-3853 . 91462) (-3854 . 91183) - (-3855 . 91042) (-3856 . 90938) (-3857 . 90808) (-3858 . 90675) - (-3859 . 89459) (-3860 . 89373) (-3861 . 89168) (-3862 . 88819) - (-3863 . 88715) (-3864 . 88562) (-3865 . 88423) (-3866 . 88079) - (-3867 . 87875) (-3868 . 87724) (-3869 . 87665) (-3870 . 87565) - (-3871 . 87483) (-3872 . 87397) (-3873 . 87262) (-3874 . 87072) - (-3875 . 86845) (-3876 . 86760) (-3877 . 86646) (-3878 . 86479) - (-3879 . 86376) (-3880 . 86235) (-3881 . 85853) (-3882 . 85794) - (-3883 . 85694) (-3884 . 85608) (-3885 . 85558) (-3886 . 85459) - (-3887 . 85359) (-3888 . 84987) (-3889 . 84820) (-3890 . 84717) - (-3891 . 84519) (-3892 . 84276) (-3893 . 84170) (-3894 . 83827) - (-3895 . 83753) (-3896 . 83635) (-3897 . 83535) (-3898 . 82984) - (-3899 . 82648) (-3900 . 82565) (-3901 . 82466) (-3902 . 82369) - (-3903 . 82171) (-3904 . 81708) (-3905 . 81602) (-3906 . 81521) - (-3907 . 81452) (-3908 . 81347) (-3909 . 81226) (-3910 . 79443) - (-3911 . 79356) (-3912 . 79238) (-3913 . 79179) (-3914 . 78894) - (-3915 . 78578) (-3916 . 77738) (-3917 . 77660) (-3918 . 77434) - (-3919 . 77291) (-3920 . 77177) (-3921 . 77059) (-3922 . 76976) - (-3923 . 76852) (-3924 . 76510) (-3925 . 76070) (-3926 . 75643) - (-3927 . 75036) (-3928 . 73180) (-3929 . 73073) (-3930 . 72993) - (-3931 . 72850) (-3932 . 72731) (-3933 . 71665) (-3934 . 71547) - (-3935 . 71325) (-3936 . 71179) (-3937 . 71078) (-3938 . 71004) - (-3939 . 70395) (-3940 . 70327) (-3941 . 70165) (-3942 . 69990) - (-3943 . 69913) (-3944 . 69835) (-3945 . 69596) (-3946 . 69456) - (-3947 . 69360) (-3948 . 69300) (-3949 . 69107) (-3950 . 68936) - (-3951 . 68817) (-3952 . 68653) (-3953 . 68554) (-3954 . 67479) - (-3955 . 67411) (-3956 . 67303) (-3957 . 67010) (-3958 . 66893) - (-3959 . 66797) (-3960 . 66570) (-3961 . 66430) (-3962 . 66325) - (-3963 . 65994) (-3964 . 65508) (-3965 . 65381) (-3966 . 65165) - (-3967 . 65002) (-3968 . 64417) (-3969 . 64349) (-3970 . 64213) - (-3971 . 63981) (-3972 . 63875) (-3973 . 63732) (-3974 . 63645) - (-3975 . 63349) (-3976 . 63204) (-3977 . 63040) (-3978 . 62724) - (-3979 . 62656) (-3980 . 62520) (-3981 . 62421) (-3982 . 62294) - (-3983 . 62265) (-3984 . 61969) (-3985 . 61816) (-3986 . 61626) - (-3987 . 61456) (-3988 . 61118) (-3989 . 61050) (-3990 . 60927) - (-3991 . 60848) (-3992 . 60718) (-3993 . 60661) (-3994 . 60351) - (-3995 . 60188) (-3996 . 59977) (-3997 . 59864) (-3998 . 59811) - (-3999 . 59480) (-4000 . 59400) (-4001 . 59301) (-4002 . 59221) - (-4003 . 59142) (-4004 . 59018) (-4005 . 58936) (-4006 . 58619) - (-4007 . 58526) (-4008 . 58411) (-4009 . 58358) (-4010 . 57951) - (-4011 . 57624) (-4012 . 57475) (-4013 . 57260) (-4014 . 57202) - (-4015 . 57078) (-4016 . 57006) (-4017 . 56877) (-4018 . 56681) - (-4019 . 56448) (-4020 . 56319) (-4021 . 56266) (-4022 . 55904) - (-4023 . 55805) (-4024 . 55731) (-4025 . 55625) (-4026 . 55051) - (-4027 . 54974) (-4028 . 54783) (-4029 . 54467) (-4030 . 54367) - (-4031 . 54307) (-4032 . 54177) (-4033 . 53992) (-4034 . 53837) - (-4035 . 53733) (-4036 . 53627) (-4037 . 53550) (-4038 . 53473) - (-4039 . 52985) (-4040 . 51804) (-4041 . 51406) (-4042 . 51353) - (-4043 . 50758) (-4044 . 50226) (-4045 . 49683) (-4046 . 49528) - (-4047 . 49455) (-4048 . 49352) (-4049 . 49320) (-4050 . 47158) - (-4051 . 47074) (-4052 . 46707) (-4053 . 46489) (-4054 . 46310) - (-4055 . 46206) (-4056 . 45895) (-4057 . 45827) (-4058 . 45674) - (-4059 . 45642) (-4060 . 45425) (-4061 . 45145) (-4062 . 45096) - (-4063 . 44901) (-4064 . 44679) (-4065 . 44084) (-4066 . 43871) - (-4067 . 43798) (-4068 . 43642) (-4069 . 43610) (-4070 . 43393) - (-4071 . 43114) (-4072 . 43086) (-4073 . 42963) (-4074 . 42907) - (-4075 . 42685) (-4076 . 42579) (-4077 . 42527) (-4078 . 42462) - (-4079 . 42306) (-4080 . 42274) (-4081 . 42015) (-4082 . 41922) - (-4083 . 41894) (-4084 . 41690) (-4085 . 41468) (-4086 . 41390) - (-4087 . 41335) (-4088 . 41284) (-4089 . 40850) (-4090 . 40757) - (-4091 . 40729) (-4092 . 40506) (-4093 . 40287) (-4094 . 40191) - (-4095 . 40101) (-4096 . 39913) (-4097 . 39832) (-4098 . 39781) - (-4099 . 39227) (-4100 . 39036) (-4101 . 38943) (-4102 . 38915) - (-4103 . 38676) (-4104 . 38632) (-4105 . 38413) (-4106 . 38081) - (-4107 . 37985) (-4108 . 37898) (-4109 . 37731) (-4110 . 37651) - (-4111 . 37207) (-4112 . 37077) (-4113 . 37006) (-4114 . 36912) - (-4115 . 36771) (-4116 . 36700) (-4117 . 36481) (-4118 . 36385) - (-4119 . 36217) (-4120 . 34366) (-4121 . 34199) (-4122 . 34103) - (-4123 . 33898) (-4124 . 33624) (-4125 . 33532) (-4126 . 33420) - (-4127 . 33282) (-4128 . 33201) (-4129 . 33016) (-4130 . 32917) - (-4131 . 32794) (-4132 . 32615) (-4133 . 32453) (-4134 . 32341) - (-4135 . 32202) (-4136 . 32089) (-4137 . 31959) (-4138 . 31205) - (-4139 . 30981) (-4140 . 30913) (-4141 . 30790) (-4142 . 30675) - (-4143 . 30315) (-4144 . 30203) (-4145 . 29950) (-4146 . 29846) - (-4147 . 29713) (-4148 . 29583) (-4149 . 29459) (-4150 . 29410) - (-4151 . 29266) (-4152 . 29162) (-4153 . 29004) (-4154 . 28892) - (-4155 . 28636) (-4156 . 28526) (-4157 . 28390) (-4158 . 28183) - (-4159 . 27975) (-4160 . 27364) (-4161 . 26652) (-4162 . 26482) - (-4163 . 26422) (-4164 . 26310) (-4165 . 26150) (-4166 . 26040) - (-4167 . 25901) (-4168 . 25804) (-4169 . 25680) (-4170 . 25515) - (-4171 . 25420) (-4172 . 24771) (-4173 . 21990) (-4174 . 21906) - (-4175 . 21794) (-4176 . 21640) (-4177 . 21524) (-4178 . 20239) - (-4179 . 20000) (-4180 . 19835) (-4181 . 19740) (-4182 . 18924) - (-4183 . 18890) (-4184 . 18748) (-4185 . 18572) (-4186 . 18331) - (-4187 . 18221) (-4188 . 17896) (-4189 . 17823) (-4190 . 17659) - (-4191 . 17523) (-4192 . 17440) (-4193 . 17406) (-4194 . 17284) - (-4195 . 17206) (-4196 . 16916) (-4197 . 16800) (-4198 . 16419) - (-4199 . 16278) (-4200 . 16139) (-4201 . 16041) (-4202 . 15937) - (-4203 . 15903) (-4204 . 15781) (-4205 . 15535) (-4206 . 15350) - (-4207 . 15212) (-4208 . 15081) (-4209 . 14968) (-4210 . 14917) - (-4211 . 14820) (-4212 . 14722) (-4213 . 14627) (-4214 . 14593) - (-4215 . 14453) (-4216 . 14207) (-4217 . 14149) (-4218 . 13481) - (-4219 . 13332) (-4220 . 13078) (-4221 . 13029) (-4222 . 12928) - (-4223 . 11386) (-4224 . 11291) (-4225 . 11194) (-4226 . 11001) - (-4227 . 10943) (-4228 . 10767) (-4229 . 10229) (-4230 . 9933) - (-4231 . 9863) (-4232 . 9766) (-4233 . 9668) (-4234 . 9594) - (-4235 . 9503) (-4236 . 9387) (-4237 . 9049) (-4238 . 8998) - (-4239 . 8816) (-4240 . 8673) (-4241 . 8377) (-4242 . 8242) - (-4243 . 8127) (-4244 . 8044) (-4245 . 7970) (-4246 . 7913) - (-4247 . 7822) (-4248 . 7561) (-4249 . 7273) (-4250 . 7097) - (-4251 . 6947) (-4252 . 6828) (-4253 . 6757) (-4254 . 6496) - (-4255 . 6361) (-4256 . 6276) (-4257 . 6081) (-4258 . 6026) - (-4259 . 5954) (-4260 . 5899) (-4261 . 5830) (-4262 . 5746) - (-4263 . 5564) (-4264 . 5441) (-4265 . 5360) (-4266 . 5128) - (-4267 . 5027) (-4268 . 4931) (-4269 . 4876) (-4270 . 4819) - (-4271 . 4767) (-4272 . 4565) (-4273 . 4432) (-4274 . 4253) - (-4275 . 4146) (-4276 . 4058) (-4277 . 3812) (-4278 . 3610) - (-4279 . 3501) (-4280 . 3435) (-4281 . 3383) (-4282 . 3221) - (-4283 . 3169) (-4284 . 2990) (-4285 . 2883) (-4286 . 2782) - (-4287 . 2599) (-4288 . 2505) (-4289 . 2072) (-4290 . 2006) - (-4291 . 1954) (-4292 . 1795) (-4293 . 1730) (-4294 . 1675) - (-4295 . 1488) (-4296 . 1378) (-4297 . 1280) (-4298 . 1107) - (-4299 . 1033) (-4300 . 936) (-4301 . 761) (-4302 . 699) (-4303 . 647) - (-4304 . 537) (-4305 . 464) (-4306 . 412) (-4307 . 30))
\ No newline at end of file + (-12 (-4 *4 (-1063)) (-5 *2 (-858 *3 *4)) (-5 *1 (-854 *3 *4 *5)) + (-4 *3 (-1063)) (-4 *5 (-640 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-619 (-1118))) (-5 *1 (-321)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-321))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1063)) (-5 *1 (-102 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1063))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1013 *4 *5)) (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-14 *5 (-619 (-1135))) + (-5 *2 + (-619 (-2 (|:| -1995 (-1131 *4)) (|:| -2301 (-619 (-921 *4)))))) + (-5 *1 (-1244 *4 *5 *6)) (-14 *6 (-619 (-1135))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) + (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) + (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -1995 (-1131 *5)) (|:| -2301 (-619 (-921 *5)))))) + (-5 *1 (-1244 *5 *6 *7)) (-5 *3 (-619 (-921 *5))) + (-14 *6 (-619 (-1135))) (-14 *7 (-619 (-1135))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-819) (-298) (-145) (-991))) + (-5 *2 + (-619 (-2 (|:| -1995 (-1131 *4)) (|:| -2301 (-619 (-921 *4)))))) + (-5 *1 (-1244 *4 *5 *6)) (-5 *3 (-619 (-921 *4))) + (-14 *5 (-619 (-1135))) (-14 *6 (-619 (-1135)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1131 *7)) (-4 *5 (-1016)) + (-4 *7 (-1016)) (-4 *2 (-1194 *5)) (-5 *1 (-490 *5 *2 *6 *7)) + (-4 *6 (-1194 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1016)) (-4 *7 (-1016)) + (-4 *4 (-1194 *5)) (-5 *2 (-1131 *7)) (-5 *1 (-490 *5 *4 *6 *7)) + (-4 *6 (-1194 *4))))) +((-1251 . 732610) (-1252 . 731313) (-1253 . 731140) (-1254 . 731029) + (-1255 . 730907) (-1256 . 730834) (-1257 . 730777) (-1258 . 729970) + (-1259 . 729826) (-1260 . 729741) (-1261 . 729642) (-1262 . 729591) + (-1263 . 729424) (-1264 . 729276) (-1265 . 729202) (-1266 . 729094) + (-1267 . 729020) (-1268 . 728781) (-1269 . 728709) (-1270 . 728638) + (-1271 . 728558) (-1272 . 728503) (-1273 . 728429) (-1274 . 728305) + (-1275 . 728168) (-1276 . 728097) (-1277 . 728000) (-1278 . 727898) + (-1279 . 727845) (-1280 . 727788) (-1281 . 727570) (-1282 . 727415) + (-1283 . 727336) (-1284 . 727182) (-1285 . 727116) (-1286 . 726996) + (-1287 . 726833) (-1288 . 726427) (-1289 . 726252) (-1290 . 726138) + (-1291 . 726043) (-1292 . 725936) (-1293 . 725812) (-1294 . 725274) + (-1295 . 725096) (-1296 . 724999) (-1297 . 724894) (-1298 . 724841) + (-1299 . 724738) (-1300 . 724676) (-1301 . 724555) (-1302 . 724306) + (-1303 . 724232) (-1304 . 724150) (-1305 . 724041) (-1306 . 723948) + (-1307 . 723829) (-1308 . 723730) (-1309 . 723678) (-1310 . 723500) + (-1311 . 723270) (-1312 . 723151) (-1313 . 723010) (-1314 . 722836) + (-1315 . 722519) (-1316 . 722439) (-1317 . 722147) (-1318 . 721565) + (-1319 . 721455) (-1320 . 721367) (-1321 . 721279) (-1322 . 721178) + (-1323 . 721044) (-1324 . 720951) (-1325 . 720817) (-1326 . 720716) + (-1327 . 720642) (-1328 . 720569) (-1329 . 720326) (-1330 . 720158) + (-1331 . 719631) (-1332 . 719571) (-1333 . 719456) (-1334 . 719383) + (-1335 . 719176) (-1336 . 718996) (-1337 . 718944) (-1338 . 718718) + (-1339 . 718479) (-1340 . 718390) (-1341 . 718337) (-1342 . 718257) + (-1343 . 718162) (-1344 . 718109) (-1345 . 718056) (-1346 . 717674) + (-1347 . 717412) (-1348 . 717067) (-1349 . 716926) (-1350 . 716820) + (-1351 . 716646) (-1352 . 716365) (-1353 . 715958) (-1354 . 715884) + (-1355 . 715739) (-1356 . 715673) (-1357 . 715579) (-1358 . 715512) + (-1359 . 715152) (-1360 . 714942) (-1361 . 714796) (-1362 . 714469) + (-1363 . 714351) (-1364 . 714026) (-1365 . 713697) (-1366 . 713603) + (-1367 . 713457) (-1368 . 713388) (-1369 . 713266) (-1370 . 713200) + (-1371 . 713081) (-1372 . 713049) (-1373 . 712993) (-1374 . 712570) + (-1375 . 712457) (-1376 . 712368) (-1377 . 712210) (-1378 . 711828) + (-1379 . 711555) (-1380 . 711483) (-1381 . 711192) (-1382 . 710491) + (-1383 . 710414) (-1384 . 710358) (-1385 . 710244) (-1386 . 710176) + (-1387 . 710093) (-1388 . 709946) (-1389 . 709887) (-1390 . 709709) + (-1391 . 709600) (-1392 . 708922) (-1393 . 708698) (-1394 . 708472) + (-1395 . 708440) (-1396 . 708343) (-1397 . 708122) (-1398 . 708022) + (-1399 . 707707) (-1400 . 707473) (-1401 . 707047) (-1402 . 706940) + (-1403 . 706736) (-1404 . 706611) (-1405 . 706523) (-1406 . 706259) + (-1407 . 706074) (-1408 . 705988) (-1409 . 705910) (-1410 . 705592) + (-1411 . 705458) (-1412 . 705202) (-1413 . 704937) (-1414 . 704859) + (-1415 . 704825) (-1416 . 704727) (-1417 . 704583) (-1418 . 704340) + (-1419 . 704208) (-1420 . 704107) (-1421 . 704019) (-1422 . 703920) + (-1423 . 703526) (-1424 . 703397) (-1425 . 703290) (-1426 . 703151) + (-1427 . 703045) (-1428 . 702684) (-1429 . 702562) (-1430 . 702433) + (-1431 . 702158) (-1432 . 702081) (-1433 . 701870) (-1434 . 701592) + (-1435 . 701492) (-1436 . 700482) (-1437 . 700415) (-1438 . 700345) + (-1439 . 700292) (-1440 . 700214) (-1441 . 700103) (-1442 . 700044) + (-1443 . 699884) (-1444 . 699815) (-1445 . 699744) (-1446 . 699372) + (-1447 . 699205) (-1448 . 699103) (-1449 . 699020) (-1450 . 698965) + (-1451 . 698690) (-1452 . 698597) (-1453 . 698307) (-1454 . 698155) + (-1455 . 698043) (-1456 . 697899) (-1457 . 697825) (-1458 . 697493) + (-1459 . 697405) (-1460 . 697238) (-1461 . 697071) (-1462 . 696968) + (-1463 . 696901) (-1464 . 696409) (-1465 . 696102) (-1466 . 695984) + (-1467 . 695773) (-1468 . 695657) (-1469 . 695002) (-1470 . 694711) + (-1471 . 694631) (-1472 . 694570) (-1473 . 693829) (-1474 . 693589) + (-1475 . 693431) (-1476 . 692944) (-1477 . 688881) (-1478 . 688671) + (-1479 . 688511) (-1480 . 688414) (-1481 . 688268) (-1482 . 688231) + (-1483 . 687850) (-1484 . 687423) (-1485 . 687265) (-1486 . 687231) + (-1487 . 687177) (-1488 . 686436) (-1489 . 686238) (-1490 . 686075) + (-1491 . 686009) (-1492 . 685949) (-1493 . 685863) (-1494 . 685722) + (-1495 . 685592) (-1496 . 685478) (-1497 . 685365) (-1498 . 684677) + (-1499 . 684534) (-1500 . 684291) (-1501 . 684259) (-1502 . 683961) + (-1503 . 683821) (-1504 . 683142) (-1505 . 682950) (-1506 . 682811) + (-1507 . 682493) (-1508 . 682326) (-1509 . 682226) (-1510 . 682158) + (-1511 . 681959) (-1512 . 681689) (-1513 . 681113) (-1514 . 680896) + (-1515 . 680790) (-1516 . 680738) (-1517 . 680629) (-1518 . 680522) + (-1519 . 680312) (-1520 . 680214) (-1521 . 680141) (-1522 . 680027) + (-1523 . 679939) (-1524 . 679767) (-1525 . 679462) (-1526 . 678886) + (-1527 . 678792) (-1528 . 678449) (-1529 . 676104) (-1530 . 675946) + (-1531 . 675346) (-1532 . 675273) (-1533 . 675188) (-1534 . 675084) + (-1535 . 674841) (-12 . 674669) (-1537 . 674255) (-1538 . 674064) + (-1539 . 673488) (-1540 . 673414) (-1541 . 673337) (-1542 . 673224) + (-1543 . 672849) (-1544 . 672635) (-1545 . 672554) (-1546 . 672520) + (-1547 . 672437) (-1548 . 672050) (-1549 . 671932) (-1550 . 671246) + (-1551 . 671145) (-1552 . 671015) (-1553 . 670944) (-1554 . 670764) + (-1555 . 670711) (-1556 . 670235) (-1557 . 669877) (-1558 . 669761) + (-1559 . 669639) (-1560 . 669510) (-1561 . 669371) (-1562 . 669284) + (-1563 . 668598) (-1564 . 668498) (-1565 . 668389) (-1566 . 668306) + (-1567 . 668212) (-1568 . 668119) (-1569 . 667934) (-1570 . 667823) + (-1571 . 667751) (-1572 . 667636) (-1573 . 667556) (-1574 . 666807) + (-1575 . 666740) (-1576 . 666657) (-1577 . 666574) (-1578 . 666082) + (-1579 . 665944) (-1580 . 665609) (-1581 . 665336) (-1582 . 665135) + (-1583 . 664425) (-1584 . 664394) (-1585 . 664312) (-1586 . 663738) + (-1587 . 663659) (-1588 . 663560) (-1589 . 663474) (-1590 . 663294) + (-1591 . 662114) (-1592 . 662012) (-1593 . 661881) (-1594 . 661807) + (-1595 . 661730) (-1596 . 661615) (-1597 . 661041) (-1598 . 660523) + (-1599 . 660426) (-1600 . 660394) (-1601 . 659473) (-1602 . 659283) + (-1603 . 659233) (-1604 . 659115) (-1605 . 659081) (-1606 . 658968) + (-1607 . 658538) (-1608 . 658421) (-1609 . 658326) (-1610 . 657752) + (-1611 . 657575) (-1612 . 657525) (-1613 . 657327) (-1614 . 657276) + (-1615 . 657096) (-1616 . 657030) (-1617 . 656606) (-1618 . 654492) + (-1619 . 654377) (-1620 . 654247) (-1621 . 653919) (-1622 . 653816) + (-1623 . 653668) (-1624 . 652981) (-1625 . 652865) (-1626 . 652402) + (-1627 . 652293) (-1628 . 652186) (-1629 . 652084) (-1630 . 651987) + (-1631 . 651775) (-1632 . 651717) (-1633 . 651629) (-1634 . 651046) + (-1635 . 650359) (-1636 . 650253) (-1637 . 650173) (-1638 . 649871) + (-1639 . 649730) (-1640 . 649552) (-1641 . 649454) (-1642 . 649372) + (-1643 . 649261) (-1644 . 649043) (-1645 . 648800) (* . 644254) + (-1647 . 644156) (-1648 . 643469) (-1649 . 643311) (-1650 . 643230) + (-1651 . 643111) (-1652 . 642802) (-1653 . 642684) (-1654 . 642368) + (-1655 . 642273) (-1656 . 642089) (-1657 . 641942) (-1658 . 641166) + (-1659 . 640591) (-1660 . 640486) (-1661 . 640404) (-1662 . 640189) + (-1663 . 640136) (-1664 . 639964) (-1665 . 639667) (-1666 . 639633) + (-1667 . 639494) (-1668 . 639200) (-1669 . 639120) (-1670 . 638545) + (-1671 . 638424) (-1672 . 638392) (-1673 . 638309) (-1674 . 638257) + (-1675 . 638164) (-1676 . 637711) (-1677 . 637595) (-1678 . 637455) + (-1679 . 637371) (-1680 . 637116) (-1681 . 636541) (-1682 . 636440) + (-1683 . 636369) (-1684 . 634586) (-1685 . 634500) (-1686 . 633668) + (-1687 . 633571) (-1688 . 633053) (-1689 . 632995) (-1690 . 632927) + (-1691 . 632489) (-1692 . 632382) (-1693 . 631808) (-1694 . 631166) + (-1695 . 631069) (-1696 . 630982) (-1697 . 630838) (-1698 . 630772) + (-1699 . 630443) (-1700 . 630260) (-1701 . 629592) (-1702 . 629320) + (-1703 . 629207) (-1704 . 628936) (-1705 . 628703) (-1706 . 628129) + (-1707 . 628034) (-1708 . 627916) (-1709 . 627800) (-1710 . 627383) + (-1711 . 626423) (-1712 . 626321) (-1713 . 626172) (-1714 . 626092) + (-1715 . 625953) (-1716 . 625803) (-1717 . 625229) (-1718 . 625170) + (-1719 . 624951) (-1720 . 624842) (-1721 . 624792) (-1722 . 624640) + (-1723 . 624606) (-1724 . 624352) (-1725 . 624173) (-1726 . 624085) + (-1727 . 623970) (-1728 . 623714) (-1729 . 623140) (-1730 . 622855) + (-1731 . 622756) (-1732 . 622649) (-1733 . 622491) (-1734 . 622463) + (-1735 . 622039) (-1736 . 621990) (-1737 . 621843) (-1738 . 621777) + (-1739 . 621619) (-1740 . 621388) (-1741 . 620814) (-1742 . 620753) + (-1743 . 620622) (-1744 . 620306) (-1745 . 620129) (-1746 . 619984) + (-1747 . 619769) (-1748 . 619668) (-1749 . 619094) (-1750 . 619042) + (-1751 . 618954) (-1752 . 618898) (-1753 . 618739) (-1754 . 617899) + (-1755 . 617809) (-1756 . 617688) (-1757 . 617543) (-1758 . 616001) + (-1759 . 615888) (-1760 . 615754) (-1761 . 615696) (-1762 . 615543) + (-1763 . 615487) (-1764 . 615458) (-1765 . 615380) (-1766 . 615278) + (-1767 . 615225) (-1768 . 614972) (-1769 . 614917) (-1770 . 614822) + (-1771 . 614738) (-1772 . 614609) (-1773 . 614200) (-1774 . 614092) + (-1775 . 613949) (-1776 . 613723) (-1777 . 612521) (-1778 . 612435) + (-1779 . 612319) (-1780 . 612231) (-1781 . 612132) (-1782 . 612035) + (-1783 . 611934) (-1784 . 611830) (-1785 . 611249) (-1786 . 611148) + (-1787 . 611005) (-1788 . 610937) (-1789 . 610884) (-1790 . 610765) + (-1791 . 610699) (-1792 . 610597) (-1793 . 610261) (-1794 . 610163) + (-1795 . 609970) (-1796 . 609866) (-1797 . 609418) (-1798 . 609124) + (-1799 . 609054) (-1800 . 608940) (-1801 . 608882) (-1802 . 608766) + (-1803 . 608682) (-1804 . 608581) (-1805 . 608471) (-1806 . 608374) + (-1807 . 608308) (-1808 . 608037) (-1809 . 607824) (-1810 . 607709) + (-1811 . 607490) (-1812 . 607407) (-1813 . 607219) (-1814 . 607110) + (-1815 . 607033) (-1816 . 606915) (-1817 . 606739) (-1818 . 606541) + (-1819 . 606214) (-1820 . 605848) (-1821 . 605554) (-1822 . 605448) + (-1823 . 605324) (-1824 . 604992) (-1825 . 604884) (-1826 . 604696) + (-1827 . 604578) (-1828 . 603662) (-1829 . 603124) (-1830 . 602782) + (-1831 . 602694) (-1832 . 602642) (-1833 . 602478) (-1834 . 602320) + (-1835 . 602145) (-1836 . 602038) (-1837 . 601983) (-1838 . 601849) + (-1839 . 601796) (-1840 . 601736) (-1841 . 601440) (-1842 . 601265) + (-1843 . 600825) (-1844 . 600763) (-1845 . 600532) (-1846 . 600402) + (-1847 . 599245) (-1848 . 599163) (-1849 . 598870) (-1850 . 598643) + (-1851 . 598553) (-1852 . 598244) (-1853 . 597684) (-1854 . 597614) + (-1855 . 597487) (-1856 . 597435) (-1857 . 597220) (-1858 . 597123) + (-1859 . 596516) (-1860 . 596403) (-1861 . 596171) (-1862 . 596097) + (-1863 . 595956) (-1864 . 595814) (-1865 . 595717) (-1866 . 595198) + (-1867 . 595032) (-1868 . 594917) (-1869 . 594736) (-1870 . 594653) + (-1871 . 592797) (-1872 . 592711) (-1873 . 592649) (-1874 . 592334) + (-1875 . 592281) (-1876 . 592183) (-1877 . 591993) (-1878 . 591943) + (-1879 . 591836) (-1880 . 591739) (-1881 . 591632) (-1882 . 591601) + (-1883 . 591535) (-1884 . 591214) (-1885 . 588799) (-1886 . 588147) + (-1887 . 588073) (-1888 . 587974) (-1889 . 587866) (-1890 . 587569) + (-1891 . 587489) (-1892 . 587394) (-1893 . 587323) (-1894 . 587207) + (-1895 . 587042) (-1896 . 586538) (-1897 . 586384) (-1898 . 586293) + (-1899 . 586006) (-1900 . 585932) (-1901 . 585435) (-1902 . 585292) + (-1903 . 585073) (-1904 . 584972) (-1905 . 584863) (-1906 . 584791) + (-1907 . 584707) (-1908 . 584609) (-1909 . 584493) (-1910 . 584405) + (-1911 . 584197) (-1912 . 584124) (-1913 . 583946) (-1914 . 582880) + (-1915 . 582756) (-1916 . 582672) (-1917 . 582618) (-1918 . 582044) + (-1919 . 581706) (-1920 . 581603) (-1921 . 581458) (-1922 . 581294) + (-1923 . 581179) (-1924 . 581021) (-1925 . 580799) (-1926 . 580726) + (-1927 . 580535) (-1928 . 580228) (-1929 . 580046) (-1930 . 580017) + (-1931 . 579857) (-1932 . 579802) (-1933 . 579720) (-1934 . 579686) + (-1935 . 579056) (-1936 . 578910) (-1937 . 578844) (-1938 . 578737) + (-1939 . 578570) (-1940 . 578491) (-1941 . 578348) (-1942 . 578204) + (-1943 . 578152) (-1944 . 578031) (-1945 . 577930) (-1946 . 577817) + (-1947 . 577645) (-1948 . 577559) (-1949 . 577299) (-1950 . 577110) + (-1951 . 576814) (-1952 . 576758) (-1953 . 576675) (-1954 . 576601) + (-1955 . 576492) (-1956 . 576357) (-1957 . 576124) (-1958 . 575006) + (-1959 . 574950) (-1960 . 574847) (-1961 . 574780) (-1962 . 574673) + (-1963 . 574395) (-1964 . 574339) (-1965 . 574277) (-1966 . 574133) + (-1967 . 573524) (-1968 . 573402) (-1969 . 573287) (-1970 . 573130) + (-1971 . 573077) (-1972 . 573021) (-1973 . 571243) (-1974 . 571023) + (-1975 . 570865) (-1976 . 570129) (-1977 . 569657) (-1978 . 569589) + (-1979 . 569519) (-1980 . 569415) (-1981 . 569137) (-1982 . 568984) + (-1983 . 568916) (-1984 . 568580) (-1985 . 568497) (-1986 . 568124) + (-1987 . 568029) (-1988 . 567867) (-1989 . 567781) (-1990 . 567501) + (-1991 . 567400) (-1992 . 567238) (-1993 . 567013) (-1994 . 566855) + (-1995 . 566540) (-1996 . 566466) (-1997 . 566367) (-1998 . 566080) + (-1999 . 565953) (-2000 . 565889) (-2001 . 565810) (-2002 . 565733) + (-2003 . 565609) (-2004 . 565550) (-2005 . 565473) (-2006 . 565374) + (-2007 . 565321) (-2008 . 565087) (-2009 . 564996) (-2010 . 564712) + (-2011 . 564572) (-2012 . 564501) (-2013 . 563857) (-2014 . 563699) + (-2015 . 563539) (-2016 . 563399) (-2017 . 563147) (-2018 . 563077) + (-2019 . 562979) (-2020 . 562595) (-2021 . 562144) (-2022 . 562050) + (-2023 . 561937) (-2024 . 561676) (-2025 . 560815) (-2026 . 560606) + (-2027 . 559434) (-2028 . 559231) (-2029 . 557099) (-2030 . 557017) + (-2031 . 556921) (-2032 . 556855) (-2033 . 556596) (-2034 . 556371) + (-2035 . 556143) (-2036 . 555953) (-2037 . 555665) (-2038 . 551505) + (-2039 . 551342) (-2040 . 550841) (-2041 . 550393) (-2042 . 550278) + (-2043 . 550216) (-2044 . 550034) (-2045 . 549668) (-2046 . 549472) + (-2047 . 549319) (-2048 . 549176) (-2049 . 549000) (-2050 . 548899) + (-2051 . 548734) (-2052 . 548637) (-2053 . 548536) (-2054 . 547399) + (-2055 . 547096) (-2056 . 547022) (-2057 . 546970) (-2058 . 546861) + (-2059 . 546801) (-2060 . 546469) (-2061 . 546372) (-2062 . 546241) + (-2063 . 546091) (-2064 . 545962) (-2065 . 545755) (-2066 . 545624) + (-2067 . 544216) (-2068 . 544142) (-2069 . 537143) (-2070 . 537060) + (-2071 . 536953) (-2072 . 536876) (-2073 . 536730) (-2074 . 536354) + (-2075 . 536294) (-2076 . 536214) (-2077 . 535966) (-2078 . 535705) + (-2079 . 535608) (-2080 . 535552) (-2081 . 535304) (-2082 . 535191) + (-2083 . 534378) (-2084 . 534222) (-2085 . 534115) (-2086 . 534002) + (-2087 . 532821) (-2088 . 532441) (-2089 . 532389) (-2090 . 532292) + (-2091 . 532209) (-2092 . 532109) (-2093 . 531855) (-2094 . 531714) + (-2095 . 531602) (-2096 . 531072) (-2097 . 530988) (-2098 . 530774) + (-2099 . 530646) (-2100 . 530264) (-2101 . 530170) (-2102 . 530056) + (-2103 . 529970) (-2104 . 529366) (-2105 . 529235) (-2106 . 523722) + (-2107 . 523645) (-2108 . 523580) (-2109 . 523441) (-2110 . 523358) + (-2111 . 523111) (-2112 . 522821) (-2113 . 522548) (-2114 . 522449) + (-2115 . 522345) (-2116 . 522237) (-2117 . 522186) (-2118 . 521798) + (-2119 . 521695) (-2120 . 521630) (-2121 . 521517) (-2122 . 521464) + (-2123 . 521415) (-2124 . 521073) (-2125 . 521001) (-2126 . 520755) + (-2127 . 520660) (-2128 . 520541) (-2129 . 520086) (-2130 . 520027) + (-2131 . 519640) (-2132 . 519477) (-2133 . 519291) (-2134 . 519225) + (-2135 . 519137) (-2136 . 519063) (-2137 . 518960) (-2138 . 518830) + (-2139 . 518584) (-2140 . 518531) (-2141 . 518225) (-2142 . 517913) + (-2143 . 517734) (-2144 . 517640) (-2145 . 517291) (-2146 . 516537) + (-2147 . 516478) (-2148 . 515876) (-2149 . 515681) (-2150 . 515192) + (-2151 . 515036) (-2152 . 514973) (-2153 . 514009) (-2154 . 513921) + (-2155 . 513841) (-2156 . 513743) (-2157 . 513562) (-2158 . 513258) + (-2159 . 513134) (-2160 . 513025) (-2161 . 512888) (-2162 . 512726) + (-2163 . 512502) (-2164 . 512350) (-2165 . 511999) (-2166 . 511761) + (-2167 . 511334) (-2168 . 511210) (-2169 . 511092) (-2170 . 511012) + (-2171 . 510869) (-2172 . 510692) (-2173 . 509991) (-2174 . 509425) + (-2175 . 509357) (-2176 . 509014) (-2177 . 508256) (-2178 . 508051) + (-2179 . 507762) (-2180 . 507661) (-2181 . 507582) (-2182 . 507414) + (-2183 . 507291) (-2184 . 507178) (-2185 . 506700) (-2186 . 506134) + (-2187 . 505599) (-2188 . 505396) (-2189 . 505362) (-2190 . 505164) + (-2191 . 505085) (-2192 . 504641) (-2193 . 504046) (-2194 . 503796) + (-2195 . 503712) (-2196 . 503494) (-2197 . 503387) (-2198 . 503272) + (-2199 . 503135) (-2200 . 502539) (-2201 . 502326) (-2202 . 502252) + (-2203 . 502000) (-2204 . 501905) (-2205 . 501811) (-2206 . 501783) + (-2207 . 501721) (-2208 . 501620) (-2209 . 501348) (-2210 . 500988) + (-2211 . 500734) (-2212 . 500637) (-2213 . 500534) (-2214 . 500369) + (-2215 . 499941) (-2216 . 499746) (-2217 . 499634) (-2218 . 499579) + (-2219 . 499527) (-2220 . 499313) (-2221 . 499258) (-2222 . 499206) + (-2223 . 499144) (-2224 . 498886) (-2225 . 498636) (-2226 . 498488) + (-2227 . 498238) (-2228 . 498130) (-2229 . 496501) (-2230 . 496114) + (-2231 . 495861) (-2232 . 494865) (-2233 . 494777) (-2234 . 494711) + (-2235 . 494658) (-2236 . 493861) (-2237 . 493400) (-2238 . 491999) + (-2239 . 491904) (-2240 . 491764) (-2241 . 491655) (-2242 . 491537) + (-2243 . 491478) (-2244 . 491427) (-2245 . 490561) (-2246 . 490461) + (-2247 . 490387) (-2248 . 490283) (-2249 . 490117) (-2250 . 490007) + (-2251 . 489913) (-2252 . 489766) (-2253 . 489585) (-2254 . 489471) + (-2255 . 489419) (-2256 . 489201) (-2257 . 488674) (-2258 . 488543) + (-2259 . 487169) (-2260 . 487053) (-2261 . 486801) (-2262 . 486692) + (-2263 . 486523) (-2264 . 486390) (-2265 . 486063) (-2266 . 485727) + (-2267 . 485639) (-2268 . 485498) (-2269 . 485153) (-2270 . 484979) + (-2271 . 484865) (-2272 . 484682) (-2273 . 484552) (-2274 . 484475) + (-2275 . 484280) (-2276 . 484184) (-2277 . 484110) (-2278 . 484047) + (-2279 . 483959) (-2280 . 483776) (-2281 . 483660) (-2282 . 483574) + (-2283 . 483508) (-2284 . 483449) (-2285 . 483381) (-2286 . 483253) + (-2287 . 483047) (-2288 . 482997) (-2289 . 482800) (-2290 . 482676) + (-2291 . 482595) (-2292 . 482364) (-2293 . 481744) (-2294 . 481512) + (-2295 . 481438) (-2296 . 480843) (-2297 . 480809) (-2298 . 480629) + (-2299 . 480459) (-2300 . 480388) (-2301 . 479196) (-2302 . 478978) + (-2303 . 478921) (-2304 . 478872) (-2305 . 478816) (-2306 . 478548) + (-2307 . 478295) (-2308 . 477954) (-2309 . 477853) (-2310 . 477653) + (-2311 . 476794) (-2312 . 476650) (-2313 . 476616) (-2314 . 476406) + (-2315 . 476353) (-2316 . 476118) (-2317 . 475561) (-2318 . 475358) + (-2319 . 475046) (-2320 . 474967) (-2321 . 474824) (-2322 . 474750) + (-2323 . 474500) (-2324 . 472662) (-2325 . 472510) (-2326 . 472344) + (-2327 . 472260) (-2328 . 472153) (-2329 . 472059) (-2330 . 471955) + (-2331 . 471818) (-2332 . 471762) (-2333 . 471707) (-2334 . 471655) + (-2335 . 471512) (-2336 . 471423) (-2337 . 469913) (-2338 . 469526) + (-2339 . 469469) (-2340 . 469410) (-2341 . 469344) (-2342 . 468971) + (-2343 . 468813) (-2344 . 468669) (-2345 . 468588) (-2346 . 468490) + (-2347 . 468301) (-2348 . 468153) (-2349 . 468045) (-2350 . 467930) + (-2351 . 466382) (-2352 . 466270) (-2353 . 465686) (-2354 . 465637) + (-2355 . 465498) (-2356 . 465424) (-2357 . 465372) (-2358 . 465288) + (-2359 . 465151) (-2360 . 465016) (-2361 . 464853) (-2362 . 464786) + (-2363 . 464734) (-2364 . 464625) (-2365 . 464537) (-2366 . 464484) + (-2367 . 464228) (-2368 . 464194) (-2369 . 464080) (-2370 . 463785) + (-2371 . 463516) (-2372 . 463446) (-2373 . 462919) (-2374 . 462692) + (-2375 . 462414) (-2376 . 462334) (-2377 . 461926) (-2378 . 460819) + (-2379 . 460703) (-2380 . 460593) (-2381 . 460433) (-2382 . 460338) + (-2383 . 460286) (-2384 . 460139) (-2385 . 459981) (-2386 . 459884) + (-2387 . 459832) (-2388 . 459722) (-2389 . 459598) (-2390 . 459395) + (-2391 . 459166) (-2392 . 459030) (-2393 . 458945) (-2394 . 458614) + (-2395 . 458427) (-2396 . 458196) (-2397 . 457951) (-2398 . 457789) + (-2399 . 457636) (-2400 . 457429) (-2401 . 457210) (-2402 . 456613) + (-2403 . 456470) (-2404 . 456418) (-2405 . 456355) (-2406 . 456210) + (-2407 . 456122) (-2408 . 456035) (-2409 . 455937) (-2410 . 455732) + (-2411 . 455349) (-2412 . 455272) (-2413 . 454998) (-2414 . 454882) + (-2415 . 454722) (-2416 . 454672) (-2417 . 454641) (-2418 . 454433) + (-2419 . 454338) (-2420 . 454063) (-2421 . 453904) (-2422 . 453297) + (-2423 . 453228) (-2424 . 453142) (-2425 . 452832) (-2426 . 452798) + (-2427 . 452727) (-2428 . 452666) (-2429 . 452567) (-2430 . 451855) + (-2431 . 451544) (-2432 . 451335) (-2433 . 451248) (-2434 . 451147) + (-2435 . 451094) (-2436 . 451022) (-2437 . 450956) (-2438 . 450701) + (-2439 . 450144) (-2440 . 449974) (-2441 . 449771) (-2442 . 449450) + (-2443 . 449321) (-2444 . 449042) (-2445 . 447877) (-2446 . 447845) + (-2447 . 447747) (-2448 . 447670) (-2449 . 447586) (-2450 . 447479) + (-2451 . 447367) (-2452 . 447230) (-2453 . 447175) (-2454 . 447108) + (-2455 . 447000) (-2456 . 446896) (-2457 . 446837) (-2458 . 446765) + (-2459 . 445892) (-2460 . 445732) (-2461 . 445623) (-2462 . 445499) + (-2463 . 445222) (-2464 . 444609) (-2465 . 443269) (-2466 . 443111) + (-2467 . 443027) (-2468 . 442592) (-2469 . 442311) (-2470 . 441125) + (-2471 . 440764) (-2472 . 440253) (-2473 . 440201) (-2474 . 440121) + (-2475 . 440069) (-2476 . 439855) (-2477 . 439745) (-2478 . 439264) + (-2479 . 439065) (-2480 . 438826) (-2481 . 438742) (-2482 . 438636) + (-2483 . 438184) (-2484 . 437002) (-2485 . 436949) (-2486 . 436791) + (-2487 . 436684) (-2488 . 436593) (-2489 . 436540) (-2490 . 436503) + (-2491 . 436364) (-2492 . 436269) (-2493 . 436128) (-2494 . 435948) + (-2495 . 435819) (-2496 . 435700) (-2497 . 433494) (-2498 . 433172) + (-2499 . 433095) (-2500 . 433042) (-2501 . 432862) (-2502 . 432830) + (-2503 . 432717) (-2504 . 432593) (-2505 . 432430) (-2506 . 432326) + (-2507 . 432274) (-2508 . 432012) (-2509 . 431618) (-2510 . 431514) + (-2511 . 431332) (-2512 . 430596) (-2513 . 430322) (-2514 . 429748) + (-2515 . 429463) (-2516 . 429385) (-2517 . 429220) (-2518 . 428966) + (-2519 . 428910) (-2520 . 428796) (-2521 . 428727) (-2522 . 428699) + (-2523 . 428278) (-2524 . 428148) (-2525 . 428017) (-2526 . 427481) + (-2527 . 427136) (-2528 . 427041) (-2529 . 426970) (-2530 . 426897) + (-2531 . 426048) (-2532 . 425995) (-2533 . 425896) (-2534 . 425789) + (-2535 . 425523) (-2536 . 425452) (-2537 . 424236) (-2538 . 424120) + (-2539 . 424054) (-2540 . 424004) (-2541 . 423947) (-2542 . 420326) + (-2543 . 419677) (-2544 . 419589) (-2545 . 419530) (-2546 . 419312) + (-2547 . 419226) (-2548 . 419171) (-2549 . 418801) (-2550 . 418730) + (-2551 . 418604) (-2552 . 418505) (-2553 . 415724) (-2554 . 415337) + (-2555 . 415263) (-2556 . 415162) (-2557 . 414957) (-2558 . 414900) + (-2559 . 414791) (-2560 . 414684) (-2561 . 414587) (-2562 . 414384) + (-2563 . 414300) (-2564 . 413948) (-2565 . 413819) (-2566 . 413649) + (-2567 . 413300) (-2568 . 412973) (-2569 . 412807) (-2570 . 412710) + (-2571 . 412633) (-2572 . 412316) (-2573 . 411900) (-2574 . 411788) + (-2575 . 411732) (-2576 . 411662) (-2577 . 411241) (-2578 . 411083) + (-2579 . 410979) (-2580 . 410571) (-2581 . 410415) (-2582 . 410084) + (-2583 . 409960) (-2584 . 409668) (-2585 . 409514) (-2586 . 409320) + (-2587 . 409084) (-2588 . 408981) (-2589 . 408593) (-2590 . 408440) + (-2591 . 408221) (-2592 . 408168) (-2593 . 408119) (-2594 . 408021) + (-2595 . 407905) (-2596 . 407766) (-2597 . 407659) (-2598 . 407167) + (-2599 . 407011) (-2600 . 406660) (-2601 . 406283) (-2602 . 405769) + (-2603 . 405675) (-2604 . 405581) (-2605 . 405544) (-2606 . 404259) + (-2607 . 404190) (-2608 . 404137) (-2609 . 404007) (-2610 . 403978) + (-2611 . 403634) (-2612 . 403393) (-2613 . 403220) (-2614 . 403073) + (-2615 . 403000) (-2616 . 402931) (-2617 . 402845) (-2618 . 402606) + (-2619 . 402464) (-2620 . 402393) (-2621 . 402310) (-2622 . 402257) + (-2623 . 402204) (-2624 . 402053) (-2625 . 401596) (-2626 . 401323) + (-2627 . 401204) (-2628 . 401039) (-2629 . 400686) (-2630 . 400467) + (-2631 . 400399) (-2632 . 400340) (-2633 . 400285) (-2634 . 400184) + (-2635 . 399975) (-2636 . 399819) (-2637 . 399762) (-2638 . 399667) + (-2639 . 399616) (-2640 . 399560) (-2641 . 399482) (-2642 . 399373) + (-2643 . 394035) (-2644 . 393922) (-2645 . 393247) (-2646 . 393147) + (-2647 . 392878) (-2648 . 392808) (-2649 . 392707) (-2650 . 392639) + (-2651 . 392029) (-2652 . 391913) (-2653 . 391097) (-2654 . 391011) + (-2655 . 390878) (-2656 . 390812) (-2657 . 390705) (-2658 . 390606) + (-2659 . 390533) (-2660 . 390499) (-2661 . 390373) (-2662 . 390215) + (-2663 . 390025) (-2664 . 389954) (-2665 . 389795) (-2666 . 389581) + (-2667 . 389500) (-2668 . 389345) (-2669 . 389203) (-2670 . 385205) + (-2671 . 385131) (-2672 . 385065) (-2673 . 384838) (-2674 . 384457) + (-2675 . 384387) (-2676 . 384173) (-2677 . 383997) (-2678 . 383881) + (-2679 . 383656) (-2680 . 383514) (-2681 . 383429) (-2682 . 383360) + (-2683 . 382606) (-2684 . 382365) (-2685 . 382213) (-2686 . 382077) + (-2687 . 381999) (-2688 . 381832) (-2689 . 381568) (-2690 . 381423) + (-2691 . 381283) (-2692 . 381230) (-2693 . 381091) (-2694 . 380981) + (-2695 . 380730) (-2696 . 380627) (-2697 . 380559) (-2698 . 376017) + (-2699 . 375588) (-2700 . 375431) (-2701 . 375378) (-2702 . 375341) + (-2703 . 374129) (-2704 . 374050) (-2705 . 373725) (-2706 . 373639) + (-2707 . 373498) (-2708 . 373435) (-2709 . 373302) (-2710 . 373219) + (-2711 . 373141) (-2712 . 373089) (-2713 . 372985) (-2714 . 372912) + (-2715 . 372762) (-2716 . 372661) (-2717 . 372542) (-2718 . 372358) + (-2719 . 371977) (-2720 . 371813) (-2721 . 370785) (-2722 . 370374) + (-2723 . 370244) (-2724 . 370091) (-2725 . 369936) (-2726 . 369870) + (-2727 . 369792) (-2728 . 369739) (-2729 . 369603) (-2730 . 369407) + (-2731 . 369333) (-2732 . 369280) (-2733 . 369152) (-2734 . 369070) + (-2735 . 368905) (-2736 . 368853) (-2737 . 368782) (-2738 . 368753) + (-2739 . 368702) (-2740 . 368649) (-2741 . 368566) (-2742 . 368436) + (-2743 . 368156) (-2744 . 367710) (-2745 . 367263) (-2746 . 366880) + (-2747 . 366721) (-2748 . 366577) (-2749 . 365281) (-2750 . 365211) + (-2751 . 365017) (-2752 . 364948) (-2753 . 364841) (-2754 . 364554) + (-2755 . 364332) (-2756 . 364254) (-2757 . 364131) (-2758 . 363960) + (-2759 . 363889) (-2760 . 363809) (-2761 . 363754) (-2762 . 363211) + (-2763 . 363098) (-2764 . 362425) (-2765 . 362217) (-2766 . 362111) + (-2767 . 361866) (-2768 . 361733) (-2769 . 361487) (-2770 . 361403) + (-2771 . 361274) (-2772 . 360641) (-2773 . 360589) (-2774 . 359836) + (-2775 . 359752) (-2776 . 359700) (-2777 . 359621) (-2778 . 359373) + (-2779 . 359224) (-2780 . 359141) (-2781 . 345027) (-2782 . 344389) + (-2783 . 344306) (-2784 . 344253) (-2785 . 344135) (-2786 . 344070) + (-2787 . 343957) (-2788 . 343871) (-2789 . 343705) (-2790 . 343532) + (-2791 . 343354) (-2792 . 343259) (-2793 . 342293) (-2794 . 342137) + (-2795 . 342054) (-2796 . 341998) (-2797 . 341706) (-2798 . 341553) + (-2799 . 341487) (-2800 . 341343) (-2801 . 340969) (-2802 . 340937) + (-2803 . 340864) (-2804 . 340578) (-2805 . 339108) (-2806 . 339026) + (-2807 . 338888) (-2808 . 338767) (-2809 . 338675) (-2810 . 335748) + (-2811 . 335643) (-2812 . 335502) (-2813 . 335450) (-2814 . 335318) + (-2815 . 335262) (-2816 . 335003) (-2817 . 334878) (-2818 . 334635) + (-2819 . 334505) (-2820 . 334211) (-2821 . 334158) (-2822 . 333989) + (-2823 . 333932) (-2824 . 333637) (-2825 . 333544) (-2826 . 333475) + (-2827 . 333066) (-2828 . 332904) (-2829 . 328185) (-2830 . 327546) + (-2831 . 327495) (-2832 . 327164) (-2833 . 327136) (-2834 . 327006) + (-2835 . 326540) (-2836 . 326480) (-2837 . 326034) (-2838 . 325964) + (-2839 . 325857) (-2840 . 325730) (-2841 . 325526) (-2842 . 325354) + (-2843 . 325284) (-2844 . 325113) (-2845 . 324993) (-2846 . 324900) + (-2847 . 324621) (-2848 . 324566) (-2849 . 324514) (-2850 . 324403) + (-2851 . 324181) (-2852 . 324085) (-2853 . 324028) (-2854 . 323841) + (-2855 . 323770) (-2856 . 323710) (-2857 . 323523) (-2858 . 323457) + (-2859 . 323294) (-2860 . 323140) (-2861 . 323036) (-2862 . 322958) + (-2863 . 322710) (-2864 . 322542) (-2865 . 322296) (-2866 . 322140) + (-2867 . 321619) (-2868 . 321553) (-2869 . 321460) (-2870 . 321389) + (-2871 . 321074) (-2872 . 321025) (-2873 . 320970) (-2874 . 320838) + (-2875 . 320752) (-2876 . 320669) (-2877 . 320278) (-2878 . 320169) + (-2879 . 319944) (-2880 . 319565) (-2881 . 319440) (-2882 . 319389) + (-2883 . 319276) (-2884 . 319146) (-2885 . 319090) (-2886 . 318917) + (-2887 . 318888) (-2888 . 318772) (-2889 . 318401) (-2890 . 317975) + (-2891 . 317878) (-2892 . 317517) (-2893 . 317083) (-2894 . 316928) + (-2895 . 316855) (-2896 . 316563) (-2897 . 316233) (-2898 . 316096) + (-2899 . 316017) (-2900 . 315814) (-2901 . 315721) (-2902 . 315379) + (-2903 . 315251) (-2904 . 315110) (-2905 . 315036) (-2906 . 314644) + (-2907 . 314595) (-2908 . 314566) (-2909 . 314538) (-2910 . 314482) + (-2911 . 314428) (-2912 . 314376) (-2913 . 314249) (-2914 . 314179) + (-2915 . 314126) (-2916 . 314055) (-2917 . 313832) (-2918 . 313638) + (-2919 . 313258) (-2920 . 313088) (-2921 . 313030) (-2922 . 312784) + (-2923 . 312677) (-2924 . 312479) (-2925 . 312260) (-2926 . 312069) + (-2927 . 311892) (-2928 . 311652) (-2929 . 311127) (-2930 . 310630) + (-2931 . 310564) (-2932 . 310403) (-2933 . 310351) (-2934 . 310221) + (-2935 . 310125) (-2936 . 310065) (-2937 . 309971) (-2938 . 309800) + (-2939 . 309745) (-2940 . 309658) (-2941 . 309530) (-2942 . 309342) + (-2943 . 309252) (-2944 . 309156) (-2945 . 309088) (-2946 . 309007) + (-2947 . 308666) (-2948 . 308557) (-2949 . 308461) (-2950 . 308390) + (-2951 . 308199) (-2952 . 308011) (-2953 . 307925) (-2954 . 307575) + (-2955 . 307328) (-2956 . 307173) (-2957 . 307062) (-2958 . 306978) + (-2959 . 306666) (-2960 . 306585) (-2961 . 306447) (-2962 . 306391) + (-2963 . 306266) (-2964 . 306192) (-2965 . 305946) (-2966 . 305775) + (-2967 . 305723) (-2968 . 305672) (-2969 . 305356) (-2970 . 305207) + (-2971 . 305155) (-2972 . 304982) (-2973 . 304763) (-2974 . 304421) + (-2975 . 304277) (-2976 . 304119) (-2977 . 303565) (-2978 . 303410) + (-2979 . 303183) (-2980 . 302891) (-2981 . 302806) (-2982 . 302647) + (-2983 . 302565) (-2984 . 302536) (-2985 . 302443) (-2986 . 302291) + (-2987 . 302213) (-2988 . 302006) (-2989 . 301528) (-2990 . 301438) + (-2991 . 301365) (-2992 . 301294) (-2993 . 301266) (-2994 . 301069) + (-2995 . 300580) (-2996 . 299816) (-2997 . 299651) (-2998 . 299524) + (-2999 . 299245) (-3000 . 299179) (-3001 . 299069) (-3002 . 299017) + (-3003 . 298778) (-3004 . 298590) (-3005 . 298520) (-3006 . 298459) + (-3007 . 298307) (-3008 . 297222) (-3009 . 296871) (-3010 . 296799) + (-3011 . 296644) (-3012 . 296537) (-3013 . 296493) (-3014 . 296390) + (-3015 . 295993) (-3016 . 295810) (-3017 . 295720) (-3018 . 295611) + (-3019 . 295359) (-3020 . 295307) (-3021 . 295088) (-3022 . 294795) + (-3023 . 294459) (-3024 . 294365) (-3025 . 293898) (-3026 . 293589) + (-3027 . 293533) (-3028 . 293378) (-3029 . 293282) (-3030 . 293175) + (-3031 . 293015) (-3032 . 292919) (-3033 . 292754) (-3034 . 292668) + (-3035 . 292588) (-3036 . 292514) (-3037 . 292263) (-3038 . 292176) + (-3039 . 291969) (-3040 . 291897) (-3041 . 291844) (-3042 . 291748) + (-3043 . 291641) (-3044 . 291585) (-3045 . 291460) (-3046 . 291408) + (-3047 . 291161) (-3048 . 290936) (-3049 . 290544) (-3050 . 290398) + (-3051 . 290049) (-3052 . 289882) (-3053 . 289696) (-3054 . 289590) + (-3055 . 289453) (-3056 . 289376) (-3057 . 289130) (-3058 . 288959) + (-3059 . 287961) (-3060 . 287881) (-3061 . 287723) (-3062 . 287496) + (-3063 . 287468) (-3064 . 287295) (-3065 . 287222) (-3066 . 287032) + (-3067 . 286913) (-3068 . 286663) (-3069 . 286219) (-3070 . 286082) + (-3071 . 285926) (-3072 . 285634) (-3073 . 285469) (-3074 . 285403) + (-3075 . 285320) (-3076 . 285264) (-3077 . 285134) (-3078 . 285061) + (-3079 . 284917) (-3080 . 284794) (-3081 . 284443) (-3082 . 284255) + (-3083 . 284206) (-3084 . 283994) (-3085 . 283867) (-3086 . 283796) + (-3087 . 283516) (-3088 . 283346) (-3089 . 283219) (-3090 . 283125) + (-3091 . 283016) (-3092 . 282909) (-3093 . 282821) (-3094 . 282769) + (-3095 . 282624) (-3096 . 282100) (-3097 . 281614) (-3098 . 281491) + (-3099 . 281286) (-3100 . 281216) (-3101 . 281098) (-3102 . 280957) + (-3103 . 280776) (-3104 . 279711) (-3105 . 279637) (-3106 . 279544) + (-3107 . 278294) (-3108 . 278126) (-3109 . 278016) (-3110 . 277892) + (-3111 . 277652) (-3112 . 277581) (-3113 . 277178) (-3114 . 276987) + (-3115 . 276901) (-3116 . 276807) (-3117 . 276755) (-3118 . 276566) + (-3119 . 276394) (-3120 . 276052) (-3121 . 275962) (-3122 . 275890) + (-3123 . 275671) (-3124 . 275107) (-3125 . 275048) (-3126 . 274963) + (-3127 . 274878) (-3128 . 274754) (-3129 . 274233) (-3130 . 274054) + (-3131 . 274001) (-3132 . 273927) (-3133 . 273790) (-3134 . 273694) + (-3135 . 273623) (-3136 . 273595) (-3137 . 273348) (-3138 . 273170) + (-3139 . 273118) (-3140 . 272859) (-3141 . 272807) (-3142 . 270956) + (-3143 . 270411) (-3144 . 270283) (-3145 . 270183) (-3146 . 270100) + (-3147 . 269955) (-3148 . 269242) (-3149 . 269154) (-3150 . 268836) + (-3151 . 268784) (-3152 . 268617) (-3153 . 268071) (-3154 . 267927) + (-3155 . 267576) (-3156 . 267459) (-3157 . 267187) (-3158 . 267058) + (-3159 . 267004) (-3160 . 266839) (-3161 . 265960) (-3162 . 265823) + (-3163 . 265727) (-3164 . 265660) (-3165 . 265256) (-3166 . 265197) + (-3167 . 264973) (-3168 . 264851) (-3169 . 264546) (-3170 . 264462) + (-3171 . 264253) (-3172 . 264048) (-3173 . 263975) (-3174 . 263896) + (-3175 . 263660) (-3176 . 263457) (-3177 . 263370) (-3178 . 263263) + (-3179 . 263180) (-3180 . 262749) (-3181 . 262603) (-3182 . 262329) + (-3183 . 262238) (-3184 . 261718) (-3185 . 261591) (-3186 . 261517) + (-3187 . 261446) (-3188 . 260995) (-3189 . 260907) (-3190 . 260762) + (-3191 . 260670) (-3192 . 260496) (-3193 . 260427) (-3194 . 260210) + (-3195 . 260158) (-3196 . 259742) (-3197 . 259690) (-3198 . 259443) + (-3199 . 259331) (-3200 . 259171) (-3201 . 258749) (-3202 . 258666) + (-3203 . 258615) (-3204 . 258532) (-3205 . 258475) (-3206 . 258355) + (-3207 . 258217) (-3208 . 257329) (-3209 . 257270) (-3210 . 257196) + (-3211 . 257129) (-3212 . 257035) (-3213 . 256843) (-3214 . 256724) + (-3215 . 256637) (-3216 . 256503) (-3217 . 255897) (-3218 . 255816) + (-3219 . 255620) (-3220 . 255502) (-3221 . 255416) (-3222 . 255324) + (-3223 . 254973) (-3224 . 254945) (-3225 . 254727) (-3226 . 254067) + (-3227 . 253963) (-3228 . 253835) (-3229 . 253185) (-3230 . 253048) + (-3231 . 252863) (-3232 . 252765) (-3233 . 252435) (-3234 . 252312) + (-3235 . 251852) (-3236 . 251615) (-3237 . 251368) (-3238 . 251280) + (-3239 . 251227) (-3240 . 251067) (-3241 . 250614) (-3242 . 250394) + (-3243 . 250295) (-3244 . 250116) (-3245 . 250039) (-3246 . 249968) + (-3247 . 249824) (-3248 . 249514) (-3249 . 249208) (-3250 . 249087) + (-3251 . 248964) (-3252 . 248631) (-3253 . 248561) (-3254 . 247776) + (-3255 . 247461) (-3256 . 247308) (-3257 . 247236) (-3258 . 247176) + (-3259 . 247056) (-3260 . 246955) (-3261 . 246769) (-3262 . 246667) + (-3263 . 246488) (-3264 . 246351) (-3265 . 246128) (-3266 . 245991) + (-3267 . 245820) (-3268 . 245578) (-3269 . 244327) (-3270 . 243957) + (-3271 . 243655) (-3272 . 243451) (-3273 . 243289) (-3274 . 243216) + (-3275 . 241792) (-3276 . 241593) (-3277 . 241346) (-3278 . 241175) + (-3279 . 240977) (-3280 . 240729) (-3281 . 240467) (-3282 . 240249) + (-3283 . 240114) (-3284 . 240062) (-3285 . 239979) (-3286 . 239833) + (-3287 . 239610) (-3288 . 239530) (-3289 . 239407) (-3290 . 239303) + (-3291 . 239253) (-3292 . 238437) (-3293 . 238317) (-3294 . 238168) + (-3295 . 237728) (-3296 . 237644) (-3297 . 237406) (-3298 . 237312) + (-3299 . 237254) (-3300 . 237176) (-3301 . 237069) (-3302 . 236876) + (-3303 . 236583) (-3304 . 236032) (-3305 . 235933) (-3306 . 235847) + (-3307 . 235684) (-3308 . 235026) (-3309 . 234974) (-3310 . 234320) + (-3311 . 234248) (-3312 . 234090) (-3313 . 233966) (-3314 . 233888) + (-3315 . 233706) (-3316 . 233227) (-3317 . 233086) (-3318 . 233026) + (-3319 . 232973) (-3320 . 232796) (-3321 . 232744) (-3322 . 232716) + (-3323 . 232642) (-3324 . 232514) (-3325 . 232442) (-3326 . 232288) + (-3327 . 232200) (-3328 . 232047) (-3329 . 226840) (-3330 . 226718) + (-3331 . 226647) (-3332 . 226559) (-3333 . 226506) (-3334 . 226453) + (-3335 . 226398) (-3336 . 226269) (-3337 . 226197) (-3338 . 224609) + (-3339 . 224508) (-3340 . 223690) (-3341 . 223638) (-3342 . 222895) + (-3343 . 222836) (-3344 . 222718) (-3345 . 222526) (-3346 . 222330) + (-3347 . 222232) (-3348 . 222164) (-3349 . 222069) (-3350 . 221788) + (-3351 . 221616) (-3352 . 221521) (-3353 . 221363) (-3354 . 221130) + (-3355 . 221057) (-3356 . 220987) (-3357 . 220687) (-3358 . 219783) + (-3359 . 219609) (-3360 . 219552) (-3361 . 218677) (-3362 . 218505) + (-3363 . 218435) (-3364 . 217920) (-3365 . 217786) (-3366 . 217685) + (-3367 . 217556) (-3368 . 217345) (-3369 . 217290) (-3370 . 217211) + (-3371 . 217074) (-3372 . 216939) (-3373 . 216844) (-3374 . 216792) + (-3375 . 216620) (-3376 . 216542) (-3377 . 216478) (-3378 . 216084) + (-3379 . 216031) (-3380 . 215958) (-3381 . 215880) (-3382 . 215797) + (-3383 . 215587) (-3384 . 215444) (-3385 . 215272) (-3386 . 215210) + (-3387 . 215176) (-3388 . 215102) (-3389 . 214953) (-3390 . 214536) + (-3391 . 214400) (-3392 . 214038) (-3393 . 213168) (-3394 . 213082) + (-3395 . 212853) (-3396 . 212690) (-3397 . 212632) (-3398 . 212604) + (-3399 . 212548) (-3400 . 212349) (-3401 . 212200) (-3402 . 212101) + (-3403 . 212002) (-3404 . 211847) (-3405 . 211686) (-3406 . 211633) + (-3407 . 211495) (-3408 . 211388) (-3409 . 211272) (-3410 . 211198) + (-3411 . 211143) (-3412 . 211019) (-3413 . 210844) (-3414 . 210710) + (-3415 . 210521) (-3416 . 210469) (-3417 . 210292) (-3418 . 210190) + (-3419 . 209604) (-3420 . 209498) (-3421 . 209239) (-3422 . 209151) + (-3423 . 208993) (-3424 . 208941) (-3425 . 208869) (-3426 . 208841) + (-3427 . 208648) (-3428 . 208380) (-3429 . 208252) (-3430 . 208175) + (-3431 . 208097) (-3432 . 208020) (-3433 . 207677) (-3434 . 207318) + (-3435 . 207249) (-3436 . 207145) (-3437 . 206550) (-3438 . 206498) + (-3439 . 206276) (-3440 . 206205) (-3441 . 206152) (-3442 . 205961) + (-3443 . 203799) (-3444 . 203701) (-3445 . 203582) (-3446 . 203526) + (-3447 . 203304) (-3448 . 203276) (-3449 . 203152) (-3450 . 203008) + (-3451 . 202896) (-3452 . 202841) (-3453 . 202525) (-3454 . 201438) + (-3455 . 201303) (-3456 . 201051) (-3457 . 199779) (-3458 . 199697) + (-3459 . 199563) (-3460 . 199490) (-3461 . 199390) (-3462 . 199091) + (-3463 . 198949) (-3464 . 198847) (-3465 . 198784) (-3466 . 198588) + (-3467 . 198539) (-3468 . 198440) (-3469 . 198247) (-3470 . 198120) + (-3471 . 198060) (-3472 . 197760) (-3473 . 197698) (-3474 . 197612) + (-3475 . 197497) (-3476 . 197279) (-3477 . 197189) (-3478 . 197161) + (-3479 . 196834) (-3480 . 196713) (-3481 . 196533) (-3482 . 196176) + (-3483 . 196046) (-3484 . 195919) (-3485 . 195775) (-3486 . 195680) + (-3487 . 195505) (-3488 . 195367) (-3489 . 195038) (-3490 . 194662) + (-3491 . 194477) (-3492 . 194404) (-3493 . 194305) (-3494 . 194152) + (-3495 . 194020) (-3496 . 193992) (-3497 . 193769) (-3498 . 193662) + (-3499 . 193517) (-3500 . 193464) (-3501 . 192830) (-3502 . 192774) + (-3503 . 192619) (-3504 . 192326) (-3505 . 192185) (-3506 . 192009) + (-3507 . 191945) (-3508 . 191460) (-3509 . 191356) (-3510 . 191282) + (-3511 . 191167) (-3512 . 190432) (-3513 . 190156) (-3514 . 189866) + (-3515 . 189786) (-3516 . 189698) (-3517 . 189610) (-3518 . 189498) + (-3519 . 189446) (-3520 . 189369) (-3521 . 189164) (-3522 . 189006) + (-3523 . 188863) (-3524 . 188725) (-3525 . 188619) (-3526 . 188549) + (-3527 . 188417) (-3528 . 188289) (-3529 . 188185) (-3530 . 187638) + (-3531 . 187458) (-3532 . 187381) (-3533 . 187295) (-3534 . 187242) + (-3535 . 187104) (-3536 . 187076) (-3537 . 186999) (-3538 . 186901) + (-3539 . 186777) (-3540 . 186624) (-3541 . 186552) (-3542 . 186472) + (-3543 . 186391) (-3544 . 186314) (-3545 . 186232) (-3546 . 186180) + (-3547 . 186062) (-3548 . 185574) (-3549 . 185478) (-3550 . 185334) + (-3551 . 185285) (-3552 . 185085) (-3553 . 184645) (-3554 . 184543) + (-3555 . 184463) (-3556 . 184017) (-3557 . 183944) (-3558 . 182746) + (-3559 . 182669) (-3560 . 182616) (-3561 . 182564) (-3562 . 181383) + (-3563 . 181103) (-3564 . 180872) (-3565 . 180786) (-3566 . 180691) + (-3567 . 180635) (-3568 . 180583) (-3569 . 180506) (-3570 . 180227) + (-3571 . 170667) (-3572 . 170269) (-3573 . 170214) (-3574 . 169996) + (-3575 . 169933) (-3576 . 169753) (-3577 . 169643) (-3578 . 169391) + (-3579 . 169317) (-3580 . 169194) (-3581 . 169063) (-3582 . 168975) + (-3583 . 168584) (-3584 . 168369) (-3585 . 168316) (-3586 . 168121) + (-3587 . 167991) (-3588 . 167838) (-3589 . 167708) (-3590 . 167512) + (-3591 . 167402) (-3592 . 167297) (-3593 . 167176) (-3594 . 166800) + (-3595 . 166268) (-3596 . 165915) (-3597 . 165816) (-3598 . 165673) + (-3599 . 165498) (-3600 . 165280) (-3601 . 165173) (-3602 . 164931) + (-3603 . 163928) (-3604 . 163767) (-3605 . 163224) (-3606 . 162813) + (-3607 . 162520) (-3608 . 162432) (-3609 . 162349) (-3610 . 162321) + (-3611 . 162116) (-3612 . 162064) (-3613 . 161907) (-3614 . 161752) + (-3615 . 161679) (-3616 . 161591) (-3617 . 161169) (-3618 . 161041) + (-3619 . 160987) (-3620 . 159749) (-3621 . 159693) (-3622 . 159627) + (-3623 . 159484) (-3624 . 159359) (-3625 . 159286) (-3626 . 159073) + (-3627 . 158928) (-3628 . 158807) (-3629 . 158755) (-3630 . 158556) + (-3631 . 158443) (-3632 . 158364) (-3633 . 158311) (-3634 . 157698) + (-3635 . 157645) (-3636 . 157542) (-3637 . 157382) (-3638 . 157314) + (-3639 . 157148) (-3640 . 157071) (-3641 . 156821) (-3642 . 156639) + (-3643 . 156448) (-3644 . 156343) (-3645 . 155916) (-3646 . 155882) + (-3647 . 155850) (-3648 . 155706) (-3649 . 155620) (-3650 . 155228) + (-3651 . 155075) (-3652 . 155033) (-3653 . 154813) (-3654 . 154720) + (-3655 . 154658) (-3656 . 154512) (-3657 . 154462) (-3658 . 154378) + (-3659 . 154319) (-3660 . 154196) (-3661 . 154052) (-3662 . 153929) + (-3663 . 153770) (-3664 . 153671) (-3665 . 153403) (-3666 . 153230) + (-3667 . 153159) (-3668 . 152977) (-3669 . 152610) (-3670 . 152353) + (-3671 . 152067) (-3672 . 151972) (-3673 . 151916) (-3674 . 151527) + (-3675 . 151458) (-3676 . 151254) (-3677 . 151103) (-3678 . 151051) + (-3679 . 150833) (-3680 . 150721) (-3681 . 150530) (-3682 . 150324) + (-3683 . 150258) (-3684 . 150012) (-3685 . 149925) (-3686 . 149794) + (-3687 . 149728) (-3688 . 149675) (-3689 . 149522) (-3690 . 149467) + (-3691 . 149288) (-3692 . 149190) (-3693 . 149019) (-3694 . 148642) + (-3695 . 148571) (-3696 . 148505) (-3697 . 148434) (-3698 . 148327) + (-3699 . 148219) (-3700 . 148104) (-3701 . 148000) (-3702 . 147944) + (-3703 . 147822) (-3704 . 147644) (-3705 . 147471) (-3706 . 147412) + (-3707 . 145144) (-3708 . 145092) (-3709 . 144949) (-3710 . 144881) + (-3711 . 144651) (-3712 . 144533) (-3713 . 144380) (-3714 . 144352) + (-3715 . 143250) (-3716 . 143200) (-3717 . 142809) (-3718 . 142667) + (-3719 . 142514) (-3720 . 142359) (-3721 . 142111) (-3722 . 141909) + (-3723 . 141682) (-3724 . 141573) (-3725 . 141520) (-3726 . 141319) + (-3727 . 141266) (-3728 . 141141) (-3729 . 141109) (-3730 . 141037) + (-3731 . 140951) (-3732 . 140257) (-3733 . 140205) (-3734 . 140068) + (-3735 . 139966) (-3736 . 139883) (-3737 . 139824) (-3738 . 139607) + (-3739 . 139483) (-3740 . 139317) (-3741 . 139099) (-3742 . 139014) + (-3743 . 138681) (-3744 . 138626) (-3745 . 138507) (-3746 . 138227) + (-3747 . 138074) (-3748 . 137788) (-3749 . 137342) (-3750 . 136838) + (-3751 . 136807) (-3752 . 136608) (-3753 . 136559) (-3754 . 136380) + (-3755 . 136328) (-3756 . 136110) (-3757 . 135903) (-3758 . 135833) + (-3759 . 133869) (-3760 . 133052) (-3761 . 132919) (-3762 . 132776) + (-3763 . 132459) (-3764 . 132355) (-3765 . 132302) (-3766 . 131438) + (-3767 . 131243) (-3768 . 130697) (-3769 . 130541) (-3770 . 130488) + (-3771 . 130457) (-3772 . 130070) (-3773 . 130019) (-3774 . 129717) + (-3775 . 129495) (-3776 . 129396) (-3777 . 129304) (-3778 . 129161) + (-3779 . 128901) (-3780 . 128830) (-3781 . 128675) (-3782 . 128380) + (-3783 . 128273) (-3784 . 128142) (-3785 . 128071) (-3786 . 127476) + (-3787 . 127384) (-3788 . 127247) (-3789 . 126888) (-3790 . 126642) + (-3791 . 126590) (-3792 . 126452) (-3793 . 126239) (-3794 . 126165) + (-3795 . 126116) (-3796 . 125990) (-3797 . 125904) (-3798 . 125810) + (-3799 . 125782) (-3800 . 125711) (-3801 . 125112) (-3802 . 125035) + (-3803 . 124883) (-3804 . 124810) (-3805 . 124580) (-3806 . 124497) + (-3807 . 123121) (-3808 . 122903) (-3809 . 122737) (-3810 . 122643) + (-3811 . 122590) (-3812 . 122434) (-3813 . 122279) (-3814 . 122193) + (-3815 . 121834) (-3816 . 121782) (-3817 . 121460) (-3818 . 120957) + (-3819 . 120847) (-3820 . 120786) (-3821 . 120699) (-3822 . 120667) + (-3823 . 120595) (-3824 . 120529) (-3825 . 120391) (-3826 . 120053) + (-3827 . 119782) (-3828 . 119588) (-3829 . 119272) (-3830 . 119209) + (-3831 . 118909) (-3832 . 118850) (-3833 . 118633) (-3834 . 95211) + (-3835 . 95058) (-3836 . 94720) (-3837 . 94606) (-3838 . 94534) + (-3839 . 94432) (-3840 . 94340) (-3841 . 91588) (-3842 . 91309) + (-3843 . 91200) (-3844 . 91129) (-3845 . 91044) (-3846 . 90341) + (-3847 . 90276) (-3848 . 90028) (-3849 . 90000) (-3850 . 89521) + (-3851 . 89378) (-3852 . 89274) (-3853 . 88890) (-3854 . 88817) + (-3855 . 88424) (-3856 . 88216) (-3857 . 88093) (-3858 . 87943) + (-3859 . 87812) (-3860 . 87496) (-3861 . 87334) (-3862 . 87218) + (-3863 . 87080) (-3864 . 87046) (-3865 . 86995) (-3866 . 86908) + (-3867 . 86787) (-3868 . 86614) (-3869 . 86213) (-3870 . 86029) + (-3871 . 85951) (-3872 . 85880) (-3873 . 85687) (-3874 . 85574) + (** . 82485) (-3876 . 82411) (-3877 . 81920) (-3878 . 81729) + (-3879 . 81660) (-3880 . 81566) (-3881 . 81535) (-3882 . 81480) + (-3883 . 81309) (-3884 . 81223) (-3885 . 81056) (-3886 . 80705) + (-3887 . 79393) (-3888 . 78994) (-3889 . 78901) (-3890 . 78782) + (-3891 . 78672) (-3892 . 78606) (-3893 . 76343) (-3894 . 76201) + (-3895 . 75731) (-3896 . 75559) (-3897 . 75531) (-3898 . 75478) + (-3899 . 75332) (-3900 . 75168) (-3901 . 75024) (-3902 . 74974) + (-3903 . 74921) (-3904 . 74786) (-3905 . 74577) (-3906 . 74388) + (-3907 . 74316) (-3908 . 74045) (-3909 . 72970) (-3910 . 72861) + (-3911 . 71131) (-3912 . 71077) (-3913 . 70992) (-3914 . 70932) + (-3915 . 70329) (-3916 . 70295) (-3917 . 70227) (-3918 . 70172) + (-3919 . 70089) (-3920 . 69923) (-3921 . 69737) (-3922 . 69542) + (-3923 . 69440) (-3924 . 69338) (-3925 . 69264) (-3926 . 69169) + (-3927 . 69061) (-3928 . 69030) (-3929 . 68909) (-3930 . 68796) + (-3931 . 68689) (-3932 . 68551) (-3933 . 68118) (-3934 . 68063) + (-3935 . 67678) (-3936 . 67489) (-3937 . 67241) (-3938 . 67145) + (-3939 . 66778) (-3940 . 66693) (-3941 . 66603) (-3942 . 66495) + (-3943 . 66288) (-3944 . 66233) (-3945 . 66113) (-3946 . 66005) + (-3947 . 65612) (-3948 . 65454) (-3949 . 65314) (-3950 . 65096) + (-3951 . 64667) (-3952 . 64494) (-3953 . 64284) (-3954 . 64215) + (-3955 . 64110) (-3956 . 63967) (-3957 . 63850) (-3958 . 63744) + (-3959 . 63639) (-3960 . 63553) (-3961 . 63431) (-3962 . 63347) + (-3963 . 63263) (-3964 . 63189) (-3965 . 63111) (-3966 . 63059) + (-3967 . 62728) (-3968 . 62615) (-3969 . 62500) (-3970 . 62355) + (-3971 . 62289) (-3972 . 62151) (-3973 . 61947) (-3974 . 61765) + (-3975 . 61632) (-3976 . 61604) (-3977 . 61498) (-3978 . 61448) + (-3979 . 61329) (-3980 . 61250) (-3981 . 61123) (-3982 . 61049) + (-3983 . 60476) (-3984 . 60248) (-3985 . 60125) (-3986 . 59909) + (-3987 . 59670) (-3988 . 59555) (-3989 . 59443) (-3990 . 59285) + (-3991 . 59203) (-3992 . 59174) (-3993 . 58833) (-3994 . 58724) + (-3995 . 58671) (-3996 . 58599) (-3997 . 58518) (-3998 . 58401) + (-3999 . 58332) (-4000 . 58226) (-4001 . 58174) (-4002 . 58140) + (-4003 . 58088) (-4004 . 57925) (-4005 . 57846) (-4006 . 57763) + (-4007 . 57729) (-4008 . 57604) (-4009 . 57372) (-4010 . 57273) + (-4011 . 56897) (-4012 . 56666) (-4013 . 55800) (-4014 . 55215) + (-4015 . 55141) (-4016 . 55019) (-4017 . 54900) (-4018 . 54620) + (-4019 . 54519) (-4020 . 54405) (-4021 . 54328) (-4022 . 54268) + (-4023 . 54213) (-4024 . 54145) (-4025 . 54075) (-4026 . 53566) + (-4027 . 53440) (-4028 . 53357) (-4029 . 52930) (-4030 . 51353) + (-4031 . 51257) (-4032 . 51155) (-4033 . 51077) (-4034 . 50975) + (-4035 . 50816) (-4036 . 50761) (-4037 . 50625) (-4038 . 50553) + (-4039 . 50340) (-4040 . 50249) (-4041 . 50146) (-4042 . 50047) + (-4043 . 49992) (-4044 . 49874) (-4045 . 49846) (-4046 . 49547) + (-4047 . 49404) (-4048 . 49298) (-4049 . 49175) (-4050 . 49089) + (-4051 . 48962) (-4052 . 48706) (-4053 . 48654) (-4054 . 48534) + (-4055 . 48475) (-4056 . 48290) (-4057 . 48132) (-4058 . 47989) + (-4059 . 47332) (-4060 . 47073) (-4061 . 47011) (-4062 . 46809) + (-4063 . 46756) (-4064 . 46633) (-4065 . 45187) (-4066 . 45129) + (-4067 . 44954) (-4068 . 44867) (-4069 . 44781) (-4070 . 44455) + (-4071 . 44357) (-4072 . 44224) (-4073 . 44141) (-4074 . 43754) + (-4075 . 43593) (-4076 . 43297) (-4077 . 43175) (-4078 . 43066) + (-4079 . 42867) (-4080 . 42786) (-4081 . 42607) (-4082 . 42475) + (-4083 . 42228) (-4084 . 42194) (-4085 . 42124) (-4086 . 41979) + (-4087 . 41714) (-4088 . 41655) (-4089 . 41445) (-4090 . 41393) + (-4091 . 41286) (-4092 . 40800) (-4093 . 40693) (-4094 . 40451) + (-4095 . 40013) (-4096 . 39849) (-4097 . 39782) (-4098 . 39657) + (-4099 . 39487) (-4100 . 39423) (-4101 . 39310) (-4102 . 39222) + (-4103 . 39143) (-4104 . 38954) (-4105 . 38636) (-4106 . 38584) + (-4107 . 38268) (-4108 . 38077) (-4109 . 37958) (-4110 . 37802) + (-4111 . 37556) (-4112 . 37341) (-4113 . 37264) (-4114 . 37026) + (-4115 . 36974) (-4116 . 36815) (-4117 . 36747) (-4118 . 36680) + (-4119 . 36587) (-4120 . 36461) (-4121 . 36396) (-4122 . 36194) + (-4123 . 35995) (-4124 . 35714) (-4125 . 35661) (-4126 . 35566) + (-4127 . 35430) (-4128 . 35344) (-4129 . 35183) (-4130 . 34381) + (-4131 . 34272) (-4132 . 34131) (-4133 . 34015) (-4134 . 33911) + (-4135 . 33812) (-4136 . 33757) (-4137 . 33100) (-4138 . 33072) + (-4139 . 32886) (-4140 . 32858) (-4141 . 32792) (-4142 . 32624) + (-4143 . 32516) (-4144 . 32024) (-4145 . 31944) (-4146 . 31817) + (-4147 . 31715) (-4148 . 31641) (-4149 . 31335) (-4150 . 31307) + (-4151 . 31255) (-4152 . 30944) (-4153 . 30854) (-4154 . 30693) + (-4155 . 30070) (-4156 . 29912) (-4157 . 29883) (-4158 . 29774) + (-4159 . 29534) (-4160 . 29449) (-4161 . 29287) (-4162 . 28968) + (-4163 . 28845) (-4164 . 28638) (-4165 . 28485) (-4166 . 28189) + (-4167 . 27438) (-4168 . 27386) (-4169 . 26996) (-4170 . 26944) + (-4171 . 26794) (-4172 . 26626) (-4173 . 26525) (-4174 . 26388) + (-4175 . 26235) (-4176 . 26131) (-4177 . 26031) (-4178 . 25871) + (-4179 . 25692) (-4180 . 25636) (-4181 . 25290) (-4182 . 25065) + (-4183 . 24875) (-4184 . 24802) (-4185 . 24746) (-4186 . 24621) + (-4187 . 24260) (-4188 . 24153) (-4189 . 24030) (-4190 . 23728) + (-4191 . 23624) (-4192 . 23454) (-4193 . 23377) (-4194 . 23310) + (-4195 . 23233) (-4196 . 23139) (-4197 . 23042) (-4198 . 22941) + (-4199 . 22592) (-4200 . 22504) (-4201 . 21902) (-4202 . 21228) + (-4203 . 21110) (-4204 . 20772) (-4205 . 20686) (-4206 . 20440) + (-4207 . 20311) (-4208 . 20128) (-4209 . 20074) (-4210 . 19807) + (-4211 . 19626) (-4212 . 19468) (-4213 . 19093) (-4214 . 19025) + (-4215 . 18897) (-4216 . 18749) (-4217 . 18642) (-4218 . 18548) + (-4219 . 18440) (-4220 . 18348) (-4221 . 18295) (-4222 . 18225) + (-4223 . 18102) (-4224 . 18028) (-4225 . 17991) (-4226 . 17350) + (-4227 . 16917) (-4228 . 16837) (-4229 . 16709) (-4230 . 16566) + (-4231 . 16487) (-4232 . 16432) (-4233 . 16323) (-4234 . 16108) + (-4235 . 15605) (-4236 . 15539) (-4237 . 15405) (-4238 . 15148) + (-4239 . 15075) (-4240 . 14464) (-4241 . 14334) (-4242 . 13970) + (-4243 . 13833) (-4244 . 13805) (-4245 . 13680) (-4246 . 13628) + (-4247 . 13487) (-4248 . 13006) (-4249 . 12884) (-4250 . 12810) + (-4251 . 12753) (-4252 . 12569) (-4253 . 12485) (-4254 . 12149) + (-4255 . 12092) (-4256 . 11933) (-4257 . 11862) (-4258 . 11409) + (-4259 . 10879) (-4260 . 10726) (-4261 . 10416) (-4262 . 10333) + (-4263 . 10260) (-4264 . 10207) (-4265 . 10142) (-4266 . 10089) + (-4267 . 9837) (-4268 . 9730) (-4269 . 9506) (-4270 . 9372) + (-4271 . 9209) (-4272 . 9066) (-4273 . 8179) (-4274 . 8060) + (-4275 . 8005) (-4276 . 7977) (-4277 . 7173) (-4278 . 7072) + (-4279 . 6861) (-4280 . 6806) (-4281 . 6720) (-4282 . 6626) + (-4283 . 3327) (-4284 . 3140) (-4285 . 3038) (-4286 . 2898) + (-4287 . 2845) (-4288 . 2773) (-4289 . 2650) (-4290 . 2518) + (-4291 . 2461) (-4292 . 2351) (-4293 . 2236) (-4294 . 1934) + (-4295 . 1881) (-4296 . 1853) (-4297 . 1522) (-4298 . 1448) + (-4299 . 1179) (-4300 . 1075) (-4301 . 977) (-4302 . 856) + (-4303 . 668) (-4304 . 558) (-4305 . 444) (-4306 . 311) (-4307 . 231) + (-4308 . 30))
\ No newline at end of file |